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ABSTRACT
UV/Vis spectrophotometers have been used to monitor water quality since the early 2000s. Calibration 
of these devices requires sampling campaigns to elaborate relations between recorded spectra and 
measured concentrations. In order to build robust calibration data sets, several spectra must be recorded 
per sample. This study compares two approaches – principal component analysis and data depth theory 
– to identify outliers and select the most representative spectrum (MRS) among the repetitively recorded 
spectra. Detection of samples that contain outliers is consistent between the methods in more than 
70% of the samples. Identification of spectra as outliers is consistent in more than 95% of the cases. The 
identification of MRS differs depending on the approach used. In their current form, both of the proposed 
approaches can be used for outlier detection and identification. Further studies are suggested to combine 
the methods and develop an automated ranking and sorting system.

1. Introduction

For two decades, researchers and practitioners have been using 
UV/Vis spectrophotometers to estimate concentrations in water 
matrices: TSS, total COD, NO2, etc. are estimated from absorb-
ances at several wavelengths. (Rieger et al. 2004). The accuracy 
and robustness require a local calibration (Langergraber et al. 
2003, 2004a, 2004b, Torres and Bertrand-Krajewski 2008). Taking 
into account the local specifications of the water matrices, sam-
ples are collected, measured with the spectral device and con-
centrations are measured with laboratory analysis. In addition to 
the existing global calibrations (non-specific), local calibrations 
can be classified into two categories: (i) ‘concentration–concen-
tration’ based on the concentrations estimated by the sensor 
and a calibration furnished by the manufacturer (often referred 
to as ‘global calibration’ e.g. in Caradot et al. 2015), (ii) ‘spectrum–
concentration’ based on the spectral data, without using the 
global calibration. Among all the existing methods, partial least 
squares, support vector machine and polynomial regression are 
the most popular methods to calibrate such a probe. During 
the construction of the calibration data-set, several spectra can 
be recorded for the same water sample. The work presented in 
this paper investigates new methods that can be used as a pre-
liminary step for the second type of local calibration, for which 
repetitions of spectral measurements have been performed. 
Calibration functions are normally derived from data sets con-
taining one single spectrum per sample, sometimes while tak-
ing into account uncertainties on one (Rieger et al. 2006) or 
both data (Lepot et al. 2013). Some researchers have also stud-
ied outlier detection in such large data sets (López-Kleine and 
Torres 2014, Zamora and Torres 2014). However, when several 

spectra are recorded per sample (e.g. one spectrum can be 
recorded every 15 s), this advancement raises some new ques-
tions: Do the recorded repetitive spectra contain outliers? How 
can these outliers be identified? How can a representative spec-
trum be selected? To our knowledge, no previous studies have 
addressed this subject related to wastewater in this manner. In 
this study, two methods are presented and tested on two differ-
ent data sets.

2. Data sets and methods

In this section, we introduce the two data sets and the two 
methods – principal component analysis (PCA) and data depth 
theory (DDT).

2.1. Data sets

The two data sets have been collected in two different locations 
and from two different wastewaters. They are referred to as the 
WWTP data-set and the Zürich data sets, respectively. The latter 
is further divided into four smaller data sets: FD, FU, UD, UU.

2.1.1. WWTP inlet data-set
Wastewater samples were collected at the intake of the 
Fontaines-sur-Saône WWTP in France (30,000 inhabitants, com-
bined sewer), during four dry-weather non-consecutive days in 
2011. For each sample, two kinds of data were recorded: (i) from 
15 to 25 spectra (every 15 s), and (ii) concentrations obtained 
by triplicate standard laboratory analyses for TSS, total, and dis-
solved COD. The submersible, in situ spectrophotometer used 
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At the end of the first step (Equations (1a) and (1b)), NR spectra 
are retained among the NT initially available. For every spectrum 
j, absorbances Absj,i are compared to Absk,i (with k ≠  j) for each 
wavelength i. If for all the nx wavelengths, the absorbances of 
spectrum j are lower or higher than all the other absorbances, it 
is considered an outlier.

Step 2: identification of the most representative spectrum. For 
each spectrum j among the NR retained spectra and for each 
wavelength i, the relative position of the spectrum is studied by 
comparison to all other spectra k, and summarized as follows 
(Figure 1):

•  Comparison of absorbances:

•  For each wavelength i, the spectra with a higher/equal/
lower absorbance than in spectrum j are counted and 
stored in vector L1/L2/L3. Vector L2 is also referred to as Equal.

•  The difference between the number of higher and lower 
absorbances is stored in the vector Diff, i.e. Diff = |L1 – L3|.

This procedure is repeated for every wavelength i and every 
retained spectrum j to create the matrices DIFF and EQUAL. The 
matrices are summed over the wavelengths into the column 
vectors SDIFF and SEQUAL (Figure 1). In order to identify the MRS, 
here defined as ‘the most in the middle’, the selected spectrum R 
is identified by the minimum in SDIFF and, if several spectra offer 
the same minimum, the one that maximizes SEQUAL.

in this study was a spectro::lyser with an optical path length of 
2 mm, a wavelength step of 2.5 nm (221 values per spectrum), 
recording UV/Vis spectra 200–750  nm (s::can Messtechnik 
GmbH, Vienna, Austria). The time step was the minimal 15 s 
between two recordings and the internal smoothing algorithm 
was disabled. During measurement, each of the 94 1 L samples 
were placed on a magnetic stirrer (rotation of 800 tr/min) and 
pumped in a closed circuit with a peristaltic pump.

