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Hardware Acceleration of BWA-MEM Genomic
Short Read Mapping for Longer Read Lengths

Ernst Joachim Houtgast“'b’*, Vlad-Mihai Sima®, Koen Bertels?, Zaid Al-Ars?

“Computer Engineering Lab, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
bBluebee, Laan van Zuid Hoorn 57, 2289 DC Rijswijk, The Netherlands

Abstract

We present our work on hardware accelerated genomics pipelines, using either FPGAs or GPUs to accelerate execution of BWA-
MEM, a widely-used algorithm for genomic short read mapping. The mapping stage can take up to 40% of overall processing
time for genomics pipelines. Our implementation offloads the Seed Extension function, one of the main BWA-MEM computational
functions, onto an accelerator.

Typical sequencer output are reads with a length of 150 base pairs. However, read length is expected to increase in the near future.
Here, we investigate the influence of read length on BWA-MEM performance using data sets with read length up to 400 base pairs,
and introduce methods to ameliorate the impact of longer read length. For the industry-standard 150 base pair read length, our
implementation achieves an up to two-fold increase in overall application-level performance for systems with at most twenty-
two logical CPU cores. Longer read length requires commensurately bigger data structures, which directly impacts accelerator
efficiency. The two-fold performance increase is sustained for read length of at most 250 base pairs.

To improve performance, we perform a classification of the inefficiency of the underlying systolic array architecture. By elim-
inating idle regions as much as possible, efficiency is improved by up to +95%. Moreover, adaptive load balancing intelligently
distributes work between host and accelerator to ensure use of an accelerator always results in performance improvement, which in
GPU-constrained scenarios provides up to +45% more performance.

Keywords: Acceleration, BWA-MEM, FPGA, GPU, Short Read Mapping, Systolic Array.

1. Introduction to find the best matching location of where it would fit with
the fewest number of differences. Then, after all reads are
mapped, a sorting and deduplication phase follows, until, fi-
nally, the variant calling phase can be performed. This is the
phase where difference between the sequenced genome and the
reference genome are discovered. Such differences, or vari-
ants, are what the sequencing exercise is all about, because
they can indicate phenotypical characteristics such as eye color,
but also a propensity towards certain diseases, such as diabetes.
As shown in Figure [T} the mapping phase takes a significant
amount of time of the overall genomics pipeline execution time.

Next Generation Sequencing (NGS) has profoundly changed
the field of genomics. As the cost of sequencing continues to
drop and, in turn, its use is becoming pervasive, the bottleneck
is starting to shift from the actual sequencing itself, towards the
IT domain. It is projected that NGS will rival, if not overtake,
other big data fields such as astronomy and streaming video
services within ten years, both in terms of data storage as well
as data processing [1]. Hence, acceleration of the algorithms
used for genomics data processing is vital to keep up with the
projected growth in demand for these services.

A key characteristic of current NGS sequencers is that they
cannot read complete chromosomes, or even significantly long

\
stretches of DNA. Instead, only small fragments of DNA called M\&

W o
0 .
short reads are read, for example of 150 base pairs in length.

However, the sequencer can produce many millions of such

short reads in parallel. Therefore, reproducing the complete 0 1000 2000 3000
genome becomes a bit analogous to reassembling a book that NGS Pipeline Processing Time (in CPU-core hours)

has been torn into very small pieces. The process of reassem-
bling is done through a process called a genomics pipeline.
Such a pipeline typically starts with a mapping phases. Here,
each short read fragment is compared to a reference genome

N Mapping
ll Sorting / Deduplication
# Variant Calling

Figure 1: Breakdown of processing time per NGS pipeline stage for a typical
30x coverage cancer NGS DNA data set. The data set consists of three tumor
*Corresponding author: ernst.houtgast@bluebee.com samples and one normal tissue sample (time given in CPU-core hours).

Postprint submitted to Computational Biology and Chemistry July 24, 2018



reAD: HAEEEEER

. Nd

4
4c|c]

Extend «— i—» Extend

’~ Seed Generation

Seed Extension

o< -]

Extend «— i » Extend

rererence: [NIGEEESNENNNNENENNENANNERANRRNAGCEEANNNE

Figure 2: Most state-of-the-art mapping tools use a paradigm called Seed-and-Extend to map a short read fragment onto a reference genome: first, exactly matching
subsequences between the short read and the reference genome are identified, using for example the BWT. These are called seeds. Then, these subsequences or
seeds are further extended using an algorithm such as the Smith-Waterman algorithm that can tolerate mismatches between two sequences. Finally, out of the many
seeds that may have been generated and extended, the highest scoring alignment is selected as final output.

Therefore, this paper investigates the acceleration of the map-
ping phase, in particular for longer read lengths.

A typical sequencing run on an Illumina HiSeq X [2]], which
is a state-of-the-art NGS sequencer, produces about 1.2 TB of
data every two days. For cancer data processing pipelines, this
requires multiple days of processing, even when utilizing high
performance computing clusters. The extreme scale of data and
processing requires enormous computing capabilities to make
the analysis feasible within a realistic time frame. Heteroge-
neous computing holds great potential for large advantages in
speed and efficiency, compared to pure software-only execution
on general purpose processors.

Most current sequencers output reads with a length of 150
base pairs, examples include the Illumina MiniSeq, NextSeq,
and HiSeq series [3]. However, support for longer read lengths
is an important consideration as this is the direction that se-
quencing technology is moving towards. Therefore, in this arti-
cle we investigate the effectiveness of hardware acceleration of
BWA-MEM for a variety of read lengths. We present:

A GPU-based BWA-MEM Seed Extension kernel that is
able to map reads up to 1150 bp, resulting in an overall
application-level speedup of up to 2x, which is at least
about 25% faster than competing accelerated solutions;

o The effects of short read length on the overall application
behavior and performance profile, and on the resulting ef-
fectiveness of acceleration;

e A classification of the inefficiencies that are inherent in
systolic array designs, in particular for designs with many
processing elements;

o Techniques to ameliorate the increased computational load
for longer read lengths, through adaptive load balancing
and optimizing the underlying systolic array architecture.

