
 
 

Delft University of Technology

The Total Cost of Ownership Score
Unifying Repair with Durability and Improving Objectivity, Completeness, and Scalability
Faludi, Jeremy; Ritsma, Rutger; Flipsen, Bas

DOI
10.23919/EGG62010.2024.10631233
Publication date
2024
Document Version
Final published version
Published in
International Conference Electronics Goes Green 2024+

Citation (APA)
Faludi, J., Ritsma, R., & Flipsen, B. (2024). The Total Cost of Ownership Score: Unifying Repair with
Durability and Improving Objectivity, Completeness, and Scalability. In International Conference Electronics
Goes Green 2024+: From Silicon to Sustainability, EGG 2024 - Proceedings IEEE.
https://doi.org/10.23919/EGG62010.2024.10631233
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/EGG62010.2024.10631233
https://doi.org/10.23919/EGG62010.2024.10631233


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



 

The Total Cost of Ownership Score: Unifying 
Repair with Durability and Improving Objectivity, 

Completeness, and Scalability  
 

Dr. Jeremy Faludi  
Sustainable Design Engineering  

TU Delft 
Delft, Netherlands 
j.faludi@tudelft.nl 

 

 

 Rutger Ritsma 
Sustainable Design Engineering  

TU Delft 
Delft, Netherlands 

Dr. Bas Flipsen 
Sustainable Design Engineering  

TU Delft 
Delft, Netherlands 

Abstract—This paper introduces the Total Cost of 

Ownership Score (TCOS) as a comprehensive framework for 

evaluating and improving product repair, durability, and 

maintenance all together on a uniform scale. The scoring 

procedure, implemented through a spreadsheet, calculates a 

product’s total cost of ownership per year based on likelihood of 

failure modes, repair costs per failure (parts, labor, and other), 

likelihoods of repair successes, and cost of replacing the product 

if repairs fail. Because costs and repair times vary substantially 

based on many factors, and likelihoods of device failures and 

repair successes are stochastic by nature, the uncertainties are 

large and must be displayed in final scores. However, 

preliminary results indicate that even with large uncertainties, 

the TCOS provides meaningful product comparisons and 

hotspot identification. The advantages of the TCOS include 

scoring quantitatively in units that both consumers and 

businesses understand and value, to drive market behavior; vast 

reduction of subjective judgments in scoring; measuring 

durability and repair on the same scale; universal applicability, 

enabling legislation or policy to scale across products easier; and 

enabling legislation to allow innovation rather than prescribing 

designs. The TCOS’s two challenges are that the data required 

is not publicly available for most products, so it requires 

empirical product testing; and further development / 

negotiation is required to decide what standard assumptions can 

be applied as shortcuts to shrink the scope of empirical testing. 

Keywords—Repair scorecard, durability scorecard, Repair 

policy, reparability index, circular economy 

 

I. INTRODUCTION  

Repair is extremely important for the circular economy, as it 
is one of the most energy and resource efficient ways to keep 
products in service longer [1]. Because of this, European 
policies are pushing requirements for product repairability, 
such as the Circular Economy Action Plan [2] and the Waste 
Framework Directive [3]. This requires ways of scoring 
product repairability that are objective (repeatable and fair), 
complete (measure all relevant aspects), easy to apply to 
many product types across whole industries, influence 
purchasing behavior, and also influence product design 
toward better repairability. They should also consider when 
products are durable and do not need repair.  
 
Subjectivity is a problem because all of today’s repairability 
scorecards are qualitative checklists. For example, one of the 

best and most widely used repair scorecards today is the 
French Repairability Index (FRI). FRI was introduced by the 
French government in 2019, with mandatory labeling for a 
few product categories in 2021. To score a product with it, an 
assessor (whether it is the manufacturer, a government 
agency, or a third party assessor) fills out a checklist with 
varying points for different qualitative aspects to semi-
quantify them (e.g., rate number of disassembly steps on a 
scale of 1 – 4; rate the types of fasteners on a scale of 1 – 3; 
check if firmware can be reset, as a yes/no; etc.) Then the 
semi-quantitative points are weighted into an overall product 
score from 1 to 10.  
 
In these scores, assessors must decide whether they are 
scoring for professional repairers or amateurs at home, they 
must score fastener types and firmware as mentioned above, 
sometimes decide how visible fasteners are, etc. FRI is not 
unique; as mentioned above, it is one of the best. An 
assessment of today’s major scorecards (FRI, iFixit, ONR 
192102, AsMer by Benelux, RSS by JRC, and EN 45554) 
found that all of them have significant problems with 
subjectivity [4], so different people scoring the same product 
can create very different scores [5].  
 
Some subjective aspects are often argued about, such as 
“bundling”: whether modules should be bigger (including 
more components, thus more expensive and higher 
environmental impact, but faster to replace because of 
simplified disassembly) or smaller (less cost and 
environmental impact, but more time to replace), and these 
arguments often have no one right answer. 
 
Completeness is another problem. Qualitative checklists must 
anticipate and have points for every aspect of product 
repairability, from modularity and fastener types to types of 
tools required, special skills required, and more. No existing 
scorecard considers all such aspects, and several of them miss 
many such aspects [4].  
 
Because of scorecard incompleteness, products can 
sometimes score well without actually being repairable [6]. 
Because they are weighted averages of different factors (e.g., 
disassembly steps, part availability, etc.), a bad score in one 
area is a small percent of the total score, even if it prevents 
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repair entirely. For example, the inability to disassemble a 
product to its priority parts only lowers FRI scores by ~5%, 
JRC scores by ~18%, and iFixit scores by ~33%. Spare parts 
more expensive than buying a new product leave JRC scores 
unchanged, lower FRI scores ~20%, and lower iFixit scores 
~12% [7].  
 