2.2.2. Zürich data sets
A pilot-scale nitrification MBBR is operated at Eawag 
(Switzerland), treating source-separated urine with the aim of 
producing a fertilizer (Fumasoli et al. 2016). Thirty 3 L samples 
were collected during 10 weeks in 2014 to study the effects of 
filtration and saturation on nitrite estimation (Mašić et al. 2015, 
data published as supplementary material). Addition of nitrite/
nitrate stock solutions increased the range of concentrations. 
Each sample was subjected to combinations of pre-treatments 
[(Un)-Filtered/(Un)-Diluted], resulting in four sample groups: FD, 
FU, UD, UU. Filtration was performed with a 0.7 μm glass fiber 
filter (MN GF-1, MACHEREY-NAGEL AG, Oensingen, Switzerland) 
and 1:10 dilution with nanopure water. The spectral device was 
a spectro::lyser (s::can Messtechnik GmbH, Vienna, Austria), with 
a path length of 0.5  mm, recording in the UV spectrum (220–
399  nm) with a resolution of 1  nm and a recording time of 1 
spectrum/minute. During recording, the vessel was placed on a 
magnetic stirrer (rotation 1000 rpm). For each sample, five spec-
tra (one per minute) were recorded and the ammonium, nitrite, 
and nitrate concentrations were measured (LCK303, LCK340, 
LCK341, LCK342, Hach-Lange GmbH, Germany).

2.2. Methods

2.2.1. Data depth theory
Step 1: outlier removal. Let x be defined as the matrix of size 
NT  ×  nx, containing NT recorded spectra for one sample. Each 
spectrum measures nx wavelengths. Among the NT spectra 
available, one or several outliers must be removed, described by 
Equations (1a) and (1b) (Lepot 2012):

 

 

where EDj is the Euclidean distance of spectrum j, Absj,i is the 
absorbance (m−1) of wavelength i for spectrum j, and kM is a 
multiplicative coefficient. If a spectrum has a Euclidean distance 
higher than kM times the median of the NT spectra (Equation 
(1b)), it will be considered an outlier. This method is sensitive to 
the subjective value of kM. For the remainder of this manuscript, 
the method is referred to as DDT_ED_1, DDT_ED_2, and DDT_
ED_3, depending on the value of kM.

In order to increase the objectivity and the robustness of the 
method previously used in Lepot (2012), it is expanded with addi-
tional steps based on data depth theory (e.g. in López-Pintado 
and Romo 2006) and is referred to as DDT_DDT.

(1a)EDj =
1

NT

√

√

√

√

nx
∑

i=1

(

Absj,i − Absk≠j,i
)2

(1b)EDj > kM ×median
([

ED
1
:EDNT

])

Figure 1.  Scheme of the method Step 2: DDT for the identification of the MRS, 
applied in DDT_ED_kM and DDT_DDT.
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910   M. LEPOT ET AL.

2.2.2. PCA
This method relies on the scores of the first principal component 
in PCA (Jolliffe 2002, Mašić et al. 2015). As before, let x denote 
the matrix containing NT recorded spectra for one sample. Each 
spectrum measures nx wavelengths. In other words, we have NT 
observations and nx variables.

Step 1: mean-centering. Data preprocessing is performed by 
centering the data in a column-wise manner around the mean 
vector x̄ (1 × nx):

 

where xMC is the mean-centered matrix.
Step 2: singular-value decomposition. The principal component 

loading vectors are obtained by singular-value decomposition:

 

S the diagonal matrix (NT × nx), U the unitary matrix (NT × NT), VT 
the transpose of V (nx × nx) whose column vectors are the principal 
component loading vectors.

Step 3: score matrix. The score matrix T (NT × nx) is obtained by

 

Finally, the first column in T corresponds to the scores for the 
first principal component (PC1) and this column vector is selected 
for further analysis. Each spectrum has one PC1 score.

The PCA Expert method involves a visual inspection of the PC1 
scores. This method relies on the subjective interpretation by an 
expert, who determines how distant the scores are compared to 
the remaining scores in the same sample.

PCA_2 relies on automated selection, based on the mean 
and standard deviation of the PC1 scores for a given sample. A 
spectrum is considered an outlier if its PC1 score is outside of 
the mean  ±  two standard deviations. This method also allows 
selecting the most representative spectrum as the one with the 
smallest distance between its PC1 score and the median.

3. Results and discussion

In this section, we first show a typical spectrum and discuss dif-
ferences and similarities. Then, the two methods are compared 
for each of the two data sets. The detailed results are fully pre-
sented in five tables in Appendix A, following the frame shown 
in Table 1.