The remainder of this article is organized as follows. In Sec-
tion 2] related work is discussed. Section [3| presents the BWA-
MEM algorithm and its functions, in particular the Seed Exten-
sion kernel. Section [ briefly mentions the modification made
to the program architecture to improve acceleration potential
and the load balancing system. Section [5|discusses the acceler-
ated implementation and its limitations. In Section [6] methods
and results are presented. Section [7]contains a discussion of the
results. The article is concluded by Section[§]

2. Related Work

The mapping of sequences onto a reference genome is part
of a field called sequence alignment. Sequence alignment can
be broadly divided into two main categories: pairwise align-
ment, in which two sequences are to be matched to each other,
and multiple sequence alignment, in which the best alignment
between a group of sequences is to be found. Many such align-
ment tools exist, along with numerous accelerated implemen-
tations. In the current case, we are only interested in pairwise
alignment, since we need to map a short read onto a reference
genome. A large number of short read mapping tools exists.
As sequence alignment is computationally expensive, the most
popular ones all use a heuristic method called Seed-and-Extend.
This is explained in Figure[2} BWA-MEM [4] is one of the most
widely used tools for short read mapping, as it is able to com-
bine speed with accuracy of finding results.

BWA-MEM differs from most other pairwise alignment
tools, such as SOAPv3 [3] and CUSHAW [6], by virtue of
the fact that its extend phase offers the most flexibility. For
example, SOAPv3 does not allow gaps in the alignment, and
CUSHAW only allows for a limited number of mismatches.
By utilizing the Smith-Waterman algorithm, BWA-MEM is free
from these limitations and is able to find the optimal result for
the sections to be extended. This does come at a cost, since
the Smith-Waterman algorithm is computationally expensive.
Therefore, in our work we focus on accelerating this part of
the algorithm. Many accelerated implementations of the Smith-
Waterman algorithm exist, for example [[7]], [8], [9], and [10].
However, the integration of this algorithm into BWA-MEM is
far from trivial, as most implementations operate by performing
many Smith-Waterman invocations in parallel, which is some-
thing that cannot be used in the case of BWA-MEM as will
become clear in Section

This work builds upon our prior work on accelerating the
BWA-MEM algorithm, which used FPGAs to accelerate the
Seed Extension algorithm, both on the Convey supercomputing
platform [11]], as well as by using an AlphaData add-in board
[12]. These implementations were able to achieve an up to two-
fold speedup. We also ported our work onto the GPU [13} [14],
resulting in a similar performance boost. This work is an ex-
tension of our earlier GPU work, which was limited to process-
ing input data sets with short reads of 150 base pairs in length.
Here, we focus on the effects of longer read lengths of up to
4’600 base pairs, requiring modified GPU code. We investigate



the bottlenecks and limitations of such greatly increased read
lengths. Besides our accelerated implementations, we know of
two other accelerated BWA-MEM implementations, both uti-
lizing FPGAs: the work by Chang, which accelerates the Seed
Generation phase and is able to achieve a 1.26x speedup [15],
and the work by Chen, which accelerates the Seed Extension
phase and is able to achieve a 1.5x speedup [16].

3. BWA-MEM Algorithm Details

BWA-MEM is a popular short read mapping tool [4], widely
used in genomics pipelines to find for each short read in the in-
put data set a suitable location on the reference genome. This
is accomplished through a method called the Seed-and-Extend
paradigm, explained in Figure[2] This is a two-step process with
an Exact Matching phase and an Inexact Matching phase. For
each read, first, exactly matching subsequences called seeds are
identified using the Burrows-Wheeler Transform. These seeds
are then extended in both directions using the Smith-Waterman
algorithm. This algorithm is able to find the optimal alignment
between two sequences given a particular scoring system that
awards matching symbols, and penalizes gaps and mismatches.
In the case of BWA-MEM, seeds consist of at least nineteen
symbols. Seeds that are close to one another on the reference
genome are collected together into a longer chain, refer to Fig-
ure E} From all the extended seeds, the one with the highest
score is selected as the final alignment.

3.1. BWA-MEM Profiling Results

Here we examine the run-time behavior of the BWA-MEM
algorithm. The overall execution time of BWA-MEM is spent
in three main computational kernels: Seed Generation, Seed
Extension and Output Generation. The first two kernels have
been mentioned in the previous section. During Output Gener-
ation, the final alignment is recomputed using the Needleman-
Wunsch global sequence alignment algorithm, and the result is
then written to disk. Profiling the application shows a behavior
as given in Table[I] For the profiling, freely available input data
sets from the GCAT [17] have been used. To investigate the
impact of read length on the overall run-time behavior, input
data sets with increasingly large read lengths have been used.
From this, it is clear that the read length does not significantly
affect BWA-MEM behavior. Note that the overall number of
base pairs in the input data set is kept stable, which means that
the data sets with longer read length contain fewer reads.

Two main candidates for acceleration become obvious: Seed
Generation and Seed Extension. As Seed Generation seems to
be more memory-bound, we have chosen the Seed Extension

Read Seed H Seed — Seed H Seed | Chain 0
Seed (— Seed Chain 1
Seed ’—> Seed — Seed Chain 2
Seed Chain 3

Figure 3: BWA-MEM Seed Generation can result in many seeds being identi-
fied for a single read. Seeds that are located in close proximity of one another
on the reference are grouped into chains.

Table 1: Results of BWA-MEM algorithm profiling for GCAT data sets with
various read length (tests performed on Intel Core i7-4790 @ 3.6 GHz)
Read Length (in bp) Total
Program Kernel 100 150 250 400 bp

Seed Generation 45% 47% 45% 43% 1.2b
Seed Extension 40% 40% 39% 38% 1.2b
Other 15% 13% 15% 18% 1.2b

656s. 594s. 589s. 612s.