Even if scorecards did completely consider all aspects, they 
must also weigh them against each other fairly, to give credit 
for designs that best enable repair. Such priorities vary greatly 
between product categories. Thus, every product category 
must have its own painstakingly-crafted scorecard, making it 
difficult and expensive for policymakers to scale repair 
scorecards across all industries, especially when industries 
fight with legal challenges to scorecard credibility. This is 
why FRI only legally scores a few product categories: 
smartphones, laptops, televisions, washing machines, and 
lawnmowers. Difficulty scaling across industries means 
difficulty influencing purchasing behavior and product 
design at scale. 
 
Today’s scorecards are also not easy for non-experts to 
understand, which further limits their ability to influence 
purchasing behavior. As mentioned above, FRI, iFixit, and all 
other scorecards give a numeric score, such as on a scale of 1 
to 10. But what does it mean to score a 4 rather than an 8?  Is 
it twice as repairable, ten times more, or 10% more?  And 
what would it mean to be twice as repairable?  We could not 
find any published academic studies of whether the general 
public understands these scores or how much influence they 
have on purchasing decisions, if any. 
 
Finally, existing repair scores do not grade product durability, 
and thus cannot differentiate between products that are easy 
to repair but break frequently versus products that are hard to 
repair but never break. This was a justified part of industry 
opposition to repair scorecards; both durability and repair are 
needed to keep products in use longer [8]. Professional 
repairers have also asked for this information [9]. Designing 
for durability and repairability sometimes conflict with each 
other; today’s scorecards cannot help manufacturers or 
policymakers decide between design tradeoffs, at what 
threshold repairability becomes more or less preferable to 
durability for each product type. FRI is not unique in these 
aspects; as mentioned earlier, it is one of the best and most 
widely-used scorecards. 
 
Our goals in this project were to explore whether it was 
possible to fix these problems with a new kind of scorecard 
that could offer better objectivity, completeness, and ease of 
scaling across many product types, while also increasing 
influence on purchasing behavior and product design, and 
balancing durability versus repair. 
 
The solution that was developed attempted to fix these 
problems by quantifying the time and money required to 
repair product failures, then displaying the results as an 
average cost of ownership in €/year, including the annualized 
total cost as well as the annualized cost to repair, further 
broken down into annualized costs of parts, labor, and failure 
to repair. This paper describes how the tool was developed, 
and shows example cases performing a sensitivity analysis of 

how well the scorecard does or does not fulfill the goals, 
including what other problems it may raise. 
 

II. METHODS 

 
Quantifying the annualized costs of failure and repairs 
required building an equation including as many factors as 
possible, without overwhelming the assessor, for optimal 
completeness. Then it required conventions on how assessors 
should fill in the numbers to maximize objectivity. Then it 
required building a calculator tool for assessors to enter data 
into and receive a score from. Finally, example assessments 
were performed to test the tool in a sensitivity analysis. 
 
The equation, conventions for entering numbers, and 
calculator were all developed through an iterative process 
involving analyses of existing scorecards and other repair 
literature; building the calculator; conducting user tests and 
interviewing experts, including three professional telephone 
and household appliance repairers and a repair policy 
engineer at iFixit; and improving prototype equations, 
number entry conventions, and calculator interfaces based on 
the testing. This iterative approach led to the creation of seven 
versions of the tool, each incorporating feedback gathered 
throughout the development process. This nonlinear process 
is summarized below by topic in the following sections. 
 

A. Building the equation 

The equation was chosen to quantify economic cost and time, 
but not environmental impacts such as carbon footprint or 
more comprehensive life cycle assessment (LCA) metrics, 
for seven reasons: First, because economic costs are 
universally understood, unlike carbon footprints or more 
comprehensive LCA scores like ReCiPe millipoints. Second, 
because economic costs are well known to be extremely 
motivating, strongly affecting purchasing decisions for 
consumers, companies, and other institutions (often 
companies and government have rules requiring purchase 
decisions based on cost). Third, LCA data is rarely available 
publicly from companies on a component-by-component 
level, especially rarely using methodologies consistent across 
different companies, much less across different industries. 
Fourth, LCAs are time and money intensive for government 
or other third-party assessors to perform. Fifth, while 
economic costs of spare parts do not correlate strongly to 
environmental impacts of the parts, there is usually a 
reasonable correlation. Sixth, by contrast with LCA data, cost 
and time data is usually already tracked and often public (at 
least in the case of spare parts, and often for whole repair 
operations); where it is not yet tracked, companies are more 
motivated to collect it than LCA data. Seventh, where it is not 
tracked or published, it is far easier for companies, 
governments, or third parties to gather than LCA data.  
 
These seven factors together suggested that a scorecard 
counting only economic costs per product lifetime would be 
far easier to calculate and a reasonable proxy of 
environmental impacts per lifetime. Of course, this 
proposition should be tested by performing LCAs and 
circularity assessments of several products while comparing 
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their scores on this new scorecard versus others such as FRI. 
However, before such tests can be run, the scorecard must 
first be developed.  
The method used to build the equation was iterative, 
intertwined with conventions for numeric data gathering and 
the calculator interface, as mentioned above. However, it 
began by listing all variables that significantly affect the cost 
of repair (e.g., spare part cost, tool cost, disassembly time, the 
hourly cost of labor for professional repair, etc.) The list of 
variables was primarily based on analyses of existing 
scorecards and other repair literature [4], [5], [10], [11], [12], 
[13], including studies of repair failures [14]. Iterations also 
incorporated feedback from the expert repairer interviews. 
 
We required all variables to be generically applicable to any 
product category, from electronics to furniture to clothing to 
housewares, so the same equation could be applied 
universally. The reason for this is to enable policies to scale 
up quickly and easily across any or all industries. Details 
specific to certain product categories appear in the data entry. 
 
Once variables were listed, the equation was built by 
deductive reasoning and validating it in two ways: First, 
ensuring that the correct units always resulted from the 
operations on the variables chosen (e.g., labor cost in €/hr 
multiplied by repair time in hours results in units of €, and 
multiplying that by the probability of success does not change 
the units). Second, by entering many test values to verify that 
the equation’s resulting score followed logical trends (e.g., if 
the input of spare part cost rises, the output of total cost of 
ownership should rise proportionally). 
 

