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Chapter 1

Introduction

1.1 Overview

The central aim of this thesis is the design of generic and efficient automated strategies for
two-party negotiations in which negotiating parties do not reveal their preferences explic-
itly. A strategy for negotiation is the decision mechanism for determining the actions of a
negotiator. Generic refers to the idea that the strategy needs no forehand knowledge about
the opponent or the domain of negotiation. A strategy thus should be generic in the sense
that it can be successfully applied to any negotiation domain and fine-tuned to domain-
specific features to produce even better results. Efficiency refers to the fact that the strat-
egy should be able to negotiate effectively against another automated agent or human
negotiator and obtain an outcome that cannot be improved for both parties. The design
of the negotiating strategy that is proposed in this thesis is based on analyses of the state-
of-the-art negotiation strategies using an analytical method that is also proposed in this
work. The method significantly extends existing negotiation benchmarks by analysing
dynamic properties of a negotiation strategy. One of the main findings of the analysis,
in line with the management and social science literature on negotiation [20, 23], is that
the strategy should learn the opponent’s preferences in order to increase the negotiation
efficiency. We applied our results in learning the opponents’ profiles in a one-to-many
negotiation setting. We additionally addressed the problem of issue-dependencies. Issue
dependencies form an insurmountable barrier for the state of the art negotiation strategies
[9]. Therefore, we developed an approximation method to eliminate dependencies. This
part of the research seems a side track, however it was fundamental that we address this
problem to prove the scalability and applicability of our research results.

In summary, the research questions underlying this thesis are the following:

1. How can we design state of the art automated strategies for multi-issue two-party
negotiations in which only bids are exchanged?

2. What analytical framework is essential for the develop of such automated strate-
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gies?

3. Can we learn the preference profile of the opponent given only a sequence of bids
exchanged?

4. Can we effectively use preference profiles of the opponent in automated bidding
strategies?

5. Can we extend our results to one-to-may negotiation?

6. Can we find a way to approximate negotiation spaces with issue dependencies by
spaces without such dependencies?

Negotiation is a type of interaction between two or more self-interested agents (each with
its own aims, needs, and viewpoints) seeking to discover a common ground and reach an
agreement to settle a matter of mutual concern or resolve a conflict (cf. [20]). People ne-
gotiate in their personal life as well as in their business life [23]. Even though most people
regard themselves to be effective at negotiation numerous experiments show that people
often “leave money on the table” (cf. [23]). The advances in the areas of Artificial Intelli-
gence [26] and Management Studies [23] inspired the first assistance tools for humans in
negotiation, and the development of software agents that negotiate on their behalf.

This thesis focuses on generic and efficient bidding strategies for single sessions bargain-
ing between two negotiators. The bidding strategies can be used by negotiating software
agents. The stress on single session negotiations is motivated by the fact that various
important negotiations in real life are of the single session type; e.g., buying a house or
a car, negotiating for a job. From a technical point of view the restriction to single ses-
sion bargaining implies that we cannot learn from previous experiences with the same
opponent1.

In this thesis we argue that the development of generic efficient bidding strategies requires
an analytic framework for thorough evaluation of bidding strategies. For this purpose we
developed the General Environment for Negotiation with Intelligent multi-purpose Usage
Simulation (GENIUS). We show that a proper analysis of negotiation strategies includes
the dynamics of the negotiation instead of only studying the outcomes of negotiations
as is typically done in the state of the art of automated negotiation. For this purpose
we developed a range of dynamic properties that have proved their usefulness in our
analyses and which are included in the analytical environment that is part of the GENIUS

framework.

Our analysis of the state of the art in automated two-party bargaining strategies revealed
the following important criteria for developing generic and efficient bidding strategies:

• Knowledge about the opponent is essential to reach near Pareto-efficient outcomes.

1For ease of understanding we call the two parties in two-party negotiations the user and the opponent.
The software agents we develop always act on behalf of the user. The other negotiating party is called the
opponent. We do this in full understanding of the reasons of the Harvard Business School of avoiding the
term opponent.
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• The strategy must be tested in domains with different characteristics. For this we
developed domain characteristics such as: predictability, size, and interdependen-
cies. Furthermore, we included in GENIUS a repository of domains.

• The strategy must be tested against a range of strategies, as well as against humans.
Therefore, we included in GENIUS a repository of strategies.

• The strategy must be tested for a range of profiles (for user and opponent). There-
fore, we included in GENIUS a repository of profiles per domain.

As many of the state of the art negotiation strategies are incapable of handling interde-
pendent negotiation issues, we developed an approximation method for eliminating issue-
dependencies. This method can be combined with those strategies that search for bids of
a particular utility before making a bid to the opponent.

Our analysis showed that state of the art bargaining strategies are in essence concession-
based strategies. This means that these strategies typically do not respond to the oppo-
nent’s negotiation moves to signal how acceptable these moves are. These strategies do
not always ensure that a concession is made only if the other party has similarly made
concessions. Moreover, the developers of state of the art negotiation strategies do not
focus on the fact that the chance of an agreement should be maximized in order to reach
an acceptable agreement in the negotiation. In this thesis we developed and tested a
generic and behaviour-based strategy that explicitly takes these concerns into account.
The strategy is called the Nice Matching Strategy (NMS) as it uses a tit-for-tat approach
to safeguard a good outcome for the agent itself but also makes so-called nice moves to
maximize the chance that a proposal is accepted by the opponent. The NMS strategy uses
a technique based on Bayesian learning called Bayesian learning algorithm for Opponent
Preferences (BOP) to learn the preferences of the opponent. NMS uses this constructed
opponent model to implement a kind of mirroring-strategy. The mirroring idea is an ad-
vanced variation of a Tit-for-Tat strategy. Our analysis shows NMS to be superior to the
state of the art.

Learning opponent preferences during a negotiation, i.e., while bids are exchanged, is
essential in the context of single session negotiations. This is a finding of our analysis
method for negotiation strategies. Our analysis also shows that without knowledge of the
opponent model generic bidding strategies cannot be efficient. This learning goal is par-
ticularly challenging as we assume that negotiations are closed, i.e., the only information
available for this learning process consists of the bids exchanged. BOP has been evalu-
ated both in a two-party negotiation as well as in a one-to-many negotiation setting. The
BOP learning mechanism that we developed has been evaluated using the GENIUS envi-
ronment and has been shown to provide good approximations of the opponent preferences
during single sessions.

The method we used to develop generic and efficient bidding strategies is based on an
iterative approach in which GENIUS plays a central role:

1. First, by applying GENIUS we identify strengths and weaknesses (inefficiencies) of
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existing bidding strategies.

2. Second, the analytical results thus obtained are used to identify new techniques that
increase the efficiency and are used to develop improved strategies.

3. Third, the development kit of GENIUS is used to implement the techniques pro-
posed.

4. Fourth, the validity of the new strategies is tested and analyzed by using it to nego-
tiate against the strategies and in various negotiation domains collected in GENIUS

repositories by running a GENIUS tournament.

We end this summary by listing the key features of GENIUS. The GENIUS environment
has been developed during the course of this PhD project as a full fledged research tool.
Its main features are:

• It supports the implementation of new strategies, which facilitates and improves the
speed of testing new strategies in the GENIUS environment.

• It includes repositories of negotiation domains, preference profiles per domain, and
strategies that facilitate analyzing negotiating agents in a range of different setups.

• It provides graphical user interfaces for constructing and adding new negotiation
domains and preference profiles.

• It provides graphical user interfaces which allow humans to negotiate against known
or unknown opponents, where opponents can be either humans or software agents.

• It provides a tournament environment that allows a user to manage running vari-
ous strategies against each other in combination with any selection of domains and
preference profiles.

• It provides an analytical environment that assists the researcher in analysing the
data obtained from running an environment.

The GENIUS environment, moreover, is used in the education of Master students of the
TU Delft and Bar-Ilan University, Israel.

The rest of the chapter provides the necessary background information on negotiation
in general as well as the basic concepts frequently used in the thesis. Some aspects are
treated in more details as they form the core of our research: knowledge about the do-
main of negotiation and the opponent, and negotiation strategies and tactics. Finally, this
chapter provides an overview of the chapters in the thesis as well as a list of publications
underlying the chapters.
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1.2 Negotiation: the basics

A negotiation takes place in a certain domain, e.g., real-estate, job negotiation, etc. A
negotiation domain is a detailed description of a conflict to be resolved by a negotiation.
Typically, a negotiation domain is represented by a set of negotiation issues. A negotiation
issue is a topic of discussion that is of a particular interest in a negotiation, e.g., price,
quantity, delivery date, etc. Each issue has a range of alternatives or options, one of
which must ultimately be agreed upon by the negotiating parties in order to achieve a
compromise, that is an agreement reached by mutual concessions.

The number of issues varies from one domain to the next. The number of issues, the
range of values per issue, and the possible interdependencies between issues determine
the complexity of a conflict of interests. Negotiations can be split into two classes with
respect to the number of issues: single-issue and multi-issue (i.e., more than one issue)
negotiations. Single-issue negotiation is also known as the “splitting a pie” game [17] and
is concerned with the division of a single good, e.g. money. Such negotiations Raiffa calls
“win-lose” negotiations [20] due to the fact that increasing a share of a pie for one party
means decrease of a share for the other (often called opponent in this thesis). Negotiations
in domains with multiple issues can be “win-win” negotiations meaning that by trading
less important issues for more important issues both parties benefit from the agreement.
An analysis of such negotiations is more complex than that of the single-issue case due to
the exponential increase in possible outcomes [20]. One aspect of the art of negotiation
is the ability to see more issues than are initially obvious. A famous example is about
fruit [14]. Suppose two people have to share a kilo of cherries. The obvious issue to
negotiate about is how many grams of cherries each will get. Thus a typical example of
a win-lose negotiation: every cherry that one gets is lost to the opponent. However, a
smart negotiator will see if the one issue can be split in two and might suggest to split
the issue into fruit flesh versus kernel. In case that negotiator is only interested in the
kernels (to create bed-heaters), whereas the opponent is only interested in the fruit flesh
to make cherry pies it is easy to see that a perfect win-win negotiation is taking place.
Of course, life is not this easy in general. However, in general the more issues, the more
opportunities there are for win-win solutions.

A full and automated analysis of a negotiation requires a formal representation of the
domain (i.e., issues, ranges per issue), and the preferences of the negotiators. A num-
ber of preference representation formalisms have been proposed (cf. [2, 13, 19, 24]).
These representations can be divided in two classes: qualitative and quantitative models.
Qualitative models typically deal with ordinal ranks [2], e.g., they can be used to express
relations between agreements such as: “agreement a is preferred over agreement b, which
in its turn is preferred over agreement c” (a < b < c). Recently, qualitative models have
been developed for more complex relations between alternatives. CP-nets for example,
[3] allow the expression of dependencies between alternatives of different issues.

This thesis is concerned with quantitative models of prefqerences. Such quantitative mod-
els are mathematical functions that map negotiation outcomes to a numerical scale, see
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e.g., [24]. Various types and structures of utility functions have been proposed [13].
The type of functions that belongs to the class of the linear additive functions is most
commonly used and also used throughout this thesis (except in the Chapter on issue
dependencies). An advantage of this type of function is that there are computationally
efficient algorithms for searching a bid with a particular utility value when preferences
are represented by these functions. Linear additive functions represent relatively simple
preferences in which the contribution of every issue to the utility is linear and does not
depend on the values of other issues (no issue dependencies). Such utility functions are
widely and successfully used in the negotiation and decision making literature [13, 21].
Quantitative utility functions also are the dominant choice for preference models in au-
tomated negotiation as we found through our extensive literature study, for this we refer
to all references on negotiation in this thesis. Another advantage of linear additive utility
functions is that effective preference elicitation techniques exist for these utility func-
tions, see [13, 19]. For this reason, utility functions have been selected as the preference
representation model in this thesis.

Note that preference elicitation is a field of research of its own, see e.g., [13], and is not
addressed in this thesis. In this work we assume that the issues to be negotiated have
been established and that preference profiles over these issues are given and adequately
represent the preferences of the negotiation parties.

In this thesis we distinguish three types of negotiations: human, automated and mixed
negotiations. By human negotiations we mean a setup in which humans resolve a conflict
without intervention from others. In an automated negotiation the negotiating parties are
represented by automated software agents [26] that negotiate on behalf of their parties. In
a mixed negotiation one party is human, the other is a software agent.

The interaction between negotiating parties is regulated by a negotiation protocol that
defines the rules of encounter and dictates when and what information can be exchanged.
Every party must accept and agree to conform to these rules. In this thesis we use the
alternating-offers protocol for bilateral negotiation as proposed in [17]. In the alternating-
offers protocol the negotiating parties exchange offers in turns. Every turn a negotiating
party has three options: (i) accept the last opponent’s offer, (ii) respond with a counter-
offer, or (iii) stop the negotiation.

The number of negotiating parties is used to classify negotiation settings. In this thesis
we predominantly address the one-to-one or bilateral negotiations involving two parties.
However, in Chapter 6 we show how some of the techniques proposed in this thesis can
be used in one-to-many negotiations where a buyer faces several suppliers and needs to
select one.
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1.3 Research approach

Two major approaches to the design of negotiation strategies have been proposed in the
negotiation literature:

1. Game-theoretic;

2. Heuristic methods.

In this thesis we combine these two. We study the addressed problems and proposed solu-
tions using an analytical, mathematical approach. However, the negotiations that we deal
with in this thesis are often too complex to be solved using a purely analytical approach.
In such cases, experimental validation is used. In the design of experimental setups we
ensure sufficient coverage of the considered possible negotiation settings. Computational
complexity can be due to issue dependencies or due to the inherent computational com-
plexity of some algorithms. We use heuristic methods to address both problems.

The game-theoretic approach to the negotiation problem is to study the rational decisions
an agent can make. The overall negotiation outcome depends critically on the choices
made by all negotiating parties. This implies that in order for an agent to make the choice
that optimises its outcome, it must take into account the decisions that other agents may
make, and must assume that they will act so as to optimise their own outcome. This
means that the agent has to take into account the private valuations that opponents have of
the negotiation issues, their private deadlines for making a deal, and so on. Game theory
gives us a way of formalising and analysing such models.

Single-issue negotiations are addressed e.g., by [17, 19, 20]. Following the game theoretic
approach, according to which single-issue negotiations are zero-sum games, equilibrium
strategies have been proposed [17]. A multi-issues negotiation is not a zero-sum game
and is by nature more complex than single-issue negotiations. Furthermore, no dominant
strategies have yet been found for multi-issue negotiation [11, 17, 20].

Game theory models assume perfect rationality and complete information [17]. Perfect
rationality assumes that if the optimal (rational) solution for the problem is known, that
solution is adopted by all rational parties. Sometimes the optimal solution, although it
exists, is not known, due to computational costs. Furthermore, if an optimal solution
theoretically can be determined, it is only possible under the circumstances that all infor-
mation is fully known by the agents. This assumption is rarely true in real world cases;
agents typically know their own information space, but they do not know that of their
opponent. Therefore, the notion of perfect rationality and complete information, although
useful in designing, predicting and analyzing properties of a negotiation strategy, is not
altogether useful in practice.

The major means of overcoming the aforementioned limitations of game theoretic mod-
els is to use heuristic methods. Heuristics are methods that find a solution that is as good
as possible given the limited time and information available and given the uncertainty of
the available information. The methods themselves may either be computational approx-
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imations of game theoretic techniques or they may be computational realisations of more
informal negotiation models. Examples of such models can be found in [5, 15]. The key
advantages of the heuristic approach can be stated as follows:

• the models are based on realistic assumptions; hence they provide a more suitable
basis for automation and they can, therefore, be used in a wider variety of applica-
tion domains;

• the designers of agents, can select an alternative heuristic that is more suitable for a
specific negotiation domain and setup.

While heuristic methods do indeed overcome some of the shortcomings of game theoretic
models, they also have a number of comparative disadvantages:

• the models might select outcomes that are sub-optimal; this is because they adopt
an approximate notion of rationality and because they do not examine the full space
of possible outcomes;

• the models need extensive evaluation, typically through simulations and empirical
analysis, since it is impossible to predict precisely how an opponent will behave in
a wide variety of circumstances.

In our work we use the heuristic instead of the game-theoretic approach to design nego-
tiation strategies, because of the strong limitations imposed by the assumptions made in
game-theoretic models. However, we use game-theoretic models (e.g., optimality crite-
ria) to formulate the requirements for efficient negotiation strategies, for the analysis of
their performance, and for the design of our research tools.

1.4 Negotiation: outcome analysis

Given a negotiation domain and preference profiles of the negotiators one can formally
analyse the outcome of a negotiation. A number of criteria have been proposed in litera-
ture (see e.g., [20]).

Figure 1.1 shows a classic graphical analysis of a bilateral negotiation problem that is
used throughout this thesis 2. The axis of the chart represent utilities of the negotiating
parties (the more the better). The solid points refer to possible negotiation outcomes. Ev-
ery negotiation outcome in the negotiation space is a unique combination of values of the
negotiation issues. Given the values of the issues a utility value can be calculated per ne-
gotiator using a corresponding utility function. The various utility values of a negotiation
outcome determine coordinates of the outcome.

To see how well one has performed in a negotiation a number of optimality criteria have
been proposed in the literature, cf. [20]. One of the most important criteria is Pareto

2The game-theoretic concepts used for bilateral negotiations can be easily extended for the one-to-many
and many-to-many cases
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Figure 1.1: A Negotiation Problem and Optimal Solutions

efficiency. A bid is Pareto efficient if given a set of alternatives, no movement from the
bid to an alternative exists that can make at least one individual better off without making
any other individual worse off. Typically, there exist multiple Pareto optimal solutions
that form a Pareto optimal frontier ranging from an outcome in which one negotiator
gets everything and the other one gets nothing to an outcome in which the other gets
everything and the first gets nothing (see 1.1). To select a single outcome on the Pareto
optimal frontier several criteria have been proposed including the Nash product and Kalai-
Smorodinsky, see [19] for details.

1.5 Negotiation: knowledge counts

Typically, when multiple issues are involved negotiators assign different priorities to them.
For example, in a real-estate domain for a buyer a delivery date of a house can be of a
higher importance than a price (within limits). On the other, hand a seller might assign
a higher priority to the price issue because she is flexible with respect to timing the sale.
Such a difference in issue priorities gives an opportunity of a trade-off between issues. A
trade-off is a negotiation move that involves mutual losing on less important negotiation
issues in return for a gain on issues that have a higher importance. An agreement that is
reached by means of trade-offs between issues is called a “win-win” agreement.

Note, that a trade-off is not possible in single-issue negotiations. Some people try to argue
that in a real-life there is usually only one issue to negotiate about: an issue of money
or a monetary equivalent. According to Thompson, however, “it is a grave mistake to
focus on a single issue in a negotiation because, in reality, more issues are at stake in
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most negotiation situations” [23]. Indeed, many negotiation experts (cf. [19, 20]) teach
negotiators to explore a negotiation domain and come up with new negotiation issues to
allow for trade-offs. Negotiators are advised to collaborate in the exploration process, as
it is in both their interests for common good. The rule of thumb is “The more issues the
more possibilities for various trade-offs between issues”.

Availability of information about the opponent plays an important role. In real-life, usu-
ally a negotiator has incomplete or no information about the opponent’s preferences. Sev-
eral reasons exist. First of all, the explicit elicitation of one’s preferences may be difficult
[1]; new issues might come up and preferences might change during the negotiation.
Modelling preferences is a complex problem [22]. The players may not want to reveal
their preferences out of fear of exploitation, now or in future encounters.

Under incomplete information it is impossible to guarantee Pareto efficiency of offers
made by a negotiator. As we explained earlier, Pareto efficiency is an important property
of offers and a final agreement. Furthermore, negotiation moves made by an opponent
cannot be judged by a negotiator objectively without information about the opponent’s
preferences. For example, a concession move, that is understood as a sacrifice by one
negotiator for a benefit of the opponent, can be in fact a “lose-lose” move for both par-
ties. Such a move can be perceived as unwillingness to concede by the opponent and
result in a misunderstanding. We conclude that incomplete information about opponent’s
preferences is a major problem for negotiators.

Concluding, the more one knows about the opponent the better the changes of reaching
an agreement and the better quality of the agreement that is reached. To some extent the
same holds for the domain. For the development of our negotiation strategies we have a
need for formalised models of the opponent preferences and of domains. We chose to call
those models Opponent model, respectively Domain model.

In automated negotiations several proposals have been made to overcome the typical in-
completeness of knowledge when starting a negotiation. The effectiveness of providing
knowledge about the domain of negotiation has been demonstrated in the Trade-off strat-
egy introduced in [6]. In particular, this paper shows that domain knowledge (coded as
so-called similarity functions) can be used to select bids that are close to an opponent’s
bids, thus increasing the likelihood of acceptance of a proposed bid by that opponent. In
this approach, the knowledge represented by similarity functions is assumed to be public.
As is to be expected, if similarity functions can be found, the Trade-off strategy outper-
forms negotiation strategies lacking all information about the domain or the opponent (see
Chapter 2). Incorporating public domain knowledge into a strategy, however, still does
not take into account the private preferences or priorities that an opponent associates with
negotiated issues.

To overcome the limitations of the domain knowledge approach a number of learning
techniques have been proposed for the negotiation domain. In [15] a set of “typical”
or common preference profiles for the domain at hand is made available to the software
agent. The agent uses Bayesian learning to determine which of these common profiles
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probably fits the current opponent best. This is a good approach that will work in practice,
if such a set of typical opponent profiles is available for the domain at hand.

Another approach to model the opponent’s preferences is based on the assumption that
some historical data is available which can be used to model an opponent’s behaviour.
For example, in [16] authors extend the original negotiation strategy of [15] with a learn-
ing of common opponent’s profiles from historical negotiations. Historical data is also
used in [4] to estimate the probability of acceptance of an offer by an opponent using in-
formation about accepted and rejected offers by the opponent in the previous negotiations.
Unfortunately, such historical information is not available in single session negotiations.
In general, historical data is usually collected for a specific negotiation domain and cannot
be reused in other domains.

1.6 Negotiation Strategies and Tactics

In addition to knowing about the domain and the opponent’s preferences, a good negotia-
tor pays attention to the negotiation tactic of the opponent. Understanding the opponent’s
tactic helps in finding a fair outcome, but also in finding and taking advantage of the
weaknesses of the opponent’s tactic. An interesting research topic would be to learn the
opponent’s tactic. However, we left that for future research.

In this thesis we address two dimensions of bidding tactics, i.e., the concession dimension
that varies over conceding as a point of departure to not conceding, and the dimension of
using an opponent model (or not). What we leave for future research are the end-of-
game problems and acceptance criteria. The aspect of end-of-game problems is related to
Time-Dependent-Tactics (TDT) [5].

In this thesis for the concession dimension of bidding tactics we consider concession-
based tactics and behaviour-based tactics. By concession-based tactics we mean tactics
in which time and again the agent will propose bids that are weakly monotonous conces-
sions with respect to the utility function of the bidder. Simple concession-based bidding
strategies concede with every bid they make (e.g., ABMP [12]), more advanced strategies
concede when there is no longer an option of improving the bid from the perceived per-
spective of the opponent without conceding according to the agent own utility function
(e.g., Trade-Off [6]).3

A behaviour-based bidding tactic takes the behaviour of the opponent into account. A
simple example of such a tactic is the well-known Tit-for-Tat [5]. The QO strategy of
[16] uses offers of an opponent to estimate opponent’s preferences and then uses this
information in a minimax fashion when generating next offers.

3A complicating factor in such strategies is that generally those strategies don’t use an opponent model.
As a result, in a multi-issues negotiation domain a concession with respect to the utility function of one
party does not necessarily mean a concession with respect to the utility function of the opponent ([10]). A
domain model is not enough for a strategy to be able to recognize such situations.
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The second dimension distinguishes between strategies that make use of an opponent
model and those that do not. The ABMP strategy belongs to the type of strategies that do
not model an opponent. The Trade-Off strategy assumes that its domain model accurately
models a part of the opponent’s preferences. The strategy uses similarity measures of
values of issues derived from the domain knowledge. It maximizes the opponent’s utility
by maximizing similarity of the own and the opponent’s bids. The QO strategy uses a
set of possible opponent preference profiles to model an opponent. The strategy uses
Bayesian learning to estimate probabilities of correctness of the profiles in the set. A
profile with the highest probability is used to generate the next offer.

When analysing the state of the art in negotiation strategies for automated negotiations, we
found that the underlying tactic for each of them is concession-based, with the exception
of the QO strategy. Our results in opponent modelling open the possibility of studying
behaviour-based tactics, see Chapter 5.

1.7 Contribution of the Research

The central problem addressed in this thesis is the design and engineering of generic and
efficient negotiation strategies for automated negotiations. The main contributions of this
thesis are:

• a method for the analysis of outcomes and dynamics of multi-issue negotiations and
negotiation strategies;

• criteria for developing generic efficient negotiation strategies based on an analysis
of the existing strategies

• General Environment for Negotiation with Intelligent multi-purpose Usage Simu-
lation(GENIUS)

• a learning technique, called BOP, that learns opponent’s preferences in single-
session negotiations

• an efficient and behaviour-based negotiation strategy, called NMS, that makes use
of the learning technique BOP for opponent’s preferences in a single-session nego-
tiation

• the application of the learning technique to one-to-many negotiations

• an approximation method for non-linear utility spaces with interdependent issues

1.8 Thesis Overview

This thesis is based on a collection of articles. Except for the layout of the papers, they
are left unchanged. Every chapter covers a specific aspect of this thesis and can be read
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independently of each other. Therefore, there is some overlap in introductions and defini-
tion of the used concepts. Authors of the articles are listed in alphabetical order and their
contribution is deemed of equal value.

We start with a proposal of an analytical method and a research tool. In Chapter 2, we
describe the analytical method, apply it to the state-of-the-art negotiation strategy, and
formulate design guidelines for efficient negotiation strategies. In Chapter 3 we introduce
an architecture for a negotiation research framework to assist the design of the strategy.
Next, we propose the efficient negotiation strategy. Chapter 4 proposes a learning tech-
nique for the opponent’s preferences. In Chapter 5 the learning technique is combined
with a bidding strategy to increase robustness of the strategy. In Chapter 6 we apply the
learning technique in one-to-many negotiation setups, in particular the Qualitative Vick-
rey Auction. Finally, Chapter 7 proposes an approximation technique that can be used to
adapt algorithms to non-linear utility functions.

1.8.1 An Analytic Framework of Negotiation Dynamics and Strate-
gies

In Chapter 2 we introduce the method for the analysis of dynamic features of negotiating
strategies. By looking into the dynamics of strategies the method extends the existing
analytical approaches of negotiation outcomes (see e.g., [20]) by helping us to understand
why these outcomes are obtained. The method is based on a classification of negotiation
moves and provides a number of useful metrics. These metrics in turn are used to define
more complex dynamic properties of the strategies under evaluation.

According to [11], there is a need for the development of a best practice repository for
negotiation techniques. That is, a coherent resource that helps to determine which ne-
gotiation techniques are best suited for a given type of problem or domain (much like
the way the TREC data sets and conference works [25]). Indeed, in Chapter 2 we prove
that a negotiation strategy designed using the heuristic-based approach has to be tested
in different negotiation settings, i.e., on a wide range of negotiation domains and against
various opponent’s negotiation strategies. Therefore, in the method we identify important
negotiation factors that influence negotiation behaviour, including: size of the negotiation
domain, predictability of the preferences, opposition of the preferences, opponent’s strat-
egy. These factors play an important role in this work and will be used throughout this
thesis.

The method is applied to the state-of-the-art negotiation strategies. From the analysis, we
conclude that each analyzed strategy has its strengths and weaknesses that depend on the
negotiation domain and/or opponent’s strategy. We further conclude that it is impossible
to avoid unfortunate moves (i.e., bids that make things worse for both parties) without
sufficient domain knowledge or a model of the negotiation partner. We use this analysis
to formulate criteria for an efficient generic negotiation strategy. The method is applied to
the Bayesian Smart strategy that is based on the learning technique proposed in Chapter
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4.

1.8.2 An Open Negotiation Architecture for Heterogeneous Agents
and A Negotiation Testbed

In Chapter 3 we propose an open negotiation architecture for heterogeneous agents. The
architecture allows easy development and integration of existing negotiating agents using
design patterns. The architecture is implemented in GENIUS, a General Environment for
Negotiation with Intelligent multi-purpose Usage Simulation. 4 The core functionality of
the system includes:

• specification of negotiation domains and preference profiles;

• simulation of bilateral negotiations between agents;

• analysis of the negotiation outcomes and negotiation dynamics;

• human-computer negotiations;

• human-human negotiations via internet

GENIUS proved its worth in education at the Radboud University Nijmegen (The Nether-
lands), the Bar-Ilan University (Israel), and the Delft University of Technology (The
Netherlands).

An analytical toolbox integrated in GENIUS can be used for graphical analysis of a ne-
gotiation outcome and calculates optimal solutions, such as the Pareto efficient frontier,
Nash product and others. The toolbox may be used to visualize a negotiation process and
creates an extensive log. In addition to the outcome analysis, the toolbox implements the
metrics of negotiation dynamics as described in Chapter 2.

Unlike the methodology proposed in [18] where an agent is designed for a specific ne-
gotiation setting we propose an architecture to support the design of generic negotiation
agents. For that purpose, GENIUS has a repository of negotiation domains, preference
profiles and negotiation strategies that can be used to organize tournaments. Several ne-
gotiation domains are currently collected in the repository of GENIUS. Each domain has
at least two preference profiles required for bilateral negotiations. The number of issues
in the domains ranges from 3 to 10, where the largest negotiation domain in the repository
is the AMPO vs City taken from [19], and has over 7,000,000 possible agreements. The
repository of strategies currently contains six automated negotiation strategies, such as the
ABMP strategy [12], the Zero-Intelligence strategy [7], the QO-strategy [15], the NMS
strategy proposed in Chapter 5. The repositories of domains and of agents allow agent
designers to test their agents on various domains and against various agents and humans.

4Previous versions of the system were known under the name SAMIN (System for Analy-
sis of Multi-Issue Negotiation). The most recent version of GENIUS can be downloaded from
http://mmi.tudelft.nl/negotiation.
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1.8.3 Learning Opponent’s Preferences in Negotiation

In Chapter 2 we concluded that one of the main necessities of an efficient strategy for
closed negotiation is a model of the opponent’s preferences. In addition, we identified
a number of requirements for efficient negotiation strategies. In Chapter 4 we propose
an effective Bayesian learning algorithm for Opponent Preferences (BOP) in a closed
single-session negotiation. The learning technique we designed can be integrated in any
negotiation strategy to increase the efficiency of its offers. In other words, BOP can be
used to generate an offer that that has a certain (approximated) utility for the opponent.
In particular, such strategies as Trade-Off can be made more efficient by locating offers
on the Pareto optimal frontier (approximately).

For feasibility we had to make some design choices to assume that opponent’s preferences
models have a certain structure and that the opponent will use a concession tactic. The
assumption on structure reduces the hypothesis space of possible utility functions. The
simplifying assumption we made is that opponent’s preferences can be modelled using
linear additive utility functions in which each issue is evaluated using one of the following
three types of evaluation functions: downhill shape (minimal issue values are preferred
over other issue values, e.g., of price and delivery time for a buying agent), uphill shape
(opposite to the downhill shape), triangular shape (a specific issue value somewhere in
the issue range is valued most and issues to the left and right are valued less).

Our simplifying assumption is that an opponent follows some kind of concession-based
strategy. Although this assumption may not be realistic for every counteroffer they make,
negotiators do have to make at least some concession steps in order to reach an agreement.
Moreover, in game-theoretic and heuristic-based approaches to negotiation it is commonly
assumed that negotiating parties use a concession-based strategy [5, 17]. The learning
algorithm allows for the incorporation of prior available opponent knowledge but does
not require any such knowledge.

To show the effectiveness of our approach to learn an opponent model and that it can be
used to find a good counteroffer the BOP learning technique was combined with an ex-
isting strategy [5] and integrated in a negotiating agent, called the Bayesian Smart agent.
The results of using Bayesian Smart in a negotiation setting show the effectiveness of us-
ing an opponent model in a negotiation strategy to improve the efficiency of the bidding
process.

Although we showed the effectiveness of BOP in combination with negotiation strategies,
including BOP does not address all weaknesses of such strategies. For example, the
Bayesian Smart strategy can be easily exploited by an opponent by submitting the best
offer for itself as the last offer before the negotiation deadline. Thus, a more robust
negotiation strategy is needed.
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1.8.4 Negotiation Strategy

Using the efficient learning technique for opponent’s preference, in Chapter 5 we propose
a robust technique to determine the size and direction of the negotiation moves. This tech-
nique allows us to formulate a negotiation strategy that responds to offers of an opponent
in a behaviour-based way. Three criteria for the designed strategy are formulated.

Firstly, the strategy should be efficient. As before, here efficiency means that the strat-
egy should always propose offers on the Pareto frontier that are approximated using a
model of opponent’s preferences. Otherwise, both parties would leave money on the ta-
ble. Therefore, for each negotiation move the strategy moves to the approximated Pareto
frontier. Secondly, moves made by the strategy should be transparent to the opponents.
The strategy achieves this by a simple response mechanism that mirrors an opponent’s
move. Transparency can be achieved by using available knowledge about the preference
profile of the opponent. Finally, the strategy should maximize the chance of an agreement
and should avoid exploitation. To maximize the chance of an agreement the strategy
always moves to the approximated Pareto frontier, that maximizes the utility of the oppo-
nent relative to a particular utility for the agent itself.

Obviously, the strategy requires information about the opponent’s preferences. For that
purpose, the BOP learning algorithm proposed in Chapter 4 is used. Of course the strat-
egy can be combined with alternative, future opponent modelling techniques. The effec-
tiveness of the strategy has been validated experimentally in our usual tournament setup,
using domains of different characteristics and a number of different negotiation strategies.
The results show that the strategy is able to realize significant increases in utility.

1.8.5 Approximating the Qualitative Vickrey Auction by a Negotia-
tion Protocol

In Chapter 6, we apply the BOP learning algorithm to a one-to-many multi-issue nego-
tiation setting. We look at a particular instance of this more general problem and study
a particular auction mechanism called a Qualitative Vickrey Auction (QVA) [8]. This
auction is a generalization of the well-known Vickrey auction to a general complex multi-
issue setting where payments are not essential. This also means that “pricing out” is not
an option to elicit preferences. This implies that in case of somewhat cooperative negoti-
ation domains a buyer and a seller(s) have the opportunity of “win-win” outcomes. The
QVA requires the buyer to publicly announce its preferences and in that case it can be
shown that the outcome is efficient and the mechanism is strategy-proof. However, some-
times it is too costly, impossible, or undesirable to publicly announce such preferences.
In Chapter 6 we study various multi-bilateral negotiation mechanisms and show how the
BOP learning algorithm can be used to drop this requirement.

The main idea is that the (efficient) outcome of the QVA may be approximated by a nego-
tiation protocol that consists of multiple negotiation rounds in which sellers are provided
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an opportunity to outbid the winner of the previous round. The main assumption that we
need to make to obtain this result is that the negotiating agents are able to (privately) learn
part of the preferences of their opponents during a negotiation session. We show exper-
imentally that each of these mechanisms is able to approximate the efficient outcome as
defined by the QVA. Additionally, experiments are performed that show that a negotiating
agent that uses learning significantly outperforms a Zero Intelligence strategy [7].

1.8.6 Eliminating Issue Dependencies in Negotiation Domains

In Chapters 2 - 6 we focused on negotiation domains for which preferences can be mod-
elled by means of linear utility functions, i.e., utility of alternatives of a single issue does
not depend on any other issue. In some negotiation domains preferences can have a more
complex structure.

In Chapter 7 we address a problem of negotiation in domains with interdependent is-
sues. Interdependencies between issues in a negotiation domain result in non-linear utility
spaces. Finding good bids in such spaces is a computationally complex problem which
grows exponentially with the number of issues.

To allow existing negotiation strategies designed for negotiation domains with indepen-
dent issue to deal with utility spaces with issue dependencies we propose an off-line ap-
proximation method that approximates the original non-linear utility space with a corre-
sponding linear space. The approximation method minimizes distance between the origi-
nal space and its linear approximation. It is based on the following observations. First, not
all bids are equally important for negotiation: there are some bids which are not accept-
able for the agent and some that are too optimistic to be an outcome of the negotiation. In
effect, it is possible to indicate an expected region of utility of the outcome. Second, we
conjecture that real life cases have a structure that is far from random that can be modelled
by utility functions mostly linear additive functions, with a few issues dependencies.

This chapter proposes a bid search algorithm based on the weighted averaging approxi-
mation method. Using an approximation, however, always comes with a risk that a bid
is proposed (and accepted by the other party) that seems to have a good utility, but in
fact, in the original utility space has a much lower utility. A checking procedure is in-
troduced into the bid search algorithm that offers a way to avoid this risk at the cost of
additional computations. The parameters of the checking procedure allow the tuning of
the negotiation algorithm to increase either the computational efficiency or decrease the
risk of erroneous bids. Derived from experimental results, we propose specific values for
these parameters that ensure a balance between computational costs and outcome devia-
tion (in terms of utility) in many domains. Finally, we present experimental results that
show that the approach of adding a checking procedure to the negotiation algorithm is
scalable and allows an agent to negotiate about high-dimensional utility spaces with issue
dependencies.
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All the Chapters of this thesis are based on publications in scientific journals or refereed
book chapters.

Chapter 2: Koen Hindriks, Catholijn Jonker and Dmytro Tykhonov, “Negotiation Dy-
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Chapter 2

Let’s Dans! An Analytic Framework of
Negotiation Dynamics and Strategies

Abstract. The “negotiation dance”, as Raiffa calls the dynamic pattern of the bidding,
has an important influence on the outcome of the negotiation. The current practice of
evaluating a negotiation strategy is to focus on fairness and quality aspects of the agree-
ment. In this article we present the framework DANS (Dynamics Analysis of Negotiation
Strategies) for the analysis of the dynamic patterns of the bidding as a means to evaluate
the strengths and weaknesses of negotiation strategies for bidding. The method provides
the tools to perform a detailed and quantified analysis of a negotiation between two agents
in terms of dynamic properties of the negotiation trace. The classification of negotiation
steps in the dance plays a central role in the analysis. The method can be applied to
tournaments, but can also be used to analyze single 1-on-1 negotiation sessions. The ses-
sions can be played by humans or by software agents. Using DANS we show that some
strategies are sensitivity to the bidding behaviour of the opponent, and some depend on
a correct model of the opponent. DANS helped us discover that domain characteristics
are important for the analysis of strategies. Some strategies rely heavily on some domain
assumptions. Furthermore, the results illustrate that having domain knowledge is not al-
ways enough to avoid making unintentional steps. The method is demonstrated in the
analysis of three strategies from the literature ABMP, Trade-Off and Bayesian Agent.

2.1 Introduction

The negotiation dance of exchanging successive offers by negotiating parties affects the
negotiation outcome [15]. To gain more insight in the negotiation dynamics, in [1] a
classification of negotiation moves was introduced in order to characterize and compare
the bidding process of humans and software agents. The results show an overall similarity
of the bidding style of humans and the Agent-Based Market Places (ABMP) strategy, a
concession-oriented negotiation strategy, see [11]. However, the analysis did not provide
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insights in why the different kinds of moves were made, nor did it help us understand why
and to what extend these moves affect the outcome of the negotiation. As far as we know,
no analytical methods exist that do provide the desired insights.