Total Time

kernel as target for our acceleration efforts, as that function is
computationally bound. Amdahl’s law teaches us that acceler-
ating only this function can provide a speedup of at most 1.7x.
We can only achieve higher speedup if other kernels are accel-
erated as well, similar to what has been done in [[18]].

3.2. Seed Extension Functional Details

Accelerating the Seed Extension kernel is an important focus
of this article, hence a more in-depth explanation of this phase
follows here. The pseudo code of Algorithm [I] describes the
main algorithm. The Seed Extension stage consists of two main
parts: an outer loop looping over all the seeds identified for the
read during Seed Generation, and an Inexact Matching kernel,
performing the Smith-Waterman-like functionality as needed.

There are no dependencies between reads and thus, reads
can be processed in parallel by the algorithm. For each read,
the groups of chains are processed iteratively, as the check for
overlap between earlier found Alignment Regions (Line 4) in-
troduces a dependency in the program order. This dependency
is the main reason why the method typical Smith-Waterman
GPU-implementations rely on is unsuitable in the case of BWA-
MEM: these implementations obtain their performance by per-
forming many Smith-Waterman alignments in parallel, which
requires the alignments to be batched together in large num-
bers and, moreover, requires these alignments to be of approxi-
mately the same length for load balancing purposes. The highly
dynamic nature of the Inexact Matching invocations makes both
these requirements impractical to achieve, and would at least
require a major algorithm overhaul, if at all possible. Since
on average only one seed per chain requires extension, and a
typical chain consists of about ten seeds, removing the overlap
check (Line 4) and bruteforcing all extensions and selecting the
correct ones afterwards would introduce too much overhead.

Algorithm 1 BWA-MEM Seed Extension Pseudo Code
Input: List of Chains of Seeds
Output: List of Alignment Regions

1: for (each Chain of Seeds) do

2:  sort Seeds based on their length

3:  for (each Seed) do

4 if (no overlap exists between current Seed and previously
found Alignment Regions) then
5: perform Inexact Matching Left
6: perform Inexact Matching Right
7: store Alignment Region
8: end if
9:  end for
10: end for
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Figure 4: Smith-Waterman algorithm similarity matrix. The maximum score is
indicated. As matrix entries only depend on top, top-left, and left neighbor, anti-
diagonals can be processed in parallel. This makes the systolic array a natural
implementation choice, whereby each column is processed by one Processing
Element (or PE).

3.3. Inexact Matching Kernel

The Inexact Matching algorithm BWA-MEM uses is simi-
lar to the widely used Smith-Waterman algorithm. The Smith-
Waterman algorithm is able to compute the optimal alignment
between two subsequences, given a certain scoring scheme.
The dynamic programming algorithm works by filling a sim-
ilarity matrix. This is illustrated in Figure §] The end result
of the Smith-Waterman algorithm is a maximum score. Back-
tracking can be used to obtain the actual path through the sim-
ilarity matrix that results in the final alignment. However, the
algorithm is computationally expensive, being of O(READ X REF-
ERENCE), making it infeasible to use the algorithm directly to
align a short read to the complete human genome as this would
result in unacceptable computation times. Hence, most map-
ping tools use an initial Seeding-phase to find likely mapping
locations, and only then perform localized extension of these
seeds.

There are a few key difference between the algorithm BWA-
MEM uses and the normal Smith-Waterman algorithm. Two
sequences are not compared in isolation; instead, we already
have a seed that requires extension. This results in the fact that
the initial scores are not set to zero, but have an initial value.
Another important difference is that for BWA-MEM, we track
a number of additional metrics: most importantly, the global
maximum alignment value and the location where the maxi-
mum and global maximum are to be found. A nice charac-
teristic of the similarity matrix is that its values only depen-
dent on its top, left, and top-left neighbor. Therefore, values in
anti-diagonals of the similarity matrix can be computed in par-
allel. This maps nicely to an implementation using a systolic
array, where each column of the similarity matrix is processed
by a Processing Element. The processing time is reduced from
O(READ X REFERENCE) t0 O(READ + REFERENCE).

read symbols

} PE, ]» PE, }B—» output

~ initial values
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©
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Figure 5: Inexact Matching algorithm similarity matrix with an initial score
of 60. The maximum and global maximum scores are indicated. Differences
as compared to the regular Smith-Waterman algorithm include the presence of
initial values and computation of a global maximum score. The locations of
both maxima are also calculated.

4. Accelerated Program Architecture

One key characteristic of BWA-MEM is the fact that each
short read in the input is processed individually. Seed Genera-
tion and Seed Extension is performed in an interleaved fashion
for each read. If this mechanism would have been kept in tact
for the accelerated version, this would require many small in-
vocations of the accelerated Seed Extension function, in turn
resulting in much overhead and hence little (if any) speedup.
Therefore, the program structure has been altered to process
the input data in larger batches, where for each batch, first Seed
Generation is performed for a large number of reads, then Seed
Extension, and then Output Generation. Execution of these
functions is overlapped with one another. This approach is ex-
plained in more details in [13]].

4.1. Adaptive Load Balancing Strategy

When using an accelerator to offload a kernel, it is impor-
tant to properly balance the accelerator with the host machine.
If the host is too slow, the accelerator will be idle most of the
time; whereas a too slow accelerator will result in the host be-
ing idle most of the time. Therefore, in order to maintain a
good speedup, even when both accelerator and host are not per-
fectly balanced, it is important to use a load balancing strategy.
This is especially important in computationally complex situa-
tions such as the extension of longer reads. An effective load
balancing strategy is critical to achieve overall application level
speedup. This has been implemented through the use of a Load
Balancing Factor (LBF) parameter, which is able to minimize
the idle time on the accelerator and the host by offloading only
part, or all, of the work to the accelerator. More details can be
found in [13]. By using such a load balancing scheme is the
use of an accelerator always resulting in a speedup, even if the
accelerator itself is relatively slow.
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5. Design Space Exploration

In this section, a number of design-related topics are ad-
dressed: the GPU implementation is detailed, considering the
GPU offloading strategy, the functional split in the Seed Exten-
sion function, and the implementation of the Inexact Matching
algorithm; the FPGA implementation is briefly shown. Then,
the efficiency of systolic array implementations is discussed.