B. Developing data entry conventions 

Conventions for data entry were iteratively developed 
alongside the equation and case study, as mentioned above, 
for consistency across products. They were informed by FRI 
and iFixit scorecards, the interviews with expert repairers. 
They were developed with the assumption that scoring any 
product would require several empirical product teardowns 
or equivalent repair simulations (ideally 5 or 10 teardowns by 
at least two different independent parties for statistical 
validity), plus manufacturer durability tests to determine 
probabilities of common failure modes. However, even in the 
most perfect circumstances of manufacturers measuring all 
failure rates, repair costs, and repair success rates, some 
questions remain. For example, if repair success rates depend 
on documentation availability, tool availability, and other 
such variables, they must be consistently scored for all 
products. 
 
To avoid the subjectivity of existing scorecard checklists, 
these questions are handled in two ways: First, by including 
uncertainty in the calculations, so every variation can be 
included within best-case and worst-case scores. Second, we 
developed prototype rules for how to enter data for common 
situations where different interpretations are possible.  
 
Uncertainty was included so that the scorecard can show 
when data input variations cause minimal difference in 
outcomes for decision-makers (either purchasers or 
companies redesigning product for better repair), and so that 

when there is too much variation to make decisions, the 
scorecard helps highlight which data requires more certainty 
(e.g., in spare part costs, failure rates, or other).  
 
The prototype data entry rules for how to count the cost of 
common situations started based on conventions from 
existing scorecards and other repair literature cited above in 
the equation-building section (e.g., if no documentation is 
available for a repair, conservatively assume a zero percent 
success rate for that repair). These rules were tested 
iteratively with the equation and calculator using the case 
study phones described below. The case study provided 
sensitivity analysis across several scenarios. 
 
The scoring conventions are listed in Results, but should be 
reviewed and further iterated by a larger consortium of repair 
experts, manufacturers, and policymakers to achieve a broad-
based consensus before becoming policy.  
 
Unfortunately, we could not find publicly available data with 
thorough rigorous statistics on failure rates, disassembly / 
reassembly times, and spare part costs for most product types. 
However, many companies have this data for many product 
categories due to warranty claims, which cost companies 
significant money and whose data are used to improve spare 
part provision strategies and product design [15].  
 
The scenarios we tested in the case study were smartphones 
because iFixit gave us access to their data on spare parts sales 
for various phones. This was used not only for spare part 
prices, but also to estimate failure rates. To estimate 
probability of successful repair, ideally assessments would 
perform many instances of the same repair to gather empirical 
statistics, but likely this will only need to be done for a small 
percentage of repairs, with the rest using estimates including 
significant uncertainty. For this study, we estimated 
probabilities based on iFixit online repair guide difficulty 
ratings, with significant uncertainty used. 
 
In other cases where empirical data was deemed too difficult 
to obtain (e.g., quantifying repair success rates by performing 
hundreds of the same repairs and counting failures), we built 
systems for existing qualitative assessments from FRI to be 
translated into quantitative estimates. These estimates were 
assigned uncertainties of at least ±20%, but further research 
should investigate them. 
 
Because this scorecard quantifies durability and repairability 
economically, it was largely focused on professional repair. 
However, self-repair was deemed important to consider and 
reward, so a convention was set for when repairs become fast 
and easy enough to be counted as self-repair.  
 
As with the equation, we strove to have all data entry 
conventions be generically applicable to any product 
category, not product-specific, but due to time limitations, we 
only tested it with a case study of smartphones. Future 
research should test it with a wide a variety of different 
product types, and iterate as needed. 
Part of the goal of this scorecard system is for companies and 
policymakers to amass a large shared database of empirical 
data on actual costs and times to repair products, rather than 
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today’s guesswork. However, we recognize that today, many 
manufacturers (and all government or third party assessors) 
do not have data on all failure rates, costs, and repair times, 
especially for new highly novel products. To accommodate 
this, we built an alternative method for estimating missing 
data in the scorecard, based on qualitative FRI checklist 
assessment methods. These outputs were assigned a higher 
uncertainty in the calculator, due to their sourcing from 
qualitative checklists. 
 

C. Developing the Excel calculator  

We decided to create the calculator as a Microsoft Excel 
spreadsheet rather than a custom software platform for three 
reasons: First, Excel is ubiquitously available worldwide, 
enabling our calculator to be zero cost to users; even those 
without Excel itself can open the spreadsheet in other free 
programs such as Google Drive. Second, Excel is 
ubiquitously understood worldwide, reducing the learning 
curve for potential users. Third, Excel spreadsheets are user-
editable, meaning users have potentially infinite ability to 
improve and refine the interface, or expand the calculations, 
which they could not do with purpose-built software. This 
opens up the calculator to future development. When or if it 
is adopted for official government labeling, a locked version 
will be created. 
 
As mentioned above, the calculator was developed iteratively 
in concert with the equation and data entry conventions, 
requiring seven iterations. It began based on FRI and iFixit 
checklist systems, and iterations also incorporated feedback 
from the expert repairer interviews. The spreadsheet design 
iterations included separating different data entry stages into 
different worksheets versus combining them all into one 
sheet; changing the number of steps in the process by 
grouping data entry fields differently; calculating uncertainty 
by entering best-case and worst-case values or by entering 
average values with percent errors; various forms of graphing 
the resulting scores; and more.  
 
 

D. Choosing and estimating case study examples 

The iterative process of developing data entry conventions 
was supported by a case study for sensitivity analysis, 
performing estimated assessments of several different 
smartphones with the total cost of ownership score and 
comparing results to the products’ FRI and iFixit scores. As 
noted earlier, smartphones were chosen because of the 
availability of some empirical data on failure rates from 
iFixit. 
 
Data on overall repair costs were sourced mostly from 
interviews with local professional phone repair shops—this 
was deemed the highest quality data, as it included not only 
spare part and labor costs, but any incidentals such as 
amortized cost of special tools and workplace real estate 
costs. Where such data was not available from professional 
repairers, it was supplemented by online searches for spare 
part costs and repair times, usually via https://www.ifixit.com 
or https://www.consumentenbond.nl.  
 