The analysis method introduced in this paper is a concrete step towards providing such
insights. It extends the work presented in [1] by extending and providing a precise char-
acterization of the negotiation move classification and by providing some useful metrics.
These metrics in turn are used to define more complex dynamic properties of the negoti-
ation dance to facilitate the analysis of various dynamic properties of the strategies under
evaluation.

Other analytical methods used in the literature typically assess the performance of nego-
tiation strategies in terms of fairness and quality aspects of the agreement (if any) that
agents reach. Aspects considered are who wins, the distance of the outcome to the Pareto
Efficient Frontier, the Nash Product, and e.g. the Kalai-Smorodinsky Point (see section
2.2.1 for details). Formal definitions of these concepts can be found in e.g., [15]. Such
measures of evaluation focus on the negotiation outcome.

Instead, the concepts introduced here are intended to facilitate the analysis of typical
bidding patterns induced by various negotiation strategies. It is the objective of this paper
to propose a method and some metrics that facilitate a precise characterization of the
negotiation dance. In turn, such a characterization of the dynamics of negotiation may
contribute to the identification of explanations for such findings. It is the aim of this paper
to at least partially identify some of the reasons that may explain particular findings,
that is, to associate particular aspects of a negotiation problem or strategy with particular
extreme values (e.g., minimum or maximum) of the metrics defined below.

We illustrate the use of these concepts for the analysis of concession tactics. For example,
although it is generally acknowledged that a concession should actually increase the utility
of the opponent and not just be a move that decreases one’s own utility, in practice, as we
will show, such behaviour is not always achieved by strategies that have been designed
to concede towards the opponent. Moves that reduce both the agent’s own as well as
its opponent’s utility have been called unfortunate moves (cf. [1]]). Both humans as
well as software agents using the ABMP strategy were observed to make such moves in
negotiation experiments reported in [1], but humans made fewer of them.

Another aspect that plays a central role in DANS is the analysis of the domain of nego-
tiation. In all informal literature on negotiation it is stressed that the negotiator should
prepare with respect to the domain, the opponent, and the negotiator’s own preferences.
However, the literature on automated negotiations, the aspect of the domain leaves room
for improvement. Some strategies use domain knowledge, but no formal analysis has
been made of domains in terms of characterizing properties. In this paper we introduce a
number of characterizing properties that proved useful in understanding the strengths and
weaknesses of bidding strategies.

The analytical method that we propose in this paper combines the standard analysis de-
scribed in [16] and the analysis of negotiation dynamics of [8] to give a better understand-
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ing of a negotiation strategy performance. The method takes into account negotiation fac-
tors from [10] that influence the negotiation performance to gain a better understanding
of when a negotiation strategy is applicable.

The paper is organized as follows. The next section discusses related work. Section 2.4
discusses negotiation factors that are included in the proposed analysis method. In Sec-
tion 2.5, we briefly introduce the topic of negotiation dynamics. Section 2.6 introduces the
move-based analysis method and some metrics for analyzing dynamic negotiation prop-
erties. Section 2.7 explains phases of the analysis method. In Section 2.8, the method is
illustrated by analyzing the Trade-Off [4], ABMP [11], and Bayesian learning [9] strategy
in various negotiation domains. Finally, the paper concludes with some suggestions for
research on automated negotiation derived from the proposed analysis method.

2.2 Related Work

The scope of the current paper concerns the negotiation dynamics as a pattern of offers
(cf. [15]). That is, our work concerns bargaining, a method for reaching joint agreements
by means of exchanging offers according to e.g., an alternating offers protocol. With the
exception of [1] and [2] all papers in the literature that discuss the quality of negotiation
strategies, concern outcome analysis, not the negotiation dance.

This section starts with a summary of measures used for outcome analysis. This work is
used within DANS and is complementary to the work presented in later sections of this
paper to analyse of dynamics of negotiations.

In order to develop efficient negotiation strategies that are robust against and outperform
other strategies, it is important to be able to evaluate the dynamic behaviour induced by
negotiation strategies. Therefore, Section 2.3 focuses on the literature regarding aspects
useful for the analysis of dynamic patterns of negotiations.

2.2.1 Optimal Solutions and Performance Metrics

The most common outcome performance metrics (see Figure 2.1) used to determine the
quality of an agreement with respect to each of the players include the distance to the
Pareto Efficient Frontier, the Nash Product, and the Kalai-Smorodinsky outcome, see e.g.,
[2] and e.g., [15] for formal definitions. Other global measures taken are the (average)
number of negotiation rounds R needed to reach an agreement, the number of agreements
A reached in a tournament, and the time T taken by each party.

Pareto frontier. A bid is Pareto efficient if given a set of alternatives, no movement from
the bid to an alternative exists that can make at least one individual better off without
making any other individual worse off. Typically, there exist multiple Pareto optimal
solutions. The set of such solutions is called a Pareto frontier.
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Figure 2.1: Standard Analysis

Nash product. The Nash product is that outcome that maximizes the product of the util-
ities of the parties. Nash product satisfies certain axioms. It is an invariant to affine
transformations, independent to irrelevant alternative. Nash solution is always Pareto op-
timal. In addition, Nash solution is symmetrical, meaning that if both players have the
same utility functions, then symmetry demands that both get equal payoffs.

Kalai-Smorodinsky. The Kalai-Smorodinsky outcome is that point on the Pareto frontier
which maintains the ratios of maximal gains. In other words, assuming that the util-
ity functions of the parties are normalized and map into the interval [0;1], the Kalai-
Smorodinsky solution is a Pareto efficient outcome that has equal utilities of the two
parties.

The authors of [12] add the following properties to the usual outcome properties:

• Social welfare: the sum of the utilities of the negotiators for the agreement should
be as high as possible.

• Invariance: the solution is invariant under the application of positive affine trans-
formations on the utility functions of both agents.

• Independence of irrelevant alternatives solutions.

Nongaillard and co-authors consider not only the here mentioned utilitarian social wel-
fare, but also egalitarian social welfare, see [22].

In [13], a classification scheme is provided that defines some properties that are oriented
towards rationality and the use of resources. They identify the following desirable prop-
erties for a negotiation protocol and strategies: computational efficiency, communica-
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tion efficiency, individual rationality, distribution of computation, Pareto efficiency, and
symmetry of power between agents. They provide characteristics useful for negotiation
system design:

• Cardinality: number of issues, and one-to-one, many-to-one, many-to-many nego-
tiators.

• Agent characteristics: the role it plays (buyer, seller, intermediary), its rational-
ity (perfect or bounded), its knowledge about other agents’ preferences, its social
behaviour (self-interested vs. altruistic), and its bidding strategy.

• Information parameters: the value of goods (public / private), the nature of goods
(discrete / continuous), price quotes, and transaction history.

• Event parameters: validity of bids, visibility of bids (not for one-to-one negotia-
tions), clearing schedule with allocation parameters, timeouts, and a quotes sched-
ule.

2.3 Negotiation Dance Literature

In [1] and [2], a formalization of the negotiation process is provided together with a set of
performance properties that facilitate evaluation of the quality of the agreement reached,
based on the work of [16] and [17]. The paper also discusses some dynamic properties of
the bidding. The authors used the SAMIN system to analyze the ABMP strategy of [11]
playing against itself and playing against human negotiators. The experiments showed
that human and ABMP negotiators primarily made concession moves (see for a precise
definition Section 2.6.1). Additionally, it was shown that humans were more diverse, i.e.
the types of negotiation moves they performed were more diversified.

In [8] it has been shown that the performance of a negotiation strategy might depend on
the negotiation domain and preference profiles of the negotiation parties. The analysis
methodology, therefore, should include a mechanism to vary all these factors influencing
the negotiation behaviour. The analysis method proposed already includes the following
factors: size of the negotiation domain, predictability of the preferences, opposition of
preferences, and negotiation strategy of the opponents. The paper shows that these factors
can influence learning of opponent’s preferences and, as a result, negotiation performance
of a strategy.

The initial, informal classification of negotiation moves and the results reported in [1]
form the inspiration of the current paper. In combination with the belief expressed by
many that the pattern of offers exchanged influences the negotiated outcome, see e.g. [15],
this motivated our study of negotiation strategies from the perspective of the negotiation
dynamics and the actual moves made.

On the basis of the literature and our own experience we conclude that an analysis of ne-
gotiation dynamics requires the use of both theoretical as well as experimental evaluation
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methods, in which at least the following aspects are attended to:

• competition with other strategies and itself,

• case studies of varying complexity,

• domains with various characteristics, and

• theoretical properties of the dynamics.

For papers that focus on the competition with other strategies the reader is referred to e.g.,
[4, 6, 17]. The next sections discuss the value of the other aspects.

2.4 Negotiation factors

Negotiation always takes place in a setup defined by the negotiation domain and the pref-
erence profiles of the parties involved. In [8] it has been shown that performance of the
negotiation strategies depends on the negotiation setup. Therefore, we identify a number
of factors that can influence a negotiation strategy or one of its components. A number of
negotiation factors influencing negotiation behaviour have been reported in [8] and [10].
We reuse these factors in our method.

Size of the negotiation domain. Complexity of the negotiation domain and preference
profiles is determined by the size of the negotiation domain. Size of the domain can
influence learning performance of the negotiation strategy and, thus, the outcome reached
by the strategy [10]. The size of the domain is exponential with respect to the number
of issues. Therefore, the experimental setup in the analysis method should have a set of
domains ranging from low number of issues to higher number of issues.

Predictability of the preferences. Negotiation strategies can try to exploit the internal
structure of the preferences in order to improve one’s own efficiency. I.e., the Trade-off
strategy proposed in [4] assumes that distance measures can be defined using domain
knowledge for the preferences of the opponent. These measures combined with the oppo-
nent’s offers allow the Trade-off strategy to predict opponent preferences and as a result
improve efficiency of the bidding. In [8], however, it has been shown that in case of a
mismatch of the domain knowledge and the actual structure of the opponent’s preferences
the performance of a strategy can drastically drop. Therefore, we introduce the notion of
the predictability of the preferences into our method.

Issues are called predictable when even though the actual evaluation function for the issue
is unknown, it is reasonable to expect some of its global properties. For example, a price
issue typically is predictable, where more is better for the seller, and less is better for the
buyer, and the normal ordering of the real numbers is maintained; an issue concerning
colour, however, is typically less predictable.

Opposition of the preferences. The results of analyzing negotiation dynamics presented
in [8] revealed that some negotiation strategies are sensitive to preference profiles with
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compatible issues. Issues are compatible if the issue preferences of both negotiating par-
ties are such that they both prefer the same alternatives for the given issue. Negotiation
strategies may more or less depend on whether preferences of the negotiating parties are
opposed or not on every issue. That is, using some strategies it is harder or even impossi-
ble to exploit such common ground and agree on the most preferred option by both parties
for compatible issues (humans are reported to have difficulty with this as well; cf. [21]).
A selection of preference profiles should therefore take into account that both preference
profiles with and without compatible issues are included.

2.4.1 Negotiation domains and preference profiles

Ideally, negotiation domains used in the analysis should cover all range of the factors
sketched above. The selection of the domains presented in this paper is not intended to
cover all variations of the domain factors influencing the negotiation performance. The
negotiation domains used in this paper are:

The Second hand car selling domain, taken from [11], includes 5 issues. Only the buyer’s
preferences and the price issue are predictable, in the sense that an agent can reliably
predict the other agent’s preferences associated with an issue.

The Service-Oriented Negotiation domain, taken from [4], includes 4 issues. All issues
are predictable, i.e. based on available “domain knowledge” preferences can be reliably
predicated. The preference profiles have the strongest opposition in our setup.

The AMPO vs City domain, taken from [15], includes 10 issues, of which only 8 are
predictable. This is the biggest domain in our experimental setup. Information about the
opponent’s issue priorities is not available, i.e., the weights agents associate with issues.

2.4.2 Negotiation strategies

The following strategies have been studied: The ABMP strategy [11], a concession ori-
ented strategy, which computes bids to offer next without taking domain or opponent
knowledge into account. (Experiments were run with a negotiation speed of 0.1 and a
concession factor of 1, see [11].)

The Trade-off strategy is based on similarity criteria [4], and exploits domain knowledge
to stay close to the Pareto Frontier. The “smart” version of this strategy performs nice
moves if possible; otherwise it concedes a fixed amount 0.05 (cf. [4]). For the Service-
Oriented Negotiation domain, we reproduced the results presented in [4].

The Random Walker strategy randomly jumps through the negotiation space, and can be
run with or without a break-off point (to avoid making offers below that utility). Ran-
dom Walker serves as a “baseline” strategy. This strategy has also been called the Zero
Intelligence strategy [5].
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A negotiation strategy that uses a learning technique based on the Bayesian learning al-
gorithm proposed in [9]. The opponent model in [9] is based on learning a probabil-
ity distribution over a set of hypotheses about evaluation functions and weights of is-
sues. The probability distribution is defined over the set of hypotheses that represent an
agent’s beliefs about an opponent’s preferences. Structural assumptions about the evalu-
ation functions and weights are made to decrease the number of parameters to be learned
and simplify the learning task.

The authors propose two versions of the learning algorithm. In the first version of the al-
gorithm each hypothesis represents a complete utility space as a combination of weights
ranking and shapes of the issue evaluation functions. The size of the hypotheses space
growth exponentially with respect to the number of issues and thus is intractable for ne-
gotiation domains with a high number of issues (more than 6 issues, where each issue has
10 or more possible values).

The second version of the algorithm is a scalable variant of the first one. This version
of the agent aims to learn a probability distribution over the individual hypotheses about
the weight and shape of the issue evaluation function independently of other issues. The
computational tractability of the learning is achieved by approximating the conditional
distributions of the hypotheses using the expected values of the dependant hypotheses.

2.5 Negotiation Dynamics

In the analysis of negotiation strategies, not only the outcome of a negotiation is rele-
vant, but also the bidding process itself is important. Mistakes made during the bidding
can have an enormous impact on both players. Although experienced negotiators confirm
this, and it is also recognized by researchers of negotiation strategies for automated ne-
gotiation, this hypothesis is difficult to quantify. Examples from human negotiations are
of the form: “a wrong offer can upset relationships, even causing the other party to walk
away”, or “Sometimes an offer that is meant as a concession to the other party confuses
the issues. This can only be circumvented if there is enough trust between the parties to
exchange some information on their respective preferences.”

From the point of view of automated negotiation, the objective is to stay as close as
possible to the Pareto Efficient Frontier. However, in automated negotiations typically
no prior information is exchanged about the preferences of the negotiating parties, and
none of the players know where the Pareto Efficient Frontier actually is. It thus remains
a challenge to stay or end close to that Frontier. To this end, opponent modelling may be
used to predict which bids will be appreciated by the other party, see, e.g., [3] and [14].

More precisely, five key factors can be identified that shape the outcome of a bilateral
negotiation with incomplete information:

• knowledge about the negotiation domain,
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• one’s own and one’s opponent’s preferences,

• process attributes (e.g. deadlines),

• the negotiation strategies, and

• the negotiation protocol.

In this paper, our interest is in analyzing, classifying and in precisely characterizing as-
pects of the negotiation dynamics that influence the final agreement of a negotiation. The
main interest thus is in proposing concepts and metrics that relate these factors to spe-
cific aspects of the negotiation dynamics and to thus gain a better understanding of the
final outcome of a negotiation. The analysis does not take the features of the protocol per
se into account but instead focuses on the exchange of offers. In principle, the method
allows for generalizations to multi-party negotiations but we do not consider such exten-
sions here. More information on multi-party negotiations can be found in e.g. [17].

2.6 Step-Wise Analysis

In bilateral bargaining, the negotiation dynamics is completely represented by the se-
quence of offers t = 〈b1

S,b
2
O,b3

S . . .〉 exchanged between parties S and O, also called the
negotiation trace. A negotiation trace is called closed if it ends in either an accept or
withdraw move by either party. In this section the basic notions of the step-wise analy-
sis method are defined: classes of negotiation moves, metrics, outcome properties, and
patterns over negotiation moves. After that the different phases of the method are defined.

2.6.1 Negotiation Moves

The key unit of negotiation dynamics analysis is a single negotiation step performed by
one of the negotiating parties. A negotiation step in bargaining consists of an offer pro-
posed by one party to the other. If this offer is not the first offer proposed by an agent, it
typically is computed using at least the previous offer proposed by that agent as input. To
record this fact and to facilitate notation below, formally, a negotiation step s by agent a
is modeled as a transition from a previous offer ba to a newly proposed offer b′a, which is
written as ba→ b′a. Such moves can be classified based on the associated utility for both
parties.

Bosse and Jonker [1] introduced 4 classes of steps: concession, unfortunate, fortunate and
selfish steps. Firstly, negotiation strategy should be able to make concessions. In a con-
cession, an agent trades in own interest in favour of the opponent to reach an agreement.
Unfortunately, in a closed multi-issue negotiation such a move can lead to an alternative
that is even worse for the opponent due to lack of information about the opponent’s pref-
erences. Such move is called unfortunate. In addition, the agent can go up with respect
its own and down with respect to the opponents utility function. Such a move is called a
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selfish move. The last class is called the class of fortunate moves, i.e., a move towards the
Pareto Efficient Frontier, going up with respect to the utility functions of both parties.

For the step-wise analysis method the classes of negotiation moves of [1] have been ex-
tended with two additional classes. In a number of papers, it has been suggested, that it
is smart not to make concessions too soon, but to move over one’s iso-utility lines first
[4]. For this reason, a separate category of nice moves that move in the direction of the
opponent but do not concede with respect to the agent’s own utility is introduced. An ex-
ample of a strategy that is designed to make such moves is the Trade-Off Strategy based
on similarity criteria discussed in [4], a variation is proposed in [12]. Additionally, so-
called silent moves are introduced to represent the fact that parties sometimes repeat their
offers, and do not make any concessions at all such as in a Boulware or take it or leave it
strategy, see [11].

Each type of move in a negotiation typically has a distinct role or function, though in
automated negotiation systems not all of these types of move are taken into account.
Fortunate moves happen spontaneously in human negotiations (see [1]). Having a strategy
that is able to perform such moves deliberately is beneficial, since such moves can be
used to recover from moves away from the Pareto Efficient Frontier, e.g., as the result
of concessions or unfortunate moves. The latter two moves aim at reaching a jointly
acceptable outcome. Although in general, it would be best to avoid unfortunate moves
when conceding, it is impossible to guarantee this when Opponent’s preferences are not
completely known. Selfish moves may be performed by an agent to signal to the other
party that a previous move is not appreciated. The role of nice and silent moves has been
discussed above.

Before formally defining the concepts below, some additional notation is introduced.
US(b) denotes the utility of “Self” with respect to bid b. Similarly, UO(b) denotes the
utility of “Opponent” with respect to b. We use ∆a(b,b′) = Ua(b′)−Ua(b),a ∈ S,O, to
denote the utility difference of two bids b and b’ in the utility space of agent a. We also
write ∆a(s) to denote ∆a(b,b′) for a move s = b→ b′. Here we present a precise definition
of the classes of negotiation moves proposed in [1] extended as discussed above. These
move categories define the core of the move-wise analysis method.
Definition 1 (Move Classes). Let s = bS → b′S be a move in the bidding by Self (the
definition for Opponent is completely symmetric). Then the negotiation move s taken by
Self is classified as a:

1. Fortunate Move, denoted by (S+, O+), iff: ∆S(s) > 0,and∆O(s) > 0.

2. Selfish Move, denoted by (S+, O), iff: ∆S(s) > 0,and∆O(s)0

3. Concession Move, denoted by (S-, O), iff: ∆S(s) < 0,and∆O(s)0

4. Unfortunate Move, denoted by (S, O-), iff: ∆S(s)0,and∆O(s) < 0

5. Nice Move, denoted by (S=, O+), iff: ∆S(s) = 0,and∆O(s) > 0.

6. Silent Move, denoted by (S=, O=), iff: ∆S(s) = 0,and∆O(s) = 0.
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The proposed classification is exhaustive, and all move classes are disjoint. (To allow for
some marginal errors the areas of the Nice and Silent moves can be stretched somewhat
in the analysis. In that way, a move in which only 0.005 of Self’s utility is lost would
still be classified as e.g. Nice, instead as a Concession.) In a concession move some own
utility needs to be conceded but Opponent’s utility may stay the same. In such cases, Self
can claim that it made a concession move by arguing that it conceded some of its own
resources.

2.6.2 Step Metrics and Pattern Properties

Having established different types of negotiation moves that are useful in the analysis of
negotiation strategies, we now introduce and define metrics in terms of these moves that
can be used for the analysis of negotiation traces. First, some additional notation is de-
fined. Given a trace t = 〈b1

S,b
2
O,b3

S . . .〉 of offers, ti denotes the ith element of this sequence.
Let tS (resp. tO) denote the sequence of moves from t that are made by agent “Self” (resp.
“Other”) and let class c∈Fortunate,Nice,Concession,Sel f ish,Un f ortunate,Silent; then
tc denotes the subsequence of moves that belong to class c. Finally, t〈a,c〉, also written tac,
denotes the subsequence of moves by a ∈ S,O that belong to class c. The following move
metrics are introduced here:
Definition 2 (Number of Moves per Trace). . The number of moves ]t in a trace t of
length btc= n is defined as follows: ]t = btc−1.
Definition 3 (Total Utility per Class). The pair Totalc(t) of sums of utility differences in
all moves of class c in a sequence t of moves is defined by:

Totalc(t) = (TotalSc(t),TotalOc(t)),

where for any agent a ∈ S,O : Totalac(t) = ∑i ∆a(t i
c).

Definition 4 (u-Average Utility per Class). The pair u-Avec(t) of average differences in
utility in all moves in class c in a sequence t of moves is defined by:

u−Avec(t) = (u−AveSc(t),u−AveOc(t)),

where for any agent a ∈ S,O:

u−Aveac(t) = ∑i ∆a(t i
c)/]tc.

Here ]tc is a number of moves of class c in trace t. This metric measures the average
utility conceded per negotiation move. A relative measure can be defined in terms of this
metric to identify how much utility has been conceded by agent a relative to the other,
indicated by agent g: u−Avec(ta)/u−Avec(tg). This figure, if not identical to 1, indicates
that one party is a conceder relative to the other, and that concessions may not have been
paced and linked to that of the other party, as is advised by Raiffa [16] (p. 128).
Definition 5 (% per Class). The percentage %c(t) of class c moves in a trace t is defined
by: %c(t) = ]tc/]t

Negotiation strategies can be designed with specific aims in mind that should be observ-
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able as patterns in the negotiation dance. For example, the success of a strategy that
is supposed to learn its opponent’s preferences can be verified by checking whether the
frequency and/or size of unfortunate moves over a negotiation trace decreases. Such pat-
terns can be seen as a measure of adaptability of a party to the opponent. Another useful
measure of the sensitivity to the opponent’s preferences can be defined by comparing the
percentage of fortunate, nice and concession moves that increase the opponent’s utility
to the percentage of selfish, unfortunate and silent moves that decrease it. Intuitively, the
more an agent performs moves that increase its opponent’s utility the more sensitive to
the needs of its opponent, it is said to be.
Definition 6 (Sensitivity to Opponent’s Behaviour). The measure for sensitivity of agent
a to Opponent’s behaviour is defined for a given trace t by:

BehavSensa(t) =
%Fortunate(ta)+%Nice(ta)+%Concession(ta)
%Sel f ish(ta)+%Un f ortunate(ta)+%Silent(ta)

(2.1)

In case no selfish, unfortunate or silent moves are made we stipulate that BehavSens(a, t)=
∞. If BehavSensa(t) < 1, then an agent is more or less insensitive to Opponent’s be-
haviour; if BehavSensa(t) > 1, then an agent is more or less sensitive to Opponent’s be-
haviour, with complete sensitivity for BehavSens(a, t) = ∞ . Typically, this sensitivity
measure varies with different domains and different opponents and averages over more
than one trace need to be computed. Note that the notion of sensitivity is asymmetric:
one agent may be sensitive to its opponent’s behaviour, but not vice-versa. In section 2.8
, this metric is used to analyze the sensitivity of two existing negotiation strategies. Fur-
thermore, its relation to the knowledge available to the agent of the opponent’s behaviour
and the negotiation outcome is discussed.

We expect that the Random Walker strategy to make about 25% of moves in each of the
fortunate, unfortunate, selfish, and concession classes due to its randomized selection of
bids. This strategy is included in our method as a benchmark strategy and is used to
validate our measures (see Table 2.1).

2.6.3 Sensitivity to Opponent’s Preferences

A successful negotiation strategy should search for offers that maximize the agent’s own
utility while increasing the chance of the acceptance by the opponent. We assume that a
rational negotiating agent would more easily accept offers higher utility than those with
lower utility. To increase the chance of an acceptance it is, therefore, rational to increase
the opponent’s utility of an offer without giving in with respect the agent’s own interests
by means of trade-offs between the issues. Ideally, such a search procedure would lead
to offers on the Pareto Efficient Frontier. Thus, an efficient negotiation strategy should
generate offers from the Pareto frontier or at least as close as possible to the frontier
depending on the limitation of the strategy.

To generate offers that are close to the Pareto Efficient Frontier a negotiation strategy
must use information about the opponent’s preferences in addition to its own preferences.
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Therefore, to assess the performance of a negotiation strategy we need to measure its sen-
sitivity to the opponent’s preferences. Given the assumptions of the opponent’s rationality
we define a measure of sensitivity as follows.
Definition 7 (Sensitivity to Opponent’s Preferences). To measure sensitivity to the oppo-
nent’s preference we calculate the average difference between Opponent’s utility of the
bids generated by the strategy and utility of a bid on the Pareto frontier:

Pre f Sens(ts) = 1
]tS ∑

]tS
i=1UO(t ′i)−UO(ti)ti ∈ tS

where t ′i is defined as

t ′i = argmaxUS(b)=Us(ti)UO(b),b ∈ D

Figure 2.2 visualizes the sensitivity to Opponent’s preferences measure. The figure puts
all possible negotiation outcomes in a given negotiation domain on a two-dimensional
space. Each dimension represents utility of an offer respectively to the negotiating parties.
A negotiation strategy that is perfectly sensitive to Opponent’s preferences would propose
Pareto efficient offers only and, therefore, would have Pre f Sens(t) = 0. The higher the
measure the worse sensitivity of the strategy.

 

d(uA(bt),uA(b’t)) –
sensitivity to opp. 

preferences
bt

b’t

uA

uB

Pareto 
Frontier

Figure 2.2: A Negotiation Problem and Optimal Solutions

As said before, a strategy that is sensitive to the opponent’ preferences requires infor-
mation on the opponent’s preferences. The ABMP strategy belongs to the class of the
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Time-Dependent Tactics that do not consider the opponent’s preferences. Given the def-
inition of the measure of sensitivity to the opponent’s preferences, we can expect low
sensitivity of the ABMP strategy (see Table 2.5).

A typical solution to increase the sensitivity to the opponent’s preferences is to use an
opponent model. The Bayesian strategy uses a learning algorithm to guess the opponent’s
preferences and tries to bid on the Pareto Efficient Frontier to increase the chance of
acceptance. Thus, the Bayesian strategy should score high on the sensitivity measure in
case when learning is successful (see Table 2.5). As we saw in the previous section the
performance of the Trade-Off strategy strongly depends on the negotiation domain and
the opponent’s strategy. A similar result is to be expected in the sensitivity of that strategy
to the opponent’s preferences. The Random Walker does not consider the preferences of
the opponent at all and would therefore have low sensitivity.

2.7 Negotiation Analysis Methodology

A methodology for analyzing the performance of various strategies for automated ne-
gotiating agents should include the by now standard metrics based on solution concepts
such as the Nash product as well as the metrics introduced above to analyze the negotia-
tion moves to reach an agreement. The need to include metrics related to the negotiation
dance itself is clear from the performance of a Random Walker negotiating agent. As we
show in Section 2.8, even a Random Walker can obtain an outcome close to the Pareto
Efficient Frontier and good for the Random Walker provided that its opponent uses a rea-
sonable negotiation strategy. A proper analysis should reveal that such results need to
be contributed to the strategy or performance of the opponent rather than to the Random
Walker agent. Though this may seem obvious from the performance of a Random Walker
in any given negotiation for other negotiation strategies similar conclusions may only be
reached by analyzing the performance of that strategy in various domains and in combina-
tion with different preference profiles. A methodology for analyzing the performance of
a negotiating agent thus should involve a careful setup of experiments as well as a range
of different metrics to be able to reach sound conclusions about the agent’s performance.

The methodology that we propose consists of seven steps to facilitate the setup of a tour-
nament for analyzing negotiation strategies. The first four steps of the proposed method
define the tournament whereas the last three steps concern the analysis of the results. Al-
though the method proposed does not provide any guarantees that the proper results will
be obtained, it does facilitate and structure the process of setting up negotiation experi-
ments to obtain such results. Moreover, by reiterating the process the results of previously
performed experiments can be used to refine the experimental setup and may suggest vari-
ations not initially considered.
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2.7.1 Phases of the Negotiation Analysis Method

Based on the above concepts, the analysis method is specified by:

1: Starting point: the strategies to be analysed, and a library of domains and of other
strategies that can be used to test the input strategies.

In Section 2.3 we introduced a number of criteria for selection of negotiation do-
mains, preference profiles and opponent strategies. Ideally, then, one would use an
experimental setup based on random sampling of the domains and profiles in order
to deal with this problem. However, it is not clear how to setup such a sampling
procedure. Therefore, we selected a number of negotiation domains to be used in
our experimental setup.

The opponent’s negotiation strategy is one of the negotiation factors influencing the
agent’s negotiation performance [8]. It is important, therefore, to be able to include
a wide range of existing negotiation strategies.

2: If necessary, implement the input strategies.

The proposed method is based on the analysis of empirical data and, therefore,
requires an implementation of the input negotiation strategies that can be run in an
experimental setup. Ideally, the input strategy should be implemented in the same
environment with the strategies and negotiation domains and profiles selected in the
1st step. Otherwise, a communication between the strategies must be established
and the negotiation domains and profiles must be translated and made available for
the input strategies.

3: Set up a tournament with the selected negotiation strategies and case studies.

A tournament a la [6] is used to experiment with various strategies. In the tour-
nament, strategies play against each other, against themselves, and are applied to
varying negotiation domains, with varying preference profiles. Multiple negotiation
sessions of a single negotiation setup should be run in the case of non-deterministic
negotiation strategies in the tournament.

4: Run the tournament and log every negotiation.

The negotiation log should include information about the tournament and settings
of an individual session: the names of the strategies, the domain name, and the
preferences of the players. Furthermore, it is important to produce an extensive log
with all information needed to calculate the proposed metrics. Therefore, the log
should include bids proposed by every negotiating party in a negotiation session
and their utilities.

5: Calculate defined metrics.

Given the logs produced in the previous step, the following metrics introduced in
this paper should be calculated for every negotiation session:
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• utilities of the negotiation outcomes;

• number of negotiation moves;

• number of moves, %, and total utility per class;

• sensitivity to opponent’s behaviour;

• sensitivity to opponent’s preferences;

6: Apply statistics and produce analytical results.

In the case of non-deterministic negotiation strategies in the tournament as ex-
plained in the step 3, average values of the metrics should be calculated and used
for analysis.

7: Interpret results, produce graphics.

The goal of the proposed method is to assess the negotiation performance of a
negotiation strategy given a number of metrics of the negotiation outcome and dy-
namics. The assessment is based on the interpretation of the results received from
the variation of the values of the negotiation factors introduced in this paper.

Graphics such as the two-dimensional utility plots of the negotiation outcome space
(see, for example, Figure 2.2) can help to find interpretations for the results. They
highlight the dynamic properties of the negotiation traces proposed here as well as
the standard analysis measures.

The proposed analyses method was applied in an experimental setup using the open ne-
gotiation environment for heterogeneous negotiating agents, presented in [7]. The envi-
ronment makes use of advanced software engineering technologies allowing simple and
quick integration of existing negotiation strategies. The framework provides a simple
application programming interface and a number of auxiliary common services to the
agent to simplify the task of strategy implementation. It has a rich library of implemented
negotiation strategies.

The analytical module of the environment can be easily extended with new metrics and
has advanced logging functionality. Logs of the environment can be exported to widely-
used analytical software, such as Excel and Mathematica. The environment has tools
to generate a setup for a tournament and run it producing logs with the corresponding
information.

2.8 DANS Applied

This section illustrates the DANS analysis method for a combination of strategies and ne-
gotiation domains, while focusing on individual moves Ű in particular unfortunate moves
Ű and on the sensitivity of four negotiation strategies with respect to preferences and
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Profile High sensitivity Low sensitivity
BehavSens ∞ 0
PrefSens 0 1

Table 2.1: Extreme values for the sensitivity measures.

behaviour of the opponent. Table 2.1 reminds how the sensitivity values should be inter-
preted and give extreme values for the high and low sensitivity.

A tournament with the strategies and domains of the previous section was set up and run.
A full analysis was made of the type of moves made, which was then used to calculate the
average sensitivity ratio’s for all tested strategies over multiple runs against all strategies
(including itself) in the domains described above.

2.8.1 Outcome Analysis

The traditional (and valuable) method for analysis of strategies in terms of the outcome
and its properties is applied first to the chosen combination of strategies and negotiation
domains as explained in the previous section.

 
Utility

Agent A Agent B Nash Kalai Agent A Agent B Nash Kalai Agent A Agent B Nash Kalai Agent A Agent B Nash Kalai Agent A Nash Kalai
ABMP 0.83 0.93 0.08 0.09 0.90 0.83 0.10 0.09 0.86 0.76 0.18 0.17 0.82 0.96 0.10 0.11 0.85 0.12 0.11

Trade-Off 0.72 0.94 0.19 0.20 0.84 0.92 0.08 0.08 0.87 0.76 0.19 0.17 0.84 0.94 0.08 0.08 0.82 0.13 0.14
Random 0.78 0.83 0.17 0.17 0.74 0.89 0.18 0.18 0.73 0.76 0.26 0.25 0.74 0.86 0.19 0.19 0.75 0.20 0.20
Bayesian 0.78 0.96 0.14 0.15 0.87 0.94 0.04 0.05 0.74 0.85 0.19 0.19 0.89 0.92 0.03 0.03 0.82 0.10 0.11
Average 0.91 0.15 0.15 0.90 0.10 0.10 0.78 0.21 0.20 0.92 0.10 0.10
ABMP 0.73 0.63 0.16 0.11 0.70 0.59 0.19 0.15 0.58 0.65 0.18 0.18 0.65 0.70 0.10 0.09 0.67 0.16 0.13

Trade-Off 0.62 0.53 0.27 0.23 0.74 0.73 0.06 0.01 0.67 0.58 0.21 0.17 0.65 0.70 0.10 0.09 0.67 0.16 0.12
Random 0.69 0.68 0.10 0.07 0.54 0.60 0.25 0.24 0.65 0.65 0.15 0.12 0.53 0.72 0.18 0.20 0.60 0.17 0.16
Bayesian 0.65 0.70 0.10 0.09 0.74 0.72 0.07 0.01 0.68 0.50 0.28 0.24 0.73 0.70 0.08 0.03 0.70 0.14 0.09
Average 0.63 0.16 0.12 0.66 0.14 0.10 0.60 0.21 0.18 0.70 0.12 0.10
ABMP 0.51 0.59 0.36 0.33 0.65 0.49 0.38 0.32 0.73 0.66 0.19 0.13 0.76 0.84 0.02 0.06 0.66 0.23 0.21

Trade-Off 0.52 0.65 0.31 0.29 0.79 0.77 0.09 0.02 0.55 0.61 0.31 0.28 0.76 0.82 0.03 0.05 0.66 0.18 0.16
Random 0.63 0.60 0.28 0.23 0.63 0.77 0.14 0.15 0.66 0.70 0.17 0.14 0.78 0.78 0.08 0.00 0.67 0.17 0.13
Bayesian 0.79 0.75 0.11 0.03 0.81 0.71 0.15 0.08 0.80 0.74 0.12 0.05 0.76 0.82 0.03 0.05 0.79 0.10 0.05
Average 0.65 0.26 0.22 0.68 0.19 0.14 0.68 0.20 0.15 0.82 0.04 0.04
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Figure 2.3: Result of Standard Analysis

Table 2.3 presents the results of the outcome analysis. The average values are calculated
over all opponents’ strategies per negotiation domain and role in the domain. The ABMP
strategy shows excellent performance (average utility of 0.85 for Role A and 0.91 for Role
B) on the Car domain for which it was designed. The Trade-Off strategy underperforms
the ABMP strategy on this domain with average utilities of 0.82 and 0.90 for the roles
A and B respectively. The Bayesian agent performs somewhat better than the Trade-Off
strategy (average utility of B 0.82 for Role A and 0.92 for Role A). Random Walker is
definitely a layman in this domain.

In the SON domain the Bayesian agent clearly outperforms the other strategies (average
utility of 0.79 for Role A and 0.82 for Role B). Interestingly, the Trade-Off strategy per-
formance varies from one opponent to another. It does well when playing against itself
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(utility of 0.79 for Role A and 0.77 for Role B) or against Bayesian agent (utility of 0.76
for Role A and 0.71 for Role B) but fails against ABMP (utility of 0.52 for Role A and
0.49 for Role B) and the Random Walker (utility of 0.55 for Role A and 0.67 for Role B).
Unfortunately, the ABMP strategy is not able to take advantage of the Trade-Off strategy
but leaves better alternatives on the table. The Random Walker shows a performance that
is on average better that of the Trade-Off and ABMP strategies (average utility of 0.67 for
Role A and 0.68 for Role B). However, this might be due to the selected reservation value
of Random Walker (every bid will have a utility of at least 0.6). Setting the reservation
value even higher would lead to even better results.

The results in the AMPOvsCity domain are similar to that of the SON domain. The
distance of the negotiation outcome reached by the Bayesian strategy and the Nash and
Kalai-Smorodinsky outcomes is bigger than in the SON domain. This can be explained
by the significantly larger size of the AMPOvsCity domain that causes some degradation
in the learning performance of the Bayesian strategy, see [10]. Due to the large size of
the AMPOvsCity domain the Random Walker and the ABMP strategy show the worst
performance among the other strategies.

The standard analysis method that focuses on the final outcome does not explain why
such a performance is observed, e.g., the Trade-Off and the ABMP strategy underperform
against the Random Walker strategy. Therefore, we propose the negotiation dynamics
analysis method to get more information from the experimental results and get insights
into the negotiation process.

2.8.2 Sensitivity to Opponent’s Behaviour

Theoretically, over all domains and against all strategies, Random Walker would have
a sensitivity value of 1. As expected, the Random-Walker shows approximately equal
percentage of moves for the unfortunate, fortunate, selfish, and concession classes. It
makes almost no nice or silent moves. Small deviation of the results can be explained by
structural features of a negotiation domain.