5.1. GPU Implementation

Here, we describe three elements of the GPU-based imple-
mentation: the GPU offloading strategy, the functional division
of the Seed Extension phase, and the details for the accelerated
Inexact Matching function.

5.1.1. GPU Offloading Strategy

To offload work onto the GPU, results from the BWA-MEM
Seed Generation phase are grouped into batches of reads (note:
this is different from batching Inexact Matching). Each read in
the batch of reads is sent to the GPU as a separate thread block.
Hence, the GPU receives a grid of n thread blocks, where n is
the number of reads to be processed. The GPU automatically
schedules the reads onto its available execution resources, per-
forming the Seed Extension. Thus, the GPU can be actively
processing hundreds of reads at a time.

5.1.2. Seed Extension Functional Division

As explained in Section [3.2] the BWA-MEM Seed Exten-
sion phase consists of two distinct parts: the Inexact Match-
ing algorithm, which is implemented as a systolic array, and
the Seed Extension main loop, that loops over all the chains
of seeds. These two parts are quite different from one another.
The outer loop mostly performs control and branch operations
to effectuate the looping over all seeds, performs the loading of
the sequence and reference from main memory, and writes the
eventual result back to memory. These tasks can easily be per-
formed by a single thread, which most likely will be waiting for
memory transactions to finish. In contrast, the Inexact Match-
ing function is highly computationally intensive and can use as
many threads as the systolic array allows for. Thus, our ear-
lier implementation [[13]] makes a clear separation between both
functions and utilizes CUDA Dynamic Parallelism to dynami-
cally instantiate Inexact Matching kernels as needed. A number
of kernels were implemented, each optimized for different ma-
trix dimensions, and called appropriately. The underlying idea
was that this should result in lower register and Shared Mem-
ory pressure, as each function only needs to allocate as many
resources as it needs.

Unfortunately, our tests show that the dynamic kernel instan-
tiation of CUDA Dynamic Parallelism brings about a large ini-
tialization penalty, making it unsuitable to use at this extreme
scale, as for even a single read it can be called thousands of
times, resulting in many millions of invocations during a typ-
ical program execution. Therefore, the implementation here
does not make use of Dynamic Parallelism, instead executing
the Seed Extension as one large monolithic kernel.

5.1.3. GPU-Based Inexact Matching

Although the main Seed Extension loop is interesting in its
own right, the main challenge of the GPU-accelerated BWA-
MEM Seed Extension function is the implementation of the
Smith-Waterman-like Inexact Matching kernel. As discussed
before, typical GPU implementations of Smith-Waterman per-
form many sequence alignments in parallel, mapping one align-
ment per thread. This facilitates the extraction of parallelism
from the problem, but is contingent on the ability to sort and
batch work, which is impractical.

Therefore, the other way of extracting parallelism is to make
use of the possibility of harnessing the parallelism residing in
the anti-diagonals of the similarity matrix, through use of a sys-
tolic array. This is the approach followed here. The systolic
array Processing Elements (PEs) can be mapped either onto
the read symbols (i.e., columns), or onto the reference symbols
(i.e., rows) (refer to Figure [5). As careful analysis of BWA-
MEM execution has shown that the reads are always shorter
than the reference symbols, it is chosen to map PEs onto read
symbols. This minimizes the number of PEs required.

Since we use NVIDIA CUDA as an implementation plat-
form, it is important to explain some key concepts underlying
the execution model of all NVIDIA GPUs. The basic unit of ac-
tion in this model is the so-called warp, a cluster of typically 32
threads that all perform the same operation in any given clock
cycle. Computational jobs are therefore always scheduled onto
one or more warps, depending on how many threads they re-
quire. Therefore, two execution models were considered to im-
plement our Smith-Waterman systolic array. Either a “wide”
systolic array (refer to Figure [6) that uses as many threads as
required, one for each processing element in the systolic array.
Hence, a job is scheduled across as many warps as needed. The
other model (refer to Figure[/) is to use only a single warp, or
32 threads. This in turn requires multiple passes over the simi-
larity matrix to completely calculate all entries.

In a systolic array, during each computation step values are
passed from one processing element to the next. Normally, in
GPU implementations Shared Memory is used to communicate
between threads. A key benefit of the single warp approach is
the fact that threads within a single warp are able to access each
others registers directly through intra-warp shuffle instructions,
foregoing the requirement of communicating through Shared
Memory. As Shared Memory is a very limited resource on the
GPU, with typically only 64 kB being available per multipro-
cessor, this is a great benefit. The amount of Shared Memory
used by a block of threads puts an upper bound on the number
of thread blocks that can concurrently reside on a multiproces-
sor, so lower Shared Memory requirements directly result in
higher performance. The single-warp implementation requires
storage of the values on the boundaries of each pass, so that
these values can be reused during the next pass over the simi-
larity matrix. Therefore, the required Shared Memory amount
is depended on the length of the reference query.

A secondary benefit of the single-warp implementation is
that for a typical systolic array implementation, it is impossible
to keep all processing elements busy. Depending on the exact
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Figure 8: Output of NVIDIA Visual Profiler Latency Analysis for a test set
with two hundred thousand reads of 150 bp. The implementation performance
is mostly limited by the latency of arithmetic and memory operations, and by
the number of resident blocks per multiprocessor.

dimensions of the similarity matrix, many processing elements
may not have any useful work to do for large parts of the time.
As will be shown in the next sections, a single-warp implemen-
tation is able to circumvent, or at least reduce, this problem by
skipping parts of the similarity matrix.