The case study performed sensitivity analysis by comparing 
four phones from different manufacturers against each other 
in one scenario where they all have the average phone 
lifetime in Europe; then for two phone models, we also tested 
two more scenarios each, where data was available to show 
longer lifetimes than average. Data for the case study phones 
came from retail, spare part, and repair prices advertised 
online by both the manufacturers and third-party repair shops, 
alongside the published FRI scores and iFixit scores for the 
phones. However, significant data for each phone was 
unavailable and had to be estimated, most notably failure 
rates of components and exact average lifetimes.  
 
The sensitivity analysis was divided into four scenarios: 
Scenario 1 examined four phones, selected for a wide range 
of price and repairability, and assumed they all have the 21-
month average service life for all phones in Europe, 
according to Counterpoint [16]; with uncertainty, this meant 
the lifetimes were all entered as 2 years best-case and 1.5 
years worst-case. Costs of spare parts were found online, or 
if they were not available, those repairs were assumed not 
viable (see rules for data entry). Published probabilities of 
failures were not available for any phones, but iFixit shared 
data on failure rates from customers ordering replacement 
parts; this provided probabilities relative to each other, but 
not an absolute percentage for all failures in each phone. This 
was fixed using Cordella’s [17] report that 47% of failures 
occurred within the initial two years of usage, so the 
probability of each failure from iFixit data was scaled down 
by 45% best-case and 49% worst case for all phones in S1. 
 
For scenario 2, only the iPhone 12 Pro Max and Fairphone 3 
were assessed, due to their better data availability than other 
phones and the expected variation in repairability between 
them. Rather than the average 21 month lifetime, we used 
actual lifetimes of 4.5 years for the iPhone [18] and 5.5 years 
for the Fairphone [19], each with an uncertainty of ±0.5 year. 
In the absence of data on how failure rates change over time, 
we tested better and worse variations.  This scenario assumed 
the total number of failures (and thus repairs) over the lives 
of the phones was the same as in scenario 1’s short lifespans, 
a very optimistic assumption. 
 
Scenario 3 was the variant of scenario 2 testing higher failure 
probability. Cordella [17] noted that for average phones, after 
the initial two years of usage, the remaining 39% (totaling 
86%) of failures transpired between the second and third year 
of usage. Given the documented longer lives of iPhones and 
Fairphones, we assumed they reach this 86% threshold not at 
three years but at 4.5 years and 5.5 years respectively. Since 
this was nearly double the scenario 2 failure rate, we 
considered it adequate sensitivity analysis. 
 
Scenario 4 was a thought experiment, not using empirical 
data, testing the influence of self-repair on scores. It assumed 
the iPhone in scenario 3 met minimal requirements for being 
self-repairable according to the FRI checklist elements 
integrated into our scoring spreadsheet (scoring an “A” for 
necessary tools, types of fasteners, and parts availability, and 
“A” or “B” for ease of disassembly and documentation; see 
Results for details). When a repair is considered self-
repairable, the cost of labor was set to zero and the probability 
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of unsuccessful repairs were cut in proportion to the 
improvement in qualitative scoring of repair difficulty (as 
noted above). Again, this is not real product data, merely a 
thought experiment to see how it affected scores.  
 
For all of these scenarios, we calculated the total cost of 
ownership scorecard’s numeric graph of annualized costs in 
€/yr and the ratio of repair cost to total cost for each phone. 
The best case ratio of repair cost to total cost was the lowest 
repair cost divided by the highest total cost; the worst case 
ratio of repair cost to total cost was the highest repair cost 
divided by the lowest total cost; this gives very wide 
uncertainty ranges, but we preferred to err on the side of 
caution until more precise data is available. For the two 
phones with additional scenarios assessed, we also compared 
the cost of ownership scores to FRI and iFixit repairability 
scores, and translated the quantitative cost of ownership into 
a qualitative label.  

 

III. RESULTS AND DISCUSSION 

This section describes the cost of ownership equation, the 
data entry conventions, the Excel calculator, the prototype 
labeling scheme, and the case study used for sensitivity 
analysis illustrating how altering certain input variables 
affects output scores. 
 

A. The scoring equation 

The equation developed is described below, but it need not be 
the final equation; further refinement could be done based on 
broad-based stakeholder input. However, as it is, the equation 
combined with data entry conventions can capture all costs of 
a product’s failures and repairs. The equation can be broken 
down into three parts. First, the cost of repairing an individual 
failure mode is displayed as (1). 

 ����� + ��� ⋅ 
�� + ���  (1) 

Where: 
CSPMi  = Cost of spare parts & materials for operation "i"  (€) 
Ti  =  Time taken for operation "i" (hrs) 
Ri  =  Labor rate for operation “i” (€/hr) 
COi  =  Other costs (amortized tools, administration, overhead, 
etc.) for operation "i" (€) 
 
Note that this entire expression can be replaced by a flat repair 
cost quoted by a professional repairer; such a quote will 
contain all this data, though it may not be transparently 
communicated to the assessor, the assessor may only receive 
a single number in €.  
 
Note also that this equation is organized by failure mode, not 
by component. One failure mode may require multiple parts 
to be replaced, or may require no parts replacements, only 
labor (e.g., unclogging a filter). As such, the equation could 
also include preventive maintenance, not just failures, though 
we expect this to be such a small percentage of total cost of 
ownership that we did not test it. 
 
Next, the probability of a successful repair and the 
repercussions of an unsuccessful one are incorporated. Then 

the costs of all such failures and repairs are summed into the 
average cost of all expected repairs, including unsuccessful 
repairs, are displayed as (2). 
 

∑ ����100 − ������� + ��������� + ��� ⋅ 
�� + ������
�  (2) 

 
Where:  
g  =  Total number of failure modes (#)  (can limit to priority 
failures if desired) 
Pi  =  Probability of failure (%) 
PRi  =  Probability of successful repair (%) 
CNP  =  Cost of new product (€)  (retail / sale price) 
 
Finally, the total cost of ownership per year is the previous 
equation plus the product’s purchase price, both divided by the 
expected product lifetime (3). 