3.1. Typical absorbance spectra

The appearance of a spectral absorbance curve depends on 
the compounds and their concentrations in the sample and 
whether and to what extent they absorb light in the studied 
wavelength range. In the Zürich data, the samples consist 
of source-separated urine with added nitrite/nitrate stock 
solutions. They absorb in two wavelength ranges: very strongly 
around 220 nm and weakly around 300–350 nm. Figure 2 (left) 
shows a typical set of spectra with the absorbance plotted as a 
function of the wavelength. It is easily seen that there is a very 
strong absorbance around 220–240 nm (Mašić et al. 2015). The 
WWTP samples, on the other hand, were collected in wastewater 

(3)xMC = x − x̄

(4)xMC = USVT

(5)T = xMCV .

during dry weather conditions. Figure 2 (right) shows seven 
spectral repetitions in one sample. By comparison, these spectra 
show a continuous decrease in absorbances from the UV to the 
visible part of the range.

3.2. Outlier detection and identification

3.2.1. Samples containing outliers
The confusion matrices in Table B.1 summarize the performance 
of the methods in terms of detection of outliers and consisten-
cies of detection. Methods identify samples containing outliers 
in a consistent way if the number of True Positive (TP) and True 
Negative (TN) identifications is equal or close to the number 
of samples in the data-set. False detections (FP, FN) highlight 
inconsistencies between the methods.

The identification of samples containing outliers with DDT_
ED_kM is clearly sensitive to the kM coefficient. By construction, 
DDT_ED_1 identifies outliers in each sample (TN and FP are always 
equal to 0). Consistencies in sample detection with DDT_ED_kM 
changes slightly with the wastewater matrices: DDT_ED_2 is more 
consistent with DDT_ED_1 than with DDT_ED_3 for the WWTP 
samples; it is the opposite for the urine samples. This can likely be 
explained by the difference in the number of spectra per sample 
(up to 25 for the WWTP data-set, only 5 for the urine data sets). 
DDT_ED_2 appears to be a good trade-off.

For the WWTP data, DDT_DDT identifies fewer samples with 
outliers than DDT_ED_kM: 39 instead of 69 for DDT_ED_3. Figure 3  
(left) shows a straightforward identification of an outlier. In sample 
2-WWTP, spectrum 1 is always above the other spectra in the 
sample. On the other hand, the method does not identify any 
outliers for the Zürich data. Figure 3 (right) illustrates the sensitivity 
to noise (the spectra are not smooth in this part) in some parts 
of the spectra in the FD data-set: one spectrum is clearly below 
the others for wavelengths lower than 250 nm. Above this, the 
spectrum mixes with the rest of the spectra and, thus, cannot 
be detected by DDT_DDT. Possibly the wastewater matrix (urine) 
or technical limitations of the material may explain the noise. 
In order to solve this problem, two subjective steps could be 
added to DDT_DDT: i) smoothing the spectra or ii) considering 
the spectrum as an outlier only if more than a certain percentage 
(e.g. 90%) of its values are higher or lower than the values of all 
other spectra. These options have not been tested in this study.

PCA_2 is also unable to detect outliers for the Zürich data: the 
estimation of the standard deviation (on the five spectra recorded 
per sample) is too influenced by any existing outliers. For data sets 
containing more spectra per sample, this method provides con-
sistently detected samples in about 71% of the tested samples. 
This consistency ratio, defined as the ratio of true detections over 
the number of samples, is only of 54% for DDT_DDT.

In every data-set, PCA_Expert provides a consistent list of sam-
ples containing outliers: for the WWTP samples, at least 78% of 
the detection is consistent with other methods (except DDT_DDT) 
and 73% for the Zürich samples (except DDT_ED_1, too selective). 
Figure 4 (top) shows an example of sample number 7-WWTP, indi-
cating the spectra identified as outliers by PCA_Expert and PCA_2.

3.2.2. Identification of the outliers
For a given sample containing outliers, this step ensures that the 
identified outlier spectrum is consistent between the methods. 
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URBAN WATER JOURNAL   911

Figure 2. Typical absorbance spectra from the Zürich data-set (left) and the WWTP data-set (right), containing 5, respectively 7, spectral recordings.

Figure 3. (left) Absorbance spectra for sample 2-WWTP, showing an ideal case with a clearly separated outlier spectrum (number 1), shown in full (top) and close-up 
(bottom). (right) Absorbance spectra for sample 23-FD indicating some unusual behavior. Spectra shown in gray, MRS in red markers, the outlier in black.

Table 1. Table structure. Statistical summary: NSWO is the number of samples with outlier, also converted in percentage PSWO. Detailed results: S index of the sample, R index 
of the MRS, and the index list of the N detected outliers O1,…,ON (–, if no outlier has been detected). MRS is not determined with PCA_Expert.

Sample 
number

Data depth theory PCA

DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_Expert PCA_2

NSWO (PSWO %) NSWO (PSWO %) NSWO (PSWO %) NSWO (PSWO %) NSWO (PSWO %) NSWO (PSWO %)

MRS Outlier (s) MRS Outlier (s) MRS Outlier (s) MRS Outlier (s) MRS Outliers (s) MRS Outlier (s)
S R O1,…ON R O1,…ON R O1,…ON R O1,…ON – O1,…ON R O1,…ON
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expert due to inconsistent absorbances when compared to the 
rest of the samples in this set. Sample 10-UU was disqualified 
due to incorrect sample preparation. Such occurrences show the 
limitations of the methods presented in this paper.

Figure 4 (bottom) illustrates another inconsistent outlier iden-
tification: one spectrum can be easily identified as an outlier by 
DDT_ED_kM due to its distance to the other ones. DDT_DDT 
could not identify this spectrum because the absorbance of this 
spectrum is not consistently higher than those of others (e.g. the 
spectrum crosses the other ones at 710–720 nm).