5.1.4. Implementation Architecture

Due to the above reasons, the single-warp systolic array de-
sign is implemented. This implementation is able to branch
between two single-warp Inexact Matching implementations:
one function for extensions that fit completely inside a single
warp, or in other words, the read symbols for the extension are
32 symbols or less; and one function that can process longer
extensions in multiple passes. The benefit of this setup is that
the shorter extensions can skip the intermediate data storage
step, saving bandwidth and executed instruction, but not Shared
Memory, as this is statically allocated on a thread block basis
for the Seed Extension function as a whole. As Shared Mem-
ory and register usage is the aggregate of all functions in the
kernel, it needs to be carefully balanced in order to maximize
occupancy. The register count was fixed to use 64 registers
per thread. The maximum number of rows that are allowed
on the reference was chosen specifically with the input data set
in mind, as this influences the amount of Shared Memory each
thread block requires. For example, for a data set with reads
of 150 bp, the maximum reference read length can be set to
131 symbols, as the maximum seed length is 19 and it can be
shown that the part of the similarity matrix corresponding to
those reference symbols that exceed the input read length will
not contribute to the result. In the case of 131 symbols, one
thread block uses 2 kB of Shared Memory. Hence, up to 32
thread blocks can be resident per multiprocessor. If the maxi-
mum rows are set to 381, which is required for test data with
400 bp reads, the Shared Memory allocation increases to 5.4
kB per thread block, resulting in only at most 11 resident thread

Shared Memory

Transactions

Bandwidth

Shared Loads 752845366 80.064 GB/s
Shared Stores 730457002 77.683 GB/s
Shared Total 1483302368 157.747 GB/s
L2 Cache

Reads 445401451 11.842 GB/s
Writes 121603141 3.233 GB/s
Total 567004592 15.075 GB/s
Unified Cache

Local Loads 110882373 2.948 GB/s
Local Stores 65759941 1.748 GB/s
Global Loads 643181064 5.62 GB/s
Global Stores 50114488 1.332 GB/s
Texture Reads 1369309321 36.406 GB/s
Unified Total 2239247187 48.055 GB/s
Device Memory

Reads 122183405 3.249 GB/s
Writes 54954108 1.461 GB/s
Total 177137513 4.71 GB/s

Figure 9: Output of NVIDIA Visual Profiler Memory Bandwidth Analysis for
a test set with two hundred thousand reads of 150 bp. Most of the bandwidth
is used during the Inexact Matching by the Shared Memory. Device memory
bandwidth utilization is low, as caching through texture memory of the refer-
ence and input data is effective.

blocks per multiprocessor. Unless specifically mentioned oth-
erwise, our tests use implementations tuned to the specific input
read length to optimize occupancy.

Figures [8] and [9] show detailed results from analysis of a
smaller test, obtained with the NVIDIA Visual Profiler, a cross-
platform profiling tool to help optimize CUDA applications
[19]. The results show that the performance is mostly limited
by latency of arithmetic and memory instructions. The memory
subsystem utilization is shown in Figure[9] Most of the band-
width is directed onto the Shared Memory subsystem, holding
temporary data of the systolic array while calculating the Seed
Extension similarity matrix. The GPU caching is effective, as
device memory bandwidth is substantially lower than overall
unified cache bandwidth. The device memory bandwidth uti-
lization is very low, which corresponds to our expectations for
such a computationally-limited application: a Seed Extension
algorithm invocation only requires two sequences, which for a
read length of 150 bp only amounts to 2x150x2 = 600 bits.
Although in our implementation, the sequences are not ideally
packed, this explains the observed low external memory band-
width requirements.

For the latest NVIDIA GPU architectures offering Compute
Capability 5.0+, a multiprocessor can have up to 2048 resident
threads [20]. However, since at the same time only 32 blocks
can be resident per multiprocessor, this means that optimal oc-
cupancy can only be obtained for thread blocks with at least 64
threads. Since this implementation’s thread blocks contain only
32 threads, occupancy is limited to at most 50%. In practice, up
to about 35% occupancy is realized. Earlier Compute Capa-



bility versions were even more restrictive, only allowing six-
teen resident blocks per multiprocessor for architectures with
Compute Capability 3.0+, or even only eight resident blocks
per multiprocessor for earlier architectures. This would have a
direct impact on the efficiency of this implementation.

5.2. FPGA Implementation

The FPGA implementation uses a batching strategy similar
to the one used by the GPU as described in Section [5.1.1] Of
course, unlike the GPU implementation, which executes the
Seed Extension kernel on the underlying GPU substrate, the
FPGA implementation consists of a custom bitstream tailor-
made for the application. Our design consists of six physi-
cal Seed Extension modules, each consisting of a systolic ar-
ray with 131 Processing Elements. The systolic array contains
early exit points at Processing Elements 100, 66, and 33. The
function of these early exit points will be described in more de-
tail in the next section. Each Seed Extension module is joined
by a module that performs the Seed Extension main loop, which
loops over the chains of seeds. The rest of the FPGA area is
filled with the memory controller, PCI-Express controller, and
logic that distributes reads over the modules. More details on
the implementation can be found in [12]].

5.3. Classification of Systolic Array Inefficiency

The efficiency of a systolic array is heavily dependent on the
length of the read and target, as compared to the length of the
systolic array itself. Since the read symbols are mapped one-
to-one onto systolic array processing elements, a read that is
much shorter than the systolic array causes most of the process-
ing elements to remain idle. Moreover, the output still needs to
traverse the entire systolic array, causing further inefficiency. A
short target sequence causes the systolic array to be occupied
until it fully traverses the array. In general, it can be summa-
rized that systolic arrays perform optimally when the read se-
quence is exactly the same length as the systolic array length,
and the target sequence is as long as possible.

This is illustrated by Figure[I0] which shows only some parts
of the systolic array are contributing to the calculation of the
final result. In the figure, each row represents a new time cycle
in calculation of the similarity matrix. We can categorize the
above-mentioned issues into four categories:

A - Waiting for Input Data: As each Processing Element
passes its result onto the next PE, it takes a number of cycles
before all Processing Elements can start their calculations. The
further along the PE is in the array, the longer it has to wait
before it can start its calculations. This area is indicated by area
A, the time a PE has to wait for input before it can join the
calculations.