 
(3) 

 
Where:  
TCO  =  Total cost of ownership (€/year) 
Y  =  Expected lifetime (years) 
CNP  =  Cost of new product (€)  (retail / sale price) 
 
This equation fulfills the goal of completeness, capturing all 
economic aspects of durability and repair for a product (as 
well as maintenance, though as mentioned above this was 
not pursued here). However, for the results to be objective, 
there must be a consistent choice of numbers to fill the 
equation with. This is provided by data entry conventions. 

B. Data entry conventions 

As mentioned in Methods, the data entry conventions here 
should be refined and collectively agreed upon by a large 
consortium of repair experts, manufacturers, and 
policymakers to achieve a broad-based consensus before 
becoming policy. The prototype data entry conventions 
resulting from is study’s user testing and feedback were as 
follows: 

• As mentioned above, a repair cost may include all elements 
of spare part cost, labor rate, etc., but it may instead be a 
flat fee quoted by a credible professional repairer. 

• To quantify uncertainty from best-case to worst-case 
scores, the product should be assessed using five or more 
empirical datasets (e.g., price quotes from five vendors, or 
five timed tests of the same physical disassembly) by an 
independent assessor. Two separate assessors would 
provide even more rigor, if desired. 

• If disassembly / reassembly times are measured, they 
should include five timed trials, and should ideally include 
one person experienced with the product and one 
inexperienced person. (This might be the same person after 
several disassembly / reassembly cycles).  

• Assessors do not need to perform separate teardowns for 
each failure mode, but can simply mark the times to access 
whatever components require replacement. 

• Ideally, parts costs should be quoted from five different 
sources, if possible, to quantify uncertainty. Often there 
will only be one source, leading to zero theoretical 
uncertainty. However, we recommend never assuming less 
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than ±20% uncertainty to account for assumed variations 
over time and region. 

• Cost of spare parts can include OEM parts and inexpensive 
third-party parts, if they meet OEM quality standards. 

• When no spare parts are findable online in a quick Google 
search for public purchase, they are assumed to be 
unavailable and the probability of successful repair was 
assumed to be zero. This is conservative, but is a simple, 
objective, and reasonable convention. 

• As with spare part sales, when no repair instructions were 
findable online in a quick Google search, they were 
assumed to be unavailable and the probability of successful 
repair was assumed to be zero. Empirical studies could 
refine this, but policymakers might wish to keep the 
assumption for the sake of encouraging better repair 
documentation. 

• In the absence of empirical data, labor rates are estimated 
at best-case 40 €/hr and worst-case 50 €/hr; these are based 
on North American and European markets, and could be 
lowered for regions with lower cost of labor (see also later 
notes on labor cost). 

• In the absence of empirical data, self-repairability is 
defined by European Standard NF EN 45554 [20], where 
no special tools or fasteners are required, both spare parts 
and repair instructions are available online with a simple 
web search, and disassembly is relatively easy. 

• The labor rate of self-repair is set to zero €/hr. Even though 
the time of product owners is still valuable, they do not pay 
themselves, and counting the labor rate as zero encourages 
self-repair by providing better scores. 

• While assessors would ideally calculate failure rates and 
repair costs for all possible failures, this is likely too time 
consuming / expensive, so there is a convention to only 
count a reasonable representation of “priority failures”. 
Here, we added up the likelihoods of failure of the most 
common failures until the sum reached 85% of known 
failures. This is similar to AsMeR’s scorecards only 
counting the first 75% of “priority parts” [21]. 

• Probabilities of failure would ideally be gathered from real 
customer data and/or the physical product testing that most 
companies already perform but generally do not publish. 

Lacking this data, they can be estimated based on similar 
parts and failures, with larger uncertainties. 

• Probability of successful repair would ideally be calculated 
from OEM market data, but many OEMs do not perform 
their own repairs, thus requiring third parties such as repair 
shops. Small independent shops often do not track their 
work well enough for reliable statistics; the case studies 
here used data from iFixit’s records of spare parts sold. 

• Cost of a failed repair is the product purchase price. It 
assumes replacement with a new product of the same make 
and model. 

 
Note that some of these values only have empirical data after 
a product has been on the market for some years—notably 
failure rates and parts costs. This may seem like a large 
barrier, but the percentage of products on the market that are 
completely new is extremely small; the vast majority of 
products in most industries are simply variants on previous 
products. After some years of gathering data on failure rates 
and costs for many product components / subassemblies, the 
database containing this data will provide initial estimates of 
future subassembly failure rates and costs, just as the Ease of 
Disassembly Metric (eDIM) [22] provides highly useful 
disassembly time estimates today. 
 
Because it will take years before such an extensive database 
is built to provide easy estimation based on proxies, we built 
an alternative method for estimating missing data in the 
scorecard, based on qualitative FRI checklist methods. These 
outputs were assigned a higher uncertainty in the calculator, 
due to their sourcing from qualitative checklists. They are 
described in the calculator section, below. 
 

C. The Excel calculator 

To perform the above calculations, we created an Excel 
spreadsheet with a relatively user-friendly interface. As 
mentioned in Methods, a spreadsheet was chosen over 
custom software for three reasons: ubiquitous free 
availability, ubiquitous understanding of the platform, and 
editability for future development, with the ability to lock it 
once consensus on development is achieved. 

 
Figure 1. Screen shot of the TCO calculator spreadsheet overview across the top, plus a detailed zoom of step four’s empirical data entry 

on the price of repairs.
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The calculator was oriented horizontally on one single large 
worksheet, to enable assessors to have an overview and also 
for easy duplication for sensitivity analysis. See Figure 1. It 
leads the user through a seven step process of filling in forms, 
then it presents the user with cost of ownership graphs and a 
qualitative label design.  
 