3.3. Identification of the most representative spectra

After removing detected outliers, the MRS can be identified 
among the retained spectra, summarized in Table B.3.

By design, DDT_ED_kM and DDT_DDT use the same algorithm 
to identify the MRS. Despite that, the consistency ratios in the 
identification are quite low: less than 50% in some cases for DDT_
ED_1. This can be explained by the previously removed outliers. 
Between the methods based on DDT (DDT_ED_1 excluded), the 
MRS identification is more consistent for the UD and UU data than 
for the WWTP, FD and FU data.

The identified outliers are often the same (see Appendix A). 
Table B.2 summarizes the results in outlier identifications with 
a consistency ratio calculated as follows: for all the NA samples 
where both methods found outliers, only NO of them have at 
least one outlier OI in common, the ratio is equal to NO/NA.

In order to illustrate the construction of Table B.2, one calcu-
lation is detailed. For the UD data, the consistency ratio between 
DDT_ED_1 and PCA_Expert is equal to 0.5. From the detailed 
results (Table A.4), two samples contain outliers according to both 
methods: NA = 2 (samples 5 and 21). For sample 21, spectrum 1 
is considered as outlier by both methods (NO = 1). The outliers 
identified in sample 5 differ between the methods: spectrum 1 
for DDT_ED_1 and spectra 2 and 4 for PCA_Expert (NO does not 
change). Hence, the ratio is NO/NA = 1/2 = 0.5.

For the Zürich data, the consistency ratios are mostly equal 
to 1. For WWTP, the ratios are close to 1, except for one or two 
samples, where the methods identify at least one spectrum in 
common as outlier. Figure 3 (top left) presents consistent outlier 
detection between DDT_ED_3, DDT_DDT, and PCA_2. It illus-
trates an ideal case: one spectrum is far away and always above 
the other 15 spectra. This spectrum is easily identified by all the 
tested methods. In some rare cases, outlier identification can be 
inconsistent (Figures 4 (bottom) and 5).

Figure 5 shows an example of outlier detection and 
identification where the methods are mutually not entirely 
consistent. The PC1 scores are shown for sample 15-WWTP. The 
most sensitive method is DDT_ED_1, identifying 8/14 spectra as 
outliers. DDT_ED_2 and PCA_Expert identify three outliers each, 
but not the same ones: spectra 2 and 3 are identified by both 
methods, spectrum 1 by DDT_ED_2, and spectrum 8 by PCA_
Expert. Neither DDT_DDT nor PCA_2 identify any outliers in this 
sample. A lot of variation can be observed in the PC1 scores in 
this sample, with possible other factors affecting the scores, such 
as non-homogeneous mixing.

In some cases, the methods are inconsistent due to completely 
unpredictable factors. For example, in sample 10-UU, PCA_Expert 
identifies the entire set as being outliers. None of the other meth-
ods, except the very sensitive DDT_ED_1, identifies any outliers 
at all. In this case, the spectra are determined as outliers by the 

Figure 4. (left) Absorbance spectra, (right) PC1 scores. (top) sample 7-WWTP, (bottom) sample 33-WWTP. The mean with the standard deviation band is indicated on the 
right. (top) Spectrum 1 identified as an outlier by PCA_Expert and PCA_2 (black solid); spectra 3 and 6 by PCA_Expert (black dashed). (bottom) Inconsistent identification: 
spectrum 1 (black dashed) identified by DDT_ED_kM but not by DDT_DDT or PCA-based methods. Spectrum 13 (black solid) identified only by DDT_ED_1, DDT_ED_2, 
and PCA_2. The MRS is plotted with the red stars.

Figure 5. PC1 scores of sample 15-WWTP, with the mean and standard deviation 
band indicated with lines.
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estimate the measuring uncertainties. Two different approaches 
(DDT and PCA) have been investigated in this study and the 
results allow us to reach the following conclusions:

•  The different methods are consistent in detecting samples 
that contain outliers in 75% of the cases (average among all 
the methods).

•  The identification of spectra as outliers is consistent 
between the approaches in most cases (average consist-
ency ratio of 95%).

•  The consistency between the approaches allows the user 
to choose which method to apply based on subjective 
preferences.

•  For the MRS identification, the choice of method should 
rely on convenience (e.g. use the same method as for the 
outlier detection), since consistency is only 28%.

•  The presented methods, except for the PCA_Expert, are 
suitable for intra- but not inter-outlier detection.

These results are promising for a systematic detection and iden-
tification of outliers in repetitive spectral recordings from waste-
water samples. The tested methods are easy, do not require 
much computational time, and identify outlier spectra consist-
ently for each sample. However, some weaknesses exist: DDT_
ED_1 is too sensitive, PCA_2 requires more than five spectra per 
sample to be effective, DDT_DDT is too sensitive to noise, and 
PCA_Expert is subjective because it requires human expertise. 
The two approaches developed and tested for MRS identifica-
tion are clearly inconsistent, even when applied to the same 
group of retained spectra.