B - Waiting for All PEs to Finish: Every cycle, a new sym-
bol of the target sequence is inserted into the systolic array, until
all target symbols are inserted. By then, the first PE is finished,
however, the overall processing is not. This is indicated as area
B, the cycles that while some PEs are already finished, others
need to finish as well.

C, D - Imbalanced Read vs Systolic Array Length: Each
read symbol is mapped onto a Processing Element. If the read

time

read finished
early exit point

target symbols
last PE

v

’ 4

processing finished

Figure 10: The efficiency of a systolic array is heavily dependent on the length
of the read and target, as compared to the length of the systolic array itself.
Areas indicated by A, B, C, and D are areas of inefficiency, where some or all
of the Processing Elements are not contributing useful work. Reducing these
areas can greatly improve systolic array efficiency.

sequence is shorter than the systolic array length, some PEs will
remain idle during the entire computation. However, the results
still need to flow through the systolic array until the output data
can be extracted. Therefore, early exit points can be placed
inside the systolic array to bypass the need to traverse the entire
array. Area C indicates the imbalance between read length and
exit point location, area D the remaining portion of the array
that remains idle.

All together, it is clear that there are many situations in which
a systolic array operates only at partial capacity. However, hav-
ing such a categorization allows us to come up with strategies
to eliminate or reduce the impact each of these has. In [11], a
number of systolic array architectures were introduced: Vari-
able Physical Length (VPL), Variable Logical Length (VLL),
and Variable Logical+Physical Length (VLPL). A VPL sys-
tolic array is simply to have a number of systolic arrays work in
parallel, each with a different number of Processing Elements.
This allows us to reduces area D-type inefficiencies, as this in-
efficiency is caused by the mismatch in systolic array and read
length. A VLL systolic array allows a systolic array of a larger



Table 2: Comparison of speedup and throughput of accelerated BWA-MEM v0.7.8 implementations for a data set with 150 bp reads

Accelerated Phase

Overall Application

Source Platform and Method Execution Time Speedup Execution Time Speedup Throughput
Our Work Software-Only (Original BWA-MEM) 237s - 552's - 2.2 Mbp/s
Seed Extension on FPGA [12] 129 s 1.8x 272s 2.0x 4.5 Mbp/s
Seed Extension on GPU [14] 144 s 1.6x 278 s 2.0x 4.3 Mbp/s
Chang [I5]  Seed Generation on FPGA N/A 4x N/A 1.26x N/A
Chen [16] Software-Only (CW-BWAMEM) N/A - N/A - 1.2 Mbp)s'
Seed Extension on FPGA N/A 10.5x N/A 3x 3.6 Mbp/s1

! Reported speedup is 2.4 Mbp/s and 7.2 Mbp/s for 2x Intel Xeon E5-2620v3, which is twice as fast as an Intel Core 17-4790

size to act as if it is of shorter length, by including the above-
mentioned early exit points. These are points in the array that
are able to output its results, bypassing the need to pass results
through the entire array. Part of the array would still be idle
during the entire computation, however, the total number of cy-
cles is partially reduced. The VLL-array reduces the area-C.
Finally, area A and area B inefficiencies could be circumvented
if the Processing Elements of a systolic array were allowed to
work on different reads, in effect pipelining multiple reads after
one another.

The FPGA implementation uses a VLL approach, where six
modules are used with 131 Processing Elements, each with
early exit points at 131, 100, 66. In contrast, the GPU im-
plementation can be considered to be a VPL implementation,
as the multi-pass approach results in an effective systolic array
length of any multiple of 32 PEs. Moreover, as can be seen in
Figure [/| each pass does not cover the complete 32 PE-wide
stripe, but is narrowed down even further by starting at the rele-
vant cycle and stopping as soon as possible, reducing the area A
and area B regions. This results for an 96x100 alignment in an
48% efliciency improvement over computing the entire region.

6. Experimental Results

All tests have been performed using a system with an Intel
Core 17-4790 at 3.6 GHz with eight logical cores (four physi-
cal cores), with both SpeedStep and Hyper-Threading enabled.
The system contains 16 GB of DDR3 memory. To obtain the
GPU results, we used an NVIDIA GeForce GTX 970 with 1664
CUDA cores with a maximum clock frequency of up to 1.25
GHz and 4 GB of on-board RAM. CUDA version 7.5 was uti-
lized. The FPGA results were obtained using the same base
system, but with the server-grade Alpha Data ADM-PCIE-7V3
card with a Xilinx Virtex-7 XC7VX690T-2 and 16 GB of on-
board RAM [21]], which contains six Seed Extension modules
at 160 MHz.

For testing purposes, BWA-MEM version 0.7.8 was used.
Tests were performed using data that is freely available from
the Genome Comparison & Analytic Testing (GCAT) frame-
work [[17)]. Pair-ended large indel alignment data sets were
used with various read lengths: gcat38 (100bp-pe-large-indel),
gcat42 (150bp-pe-large-indel), gcatd6 (250bp-pe-large-indel),
and gcat50 (400bp-pe-large-indel). Each data set contains

about 1.2 billion base pairs. In other words, data sets with more
base pairs per read contain fewer reads overall, so that the total
amount of base pairs remains the same. The reads were aligned
against the reference human genome (UCSC HG19).

As mentioned in Section 2} in bioinformatics, a key require-
ment is exactness of results. For example, population studies
can take many years to complete. For these studies, it is critical
that the algorithm does not change over a long period of time.
Tests run using the online GCAT portal that allows us to com-
pare read aligner quality [22] show that the results from our
implementation are indistinguishable from the software-only
BWA-MEM.

6.1. Performance Results

Performance results are summarized in Table Not only
execution time is given, but the application performance is
also expressed in throughput in millions of base pairs per sec-
ond, to facilitate cross-algorithm, cross-data set and cross-
platform comparisons. Both the GPU-accelerated implementa-
tion and the FPGA-accelerated implementation are able to offer
an 2x speedup, compared to software-only execution, with the
FPGA-accelerated implementation offering slightly higher per-
formance. Most likely, this is due to slightly lower overhead
from the FPGA driver as compared to the CUDA driver.