ABMP shows an overall BehavSens of 4.15, Trade-off 4.13, Bayesian 6.21 and Random
Walker 1.08. Note, that the efficiency of the agreement (see previous section) does not
always correlate strongly with the BehavSens values of the strategies. The sensitivity
scores of ABMP and Trade-Off can be better understood by considering the domains in
which they played. Figure 2.4 shows typical runs in the AMPOvsCity domain.

Figure 2.4a shows a run of Trade-Off, representing the City, versus Random Walker (with
a break-off set to 0.6), playing AMPO. The Random Walker strategy is insensitive with
respect to the opponent’s behaviour (BehavSens is always approximating 1) and strategy
selects an offer in a random way. The Trade-off strategy uses the opponent’s offers to
select counteroffers and expects some rational behaviour of the opponent’s strategy. This
fact causes the unfortunate moves produced by the Trade-Off strategy (36% of all moves
for Role A and 37% for Role B). This results in a low BehavSens of the Trade-Off strategy
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in negotiation against Random Walker (1.04 for Role A and 1.33 for Role B), see the
columns for Trade-Off in Table 2.5. However, the Trade-Off strategy in negotiations
against itself and the Bayesian strategy makes significantly less unfortunate moves due to
more rational and efficient behavior of the opponent and, as a result achieves much higher
BehavSens scores (against itself: 5.25 for Role A and 6.14 for Role B; against Bayesian:
8.09 for Role A and 6.83 for Role B). In general, Trade-Off has high BehavSens in this
domain (average value 4.07 for Role A and 3.89 for Role B)

Figure 2.4b shows Trade-Off (as City) vs ABMP (as AMPO) in which ABMP makes
mostly concessions and silent moves by following its concessions tactic regardless of the
moves of the opponent. It has rather low BehavSens (average value 1.56 for Role A
and 2.93 for Role B) in this domain. ABMP shows more rational behaviour than Ran-
dom Walker and, therefore, in this domain Trade-Off really exploits the available domain
knowledge. The percentage of unfortunate steps in this negotiation drops to 27% for Role
A and 32% for Role B.

Figure 2.4c shows Random Walker (City) vs ABMP (AMPO). ABMP in principle con-
cedes on all issues, determining the size of the concession on the difference between the
utilities of its own bid and that of its opponent. Unlike the Trade-Off strategy it does
not use previous bids of the opponent to get insight into the opponent’s preferences and
as a result does not adapt much to the strategy of the opponent. Such a strategy will
make unfortunate steps in case there are issues with compatible preferences (concession
on such an issue would decrease utility of the opponent). AMPOvsCity does not have any
issues with compatible preferences and, thus, ABMP does not make unfortunate steps.
Given opposed preferences for every issue such a strategy typically produces concession
moves (see Figure 2.4b,c). This results in a relatively high BehavSens in negotiations
against Random Walker compared to that of the Trade-Off strategy (average value 1.47
for Role A and 1.89 for Role B). BehavSens for the ABMP strategy increases in ne-
gotiations against Trade-Off and Bayesian but has relatively smaller values than that of
the Trade-Off strategy (against Trade-Off: 2.13 for Role A and 3.78 for Role B; against
Bayesian: 1.70 for Role A and 4.56 for Role B).

Figure 2.4d shows Trade-Off (City) vs Bayesian (AMPO). The negotiation behaviour of
the Bayesian strategy is very similar to that of the Trade-Off strategy: stays very close
to the Pareto frontier and makes few unfortunate moves. The BehavSens of the Bayesian
strategy is very high in this negotiation (13.29 for Role A and 6.69 for Role B). Unlike the
Trade-Off strategy the Bayesian strategy does not rely on domain knowledge to generate
offers that are close to the Pareto frontier. Instead it tries to learn the opponent’s preference
profile from the opponent’s offers. The learned preference profile allows the Bayesian
strategy to response to the opponent with more nice and concession moves and keep the
number of unfortunate moves at minimum. As a result, it remains rather sensitive to the
opponent’s behaviour even when it negotiates against Random Walker (value 2.35 for
Role A and 3.55 for Role B).
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Figure 2.4: Dynamics of negotiation process for: a) Trade-Off (City) vs Random Walker
strategy (AMPO), b) Trade-Off (City) vs ABMP strategy (AMPO), c) Random Walker
(City) vs ABMP strategy (AMPO), d) Trade-Off (City) vs Bayesian strategy (AMPO).
The Pareto Efficient Frontier is built according to its definition (see [16], pp. 227) using
exhaustive search.

2.8.3 Sensitivity to Opponent’s Preferences

The sensitivity to the opponent’s preferences is measured in the same experimental setup
as for the outcome analysis method and the step-wise method. Table 2.5 also presents the
sensitivity results with respect to the opponent’s preferences. As expected, the Bayesian
strategy is the most sensitive to the opponent’s preferences with average values per do-
main of Pre f Sens≤ 0.09. The Bayesian strategy is less sensitive when negotiating against
the ABMP and Random Walker strategies than against the other strategies. This can be
explained from the fact that the assumptions used in the learning algorithm do not hold
for those strategies and the learned opponent’s preference profile in these negotiations has
lower quality.

The Trade-Off strategy is somewhat less sensitive to the preferences of the opponent (av-
erage Pre f Sens ≤ 0.22 in the various domains) than the Bayesian strategy. The Trade-
Off strategy can be efficient but has difficulties with domains with low predictability
of the preferences. For example, it’s sensitivity to the opponent’s preferences is not
as good in the 2nd Hand Car Selling domain (Pre f Sens ≤ 0.17 as in the SON domain
(Pre f Sens ≤ 0.13) despite the fact that the later domain is much bigger than the earlier.
The similarity functions for the 2nd Hand car domain often do not match the preferences
of the opponent. In addition, the weights of the similarity function do not match the op-
ponent’s importance factors of the negotiation issues. The SON domain does not have
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information about the weights of the similarity functions but the issues preferences per-
fectly match the similarity functions and thus the sensitivity to the opponent’s preferences
of the Trade-Off strategy increases.

The sensitivity to the opponent’s preferences for the Trade-Off strategy depends on the
strategy used by the opponent. In negotiations against ABMP and Random Walker the
Trade-Off strategy is less sensitive to the opponent’s preferences (e.g., in SON domain
it has Pre f Sens ≤ 0.09 in negotiations against Trade-Off and Bayesian whilst it has
Pre f Sens ≤ 0.22 in negotiations against ABMP and Random Walker). This variation
can be explained by the fact that the Trade-Off strategy tries to match the opponent’s
preferences by maximizing the similarity of the its offers with those of the opponent.
If the opponent’s offers are far from the Pareto frontier (such as in case of ABMP and
RandomWalker) the Trade-Off strategy would not be able to match the opponent’s pref-
erences.

The ABMP strategy shows rather robust performance but it is often outperformed by the
smarter strategies. It has overall a rather low sensitivity to the opponent’s preferences
(average values over the various domains are Pre f Sens≤ 0.42). Still it is more sensitive
than the Random Walker that, as expected, has the lowest sensitivity to the opponent’s
strategy (average values over the various domains are Pre f −Sens≤ 0.75). Note, that the
PrefSens value of the ABMP strategy does not vary much over the opponent’s strategy
because it uses the opponent’s offers to determine the size of a concession but does not
try to match the opponent’s preferences.

2.8.4 DANS analysis results

In summary the DANS analysis results are as follows. The opponent sensitivity analysis
shows a direct link between the correctness and/or completeness of the domain knowledge
and opponent sensitivity. The Trade-Off strategy is very sensitive to an opponent given
complete information. In that case, the similarity functions exactly match the opponent’s
preferences and the weights exactly represent the issue importance factors of the oppo-
nent and the sensitivity metric for the behaviour of the opponent is converging to zero.
Intuitively, the Trade-Off strategy would be more efficient in a smaller domain due to the
smaller search space. However, the incomplete domain knowledge in the 2nd Hand Car
Selling domain does not allow the Trade-Off strategy to fully use its potential to search
for efficient outcomes. The experiments show that if less domain knowledge is available,
Trade-Off makes more unfortunate moves.

In general, when issues are predictable, the chance of making an unfortunate step becomes
small. This aspect becomes clear in the car domain, where the seller’s preferences (Role
A) are rather predictable, but the buyer’s preferences (Role B) vary a lot.

We conclude that it is impossible to avoid unfortunate moves without sufficient domain
knowledge or opponent knowledge. Indeed, the similarity criteria functions used in the
Trade-Off Strategy provide general information about the negotiation problem, but do not
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take into account the specific attributes of the negotiating parties. In any particular case,
a negotiator may deviate from the generalized domain model in various ways.

On the other hand the Bayesian strategy does not use domain knowledge and tries to learn
the opponent’s preference during negotiation. The learning algorithm of the Bayesian
strategy allows it to remain sensitive to the opponent’s behaviour and preferences regard-
less of the completeness and correctness of the available domain knowledge.

Sensitivity to the opponent’s preference of the ABMP strategy does not seem to be in-
fluenced by the opponent’s strategy unlike the Trade-Off strategy. The ABMP strategy
shows rather robust performance but it is often outperformed by the smarter strategies,
such as the Trade-Off and the Bayesian strategies, in terms of outcome utilities. The
Bayesian strategy similar to the ABMP strategy show somewhat more robust behaviour
than the Trade-Off strategy. This can be explained by the way it learns the opponent’s
preferences. It does not require that the opponent’s offers stay close to the Pareto frontier.
A better model of the opponent’s preferences allows the Bayesian strategy to be more
sensitive to the opponent’s preferences and, finally, reach better negotiation outcomes.

2.9 Conclusions

This paper shows that an analysis of the negotiation dance [15] is important for the under-
standing and improvement of negotiation strategies. The DANS analysis method intro-
duced in this paper focuses on the classification of negotiation moves and a metrics over
this classification. The classification enables us to relate the intent of a strategy in making
a negotiation step with the actuality of the perception of that step by the opponent. For
example, a strategy might be concession oriented, i.e., moves are intended to be conces-
sions, but in reality some of these moves might be unfortunate, meaning that although the
proposer of the bid is giving in, from the perception of the receiver, the bid is actually
worse than the previous bid.

By testing strategies over various domains and against various opponents patterns emerge
of when such unfortunate moves occur. These patterns are related to dynamic properties
such as the sensitivity of strategies. Experiments with DANS show, for example, that the
Trade-Off strategy is rather responsive to the behaviour of the opponent, in that it follows
the behaviour of the opponent. If that is rather wild, such as the random behaviour of the
Random Walker, Trade-Off shows a high percentage of unfortunate moves.

Experiments further show that the occurrence of unfortunate moves is related to features
of the negotiation domain and the extent to which such features are incorporated in the
strategy. The same holds for knowledge about the preferences of the opponent. To better
understand the relative importance of each relation, we have emphasized the distinction
between domain knowledge and opponent knowledge.

We think it is impossible to avoid unfortunate moves without sufficient domain knowledge
or opponent knowledge. Domain knowledge provides generalized information about the
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negotiation problem, but does not necessarily match with individual preferences of nego-
tiating parties. Opponent knowledge concerns individual information and as such is not
transferable to other opponents. Therefore, we advocate a combination of domain and
opponent knowledge.

The DANS analysis method focuses explicitly on properties of interest to the researcher.
The combination of statistical methods and graphical representation is strong: Humans
process graphs faster than tables with numbers, however, the number of experiments typ-
ically done make it impossible for the human to view every graph produced by the ex-
periment. A more general aspect is that graphs of long negotiation dances become hard
to grasp; what may look like a neat series of nice moves, might actually be a mixture of
unfortunate and nice moves.

The example in the paper shows how the focus on the percentage of unfortunate moves
makes it possible for the DANS method to present to us with particularly insightful
graphs, such as the graph of the Trade-Off vs Random Walker that provides insight into
the sensitivity of the Trade-Off strategy. Furthermore, based on the sensitivity analyses
we showed that the Bayesian strategy is able to overcome the inefficiency of the Trade-
Off strategy in domains for which the available domain knowledge is incomplete and/or
incorrect.

Future work We believe that our results also show the need for benchmark problems for
bilateral negotiation. An interesting direction for future research in this area would be to
propose a measure for exploitability of a negotiation strategy. A good negotiation strategy
must be able to withstand an inefficient opponent strategy, such as Random Walker, and a
strategy that tries to exploit its opponent.

In this paper we showed that the negotiation domain can have strong influence on perfor-
mance of a negotiation strategy. Thus, another interesting direction for the future work
is to develop a design method to generate varying negotiation domains and preference
profiles and add this domain- and profile generation method to DANS. While it is im-
possible to test a negotiation strategy in all possible negotiation scenarios the method
should be able to give a good spread of negotiation domains, preference profiles and ne-
gotiation strategies such that it covers factors such as the size of the negotiation domain,
predictability of the preferences, opposition of preferences, and opponent behaviour (i.e.,
strategy).
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Fort Nice Cons Silent Selfish Unfort. Behav. Opp.Prefs Fort Nice Cons Silent Selfish Unfort. Behav. Opp.Prefs

Agent B 7% 6% 67% 6% 0% 14% 3.98    0.26      0% 23% 47% 12% 0% 18% 2.34    0.28       
Agent A 1% 3% 54% 20% 0% 21% 1.41    0.24      1% 12% 42% 25% 0% 21% 1.19    0.20       
Agent B 5% 16% 60% 6% 0% 13% 4.23    0.25      3% 14% 53% 18% 0% 13% 2.24    0.05       
Agent A 0% 10% 45% 20% 0% 25% 1.23    0.12      2% 4% 63% 23% 0% 7% 2.27    0.04       
Agent B 1% 1% 81% 8% 2% 8% 4.63    0.23      1% 29% 22% 18% 1% 30% 1.07    0.31       
Agent A 29% 3% 22% 8% 17% 22% 1.18    0.45      28% 9% 23% 2% 17% 21% 1.47    0.49       
Agent B 4% 12% 66% 6% 0% 12% 4.32    0.25      4% 10% 58% 19% 0% 9% 2.57    0.02       
Agent A 10% 43% 39% 3% 0% 5% 11.50  0.03      3% 12% 62% 20% 0% 3% 3.35    0.01       
Agent B 4% 9% 68% 6% 1% 12% 4.29    0.25      2% 19% 45% 17% 0% 17% 2.06    0.17       
Agent A 1% 6% 49% 21% 2% 21% 1.32    0.22      2% 13% 46% 21% 0% 18% 1.90    0.15       
Agent B 0% 0% 91% 9% 0% 0% 10.55  0.39      0% 6% 62% 5% 0% 26% 2.19    0.16       
Agent A 0% 2% 83% 16% 0% 0% 5.40    0.39      0% 4% 67% 28% 0% 0% 2.55    0.48       
Agent B 0% 3% 67% 29% 0% 0% 2.42    0.35      0% 0% 81% 1% 0% 18% 4.31    0.09       
Agent A 0% 0% 77% 6% 0% 17% 3.30    0.20      0% 5% 85% 3% 0% 7% 9.02    0.01       
Agent B 6% 1% 86% 6% 1% 0% 11.63  0.38      2% 39% 20% 3% 1% 35% 1.57    0.13       
Agent A 20% 2% 26% 8% 24% 21% 0.91    0.53      17% 4% 31% 3% 26% 18% 1.08    0.42       
Agent B 0% 1% 87% 4% 0% 8% 7.33    0.38      0% 8% 80% 3% 0% 9% 7.33    0.01       
Agent A 0% 3% 84% 4% 0% 9% 6.69    0.01      0% 9% 82% 3% 0% 3% 15.17  0.01       
Agent B 1% 1% 83% 12% 0% 2% 7.98    0.38      0% 13% 61% 3% 0% 22% 3.85    0.10       
Agent A 1% 3% 81% 15% 1% 2% 6.14    0.42      1% 9% 68% 6% 0% 16% 4.90    0.13       
Agent B 0% 0% 65% 35% 0% 0% 1.89    0.44      0% 0% 56% 12% 0% 32% 1.27    0.36       
Agent A 0% 12% 38% 49% 0% 0% 1.02    0.43      0% 4% 64% 29% 0% 3% 2.13    0.40       
Agent B 0% 4% 75% 21% 0% 0% 3.78    0.40      0% 6% 80% 5% 0% 9% 6.14    0.03       
Agent A 0% 0% 68% 5% 0% 27% 2.17    0.35      0% 8% 76% 6% 0% 10% 5.25    0.01       
Agent B 0% 0% 59% 37% 1% 3% 1.47    0.46      1% 26% 30% 6% 0% 37% 1.33    0.45       
Agent A 21% 4% 25% 3% 25% 23% 0.98    0.82      22% 3% 26% 4% 22% 23% 1.04    0.82       
Agent B 0% 3% 79% 18% 0% 0% 4.56    0.39      0% 0% 82% 6% 0% 6% 6.83    0.04       
Agent A 12% 45% 34% 5% 0% 5% 9.10    0.04      10% 48% 35% 4% 0% 3% 13.29  0.03       
Agent B 0% 2% 70% 28% 0% 1% 2.93    0.42      0% 8% 62% 7% 0% 21% 3.89    0.22       
Agent A 1% 7% 52% 38% 0% 2% 1.56    0.42      1% 8% 63% 10% 0% 19% 4.07    0.21       
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Figure 2.5: Results of the Step Wise Analysis.
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Chapter 3

A Multi-Agent Environment for
Negotiation

by section, subsection

In this chapter we introduce the System for Analysis of Multi-Issue Negotiation (SAMIN).
SAMIN offers a negotiation environment that supports and facilitates the setup of various
negotiation setups. The environment has been designed to analyse negotiation processes
between human negotiators, between human and software agents, and between software
agents. It offers a range of different agents, different domains, and other options useful to
define a negotiation setup. The environment has been used to test and evaluate a range of
negotiation strategies in various domains playing against other negotiating agents as well
as humans. We discuss some of the results obtained by means of these experiments.

3.1 Introduction

Research on negotiation is done in various research disciplines; business management,
economics, psychology, and artificial intelligence. The foundations of negotiation theory
are decision analysis, behavioral decision making, game theory, and negotiation anal-
ysis. The boost of literature on negotiating agents and strategies of recent years is in
line with the continuous advance of ecommerce applications, such as eBay, and Market-
place in which negotiations play a role. In essence it focuses on the development of ever
more clever negotiation agents, that are typically tested in one domain, against one or
two other negotiation agents, almost never against humans. In our opinion, in order to
become acceptable as negotiators on behalf of human stakeholders, negotiation agents
will have to prove their worth in various domains, against various negotiation strategies
and against human negotiators. In order to gain a better understanding of the negotiation
dynamics and the factors that influence the negotiation process it is crucial to not only
mathematically evaluate the efficiency of negotiation outcomes but also to look at the pat-
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tern of offer exchanges, what Raiffa [30] calls the negotiation dance. In the remainder we
present architecture of a formal toolbox to simulate negotiations and analyze patterns in
offer exchanges and present some initial findings in the literature. The System for Analy-
sis of Multi-Issue Negotiation1 (SAMIN) is developed as a research tool, to improve the
quality of negotiating agents, and as a training environment to develop negotiation skills
of human negotiators. To that purpose SAMIN offers a range of analytical tools, a tourna-
ment tool, a preference elicitation tool, and a number of negotiation domains, negotiation
agents, and user interfaces for human negotiators.

3.2 Application Domain

Negotiation is an interpersonal decision-making process necessary whenever we cannot
achieve our objectives single-handedly [32]. Pruitt [28] emphasizes the process of nego-
tiation and the fact that the outcome should be a joint decision by the parties involved.
Typically each party starts a negotiation by offering the most preferred solution from the
individual area of interest. If an offer is not acceptable by the other parties they make
counter-offers in order to move each other closer to an agreement. The field of nego-
tiation can be split into different types, e.g. along the following lines: (a) one-to-one
versus more than two parties; (b) single- versus multi-issues; (c) closed versus open (d)
mediator-based versus mediator-free. The research reported in this chapter concerns one-
to-one, multi-issue, closed, mediator-free negotiation. A special case of one-to-many
negotiation is considered. In this case, an auction mechanism [10] is approximated by a
negotiation setup [16]. For more information on negotiations between more than two par-
ties (e.g., in auctions), the reader is referred to, e.g., [31]. In single-issue negotiation, the
negotiation focuses on one aspect only (typically price) of the object under negotiation.
Multi-issue negotiation (also called multi-attribute negotiation) is often seen as a more
cooperative form of negotiation, since often an outcome exists that brings joint gains for
both parties, see [30]. Closed negotiation means that no information regarding prefer-
ences is exchanged between the negotiators. The only information exchanged is formed
by the bids. More information about (partially) open negotiations can be found, e.g., in
[20] and [30]. However, the trust necessary for (partially) open negotiations is not always
available. The use of mediators is a well-recognised tool to help the involved parties in
their negotiations, see e.g., [19, 30]. The mediator tries to find a deal that is fair to all
parties. Reasons for negotiating without a mediator can be the lack of a trusted mediator,
the costs of a mediator, and the hope of doing better. The SAMIN system is developed
to support research into the analysis of negotiation strategies. The analysis of negotiation
strategies provides new insights into the development of better negotiation strategies.

Negotiation parties need each other to obtain an outcome which is beneficial to both and
is an improvement over the current state of affairs for either party. Both parties need to

1This negotiation environment, user manuals, and a number of implemented negotiation agents can be
downloaded from http://mmi.tudelft.nl/negotiation.

50



believe this is the case before they will engage in a negotiation. Although by engaging
in a negotiation one party signals to the other party that there is potential for such gain
on its side, it may still leave the other party with little more knowledge than that this is
so. Research shows that the more one knows about the other party the more effective the
exchange of information and offers [30]. Furthermore, humans usually do have some un-
derstanding of the domain of negotiation to guide their actions, and, as has been argued,
a machine provided with domain knowledge may also benefit from such domain knowl-
edge [6]. It is well-known that many factors influence the performance and outcome of
humans in a negotiation, ranging from the general mindset towards negotiation to particu-
lar emotions and perception of fairness. As emphasized in socio-psychological and busi-
ness management literature on negotiation, viewing negotiation as a joint problem-solving
task is a more productive mindset than viewing negotiation as a competition in which one
party wins and the other looses [7, 30, 32]. Whereas the latter mindset typically induces
hard-bargaining tactics and rules out disclosure of relevant information to an opponent,
the former leads to joint exploration of possible agreements and induces both parties to
team up and search for trade-offs to find a win-win outcome. Different mindsets lead to
different negotiation strategies. A similar distinction between hard- and soft-bargaining
tactics has also been discussed in the automated negotiation system literature where the
distinction has been referred to as either a boulware or a conceder tactics [5]. Emotions
and perception of fairness may also determine the outcome of a negotiation. People may
have strong feelings about the “rightness” of a proposed agreement. Such feelings may
not always be productive to reach a jointly beneficial and efficient agreement. It has been
suggested in the literature to take such emotions into account but at the same time to
try to control them during negotiation and rationally assess the benefits of any proposals
on the table [7, 32]. Apart from the factors mentioned above that influence the dynam-
ics of negotiation, many other psychological biases have been identified in the literature
that influence the outcome of a negotiation, including among others partisan perceptions,
overconfidence, endowment effects, reactive devaluation [25, 32].

3.2.1 The Added Value of the MAS Paradigm

Negotiation involves conflicting interests, hidden goals, and making educated guesses
about the preferences and goals of the other parties involved. A system that supports
closed negotiation needs to protect the integrity of the parties or stakeholders that par-
ticipate in a negotiation and it is natural to provide every stakeholder with an agent of
their own. It thus is natural to use the MAS paradigm to model the interaction between
negotiating parties. Parties in a negotiation are autonomous and need to decide on the
moves to make during a negotiation. This decision problem is particularly complex in a
closed negotiation where negotiating parties do not reveal their preferences to each other.
Moreover, other factors such as the complexity of the domain of negotiation may pose
additional problems that need to be solved by a negotiating agent.

SAMIN contributes to the MAS paradigm as a research tool that facilitates research into
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the design of efficient negotiation strategies. The tool more specifically facilitates the
evaluation of the performance of a negotiation strategy by means of simulating multiple
negotiation sessions and feeding the results of the simulation to the analytical toolbox
of SAMIN. We have found that the results of a well-defined negotiation setup may help
analysing the strengths and weaknesses of a strategy and may be used to improve a ne-
gotiation strategy significantly. It has also been shown that strategies may perform quite
differently on different domains. A variety of negotiation domains and agents is available
in SAMIN to evaluate a negotiation strategy in different negotiation setups. The open
architecture of SAMIN, moreover, facilitates the integration of new negotiation domains
and agents.

3.2.2 Design Methods Used

An earlier version of SAMIN, see [2, 18], was designed using the DESIRE method [3].
Redesign was necessary to open the system for agents designed and implemented by
others and to ease the definition of new negotiation domains. The redesigned version
is implemented in the Java programming language that is supported my the majority of
computer platforms.

Figure 3.1: The Open Negotiation System Architecture

The current version of SAMIN implements the architecture proposed in [13]. Figure 3.1
illustrates this architecture. The architecture is based on an analysis of the tasks that
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need to be supported by a generic negotiation environment that is capable of integrating a
variety of negotiating agents and is able to simulate negotiations between such agents. The
architecture provides a minimal but sufficient framework including all features necessary
to simulate a wide range of negotiation scenarios and to enable integration of negotiation
agents. The architecture consists of four main layers, a human bidding interface, and a
negotiating agent architecture. The four layers include an interaction layer, an ontology
layer, a graphical user interface layer, and an analytical toolbox.

The interaction layer provides functionality to define negotiation protocols and enables
communication between agents (see Section 3.4.2 for details). The ontology layer pro-
vides functionality to define, specify and store a negotiation domain, and the preferences
of the negotiating agents (see Section 3.4.3 for details). The architecture can also be used
for education purposes and for the training of humans in negotiation. For that purpose,
a graphical user interface layer is available that facilitates human user(s) to participate
in a negotiation setup (see Section 3.2.3 for details). The analytical toolbox provides
functionality to organize tournaments between agents, and to review the performance and
benchmark results of agents that conducted a negotiation. It provides a variety of tools
to analyze the performance of agents and may also be used to compute quality measures
related to e.g. the quality of an opponent model [15].

The architecture that is introduced here identifies the main integration points where adapters
are needed to connect a negotiating agent to this architecture. The agent architecture it-
self defines the common components of a negotiating agent. This architecture may be
instantiated with various software agents, as illustrated below.

The integration points or interfaces to connect software agents to the negotiation envi-
ronment which allows them to interact with other agents available in the environment are
numbered 1 through 5 in Figure 3.1. To integrate heterogeneous negotiation agents, such
agents have to be aligned with these integration points. Alignment by complete redesign
of the agent typically requires significant programming efforts and may also cause back-
ward compatibility problems. To minimize the programming efforts, a better approach
is to use a set of adapters or wrappers which are used to wrap the agent code. We have
used the adapter design pattern [22] for this purpose. The minimal set of adapters that
has to be implemented includes a negotiation domain adapter, a preference profile adapter
and an interaction protocol adapter, which each correspond to an essential element of a
negotiation. The shared domain knowledge adapter and the agent introspection adapter
are optional. The shared domain knowledge adapter provides additional knowledge about
the domain to all agents, making this knowledge shared and publicly available. The agent
introspection adapter facilitates the introspection of internal components of an agent, such
as an opponent model. The latter adapter is mainly available for analysis purposes and
research. For more details about the adapters the reader is referred to [13].
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Figure 3.2: A graphical user interface for preferences elicitation.

3.2.3 User Interaction

The user interaction in SAMIN takes place in the graphical user interface layer and can
be divided in two categories of user: researchers and human subjects in experiments. We
implemented a graphical user interface that enables a user to define the negotiation game.
the parameters of the negotiation, the subject or domain of negotiation, and preferences of
the agents (which also means that the preferences of a human subject can be predefined).

Negotiation Domain and Preference Profile Editor

The Negotiation Domain and Preference Profile Editor of SAMIN (see Figure 3.2) is used
to create and modify negotiation domains and preference profiles. A negotiation domain
is a specification of the objectives and issues to be resolved by means of negotiation.
An objective may branch into sub-objectives and issues providing a tree-like structure to
the domain. The leafs of such a tree representing the domain of negotiation must be the
issues that need to be agreed upon in a negotiation. Various types of issues are allowed,
including discrete enumerated value sets, integer-valued sets, real-valued sets, as well as
a special type of issue used to represent a price associated with the negotiation object. For
every issue the user can associate a range of values with a short description and a cost.

A preference profile specifies personal preferences regarding possible outcomes of a ne-
gotiation. The profile is used to convert any offer in that domain to a value indicating how
the user would rate that offer, the so called utility value. The current version of SAMIN
supports linear additive utility functions [30]. The profile is also called a utility space.

A weight that is assigned to every issue indicates the importance of that issue. A human
user (see Figure 3.2) can move sliders to change the weights or enter their values by hand,
which are automatically normalized by the editor. In the issue editor the user can assign an

54



Figure 3.3: Human negotiator graphical user interface.

evaluation to every value of the issue. The evaluation values are positive integers starting
with 1. The evaluation values are automatically normalized for each issue to ensure they
are in the range [0;1].

Human Negotiator User Interface

A human subject playing in a negotiation game, is provided with a graphical interface
for the bidding phase of the game. The bidding interface is implemented with a dummy
agent that exchanges the messages between the graphical user interface (GUI) and the
environment. Therefore, the GUI for the human negotiator is not hard coded in SAMIN.
The GUI can be easily extended without modifications of the SAMIN code. Furthermore,
the dummy agent can be replaced with an algorithm that would provide negotiation a
support to the human negotiator. It provides, for example, an analysis of the opponent’s
behaviour or even advise the human negotiator upon the next offer to propose and an
action to be taken.

Figure 3.3 presents human player GUI that is currently available in SAMIN. This GUI
has three main components: a bidding history table (top), a utility history plot (bottom
left), and a bidding interface (bottom right). The bidding history shows all bids exchanged
between the negotiating parties in a single session. The bids are represented by the values
assigned to every issue in the negotiation domain. In addition, the utilities of the bids
according to the human player’s preference profiles are shown in the table. Note that in
a closed negotiation the negotiating parties have no access to the preference profiles of
each other and, therefore, utilities can be calculated only on the basis of own preference
profile.
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The bidding interface has two main components: a table showing the last bid and a possi-
ble next bid and a row of buttons representing possible actions for the humans negotiator’s.
The table has three columns:

• the left column shows the names of the issues in the domain;

• the center column shows the values for the issues as proposed in the last bid of the
opponent;

• the right column shows the current selected values for the issues. A user can edit
the current bid by clicking on the fields, which will open the drop-down boxes in
the fields.

The last two rows of the table show the cost and utility of the last opponent’s bid and your
current bid. The cost field will turn red if the bid exceeds the maximum cost. The utility
is shown as a percentage and also as a bar of matching size. These values are computed
according to the user’s utility space because a user has no access to the opponent’s utility
space. The lower three buttons allow a user to submit the next bid as it is set in the right
column, or to accept the opponent’s last bid.

3.3 Agents

In this section we present an agent architecture in SAMIN and explain the state-of-the-art
negotiation agents that are available in SAMIN.

3.3.1 Agent Architecture

The software agent component highlighted with the darker area in Figure 3.1 is a generic
component that can be instantiated by a variety heterogeneous software agents. The com-
ponents that are specified as part of a software agent in Figure 3.1 are the parts of the
conceptual design of such agents but do not need to be actually present or identifiable as
such in any particular software agent. These components are not introduced here to spec-
ify a requirements that need to be satisfied when developing an agent (although it could
be used as such [1, 17, 21]). Here these components are introduced to identify integration
points of agents with the system architecture. Five of such integration points, also referred
to as adapters, were identified above.

In the reminder of this section we discuss every component of the proposed agent archi-
tecture.

Preference Model The component models the agent’s preferences with respect to the
set of possible negotiation outcomes. The model can be based on various structures: util-
ity functions, rankings, etc. This component can require additional processing depending
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on the complexity of the agent’s preferences and the types of inquiries that can be made
by other components, see e.g. [19]. Typically, the preferences model must be able to
evaluate an outcome on a given scale, compare two or more outcomes, give a single or a
set of outcomes that satisfy some constraints on the negotiation domain and preferences.

Negotiation Strategy This is the core component of any negotiation agent. It makes
decisions about acceptance of the opponent’s offer, ending the negotiation, and sending a
counter-offer. To propose a counter-offer the negotiation strategy can use various tactics
[5]. Depending on the negotiation tactics used in the negotiation strategy the component
can use information about the model of the agent’s own preferences, the opponent’s pref-
erences and strategy (as far as known to or guessed by the agent), and, the previous offers
made during the current, or even previous negotiation sessions.

Negotiation History The negotiation history component keeps track of the bids ex-
changed between the agents in a negotiation. It can also have a history about earlier
negotiations, the outcomes, identities of the opponents, and even opponent models. It
can be used by the negotiation strategy component as an additional information source
to improve its negotiation performance. For example, in repetitive negotiations with the
same opponents this information can be used as a priori knowledge about the opponent to
shorten the learning time.

Opponent Model In the negotiation games we consider here, the preferences of nego-
tiation parties are private [30]. Efficiency of a negotiation strategy can be significantly
improved with information about the preferences of the opponent [33]. In the literature
a number of learning techniques have been proposed to learn the opponent’s preferences
model from the offers exchanged in a single-shot negotiation, see e.g., [34, 13]. In [33] it
was show that a successful negotiation strategy should make use of an opponent model.

Our generic component consists of three main subcomponents: preferences, negotiation
strategy, and update mechanism.

The component Preferences contains specifications of the preferences of the current and
previous negotiation opponents. As the opponent’s preferences are typically private, the
preference information has a certain degree of uncertainty. Depending on the agent de-
veloped on the base of the generic components information about the certainty of the
preferences can be maintained or not.

The aim of the model of opponent’s strategy is to predict negotiation moves that will be
made by the opponent. It is important to know for an agent what the next move of the
opponent would be. This knowledge can be used in the negotiation strategy to increase
the efficiency of the agent’s own offers and increase the chance of acceptance of its offer
by the opponent.
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Models of the opponent’s preferences and strategy are typically learned by the agent from
the evidence, such as negotiation agreements achieved in the previous negotiations [33],
and offers sent by the opponent in multiple sessions of single-shot negotiations [13, 34,
17]. The learning techniques used in the agent can depend on the types of the models
chosen to represent the opponent’s preferences and strategy.

3.3.2 State of the Art Negotiating Agents

Interfaces and adapters have been developed to make it easy to integrate agents developed
by others into SAMIN, see [13]. A number of the state-of-the-art agents have found a
place in SAMIN: ABMP [18], Bayesian agent [14], Bayesian Tit-for-Tat [12], FBM [29],
Trade-off agent [6], QO agent [24], Random Walker [11]. As they were developed by
different teams, their design, architecture, and implementation varies.

Random Walker The Random Walker strategy introduced in [11], also known as Zero
Intelligence (ZI) strategy [8], randomly jumps through the negotiation space. It does not
use own preferences or a model of opponent’s preferences to make an offer. Random
Walker accepts the opponent’s offer if it has higher utility than the agent’s own last offer.
The Random Walker strategy can be run with a break-off point to avoid making offers
below that utility and, thus, introduces some limited rationality in its behaviour.

It is difficult for the Random Walker strategy to achieve a better agreement than its break-
off point as there is only a very low probability that it will be able to find bids close to
Pareto frontier. Any efficient negotiation strategy that is capable of learning an oppo-
nent model and is able to use it efficiently would be expected to outperform the Random
Walker strategy. For this reason, the Random Walker strategy may be used as a “baseline”
strategy. In addition, as the Random Walker strategy does not derive its moves from its
preference profile but only uses an acceptance strategy to avoid outcomes with a utility
below its break-off point, it also provides a good test case to evaluate of robustness of a
negotiation strategy.

ABMP Agent The ABMP strategy is a concession-oriented negotiation strategy, see
[18]. It selects counter-offers without taking domain or opponent knowledge into account.
The ABMP strategy decides on a negotiation move based on considerations derived from
the agent’s own utility space only. It calculates a utility of a next offer, called target utility,
based on the current utility gap between the last opponent’s offer and the last own offer. To
determine the next offer the target utility is propagated to the individual issues taking into
account the weights of the issues in the agent’s preferences profile. The ABMP strategy
can be fine-tuned with a number of parameters, such as the negotiation speed, concession
factor, configuration tolerance and others.

The original ABMP strategy was not capable of learning. A heuristic for adapting the
ABMP strategy to the opponent’s issue priorities was introduced in [17]. The results
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showed improvement of the negotiation outcome compared to the original version of the
ABMP strategy.

The ABMP strategy was implemented in an ad hoc environment using the DESIRE
method [3]. The environment facilitated negotiation about a Second-hand car domain
[18] that was hard-coded in the implementation. Later, when the second Java-based ver-
sion of the SAMIN was available the ABMP strategy was re-implemented in SAMIN.
The results of the DESIRE-based ABMP implementation were reproduced in SAMIN.

Trade-off Agent The effectiveness of using knowledge about the negotiation domain
has been demonstrated in the Trade-off strategy introduced in [6]. In particular, this paper
shows that domain knowledge (coded as so-called similarity functions) can be used to
select bids that are close to the opponent’s bids, thus increasing the likelihood of accep-
tance of a proposed bid by that opponent. In this approach, the knowledge represented by
similarity functions is assumed to be public.

In [6], the Trade-off strategy is combined with several so called meta strategies that con-
trol the concession behaviour of the agent. The most interesting meta strategy, the smart
strategy, consists of deploying a Trade-off mechanism until the agent observes a dead-
lock in the average closeness of own offers compared to that of the opponent as measured
by the similarity function. In a case of the deadlock, the value of the previous offer
is reduced by a predetermined amount (0.05), thereby lowering the input value of the
Trade-off mechanism.

The Trade-off strategy was originally evaluated on the Service-Oriented Negotiation (SON)
domain. The SON domain has four quantitative continuous issues, the price, quality, time,
and penalty. Both, buyer and seller use linear functions to evaluate individual issues and
combine them in a linear additive utility function using a vector of weights. It is assumed
that the buyer and the seller have opposite preferences for every issue, that is, if buyer
wants to maximize the quality then the seller wants to minimize it. Therefore, in this
domain the differences in the weights are the key elements to consider for joint improve-
ments of the offers.

The Trade-off strategy combined with the smart meta strategy showed good performance
on the SON in the experimental setup of [6]. It was demonstrated that the Trade-off
strategy is capable of producing very efficient offers resulting in agreements that are very
close to the Pareto efficient frontier. Interestingly, the best performance the Trade-off
strategy showed in negotiation against itself, while in negotiations against agents that used
other meta strategies the utility of agreement was somewhat lower. This phenomenon will
be discussed in details in Section 3.6.

Unfortunately, no implementation of the Trade-Off strategy was available. The strategy
was implemented in the SAMIN from scratch. The results reported in [6] were reproduced
for the Service-Oriented Negotiation domain.
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Bayesian Agent One way to approach the problem of incomplete information in closed
negotiation is to learn an opponent’s preferences given the negotiation moves that an op-
ponent makes during the negotiation. A learning technique based on Bayesian learning
algorithm was proposed in [14]. The opponent model in [14] is based on learning proba-
bility over a set of hypothesis about evaluation functions and weights of the issues. The
probability distribution is defined over the set of hypothesis that represent agent’s belief
about opponent’s preferences. Structural assumptions about the evaluation functions and
weights are made to decrease the number of parameters to be learned and simplify the
learning task.