The recommendations for potential future users can be sum-
marized in a few key points. Automated PCA methods do not 
seem to be suitable when only a few spectra have been recorded 
per sample. When samples are collected for a specific purpose 
(component) and/or when the conditions can be controlled, the 
proposed methods should be tested while creating artificial out-
liers. For such cases, DDT_DDT can be applied to a selected part 
of the spectrum where the effects of the components are visible. 
If any method appears to be better than the other, a ranking and 
sorting system can be introduced, in which a spectrum will be 
considered an outlier if a certain number of the methods identify 
it as an outlier.
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The identification of the MRS via the median of the PCA scores 
is inconsistent with DDT based methods. In order to test whether 
this is caused by removal of different outliers, the identification 
was repeated on the WWTP data where outliers only detected by 
PCA_2 were removed, thus applying the methods on the same 
data. Results showed a consistency ratio of 28% (27 samples have 
the same MRS, data not shown), slightly more than in Table B.3. 
The differences between the methods cannot be explained by the 
prior outlier removal: the two approaches are clearly inconsistent.

3.4. Limitations of the study

This study is limited in some aspects. Most importantly, there 
is no well-defined reference to which the different methods 
can be compared. Detection and identification of outliers can 
only be compared between the methods, unless the outliers 
have been intentionally produced and are known in advance. 
Moreover, the collection of the data has been performed in two 
ways on two different data types. The difference in the number 
of recorded spectra per sample not only complicates the com-
parison between the methods, but most likely also affects the 
sensitivity of the methods to possible outliers. On the other 
hand, the two data sets could be seen as a realistic way of testing 
the two approaches on different types of data.

The Zürich data was specifically collected to study the effects 
of filtration and saturation. This may have introduced some addi-
tional noise due to the very high absorbances in some parts of 
the spectrum. Lastly, the method that measures consistency in 
outlier identification only compares the spectra which have been 
identified by both approaches, not the number of spectra in total. 
The obtained consistency values can thus be slightly misleading 
and must be used with the information obtained in the outlier 
detection comparison.

3.5. Perspectives

The study should be repeated on other data sets with addition 
of artificial outliers for easier comparison. Methods based on the 
dynamics of the spectra can be tested: for example, DDT_ED_kM 
can be applied on the first derivative rather than on the absorb-
ance itself. Shape recognition may as well offer some possibil-
ities (Villez and Habermacher 2016). Outlier detection is still a 
delicate research issue due to the lack of a generally accepted 
method. With proper records (data and laboratory book i.e. log-
book) outliers can be suspected and identified based on seri-
ous reasons but the truth is still unknown. The automatic outlier 
detection methods are based on scientific expertise. They should 
be updated with new knowledge and detection should be con-
sidered as partially subjective.

4. Conclusions

The work in this study focuses on repetitive spectra in wastewa-
ter samples and is not intended to be a general outlier detec-
tion method. To our knowledge, this is the first study on outlier 
detection in these types of samples.

The need for repeated measurements, i.e. several spectra per 
sample, clearly appears in the calibration of spectrophotometric 
devices, in order to reduce bias and the influence of errors and/or 
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Table A.2. Spectra FD.

Data depth theory PCA

Sample number

DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_Expert PCA_2

30 (100 %) 12 (40 %) 6 (20 %) 0 (0 %) 6 (20 %) 0 (0 %)

MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outliers(s) MRS Outlier(s)
1 2 1,3 2 1 2 -- 2 -- -- 4 --
2 4 1,5 4 -- 4 -- 4 -- -- 5 --
3 2 1,3 2 1 2 1 5 -- 1 5 --
4 1 2,4 1 4 4 -- 1 -- -- 3 --
5 5 1,2 5 2 5 2 5 -- -- 1 --
6 4 1,2 4 2 3 -- 3 -- -- 4 --
7 5 1,3 4 -- 4 -- 4 -- -- 5 --
8 4 1,2 5 1 5 1 5 -- 1 4 --
9 5 1,4 5 1,4 1 -- 1 -- -- 3 --
10 1 3,4 5 -- 5 -- 5 -- -- 2 --
11 2 1,4 2 -- 2 -- 2 -- -- 5 --
12 3 2,5 3 -- 3 -- 3 -- -- 2 --
13 4 3,5 1 -- 1 -- 1 -- -- 1 --
14 4 3,5 4 5 4 5 5 -- 5 2 --
15 1 3,4 1 -- 1 -- 1 -- -- 4 --
16 5 1,3 5 1 3 -- 3 -- -- 3 --
17 2 1,5 4 -- 4 -- 4 -- -- 3 --
18 2 1,3 2 1 2 -- 2 -- -- 5 --
19 5 1,2 5 -- 5 -- 5 -- 1 5 --
20 5 2,4 2 -- 2 -- 2 -- -- 4 --
21 4 2,5 4 -- 4 -- 4 -- -- 5 --
22 3 1,2 3 -- 3 -- 3 -- -- 5 --
23 4 1,5 4 1 4 1 5 -- 1 3 --
24 5 1,4 4 1 4 1 5 -- 1 2 --
25 1 3,5 3 -- 3 -- 3 -- -- 4 --
26 4 3,5 4 -- 4 -- 4 -- -- 4 --
27 3 1,2 4 -- 4 -- 4 -- -- 3 --
28 4 2,3 2 -- 2 -- 2 -- -- 3 --
29 1 2,3 5 -- 5 -- 5 -- -- 5 --
30 1 2,4 2 -- 2 -- 2 -- -- 3 --

Table A.3. Spectra FU.