To compare performance between the various accelerated
implementations mentioned in Section |2] we also included the
results from Chang [15] and Chen [16]. Chang accelerates
the BWA-MEM Seed Generation phase using the Intel-Altera
Heterogeneous Architecture Research Platform, which contains
an Altera Stratix V FPGA. Like our work, Chen [[16] accel-
erates the BWA-MEM Seed Extension phase, using the same
AlphaData FPGA board. Chang is able to achieve an over-
all application-level speedup of 1.26x, whereas Chen claims an
overall application-level speedup of 3x. However, their baseline
of comparison is the Cloud-Scale BWA-MEM implementation,
which performs about 50% slower than regular BWA-MEM
[23]]. Moreover, their experimental platform, a dual node In-
tel Xeon E5-2620v3, offers about twice the performance as the
system used here. In practice, we estimate that their implemen-
tation achieves about 80% of the performance obtained by our
implementations, when using the same system. The fact that



Table 3: GPU SMM requirements and relative speedup over software-only execution for data sets with increasing read length

GPU SMM Utilization Speedup Over Software-Only Execution Per Data Set

Supported Read Length Shared Memory Resident Blocks gcat38 (100bp) gcatd2 (150bp) gcatd46 (250bp) gcat50 (400bp)
Up to 100 bp reads 1.3 kB 32 200% - - -

Up to 150 bp reads 2.0kB 32 201% 197% - -

Up to 250 bp reads 3.3kB 19 200% 194% 198% -

Up to 400 bp reads 5.4 kB 11 202% 195% 188% 168%

Up to 570 bp reads 8.0kB 8 179% 194% 174% 127%

Up to 1150 bp reads 16.0 kB 150% 160% 113% 75%

they are able to obtain a 3x speedup indicates that the perfor-
mance profile of CS-BWAMEM is substantially different from
regular BWA-MEM, most likely being much more limited by
the Seed Extension phase.

The execution time for the Accelerated Phase considers only
the kernel execution time, not including data transfer times, as
performance in the limiting case will only be determined by the
computational part of the Seed Extension. Although in our cur-
rent implementation we do not overlap data transfer and com-
putation, this would be relative straightforward to implement.
Moreover, to illustrate the relative insignificance to this partic-
ular application, total data transfer time excluding the transfer
of the reference genome, which is done only once at the start of
program execution, is less than one second in total.

6.2. Performance Impact of Read Length

As explained in Section [5.1.4] the multi-warp GPU imple-
mentation requires Shared Memory directly proportional to the
number of rows that can be stored from the similarity matrix.
This, in turn, is directly related to the maximum supported read
length. The Shared Memory utilization is one of the factors that
determines the number of warps that can be scheduled simulta-
neously onto an SMM, so this directly impacts efficiency. To
observe the effect of this, tests have been run with implementa-
tions tuned to support different maximum read lengths, against
data sets with various read lengths. The results are summarized
in Table [3] It is clear that Shared Memory requirements scale
proportional to the supported read length. This is inversely pro-
portional to the maximum simultaneous Resident Blocks per
SMM. Note, however, that regardless of Shared Memory usage,
at most 32 blocks can be resident at any one time.

The impact on the overall application-level speedup is clear:
as the supported read length increases, GPU utilization de-
creases, resulting in worse performance. Processing longer
reads is also more GPU-intensive, as only for data sets with
up to 250bp, the full two-fold performance increase is attained.
The 400 bp data set only achieves an at most 1.7x speedup, and
in one case, even results in a slowdown, instead of a speedup.
There are two reasons for this behavior. First, the GPU im-
plementation is not a true systolic array, as for longer reads,
multiple passes are necessary. Hence, performance scales not
as O(READ + REFERENCE), but as O(READ X REFERENCE). Sec-
ond, the CPU Seed Extension implementation uses a mecha-
nism whereby it only processes a small fraction of the simi-
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larity matrix, resulting in more efficient operation (see [[L1] for
details).

6.3. Scalability and Impact of Load Balancing

Apart from overall performance on the test platform, it is also
interesting to analyze the scalability of the implementations.
Here, scalability is defined as the number of CPU cores that
the implementation is effectively able to accelerate while still
providing the maximum speedup. In simplified terms, this can
be approximated by considering the time required for the Seed
Extension phase, which is performed on the GPU and hence
insensitive to CPU core count, and regarding this as a lower
bound to overall application execution time. Assuming overall
execution time scales linearly in processor core count, which
has been observed to hold for CPU core count up to at least six-
teen cores, the maximum number of logical CPU cores that can
be effectively accelerated can thus be estimated.

The scalability results are visually depicted in Figure
This graph shows the relative speedup from using the GPU-
accelerated implementation compared to execution on a ma-
chine with the same number of CPU cores. Note that, obvi-
ously, execution on an eight core system will be faster than on a
four core system. The graph shows the normalized speedup ob-
tain from using the GPU. For data sets with 150bp reads, max-
imum speedup is supported for up to twenty-two logical CPU
cores. After that, the relative speedup gradually decreases as
execution time no longer decreases due to being limited by the
GPU-only Seed Extension phase, which is unaffected by CPU
core count. For the 400bp data set, only up to twelve logical
CPU cores can be supported.

Performance can be improved by using the adaptive load bal-
ancing algorithm described in Section[4.1] This ensures optimal
benefit from the use of acceleration, by dividing the work be-
tween host and accelerator in such a way as to minimize idle
times. Thus, it can prevent GPU-constrained situations to re-
sult in overall application-level slowdown, by distributing Seed
Extension work between the host and the GPU. This results
in a more graceful drop-off in performance, as can be seen
in Figure [II] More importantly, it should prevent an over-
all application-level slowdown. Under GPU-constrained situ-
ations, performance can improve by up to +45%.
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Figure 11: Estimated application-level speedup depending on CPU core count for 150 bp and 400 bp data set. Load balancing improves performance in GPU-

constrained scenarios, ensuring application speedup in all cases.