The set of hypotheses about the evaluation function is defined using three types of shapes
of the functions: (a) downhill shape: minimal issue values are preferred over other issue
values, and the evaluation of issue values decreases linearly when the value of the issue
increases; (b) uphill shape: maximal issue values are preferred over other issue values,
and the evaluation of issue values increases linearly when the value of the issue increases;
(c) triangular shape: a specific issue value somewhere in the issue range is valued most
and evaluations associated with issues to the left (“smaller”) and right (“bigger”) of this
issue value linearly decrease (think, e.g., of an amount of goods).

During a negotiation every time when a new bid is received from the opponent the proba-
bility of each hypothesis is updated using Bayes’ rule. This requires a conditional proba-
bility that represents the probability that the bid might have been proposed given a hypoth-
esis. Therefore the utility of bid is calculated according to this hypothesis and compared
with the predicted utility according to the rationality assumption. To estimate the pre-
dicted utility value an assumption about the opponent concession tactics is used based on
a linear function.

Authors propose two versions of the learning algorithm. In the first version of the algo-
rithm each hypotheses represents a complete utility space as a combination of weights
ranking and shapes of the issue evaluation functions. The size of the hypothesis space
growth exponentially with respect to the number of issue and thus is intractable for nego-
tiation domains with high number of issues.

The second version of the algorithm is a scalable variant for the first one. This version
of the agent tries to learn probability distribution over the individual hypothesis about
the value of the weight and shape of the issue evaluation function independently of other
issues. The computational tractability of the learning is achieved by approximating the
conditional distributions of the hypotheses using the expected values of the dependent
hypotheses.

QO Agent In [24] the authors propose a negotiation agent, called QO agent, that is
based on qualitative decision making. The QO agent is designed for automated negotia-
tions with multiple issues. The internal structure of the QO agent is similar to the agent
architecture proposed in this article. The underlying assumption in the QO agent is that
the opponent uses one of three preference profiles. The preference profiles of the oppo-
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nent are represented in same way as QO agent’s own preference profile. A probability is
associated with each of the possible opponent profiles. An update mechanism interprets
the observed offers from the opponent and updates the probability distribution according
to the opponent strategy model. The opponent profiles have the same structure as the own
preferences profile and the same preference profile adapter is used to load them from files.

The original implementation of the QO agent uses Java programming language. The in-
teraction protocol, however, is more complex then the alternating offers protocol currently
used by the SAMIN. The QO agent environment implements a rather complex interaction
protocol that extends the alternating offers protocol. It does not have a clear turn tak-
ing flow and allows agents to exchange pre-defined textual messages between the agents,
such as threats of breaking negotiation if the last offer is not accepted. It was decided to
simplify it in the interaction protocol adapter. Only those functions of the agent were used
that represent the core functionality: interpret the opponent’s offer, generate next action
of the agent, generate a counter-offer.

Fuzzy-based Model Agent The other agent integrated into the negotiation system is the
Fuzzy-based model (FBM) agent introduced in [29]. The Fuzzy-based agent is designed
for negotiation where agents can exchange fuzzy proposals. The original FBM agent is
designed for negotiations where agents can exchange fuzzy proposals. The original im-
plementation of the FBM agent works only for one-issue negotiations but can be extended
for multi-issue negotiations. As a result, the negotiation domain is defined using one issue
that takes real values from a give interval. The agent adopts time dependent negotiation
tactics from [5] and, thus, always makes concession towards opponent. The offers are
defined using two values: the peak value and the stretch of the offer.

The FBM agent is implemented in an experimental setup using Java programming lan-
guage. The experimental setup uses the alternating offers protocol [27]. The preference
profile is hard-coded in the agent and based on a linear function. The experimental setup
consists two agents that have opposed preferences over the issues.

Bayesian Tit-for-Tat Agent In [12] a negotiation strategy is proposed that uses a model
of the opponent’s preferences not only to increase the efficiency of the negotiated agree-
ment but also to avoid exploitation by the other party in a sophisticated Tit-for-Tat man-
ner.Authors in [12] try to show that two important goals in any negotiation can be realized
when a reasonable estimate of the preferences of an opponent is available.

For that purpose they combine the Bayesian learning technique as proposed in [14] with a
Tit-for-Tat tactic, see e.g., [5], and the classification of negotiation moves as described in,
e.g., [11]. As is typical for Tit-for-Tat, it avoids exploitation by a form of mirroring of the
bids of the opponent. Bayesian learning is used to learn the opponent’s preferences. The
opponent profile together with the classification scheme is used to develop a sophisticated
Tit-for-Tat Bayesian negotiation strategy.
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Figure 3.4: Bayesian Tit-for-Tat Strategy

Bidding of the proposed strategy can be understood by the opponent as signalling whether
a move is appreciated or not (which is not as easy as it seems). Tit-for-Tat Bayesian nego-
tiation strategy does not punish the opponent for making a move that can be understood
as an honest mistake. The strategy is based on a rationality assumption, i.e., that an op-
ponent would tend to accept more preferred offers over less preferred. In line with this
assumption the strategy searches for Pareto efficient offers, i.e., offers that cannot be im-
proved for both parties simultaneously. Pareto efficient offers increase the chances that
an opponent accepts an offer, while protecting the agent’s own preferences as best as pos-
sible. Finding such offers requires that the Pareto efficient frontier can be approximated
which is only feasible if a reasonable model of the opponent’s preferences is available.

The basic idea of Tit-for-Tat in multi-issue negotiation is to respond to an opponent move
with a symmetrical one, as depicted in Figure 3.4. Typically, a rational negotiation strat-
egy would try to make concession moves at some points during the negotiation. The most
reasonable response to a concession move would be a concession move of approximately
the same concession size. This is called “mirroring” the move of the opponent.

Mirroring simply in this manner would imply that an unfortunate move (an offer that
decreases utility for both parties compared to the agent’s previous offer) of the opponent
would be answered with an unfortunate step. However, it is not rational to consciously
make unfortunate steps. Therefore, authors conclude that the pure tactic by mirroring the
opponent moves is too simplistic. Instead they use an approximation of the Pareto frontier
computed using the learned opponent model and the agent’s own preference profile to add
an additional step.

The Bayesian Tit-for-Tat strategy is constructed on the basis of the assumption that by
maximizing the opponent’s utility in every offer, the chance of acceptance increases as
well. Therefore, if after mirroring the opponent’s move the efficiency of the agent’s own
next move can be increased by selecting an equivalent offer (with respect to the agent’s
preference profile) on the Pareto frontier the strategy will choose to make that offer. Im-
portant is that this approach makes the Bayesian Tit-for-Tat negotiation strategy less de-
pendent on the efficiency of the opponent’s strategy. The opponent might intend to make
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a concession but in fact make an unfortunate move. By selecting a bid on the approxi-
mated Pareto frontier, while mirroring the concession intent of the opponent, the strategy
is able to maintain a high efficiency of the outcome, no matter what mistakes the opponent
makes.

3.4 Multi-Agent System

The organisation of SAMIN as a multi-agent system and as research environment is in-
troduced in [13].

3.4.1 Organisation

Negotiation, in fact, can take place in a distributed environment. To support distributed
negotiation a Web-based interface to the system will be introduced in the next version.
This will enable negotiations between humans that are physically distributed. In addition,
the Web interface will allow researchers to upload their code from different locations and
participate in a tournament.

To setup a negotiation a negotiation template is created. Negotiation template specifies
all details of the negotiation: number of agents (currently only bilateral negotiations are
supported), names of the agent’s classes that implement negotiation strategies, negoti-
ation domain and preference profiles of the parties. This setup is static through single
negotiation session.

The structure of the multi-agent system and organisation of the negotiating agents in
SAMIN is determined by the negotiation protocol that is used. The interaction of agents
is also fully controlled by the environment and negotiation protocol used. All agents are
required to comply with the protocol, which is enforced by the environment.

3.4.2 Interaction

The interaction layer manages the rules of encounter or protocol that regulate the agent
interaction in a negotiation. Any agent that wants to participate in such a negotiation
protocol must accept and agree to conform to these rules. An interaction protocol speci-
fies which negotiation moves and what information exchange between agents is allowed
during a negotiation.

The current version of SAMIN focuses on bilateral negotiation. A centralized interaction
engine is used, which facilitates the control over the negotiation flow and the enforcement
of rules on the negotiation process. The interaction engine also feeds information to
the advanced logging capabilities of SAMIN. Logs are used by the analytical toolbox to
assess the performance of negotiation strategies and algorithms, see [11, 13]. Interaction
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Figure 3.5: A sequence diagram of the interaction protocol

protocols are implemented in the negotiation environment as a separate component to
allow the use of a variety of protocols. Implementation of a new interaction protocol in
the negotiation environment is a relatively easy task and has no or minimal effect on the
agent code.

An example of one of the best known negotiation protocols, the alternating offer protocol
[27], is illustrated in Figure 3.5. The alternating offers protocol in a bilateral setting dic-
tates a simple turntaking scheme where each agent is allowed to make a single negotiation
move when it is its turn. Apart from turntaking a protocol may also dictate whether ex-
change of complete package deals is required or that alternatively the exchange of partial
bids is allowed. In addition a protocol may manage deadlines, or timeouts that are fixed
by the environment.

The interaction protocol is initialized with the information provided by the user. There is
no need for a yellow pages mechanism as the agents are made aware about the identity of
each other and thus are able to keep track of previous negotiations with the same partner
if multiple negotiation sessions are played.

In [16] an alternative protocol involving multiple agents is introduced that is also avail-
able in SAMIN. The motivation for introducing this protocol is that it can be used to
simulate an auction mechanism. [16] shows that a particular auction mechanism, called
the Qualitative Vickrey Auction (QVA) [10], can be simulated with the protocol.2

The QVA mechanism can be thought of as consisting of two rounds. In the first round,
the buyer publicly announces her preferences, potential service providers (sellers) submit
offers in response, and a winner is selected by the buyer. The winner is the seller who has
submitted the best offer from the point of view of the buyer. After establishing the winner,

2The QVA is a generalization of the well-known Vickrey auction to a multi-issue setting where payments
are not essential. In QVA a buyer has complex preferences over a set of issues.
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in a second round, the buyer determines the second-best offer (from its perspective again)
it received from another seller, announces this publicly, and then the winner is allowed to
select any agreement that has at least the same utility to the buyer as the second-best offer
(which can be determined by the winner since the preferences of the buyer are publicly
announced). It is assumed that the bids proposed in the first round are all monitored by a
trusted third party.

The negotiation protocol of [16] provides an alternative to the QVA mechanism. An ad-
vantage of using a negotiation setup instead of the QVA is that in that case the buyer does
not have to publicly announce its preferences. The negotiation protocol is structured in
two rounds to match the structure of the mechanism. In the first round negotiation sessions
are performed between the buyer and every potential seller using the Alternating offers
protocol (see Figure 3.5). Moreover, the negotiation sessions are assumed to be indepen-
dent. At the end of the first round, a winner (one of the sellers) is determined. Before
starting the second round, the agreement between the seller and buyer that is second-best
from the perspective of the buyer is revealed to all sellers, in particular to the winner.
In the second round an agreement between the winner and the buyer is established. In
section 3.6 we present some experimental results received for the proposed negotiation
mechanism.

3.4.3 MAS Environment

The MAS environment in SAMIN is a negotiation environment that controls some aspects
of the agent’s behaviour, such as the setup and initialization of a negotiation session(s),
compliance of the agents with a selected negotiation protocol, etc. The layers with cor-
responding components of the negotiation environment are shown in Figure 3.1 and have
a lighter background. First of all, the negotiation environment provides a negotiation on-
tology to the agents. The ontology specifies concepts, such as a negotiation domain, a
preference profile, and shared knowledge.

A negotiation domain is a specification of the objectives and issues to be resolved by
means of negotiation. It specifies the structure and content of bids or offers exchanged,
and of any final outcome or agreement. An outcome determines a specific value for each
issue, or, alternatively, only for a subset of the issues. Objectives allow to define a tree-like
structure with either other objectives again or issues as children, in line with [30]. Various
types of issues are allowed, including discrete enumerated value sets, integer-valued sets,
real-valued sets, as well as a special type of issue called price issue. Additionally, a
specification of a negotiation domain may introduce constraints on acceptable outcomes.
For example, costs associated with a particular outcome may not exceed the available
budget of the agent.

A preference profile specifies the preferences regarding possible outcomes of an agent. It
can be thought of as a function mapping outcomes of a negotiation domain onto the level
of satisfaction an agent associates with that outcome. The structure of a preference profile
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for obvious reasons resembles that of a domain specification. The tree-like structure al-
lows to specify relative priorities of parts of the tree. This allows, for example, to ensure
that all issues relating to travelling combined are weighted equally as all issues relating to
the actual stay at a particular location.

In a closed negotiation an agent is not informed about the preferences of its negotiating
partner. In that case an agent can at best use a reconstruction (using e.g. machine learning
techniques) of these preferences to decide on the negotiation move it should do next. It is
typical, however, that with a domain comes certain public knowledge that is shared and
can be used to obtain a better negotiation outcome. For example, common preferences
such as preferring early delivery over later (though not always the case) may be common
knowledge in a given domain. Such knowledge allows agents to compute the preferences
of their negotiation partner e.g. using the time interval between two dates. This type
of knowledge, labelled shared domain knowledge, is modelled explicitly as a separate
component that can be accessed by all negotiating agents.

The analytical toolbox layer of the negotiation environment a set of statistical analysis
methods to perform an outcome analysis on negotiation sessions as introduced and dis-
cussed in e.g., [11, 30]. Furthermore, the toolbox contains methods for the analysis of
dynamic properties of negotiation sessions as discussed in e.g., [11]. The methods for
both outcome and dynamics analysis were used to produce a number of performance
benchmarks for negotiation behaviour and for the agent components [13]. The analyt-
ical toolbox uses the optimal solutions [30], such as the Pareto efficient frontier, Nash
product and Kalai-Smorodinsky solution for the negotiation outcome benchmarking. The
benchmarks in the negotiation system can be used to analyze the performance of oppo-
nent modelling techniques, the efficiency of negotiation strategies, and the negotiation
behaviour of the agent. The result of the analysis can help researchers to improve their
agents. The output of the analytical toolbox is presented graphically (see e.g., Figures 3.6
and 3.8).

3.5 Execution Platform

The system is implemented as a stand-alone application running on a single computer.
The negotiation settings, such as role and types of the agents, negotiation domain, and
preference profiles are predefined by an script. A tournament is a typical experimental
setup for negotiating agents [11]. Therefore, the system has a utility to generate scripts
for a tournament setup and can automatically run a sequence of negotiation.

SAMIN is currently focused on the closed negotiations, where negotiating parties have no
access to the preference profiles of each other. In addition, agent’s own preference profile
is supposed to be static during negotiation and cannot be changed during the negotiation.
Few security precautions were implemented in SAMIN to meet these requirements and
avoid situations where agents would improve their performance by means of software
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hacks. This is especially important when SAMIN is used as a testbed for negotiating
agents or in an educational setup.

Negotiating agents in SAMIN as any imperfect software product can fail. All errors
and exception raised by the agent’s code are properly logged by the SAMIN to allow
the agent’s developer to improve it. SAMIN uses multi-threading mechanism to assure
responsiveness of the SAMIN’s GUI during negotiation sessions. Agents running into a
deadlock can be stopped by the user by means of the GUI without fatal consequences for
the negotiation environment.

The algorithms used in the negotiation strategies can have high computational complexity
[19] and, thus, require significant computational power from the execution platform and
essential time slot to perform necessary computations to process opponent’s offer or select
the next action. Negotiation typically, take place under time constraints [5]. Therefore, a
timeout mechanism is implemented in SAMIN.

The agents are notified by the negotiation environment about the time left until the dead-
line using the real-time clock. The timeout mechanism can be switched off by the user
when SAMIN is used as a research tool.

3.6 Results

The main advantage of the proposed MAS architecture is to allow for integration of het-
erogeneous agents and to facilitate comparison of their negotiation. SAMIN can be used
as a testbed to perform experiments with various negotiation domains, preference profiles
and negotiating agents. Thus, it contributes to automated negotiating agents research by
providing a tool that is able to show new insights about such agents. Here we shortly
present the most interesting results received with SAMIN for negotiating agents that have
been implemented and/or integrated in it.

3.6.1 Experimental Setup

A tournament is a typical experimental setup for evaluation of negotiating agents It en-
ables analysis if the behaviour and effectiveness of an agent compared to that of others.
Multiple negotiation domains and preferences profiles can be selected for a tournament.
To test sensitivity of a strategy to its internal parameter the value of the parameter can be
varied in a tournament. Every session can be repeated a number of times to build a repre-
sentative sample of negotiation results for a statistical analysis in case of non-deterministic
negotiation strategies.

A number of negotiation factors influencing negotiation behaviour have been reported in
[11]. We reuse these factors in our method.
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Size of the negotiation domain. Complexity of the negotiation domain and preference
profiles is determined by the size of the negotiation domain. Size of the domain can
influence learning performance of the negotiation strategy and, thus, the outcome reached
by the strategy [14]. The size of the domain is exponential with respect to the number of
issues. Therefore, to be able to test scalability of a negotiation strategy the experimental
setup should have a set of domains ranging from low number of issues to higher number
of issues.

Predictability of the preferences. Negotiation strategies can try to exploit the internal
structure of the preferences in order to improve one’s own efficiency. I.e., the Trade-off
strategy assumes that distance measures can be defined using domain knowledge for the
preferences of the opponent. These measures combined with the opponent’s offers allow
the Trade-off strategy to predict opponent preferences and as a result improve efficiency of
the bidding. In [11], however, it has been shown that in case of a mismatch of the domain
knowledge and the actual structure of the opponent’s preferences the performance of a
strategy can drastically drop. Therefore, we introduce the notion of the predictability of
the preferences into our method.

Issues are called predictable when even though the actual evaluation function for the issue
is unknown, it is possible to guess some of its global properties. For example, a price issue
typically is rather predictable, where more is better for the seller, and less is better for the
buyer, and the normal ordering of the real numbers is maintained; an issue concerning
colour, however, is typically less predictable.

Opposition of the preferences. The results of analyzing negotiation dynamics presented
in [11] revealed that some negotiation strategies are sensitive to preference profiles with
compatible issues. Issues are compatible if the issue preferences of both negotiating par-
ties are such that they both prefer the same alternatives for the given issue. Negotiation
strategies may more or less depend on whether preferences of the negotiating parties are
opposed or not on every issue. That is, using some strategies it is harder or even impossi-
ble to exploit such common ground and agree on the most preferred option by both parties
for compatible issues (humans are reported to have difficulty with this as well; cf. [32]).
A selection of preference profiles should therefore take into account that both preference
profiles with and without compatible issues are included.

To measure the opposition between two preference profile we use ranking distance mea-
sure proposed [16]. The measure is based on the conflict indicator proposed in [9]. The
conflict indicator function yields 1 when the ranking relation of two arbitrary outcomes
based on the utility space of one agent is not the same as the ranking relation based on
the utility space of the opponent; if the rankings based on both utility functions match the
conflict indicator takes the value of 0. The conflict indicator is calculated for all permuta-
tions in the negotiation domain and normalized over the domain. The higher the value of
the ranking distance the stronger opposition between the preference profiles.

Another measure for the opposition of preferences proposed in [15] uses Pearson’s cor-
relation coefficient for that purpose. This coefficient represents the degree of linear rela-
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Domain
Utility spaces Weights

Domain size
Number of

Ranking Pearson Ranking Pearson predictable
AMPO vs. City 0.662 -0.482 0.422 -0.139 7,128,000 3 (10)
Party 0.540 -0.126 0.467 -0.276 3,125 0 (5)
SON 0.669 -0.453 0.833 -0.751 810,000 4 (4)
2nd hand car 0.635 -0.387 0.600 -0.147 18,750 1 (5)
Employment contract 0.698 -0.584 0.600 -0.241 3,125 5 (5)

Table 3.1: Summary of the negotiation domains and preference profiles

tionship between two variables. The Pearson’s correlation coefficient takes a real value
from the interval [−1;1]. A value of +1 means that there is a perfect positive linear rela-
tionship between variables, whereas a value of −1 means that there is a perfect negative
linear relationship between variables. A value of 0 means that there is no linear relation-
ship between the two variables.

The following negotiation domains and preference profiles are available in SAMIN (see
Table 5.1 for summary):

• The Second hand car selling domain, taken from [18], includes 5 issues. Only the
buyer’s preferences and the price issue are predictable, in the sense that an agent
can reliably predict the other agent’s preferences associated with an issue.

• The Party domain is created for negotiation experiments with humans. It is a rather
small domain with 5 discrete issues with 5 possible values each. All of the issues
are unpredictable. In this domain, the preference profiles used are not as opposed
to each other as in the other domains.

• The Employment contract negotiation domain, taken from [26] with 5 discrete is-
sues. All issues have predictable values. The preference profiles are strongly op-
posed, i.e. both negotiators dislike outcomes that the other prefers most.

• The Service-Oriented Negotiation domain, taken from [6], includes 4 issues. All
issues are predictable, i.e. based on available “domain knowledge” preferences can
be reliably predicated.

• The AMPO vs City domain, taken from [30], includes 10 issues, of which 8 are pre-
dictable. Information about the opponent’s issue priorities, i.e. the weights agents
associate with issues. This is a large domain with more than 7,000,000 possible
outcomes.

3.6.2 Experimental Results

Here we present the most interesting results we received for the state-of-the-art agents
described in Section 3.3.2.
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Figure 3.6: Dynamics of negotiation process for: a) Trade-off (City) vs Random Walker
strategy (AMPO), b) Trade-off (City) vs ABMP strategy (AMPO), c) Random Walker
(City) vs ABMP strategy (AMPO).

Trade-off and ABMP Agents Figure 3.6 shows typical runs in the AMPO vs City do-
main. Figure 3.6a shows a run of Trade-Off, representing the City, versus Random Walker
(with break-off set to 0.6), playing AMPO. The Random Walker strategy is insensitive
with respect to its own preferences. This fact, combined with the lack of information of
relative importance of issues (weights) causes the unfortunate moves (an offer that de-
creases utility for both parties compared to the agent’s previous offer, see [11]) produced
by the Trade-off strategy.

Figure 3.6b shows Trade-off (as City) vs ABMP (as AMPO) in which ABMP is rather
insensitive to the behaviour of the opponent, and Trade-off is sensitive. In this domain
Trade-off really exploits the available domain knowledge. Figure 3.6c shows Random
Walker (City) vs ABMP (AMPO). ABMP always concedes on all issues, determining the
size of the concession on the difference between the utilities of its own bid and that of
its opponent. It does not use previous opponent bids to get insight into the opponent’s
preferences and, as a result, does not adapt much to the strategy of the opponent.

This analysis shows a direct link between the correctness and/or completeness of the
domain knowledge and opponent preferences sensitivity. The Trade-off strategy is very
sensitive to opponent preferences given complete information. In that case, the similarity
functions exactly match the opponent’s preferences and the weights exactly represent the
issue importance factors of the opponent.

The SON domain does not have information about weights of the similarity functions
and thus opponent preferences sensitivity of the Trade-off strategy decreases but it is
still more sensitive to the opponent preferences than ABMP. Similarity functions for the
Second hand car domain were defined in such a way that they often do not match the pref-
erences of the negotiation opponents. In addition, the weights of the similarity function
do not match the opponent’s importance factors of the negotiation issues. This leads to
under performance of the Trade-off strategy while ABMP shows more robust negotiation
behavior. The experiments show that if less domain knowledge is available, Trade-off
makes more unfortunate steps.
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In general, when issues are predictable, the chance of making an unfortunate step becomes
small. This aspect becomes clear in the car domain, where the seller’s preferences are
rather predictable, but the buyer’s preferences vary a lot.

We conclude that it is impossible to avoid unfortunate steps without sufficient domain
knowledge or opponent knowledge. Indeed, the similarity criteria functions used in the
Trade-off Strategy provide general information about the negotiation problem, but do not
take into account the specific attributes of the negotiating parties. In any particular case, a
negotiator may deviate from the generalized domain model in various ways. Approaches
as reported in [4, 23, 32] apply techniques to learn more about the opponent.

Bayesian Agent In small domains such as the SON domain, the Bayesian agent is very
efficient in learning issue weights and evaluation functions of the issues that is indicated
by the fact that the negotiation trace almost coincides with the Pareto frontier, see [14] for
the details. Here we demonstrate the effectiveness of the scalable version of the Bayesian
Agent on larger domains. The results on the AMPO vs City domain presented in Figure
3.7 show, as is only to be expected, that it becomes harder to stay close to the Pareto
efficient frontier. The performance of the Bayesian learning agents is now similar to that
of the agent based on the Trade-off strategy and both stay close to the Pareto frontier.
The ABMP strategy shows similar behaviour as on the other negotiation domains, and is
outperformed by the other strategies. The results thus are still very good. Also, note that
the agreement reached by the Bayesian agents has a higher utility than that reached by
the other strategies and that both the Bayesian agent without domain knowledge as well
as the Trade-off agent make quite big unfortunate steps.

Figure 3.7: Negotiation dynamics for the Bayesian agent on the AMPO vs. City domain
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Figure 3.8: Negotiation dynamics for the QO agent on the Party domain

QO Agent Figure 3.8 presents the results of the negotiation experiment. A small and
simple negotiation problem, called “Party“ [14], is used to analyze the performance of the
QO gent within our negotiation framework. This domain has been created for negotiation
experiments with humans, which also explains its rather limited size. The charts show
the space of all possible negotiation outcomes. The axis represent the utilities of the
outcomes with respect to the utility functions of the negotiating agents. The charts show
the negotiation paths of the agents marked by arrows with the names of the agents.

The Bayesian agent starts with an offer that has maximum utility. It tries to learn the
opponent preferences from the offers it receives and uses this model when it makes a
concession towards the opponent. As a result, it stays close to the Pareto Efficient frontier.
The QO agent in this domain has more difficulty to propose efficient offers. This is a result
of limitation of the opponent model of the agent. The QO agent accepts an offer of the
Bayesian agent as soon as such an offer has a utility level for the QO agent that is higher
then utility of the QO agent’s own offer.

Fuzzy-based Model Agent The other agent integrated into SAMIN is the FBM agent
introduced in [29]. The FBM agent was tested in a setup where it has to negotiate against
the Bayesian agent about a single issue defined on real values ranging from 10 to 30.
The original FBM agent is designed for negotiations where agents can exchange fuzzy
proposals. The implementation of the FBM agent we used is able to negotiate about
one-issue negotiations but can be extended for multi-issue negotiations. The agent adopts
time dependent negotiation tactics from [5] and, thus, always makes concessions towards
opponent. The offers are defined using two values: the peak value and the stretch of
the offer. The preference profiles of the agents used were in complete opposition: the
FBM agent wants to minimize the value of the issues and the Bayesian agent tries of
maximize it. In the experiments we performed, the β parameter that defines whether an
agent makes bigger concessions in the beginning of the negotiation (Conceder) or at the
end (Boulware) was varied, see Table 3.2.

In a single issue negotiation there is no possibility for a “win-win" outcome and all nego-
tiation outcomes are Pareto efficient. One of the more important aspects of a negotiation
strategy for a single issue negotiation is how fast it concedes to the opponent. As a re-
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Agents
Utility

β=0.02 β=0.1 β=0.5 β=1 β=2 β=10 β=50
FBM Agent 0.898 0.897 0.734 0.585 0.449 0.193 0.060
Bayesian Agent 0.102 0.103 0.266 0.415 0.551 0.807 0.940

Table 3.2: Utility values of the FBM and Bayesian agents

Negotiation Domain
Negotiation Strategy

ABMP Trade-Off Bayesian Smart Bayesian Tit-for-Tat
Car 16% 12% 13% 14%
Party domain 13% 9% 13% 14%
Service-Oriented 14% 17% 25% 38%
Employment contr. 11% 40% 44% 47%
AMPO vs City 10% 13% 14% 20%

Table 3.3: Increase in utility for the Bayesian Tit-for-Tat strategy relative to the Random
Walker strategy

sult, for β > 1 the FBM agent implements a Conceder tactic and the FBM agent under
performs with respect to the Bayesian agent that makes linear concessions in this case be-
cause no moves towards the Pareto frontier are possible. When the FBM agent employs
a Boulware tactic (β < 1) the Bayesian agent starts conceding significantly and the result
is a much lower utility for the Bayesian agent.

Bayesian Tit-for-Tat Agent As discussed, the main objective associated with a ne-
gotiation strategy is to gain the best agreement possible in a negotiation. Utility of an
agreement, therefore, measures the efficiency of a strategy. For every negotiation domain
and preference profile the utility of agreements achieved by a strategy were averaged over
all opponent strategies in the tournament. We assume that an efficient negotiation strat-
egy should perform better than the Random Walker strategy. Therefore, we calculate the
percentage of the utility increase compared to the utility of the Random Walker strategy
(see Table 3.3).

The results show that on all domains the Bayesian Tit-for-Tat strategy performs better than
all other strategies currently available in the negotiation repository. Only on the 2nd hand
car negotiation domain the Bayesian Tit-for-Tat strategy is outperformed by the ABMP
strategy. As in this domain a concession-based strategy is very efficient, and ABMP aims
to concede on all issues, this strategy does particularly well in this domain.

The most significant increase in the efficiency of the reached agreement is shown on the
Employment contract negotiation domain. This negotiation domain is rather small and
evaluations of the issue alternatives are predictable in this domain. Learning in such
a domain is relatively simple and, as a result, the Bayesian Tit-for-Tat strategy shows
excellent performance. The Trade-off strategy shows good performance as well, however,
it does not perform as well as the Bayesian Tit-for-Tat strategy. The ABMP strategy is
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significantly less efficient than the Bayesian Tit-for-Tat and the Trade-off strategies due
to presence of issues with compatible preferences.

Similar results are obtained for the Service-Oriented Negotiation domain. This domain is
much bigger than the Employment contract domain in terms of the possible agreements
but has less issues. In addition, weights of the issues in the SON domain have bigger
variation then in the Employment Contract domain where importance of the issues is
more uniform. This explains the much lower efficiency of the Trade-Off strategy that is
not capable of dealing with the weights of the issues. The Bayesian Tit-for-Tat strategy
learns weights of the issues in the opponent preference profile and therefore shows a better
performance.

AMPO vs City domain is the biggest domain in the repository. As is to be expected, the
performance of the learning technique used in the Bayesian Tit-for-Tat strategy degrades
in such bigger negotiation domains. This explains the lower relative increase in Table 3.3.

3.6.3 Approximating Auction Mechanism with Negotiation

In Section 3.4.2 we introduced a one-to-many negotiation protocol that approximates an
auction mechanism. Here we present experimental results received for the proposed ne-
gotiation protocol. Figure 3.9 shows the histograms of the differences in utilities between
the outcomes received with the original auction mechanism and the negotiation protocol.

Figure 3.9: Histograms of the differences in the utilities of experimental and theoretical
outcomes for the buyer (left) and the seller (right).

The winner predicted by the mechanism and the negotiation protocol coincide 100%. This
means that the negotiation protocol does not change the results of the first round in which
a seller is selected as winner. Moreover, in the second round, in general the outcomes
obtained by negotiation are also quite close to those determined by the mechanism. That
is, in 78% of the experiments the deviation is less than 5%. The standard deviation of
the difference between the mechanism outcome and the experimental results is 4%, and
in 94% of the experiment the deviation did not differ with more than 10%, indicating that
overall outcomes were reasonably close to the mechanism outcome with a few exceptions.
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This means that the negotiating agents that can learn are able to approximate the outcome
determined by the mechanism quite well.

3.7 Conclusion

SAMIN, the system for analysis of multi-issue negotiation introduced here, has proved to
be a valuable tool to analyse the dynamics of human-human closed negotiation against a
number of dynamic properties. Our analysis shows that humans find it difficult to guess
where the Pareto Efficient Frontier is located, making it difficult for them to accept a pro-
posal. Although humans apparently do not negotiate in a strictly Pareto-monotonous way,
when considering larger intervals, a weak monotony can be discovered. Such analysis
results can be useful in two different ways: to train human negotiators, or to improve the
strategies of software agents. Clear from our research so far, is that five key factors shape
the outcome of a bilateral negotiation with incomplete information: (i) knowledge about
the negotiation domain (e.g. the market value of a product or service), (ii) oneŠs own and
oneŠs opponentŠs preferences, (iii) process attributes (e.g. deadlines), (iv) the negotiation
strategies, and (v) the negotiation protocol.

The use of agent technology for negotiation systems has been a big help in both the design
and the implementation of the SAMIN system. Principled design methods for agents and
multi-agent systems such as DESIRE ensured a transparent design that properly reflects
the interests of the stakeholders (researchers) and negotiators (human and software agent).
The organization makes it easy to run tournaments with any number of agents, and over
a number of negotiation domains. The interface and adapters to connect agents to the
negotiation environment have been clearly specified which enable an easy integration of
heterogeneous negotiating agents. The graphical user interfaces support both researchers
and human subjects participating in experiments.

A good start has been made in the development of a toolkit for analysis in SAMIN, but
more work needs to be done. Additional research on ontologies for negotiation is required
to make this feasible; for example, we cannot currently formulate associated constraints
on the domain of negotiation that must be satisfied for an agreement to be acceptable.
More technically, components for web integration as well as extensions of adapters need
to be developed, e.g., in order to handle more generic ontologies.

Bibliography
[1] R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents. In The 3rd

Int. Central And Eastern European Conf. on Multi-Agent Systems, 2003.

[2] T. Bosse, C.M. Jonker, and J. Treur. Experiments in human multi-issue negotiation:
Analysis and support. In N.R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors, Proceedings of the Third International Joint Conference on Autonomous

75



Agents and Multi-Agent Systems, AAMAS’04, page 672 Ű 679. IEEE Computer So-
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Chapter 4

BOP: an Effective Bayesian Learning
Algorithm for Opponent Preferences in
Negotiation

An important class of real-life negotiations is the class in which people negotiate once
with one opponent on a particular topic. The more one knows about the opponent, the
better the negotiation result will be. To improve bidding support systems in this paper
we present a generic learning algorithm that is based on Bayesian learning techniques,
that is capable of learning the most important aspects of the opponent’s profile during the
bidding in one negotiation session, i.e., ranking of the weights of the issues and approx-
imations of the evaluation functions per issue. For large domains we present a slightly
less effective, but scalable variant of the algorithm. Available domain knowledge, and / or
information about the opponent can be integrated to give the learning process a head start.
Our algorithm proved itself in a rigorous and extensive test. Opponent profiles can vary
from cooperative to competitive, and their preferences can vary from simple to complex.
It is robust with respect to a range of benchmark strategies played by autonomous agents
and also when the opponent is human.

4.1 Introduction

Negotiation is a type of interaction used by self-interested parties to reach a mutual agree-
ment about a common decision to be made. To reach an agreement negotiation parties
exchange various offers or bids using e.g. an alternating offers protocol [18]. In reach-
ing such an agreement both parties aim to satisfy their own interests as best as possible,
but have to take their opponent’s preferences into account as well to reach an agreement
at all. Such agreements can be complex and contain multiple issues to be a settled. If
multiple issues are discussed, differences in the parties’ preferences allow for agreements
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mutually beneficial for both parties, so-called win-win outcomes [19]. Such a negotiation
is therefore not an adversarial zero-sum game.

In every negotiation learning about the opponent and his preferences is fundamental for
reaching a good outcome. Effective bidding strategies are nice illustrations of this argu-
ment, as the strategy used to make negotiation moves is an important factor in the quality
of outcome. A number of negotiation strategies have been proposed in the literature, e.g.,
see [4, 17, 9, 13]. Given the point that the opponent has to be satisfied as well in order for
a negotiation to end in a deal, all strategies proposed in the negotiation literature at some
moments try to make concessions. A concession is a bid that for the one making the bid
has a decreased utility compared to the previous offer. However, for the opponent to feel
it as a concession, the bid should also have an increased utility for the opponent. This is
complicated, by the fact that negotiating parties are generally not willing to reveal their
preferences in order to avoid exploitation. However, a good strategy has to defend the
preferences of the party using the strategy. If the negotiating parties end up with a deal
that could be improved for some without hurting the others, then the negotiators leave
money on the table, and the deal is called Pareto Inefficient. The set of bids that cannot be
improved for at least one of the negotiation parties, without making it worse for the others
is called the Pareto Efficient Frontier. Without good information about the preferences of
the other party it is impossible to decide on a good negotiation move and to reach a Pareto
Efficient agreement. Given the fact that in general parties are not willing to reveal their
preferences, the good negotiator uses techniques for learning about the opponent and his
preferences.

To deal with the problem of incomplete information a number of learning techniques
have been proposed for the negotiation domain. A common assumption in the literature
on learning in negotiation is that some historical data is available which can be used to
model an opponent’s behavior. For example, in [12] authors estimate the probability of
acceptance of an offer by an opponent using information about accepted and rejected
offers by the opponent in the previous negotiations. If such information is available, this
is an excellent approach. In real-life negotiations, however, the people involved might
never have negotiated with each other before, and if they did, then not necessarily on that
same topic. In such cases the opponent’s profile cannot be learned from historical data
and other learning approaches will have to be developed.

There is a little research about how to learn opponent preferences in a closed single-
session negotiation, e.g. see [3]. A complicating factor in this context is that the number
of moves performed before reaching an agreement is limited (typically about 5 to 30
moves when the negotiators are human), and individual bids do not provide much infor-
mation [21]. To deal with this problem in the literature some restrictive assumptions are
made, such as a strong opposition of the preferences, or efficiency of an opponent’s strat-
egy. Such assumptions are shown to be valid in certain domains, but not in all. Therefore,
a learning technique designed and tested in a specific negotiation domain may not be ap-
plicable to another negotiation domain [8]. The purpose of this work is to design a generic
leaning technique to model the opponent’s preferences in a closed single-session multi-
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issue negotiation. Based on the analysis of [8] we formulate a number of requirements
for a generic learning technique to be used in real-life negotiations.

The first requirement is that the kernel of the learning algorithm should be domain and
opponent independent. The number of issues and values per issue in real-life negotiation
domains can change during the negotiation and from one negotiation to another. For ex-
ample, the issues for negotiating about real estate differ per set of negotiators, and new
regulations (e.g., energy conservation properties of the object) have their influence. Even
if the issues and possible values per issue would be stable, still the preferences can have
significant variation over the negotiation opponents. Therefore the learning algorithm
should not depend on any features of a negotiation domain or negotiation opponent in its
design that can decrease its learning performance in other domains. Given a domain spec-
ification the learning algorithm must be able to start learning with the first offer received.
Thus, the essence of the learning algorithm should be domain and opponent independent.

The second requirement is that the learning algorithm should be able to take advantage
of domain or opponent specific information. In some cases reliable domain knowledge
about typical opponent preference profiles is available or can be learned from historical
data. Such knowledge can be used to speed up the learning progress or increase accuracy
of the learned preference profile. Therefore, we require the learning algorithm to be able
to be take advantage of the available knowledge about the domain and opponent.