Data depth theory PCA

Sample number

DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_Expert PCA_2

30 (100 %) 7 (23 %) 4 (13 %) 0 (0 %) 6 (20 %) 0 (0 %)

MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outliers(s) MRS Outlier(s)
1 2 1,4 2 1 2 1 5 -- 1 4 --
2 3 2,5 1 -- 1 -- 1 -- -- 5 --
3 2 1,4 4 -- 4 -- 4 -- -- 4 --
4 2 3,5 2 -- 2 -- 2 -- -- 5 --
5 5 2,3 5 -- 5 -- 5 -- -- 5 --
6 1 4,5 1 -- 1 -- 1 -- -- 5 --
7 2 1,5 2 -- 2 -- 2 -- -- 1 --
8 4 2,3 3 -- 3 -- 3 -- -- 4 --
9 3 1,2 2 1 2 1 5 -- 1 2 --
10 2 1,3 2 -- 2 -- 2 -- 1 2 --
11 1 2,5 5 -- 5 -- 5 -- -- 5 --
12 1 3,5 1 -- 1 -- 1 -- -- 4 --
13 3 2,5 3 -- 3 -- 3 -- -- 3 --
14 4 2,3 4 -- 4 -- 4 -- -- 5 --
15 2 3,4 3 -- 3 -- 3 -- -- 5 --
16 3 1,2 2 -- 2 -- 2 -- -- 3 --
17 3 1,4 4 -- 4 -- 4 -- -- 2 --
18 4 1,2 4 1 4 -- 4 -- -- 2 --
19 2 1,4 2 4 2 -- 2 -- -- 3 --
20 2 1,4 5 -- 5 -- 5 -- -- 2 --
21 3 1,4 3 1 3 -- 3 -- 1 4 --
22 1 2,3 5 -- 5 -- 5 -- -- 5 --
23 4 1,2 3 -- 3 -- 3 -- -- 4 --
24 2 1,3 3 1 3 1 5 -- 1 4 --
25 1 2,4 4 -- 4 -- 4 -- -- 2 --
26 2 3,5 2 -- 2 -- 2 -- -- 2 --
27 1 2,4 1 -- 1 -- 1 -- -- 5 --
28 5 2,4 5 -- 5 -- 5 -- -- 3 --
29 4 1,2 1 -- 1 -- 1 -- -- 4 --
30 5 1,3 3 1 3 1 5 -- 1 2 --
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Table A.4. Spectra UD.

Data depth theory PCA

Sample number

DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_Expert PCA_2

30 (100 %) 4 (13 %) 3 (10 %) 0 (0 %) 2 (7 %)
MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outliers(s) MRS Outlier(s)

1 2 1,5 5 1 5 1 5 -- -- 5 --
2 4 2,3 4 -- 4 -- 4 -- -- 3 --
3 2 1,4 2 -- 2 -- 2 -- -- 3 --
4 3 1,2 3 2 4 -- 4 -- -- 5 --
5 5 2,4 4 -- 4 -- 4 -- 1 5 --
6 1 3,4 3 -- 3 -- 3 -- -- 1 --
7 2 1,5 5 -- 5 -- 5 -- -- 2 --
8 4 2,3 4 -- 4 -- 4 -- -- 1 --
9 5 1,4 5 1 5 1 5 -- -- 2 --
10 4 2,3 2 -- 2 -- 2 -- -- 3 --

11 1 2,5 2 -- 2 -- 2 -- -- 3 --
12 4 3,5 5 -- 5 -- 5 -- -- 4 --
13 2 4,5 5 -- 5 -- 5 -- -- 2 --
14 2 4,5 3 -- 3 -- 3 -- -- 2 --
15 2 3,4 3 -- 3 -- 3 -- -- 3 --
16 5 1,3 3 -- 3 -- 3 -- -- 5 --
17 4 1,5 4 -- 4 -- 4 -- -- 3 --
18 4 2,3 4 -- 4 -- 4 -- -- 4 --
19 2 1,5 2 1 2 1 5 -- -- 2 --
20 3 1,5 3 -- 3 -- 3 -- -- 4 --
21 3 1,5 3 -- 3 -- 3 -- 1 4 --
22 5 1,3 5 -- 5 -- 5 -- -- 3 --
23 3 1,2 3 -- 3 -- 3 -- -- 5 --
24 2 3,4 2 -- 2 -- 2 -- -- 5 --
25 3 4,5 3 -- 3 -- 3 -- -- 4 --
26 2 3,5 4 -- 4 -- 4 -- -- 5 --
27 4 3,5 4 -- 4 -- 4 -- -- 1 --
28 2 3,4 3 -- 3 -- 3 -- -- 2 --
29 3 2,5 4 -- 4 -- 4 -- -- 3 --
30 1 4,5 4 -- 4 -- 4 -- -- 5 --

Table A.5. Spectra UU.