In the seven-step process of data entry, step one is to enter 
general information on the product (e.g., product make and 
model, expected lifetime, and such). Most of this data is 
directly added to the final label. Step two is to enter failure 
modes and frequencies. The spreadsheet calculates the 85% 
cutoff threshold of priority failures; it shows the assessor 
when that has been reached, and lists what failures to count 
in upcoming steps. Step three is to enter the prices of spare 
parts for priority failures identified in the previous step. The 
calculator has five sets of blanks to encourage assessors to 
enter five datapoints each; it calculates the average of these 
and tracks the highest and lowest values to determine 
uncertainty.  
 
Step four has two options: A) to enter empirical data on the 
cost of repairs for the priority failure modes; or B) if such data 
is lacking, to fill out a qualitative checklist copied from FRI, 
which is translated into estimated costs of the repairs. See 
Figure 1 and Figure 2. 
 

 
Figure 2. If empirical data is unavailable for step four, the 

calculator offers a way to estimate quantitative values from 

qualitative FRI-based checklists. 

Step five is to enter the probability of a successful repair and 
self-repairability. Like the previous step, assessors have the 
option to A) enter empirically-measured data; or B) if these 
are missing, fill out a qualitative checklist copied from FRI, 
which are scored from “A” (best) to “D” (worst). The latter 
are translated into estimated probabilities of successful repair 
and self-repairability. These FRI criteria include ease of 
disassembly, necessary tools, spare part availability, and 
fastener types.  
 
Though step four and five’s grading and criteria were copied 
from FRI, the calculator creates more accurate and reliable 
scores than FRI by increasing the level of detail and changing 
from a weighted average of checklist points to a stage-and-
gate method where failure to meet any important criterion 
destroys the probability of that repair succeeding. The stage-
and-gate method is a much more accurate way to model real 
repairs, as any barrier can stop a repair, whether it be lack of 
tools, difficult disassembly, unavailable parts, or others. The 
level of detail is also important: this calculator grades each 
priority repair separately instead of grading the product as a 
whole, thus avoiding unnecessarily harsh or easy scores for 
one difficult or easy repair. 

As mentioned in the Data Entry Conventions section, the 
calculator’s translation of qualitative checklist data to cost in 
€/year estimated labor times according to the number of 
disassembly steps, and estimated labor costs at 40 – 50 €/hr 
for professional repair. This assumes European or North 
American wages, but as later results will show, labor rates at 
half or even a fifth this cost would not change overall scores 
or priorities significantly. A repair is considered self-
repairable if it scores well (“A”) on necessary tools, types of 
fasteners used, and documentation; reasonably well on ease 
of disassembly (“A” or “B”); and spare part availability 
(“C” or above). Self-repairable operations have their labor 
costs set to zero. 
 
Note that while these qualitative checklist translators are set 
up for a specific product category (smartphones), none of the 
empirical data entered in the spreadsheet is specific to a 
product category—that means the scorecard could be used for 
any type of product, from electronics to appliances to 
furniture to clothing, and more. These product categories are 
so different that no existing repair scorecards address clothing 
or furniture. However, data could easily be gathered on the 
repair costs for such products. Data on failure rates and repair 
success also already exist for some products by some 
manufacturers; while these are almost never published, the 
manufacturers could score their own products today.  
 
Step six provides the user with scorecard outputs as 
numbers and graphs. These can be used for reporting, and 
they allow the assessor to reflect on how to improve the 
repairability of the product. Step seven draws a label that 
can be printed and presented with the product, in packaging 
or websites. This label translates the numeric results of the 
graphs into a qualitative grade from A to G, as with 
European energy labels. (More details below.) 
 

 
Figure 3. Graphing an estimated TCO score for a phone. 

The scorecard’s main output is Figure 3’s graph, from step 
six, showing annualized total cost of ownership (TCO) and 
subdividing it to show annualized retail price and costs of 
repair, which is further divided into cost of parts, labor and 
failed repairs (average probable cost of purchasing a 
replacement product). As shown by the blurred ends of the 
graph’s bars, all the data has significant uncertainty, often 
almost ±30%, due to estimated variance in lifetime, prices, 
labor rates, disassembly time, failure rates, etc. This may be 
typical for most products, future assessments must be done 
with manufacturer cooperation to see. But the uncertainty 
need not paralyze us—even with these uncertainties, the 
graph shows clear conclusions: 
  
First, it shows the cost of failure and repair is lower than the 
retail price per lifetime. If it never broke, the repair costs 
would be zero. If it broke frequently but was fast and easy to 
fix, the repair score would still be low. A high (bad) repair 
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cost comes from both breaking frequently and expensive 
repairs. 
 
Figure 3 also shows the cost of labor is much less than the 
cost of parts or the cost of failed repairs. Thus, in this case, 
spare part price is a larger problem than disassembly time. 
For other products, it might be the opposite. Such insights can 
guide product design in a way that current scorecards cannot. 
Also note that the insignificance of labor costs in these results 
mean that, for this product, it does not matter whether the 
repair occurs in wealthy European or North American 
countries, or countries of the Global South with much lower 
labor rates; the repair score and its implications are 
effectively the same. 
 
The spreadsheet’s other main important output could be step 
seven’s possible product label for consumers, in Figure 4 It 
lists the total annualized cost of ownership, the annualized 
repair costs, and the ratio between them. It then translates the 
ratio into a rating from A to G of how durable and repairable 
the product is. This is merely a prototype; an actual label 
should be designed in consensus with regulators and 
manufacturers. Any grades of A, B, C, etc. would need to 
vary by product category, and should be standardized by 
measuring and comparing all major products within each 
category. 

 
Figure 4. A potential label design to make the cost of ownership 

score easily readable and comparable by purchasers. 

 

Case studies 

To illustrate how scoring outputs vary with changes in data 
inputs, case studies were performed. As mentioned in 
Methods, due to a lack of sufficient industry data (especially 
failure rates), empirical data was supplemented with 
estimated data of high uncertainty. Better data would be 
helpful, and assessments with precise data from companies 
could have much more precision. However, even with full 
manufacturer cooperation and thoroughly tracked data, prices 
change over time and between regions, part availability may 
fluctuate, etc., so likely no assessments will ever be very 
precise. As before, though, uncertainty need not paralyze us. 
Even with high uncertainties, clear conclusions emerge when 
comparing product scores in Figure 5. 
 