The third requirement is that the learning algorithm should be robust with respect to in-
correct available knowledge about either the domain or opponent. Knowledge that is
typically correct for a certain negotiation domain can be wrong for a specific case or sub-
domain. For example, the negotiation domain of classic cars differs essentially from the
typical domain of negotiating about second hand cars. Similar arguments hold for nego-
tiators that love their classic cars versus a negotiator that is just selling a classic obtained
through an inheritance. Ideally the learning algorithm recognizes such a situation. In any
case the algorithm should still learn the preference profile of the opponent even if it was
initialized with incorrect information.

In this paper we propose an effective Bayesian learning algorithm for Opponent Prefer-
ences (BOP) in closed single-session multi-issue negotiation that is designed with respect
to the requirements outlined above. The learning technique can be integrated in any ne-
gotiation strategy to increase the efficiency of its offers. In other words, given a utility of
the next offer BOP can be used to generate a corresponding approximate Pareto efficient
offer. For example, the QO strategy of [13] decides on a negotiation move using three
predefined opponent’s profiles. In a case when the opponent’s preferences profile does
not belong to these profiles the offers generated by QO strategy would not be efficient.
Instead, the QO strategy can use the proposed learning technique to model the opponent’s
preference and initialize it with the three possible profiles.

In BOP we provide a generic framework for learning both the preferences associated
with issue values as well as the weights that rank the importance of issues to an agent.
The framework is based on Bayesian learning techniques. The algorithm exploits certain
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structural features and rationality principles of the bidding process. The framework allows
for the incorporation of prior available domain and opponent knowledge but does not
require any such knowledge. It thus extends and generalizes previous work on learning
in negotiation by introducing a technique to learn opponent preferences for multi-issue
negotiation.

The size of the hypotheses space in the standard BOP algorithm is exponential in the
number of issues. As such, the standard algorithm is not scalable with respect to the
number of issues. Therefore, we developed and tested a simplified version of the BOP
algorithm, called ScalableBOP in which the number of hypotheses is linear in the number
of issues. The difference is that the probability per hypothesis for one issue is updated
independently of the probabilities for the other hypotheses. The speed of the learning and
the final quality of the learned profile is less for ScalableBOP, but the effect is still highly
significant.

To gain a good understanding of the performance of the proposed learning techniques
and the potential to improve the performance of other learning techniques in the context
of automated negotiation a systematic assessment method for the quality of learning is
presented. It provides the technical tools for analysis, identifies the key factors that need
to be taken into account and proposes an experimental setup to evaluate the quality of
learning. The technical tools used as well as the approach for analysis are discussed, and
we apply the method to BOP to show the effectiveness of BOP. This application of the
evaluation method shows some of the insights that may be gained by using it.

This paper is organized as follows. Section 4.2 discusses related work in the area of learn-
ing in negotiation. In Section 4.3 we present and motivate our design choices. Section 4.4
introduces the learning technique. In Section 4.5 we introduce measures for quality of op-
ponent preferences learning. Section 4.6 explains characteristics of negotiation domains
and preference profiles. Section 7.5 presents experimental results to demonstrate the ef-
fectiveness of the approach in various negotiation setups. Finally, Section 7.6 concludes
the paper and suggests several directions for future research.

4.2 Related Work

The subject of learning in negotiation received significant attention in the literature. In
this section we discuss the possibility of applying various generic learning approaches to
our problem and present the state-of-the-art work in the area of learning in the negotiation
domain.

4.2.1 Learning Approaches

Over the years a variety of learning techniques has been proposed. Applicability of a
specific learning technique is constrained by its characteristics such as a representation of
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training set, size of the training set, size of the hypothesis space. In this section we discuss
the learning techniques with respect to their applicability hand of learning preference
profiles from bids exchanged during negotiation only.

Artificial neural networks (ANNs) are based on the biological learning systems consist-
ing of complex webs of interconnected neurons. Feedforward networks containing three
layers of units are able to approximate any function to arbitrary accuracy, given a suf-
ficient number of units. Therefore, they are considered to be universal approximators
[16]. However, learning algorithms required to find appropriate parameters settings of
a network typically require a substantial amount of training data. Another problem of
the ANNs is overfitting of the input data, i.e., learning of a random noise instead of un-
derlying relationship. ANNs have been successfully applied to the problem of learning
an opponent’s profile in a setup where a significant number of stored negotiations with
a given opponent is available, see [2]. However, ANNs cannot be used to approximate
the preferences of the opponent in a single negotiation due to the small number of offers
typically exchanged in the negotiation and the lack of information about actual utilities
associated with that offers.

Another family of powerful learning algorithms is that of the genetic algorithms (GA).
The idea for GA comes from the evolution of biological organisms [16]. GA is typically
used for optimization problems where the optimized function is complex containing mul-
tiple optima. In GAs a population of abstract representations of candidate solutions to an
optimization problem evolves toward better solutions. Similar to ANNs the GSs require
substantial amount of training data. For GAs it must be possible to calculate a fitness
function for any solution that represents quality. GAs have been successfully applied in
experimental setups to increase the efficiency of negotiation strategies in a specific cir-
cumstances. For example, an approach proposed in [15] aims at combining different ne-
gotiation tactics from [4] in a single strategy because no single tactic or decision function
seems to be “right” in an arbitrary negotiation settings. A GA is used to compute a next
offer that adjusts the weights associated with each of the individual tactics. The weights
are used to combine the relative contribution of each tactic in determining the next offer.
Instead of learning an opponent model this approach requires a substantial number of ne-
gotiations to learn appropriate weights associated with the tactics. This learning approach
moreover requires that the preference profiles of both parties are made public in order to
calculate the fitness during the learning phase. As a result, the weights learned to combine
the strategies only yield efficient negotiations in specific negotiation setups. This makes
GA less suitable for our problem.

An expressive and human readable representation for learned hypotheses is in the form
of sets of if-then rules. Such learning is often called inductive logic programming (ILP),
cf., [16]. ILP is based on a subset of first-order logic, more precisely rules containing
variables. A variety of algorithms have been proposed to learn such rules from training
examples. Learning of the opponent preferences takes place under uncertainty about the
opponent’s strategy. To deal with uncertainty ILP requires additional extensions of the
hypotheses space and learning algorithms. Furthermore, the choice of the hypotheses
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representation can have negative consequences for the computational tractability of the
learning. Hence, mapping of the preference profile learning problem on the hypotheses
space used by ILP is not trivial and applicability of the ILP approach for learning in
negotiation requires additional investigation.

Bayesian learning algorithms are among the most practical approaches to certain types of
learning problems. Unlike the algorithms (e.g., ILP) that completely eliminate a hypothe-
sis if it is found inconsistent with any single example in Bayesian learning each observed
training example can incrementally increase or decrease the estimated probability that a
hypothesis is correct. This provides a flexible learning approach that is useful in cases
when reasoning about the hypothesis is performed under a great degree of uncertainty.
For example, in literature to learn the opponent’s preferences some assumptions are made
about the opponent’s tactics. While such an assumption might be correct in general it
would not be possible to reproduce the opponent’s tactics exactly.

To evaluate a new instance (in our problem that would be an opponent’s offer) the Bayesian
learning combines predictions of multiple hypotheses, weighted by their probabilities. As
a result, it is not required that at least one hypothesis in the hypotheses space accurately
reconstructs the actual preference profile of the opponent. Instead, the opponent’s profile
that is not explicitly represented by a single hypothesis in the proposed hypotheses space
can be approximated by a combination of several hypotheses (see Section 4.3.1 for the
details). Therefore, the range of preference profiles that can be learned is much richer
than the profiles represented by the hypotheses space.

Even in cases where Bayesian methods prove computationally intractable, they can be
simplified by assuming independence of the factors to be learned. Prior knowledge can be
combined with observed data to increase accuracy of the learned model and increase the
speed of learning. These considerations make Bayesian method suitable for our problem.

Among the learning techniques considered in this section Bayesian learning seems to be
the most suitable to our needs. ANNs and GAs typically require substantial amount of
training data. In a single-session negotiation, however, there is not enough interaction
that can be used as training data. Unlike other learning techniques Bayesian learning
even functions if only a few offers are available to learn probabilities of the possible
opponent’s preference profile. Unlike conventional ILP Bayesian learning can handle
noisy and inconsistent training data. The representation of the hypotheses is flexible,
allowing a wide range of opponent’s preference profiles that can be learned.

4.2.2 Learning in Negotiation

One interesting approach to learning efficient negotiation strategies is based on building
a training data set from information about multiple sessions, see [2], [12]. For example,
Carbonneau and co-authors proposed ANN to learn a strategy that would generate effi-
cient negotiation offers [2]. The ANN is trained using a database of stored negotiation
sessions between humans. Narayan et al. (2008) presented an approach to learn an oppo-
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nent’s negotiation strategy as a sequence of bids made by that party. The approach uses
Markov chains to model the opponent strategy and Bayesian learning to update the prob-
abilities of the transitions between states in the Markov chain. It does assume, however,
that negotiations involve only one issue. Automated learning of a negotiation strategy
is hard and is only feasible using data from multiple, past negotiations. The more in-
formation about past negotiations on the same domain available the better the learning
performance.

The learning approaches described above are typically designed for a specific negotia-
tion domain and require substantial data about negotiation sessions. Furthermore, the
approaches lack the possibility of adaptation to the features of a specific opponent or to
changes in the negotiation domain. While the approaches can be efficient in situations
for which they were trained they cannot be directly applied to other situations without
re-design. For example, an ANN would require re-design of the inputs and outputs of the
network, learning of the weights of the nodes, etc.

A few negotiation strategies have been built that try to guess opponent’s preferences in a
single session. A natural suggestion for that is to try and incorporate additional knowl-
edge into a negotiating agent, see e.g., [9]. The effectiveness of providing knowledge
about the domain of negotiation has been demonstrated in the Trade-off strategy intro-
duced in [5]. In particular, this paper shows that domain knowledge (coded as so-called
similarity functions) can be used to select bids that are close to an opponent’s bids, thus
increasing the likelihood of acceptance of a proposed bid by that opponent. In this ap-
proach, the knowledge represented by similarity functions is assumed to be public. As is
to be expected, if similarity functions can be found, the Trade-off strategy outperforms a
concession-based strategy such as ABMP [10], see [8] for the analysis details. Incorpo-
rating public domain knowledge into a strategy, however, still does not take into account
the private preferences or priorities that an opponent associates with negotiated issues.
The more knowledge of these preferences is available the better the chance of win-win
scenarios and optimal outcomes.

Another learning approach in negotiation is based on the assumption that a fixed set of
possible opponent profiles is given. Bayesian learning techniques can determine the like-
lihood that an opponent has one of these given profiles. The profile types are assumed
to be public knowledge and an agent only has to learn which type of profile its oppo-
nent most likely has. The QO agent proposed in [13] is an example of this approach (see
also [22, 5] for similar approaches). In the QO agent three opponent profiles are defined
and a probability is associated with each of the possible opponent profiles. An update
mechanism interprets the observed offers from the opponent and updates the probability
distribution according to the opponent strategy model. Then a qualitative decision mak-
ing that combines information about own preferences and the most probable opponents
preferences is used to make an offer. In [14] the QO agent is extended with a learning
mechanism that uses a database of past negotiation sessions. The agent performs offline
learning based on the kernel based density estimation and using the database as a training
set. The results of learning allow the agent to attach acceptance probabilities to each pos-
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sible agreement and then use these probabilities in its decision making component, either
when proposing a new offer or when determining its concession size.

4.3 Motivation for Design Choices

Our goal is to introduce a learning approach that can be used to model an opponent in
a negotiation with imperfect information. To reach this goal a number of design choices
for our learning technique have to be made. In this section, we firstly motivate our design
choices and secondly, explain them in details.

Negotiation can be viewed as an instance of a Bayesian game. In game theory, the class
of Bayesian games refers to games in which players do not have complete information
about each others’ preferences (or types) [18]. In such a setting, players can use evidence
(or so-called signal functions) to update their beliefs about the other party. In a Bayesian
game, in order to be able to learn, it is necessary to specify the strategy spaces and type
spaces. Ideally, these spaces are defined generically enough to allow learning of a rich
variety of opponent profiles. At the same time, however, these spaces should not be so
rich to make it impossible to learn an opponent profile from the limited available evidence
(in our case, the opponent’s bids).

The complicating factor for learning an opponent’s preference in a closed multi-issue
negotiation is that the amount of information exchanged during negotiation is minimal.
Typically, only offers are exchanged between the negotiating parties with no utility in-
formation attached. When a negotiating party sends an offer to the opponent it proposes
a potential agreement (if accepted by the opponent) from which we can conclude that
the offer is acceptable for the party. Because negotiation parties are eager to reach a
deal it would be reasonable to adopt some kind of concession-based negotiation tactic.
Typically, in the automated negotiation literature concession-based strategies have been
proposed, see e.g. [4, 9]. This line of reasoning is used to make a model of the opponent’s
negotiation tactic in our proposed learning technique.

The number of the exchanged offers in human negotiations in a single session is small Ű
around 7-8 offers, see e.g. [21]. Domain knowledge about negotiating issues can be used
to assess the predictability of an issue.

In this section, we present the hypothesis space that defines the range of opponent profiles
that can be learned. We do so by introducing various reasonable design choices about the
structure of opponent profiles as well as about an opponent’s negotiation strategy. These
choices are made to ensure the task of learning an opponent model is feasible. In Section
7.5 we present evidence that the proposed model is both effective as well as rich enough
to learn opponent preferences in various negotiation domains.
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4.3.1 Structure of the Opponent’s Preferences

Our first design choice is related to the representation of the opponent’s preferences. It
is common to assume that the utility of a bid can be computed as a weighted sum of
the utilities associated with the values for each issue, see e.g., [19]. Utility functions
modelling the preferences of an agent thus are linearly additive functions and are defined
by a set of weights wi (or priorities) and corresponding evaluation functions ei(xi) for each
of n issues by:

u(bt) =
n

∑
i=1

wiei(xi ∈ bt) (4.1)

where xi is the value of issue I in bid bt in the negotiation round t. To ensure that a utility
function has a range in [0,1], the range of the evaluation functions is assumed to be in
[0,1] and the weights are assumed to be normalized such that their sum equals 1.

In order to learn an opponent’s preference profile or utility function U(b) we need to
learn both the issue weights wi as well as the evaluation functions ei(xi). The objective of
learning an opponent model thus is to find a model as defined by equation (4.1) that is the
most plausible candidate or best approximation of the opponent’s preference profile.

Our next design choice concerns the issue weights in a preference profile characterised
by equation (4.1). Some knowledge about issue weights is important in order to be able
to propose a trade-off on issues that are valued differently by negotiating parties. In [8]
it is shown that in general it is not sufficient to know issue preferences, i.e., evaluation
functions ei(xi), to be able to make trade-offs. Making trade-offs is an important means
to get closer to the Pareto efficient frontier. To be able to propose a trade-off an agent, say
S must know at least two issues one of which, say A, which is valued more by itself than
by its opponent and one, say B, which is valued more by the opponent than by S itself.
In that case, S can make a concession on B and propose a value for A that is more highly
valued by S itself.

In [5] and [9] it is argued that it is sufficient to know the ranking of the weights to be able
to make trade-offs and significantly increase the efficiency of an outcome. We propose to
define the set of hypotheses Hw about the private weights of an opponent as the set of all
possible rankings of weights. It is then straightforward to associate real-valued numbers
again with a h j ∈ Hw about weights, which can be computed as a linear function of the
rank and also ensures weights are normalized, as follows:

wi = 2
r j

i
n(n+1)

(4.2)

where r j
i is the rank of weight wi in the hypothesis h j and n is the number of issues.
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Finally, we need to impose some additional structure on the evaluation functions in order
to be able to learn a preference profile. To facilitate the learning of an opponent’s pref-
erences over issue values we introduce a hypothesis space of predefined function types.
A third design choice thus concerns the shape of evaluation functions. We three types of
evaluation functions to model preferences over issue values:

1. downhill shape: minimal issue values are preferred over other issue values (think,
e.g., of price and delivery time for a buying agent), and the evaluation of issue
values decreases linearly when the value of the issue increases;

2. uphill shape:maximal issue values are preferred over other issue values (think, e.g.,
of price and delivery time for a selling agent), and the evaluation of issue values
increases linearly when the value of the issue increases;

3. triangular shape: a specific issue value somewhere in the issue range is valued most
and evaluations associated with issues to the left (“smaller”) and right (“bigger”) of
this issue value linearly decrease (think, e.g., of an amount of goods).

Figure 4.1 below illustrates this set of functions and introduces labels he
i, j to refer to the

hypothesis that issue i has associated evaluation function j.

  

0 

1 

ei(xi) 

xi 

he
i,1 he

i,2 he
i,3 

he
i,k-2 he

i,k-1 he
i,k 

Figure 4.1: Hypothesis space of possible evaluation functions.

The three function types that define the range of possible evaluation functions are common
in the literature, and, most importantly, in combination allow for the modelling of other
types of function as well (see Figure 4.2 below).

In order to see this, it should be taken into account that a probability distribution is as-
sociated with each hypothesis. This allows other types of functions to be approximated
by associating different probabilities with various hypotheses. The predicted evaluation
of an issue value is derived from all hypotheses that are assigned a non-zero probability.
The evaluation thus can be viewed as computing a most probable evaluation value of an
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Figure 4.2: Approximation of an evaluation function that is not in the hypothesis space
by means of two evaluation functions.

issue value by computing the weighted sum of all evaluations of an issue value associated
with some hypothesis with non-zero probability. Different probability distributions thus
allow for approximating different types of evaluation functions that do not need to match
any single evaluation function from the hypothesis space. Figure 4.2 shows an example of
the approximation of a more complex evaluation function (solid line) that is not present
in the hypothesis space. Many complex evaluation functions thus can be successfully ap-
proximated by a composition of several simple evaluation functions from the hypothesis
space. The preferences of an agent can be viewed as a membership function that assigns a
degree of membership to each hypothesis in the hypothesis space similar to membership
in fuzzy set theory. In our case the membership of an evaluation function is modelled
as a probability distribution and our approach is similar to that of triangular membership
functions [17].

To summarize, the set of hypotheses concerning an opponent’s preference profile is a
Cartesian product of the hypotheses about issue weights Hw and shapes of issue evaluation
functions He

i : H = Hw×He
1 ×He

2 × . . .×He
n .

4.3.2 Model of Opponent’s Strategy

The idea is to learn an opponent preference profile from its negotiation moves, i.e., the
bids it proposes during a negotiation. In a Bayesian learning approach, this means we need
to be able to update the probability associated with all hypotheses given new evidence,
i.e., one of the bids. More precisely, we want to compute P(h j|bt) where bt is the bid
proposed at time t. To be able to use Bayes’ rule to do this, we need some information
about the utility the opponent associates with bid bt .
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As this information is not generally available, we need to make a design choice about a
model of the opponent’s strategy to be able to make an educated guess of the utility value
of bt for an opponent. In the model we assume that our opponent follows a more or less
rational strategy in proposing bids. In particular, we will assume that an opponent follows
some kind of concession-based strategy. Although assuming such behaviour may not
always be realistic it typically is necessary to perform at least some concession steps in
order to reach an agreement. Moreover, in game-theoretic approaches and in negotiation
it is commonly assumed that agents use a concession-based strategy [5, 18].

0 

P(b0|hj) 
P(b1|hj) 
P(b2|hj) 

P(bt|hj) 

u’(b1) u’(b2) u’(b0) u(bt|hj) 

Figure 4.3: Conditional probability distribution of tactics.

In line with [4] we model the opponent’s strategy using a time-dependent tactic (TDT).
It starts with a bid of a maximal utility and moves towards its reservation value when
approaching the negotiation deadline. Note that we do not assume a hard negotiation
deadline, but work from the assumption that that human negotiations typically last no
longer than 7 to 8 rounds. Thus, it is assumed that an agent’s tactics during a negotia-
tion can be defined by a monotonically decreasing function. This model still allows that
an opponent uses various kinds of tactics and no exact knowledge about an opponent’s
negotiation tactics is assumed. More specifically, the opponent’s strategy is modelled as
a probability distribution associated with a range of tactics (see Figure 4.3); as a result,
each utility associated with an opponent’s bid thus also has an associated probability.

In this paper we use linear functions to estimate the predicted utility value: u′(bt) =
1− 0.05t. This assumption allows us to compute the conditional probability P(bt |h j)
representing the probability of bid bt given hypothesis h j at time t. This is done by
defining the probability distribution P(bt |h j) over the predicted utility of bt using the
rationality assumption and the utility of bt according to hypothesis h j (see Figure 4.3).
Here the predicted utility u′(bt) of a next bid of the opponent is estimated as u′(bt−1)−c(t)
using a function c(t) that is the most plausible model of the negotiation concession tactic
used by the opponent. We use the following function to model the conditional distribution,
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where u(bt |h j) is the utility of bid bt according to the hypothesis h j:

P(bt |h j) =
1

σ
√

2π
e

(u(bt |h j)−u′(bt ))2

2σ2 (4.3)

This probability distribution can be used consecutively to update the probabilities of the
hypotheses using Bayes’ rule to compute P(h j|bt).

The spread σ of the conditional distribution used in 4.3 defines the certainty of the agent
about its opponent’s negotiation tactics. If an agent is certain about the utility of an
opponent’s bid bt then σ can be set to a low value. A higher level of certainty increases
the learning speed, since hypotheses predicting an incorrect utility value of a bid in that
case would get assigned an increasingly lower probability, and vice versa. Overestimating
the level of certainty, however, may lead to incorrect results, and some care should to be
taken to assign the right value to σ .

4.4 Learning Approach

This section introduces the BOP algorithm. First, we explain the BOP learning algorithm.
Second, we propose a computationally scalable solution for the BOP learning algorithm,
called ScalableBOP. Finally, we explain how the BOP algorithm can be used to estimate
the opponent’s utility of a bid.

4.4.1 Bayesian Learning Algorithm for Opponent Preferences

The framework for learning introduced above can now be applied. In order to do so, the
first step to perform is to initialize the probability distribution associated with each of
the hypotheses in the hypothesis space H introduced in Section 4.3.1. This means either
assigning a probability distribution to hypotheses based on available knowledge about
opponent preferences, or, if no such a priori knowledge is available, to assign a uniform
distribution.

During a negotiation at every time t when a new bid bt is received from the opponent the
probability of each hypothesis should be updated using Bayes’ rule:

P(h j|bt) =
P(h j)P(bt |h j)

∑
m
k=1 P(hk)P(bt |hk)

(4.4)

Here the conditional probability P(bt |h j) represents the probability that bid bt might have
been proposed given hypothesis h j (using the predicted utility according to the conditional
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distiribution (4.3)) and P(h j) is the current probability of hypothesis h j. The normaliza-
tion factor in the denominator of Bayes’ rule ensures that the probability of the entire
hypothesis space is 1.

The learning approach outlined will increase the probability of a hypothesis about an
opponent’s preference profile that is most consistent with the bid sequence received so far
from that opponent and provides the best match with the utilities of these bids, estimated
using the conditional probability distribution associated with tactics. As a result, the more
consistent the predicted utility is with a hypothesis, the higher the probability associated
with this hypothesis will be. It is possible that several hypotheses predict (almost) the
same utilities for a given bid sequence, but this simply means that it is not possible to
distinguish different preference profiles based upon that bid sequence and more evidence
would be needed to do so.

The spread of the probability distribution P(h j) associated with the hypothesis space
might also be used as a measure of the effectiveness of learning the opponent model.
Presumably, successful learning of an opponent model will increase the probability of
some of the hypotheses that best fit the bidding sequence received from an opponent and
the number of hypotheses still considered viable would decrease. If not, the probability
distributions P(h j) would remain a more or less uniform distribution. In the latter case the
agent does not learn from the bids exchanged and it could use this fact in the negotiation
strategy. For instance, negotiating against an eratic opponent that seems to more or less
randomly propose bids, the agent might start using a Boulware strategy [4], in order to
wait until an acceptable offer of the opponent is received.

Finally, during a negotiation an agent can use the updated probability distribution to com-
pute estimates of the utility of counteroffers it considers and choose one that e.g., maxi-
mizes the utility of its opponent, to increase the likelihood of acceptance by that opponent.
The expected utility ū(bt) of a counteroffer bt may be computed as follows, where wi and
ei are the weights respectively evaluation functions predicted by hypothesis h j ∈ H:

ū(bt) =
bHc

∑
j=1

P(h j)
n

∑
i=1

wiei(xi ∈ bt) (4.5)

4.4.2 Scalable Learning Algorithm

In this section, the learning approach is refined and an outline of a scalable algorithm
(ScalableBOP) is discussed. Here our main concern will be the size of the hypothesis
space H = Hw×He

1 ×He
2 × . . .×He

n . This space is exponential in the number of issues
and consists of n!mn hypotheses where m denotes the number of evaluation function hy-
potheses (see Figure 4.1). Clearly, even though the approach is very effective in small
domains, it is not computationally feasible to update this many hypotheses in larger ne-
gotiation domains. In order to deal with larger domains, some additional independence
assumptions will be introduced. As is to be expected, this will impact the performance
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of the learning algorithm, but we will present additional experiments that show improved
performance compared to that of the other strategies taken from the literature with which
we compared our strategies.

To enable scaling of the proposed learning approach for negotiation domains of high di-
mensionality it will be assumed that the probability of individual components of a hypoth-
esis h = 〈hw,he

1, . . . ,h
e
n〉 about a complete preference profile can be learned independently.

That is, it will be assumed that weight ranking hypotheses hw and the shape of each issue
evaluation function he

i can be learned independently from each other. This is a reasonable
approximation since each bid may be presumed to give at least some information about
one issue relative to the available knowledge about the other issues.
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Figure 4.4: Bayesian network representing learning probabilities (a) over complete pref-
erence profiles hypotheses and over (b) individual hypotheses for weights and shapes of
evaluation functions.

First, we will explain how each of the evaluation function hypotheses can be learned
independently. The idea is illustrated in Figure 4.4.2. Figure 4.4.2(a) shows the approach
outlined in Section 4.3 as a Bayesian network whereas Figure 4.4.2(b) illustrates how the
independence assumption can be exploited to split up each hypothesis into its components
and add these as nodes to the network. To simplify the notation we assume that symbol
he

i, j can be applied to a bid as a function and results in an evaluation value of the bid
according to the evaluation function of hypotheses j for the issue i. The size of the local
probability distribution table of each hypothesis in the original approach is n!mn−1. In the
approximation method, which introduces additional nodes for every hypothesis, the size
of such a local probability distribution table is only m. Each of these additional nodes
represents an expected value of the evaluation function for a given bid:

h̄e
i (bt) =

m

∑
j=1

P(he
i, j)h

e
i, j(bt) (4.6)
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Second, we need to consider an approximation method for learning weight ranking hy-
potheses. Note that the number of possible weight orderings is n! which is prohibitive for
large n. To reduce the number of weight ranking hypotheses the normalization require-
ment associated with weights is relaxed. Instead of n! hypotheses a set of m hypotheses
for each weight is introduced, where each hypothesis represents a possible value of the
weight. Similar to the hypotheses for evaluation functions we introduce the symbol hw

i, j
to denote the hypothesis about the value of the weight for issue i according to hypoth-
esis j, and will also sometimes use it to denote the value of the associated weight, i.e.,
hw

1,1 = 0,hw
1,2 = 0.1,hw

1,3 = 0.2, . . . .. Then, the expected value of an issue weight can be
calculated as follows:

h̄w
i =

m

∑
j=1

P(hw
i, j)h

w
i, j; (4.7)

The nodes of expected values for evaluation functions and weights are used to update
local probability distributions only. The expected utility of a bid bt is now calculated as
follows:

ū(bt) =
n

∑
i=1

h̄w
i h̄e

i, j(bt) (4.8)

Since a utility function is assumed to be linearly additive this approximation of weight
ranking hypotheses does not influence the selection of a bid that maximizes the oppo-
nent’s utility (when computing a counteroffer). However, the approximation may affect
the prediction of the utility of an opponent’s bid thus influencing the quality of learning
when updating the probability of the hypotheses in line with the conditional distribution
associated with the opponent’s tactics.

Now we proceed and show that this approximation solves the scalability problem. Note,
that instead of normalizing probabilities over complete set of possible utility spaces the
probability distribution over weights and evaluation functions are normalized for every
issue:

m

∑
j=1

P(hw
i, j) = 1, i = 1, . . . ,n;

m

∑
j=1

P(he
i, j) = 1, i = 1, . . . ,n; (4.9)

Taking this into account, we can show that the expected utility of a bid is the same as in
the original approach when the same a priori probability distributions are used. The main
idea concerns the modification of the learning itself, i.e., the update of the probabilities
associated with hypotheses about single weights and evaluation functions of single issues.
Instead of calculating the probability distribution for a given hypothesis with respect to all
possible partial opponent models we now use the best prediction (or expected value) of
the current model. In other words, the probability distribution of a hypothesis is estimated
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by using the probability distributions provided by the model learned so far. The update of
the probability of a hypothesis thus assumes that these probability distributions of other
hypotheses yield a reasonably good prediction of the opponent’s preferences.

It can be shown that if this is the case, the obtained probabilistic model would correspond
to the same model built for the hypothesis space over complete preference profiles. In
other words, we can show for hk ∈ H that:

P(hk)←
n

∏
i=1

P(hw
i, j ∈ hk)

n

∏
i=1

P(he
i, j ∈ hk),hk ∈ H (4.10)

It thus is clear that the approach will greatly benefit from the use of partial domain knowl-
edge when available. In that case, the update of the probability distribution associated
with a hypothesis would not be based on probabilistic information associated with the
opponent model but on given domain knowledge.

4.4.3 Updating Probabilities of Hypotheses

Because the first bid has maximal utility for a negotiator according to one of the ratio-
nality assumptions introduced earlier, this bid does not provide any information about
an opponent’s issue priorities. The first bid thus only can be used to update probability
distributions of hypotheses about an opponent’s evaluation functions and the probability
distributions of hypotheses about weights can be updated only after the agent has received
more than one bid from an opponent.

Taking this into account, the conditional distribution associated with tactics can be used
to update the hypothesis of issue k using the expected evaluation values and weights of
the rest of the issues as defined by the current opponent model. So, suppose we need to
update the probability distribution of the hypothesis for issue k after receiving a bid bt
from the opponent. In order to do so, we introduce a partial expected utility ū〈−k〉(bt) of
bid bt that does not take the contribution of issue k to the utility of the bid into account,
and is defined as follows:

ū〈−k〉(bt) = ∑
i=1,2,...,k−1,k+1,...,n

h̄w
i h̄e

i, j(bt) (4.11)

The probability of the hypotheses over the shape of the evaluation function can then be
updated according to Bayes’ rule as follows:

P(he
k, j|bt) =

P(he
k, j)P(ū〈−k〉(bt)+he

k, jh̄
w
k |h

e
k, j)

∑
m
i=1 P(he

k,i)P(ū〈−k〉(bt)+he
k,ih̄

w
k |h

e
k,i)

, j = 1, . . . ,m (4.12)

where h̄w
k is the expected value of the weight of issue k.
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The probability of the hypotheses related to the weight of issue k can be updated in a
similar way as follows:

P(hw
k, j|bt) =

P(hw
k, j)P(ū〈−k〉(bt)+hw

k, jh̄
w
k |h

w
k, j)

∑
m
i=1 P(hw

k,i)P(ū〈−k〉(bt)+hw
k,ih̄

w
k |h

w
k,i)

, j = 1, . . . ,m (4.13)

Because the application of Bayes’ rule to multiple hypotheses needs to be implemented
as a sequential procedure, care should be taken to perform a Bayesian update by using
the expected utility, weights and evaluation values that are derived from the probability
distribution before any Bayesian update has been performed. Otherwise, any hypotheses
that are updated after other hypotheses have been updated would be biased by the updated
probability distributions of these hypotheses that already have been updated. Additionally
distributions of a priori probabilities have to be adjusted in such a way that the sum of the
expected values of the weights equals one, i.e.:

n

∑
i=1

h̄w
i = 1 (4.14)

4.5 Quality Assessment Method

The quality assessment method we propose has three components: (i) quality measures to
estimate the learning performance, (ii) criteria for selecting a diverse range of negotiation
domains and preference profiles on these domains, and (iii) criteria for selecting a number
of negotiation strategies of the opponent. These components then are used to define an
experimental setup to obtain data to analyze learning quality by means of a negotiation
tournament.

The first component consists of several similarity measures that provide a metric for as-
sessing the accuracy of the learned preference profile with respect to the actual preference
profile. We discuss several measures that can be used to assess the quality of the learned
preference profile. Apart from the restriction on utility functions which need to be linearly
additive, the second component of the method consists of several additional criteria for se-
lecting negotiation domains such as size and complexity of the domain, and the similarity
of the preference profiles of the negotiating parties. These criteria are used to define the
experimental setup of the negotiation tournament. The third component provides criteria
for selecting negotiation strategies that should be used by negotiating agents in the tour-
nament. Since learning of an opponent’s preference profile in single-instance negotiations
has to be accomplished with only the observations of the opponent’s negotiation moves,
typically such learning algorithms use assumptions about an opponent’s behaviour. Al-
though this assumption is reasonable and can be applied in typical negotiation settings, it
is important to assess the robustness of a learning technique also when negotiating against
agents that use strategies that do not comply with this assumption. It thus is important to
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incorporate a diverse range of negotiation strategies in any experimental setup to evaluate
learning quality.

4.5.1 Qaulity Measures

In this Section we discuss two quality measures to assess learning quality that are based
on two metrics to measure the distance between the actual preference profile of an op-
ponent and the learned preference profile. These quality measures are applied to both
the complete preference profiles or utility functions, as well as to the issue priorities or
weights.

The learning task of learning an opponent’s preference profile clearly is an approximation
problem. The task is to re-constructs the actual utility function u of the opponent by
means of a learning technique resulting in an approximate function ũ. A quality measure
with respect to learning preference profiles therefore can be defined as a distance metric
of two utility functions, and can be formally represented as d(u, ũ).

Ideally, the approximation ũ of an opponent’s utility function would provide an accu-
rate prediction of the exact utility value an opponent associates with an outcome. Some
strategies like the Tit-for-Tat-based strategy introduced in [4] depend on the accuracy of
cardinal values of the utility function of the opponent since a negotiation move is chosen
based on an estimate of the concession the other party made in the previous move. It
therefore is important to have a distance metric that can be used to measure the accuracy
of the cardinal values predicted by the learned profile. Here we use Pearson’s correlation
coefficient for that purpose. This coefficient represents the degree of linear relationship
between two variables and is defined as follows:

dpearson(u, ũ) =
∑

ω∈Ω

(u(ω)−〈u〉)(ũ(ω)−〈ũ〉)√
∑

ω∈Ω

(u(ω)−〈u〉)2 ∑
ω∈Ω

(ũ(ω)−〈ũ〉)2
(4.15)

where 〈u〉 (respectively 〈ũ〉) denotes the average utility over the outcome space defined
by utility function u (ũ). The Pearson’s correlation coefficient takes a real value from the
interval [−1;1]. A value of +1 means that there is a perfect positive linear relationship
between variables, whereas a value of −1 means that there is a perfect negative linear
relationship between variables. A value of 0 means that there is no linear relationship
between the two variables.

Although a perfect match of cardinal values of the actual and learned utility function
would be ideal, in practice it may be sufficient and more important to approximate the
preference ranking of outcomes by an opponent (cf. [5]). For example, negotiation strate-
gies that aim at maximizing an opponent’s utility by means of walking on a utility iso-
curve in one’s own preference profile only need adequate information about an opponent’s
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ranking of outcomes. It is sufficient when using such strategies to possess accurate ordinal
ranking information.

To estimate the distance between the rankings of the bids given the actual utility function
of the opponent and the learned utility function, a metric is introduced that compares all
outcomes in the outcome space pairwise. In order to do so, a ranking relation≺u is defined
as follows: ∀ωi,ω j ∈ Ω,ωi ≺u ω j⇔ u(ωi) < u(ω j). Using this ranking relation, we can
define a conflict indicator function adapted from [7] to measure conflicting rankings given
arbitrary utility functions u and ũ. The conflict indicator function is defined as follows:

c≺u,≺ũ(ωi,ω j) =


1 if (ωi �u ω j∧ω j ≺ũ ωi)∨ (ωi ≺u ω j∧ω j �ũ ωi)
∨(ωi �ũ ω j∧ω j ≺u ωi)∨ (ωi ≺ũ ω j∧ω j �u ωi),

0 otherwise.
(4.16)

The conflict indicator function yields 1 when the ranking relation of two arbitrary out-
comes ω,ω ′ based on the learned utility space ũ is not the same as the ranking relation
based on the actual utility space of the opponent u; if the rankings based on both utility
functions match the conflict indicator takes the value of 0.

Using this ranking relation, we can define a conflict indicator function adapted from [7]
to measure conflicting rankings given arbitrary utility functions u and ũ . The conflict
indicator function is defined as follows:

dranking(u, ũ) =
1
|Ω|2 ∑

ω∈Ω,ω ′∈Ω

c≺u,≺ũ(ω,ω ′) (4.17)

In [7] various properties of this distance measure are proved, including e.g. reflexivity,
symmetry and the triangle inequality property.

It is useful to not only apply the distance measures to complete preference profiles but
also to apply it to the issue priorities or weights in such a profile. In Section 4.6 we apply
the assessment method to the BOP algorithm. In this learning approach the different
components of a linearly additive utility function, i.e. weights and evaluation functions,
are learned in a different way. In order to obtain experimental data about these different
learning processes we therefore also define similar distance measures to those discussed
above for measuring distance of actual and learned issues weights.

The set of weights can be represented as a weight vector, and it is not hard to define the
Pearson correlation coefficient for the vectors of weights. The coefficient is defined as
follows:

dpearson(W,W̃ ) = ∑
n
i=1(wi−〈w〉)(w̃i−〈w̃〉)√

∑
n
i=1(wi−〈w〉)2 ∑

n
i=1(w̃i−〈w̃〉)2

(4.18)
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To calculate the ranking distance between the two weight vectors W and W̃ a ranking re-
lation is constructed on the weights of the corresponding vector as follows: i = 1 . . .n, j =
1 . . .n, i≺ j⇔w(i) < w( j), where w(i) = wi. Then, the conflict indicator c≺W ,≺W̃

(i, j) can
be defined in the same way as for utility functions. The ranking distance of two weight
vectors is defined as follows:

dranking(W,W̃ ) =
1
n2

n

∑
i=1

n

∑
j=1

c≺W ,≺W̃
(i, j) (4.19)

4.5.2 Negotiation Domains an Profiles

Whereas precise mathematical metrics can be defined for measuring distance of prefer-
ence profiles, for the selection of an adequate set of domains to be used in the experimen-
tal setup less formal criteria are proposed here. The main reason is that it is impossible
to assess a learning technique on the space of all negotiation domains and associated
preference profile. Ideally, then, one would use an experimental setup based on random
sampling of the domains and profiles in order to deal with this problem. However, it is
not clear how to setup such a sampling procedure. As an example, we found that the
predictability of issue preferences (see below) may influence the outcomes of negotiation
strategies. It is not particularly clear, however, how to obtain a random sample which
would be an adequate representation of domains with and without predictable issues. In-
stead, we therefore discuss and propose to use three factors for selecting domains that are
relevant in testing the learning quality.