Data depth theory PCA

Sample number

DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_Expert PCA_2

30 (100 %) 4 (13 %) 1 (3 %) 0 (0 %) 5 (17 %)
MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outlier(s) MRS Outliers(s) MRS Outlier(s)

1 2 1,3 5 -- 5 -- 5 -- 1 5 --
2 4 1,2 4 -- 4 -- 4 -- -- 4 --
3 2 1,4 2 -- 2 -- 2 -- -- 2 --
4 3 2,4 3 -- 3 -- 3 -- -- 4 --
5 5 1,2 5 1 5 1 5 -- -- 3 --
6 4 1,2 1 -- 1 -- 1 -- -- 3 --
7 1 3,5 1 -- 1 -- 1 -- -- 1 --
8 2 3,5 2 -- 2 -- 2 -- 1 5 --
9 1 3,5 1 -- 1 -- 1 -- -- 5 --
10 4 1,2 5 -- 5 -- 5 -- 1,2,3,4,5 1 --
11 3 1,2 3 2 3 -- 3 -- -- 5 --
12 5 1,4 5 -- 5 -- 5 -- -- 5 --
13 1 2,4 1 -- 1 -- 1 -- -- 5 --
14 1 3,4 1 -- 1 -- 1 -- -- 3 --
15 4 1,5 1 -- 1 -- 1 -- -- 5 --
16 2 1,5 2 -- 2 -- 2 -- -- 3 --
17 2 1,3 2 1,3 2 -- 2 -- -- 4 --
18 4 2,5 4 -- 4 -- 4 -- -- 2 --
19 4 1,3 5 -- 5 -- 5 -- 1 3 --
20 3 1,4 3 -- 3 -- 3 -- -- 3 --
21 2 1,5 5 -- 5 -- 5 -- 1 3 --
22 5 2,4 5 -- 5 -- 5 -- -- 3 --
23 4 1,2 4 -- 4 -- 4 -- -- 3 --
24 5 3,4 5 -- 5 -- 5 -- -- 2 --
25 3 2,4 5 4 3 -- 3 -- -- 3 --
26 2 4,5 4 -- 4 -- 4 -- -- 4 --
27 1 4,5 1 -- 1 -- 1 -- -- 2 --
28 1 3,4 4 -- 4 -- 4 -- -- 5 --
29 3 2,5 3 -- 3 -- 3 -- -- 4 --
30 4 3,5 2 -- 2 -- 2 -- -- 5 --
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Appendix B: Detailed results
Table B.1. Summary of outlier detection by the different methods for each data set (sub table). Each method (row) is compared to a reference method (column) according 
to the following statistics: TP-TN/FP-FN. The numbers of samples identified as containing outliers are below the method names.

WWTP (94 samples)

 Method DDT_ED_194 DDT_ED_289 DDT_ED_369 DDT_DDT39 PCA_Expert82 PCA_260

DDT_ED_1 - 89 - 0 / 5 - 0 69 - 0 / 25 - 0 39 - 0 / 55 - 0 82 - 0 / 12 - 0 60 - 0 / 34 - 0
DDT_ED_2 - 69 - 5 / 20 - 0 41 - 5 / 48 - 0 81 - 3 / 9 - 1 60 - 6 / 28 - 0
DDT_ED_3 - 39 - 25 / 29 - 1 66 - 8 / 4 - 16 60 - 22 / 10 - 2
DDT_DDT - 38 - 11 / 1 - 44 34 - 29 / 5 - 26
PCA_Expert - 58 - 11 / 23 - 2
PCA_2 -

FD (30 samples)
Method DDT_ED_130 DDT_ED_212 DDT_ED_36 DDT_DDT0 PCA_Expert6 PCA_20

DDT_ED_1 - 12 - 0 / 18 - 0 6 - 0 / 24 - 0 0 - 0 / 30 -0 6 - 0 / 24 - 0 0 - 24 / 6 - 0
DDT_ED_2 - 6 - 18 / 6 - 0 0 - 18 / 12 - 0 5 - 17 / 7 - 1 0 - 30 / 0 - 0
DDT_ED_3 - 0 - 24 / 6 - 0 5 - 23 / 2 -1 0 - 24 / 6 - 0
DDT_DDT - 0 - 24 / 0 - 6 0 - 18 / 12 - 0
PCA_Expert - 0 - 0 / 30 - 0
PCA_2 -

FU (30 samples)
Method DDT_ED_130 DDT_ED_27 DDT_ED_34 DDT_DDT0 PCA_Expert6 PCA_20

DDT_ED_1 - 7 - 0 / 23 - 0 4 - 0 / 26 - 0 0 - 0 / 30 - 0 6 - 0 / 24 - 0 0 - 0 / 30 - 0
DDT_ED_2 - 4 - 23 / 3 - 0 0 - 23 / 7 - 0 5 - 22 / 2 - 1 0 - 23 / 7 - 0
DDT_ED_3 - 0 - 26 / 4 - 0 4 - 24 / 0 - 2 0 - 26 / 4 - 0
DDT_DDT - 0 - 24 / 0 - 6 0 - 30 / 0 - 0
PCA_Expert - 0 - 24 / 6 - 0
PCA_2 -

UD (30 samples)
Method DDT_ED_130 DDT_ED_24 DDT_ED_33 DDT_DDT0 PCA_Expert2 PCA_20