Figure 5 compares scores of four smartphones against each 
other in one scenario (S1) where they all have the average EU 
phone lifetime (1.5 - 2 yrs); the phones are a Google Pixel 
4A, Fairphone 3+, Samsung Galaxy S21+, and iPhone 12 Pro 
Max. Then scenarios two and three (S2 & S3) compares the 
actual longer lifespans of the iPhone (4 - 5 years) and 
Fairphone (5 - 6 years). S2 assumed the same probabilities of 
failure as in S1, and S3 assumed much higher probabilities 
corresponding to the longer lifetimes, as described in 
Methods. Finally, S4 is a hypothetical score for the iPhone in 
S3 but self-repairable. The figure compares A. total average 
annualized cost of ownership (TCO) and cost of repairs, B. 
the ratio of repair costs to TCO, C. FRI scores, and D. iFixit 
scores. For easier comparison, the TCO graph is simplified 
from the earlier full graph, not showing the subcomponents 
of repair costs.   
 
Figure 5 shows that in S1, the Pixel has roughly 1/3 the cost 
of the iPhone, and is within uncertainty of the cost of the 
Fairphone, perhaps slightly higher. This is despite the Pixel’s 
lower purchase price (€350) versus the Fairphone (€439), 
because the Fairphone’s low cost of repair makes it less 
expensive over time, on average. Of course, a sufficiently 
inexpensive phone (such as an Oppo) could score better than 
a Fairphone, even if it has poor repairability, when all phones 
are assumed to have this same short lifespan.  But the TCO 
scorecard handles this in two ways: first, by also calculating 
the ratio of repair costs to total costs; and second, by 
accounting for the fact that repairable products last longer in 
S2, S3, and S4. 

 

 
Figure 5. Comparing TCO scores for several phones in scenario 1 (S1) and different lifetimes and scenarios (S2 – S4) for the iPhone and 

Fairphone.  
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Comparing TCO and ratio of repair costs to total costs with 
FRI and iFixit in S1, the Fairphone scores best in all 
scorecards. The difference is that in the TCO and ratio, the 
differences are quantifiable—even with the uncertainties 
shown, the Fairphone has roughly ¼ the TCO and half the 
ratio of the iPhone, and less than half the TCO and ratio of 
the Galaxy (all roughly ±20-30%). FRI and iFixit cannot 
quantify these differences. This enables more informed 
decision-making. Also, the units of €/year are units that 
nearly all individuals and institutions both understand and 
care strongly about. We expect them to be much more easily 
motivated to make purchasing decisions based on such cost 
data than on qualitative scores like 8.7/10 or 6/10. Especially 
institutional purchasers (e.g., companies and governments), 
who buy products in large volumes and often have explicit 
policies capping the allowable costs of goods. 
 
However, the TCO may unfairly penalize the iPhone for its 
expense, hence the calculation of the ratio of repair costs to 
total costs. This also shows quantitative differences, though 
not in €/year.  Note that in FRI, the Galaxy scores much better 
than the Pixel and iPhone, almost as well as the Fairphone, 
while in iFixit it scores much worse; this shows the 
subjectivity of even the best existing scorecards. In the ratio 
of costs, these scores are all within uncertainty of each other, 
showing there is not a reliable difference. While this might 
seem less useful than a clear difference in scores, it more 
accurately shows there may not be a definite answer, it may 
depend on circumstances.  (Though with better data from 
manufacturer cooperation, the uncertainties could likely be 
much reduced.) 
 
The FRI and iFixit scores in Figure 5 do not differentiate 
between S1, S2, and S3, but such durability differences make 
a very large difference for real product owners and for 
environmental impacts. In S2, with actual iPhone and 
Fairphone lifetimes and low likelihood of failures, their TCO 
scores improve greatly. The Fairphone’s TCO here is lower 
than all other phones in any scenario, and the iPhone cost is 
better than the Galaxy in S1, within uncertainty of the Pixel. 
In S3, where the iPhone and Fairphone have longer lifetimes 
but the higher failure and repair rates, they both have higher 
costs than in S2, but both are still less than half of their costs 
in S1. This shows how the TCO scorecard captures both 
repairability and durability, while existing scorecards do not. 
 
In S4, the thought experiment (not real product data) showing 
what if the iPhone in S3 met our minimum requirements for 
being self-repairable, Figure 5 shows how the TCO score 
improves but is still not as good as the iPhone in S2, where it 
has very low failure rates. This shows how the TCO scorecard 
captures durability even for products of the same lifespan.  
 
Note that despite the S4 iPhone’s improved repairability, the 
Fairphone in S3 still scores far better than it in TCO and 
possibly better in ratio of repair costs to total costs (though it 
is within uncertainty), because initial price and spare parts are 
less expensive, and it has much greater spare part availability, 
meaning a higher percent of successful repairs. This 
difference is not captured clearly by other scorecards, as they 
do not score individual repairs but lump all repairs into a 
single checkbox.  

The ratios of repair costs to total costs remove the influence 
of expensive versus inexpensive products, in theory giving a 
purer measure of repairability and durability. However, in 
practice, the ratio penalizes products living so long they 
inevitably drive up the number of failures and thus the cost of 
repairs. This is because the annualized purchase price shrinks 
while repair costs grow. To illustrate, the Fairphone has the 
best ratio of all the phones assessed: even in S1 it is 10-20% 
(rounding to one significant figure), and in S2 it is effectively 
the same, with the longer life only reducing the uncertainty 
range slightly. The iPhone in S1’s ratio of repair cost to total 
cost is 20-40%, but in S3 it has a ratio of 30-60%, much worse 
because its longer life means less €/yr for purchase cost, and 
its longer life on average requires more repairs. Since this 
ratio scores S3 worse than S1 but S3 is obviously the 
environmentally preferable scenario, this metric is not ideal. 
Future versions of the scorecard could solve this problem by 
adjusting repair costs over time with a discount rate, as is 
standard in other cost of ownership calculations.  This would 
be easy to build into the spreadsheet, requiring no extra effort 
from assessors, but the discount rate would need to be agreed 
upon by a consortium of stakeholders, so we leave it for 
future work. For now, having the scorecard display both TCO 
and ratio of repair costs to total costs lets assessors make good 
judgments. 
 