Size of the negotiation domain. The amount of information exchanged during the ne-
gotiation is limited in a closed negotiation since we can rely only on observed negotiation
moves of an opponent, which affects learning quality. The amount of information needed
by a learning technique typically depends on the model structure and the size of the pa-
rameter space that is to be learned. Therefore, a learning technique has to be assessed on
negotiation domains of various sizes and of various complexity. Since in any negotiation
the number of issues is one of the most important factors that determine the complexity of
the preferences profile, a set of domains should be selected that range from a low number
of issues to higher number of issues.

Predictability of the preferences. Most learning techniques for learning an opponent’s
preference profile use assumptions about the structure of the preference profile (e.g. see
[3, 22]). Among others such techniques may rely on the predictability of issue preferences
[8]. Issues are called predictable when even though the actual evaluation function for the
issue is unknown, it is possible to guess some of its global properties. For example, a
price issue typically is rather predictable, where more is better for the seller, and less
is better for the buyer, and the normal ordering of the real numbers is maintained; an
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issue concerning colour, however, is typically less predictable. Learning even ranking
preferences related to issue values of unpredictable issues therefore is more difficult.

The set of selected negotiation domains for any experimental setup therefore ideally
should consist of a balanced mix of predictable and unpredictable issues. In principle,
the higher the number of unpredictable issues the more complicated the learning of a
corresponding profile becomes.

Opposition of preferences. The results of analyzing negotiation dynamics presented
in [8] revealed that some negotiation strategies are sensitive to preference profiles with
compatible issues. Issues are compatible if the issue preferences of both negotiating par-
ties are such that they both prefer the same alternatives for the given issue. Negotiation
strategies may more or less depend on whether preferences of the negotiating parties are
opposed or not on every issue. That is, using some strategies it is harder or even impossi-
ble to exploit such common ground and agree on the most preferred option by both parties
for compatible issues (humans are reported to have difficulty with this as well; cf. [20]).
A selection of preference profiles should therefore take into account that both preference
profiles with and without compatible issues are included.

The notion of opposition can be made more precise. Conceptually, it represents a degree
of conflict of interests between the parties. In other words, there is a conflict of interests
if one party prefers outcome ω over outcome ω ′ and the other party prefers outcome ω ′

over outcome ω . In [11] a notion of local opposition based on the gradients of the utility
functions of both parties is defined for each outcome in the negotiation domain. Intu-
itively, if the gradients point to opposite directions then the preferences of the negotiation
parties are opposed. The more colinear the gradients are the closer (more compatible) the
preferences of the parties. Although it is possible to generalize the notion of local oppo-
sition relative to an outcome to a more global notion of opposition of utility functions,
we propose to reuse the distance measures for preference profiles to measure the level of
opposition present.

Negotiation Strategies of the Opponent

The results of the analysis presented in [8] also have shown that the performance of a
negotiation strategy can be significantly influenced by the negotiation strategy of the op-
ponent. For example, the class of pure time-dependent tactics (TDT; see [4] does not
take into account the negotiation moves of opponents and selects the next offer to propose
in a negotiation based on how close one is to the negotiation deadline. Whereas TDT
tactics are insensitive to opponent moves, negotiation strategies in the class of behaviour-
dependent tactics (BDT) do base their choice of offer on the offers received so far from
the opponent. A variety of strategies therefore is needed to assess the quality of learning,
which includes strategies that belong to the TDT class, the BDT class as well as mixes
thereof.
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The selection of strategies to be used in an experimental setup should be able to test the
robustness of the learning technique with respect to various opponents that use different
types of negotiation strategies. For example, to enable learning of opponent preferences
from the observed negotiation moves (offers) in BOP a model of opponent strategy is used
(see also [1, 22]). Such rationality assumptions might however be exploited and it should
be tested if a learning technique is robust against strategies like the Zero-Intelligence
strategy that uses an irrational random tactic [6].

Again we do not claim to present an exhaustive coverage of the criteria discussed, but
present a selection to illustrate. The following negotiation strategies have been used by
the negotiating parties in our experimental setup:

The Time-Dependent Tactic (TDT) strategy [4] proposes as a next offer a bid that has
a decreased utility compared to the previously proposed offer. TDT does not use any
information about the opponent. Utility of the next offer is decreased according to a
concession function, which can be linear (fixed concession size), boulware (make small
concession in the beginning of a negotiation and big ones at the end), and conceder (make
big concession in the beginning of a negotiation and small ones at the end).

The ABMP strategy from [10] which is a concession oriented approach in the TDT class,
and takes no heed of knowledge about the domain or the opponent. The ABMP strategy
uses a non-linear concession tactic. It concedes more in the beginning of the negotiation
when the gap between the negotiation positions is big and decreases the size of the con-
cession when the negotiation positions approach each other. As such, it is an example of
a so-called conceder tactic (cf. [4]).

The Trade-off Strategy, taken from [5], uses so-called similarity criteria and exploits do-
main knowledge. The Trade-off strategy is an example of a Behaviour-dependent strategy.
In our experiments we allowed three smart steps and a concession of 0.05 for the smart
meta strategy.

Zero-Intelligence, taken from [6], is a random strategy that makes random jumps through
the outcome space. The ZI agent used a reservation point of 0.6 in our experiments to
avoid making offers that have a ridiculously low utility. The ZI strategy plays a role as a
baseline strategy.

4.6 Experimental Setup

According to the methodology proposed in this section a set of negotiation domains and
preference profiles was created. The set of the domains and preference profiles used by
the opponent of the BOP algorithm was designed in such a way that the number of nego-
tiations to be run would be minimal but still have a sufficient variation over the following
characteristics: the size of the domain, number of predictable issues, and opposition of
the preferences. In this section we describe the procedure that was used to generate the
experimental set of the negotiation domains and preference profiles.
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The number of issues in a negotiation domain was used to vary the size of the negotiation
domains. The number from 4, 6, 8, to 10 issues. All issues were discrete and had 10
values per issues. The BOP algorithm is able to deal with domains up to 7 issues in rea-
sonable time. Therefore, both the BOP and the ScalableBOP algorithms were tested on
the domains with 4 and 6 issues to see the effect of decision choices made in the Scalable-
BOP algorithm on the learning performance. For the domains with 8 and 10 issues the
ScalableBOP algorithm was used. The biggest negotiation domain in the experimental
domain has 1010 possible agreements which is bigger than any real negotiation domain
presented in the literature (see e.g. [19] for the “AMPO vs. City” domain that has only
7,000,000 possible agreements).

Figure 4.5: Examples of evaluation functions used in the experimental setup: a - “uphill”,
b - “downhill”, c - “triangle”, d - “unpredictable”.

To model preferences over values of individual issues two types of issue were made:
predictable and unpredictable. For the predictable issues one of the three types (uphill,
downhill, and triangle) of an evaluation function was used. Similarly, for unpredictable
issues, three types of evaluation function were generated by means of assigning a ran-
dom number as an evaluation value for every alternative of the issue. Figure 4.5 shows
examples of the evaluation functions for the predictable and unpredictable issues. The
evaluation functions were combined with one of two possible weight vectors. The first
vector represents weights that linearly decay from the most important issues to the least
important issue, e.g., for a 4-issues domain the vector could be 〈0.4;0.3;0.2;0.1〉. In the
second vector the weights decay from the most important issues to the least important is-
sue exponentially, e.g., for a 4-issues domain the vector could be 〈0.53;0.27;0.13;0.07〉.
Permutations of the weights in the vector do not influence the learning performance of
BOP and, therefore, do not need to be included in the experimental setup.
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To have a sufficient variation of the preference profiles in our experimental setup without
exploding the number of negotiations needed to be run we produced all possible permuta-
tions of the evaluation functions for the two most important issues in a domain according
to the weights. The rest of the issues in total have significantly lower influence on the util-
ity and, therefore, were assigned an evaluation function randomly. The preference profile
used by the agent that uses the BOP algorithm does influence the quality of learning of the
opponent’s profile. However, variation of the preference profiles used by the BOP agent
is required to study the influence of the opposition of preferences on the learning. To
control the number of negotiations we created eight types of profiles for which we varied
the following:

1. two types of evaluation functions: all “downhills” and all “uphills”;

2. two weights vectors: with linear and exponential decay of the weights;

3. every weights vector was reordered: e.g. 〈0.4;0.3;0.2;0.1〉would become 〈0.1;0.2;0.3;0.4〉.

To show the effectiveness of our approach to learn the opponent model and to use it to
find a good counteroffer the BOP learning technique was combined with a simple strategy
and integrated in a negotiating agent. The strategy used by the BOP agent is based on the
smart meta-strategy of [5]. The agent starts with proposing a bid that has maximal utility
given its own preferences. Each turn the agent can either accept the opponent’s bid or
send a counter-offer. The agent accepts a bid from its opponent when the utility of that
bid is higher than the utility of its own last bid or the utility of the bid it would otherwise
propose next. Otherwise, the agent will propose a counter-offer.

The basic idea of the smart meta-strategy is to propose a counter-offer that has the same
utility (lies on the same utility iso-curve) as the previous bid of the agent but improves the
utility of the opponent whenever possible. Formally, the strategy searches for a bid bt+1
that satisfies the following formula, in which uown denotes the agent’s own utility function
and τ denotes a target utility:

bt+1 = argmax
b∈{x||uown(x)−τ|≤δ}

ū(b) (4.20)

The set {x | |uown(x)− τ| ≤ δ} represents the utility iso-curve of bids that have the same
utility for the agent, (within a small interval [τ−δ ;τ +δ ]) but might have different utilities
for its opponent. The strategy selects a bid from the iso-curve that maximizes the expected
utility of the opponent. The bid bt+1 lies on the predicted Pareto frontier according to the
current opponent model. If it is not possible to find a bid that thus improves the utility of
the opponent, a concession step will be performed after performing smart steps (i.e. steps
that stay on the same iso-curve and try to improve the next bid for the opponent by using
the updated opponent model). The agents perform a concession step by decreasing the
target utility τ of their next bid by a fixed concession step c.

In all experiments after every update of a preferences model the ranking and the Pearson’s
quality measures were estimated as explained in Section 4.5.1. To measure efficiency of

103



the counteroffers generated by the BOP agents a distance to the Pareto frontier was cal-
culated. The distance was calculated as a difference in utility according to the opponent’s
utility function between the counteroffer generated by the BOP agent and the correspond-
ing offer on the Pareto frontier lying on the same iso-level in the opponent’s utility space.

In addition, to illustrate negotiation performance of the BOP learning algorithm as well
as the BOP agent on more realistic domains two sets of experiments were run using real
negotiation domains described in the negotiation literature: one based on a negotiation
domain with 4 issues taken from [5], and one based on a negotiation domain with 10 issues
taken from [19]. To compare the performance of the Bayesian learning approach, the
agents using opponent modelling were compared with agents using the Trade-off strategy
and the ABMP strategy. Two variants of BOP agents were tested: one with and one
without initial domain knowledge; the first to compare with the Trade-off strategy which
uses domain knowledge and the second to compare with the ABMP strategy which does
not. All agents played against the same opponent, which used the Trade-off strategy, to
be able to compare negotiation traces and results.

4.7 Experimental Results

First of all we check whether the BOP algorithm is able to learn in small domains. Figure
4.6 shows learning curves for the 4 and 6 issues domains averaged over all negotiation
domains. The horizontal axis represents negotiation rounds. Round 0 corresponds to the
initial state of the opponent model when it has not been updated yet and the distance
measures correspond to a model with uniform probability distribution assigned to the
hypothesis space. The initial ranking distance equals 0.5 meaning that at the beginning
in the current opponent model half of the rankings between outcomes drawn from the
complete outcome space is correct.

As expected, in all cases the ranking distance between the learned model and the original
opponent’s preference significantly decreases with every negotiation round. The BOP
algorithm learns the preferences of the opponent best when the opponent uses the TDT
strategy. In our experimental setup the TDT strategy uses linear concession tactics, which
is more consistent with the opponent tactics design choice made in the BOP algorithm
(see Section 4.3.2). The Trade-Off strategy uses semi-linear concession tactics. As a
result, the learning performance of the BOP algorithms in negotiations against Trade-
Off strategy is similar to the negotiations where opponent uses the TDT strategy. The
ABMP strategy uses non-linear concession tactics that explains a slightly worse learning
performance compared to the TDT and the Trade-Off strategy. The learning measure
is not monotonous for the ABMP strategy and increases to some extent at the end of
the negotiation due to accumulation of the difference between the size of the concessions
according to the opponent’s strategy model used by BOP and the actual concessions made
by ABMP. As expected, the BOP algorithm learns the opponent preferences slower in case
of the ZI negotiation strategy of the opponent. However, it is still capable of learning the
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opponent’s preferences to some extent.

The results for the Pearson distance show that the BOP algorithm is capable of learning
the cardinal values of the utility function. Note, that in general the Pearson distance is cor-
related with ranking distance for the proposed learning algorithm. This can be explained
by the nature of the hypothesis space of the learning algorithm. The algorithm calculates
opponent’s utility values of a bid as an expected value of a random variable. The ex-
pected value is a sum of the utilities according to the hypothesis weighted according to
their probabilities. Thus, even if the more detailed structure of the opponent’s preferences
is not learned by the agent the information learned can still be used to approximate the
utility function of the opponent as a linear combination of the set of all hypotheses. For
some strategies like the relative Tit-for-Tat-based strategy introduced in [4] it important
to accurately estimate cardinal values of the utility function of the opponent from the
opponent’s previous moves to calculate the agent’s own next move.
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Figure 4.6: Learning quality measures for BOP algorithm on the 4 issues (a),(b) and 6
issues (c), (d) domains

In general, the learning quality is better in smaller negotiation domains. This follows from
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a comparison of the BOP algorithm results on the 4 and 6 issues domains (see Figure
4.6). The same holds for the ScalableBOP algorithm (see Figure 4.7,4.8). Furthermore,
the slope of the learning curves is less steep meaning that it takes longer to learn a model.
This is explained by the fact that the bigger domain the more variables the algorithm has
to learn. Comparison of the BOP and ScalableBOP learning performance on the 4 and 6
issues domains shows that the design choices made in ScalableBOP to decrease compu-
tational complexity have a rather small impact on the accuracy of the learned model.
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Figure 4.7: Learning quality measures for ScaleableBOP algorithm on the 4 issues (a),(b),
6 issues (c), (d) domains

An important source for the “win-win” outcomes is the making of trade-offs between
less and more important issues. Therefore, to be useful the ScalableBOP learning algo-
rithm must be able to learn weights of the issues in opponent’s preference profile. Figure
4.9 shows learning quality measures for the weights (see Section 4.5.1 for details on the
quality measures for weights). The Pearson distance on Figure 4.9 shows that the Scal-
ableBOP algorithm is able to learn ranking of the weights as well as the cardinal values
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Figure 4.8: Learning quality measures for ScaleableBOP algorithm on the 8 issues (a),
(b), and 10 issues (c), (d) domains

of the weights. The more precise the absolute values of the weights the more accurate
the trade-offs between the issues are. Exact trade-offs allow a strategy to get closer to the
Pareto frontier in its offers. Apparently, BOP is an algorithm that enables strategies to do
so.

According to our requirement the BOP algorithm should not depend on the level of op-
position of the preferences of the negotiating parties. Figure 4.10 shows the relationship
between the quality of learning (vertical axis) and the opposition of the preferences (hor-
izontal axis) on the 4 and 6 issues domain. Every point represents the quality of learning
after 3rd round in a single negotiation session. From this we conclude that the distribution
of the points does not correlate to the opposition of the preferences. The level of the clus-
ters of the points depends only on the opponent’s strategy. The points are concentrated
mostly in the middle of the horizontal axis only due to the way the preference profiles
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Figure 4.9: Learning quality measures for weights for ScalableBOP algorithm on the 6
issues domain

were generated in the experimental setup.

Another interesting observation is that the learning algorithm approximates the absolute,
cardinal values of the utility function and weights quite well in domains with unpre-
dictable issues (see Figure 4.11). This can be explained by the nature of the hypothesis
space of the learning algorithm. The algorithm calculates opponent’s utility values of a
bid as expected values of a random variable. The expected value is a sum of the utilities
according to the hypothesis weighted according to their probabilities. Thus, even if the
more detailed structure of the unpredictable issues is not learned by BOP the information
learned can still be used to approximate the utility function of the opponent as a linear
combination of the set of all hypotheses.

The BOP as well as ScalableBOP algorithms can be initialized with a priori knowledge.
Such knowledge can be derived, for instance, from the negotiation domain knowledge,
e.g., a buyer would prefer to minimize the price issue or a seller would give the price
issue the highest priority over all other issues. This knowledge can be used to initialize
certain hypotheses with higher a priori probabilities. Non-uniform initial probability dis-
tributions where the hypotheses that are most likely to be correct have higher probability
would increase the learning speed and accuracy. Figure 4.12 shows the results of the ex-
periments in which the BOP algorithms were initialized with domain knowledge. Observe
that the initial distance between the learned opponent model and the original opponent’s
preferences is smaller than in cases with uniform initial probability distributions. This
means that already in the early rounds of negotiation the model of the opponent prefer-
ences has high quality. Furthermore, the ScalableBOP algorithm converges to a smaller
distance when domain knowledge is used.
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Figure 4.10: Distribution of the learning quality measures for the 3rd round.

Figure 4.13 shows learning quality curves for the BOP algorithm in the Employee-Employer
domain and the AMPO vs City domain. The results obtained on these domains are very
similar to that of the experimental setup with generated preference profiles. The learning
quality is better in the Employee-Employer domains due to high predictability of all issue
and smaller size when compared to the AMPO vs City domain. Despite the fact that the
AMPO vs City domain is large and has few unpredictable issues the learning quality is
still good.

To see the quality of the counteroffers generated by the BOP agent Table 4.1 shows av-
erage distance from the counteroffers to the Pareto frontier as explained in Section 4.6.
Obviously, the BOP and the ScalableBOP agents outperform all other strategies by gen-
erating offers much closer to the Pareto frontiers. There is some decay in the closeness

109



0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10

Negotiation round

Ranking distance, 6 issues

0 1 2

3 4 5

(a)

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Negotiation round

Pearson distance, 6 issues

0 1 2

3 4 5

(b)

Figure 4.11: Learning quality measures for 6 issues domain with various numbers of
unpredictable issues.

Number of
issues

Strategy
ABMP Trade-Off TDT ZI BOP ScalableBOP

4 0.32 0.15 0.35 0.45 0.03 0.06
6 0.29 0.18 0.33 0.52 0.04 0.08
8 0.36 0.24 0.34 0.54 n/a 0.11

10 0.38 0.26 0.34 0.53 n/a 0.13

Table 4.1: Average distance from the counteroffers to the Pareto frontier

of the counteroffers to the Pareto frontier in the large domains due to the decrease of the
quality of learning as explained earlier.

To illustrate the impact of the BOP learning algorithm on the efficiency of the offers
generated with its help two domains described in the negotiation literature were used. In
the first domain, the setting is that of an employee and an employer who negotiate about a
job assignment and related issues such as salary [20]. An interesting aspect of this domain
is that both parties have the same preferences with regards to one of the issues. Figure
4.14 shows some results of the experiments with the Bayesian agent using BOP learning
algorithm and other negotiation agents, including the resulting negotiation traces as well
as the Pareto efficient frontier. The agreements reached are also marked explicitly. Table
4.2 shows average distance from the counteroffers to the Pareto frontier for all negotiation
traces.

In this domain, the BOP agents very efficiently learn issue weights when they are provided
with domain knowledge, indicated by the fact that the negotiation trace almost coincides
with the Pareto frontier. But even without domain knowledge the BOP agent needs little
time to learn the issue evaluation functions and consecutively improves the weight esti-
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Figure 4.12: Learning quality measures for 6 issues domain with and without domain
knowledge

Domain

Strategy
ABMP TradeOff TDT ZI Without dom.know. With dom.know.

BOP SclBOP BOP SclBOP
Employment 0.31 0.16 0.32 0.43 0.03 0.07 0.02 0.05
AMPOvsCity 0.35 0.19 0.34 0.51 n/a 0.11 n/a 0.08

Table 4.2: Average distance from the counteroffers to the Pareto frontier for the
Employer-Employee and AMPO vs Ciuty domains

mations. As a result the counteroffers generated by the BOP agents are close to the Pareto
frontier. The Trade-off strategy, which uses domain knowledge but simply assumes that
issue priorities are uniformly distributed, makes a number of unfortunate steps in this
domain due to the fact that the parties consider different issues to be important. The
counteroffers of the Trade-Off strategy have larger distance to the Pareto frontier than the
BOP’s counteroffers. Finally, the ABMP strategy is clearly outperformed by the strategy
using Bayesian learning (see Figure 4.14 and Table 4.2 and almost uniformly concedes
on all issues without considering the opponent’s weights. ABMP lacks the capability of
trading-in less important issues for more important ones. Since the Trade-off strategy is
influenced by the efficiency of the opponent’s strategy, it performs less efficient against
the ABMP strategy. Note that only the Bayesian agents were able to reach an agreement
close to the Pareto efficient frontier.

For the ScalableBOP a larger domain is used: the AMPO vs. City domain of [19], which
consists of 10 issues, 5 values in average each (total of 7,128,000 possible outcomes).
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Figure 4.13: Learning quality measures for the Employer-Employee domain (a), (b) and
the AMPO vs City (c), (d)

The results on this domain presented in Figure 4.15 show, as is only to be expected, that it
becomes harder to stay close to the Pareto efficient frontier. The Bayesian learning agents
stay a bit closer to the Pareto frontier than the agent based on the Trade-Off strategy.
The ABMP strategy shows similar behaviour as on the earlier negotiation domains, and
is outperformed by the other strategies. Also, note that the agreement reached by the
Bayesian agents has a higher utility than that reached by the other strategies and that both
the Bayesian agent without domain knowledge as well as the Trade-off agent make quite
big unfortunate steps.
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Figure 4.14: Negotiation dynamics for the Employee-Employer domain

Figure 4.15: Negotiation dynamics for the AMPO vs. City domain

4.8 Conclusions

In this paper, an opponent modelling framework for bilateral multi-issue negotiation has
been presented. The main idea proposed here to make opponent modelling in negotiation
feasible is to assume that certain structural requirements on preference profiles and on the
strategy of an opponent are in place. Due to the probabilistic nature of the model, these
assumptions still allow for a great diversity of potential opponent models.

To test the learning approach a method for the analysis of the learning quality of opponent
preference profiles in automated negotiation was proposed. The method consists of three
components: (i) It uses distance measures between the actual preference profile of the op-
ponent and the learned preference profile to assess the quality of the learned model; (ii) it
proposes criteria for the systematic classification of negotiation domains and preferences
profiles to assess the impact of a variety of domains on the quality of the learned model;
and (iii) it proposes some criteria to select a set of negotiation strategies.

The results of applying the proposed method to the BOP algorithm show that it is capable
of learning the most important aspects of an opponent’s profile in a single negotiation
session, i.e., ranking of the weights of the issues and approximations of the evaluation
functions per issue. The quality of learning in the proposed learning algorithm does not
depend on the opposition of the preference profiles of negotiation parties. Therefore, the
opponent profiles can range from cooperative to competitive.
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The algorithm uses hypotheses about evaluation functions of issues used by the opponent
based on their predictability. The quality of the learned profile improves along with the
number of predictable issues. However, in negotiation domains with many unpredictable
issues the BOP algorithm is still able to learn the opponent’s preferences to some extent
due to the approximative power of the proposed types of hypotheses.

The learning algorithm is robust in learning the profiles with respect to the opponent
strategy. This holds for the e-negotiation strategies existing in the literature, as wells as
for a number of specific strategies designed to challenge the learning algorithm, such as
Zero Intelligence.

The learning approach does not rely on prior knowledge about e.g., the domain, but if
such knowledge is available it can be incorporated and used to initialize probability dis-
tributions in the opponent model. Domain knowledge is useful to increase the efficiency
of learning a correct opponent model in the scalable learning algorithm proposed. One
interesting line of future research is to test and initialize the learning algorithm for specific
domains with an “average preference profile” derived from (large sets) of negotiator pro-
files for that domain. It is expected that performance of the algorithm on specific domains
can be further enhanced. We are currently setting up an experiment to collect preference
profiles for a negotiation domain and will test how our learning algorithm performs when
it is initialized with such an aggregated profile.

The size of the hypotheses space in the standard algorithm is exponential in the number
of issues. As such, the standard algorithm is not scalable with respect to the number of
issues. Therefore, we developed and tested a simplified version of the algorithm, called
ScalableBOP in which the number of hypotheses is linear. The difference is that the
probability per hypothesis for one issue is updated independently of the probabilities for
the other hypotheses. The speed of the learning and the final quality of the learned profile
is less for ScalableBOP, but the effect is still highly significant.

The learning algorithm BOP deployed in BA can be integrated with any negotiation strat-
egy that uses an opponent preference profile. The BA agent combines BOP with the Smart
strategy of [5]. The results of using BA in a negotiation setting showed the effectiveness
of using an opponent model in a negotiation strategy to improve the efficiency of the bid-
ding process. We also discussed how to create QO-BOB that integrates BOP into the QO
agent of [13].

In future work we will further investigate the expressiveness of the hypotheses space used
in BOP to represent the opponent’s preferences model and enable learning of more com-
plex evaluation functions of an issue. Simply extending the hypotheses space by adding
new types of evaluation functions is not a good solution because this would dramatically
increase the size of the space. Various classes of functions that have been successfully
used in approximation theories are good alternative candidates for learning the opponent’s
preferences.

An interesting direction for future work is to study the quality of learning of BOP on
negotiation domains with interdependent issues. In such domains, the value of one issue
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can influence the evaluation of another issue. Interdependencies between issues increase
the complexity of the learning task. However, we believe that the BOP learning algorithm
can handle some of the domains with interdependencies because in real-life cases a profile
can be modeled by utility functions that are far from “wild” and they have a structure that
can be captured by the hypotheses space of BOP. Furthermore, we would like to inves-
tigate how the hypotheses space can be extended to improve learning of the opponent’s
preferences in negotiation domains with interdependent issues.

In future we plan to integrate BOP in our negotiation support system the Pocket Negotiator
that offers bidding advice to human negotiators. A model of the opponent’s preferences
learned by BOP can be used to improve efficiency of the human’s offers finding an alter-
native offer that would dominate the human user’s offer. In real-life negotiations a domain
is not fixed during negotiation and new issues can be discovered by joint exploration of
the negotiation space. Therefore, in future we plan to design an adaptable version of BOP
that can handle a change in the number or structure of issues.

The BOP algorithm can be initialized with a priori knowledge about the most proba-
ble preferences in a specific negotiation domain. In some cases such knowledge can be
learned from previously stored negotiations. Clustering techniques can be applied to the
opponent’s model learned by BOP to find typical opponent profiles for a specific domain,
and recurring themes over domains. The Pocket Negotiator can store such opponent pro-
files in a repository that can be used in future in case of a recurrent negotiation with the
same opponent or with a different opponent in the same domain.
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Chapter 5

The Benefits of Opponent Models in
Negotiation

Abstract. Information about the opponent is essential to improve automated negotiation
strategies for bilateral multi-issue negotiation. In this paper we propose a negotiation
strategy that exploits a technique to learn a model of opponent preferences in a single
negotiation session. An opponent model may be used to achieve at least two important
goals in negotiation. First, it can be used to recognize, avoid and respond appropriately to
exploitation, which differentiates the strategy proposed from commonly used concession-
based strategies. Second, it can be used to increase the efficiency of a negotiated agree-
ment by searching for Pareto-optimal bids. A negotiation strategy should be efficient,
transparent, maximize the chance of an agreement and should avoid.exploitation. We
argue that the proposed strategy satisfies these criteria and analyze its performance exper-
imentally.

5.1 Introduction

In bilateral negotiation, two parties aim at reaching a joint agreement, by exchanging
various offers using e.g. an alternating offers protocol. Two basic, constitutive facts about
negotiation define the basic dilemma each negotiator has to face: (1) each party aims to
satisfy its own interests as best as possible, but (2) in order to reach an agreement one has
to take ones opponent’s preferences into account as well.

In the literature on automated negotiation, typically, concession-based strategies have
been proposed. An agent that uses a concession-based strategy selects as the next of-
fer it will make an offer that has a decreased utility compared with the last offer made.
The utility that is being decreased is the utility from the agent’s own perspective without
any guarantee that such a decrease will also increase the utility from the other party’s per-
spective. A well-known example of such a strategy is the time-dependent strategy which
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decreases utility simply as a function of time [3]. Although motivated by fact (2) above,
such strategies do not explicitly take the opponent’s preferences into account, and, as a
result, will most likely be inefficient in complex negotiation domains. Moreover, time-
dependent strategies can be exploited by the other negotiating party and as such do not
adequately take fact (1) above into account.

The solution to these problems is to explicitly take the preferences of an opponent into
account. The benefits of doing so are that it enables a search through the outcome space
for outcomes that are mutually beneficial and that it allows classifying and recognizing
the type of move an opponent has made. In order to do so, two key questions need to be
addressed: How can an agent obtain information about opponent preferences? And: How
can an agent exploit information about opponent preferences effectively?

In this paper we consider single session negotiations, i.e., negotiators cannot learn from
repeated sessions with the same opponent. As negotiators typically are not willing to
reveal their preferences to avoid exploitation, information about opponent preferences
needs to be obtained from the behaviour of that opponent. The first question is addressed
by means of opponent modelling techniques, several of which have been proposed, see
e.g. [2, 11]. We use a technique based on Bayesian learning here that is able to effectively
learn opponent preferences during a single negotiation session [6]. This paper shows
how opponent preferences can be strategically exploited in negotiation. It is organized
as follows. Section 5.2 discusses related work. In Section 5.3 a design of a negotiation
strategy that explicitly uses opponent preferences is introduced. The theme of Section
5.4 is the algorithm of the proposed negotiation strategy. Its effectiveness is validated in
Section 5.5 by way of experimental results. Section 5.6 concludes the paper.

5.2 Related Work

In this Section we first discuss related work on negotiation strategies, and then we briefly
discuss related work on learning and introduce the technique we used in our experiments.

The literature on negotiation strategies is extensive and we only discuss some examples
to illustrate the variety of ideas that have been proposed to design such strategies. In [3] a
range of decision functions that may be used to define a negotiation strategy are discussed,
focussing on different aspects that may be relevant in a negotiation such as time and the
behaviour of an opponent. As no single tactic or decision function seems to be “right”
in arbitrary negotiation settings, an approach proposed in [9] aims at combining different
types of such negotiation tactics from [3] in a single strategy. An evolutionary algorithm is
used to compute a next offer that adjusts the weights associated with each of the individual
tactics. This approach is not suitable for the one-session closed negotiation situation we
are focussing on. To begin with it requires a substantial number of negotiations to learn
appropriate weights associated with the tactics. Moreover, the preference profiles of both
parties must be made public in order to calculate the fitness during the learning phase. As
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a result, the weights learned to combine the strategies only yield efficient negotiations in
negotiation setups that are one-session and closed.

The negotiation strategy of [4] can be used in one-session closed negotiation setting. It
postpones concessions by using domain knowledge to offer bids that increase the utility
(and thus acceptability) for the opponent without decreasing the utility associated with
the offer for the agent making the offer. Such offers increase the chances of a proposed
trade-off that is good for both parties. Nevertheless, this strategy concedes even if the
opponent does not.

The concession-based negotiation strategy of [8] determines the size of its next concession
mainly on the basis of the utility gap between the last bids of the agent and the opponent.
The next bid configuration, however, is based purely on the agent’s own preference profile
and thus reaches no win-win outcomes. Its time-dependent nature means that it can be
exploited by the opponent.

To tackle the problem of exploitation, in [3], a number of variants of Tit-for-Tat tactics
are discussed that belong to the family of so-called behaviour-dependent tactics. These
tactics, however, do not use an opponent model and only vary utility of the agent’s own
perspective consistently. These tactics thus are blind to the preferences of an opponent.
The behaviour generated by such a tactic therefore is not transparent and may be hard
to understand from the opponent’s point of view. With Axelrod [1984], we consider
transparency an important feature of any strategy, which has motivated the design of the
strategy introduced here. Transparency may be achieved by using available knowledge
about the preference profile of the opponent, as explained in Section 5.3.

Various approaches to learning in a negotiation context have been based on forms of
Bayesian learning, e.g. [6, 11]. For the negotiation situations we are focusing on, we
need a technique that is able to learn the opponent profile during one session, such as the
Bayesian learning technique introduced in [6], which we chose as a building block in this
paper.

5.3 Negotiation Strategy Design

The preferences of an opponent can be used in at least two ways. First, it can be used to
propose efficient Pareto-optimal offers. Finding such offers requires that the Pareto fron-
tier can be approximated which is only feasible if a reasonable model of the opponent’s
preferences is available. Second, it can be used to recognize and avoid exploitation. The
strategy we propose is inspired by a classification of negotiation moves as described in
[5] and the Tit-for-Tat tactic, discussed in [1] and - in a negotiation context - in [3]. As
learning techniques will not provide perfect models of an opponent’s preferences a strat-
egy should be robust with respect to such imperfections. We return to this last point in the
Section 5.5. The design of the negotiation strategy proposed in this paper is based on a
number of observations and criteria that we want the strategy to satisfy. The main criteria
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are that the strategy should be efficient, transparent, maximize the chance of an agreement
and should avoid exploitation.

Figure 5.1: Classification of negotiation moves

The first observation relevant to the design of our strategy is that the availability of infor-
mation about the preferences of an opponent enables an agent to classify the moves its
opponent makes. Here, we use a classification of moves proposed in [5] and illustrated in
Figure 5.1. The move classification is presented from the perspective of agent A.

Given that agent A’s last offer is marked by the arrow “Current Bid of Agent A”, the agent
has a number of choices for making a next negotiation move. A silent move does not
change utility of either party significantly. A concession move decreases own utility but
increases the utility of the opponent. A fortunate move increases utility for both parties
whereas an unfortunate move does the opposite. Note that a fortunate move can only be
made if the current bid is not already on the Pareto frontier. A selfish move increases own
utility but decreases the opponent’s utility. Finally, a nice move increases the opponent’s
utility but does not change the agent’s own utility.

Based on this classification a simple suggestion would be to “mirror” each move of an
opponent by making a similar move, which would implement a Tit-for-Tat-like tactic.
The basic idea of a Tit-for-Tat strategy in a multi-issue negotiation context would be to
respond to an opponent move with a symmetrical one. That is, “match” the move as
depicted in Figure 5.2 by mirroring it in the diagonal axis.

First note that each type of move would indeed result in a response move in the same
class. In particular, responding to a concession move of the opponent with a concession
move itself arguably is one of the most reasonable responses one can make. All rational
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Figure 5.2: Classification of negotiation moves

negotiation strategies will attempt to make concession moves at some point during a ne-
gotiation. Moreover, the “mirroring” strategy would avoid exploitation as a selfish move
of the opponent would result in a selfish response move. Such a response would be a
signal to the opponent: “I am prepared to make a concession towards you only if I get
something in return. If you pull back I’ll do the same”.

A mirroring strategy would, however, be too simplistic for several reasons. A mirroring
strategy is not rational in the case of an unfortunate move, as there is no reason to decrease
the agent’s own utility without increasing the chance of acceptance of the proposed bid by
the opponent. Furthermore, observe (compare Figure 5.2) that unfortunate moves move
away from the Pareto-optimal frontier, and thus would not satisfy our efficiency criteria.

In order to remove these deficiencies, we propose to first mirror the move of the opponent
and thereafter make an additional move towards the Pareto frontier, i.e. a move towards
the approximated Pareto frontier that is computed using the learned opponent model and
the agent’s own preference profile. There are multiple ways to do this and the choice is
not straightforward. What is clear is that the move towards the Pareto frontier should not
further decrease the agent’s own utility as this would invite exploitation tactics. Further-
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more, it also does not seem rational to further decrease the opponent’s utility as this would
result in selfish moves to arbitrary moves of the opponent.

The final observation that motivated our choice is that increasing the agent’s own util-
ity by moving towards the Pareto frontier actually minimizes the chance of reaching an
agreement when this strategy would be used by both parties, which would violate one of
our design criteria for a negotiation strategy. To explain this, consider two agents that
would mirror an opponent’s move and then, seen from the perspective of Agent A in Fig-
ure 5.2, would move straight up towards the Pareto frontier (Agent B would move right)
which would only increase own utility. The other agent in this case would consider such
a move a selfish move and respond similarly, thereby minimizing the chance of reaching
an agreement. Of course, this line of reasoning depends on the quality of the opponent
model but presents a real problem. To resolve it, the strategy we propose only increases
the opponent’s utility when moving towards the Pareto frontier in order to maximize the
chance of an agreement. The resulting strategy consists of two steps: first mirror the move
of the opponent and then add a nice move to propose an efficient offer (i.e., search for a
bid on the approximated Pareto frontier that is on the same iso-curve as the bid obtained
by mirroring, see Figure 5.2). This strategy we call the Mirroring Strategy (MS).To gain
a better understanding of MS, it is instructive to discuss some of the response moves MS
generates. Figure 5.2 shows examples of responses to an unfortunate, selfish concession
and fortunate move. The response to an unfortunate move is to mirror this move and
add a nice move, which results in a concession move (see Figure 5.2a). This is a rea-
sonable reply as such a move may be interpreted as an attempt (that failed) to make a
concession move by the opponent (due to the lack of information about the preferences
of its opponent). Such a move which is the result of misinformation should not be pun-
ished, we believe, but an attempt instead should be made to maintain progress towards an
agreement.

The response to a selfish move either results in a fortunate move or in a selfish move.
Figure 2b shows the case resulting in a fortunate move. It should be noted that a fortunate
move is only possible if the previous move the agent made was inefficient. This means
that in that case the opponent model must have misrepresented the actual preferences of
the opponent. In such a case, where our previous move was based on misinformation,
we believe it is reasonable to not punish the opponent with a selfish move and give the
opponent the benefit of the doubt in such a case. If, however, the previous move would
have been efficient, a selfish move most likely would be replied to with a selfish move
(since there would be no room to make a nice move towards the Pareto frontier), and it is
reasonable to send a clear signal to the opponent that such moves are unacceptable.

Finally, both a concession move as well as an unfortunate move of the opponent would
be replied to with the same type of move (see Figure 5.2c and 5.2d). Moreover, if there is
room for a nice move towards the Pareto frontier, in both cases the step would be bigger
than that made by the opponent, increasing the utility of the opponent even more and
thereby again increasing the chance of acceptance as early on in a negotiation as possible.

As discussed, a negotiation strategy should be efficient, transparent, maximize the chance
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of an agreement and should avoid exploitation. It is clear that MS aims to be as efficient
as possible, which only depends on the quality of the learning technique for modelling op-
ponent preferences. Performance of the learning algorithm used in MS was studied in [7].
The study concludes that the learning algorithm can learn the most important aspects of
the opponent preferences in a range of negotiation settings. MS does not aim at exploiting
the weaknesses of an opponent strategy. Instead it aims for restoring efficiency whenever
an opponent strategy is not able to do so and aims at a fair outcome (see also Section 5.5
below). MS is transparent as it is proposes a simple response strategy by mirroring an
opponent’s move and then adding a nice step. The signals thus send by negotiation moves
are easy to interpret by an opponent. In particular, MS only punishes an opponent in reply
to a selfish move and only does so when the model of opponent preferences matches the
actual preferences of that opponent. As a result, MS not only avoids exploitation but also
is a nice strategy. MS is nice even when an opponent makes unfortunate moves which are
interpreted as “mistakes” on the opponent’s part. The strategy moreover maximizes the
chance of an agreement as early as possible, which is achieved by the move towards the
Pareto frontier that always maximizes the utility of the opponent relative to a particular
utility for the agent itself.