7. Discussion

7.1. Impact of Read Length and Load Balancing

From the above results, it becomes clear how longer read
lengths can impact overall GPU-acceleration capability, as the
Shared Memory requirements for longer reads greatly reduces
the GPU’s ability to concurrently execute tasks. The current
implementation is able to achieve a maximum two-fold speedup
for data sets with up to 250 bp read length. For longer reads,
the system is no longer capable to provide this full speedup. A
faster GPU model could be used to attain full performance.

Under normal circumstances, the GPU is sufficiently fast to
completely hide the Seed Extension phase by overlapping its
execution with the other tasks performed by the host CPU.
However, the load balancing algorithm can greatly improve per-
formance for scenarios where the system is imbalanced, which
is increasingly the case for more strenuous long read data sets.
In such a case, the load balancing helps to sustain the accelera-
tion capability of the system.

Finally, batching the work sent to the accelerator in larger
groups is often a base requirement to obtain good performance
from accelerators to overcome communication overhead. In
the case of BWA-MEM, the code transformation whereby Seed
Generation results are batched together before being sent to the
accelerator to perform Seed Extension is a prerequisite of get-
ting a performance benefit out of a GPU. Depending on the pro-
gram structure, this can take significant engineering effort. A
more closely coupled system, such as the Intel-Altera HARP,
could reduce or even eliminate the required effort.

7.2. Systolic Array Efficiency

The importance of improving the efficiency of a systolic ar-
ray greatly increases with increased read length, as longer sys-
tolic arrays suffer much more from the inefficiencies as identi-
fied in Section[5.3] Both implementations described here use a
different mechanism to improve their efficiency.
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The GPU implementation can be considered as a VPL im-
plementation, as the multi-pass approach results in an effec-
tive systolic array length of any multiple of 32 PEs. It would
have been infeasible to use a single-pass implementation, as
such an implementation would require a huge amount of shared
memory to emulate the data exchange between Processing Ele-
ments. Moreover, for long reads, area A and B-type inefficien-
cies would be quite large. A multi-pass implementation as used
here is able to avoid both these drawbacks. The effectiveness
of the VPL-approach is illustrated in Table |4} This VPL-based
approach, combined with the technique to only calculate the rel-
evant parts of the stripe, results for increasingly long reads into
great improvements in efficiency. Moreover, note that the 50%
efficiency the normal systolic array attains is a best case sce-
nario, as an imbalance in systolic array length and read length
would greatly reduce efficiency even further.

Table 4: VPL-based systolic array compared to normal systolic array

Useful Normal GPU VPL
Read Target Cycles SA Cycles SA Cycles Gain
100 100 10’000 20’000 16’896 +18%
150 150 45’000 45’000 29’120 +55%
250 250 62’500 125’000 72’192 +73%
400 400 160’000 320’000 179°712 +78%
570 570 324°900 649’800 346752 +87%
1150 1150  1°322°500 2°645°000 1°361'664 +94%

In contrast, the FPGA uses a VLL-based approach, where
six modules are used with 131 Processing Elements, each with
early exit points at 131, 100, 66. This helps reduce area C-type
inefficiencies when shorter read lengths are processed. How-
ever, for longer read lengths such as the ones considered here, a
multi-pass solution can be considered to be almost mandatory.
Given that for a typical data set, read length varies consider-
ably. Then, if only a fraction of reads are long reads, this still



requires a systolic array that is able to process reads with the
longest length, otherwise a single-pass architecture is unable to
process these long reads. Then, apart from the longer process-
ing time, this systolic array would also take up a great amount
of the available physical area on the FPGA. For example, in-
stead of six modules of length 131, we would be able to fit only
one module with length of about 800 Processing Elements.

8. Conclusion

This article describes a hardware accelerated implementa-
tion of the BWA-MEM genomic mapping algorithm, one of the
most widely used read mapping tools and a linchpin in many
genomics pipelines. The GPU-based implementation has been
modified to allow it to process sequences with longer read sizes,
a capability that will become necessary as sequencers are ex-
pected to generate longer reads in the near future. However,
longer read lengths impact the effectiveness of the GPU-based
acceleration, as the increased requirements on Shared Mem-
ory reduces the GPUs ability to execute tasks in parallel. This
makes efficiency improvements to the underlying architecture
even more important.

The Seed Extension phase is one of the three main BWA-
MEM program phases, which requires between 30%-50% of
overall execution time. Offloading this phase onto the GPU pro-
vides an up to two-fold speedup in overall application-level per-
formance. For data sets that use the typical read length of 150
bp, the use of the GPU-accelerated implementation can offer
this maximum two-fold speedup for a system with up to twenty-
two logical cores, as compared to software-only execution. This
can save days of processing time on the enormous real-world
data sets that are typical of NGS sequencing. Data sets with
up to 250bp can be accelerated with the maximum two-fold
application-level speedup. Load balancing can be used to en-
sure an efficient division of work between the host and the GPU,
improving performance and ensuring application speedup even
for mismatched host and accelerator performance. The load
balancing algorithm provides an improvement to performance
of up to 45%, compared to non-load balanced execution.

A number of inefficiencies is identified common to all sys-
tolic array implementations. These inefficiencies are classified
into different categories, and ways are shown to ameliorate the
drawbacks of each of these categories. The multi-pass based
implementation used by the GPU implementation can be con-
sidered a Variable Physical Length system, thus circumventing
most of the inefficiencies that are related to systolic arrays that
contain large numbers of Processing Elements, increasing effi-
ciency by up to 94% compared to a regular systolic array im-
plementation. To further improve systolic array efficiency, we
are working on a pipelined read implementation that allows the
systolic array to work on more than one read at a time, thus
completely eliminating the area A and area B-type inefficien-
cies that result from Processing Elements waiting on input, or
waiting for the processing to finish.
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