DDT_ED_1 - 4 - 0 / 26 - 0 3 - 0 / 27 - 0 0 - 0 / 30 - 0 2 - 0 / 28 - 0 0 - 0 / 30 - 0
DDT_ED_2 - 3 - 26 / 1 - 0 0 - 26 / 4 - 0 0 - 24 / 4 - 2 0 - 26 / 4 - 0
DDT_ED_3 - 0 - 27 / 3 - 0 0 - 25 / 3 - 2 0 - 27 / 3 - 0
DDT_DDT - 0 - 28 / 0 - 2 0 - 30 / 0 - 0
PCA_Expert - 0 - 28 / 2 - 0
PCA_2 -

UU (30 samples)
Method DDT_ED_130 DDT_ED_24 DDT_ED_31 DDT_DDT0 PCA_Expert5 PCA_20

DDT_ED_1 - 4 - 0 / 26 - 0 1 - 0 / 29 - 0  0 - 0 / 30 - 0 5 - 0 / 25 - 0 0 - 0 / 30 - 0
DDT_ED_2 - 1 - 26 / 3 - 0 0 - 26 / 4 - 0 0 - 21 / 4 - 5 0 - 26 / 4 - 0
DDT_ED_3 - 0 - 29 / 1 - 0 0 - 24 / 1 - 5 0 - 29 / 1 - 0
DDT_DDT - 0 - 25 / 0 - 5 0 - 30 / 0 - 0
PCA_Expert - 0 - 25 / 5 - 0
PCA_2 -
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Table B.2. Summary of outlier identification by the different methods for each data set (sub table). Each method (row) is compared to a reference method (column) ac-
cording to the consistency ratios in outlier identification. The numbers of samples containing outliers are below the method names. NSWOIC = No Sample With Outlier 
In Common.

WWTP (94 samples)

Method DDT_ED_194 DDT_ED_289 DDT_ED_369 DDT_DDT39 PCA_Expert82 PCA_260

DDT_ED_1 1 1 1 1 0.99 1
DDT_ED_2 1 1 1 1 1
DDT_ED_3 1 0.97 0.99 0.99
DDT_DDT 1 0.98 0.99
PCA_Expert 1 1
PCA_2 1

FD (30 samples)

Method DDT_ED_130 DDT_ED_212 DDT_ED_36 DDT_DDT0 PCA_Expert6 PCA_20

DDT_ED_1 1 1 1 -- 1 --
DDT_ED_2 1 1 -- 1 --
DDT_ED_3 1 -- 1 --
DDT_DDT 1 -- --
PCA_Expert 1 --
PCA_2 1

FU (30 samples)
Method DDT_ED_130 DDT_ED_27 DDT_ED_34 DDT_DDT0 PCA_Expert6 PCA_20

DDT_ED_1 1 1 1 -- 1 --
DDT_ED_2 1 1 -- 1 --
DDT_ED_3 1 -- 1 --
DDT_DDT 1 -- --
PCA_Expert 1 --
PCA_2 1

UD (30 samples)

Method DDT_ED_130 DDT_ED_24 DDT_ED_33 DDT_DDT0 PCA_Expert2 PCA_20

DDT_ED_1 1 1 1 -- 0.5 --
DDT_ED_2 1 1 -- NSWOIC --
DDT_ED_3 1 -- NSWOIC --
DDT_DDT 1 -- --
PCA_Expert 1 --
PCA_2 1

UU (30 samples)

Method DDT_ED_130 DDT_ED_24 DDT_ED_31 DDT_DDT0 PCA_Expert5 PCA_20

DDT_ED_1 1 1 1 -- 1 --
DDT_ED_2 1 1 -- NSWOIC --
DDT_ED_3 1 -- NSWOIC --
DDT_DDT -- -- --
PCA_Expert 1 --
PCA_2 --
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Table B.3. Summary of MRS identification by the different methods for each data set (sub table). Each method (row) is compared to a reference method (column) accord-
ing to the following statistics: consistency ratios for the identification of the MRS: from 0 (never the same) to 1 (always the same).

WWTP (94 samples)

Method DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_2
DDT_ED_1 1 0.35 0.35 0.41 0.11
DDT_ED_2 1 0.81 0.71 0.13
DDT_ED_3 1 0.87 0.24
DDT_DDT 1 0.3
PCA_2 1

FD (30 samples)

Method DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_2
DDT_ED_1 1 0.6 0.47 0.43 0.2
DDT_ED_2 1 0.87 0.77 0.17
DDT_ED_3 1 0.83 0.17
DDT_DDT 1 0.2
PCA_2 1

FU (30 samples)

Method DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_2
DDT_ED_1 1 0.5 0.5 0.5 0.3
DDT_ED_2 1 1 0.87 0.27
DDT_ED_3 1 0.87 0.27
DDT_DDT 1 0.23
PCA_2 1

UD (30 samples)

Method DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_2
DDT_ED_1 1 0.5 0.47 0.43 0.37
DDT_ED_2 1 0.97 0.97 0.13
DDT_ED_3 1 0.97 0.13
DDT_DDT 1 0.1
PCA_2 1

UU (30 samples)

Method DDT_ED_1 DDT_ED_2 DDT_ED_3 DDT_DDT PCA_2
DDT_ED_1 1 0.67 0.7 0.7 0.2
DDT_ED_2 1 0.97 0.97 0.23
DDT_ED_3 1 1 0.27
DDT_DDT 1 0.27
PCA_2 1
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