Finally, as shown earlier, the TCO scorecard graphs also 
inform policymakers and product manufacturers how they 
might improve product designs. Figure 7 shows the S3 iPhone 
versus the more repairable S4 iPhone; S4 has a lower total 
score even though product price, lifetime, and spare parts cost 
all remain the same, because the cost of professional labor 
has been eliminated and the probability of unsuccessful repair 
(requiring product replacement) is much lower.  
 

 
Figure 7. Comparing theoretical TCO scores for a difficult-to-

repair iPhone (above) versus an easily self-repairable one (below) 

with the same lifetime. 

Despite the significant uncertainties in Figure 7, it is a 
quantifiable economic difference, and thus can be used to 
make evidence-based decisions. It can quantify the value of 
self-repair versus professional repair, changing the current 
debate in the field from a qualitative moral one to a 
quantitative economic one.  
 
Such comparisons could be done not only after product 
release, but done by designers during product development, 
to model the results of design decisions. For example, it could 
resolve the “bundling” debate, whether to cluster several 
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components into fewer modules with faster replacement 
times but higher cost (and higher environmental impact) 
versus more modules with a lower cost but more disassembly 
time. There is no universal answer, but the debate could be 
solved product by product. Similarly, it could solve other 
qualitative moral debates by turning them into quantitative 
economic debates, such as the use of specialized tools or 
diagnostic equipment. 
 
Because the TCO does not score a checklist of specific design 
items or services (e.g., documentation, special tools, etc.) but 
does include these in the score by their causal impacts on 
costs and probabilities of success, it can also make policy pro-
innovation as well as pro-repair and pro-durability. The 
danger of legislating qualitative checklists is that they can 
freeze product designs; in the green building industry, the 
number one barrier to innovations in energy efficiency and 
materials health are existing building codes [23]. If we turn 
repair and durability scorecards from qualitative design 
checklists into quantitative scores of evidence-based impacts, 
it can drive both sustainability and innovation at the same 
time. Even if the economic impacts measured are not 
perfectly correlated to environmental impacts, the results 
above show that TCO scores track circular economy benefits 
much better than even the best checklist scorecards today. 
 

IV. LIMITATIONS 

While the TCO scorecard solves many problems with 
existing repair scorecards, it has its own challenges. The 
primary limitation is that, while repair cost data are often easy 
to obtain, data on probabilities of failure modes and repair 
success rates are almost never published. Thus, manufacturer 
cooperation and data gathering is required for precise scoring. 
Though, as shown in the figures above, meaningful decisions 
can often still be made with imprecise data. 
 
Another limitation is that the data entry rules need review and 
standardization—they should be collaboratively agreed upon 
by a broad consortium of policy, industry, and academic 
representatives. Such consortia should also decide on the 
qualitative grades (A, B, C, etc.) in the label version of the 
scorecard; these grading thresholds should be specific to each 
product category, as the repair costs of a smartphone are very 
different from those of a leather satchel or office chair. 
Similarly, a convention should be decided on for fair 
comparisons of phones of different costs and lifetimes: the 
TCO fairly compares phones that last longer despite greater 
repairs but penalizes expensive phones, while the ratio of 
repair costs to total costs fairly compares phones of different 
costs at similar lifetimes, but penalizes products lasting 
longer times with more repairs. Incorporating a discount rate 
over time into repair costs would likely be a good solution. In 
addition, the data visualization should also be user-tested 
further, to see if manufacturers and/or policymakers want the 
graphs simplified or further broken down into specific details.  
 
Finally, as with all repair scorecards, other causes of 
obsolescence (e.g., fashion trends, or new software requiring 
higher performance hardware) are not included. In theory, 
these could be considered failure modes just like the 
hardware failures included here; if they were, the TCO 

calculation would need to be modified so that the expected 
product lifetime is not assumed at the start, but empirically 
derived from the cumulative sum of failure modes over time 
versus a threshold where the user would prefer to replace 
rather than repair or upgrade. Initial investigations have 
explored this, but it needs more research. 
 

V. CONCLUSION 

This study developed a new scorecard for product 
repairability and durability, the Total Cost of Ownership 
Scorecard, that has several advantages over the best repair 
scorecards of today, specifically: 

• It is quantitative, listing scores in units everyone 
understands and that both individuals and institutions often 
base purchasing decisions on (€/yr). 

• It enables easy score comparison (e.g., 100 €/yr is twice as 
good as 200 €/yr.) 

• It uses uncertainty to eliminate subjective decisions and 
incorporate variations in prices or other factors, including 
them all in best-base / worst-case values. 

• It scores durability, repair, and maintenance on one scale, 
so can compare tradeoffs between durability and ease of 
repair. 

• It makes legislation far easier and more affordable to scale 
up, using the same methodology for all product types, only 
setting different numbers for what good and bad scores are. 

• It lets policy drive repairability while enabling innovation, 
by measuring results rather than checklists of design 
strategies.  

 
The primary disadvantage of the new scorecard is its need for 
empirical data on failure rates and probabilities of successful 
repairs. As mentioned above, companies do often have this 
data but almost never publish it. Building a shared 
international database of product scores would also create a 
broad historical dataset by which to estimate failure rates of 
new products. Even if such a database were not publicly 
visible due to IP concerns, it would help product 
manufacturers and policymakers not only score more 
products, but set evidence-based priorities for where to 
improve durability and repairability of components. 
 
Is this scorecard actually better than existing scorecards in a 
practical sense in the real world?  The only way to answer 
this is to have several companies and/or researchers try it 
across many products in very different product categories. 
We enthusiastically encourage people to test it, and help 
improve it, so that together we can drive more effective repair 
policies and design for repair in a circular economy. 
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