5.4 Matching Strategy Algorithm

Here we present the MS strategy in 6 algorithmic steps, including the steps needed for
learning an opponent model. The algorithm is presented in Figure 5.3. As is usual,
MS starts by proposing a bid that has maximal utility with respect to the agent’s own
preference profile (step 1). In step 2 a simple but reasonable acceptance strategy is used
which is not particular to MS. A bid from an opponent is accepted when the utility of that
bid is higher than that of the agent’s own last bid or the utility of the bid it would propose
next. Otherwise, the agent will propose a counter-offer. In step 3, the bid received from
the opponent is used to update the opponent model with the function Ũ(ω) of [4]. Steps
4, 5 and 6 define MS. Step 5 mirrors an opponent’s move, after which step 6 determines a
nice move towards the Pareto frontier (given the opponent model computed in step 3).

Note, that in the beginning of a negotiation the model of the opponent preferences is
inaccurate because it has not been updated yet. However, this is not crucial at this stage of
the negotiation given that both agents would start by offering a bid with the highest utility
for themselves that is the most rational choice. The initial offer of the opponent is used
to make the first update of the opponent model. The second move of the MS strategy can
only be a concession or an unfortunate move because the initial offer cannot be improved
for either player and, therefore, the other classes of moves are not possible. In this case the
size of the first concession in the opponent’s utility would be determined by the efficiency
of the learning technique. Given the fact that MS always tries to maximize the opponent’s
utility it will try to make a concession move, thus signalling to the opponent its readiness
to proceed in the same manner.
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Figure 5.3: Matching Strategy algorithm
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Domain
Utility spaces

Domain size
Number of

Ranking Pearson predictable
AMPO vs. City 0.662 -0.482 7,128,000 3 (10)
Party 0.540 -0.126 3,125 0 (5)
SON 0.669 -0.453 810,000 4 (4)
2nd hand car 0.635 -0.387 18,750 1 (5)
Employment contract 0.698 -0.584 3,125 5 (5)

Table 5.1: Summary of the negotiation domains

The MS strategy is developed to avoid exploitation by the state-of-the-art rational strate-
gies and tries to match the opponent’s moves in a transparent way as it is defined by the
design criteria. The MS strategy is experimentally tested in a tournament setting against
such strategies (see Section 5.5). To prevent exploitation by irrational strategies we use a
reservation value to limit the concessions made by the MS strategy. The reservation value
is defined in the user’s preference profile and represents a utility value below which all
bids are unacceptable for the agent.

5.5 Experimental Analysis

We test the efficiency of the MS strategy in an experimental setup, in which the MS
strategy negotiates against automated negotiation strategies available in the literature and
against human negotiators. Furthermore, this Section shows that the MS strategy con-
structed results in a fair agreement for both parties.

The AMPO vs City domain [10] is the largest domain in our test. The Party domain
developed by us is small with rather cooperative preference profiles. Humans tend to
perform well on this domain. The Service-Oriented Negotiation (SON) domain was taken
from [4]. The Employment contract negotiation domain was taken from [9]. The 2nd hand
car domain was taken from [8].

Besides MS four other strategies were used. The Zero Intelligence (ZI) strategy randomly
proposes bids above its break-off point, which was set to 0.6 in the tournament. It is
difficult for the ZI strategy to achieve a better agreement than its break-off point and any
effective negotiation strategy should be expected to at least outperform it. We use the ZI
strategy as a baseline. It also provides a good test case for any learning technique. Details
about the ABMP strategy can be found in Section 5.2 and in [8], for the Trade-off strategy
in [4] and Section 5.2. The Bayesian Smart strategy is similar to the Trade-off strategy
but uses the Bayesian learning algorithm from [6] to model opponent preferences. As the
same learning algorithm has been used by MS, the Bayesian Smart strategy can be used to
compare performance of MS with that of the Bayesian Smart. To analyze the robustness
of MS in negotiations against humans an experiment was setup in which 42 subjects first
negotiated face-to-face and then negotiated against MS that used the same profile as the
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human opponent in the first session. The Party domain was used for the experiment. The
human subjects were able to familiarize themselves with a negotiation environment used
in the experiment and practice on other domains.

For every negotiation domain and preference profile, the utilities of agreements obtained
by a strategy against all other strategies in the tournament were averaged. The ZI strategy
was used as a baseline. Table 5.4 reports the percentage increase compared to the average
utility of this strategy.

 
ABMP Trade-Off

Bayesian
Smart NMS

Car 16% 12% 13% 14%
Party domain 13% 9% 13% 14%
Service Oriented 14% 17% 25% 38%
AMPO vs City 10% 13% 14% 20%
Employment contr. 11% 40% 44% 47%

Negotiation Domain
Negotiation Strategy

Figure 5.4: Utility increase relative to the ZI strategy

MS shows improved performance compared with the benchmark Bayesian Smart strategy
on all domains. The main reason is that MS is more robust since it matches the moves of
its opponent and does not concede more than its opponent. The results show that on all
domains MS outperforms the other strategies, except for the 2nd hand car domain where
ABMP performs best. The differences on this and the Party domain are not big for all
strategies.

The most significant improvement compared to ZI is achieved in the Employment contract
domain. This domain is relatively small and issues are predictable. Learning an opponent
model is relatively easy, and important in this domain as it contains compatible issues
(i.e., both agents have similar preferences with regard to such an issue).

The results on the SON and AMPO vs City domain are comparable to that of the Em-
ployment domain. It is more difficult to reach efficient agreements in the SON domain as
this domain is bigger and the variation of issue importance is much bigger. The perfor-
mance of MS on the AMPO vs City domain is not as good mainly due to the decreasing
performance of the learning technique in domains of high dimensionality. The improve-
ment over the benchmark Bayesian Smart strategy is still significant in both these do-
mains which shows that MS is a robust strategy even when the model of the opponent’s
preferences is not very good. Improvement is caused by the fact that MS tries to match
the opponent’s moves, which, at least with respect to own utility it is always able to do.
Therefore, even if the quality of the learned model is low as it is e.g. in the AMPO vs City
domain, MS unlike the Bayesian Smart strategy will concede only if the opponent does
so too.

To analyze the robustness of MS more precisely we consider the results on the SON do-
main as shown in Table 5.5. The quality of learning is high in this domain and, therefore,
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is a good choice to test the robustness of MS against various strategies. Table 5.5 lists
average utility values of the agreements reached for each party in the tournament on the
SON domain. We have used the standard deviation of these utilities as a measure of the
robustness of MS. The average utility value of agreements is high and the deviation of
the utility of agreements is lower for MS than other strategies, which confirms that MS is
more robust and more difficult to exploit than these strategies.

The technique used by the Trade-Off strategy to match the opponent’s preferences strongly
depends on the efficiency of the strategy used by the opponent, see [5]. E.g., the Trade-
Off strategy is not able to find Pareto efficient offers in settings where it negotiates against
less efficient strategies such as the ABMP and the ZI strategy. As a result, the utility of
outcome reached by the Trade-Off strategy is in average higher than that of the ZI and
ABMP strategy, but its deviation is relatively high (see Table 5.5). The learning technique
used in the MS strategy, on the other hand, does not depend on the efficiency of the op-
ponent’s strategy (see [7]) and, therefore, is able to achieve better results in negotiations
against the ZI and the ABMP strategy.

 ZI ABMP Trade-Off Bayesian NMS
Smart

Average 0.574 0.657 0.726 0.748 0.769
Std. dev. 0.056 0.079 0.103 0.023 0.020
Average 0.519 0.657 0.652 0.800 0.805
Std. dev. 0.030 0.066 0.134 0.044 0.043

Agent A

Agent B

Role Utility 
Statistics

Figure 5.5: Utility of agreement in the SON domain

Furthermore, we report on the performance of MS in an experiment with humans. The
performance of MS in an experiment with human subjects also shows it is a robust strat-
egy. Human subjects were not able to exploit NMS on the Party domain. Overall human
performance was very good and close to the Pareto frontier due to simplicity the domain.
Even so the humans had an advantage of training in the first face-to-face negotiation
session, still MS managed to improve average utility with 5%, whereas in 30% of the
experiments the increase in utility was larger than 5%.

Finally, as MS tries to match the moves of an opponent, it is reasonable to assume that
MS typically tends to result in a fair outcome. This hypothesis is confirmed by Table 5.6,
which shows that the agreements reached by MS are, on average, closer to the Nash and
Kalai-Smorodinky solutions on all domains. The results also show that MS prefers the
Kalai-Smorodinsky over the Nash solution.
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ZI ABMP 
Trade-Off Bayesian 

Smart NMS  

Car 0.20 0.13 0.12 0.12 0.11 
Party domain 0.23 0.15 0.13 0.12 0.12 
Service Oriented 0.25 0.23 0.16 0.14 0.11 
AMPO vs City 0.20 0.15 0.13 0.13 0.12 
Employment contr. 0.26 0.26 0.14 0.14 0.14 

Car 0.19 0.15 0.14 0.14 0.13 
Party domain 0.20 0.19 0.15 0.13 0.13 
Service Oriented 0.26 0.26 0.19 0.17 0.16 
AMPO vs City 0.23 0.24 0.20 0.18 0.17 
Employment contr. 0.26 0.26 0.14 0.14 0.14 

Negotiation Domain 
Negotiation Strategy 

Distance to Kalai-Smorodinsky solution 

Distance to Nash Point 

Figure 5.6: Utility of agreement in the SON domain

5.6 Conclusions

The Nice Mirroring Strategy introduced here shows that two important goals in closed
multi-issue negotiations can be achieved when a reasonable estimate of the preferences of
an opponent is available. Using a learning technique to obtain such an opponent model, it
is possible to increase the efficiency of the negotiated agreement and to avoid exploitation
by the other party.

The design of MS has been based on a classification of negotiation moves developed
for the analysis of negotiation strategies, see [5]. MS satisfies several design criteria
we believe are important for any negotiation strategy. A negotiation strategy should be
efficient, transparent, maximize the chance of an agreement and should avoid exploitation.
MS has been shown to be efficient and fair as it is biased towards the Kalai-Smorodinsky
solution. MS is transparent as it is proposes a simple response strategy by mirroring an
opponent’s move and then adding a nice step, i.e. a move over the utility iso-curve towards
the Pareto frontier. In fact, MS is a “nice” strategy as it will only punish an opponent
in reply to a selfish move and only does so when the model of opponent preferences
matches the actual preferences of that opponent. The strategy moreover maximizes the
chance of an agreement as early as possible, which is achieved by the move towards the
Pareto frontier, that always maximizes the utility of the opponent relative to a particular
utility for the agent itself. The effectiveness of MS has been validated experimentally in
a tournament setup, using domains of different characteristics and a number of different
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negotiation strategies. The results show that MS is able to realize significant increases
in utility. In future work, we plan to investigate the exploitability of strategies and in
particular MS. An important related theme for future work concerns acceptance criteria
used by negotiation strategies.
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Chapter 6

Qualitative One-to-Many Multi-Issue
Negotiation: Approximating the QVA

Abstract. When there is one buyer interested in obtaining a service from one of a set
of sellers, multi-attribute or multi-issue auctions can ensure an allocation that is efficient.
Even when there is no transferable utility (e.g., money), a recent qualitative version of the
Vickrey auction may be used, the QVA, to obtain a Pareto-efficient outcome where the
best seller wins. However, auctions generally require that the preferences of at least one
party participating in the auction are publicly known, while often making this information
public is costly, undesirable, or even impossible. It would therefore be useful to have a
method that does not impose such a requirement, but is still able to approximate the
outcome of such an auction.

The main question addressed here is whether the Pareto-efficient best-seller outcome in
multi-issue settings without transferable utility (such as determined by the QVA) can be
reasonably approximated by multi-bilateral closed negotiation between a buyer and mul-
tiple sellers. In these closed negotiations parties do not reveal their preferences explicitly,
but make alternating offers. The main idea is to have multiple rounds of such negotiations.
We study three different variants of such a protocol: one that restricts the set of allowed
offers for both the buyer and the seller, one where the winning offer is announced after
every round, and one where the sellers are only told whether they have won or not after
every round. It is shown experimentally that this protocol enables agents that can learn
preferences to obtain agreements that approximate the Pareto-efficient best-seller outcome
as defined by the auction mechanism. We also show that the strategy that exploits such
a learning capability in negotiation is robust against and dominates a Zero Intelligence
strategy. It thus follows that the requirement to publicly announce preferences can be
removed when negotiating parties are equipped with the proper learning capabilities and
negotiate using the proposed multi-round multi-bilateral negotiation protocol.
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6.1 Introduction

In a procurement setting in which a buyer faces several sellers an auction may provide
an effective mechanism to reach an agreement. Auctions may also be used when the
outcome that needs to be reached is complex and consists of multiple issues that need to be
settled, such as when a Request For Quote (RFQ) is issued by a corporation or government
organization [19, 20]. A bid in such a reverse auction may involve, for example, the
desired quality of service, the quantity demanded, the terms and time of delivery, and so
forth. Such a setting with one buyer and multiple sellers (i.e., a reverse auction) is used
throughout this paper, but all results directly transfer to a forward auction with one seller
and multiple buyers as well.

The various types of auctions have desirable theoretical properties such as yielding an
efficient outcome and being strategy-proof. However, some of these mechanisms impose
requirements which are not easy to meet in practice. One of these requirements generally
associated with (reverse) auctions is that the preferences of the buyer have to be known by
all bidders. This requirement is often not realistic in practice. First of all, the explicit elic-
itation of a buyer’s value function may be difficult [2]. Even modeling such preferences is
a very complex problem, and very relevant in the context of auctions [19]. The buyer may
not know the complete domain of possible outcomes as sellers may come up with new
options during the process, and it usually is very hard to specify preferences completely
over a complex and possibly infinite set of outcomes. This is particularly true for auctions
that are used to settle multiple issues, e.g., related to an RFQ. Finally, the buyer may not
want to publicly reveal his preferences to the extent required by multi-issue auctions. It
may be disadvantageous to do so given that it is not unlikely that future encounters with
similar parties will take place.

In negotiations, on the other hand, the preferences of one party are only partially revealed
to the other in the course of the process. However, in settings where one buyer may make a
choice among a set of sellers, the competitive aspect is not explicitly taken into account in
negotiation protocols. In recent work on multiple (parallel) bilateral negotiations [14, 17,
13], this is partly taken care of by informing all other sellers when a provisional agreement
is reached in one of the negotiation sessions. However, when other sellers improve upon
this outcome, the seller who has reached the first agreement does not get any opportunity
anymore to improve upon this. Such negotiation protocols consequently may often lead
to inefficient agreements.

It thus becomes interesting to look for alternative methods that may be used that guaran-
tee outcomes that approximate the efficient outcome of an auction mechanism. The prob-
lem we study in this paper is whether alternative mechanisms based on multiple bilateral
(also called multi-bilateral) negotiations can be used to reduce the preference information
that needs to be made public but that also retain some of the desired theoretical proper-
ties such as efficiency of agreements as guaranteed by the auction mechanism. Studying
mechanisms based on multilateral negotiations is interesting in its own right [21], but
also because their relationship to various auction formats has implications for institu-
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tional design. Studying the factors that relate and differentiate auctions from negotiation
mechanisms may lead to a more informed selection of a transaction mechanism.

In this paper, we consider a particularly interesting instance of this more general one-
to-many multi-issue allocation problem where there is not necessarily the possibility to
transfer utility (such as when the government announces a fixed budget in a RFQ).1 With-
out transferable utility, most of the known auction mechanisms cannot be used. However,
one particular auction mechanism, called the Qualitative Vickrey Auction (QVA) [8], can
obtain a Pareto-efficient outcome where the best seller wins. However, the QVA requires
the buyer to publicly announce its preferences.

We study various multi-bilateral negotiation mechanisms. The main idea is that the (effi-
cient) outcome of the QVA may be approximated by a negotiation protocol that consists
of multiple negotiation rounds in which sellers are provided an opportunity to outbid the
winner of the previous round. We show experimentally that each of these mechanisms
is able to approximate the efficient outcome as defined by the QVA. The main assump-
tion that we need to make to obtain this result is that the negotiating agents are able to
(privately) learn part of the preferences of their opponents during a negotiation session.
Techniques to do so are available [9], making our proposal one that can be implemented
given the current state of the art in negotiation. Additionally, experiments are performed
that show that a negotiating agent that exploits learning outperforms a Zero Intelligence
strategy [6].

The paper is organised as follows. In Section 6.2 we define the general setting of a buyer
and multiple sellers that aim to reach an agreement settling multiple issues. This set-
ting is generic in the sense that it covers arbitrary situations where one buyer wants to
obtain an efficient multi-issue agreement with any one out of a set of available sellers.
Section 6.3 introduces the QVA auction that may be used to reach such an agreement.
In Section 6.4 we then propose three variants of a multi-bilateral negotiation protocol as
alternative mechanisms to the QVA. Each of these protocols is related to the QVA in the
sense that it approximates the outcome defined by the QVA. The different protocols in-
troduced moreover progressively require less information to be revealed publicly by the
buyer. Section 6.5 presents experimental results to evaluate how well these protocols ap-
proximate the outcome defined by the QVA mechanism. The results validate our claim
that the QVA may be replaced by a multi-bilateral negotiation protocol while still obtain-
ing agreements that are similar. The tradeoff that has to be made concerns the amount of
effort and time that needs to be invested in reaching an agreement. Finally, Section 6.6
discusses related work and Section 6.7 concludes with a discussion of the results obtained
and outlines directions for future research.

1This also means that ’pricing out’ is not an option to elicitate preferences [19].
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6.2 Definitions

The setting we consider in our work consists of a buyer that wants to procure a service
or product from one out of a potentially large number of sellers. An agreement in this
setting is an outcome that fixes the parameters of the service to be provided. Formally, the
space of all possible outcomes is defined as all tuples x = 〈x1, . . . ,xm〉 ∈ X over m issues
in a domain X = X1× . . .×Xm. These issues define all aspects of the agreement, such
as quality, start time, duration, guarantees, penalty, etc. Buyer and sellers are assumed to
associate a utility value with each outcome and to have a reservation value that determines
when an outcome does not improve the status quo for that party, i.e. the buyer or one of
the sellers. In this paper we concentrate on a setting where we do not assume that one of
these issues is a price. In other words, we relax the condition that there is a transferable
utility (and we thus also relax the usual assumption that utility functions are quasi-linear
in price).

We introduce the following notation. The buyer is denoted by 0 and sellers are denoted
by i ∈ {1, . . . ,n}. The reservation value of each party i is denoted by vi and represents
the minimal utility value that an agreement should have to be an acceptable outcome for
that party. Outcomes with a utility below the reservation value are called unacceptable.
Each party i also has a utility function ui : X → R which represents the utility that party
associates with an outcome.

The goal is to find an agreement between the buyer and the sellers that is not only accept-
able to both, but that is also Pareto efficient, i.e., there should not be another agreement
with the same or higher utility for both players, and strictly higher for at least one of them.
In addition to Pareto-efficiency of the final agreement between the buyer and the winning
seller, we are interested in an agreement with the seller that can make the best offer to the
buyer (that is still acceptable to the seller), often called allocative efficiency in the context
of auctions. In this paper we call an outcome that meets both these efficiency conditions
simply efficient.

An example is a buyer that is interested in buying a supercomputer. A range of poten-
tial suppliers is available that may provide a supercomputer. Apart from price (which is
often limited by a given budget), supercomputers have many features (processing speed,
memory, etc.) and requirements (regarding power supply, cooling, etc.) that need to be
settled to obtain an agreement. Such an agreement thus is complex as many issues have
to be agreed upon and finding an efficient outcome can be a complex process. In the next
section an auction mechanism is summarized that has a dominant strategy equilibrium
that yields a such an efficient outcome.
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6.3 The Qualitative Vickrey Auction

The Qualitative Vickrey Auction (QVA) [7, 8] is particularly useful in a context where
a single buyer tries to obtain a complex agreement with one out of many sellers that are
interested in making such an agreement. This generalization of a Vickrey auction [22] is
strategy-proof, and under most realistic settings (when money is involved, or the set of
outcomes is discrete and linearly ordered by the buyer, or the preferences of the suppliers
are equipeaked), it is efficient, i.e., it obtains a Pareto-efficient outcome that involves the
seller that can make the best agreement (for the buyer) still acceptable to him.

Intuitively, this mechanism captures the negotiation power of the buyer. If there are many
sellers, the buyer will end up with some very good offers, but if there is only one seller
that has a sufficiently good offer, the agreement is not that good for the buyer. This
interpretation can be given to most auction mechanisms. This mechanism, summarized
below, has the special feature that it also works if none of the issues is about money.2

This auction mechanism can be thought of as consisting of two rounds. In the first round
(1.1–1.3 below), the buyer publicly announces her preferences. Then potential sellers
submit offers in response, and a winner is selected by the buyer. In the second round (2.1–
2.2 below), the buyer determines the second-best offer (from her perspective again) she
received from another seller, and announces this publicly. Finally, the winner is allowed to
select any agreement that has at least the same utility to the buyer as the second-best offer
(which can be determined by the winner since the preferences of the buyer are publicly
announced). If the bids offered in the first round all are made public afterwards, anyone
can check whether the buyer follows the protocol. The steps of this procedure can be
found in Algorithm 1.

Algorithm 1 The qualitative Vickrey auction
1. Round 1: Winner selection

(a) The buyer announces her preferences.
(b) Every seller submits an offer.
(c) The buyer selects the winner according to her preferences.

2. Round 2: Agreement selection
(a) The buyer announces the second-best offer she received.
(b) The winner may select any agreement that has at least the same utility for the

buyer as the second-best offer.

The properties that make this mechanism interesting are not only Pareto efficiency, and
that the seller wins that can make the best offer, but also that it is a dominant strategy
for a seller to bid an offer that is just acceptable to itself and ranks highest in the buyer’s
preferences. In the problem domain defined in the previous section, this dominant strategy
comes down to proposing an offer with exactly the same utility as its reservation value.

2If none of the issues is about money, a reverse auction is not different from a standard auction.
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Formally, the winner in a given problem domain X then can defined by:

i∗ = argmaxi∈{1,...,n}max{u0 (x) | x ∈ X , ui (x)≥ vi} ,3

where vi denotes the reservation value of seller i.

To determine the outcome, we also need the second-best offer. Assuming all sellers follow
the dominant strategy, the second-best offer x̂ is given by

x̂ = argmaxx∈{x|ui(x)≥vi, i∈{1,...,n}\{i∗}}u0 (x) .

The outcome then is the best possible for the winner i∗, given that it is at least as good for
the buyer as the second-best offer x̂, i.e.,

ω = argmaxx∈{x|u0(x)≥u0(x̂)}ui∗ (x) .

Intuitively, this auction-like mechanism selects the best seller, because the sellers have
a dominant strategy to submit their best offer, and the best of these is chosen by the
mechanism in the first step. Moreover, the outcome selected is Pareto-efficient, because
in the last step the winner maximizes its utility given a constraint on the utility for the
buyer (and full knowledge of both preferences). The exact conditions and the proofs for
efficiency and the dominant strategy equilibrium can be found in [8].

The main problem with a realistic implementation of the QVA is that the buyer needs to
communicate all her preferences to all sellers. This is impractical for various reasons.
Firstly, in many settings it is undesirable for the buyer to communicate all her preferences
to all sellers, because the buyer may not want to disclose all details for strategic reasons.
Secondly, this preference function can be a quite complex function over a large domain,
which is difficult to communicate efficiently. Finally, a buyer may not even know the
complete domain of agreements on forehand, even though she is able to rank any given
subset of agreements. The latter holds for example when a government sends out a request
for proposals to construct a bridge over a river within a given budget. It is impossible to
list all possible types of bridges designers may come up with. But also in domains such
as the super-computer domain, sellers usually come up with new options and alternatives
in a negotiation process. If only the limited domain known by a buyer is used, the re-
sulting outcomes will generally not be efficient. Therefore, in the complex multi-issue
domains we consider in this paper, a standard ascending/descending auction, or the qual-
itative Vickrey auction discussed above cannot be used, because in such an auction the
sellers require complete knowledge of the preferences of the buyer. In the next section
we describe an approach based on negotiation that may be used to approximate the ef-
ficient outcome of such an auction and where there is no need to publicly announce the
preferences of the buyer.

3We assume ties are broken by the buyer using a given ordering over the sellers.
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6.4 Negotiation Protocols

In a QVA, all sellers propose an offer to the buyer. The buyer then determines which of
the sellers has the winning offer. That seller is then allowed to change his offer to improve
his utility value while taking into account that the buyer’s utility value may not be lower
than the second-best offer. In this setting, the dominant strategy for sellers in the first step
is to propose an outcome that has a utility value equal to their reservation value with a
maximal utility for the buyer. We could see this as an indication of the negotiation power
of the buyer in a QVA. It means that sellers need to be aware that they are one out of
potentially many other sellers that the buyer may reach an agreement with.

This negotiation power of the buyer explains why a QVA cannot simply be replaced by
multiple bilateral negotiations based on e.g. an alternating offers protocol between the
buyer and each of the sellers as this would not take into account that multiple sellers are
contending for an agreement with the buyer. In [11] it was shown that a negotiation using
the alternating offers protocol without any additional assumptions except for the fact that
agents were able to learn opponent preferences does not result in a good approximation
of the efficient outcome of the QVA.

In order to relax the constraint of the QVA that a buyer has to publicly announce its
preferences, we propose three different negotiation protocols that take the negotiation
power of the buyer into account. The first protocol we study tries to stay as close as
possible to the QVA and imposes quite strict constraints on the moves of the negotiating
parties. In fact, this protocol may be viewed as a variant of the QVA that does not require
disclosing the preferences of the buyer. That is, this protocol consists of two negotiation
rounds where in the first round sellers are constrained and required to propose offers that
have a utility equal to their reservation value to the buyer and in the second negotiation
round the buyer is constrained and required to propose offers that have a utility that is
equal to that of the second-best outcome of the first round. Although this protocol is an
improvement over the QVA in the sense that it does not require the public announcement
of complete preferences, it still requires the negotiating parties to reveal their reservation
value.

In order to remove the requirement to reveal reservation values, a second and a third
protocol are studied that involve multiple negotiation rounds instead of just two rounds.
The main idea is that in these future rounds sellers are provided an opportunity to outbid
the winner of the previous round. The negotiation power of the buyer is represented in
this protocol by the fact that negotiation continues over multiple rounds until no seller is
willing to outbid the best outcome of the previous round (from the buyer’s perspective).
Both protocols are variants of this idea, where the second protocol requires the buyer to
announce the winning bid at the end of each round and the third protocol only tells each
player whether he or she is the winner at the end of each round.
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6.4.1 A protocol based on two negotiation rounds

The first negotiation protocol consists of two rounds which closely match the QVA mech-
anism (see Algorithm 2 below for details). The buyer however is not required to announce
his preferences. In the first round (step 1 of the algorithm) bilateral negotiation sessions
are performed between the buyer and every potential seller. The idea is that in the first
round negotiating parties try to learn a model ũ(x) of each others’ preferences, both in
order to win the first round as well as to be able to perform well in the second round.
Throughout the paper we use an alternating offers protocol [15] in the bilateral negotia-
tion sessions. Furthermore, we assume that information about a negotiation session is not
used in negotiation sessions with other sellers. At the end of the first round a winner (one
of the sellers) is determined by the buyer. Then a second negotiation round (step 2) be-
tween the buyer and the winner is performed. Before starting this second round, however,
the agreement between the second-best offer from one of the sellers and the buyer (from
the perspective of the buyer) is revealed to all sellers. This is in particular useful for the
winner who continues negotiation with the buyer. In the second round a final agreement
between the winner and the buyer is established.

Algorithm 2 A protocol based on two negotiation rounds
1. Round 1: The buyer bilaterally negotiates with every seller.

(a) The buyer starts negotiation with each seller i.
(b) The seller proposes bids that have a utility equal to the seller’s reservation

value.
2. Round 2: The buyer determines the winner and negotiates a final agreement with

the winner.
(a) The buyer determines the seller with the highest agreement, as well as the

second-best outcome.
(b) The winning seller and the buyer negotiate the final agreement. In this round

the buyer is required to make offers with a utility equal to that of the second-
best outcome of the previous round.

For this protocol to obtain efficient agreements, there are additional constraints on the
negotiation strategies or procedure that the buyer and seller are required to use. In fact,
the parties are required to propose offers that implement the steps of the QVA mechanism
quite closely. In the first round all offers proposed by sellers are required to have a utility
equal to their reservation value (see step 1.2.). This constraint is derived from the fact
that the dominant strategy in the QVA for sellers is to propose such offers. In the second
round all offers proposed by the buyer in the alternating-offers negotiation session are
required to have a utility equal to that of the second-best outcome of the first round (see
step 2.2.). This constraint is derived from the rule to compute the final outcome in the
QVA. The intuition is that the buyer knows that an agreement with another seller of a
certain quality can be reached. This should induce the winner to reduce the negotiation
space it considers. An alternative way of putting this is that the winner of the first round
is required to adjust its reservation value and increase it to the utility it associates with the
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Figure 6.1: Negotiation moves in the first protocol: on the left-hand side the first round
is illustrated where a seller stays on its reservation value iso-curve, and on the right-hand
side it is shown how the buyer stays on the iso-utility curve of the utility of the second-best
agreement of the first round.

second-best outcome as revealed by the buyer (if that outcome has a higher utility than its
initial reservation value; otherwise, the seller would not change its reservation value).

Given that utilities are either fixed for the buyer or the seller, it is rational for the parties
to try to propose the best agreement possible for the other party. In general this is the case
since negotiators need to take into account that an offer needs to be reasonable for the
other party in order to reach an agreement at all. In particular, this is the case for sellers
in the first round, because they need to win in this round to go through to the second.

Given this setup, our hypothesis about the feasibility to approximate the mechanism out-
come by means of negotiation is the following.
Hypothesis 1. The outcome determined by the mechanism can be approximated by a
negotiation setup in which: (i) the buyer does not reveal her preferences, (ii) the nego-
tiating agents can learn an opponent’s preference profile, and (iii) these agents use the
negotiation procedure discussed above (Algorithm 2).

Note that in the first round, the buyer is free to choose the offers he proposes. This makes
it possible for the seller to learn the preferences the buyer has during this negotiation. Also
note that as the seller is supposed to propose offers with a fixed utility value (equal to its
reservation value) it is difficult if not impossible for the buyer to learn the preferences
of sellers in this round. Figure 6.1 illustrates the first protocol and the constraints on the
negotiation moves of the sellers in the first round and the buyer in the second round.

The major drawback of this first protocol is that there is no way to dictate or control the
restrictions for bidding behavior of the sellers and the buyer. Either the buyer and the
sellers have to trust each other that they comply with the negotiation protocol or a third
party trusted by all agents has to be invited to control the bidding. There is, however,
some incentive for the sellers, which can be derived from the similarity to the QVA where
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proposing an offer at the reservation value is a dominant strategy. In the next section the
need for such a trusted third party is removed.

6.4.2 Multiple negotiation rounds with multiple sellers

To remove the restrictions on the negotiation imposed in the first protocol, we introduce a
protocol (see Algorithm 3 for details) that consists of multiple rounds of (parallel) bilateral
negotiations between the buyer and the sellers. After each round r (step 2.2), the buyer
communicates the winning agreement ωr

i (where i is index of the winning seller) of round
r to the sellers that did not win (i.e. they did not reach an agreement that was best from the
buyer’s perspective). All of the sellers then are provided with the opportunity to improve
the agreement they reached with the buyer in a next round of negotiation sessions. A
seller will do so if he can make an offer that has a utility value above his reservation value
vi, which he supposes has a higher utility to the buyer than the winning agreement of
the last round. Negotiation is therefore assumed to resume for the seller in a next round
starting with the agreement reached in the last round. This process continues until no
seller (except for the winner) is prepared to negotiate in a next round to improve their
last offer. The winning agreement of the last round then is the final agreement of the
negotiation process. The details of this process are given below and are illustrated in
Figure 6.2.

It is advantageous for a seller to understand the buyer’s preferences in this process, be-
cause this can be used to reach an agreement that satisfies the buyer as best as possible
while at the same time maximizing the utility for the seller itself. In particular, such an
opponent model ũ can be used to assess if an offer can be made that has the same utility
value as the winning agreement from the point of view of the seller but that has a higher
utility for the buyer. Only if such an offer cannot be made, an additional concession has
to be made. Without the ability to learn an opponent model such an assessment cannot be
made, and the seller will drop out of the negotiation process.

Figure 6.2 illustrates that the size of the negotiation space is decreased in every next round.
This is explained by the fact that the buyer only accepts offers that improve the winning
agreement reached in the previous round (see step 2.1). This process forces the final
agreement closer to that of the reservation value of the sellers, in line with the dominant
strategy sellers have in the QVA. We thus formulate the following hypothesis.
Hypothesis 2. The agreement reached using the proposed negotiation protocol converges
to that of the efficient outcome of the QVA, assuming the negotiating parties are able to
learn the preferences of their opponent.

The proposed negotiation protocol does not require the buyer to publicly announce his
preferences. The protocol thus provides a realistic alternative for the QVA, that, given
the hypothesis formulated above, can be used in settings where a buyer aims to reach an
agreement with one out of multiple sellers. The process of reaching such an agreement
is more complicated than that of the Vickrey auction but does not require publicly an-
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Figure 6.2: In round 2 Seller B aims to improve the agreement reached between the buyer
and Seller A in round 1, and then in round 3 Seller A tries to improve upon this agreement.

nouncing the preferences of the buyer. Somehow the situation is reversed, however, as
the protocol outlined above requires the public announcement of the winning agreement
in every negotiation round (step 2.3). Instead of making the buyer’s preferences public, in
this case some information about the sellers’ preferences is made public. We believe that
this is not a prohibitive feature of the protocol as this only provides limited information to
the sellers, but it still is interesting to investigate if this step in the protocol can be replaced
by one that reveals even less information.

6.4.3 A variant without making intermediate agreements public

A similar protocol can also be applied without informing sellers about intermediate agree-
ments. In this case, the buyer only indicates to a seller that it did not win in the last round.
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Algorithm 3 A protocol with multiple negotiation rounds
1. Set the utility of ω0 to be 0. Set the round number r to be 1.
2. While no final agreement ω has been found, do the following.

(a) The buyer bilaterally negotiates an agreement with every seller i, accepting
only offers with a utility at least as high as the utility of ωr−1.

(b) If only one seller has reached an agreement, then the agreement of the previous
round is the final agreement ω = ωr−1.

(c) Otherwise, publicly announce the winning agreement ωr.
(d) Start a new round, setting r = r +1.

The winning agreement of the previous round thus can no longer be used as a reference
point that needs to be improved upon from the buyer’s point of view, and a seller instead
continues negotiation in the next round with the agreement it reached itself in the previous
round. Moreover, in the previous protocol where a winning agreement is made public, a
seller can estimate – given the opponent model it learns during a negotiation session – how
much it has to concede to improve that winning agreement. This is no longer possible in
this second setup. However, it is required that when the negotiation protocol terminates
and a final agreement is reached that this agreement is made public in order to allow
sellers to verify that the buyer has not manipulated the process. Making only the final
agreement public is sufficient for sellers that have a reasonable opponent model to assess
whether the process has been fair, as there should be at least one seller that can make an
offer with approximately the same utility to the buyer at his own reservation value.

Consequently, in this second variant the sellers have less information on how to outbid
the winning seller of the previous round. Still, the buyer does have this information as
it knows the winning agreement of the previous round and, therefore, would only accept
offers of a seller that improve the winning agreement of the previous round. Given this,
we formulate the following hypothesis concerning this variant.
Hypothesis 3. The agreement reached without revealing the winning agreement in each
round converges to that of the efficient outcome of the QVA, assuming the negotiating
parties are able to learn the preferences of their opponent.

As the sellers have less information in this third setup, they will have more difficulty
in proposing offers that improve the winning agreement of previous rounds and more
rounds may be needed to explore options to find such offers. We therefore formulate the
following hypothesis about the number of rounds needed to reach a final agreement in the
third variant compared to that needed in the second.
Hypothesis 4. On average more rounds will be needed to reach a final winning agreement
using the third setup than the second.

We have argued that it is important that parties are able to learn opponent preferences.
One question that remains is whether the sellers have an incentive to learn, or that they
can achieve the same or even higher utility without learning.
Hypothesis 5. An agent will be better off by learning the preferences of the opponent than
without learning.
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To test this hypothesis we present some evidence where we compare the results of using
a negotiation strategy that uses (Bayesian) learning to another strategy that does not.

6.5 Experimental Evaluation

In this section, we first discuss the design of the experimental setup and then present the
obtained results. We present experimental results to evaluate how well each of the three
multi-bilateral negotiation mechanisms approximate the QVA, although they do not make
the buyer’s preferences public. We also investigate the number of rounds required in the
second and third protocol, and we investigate whether learning dominates not learning.

6.5.1 Experimental Design

The first experimental design choice concerns the number of sellers that participate in the
negotiations. While the mechanism nor the protocol limit the number of sellers, in the
experiments we use only two sellers with distinct preference profiles. This already sim-
ulates the competition between sellers since only the best and second-best can influence
the outcome. Admittedly, when more sellers participate, the buyer may make a mistake
in some of the rounds in finding the best seller, because it usually cannot perfectly learn
the preferences of all sellers. However, in the multi-round protocols, such mistakes are
easily repaired in future rounds. In addition, increasing the number of sellers reduces the
expected difference between the best and second-best seller. This may give better results
(regarding the deviation from the outcome of the QVA), because when accidentally the
second-best is chosen as the best, the outcome will only marginally differ.

The second choice concerns the domain of negotiation. We have deliberately chosen a
very generic domain and even relaxed natural constraints on this domain to further ensure
generality. In the experiments we have used the so-called service-oriented negotiation
domain taken from [5]. This domain consists of four issues that need to be settled, which
represent the various attributes considered relevant with respect to the service offered, and
include for example delivery time, quality, duration, and a penalty. Although we did use
the generic four-issue structure of this domain we did not impose specific restrictions on
the preferences such as that a lower penalty is always preferred by a seller as would be
natural in this domain. As a result we have more variation in the preference profiles than
one would typically expect in this domain. This variation in preference profiles ensures
the relevance of our results for other domains as well.

For the experiments we have created a set of 12 preference profiles per role each, 12 for
the buyer role and 12 for the seller role. Preference profiles were represented as piece-
wise linear additive utility functions and each party in addition was assigned a reservation
value. The remaining parameters such as the relative importance of an issue (weights),
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Figure 6.3: Example of a preference profile of a buyer with weights 0.30, 0.50, 0.05, and
0.15. Issues 1, 3, and 4 have “uphill” utility function, issue 2 has a “triangular” shape
utility function.

the utility associated with the alternatives for each issue (called an evaluation function),
and the reservation values are set as follows:

1. To model the relative importance of the value of the issues, two different sets of
weights are used. One representing equal importance of all issues, using 0.25 as
weight for each of the four issues, and a set of weights representing dominance of
two issues over the other two, using the weights 0.30, 0.50, 0.05, and 0.15.

2. The utility associated with each of the alternatives associated with an issue were
modeled by either a linear "uphill" function, a linear "downhill" function, or a com-
bination of the two (resulting in a triangular shape). Two of the three types of
evaluation functions are illustrated in Figure 6.3.

3. The reservation value for the buyer and sellers was set to either 0.3 or 0.6.

In Figure 6.3 an example of a preference profile for a buyer can be found. The relative
scaling of the evaluation functions of the individual issue in the figure indicates its corre-
sponding weight. The utility of a complete bid can be calculated by the summation of the
utilities of individual issues.

Tables 6.1 and 6.2 show the predefined profiles that were created using variations of the
three preference profile parameters defined above. The reservation value was varied with
the preference profiles and set to either 0.3 and 0.6, and, as explained above, two weights
vectors were associated with issues (〈0.30,0.50,0.05,0.15〉 and 〈0.25,0.25,0.25,0.25〉).
In a typical negotiation scenario it is normal to assume at least some level of opposition
between the buyer’s and the seller’s preferences. To ensure this, evaluation functions for
the issues 1, 3, and 4 of the buyer’s profiles are set to the "uphill" type and the seller’s
evaluation functions for the issues 2, 3, and 4 are fixed to the "downhill" type. To vary the
level of opposition between the buyer’s and the seller’s profiles the type of the evaluation
function of the remaining issue is set to one of the three possible types "uphill", "down-
hill", and "triangle". These variations result in a total of 2 ∗ 2 ∗ 3 = 12 possible profiles
per role.

A sample of 50 different negotiation setups is created by means of a random selection out

146



Profile w1 w2 w3 w4 eval. f n vi

Buyer1 0.25 0.25 0.25 0.25 uphill 0.3
Buyer2 0.30 0.50 0.05 0.15 uphill 0.3
Buyer3 0.25 0.25 0.25 0.25 downhill 0.3
Buyer4 0.30 0.50 0.05 0.15 downhill 0.3
Buyer5 0.25 0.25 0.25 0.25 triangle 0.3
Buyer6 0.30 0.50 0.05 0.15 triangle 0.3
Buyer7 0.25 0.25 0.25 0.25 uphill 0.6
Buyer8 0.30 0.50 0.05 0.15 uphill 0.6
Buyer9 0.25 0.25 0.25 0.25 downhill 0.6
Buyer10 0.30 0.50 0.05 0.15 downhill 0.6
Buyer11 0.25 0.25 0.25 0.25 triangle 0.6
Buyer12 0.30 0.50 0.05 0.15 triangle 0.6

Table 6.1: Predefined buyer profiles.

of the twelve profiles from Tables 6.1 and 6.2 for each of the three roles (one buyer, two
sellers). Moreover, as a seller with a lower reservation value in such a setup has a higher
chance of winning the first round (due to convexity of the Pareto efficient frontier), the
sample is balanced such that in 80% of the cases the sellers have equal reservation values.
To generate 20% of the negotiation setups where sellers have unequal reservation values,
a complete set of all possible seller pairs with unequal reservation values is build. This set
is used for the random selection of the negotiation setups. The rest of the sample (80%)
of the seller profiles with equal reservation values was generated in a similar way.

Finally, a choice has to be made concerning the type of negotiating agent and the strategy
that agent uses. As we have argued above, learning a preference profile is an important
capability required when the preferences of the buyer are not publicly known. For this
reason, we use an agent capable of learning a preference profile in a single negotiation
session using Bayesian learning introduced in [9]. In the experiments, this negotiating
agent builds a model of opponent preferences by learning a probability distribution over
a set of hypotheses about the utility function of its opponent. In our case the agent has to
learn the weights of issues and the corresponding evaluation functions. These structural
assumptions make the learning task feasible.

We briefly explain the learning mechanism itself, for details please see [9]. During a nego-
tiation session every time a new bid is received from the opponent the probability of each
hypothesis about the opponent’s utility function is updated using Bayes’ rule. To be able
to use Bayes’ rule the conditional probability that the bid might have been proposed given
a hypothesis is used. The utility of the bid according to the current hypotheses is com-
puted and compared with a predicted utility based on the assumption that the opponent
uses a concession-based tactic. This assumption is rational as in general any negotiator
has to concede to reach an agreement. The details of the strategies in combination with
the protocols as used in our simulation experiments can be found in Appendix A.
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Profile w1 w2 w3 w4 eval. f n vi

Seller1 0.50 0.30 0.15 0.05 uphill 0.3
Seller2 0.25 0.25 0.25 0.25 uphill 0.3
Seller3 0.50 0.30 0.15 0.05 downhill 0.3
Seller4 0.25 0.25 0.25 0.25 downhill 0.3
Seller5 0.50 0.30 0.15 0.05 triangle 0.3
Seller6 0.25 0.25 0.25 0.25 triangle 0.3
Seller7 0.50 0.30 0.15 0.05 uphill 0.6
Seller8 0.25 0.25 0.25 0.25 uphill 0.6
Seller9 0.50 0.30 0.15 0.05 downhill 0.6
Seller10 0.25 0.25 0.25 0.25 downhill 0.6
Seller11 0.50 0.30 0.15 0.05 triangle 0.6
Seller12 0.25 0.25 0.25 0.25 triangle 0.6

Table 6.2: Predefined seller profiles.

Figure 6.4: The distribution of the difference in utility for the buyer (left) and the seller
(right) between the outcome of the first negotiation protocol and the outcome selected by
the QVA.

6.5.2 First Negotiation Protocol

This first set of experiments should test our hypothesis that negotiating agents that use
the first protocol and can learn a preference profile on the fly are able to approximate the
outcome determined by the QVA mechanism quite well. For this, we study two results.
Firstly, we compare the number of times the same winner is selected by the first multi-
bilateral negotiation mechanism as by the QVA. Secondly, we study the differences in
utility for both the winner and the buyer in case the same winner is selected.

First of all, in our experiments the winner defined by the QVA mechanism and the winner
of the multi-lateral negotiation protocol in the experiments completely coincide. This
means that in the first round (of this first negotiation protocol) the same seller is selected
as a winner as in the QVA.

Next, consider the differences in the utility of the outcome for both the buyer and the
winning seller, represented by the histograms in Figure 6.4. These results are obtained
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in the second round of the protocol and show that in general the outcomes obtained via
the negotiation protocol approximate those of the QVA mechanism. In 78% of the exper-
iments the difference is less than 5%. The average is difference in utility for the buyer
between the efficient outcome of the QVA and the experimental results is only -0.09%
and the standard deviation is 4%. Moreover, in 94% of the experiment the difference
was not more than 10%. For the (winning) seller the differences are even smaller (0.01%
on average with a standard deviation of 5%), indicating that overall the outcomes were
good approximations. Moreover, some of the bigger deviations could be traced back to
difficulties with learning an opponent’s preference profile.

To summarize, these two observations indicate that there is no reason to conclude that
the QVA and the first negotiation protocol are significantly different, supporting Hypoth-
esis 1. The (small) difference in utility from the outcome selected by the QVA can be
explained as follows. In this protocol all agents try to maximize the opponent’s utility
while staying above their reservation value. For this, the ability of an agent to learn the
preferences of an opponent is a key factor in a successful approximation of the auction
mechanism. First, the selection of the winning (as well as the second-best) offer mainly
depends on the ability of a seller to learn the preference profile of the buyer, because
otherwise acceptable offers that maximize the buyer utility cannot be found. Second, the
utility of the winning seller in the final agreement is determined by the buyer’s ability
to learn the seller’s preference profile, because otherwise the outcome will not be near
the Pareto front of the winning seller and the buyer. The difference from the utility of the
QVA outcome can thus be explained by approximation errors in the used learning method.

This first protocol requires sellers to make only offers at their reservation value in the
first round, and in the second round it requires that the buyer makes offers at the value of
the second-best offer in the first round (see an example of a negotiation trace in Figure
6.5). In many cases, imposing such requirements is unrealistic. In previous work [11] we
have seen that simply relaxing these requirements does not result in outcomes that are still
approximating the outcome of the QVA. In this paper we therefore propose a multi-round
protocol, which is evaluated hereafter.

6.5.3 Second Negotiation Protocol

This second set of experiments tests the hypothesis that the second (multi-round) protocol
approximates the outcome of the QVA. Figure 6.6 shows an example of a negotiation
trace for the second negotiation protocol. As above, the winner defined by the QVA
and the winner in the negotiation experiments coincide in all of the runs. Again the
outcomes obtained by using the negotiation protocol are quite close to those determined
by the mechanism. Figure 6.7 shows the histograms of the differences of the utility of
the outcomes. The average difference with the buyer’s utility for the QVA outcome is
0.01% (with a standard deviation of 1.5%). The utility of the sellers differs from their
utility of the QVA outcome by -0.37% (with a standard deviation of 1.6%). According
to the t-test the difference between the means of the utilities of the QVA outcome and
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Figure 6.5: Example of a negotiation trace for the first negotiation protocol (each bid is
denoted by the utility of the buyer and the seller). Seller 1 wins with an outcome with
utility 0.68 for the buyer and 0.71 for the seller.
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the experimental results are not only very small, but also insignificant (for the buyer:
t = 0.054,P(T < t) = 0.957, for the seller: t = 1.648,P(T < t) = 0.106). This supports
Hypothesis 2.

Moreover, as before, the difference of the experimental results and the utility of the out-
come selected by the QVA can be explained by approximation errors in the learning
method used.

6.5.4 Third Negotiation Protocol

Even the experimental results using the third negotiation protocol show only a small de-
viation from the outcome selected by the QVA. Figure 6.8 shows the histograms of the
differences in utility for these outcomes. The average difference from the utility of the
buyer’s outcomes in the QVA is 1.39% (with a standard deviation of 2.2%). The utility of
the sellers differ from the utility of the outcome in the QVA by -1.28% (with a standard
deviation of 2.3%).

On average, the buyer gets a slightly better outcome in the proposed negotiation setup
compared to the QVA outcome (t = −3.8, P(T < t) = 0.00043). This results in some-
what lower utilities for the sellers (t = −3.9, P(T < t) = 0.00027). These differences
thus, although small, are significant. This can be explained by the fact that unlike in
the auction mechanism, where the final agreement always corresponds to the reservation
value of the second-best seller, in this last setup the sellers are not aware of each other’s
reservation value. Therefore, on the one hand, the deviation of the utility of the outcome
is influenced by the size of the concessions made by the winning seller. As a result, the
buyer can benefit from the seller’s concessions. On the other hand, due to imperfection
of the learned model of the opponent preferences, the second-best seller might drop out
of the negotiation too early. The winning seller can benefit from this because no more
concessions on her behalf are necessary. In such a case, the final agreement has a lower
utility for the buyer. This relationship between the buyer’s and the seller’s utility of the
final agreement can be observed in Figure 6.9. There we can see that one negotiating
party can benefit from the underperformance of the other.

Even though the utilities of the outcome of this third negotiation protocol and the QVA
are significantly different, they are still quite close. In addition, the same seller is always
selected as a winner. We therefore conclude that also this third protocol is a reasonable
approximation of the QVA, supporting our third hypothesis.

On average the number of the negotiation rounds in the third protocol is significantly
higher than in the second setup (3.5 against 11.3 respectively, t = −9.39, P(T < t) =
1.9 ·10−12). Moreover, per round, using the third protocol almost two times more offers
were made than in the second setup. That is, on average 50 offers were made in the second
setup against 23 offers in the first one (t =−14.4, P(T < t) = 4.14 ·10−19). This confirms
our fourth hypothesis.
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Figure 6.6: Example of a negotiation trace for the second negotiation protocol. Here
Seller 2 wins negotiation with an outcome of (0.79, 0.3)
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Figure 6.7: The distribution of the difference in utility for the buyer (left) and the seller
(right) between the outcome of the second negotiation protocol and the outcome selected
by the QVA.

Figure 6.8: The distribution of the difference in utility for the buyer (left) and the seller
(right) between the outcome of the third negotiation protocol and the outcome selected by
the QVA.

Figure 6.9: The relation between the difference in utility for the buyer (vertical axis) and
the seller (horizontal axis) for the second (left) and the third (right) negotiation protocol.
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All these experiments are done on an Intel Pentium 4 3.0 GHz processor. For each exper-
iment we measured the total run time of all rounds, including the Bayesian learning and
the alternating-offers negotiation with two sellers in each round. For this third protocol,
the run time is about 15.6 minutes on average, with a standard deviation of 23%. For the
second protocol this is about 5.4 minutes on average with a standard deviation of 13%.

6.5.5 Negotiation Strategy

In the experiments discussed above we have shown that when all agents use the Bayesian
learning strategy it is possible to approximate the outcome of the QVA. We also argued
that learning is an essential part of any strategy that is able to realize outcomes similar to
the auction. The question of quality of learning of the used learning technique was studied
in [10] and, hence, is not covered in this paper. An important question that remains is
whether such a strategy dominates other (non-learning) strategies. A strategy is said to
dominate another strategy if it outperforms that strategy.

In order to (partially) answer this question we perform some additional experiments.
These experiments are similar to the experimental setup described above but we replace
one of the sellers with a seller that uses the Zero-Intelligence strategy [6]. The Zero Intel-
ligence (ZI) strategy randomly proposes bids above its reservation value. On average, it
is difficult for the ZI strategy to achieve a better agreement than its reservation value and
any effective negotiation strategy is expected to outperform it. However, accidentally, the
ZI strategy may make very smart moves and if a certain strategy always outperforms ZI,
it may be concluded that this strategy also outperforms many other strategies. As before,
50 negotiation setups with two sellers and one buyer are used but this time for each of
these setups two variants are run: (i) one where the first seller uses the ZI strategy and the
second seller uses the Bayesian strategy, and, vice versa, (ii) where the first seller uses the
Bayesian strategy and the other one uses the ZI strategy.

A summary of the experimental results of these 100 sessions is presented in Table 6.3.
Every outcome of a negotiation session is classified into one of four possible cases, de-
pending on the strategy of the winner (the first column), and whether the winner matches
the winner in the QVA outcome (the second column). The third column provides the num-
ber of the negotiation sessions in each case. The deviation in the utility of the outcome
for the winning seller and the buyer are given in the fourth and fifth column, respectively.

Most importantly these results show that there is not even a single negotiation session
where a seller that loses in the QVA wins by switching from the Bayesian strategy to the
ZI strategy (see the fourth row in the table). Moreover, a seller using the ZI strategy loses
in 15 out of 50 runs, while it could have won using the Bayesian strategy. In addition, in
cases where a seller wins in spite of using ZI, the utility is lower on average (1% better
than the QVA outcome versus 6% better). These differences in utility are shown in more
detail in Figure 6.10. Most of these differences can be explained by the fact that adding a
ZI strategy complicates learning (the ZI strategy itself does not learn). It explains why on
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Strategy of
the winner
in the
experiments

Matches
the QVA
winner

Number
of
sessions

Deviation of the outcomes
Winning seller Buyer

Bayesian
Yes 50 6% (always >

0%), st.dev =
3.5%

-6% (always <
0%), st.dev =
3.1%

No 15 N/A (utilities
of the sellers’
should not be
compared)

-8% st.dev =
6%

Zero-
Intelligence

Yes 35 1%
st.dev.=2.4%

-10%
st.dev.=6.5%

No 0

Table 6.3: By changing to a ZI strategy, sellers do not win more often and do not receive
a higher utility. When their competitor uses a ZI strategy, the winner using a Bayesian
strategy stays the same and has a higher utility.

average the buyer’s utility is significantly lower as it is impossible to learn anything from
the offers proposed by a ZI strategy.

A second conclusion from these results is that sellers that follow the Bayesian strategy
do not obtain worse outcomes when other sellers use the ZI strategy. This can be seen
by looking closely at the results for the 50 cases where the seller following the Bayesian
strategy wins both when using the negotiation protocol as well as according to the QVA.
In those cases, the same seller is still a winner, and on average obtains a higher utility (6%
difference from the utility of the QVA compared to 1.28% more utility on average in the
previous section).

To conclude, the results show that outcome utilities of a seller that uses the Bayesian
strategy do not get worse when the second-best seller switches to the ZI strategy, nor do
they get better when the seller itself switches to the ZI strategy. Therefore, regardless of
the choice of a strategy by the opponent, the most rational choice for the seller among
these two is to stick with the Bayesian strategy. The large number of the conducted
experiments with a seller that uses the ZI strategy provide a significant variation of the
negotiation behavior of that seller. Given the fact that in all cases the ZI strategy did not
perform better than the Bayesian strategy we can derive that the Bayesian strategy is a
good choice for rational sellers regardless of the strategy of the other sellers.

155



Figure 6.10: The relation between the difference in utility for the buyer (vertical axis)
and the seller (horizontal axis) for the third protocol for the Bayesian (left, 50 cases) and
the ZI (right, 35 cases) strategy.

6.6 Related work

The protocols presented in this paper relate to both auctions (because they select one win-
ner among a set of sellers and the final agreements are efficient) as well as to negotiations
(because the set of possible agreements is not agreed upon on forehand, and the parties
do not know each other’s preferences). In this section we therefore discuss both earlier
work on (multi-attribute) auctions, as well as on multi-lateral negotiation, and we briefly
discuss existing work on learning this context. Regarding the relation to auctions, the
relation to the Vickrey auction and its generalization to multiple issues (possibly without
money), the QVA, has already been discussed in the first two sections of this paper. The
final two protocols, however, show stronger similarity to an auction that is even more
familiar, i.e., the English auction.

Like in an English auction, in each round of the multiple bilateral negotiations, new agree-
ments will only be accepted by the buyer if they are better than the best agreement in the
previous round. When no other seller can make a better proposal, the process stops and
the winning agreement is this best agreement. This process is very similar to an English
auction, where bids are increased until all but one bidder stop bidding. The only differ-
ence is that in the setting discussed in this paper, the utility of the buyer is not known,
while in a (reverse) English auction the item is fixed and the utility of the seller (buyer) is
assumed to be linear in the price. This makes it very easy to come up with a better bid in
an English auction, but quite hard to do so in our situation, where the sellers really need to
learn the preferences of the buyer. The English auction is ex-post efficient, meaning that
under the assumption that other sellers are rational as well, a seller can never do better
than to follow a straightforward strategy of making an offer that is ranked slightly higher
than the previous bid as long as this is above its own reservation value. We believe a
similar result for our setting can be derived, supporting also theoretically that sellers can
never do better than learning the buyer’s preferences as well as possible, and then making
concessions until either its offer is higher than the best offer of the previous round, or its
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own reservation value has been reached (i.e., the fifth hypothesis).

In its basic form, the English auction, just like the Vickrey auction, is on one item that is
completely described, but several generalizations of auctions have been proposed where
some of the attributes of the item are left open for “negotiation”. However, in extant work
the payments are always seen as a special attribute for which the preferences of the buyer
and the sellers are related: a lower price for the seller means a worse outcome for the
buyer. For example, [3] analyzed situations where a bid consists of a price and a quality
attribute, and proposed both first-price and second-price sealed-bid (e.g., Vickrey) auction
mechanisms. His work was extended by [4] for situations where the good is described
by two attributes and a price. They analyzed the first-price sealed-bid and the English
auction, and derived strategies for bids in a Bayesian-Nash equilibrium. In addition, they
studied a setting where the buyer can also strategize, and they showed when and how
much the buyer can profit from lying about its valuations of the different attributes.

Later work on iterative multi-attribute auctions has focused on a finite (discrete) domain
with quasi-linear utility [16]. For this domain two related protocols are proposed. In Non-
linear&Discrete (NLD) a reverse English (or Japanese) auction is held simultaneously for
every combination of attribute values (called a bundle). In such an auction the price is
dropped for each bundle until just one seller remains. The winning bundle is the one that
maximizes the difference between the valuation of the buyer and the price. Straightfor-
ward bidding for sellers in this auction is defined by bidding the ask price for a bundle
if that has still a positive utility. Straightforward bidding is shown to be an ex-post Nash
equilibrium for the sellers and to result in an efficient outcome, maximizing the gains
from trade (equal to the one-side VCG mechanism). On the buyer’s side, strategizing can
bring a benefit of at most the marginal value to the economy contributed by the winner. In
addition, for the setting where the utility of the buyer is additive over all attributes, NLD
can be simplified. The mechanism Additive&Discrete (AD) does not hold an auction for
every possible bundle, but just for every value (level) of each attribute separately.

Our iterative multi-bilateral negotiations with increasing utility for the buyer differ from
this work in the following aspects. First, we consider piece-wise linear domains that may
be continuous, which is a strict generalization of the finite domains. Second, we con-
sider price just as one of the issues, which allows us to consider also utility functions that
are not quasi-linear, but also makes it hard to define the gains from trade. We focus on
Pareto-efficiency instead. Third, the mechanism differs in that we use bilateral negoti-
ations between the buyer and each seller over all possible bundles. Such a negotiation
usually involves only the exchange of a very limited subset of possible bundles, which is
much more efficient compared to holding an auction for each possible bundle. Fourth, in
these negotiations both the buyer and the sellers try to learn each other’s utility function
in order to make better proposals. In general, there is not enough information to learn
these perfectly, while in the finite setting at the end of the auction the utility function of
one of the sides is completely known to the other party.

How much information is revealed exactly is an important topic for our future work. In
[16] this is measured using the normalized size of the set of possible weights for the
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issues, since in both NLD and AD a utility function is defined by the weights over the
issues. For the sellers, this set is given by the constraints determined from the bids under
the assumption that they follow the straightforward strategy. The size of the resulting
convex set is approximated by a simple Monte Carlo algorithm.

We are aware of one other paper explicitly discussing the use of learning in the context
of multilateral negotiation or multi-attribute auctions. In [1] the buyer learns the cost
function of the sellers under the assumption that they all have a fixed form where only
P parameters need to be determined. This can be exactly computed using inverse opti-
mization after P auction rounds, where in each round, the buyer makes a different utility
function public and assumes the sellers are bidding according to a straightforward strat-
egy regarding the announced utility function. Only round P + 1 is for real. In that last
round, the buyer constructs a utility function that maximizes its revenue. In the Bayesian
learning approach used in this paper the buyer does not announce, nor change its utility
function between rounds. If he did, the sellers would have more difficulty learning and
in fact, we have seen that this usually reduces the buyer’s utility. Moreover, as discussed
above, in our work there is an incentive for the sellers to learn as well as possible and then
use a straightforward concession strategy. In contrast, in the setting of [1], there is a clear
incentive for the sellers to hide their utility in the first P rounds, to prevent the buyer to
exploit them in the final round.

A multi-unit version of multi-attribute auctions is discussed in [20]. In their setting, two
types of attributes are distinguished: those that relate to the seller (called bid attributes),
and those that do not (called negotiable bid issues). Utility information regarding the
negotiable bid issues is communicated to the sellers in the form of linear bonuses and
penalties. Sellers indicate what the values of the issues are and how much they are willing
to sell. The mechanism returns the current price, and the seller can then accept, reject, or
change the submitted issues. The price is obtained by the mechanism using a straightfor-
ward strategy.

The extension to also deal with multiple units is straightforward, but significantly in-
creases the applicability. We believe our mechanism can also easily be adapted to deal
with multiple (identical) units. In [20] the utility function of the buyer is assumed to be
a weighted sum of the negotiable bid issues. There is no assumption on the utility of
the sellers, except that it is quasi-linear (since all issues are related to the price). Again,
quasi-linearity is a restriction compared to our model. The most relevant difference from
our approach, however, is the fact that the utility function of the buyer is communicated,
except for a fixed discount that may be different for each seller, while in our approach we
explicitly do not allow this.

Related work on negotiation mechanisms that deal with multiple players is reported in
[13, 14, 17]. Our approach differs in at least two regards. First, our aim has been to
reach an agreement that is as close as possible to an efficient agreement as obtained by
the QVA. Second, we propose a new negotiation protocol that is based on several rounds
of multiple standard bilateral negotiation sessions where all participants that lost in an
earlier round are allowed to make a proposal that is better than the winning proposal of
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the earlier round. Below we consider these existing negotiation approaches in a bit more
detail.

Rahwan et al. [17] and later Nguyen and Jennings [14] have proposed a negotiation frame-
work where the buyer negotiates with a number of sellers concurrently, and updates its
reservation value in all other negotiation threads with the value of an agreement, when-
ever one is made. The latter work presents experimental results on the effect of a number
of negotiation strategies in a setting where each utility function is a standard linear com-
bination of the issues. It seems that in such a parallel setting the speed of the negotiation
threads may influence the changes in reservation value of the buyer and thus the result. In
our work this is resolved because there is always a next round until all sellers except one
decide to end the negotiation.

Another line of work in this field includes an expectation about results obtained in other
threads [13]. Like in the work discussed above, the reservation value for the buyer is set
based on events in the other threads. The interesting extension here is that the reservation
value can be set at the expected best offer in other threads, or even in future threads.

As a final topic to discuss here, we briefly review an empirical study of comparing an auc-
tion mechanism with a negotiation mechanism [12]. The aim of this study is to estimate
the impact of trading mechanisms on the price of an agreement. The paper considers data
of 216 trades that result from either using an auction or a negotiation as the trade mech-
anism. It is concluded that trade mechanisms can have an influence on the number of
suppliers due to, i.e., costs associated with a particular mechanism. The results show that
the choice of the trading mechanism does not influence the price of an agreement, how-
ever. This seems to contradict our results for the third protocol, where we see a (albeit
small) difference in utility. We believe this can be attributed to imperfect learning, but we
leave a thorough investigation of the cause of this difference for future work.

6.7 Conclusion

In general, negotiations facilitate the expression of agreements in greater detail than auc-
tions do, making it possible to arrive at better win-win solutions between the buyer and
the seller. However, (reverse) auctions on the other hand can guarantee that the deal is
with the best seller, and some auctions, such as the English auction or the Vickrey auction,
remove the need for bidders to strategize, making it a lot easier to participate (following
a straightforward strategy).

Sandholm, among others, acknowledges this, and proposes a combinatorial auction that
allows for as much details in bids as the buyers and sellers would find useful, a method he
called expressive commerce [18]. However, even in that approach, the preferences of the
buyer are quasi linear and need to be given on forehand to allow all participants to make
successful bids.4 The main problem this paper deals with is the fact that the preferences of

4Minor changes in the preferences are allowed afterwards (scenario navigation), but may influence the
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the buyer in a one-to-many multi-issue setting may not be given on forehand and may not
even be quasi linear, which is required for most auction types. Even the QVA requires that
the utility function of the buyer is made publicly known. The main contribution of this
paper is the idea of combining a negotiation protocol with the ability of the parties to learn
the preferences of the opponent, removing the need to make these preferences public. The
protocol proposed introduces multiple negotiation rounds in which sellers that lost in the
previous round are given an opportunity to improve their offers and possibly outbid the
winner.

We have discussed three variants of multi-round negotiations to approximate an auction.
We showed experimentally that both the outcomes of the two-round protocol as well as
the second (multi-round) protocol are not significantly different from the Pareto-efficient
best-seller outcome of the QVA. The results of the third set of experiments indicate that
even if no information is made public until the end of the negotiation the protocol closely
approximates the outcome of the QVA. The number of rounds needed to find the winning
contract, however, is significantly higher in the third than that used in the second protocol.
This can be explained by the fact that sellers have no information about the winning
agreement of the previous negotiation round and have to make more offers to be able to
explore the outcome space before they are able to outbid the winner. Our results thereby
show that a trade-off needs to be made between revealing preference information and the
average amount of time needed to complete the negotiation. Our final set of experiments
show that Bayesian learning in combination with a concession strategy dominates a Zero
Intelligence strategy with random offers. This supports our hypothesis that the Bayesian
strategy is dominant. A full proof of this claim is left for our continued studies.

For other future work, we are interested in potential forms of manipulation that may be
available to the buyer in the third protocol in case the process cannot be monitored by a
trusted third party. If a buyer has complete knowledge about the winner to be, he could
lie about an offer in an earlier round. This “second-highest offer” can then be chosen in
such a way that the negotiation space of the final agreement will be very small, in favor of
the buyer. Finally, we also want to study how to modify the ideas presented in this paper
to make the protocols presented applicable to a broader range of real-world one-to-many
multi-issue negotiations over complex domains where preferences cannot completely be
made public in advance.
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Appendix A

Instantiations of the negotiation
protocols with a negotiation strategy

Below we give the complete description of the negotiation processes used in this paper.
In this description, the following notation is used.

u0(x) utility of the buyer
ui(x) utility of the i-th seller
ũ0(x) model of the buyer’s preferences learned by a seller
ũsi(x) model of the i-th seller’s preferences learned by the buyer
ωi outcome of the first round in negotiation with i-th seller (Algorithm 2)
i∗ winner of the first round (Algorithm 2)
ω̂ the second-best outcome of the first round (Algorithm 2)
ωr

i outcome of the r-th round in negotiation with i-th seller (Algorithm 3)
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Algorithm 2 A protocol based on two negotiation rounds instantiated with a negotiation
strategy which uses Bayesian learning to model opponent’s preferences

1. Round 1: The buyer bilaterally negotiates with every seller.
(a) The buyer starts negotiation with seller i with its best bid xb

0 = argmaxu0(x)
and t = 1.

(b) Seller i updates the buyer’s preferences model ũ0(x) given the buyer’s bid xb
t−1.

(c) The seller searches for a bid that has utility of the seller’s reservation value and
maximizes the expected utility of the buyer: xsi

t = argmaxx∈{x|ui(x)=vi}ũ0 (x)
(d) If the found bid has not been proposed before then the seller sends it to the

buyer, otherwise stop the bidding.
(e) If seller stopped bidding, use the latest seller’s bid xsi

t as an agreement ωsi and
go to step 2.

(f) Otherwise, the buyer updates the seller’s i preference model ũsi(x) given xsi .
(g) The buyer makes a concession in its own utility space c(t) and sends a bid

that maximizes the expected utility of the seller i given this concession: xb
t =

argmaxx∈{x|u0(x)=u0(xb
0)−c(t)}ũ

si (x)
(h) Increase t and go to step 1.2.

2. Round 2: The buyer determines the winner and negotiates a final agreement with
the winner.

(a) The buyer determines the winner i∗ = argmaxi∈{1,...,n}u0 (ωi) and the second-
best outcome ω̂ = argmaxi=1,...,i∗−1,i∗+1,...,nu0 (ωi).

(b) The winning seller i∗ starts negotiation with its best bid xsi∗
0 = argmaxusi∗ (x)

and t = 1.
(c) The buyer updates the seller’s preferences model ũi∗(x) given the seller’s bid

xsi∗
t−1.

(d) The buyer searches for a bid that has utility of the second-best
outcome and maximizes the expected utility of the seller: xb

t =
argmaxx∈{x|u0(x)=u0(ω̂})ũsi∗ (x)

(e) If the found bid has not been proposed before then the buyer sends it to the
seller, otherwise stop the bidding and use the buyer’s latest bid xb

t as a final
agreement ω . Exit.

(f) Otherwise, the seller updates the buyer’s preference model ũs1(x) given xsi .
(g) The seller makes a concession in its own utility space c(t) and

send a bid that maximizes the expected utility of the buyer: xs
t =

argmax
x∈

{
x|ui(x)=ui(x

si∗
0 )−c(t)

}ũb (x)

(h) Increase t and go to step 2.3.
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Algorithm 3 A protocol with multiple negotiation rounds instantiated with a negotiation
strategy which uses Bayesian learning to model opponent’s preferences

1. Set the utility of ω0 to be 0. Set the round number r to be 1.
2. While no final agreement ω has been found, do the following for every seller i that

still participates.
(a) The buyer starts negotiation with seller i with its best bid xb

0 = argmaxu0(x)
and t = 1.

(b) While no agreement in round r has been reached:
i. Seller i updates the buyer’s preferences model ũ0(x) given the buyer’s bid

xb
t−1.

ii. Seller i determines the utility of the next bid usi
t :

A. If t = 1, then set usi
t to be the utility of ωr−1 or maxusi∗ (x) in case

r = 1.
B. Otherwise, make a concession usi

t = usi
t−1− c(t).

iii. If utility of usi
t is less than the reservation value vi, withdraw from negoti-

ation.
iv. Determine a bid that has utility usi

t and maximizes the expected utility of
the buyer: xsi

t = argmaxx∈{x|ui(x)=usi
t }ũ0 (x) and send this to the buyer.

v. The buyer updates the seller’s preferences model ũsi∗ (x) given the seller’s
bid xsi

t .
vi. If the buyer’s utility u0(x

si
t ) is more than the utility of the best outcome of

the previous round, accept the seller’s offer, i.e., ωr
i = xsi

t .
vii. The buyer makes a concession c(t) and determines a bid

that maximizes the expected utility of the seller i: xb
t =

argmaxx∈{x|u0(x)=u0(xb
t−1)−c(t)}ũ

si (x)

viii. If the utility of ub
t is less than the utility of usi

t , accept the seller’s bid
anyway.

ix. Otherwise, send ub
t .

x. If the utility of the buyer’s next bid u0(xb
t ) is less than its reser-

vation value v0 then send a bid with the reservation value: xb
t =

argmaxx∈{x|u0(x)=v0}ũ
si (x).

(c) If only one seller has reached an agreement, then the agreement of the previous
round is the final agreement ω = ωr−1.

(d) Otherwise, publicly announce the winning agreement ωr = ωr
argmaxi{u0(ωr

i )}
.

(e) Start a new round, setting r = r +1.
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Chapter 7

Eliminating Issue Dependencies in
Negotiation Domains

In multi-issue negotiations, issues may be negotiated independently or not. In the latter
case, the utility associated with one issue depends on the value of another. Searching for
good bids in a utility space based on multiple, dependent issues in general is intractable.
Furthermore, existing negotiation that have been proven to be efficient for negotiation in
domains with independent issues cannot be used in case of dependencies between issues.
Tractable algorithms do exist for independent issue sets, so one idea is to eliminate the
dependencies by approximating the more complex utility space with issue dependencies.
Several techniques have been proposed to deal with this increased complexity, including,
for example, introducing a mediator in the negotiation setting. In this paper, an alterna-
tive approach based on a weighted approximation technique to simplify the utility space
is proposed. It is shown that an approximation may give reasonable results when some
structural features of the negotiation domain and preference profile are exploited. The
approximated utility spaces can be used by existing negotiation algorithm for negotiation
domains without issues dependencies. Of course, there is a risk that approximation re-
sults in significantly different negotiation outcomes. Therefore, a checking procedure to
mitigate this risk is introduced and show how to tune the parameters of this procedure to
control the outcome deviation. These parameters can be used to balance computational
cost and accuracy of negotiation outcome. Based on experimental results specific val-
ues for the parameters of the checking procedure that provide a good balance between
computational costs and accuracy are proposed.

7.1 Introduction

Negotiation is a process by which a joint decision is made by two or more parties [17].
The parties first express contradictory demands and then move towards agreement by a
process of concession making. Negotiation is an important method for agents to achieve
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their own goals and to form cooperation agreements, see e.g. [1, 2, 21, 22]. Raiffa [19]
explains how to set up a preference profile for each negotiator that can be used during
negotiation to determine the utility of exchanged bids. For more information on utility
and other game theoretic notions the reader is referred to e.g. [16]. Representing agent’s
preferences in terms of mathematical formulae expressing relationships between values of
issues and the utility of bids allows the development of software support for negotiations.
The complexity of these relationships determines the computational costs of the negotia-
tion process. One way to avoid such computational costs is, as proposed in e.g. [10, 11],
to build up profiles as combinations of independent and simple evaluation functions per
issue. This approach corresponds to the way the average human tackles negotiation. Hu-
mans tend to simplify the structure of their preferences ([24]) and prefer to negotiate one
issue at a time, which means that issues influence the utility of a bid independently from
each other. Absence of issue dependencies allows for the use of efficient negotiation
strategies.

A number of efficient negotiation strategies exist for negotiation domains with indepen-
dent issues, e.g. see [10, 4, 5, 8]. The strategies try to find efficient offers, that is the offers
close to Pareto efficient frontier assuming that an efficient serach algorithm is available to
them. This true for the domains where issues are independent of each other. In some do-
mains, however, issue dependencies influence the overall utility of a bid. In such cases it
is no longer possible to negotiate one issue at a time and Klein at al in [12] argue that there
is no efficient method that an agent can use to negotiate multiple issues, even if the agent
tries to guess the opponent’s profile. The authors propose to use a mediator who uses a
computationally expensive evolutionary algorithm that can solve non-linear optimization
tasks of high dimensionality. Bar-Yam [1] shows that in a multi-issue negotiation with
issue dependencies the utility can only be described by non-linear functions of multiple
issue variables.

Until now this approach is only applicable if the values of the different attributes in the
domain are independent from each other. However, in some domains the issues are in-
terdependent. The AMPO vs City negotiation case study presented in [18] has generaly
linear additive structure of preference profiles of the negotiating parties but still has some
weak depedencenies between two issue, e.g. the City negotiating party would gain addi-
tional “bonus” utility if officers with less than 5 years service as well as the officers with
more than 5 year would get now increase in vacation. Non-linear utility functions and
preference elicitation methods are studied in the multiple criteria decision making and
multiattribute utility theory [3, 15, 25].

In this paper, a new approach to tackle the complexity problem of a utility space with
issue dependencies, called WAID (Weighted Approximation for Issue Dependencies), is
proposed. It is based on the following observations. First, not all bids are equally im-
portant for negotiation: there are some bids which are not acceptable for the agent or are
too optimistic to be an outcome of the negotiation. In effect, it is possible to indicate
an expected region of utility of the outcome. Second, in real life cases a profile can be
modeled by utility functions that are far from “wild”; they have a structure that is far
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from random. This paper proposes a bid search algorith based on weighted averaging as
a method to approximate complex utility functions with simpler functions that is based
on these observations. Furthermore, the bid search algorithm provides a way to check the
adequacy of the approximation by a measure of the introduced error. The search algo-
rithm can be used in the existing negotiating strategies designed for negotiation domains
without dependencies between issues.

The negotiation outcome, however, does not only depend on the preference profile but
also on the process of negotiation itself. It is to be expected that the risk of obtaining
a bad outcome due to the use of an approximation cannot be avoided completely even
if the approximation is quite good. In this paper, the risk of a bad negotiation outcome
when using an approximation of the agent’s preference profile is analyzed. It turns out
that in some domains this risk may still be unreasonably high. The results show that using
the approximated space a bid might be proposed that in the original utility space would
have a too low utility. The risk of such an erroneous bid can be quite high and, as a
consequence, the risk of obtaining a bad negotiation outcome is significant. In order to
control this risk, the process of negotiation should be investigated as well. We investigate
a way to incorporate a checking procedure to control the risk of an erroneous bid in the
negotiation algorithm itself. This paper presents a checking procedure able to control the
risk of erroneous bids which can be incorporated in any negotiation algorithm.

Of course, this checking procedure introduces some additional computational costs. One
of the main contributions of this paper is that it shows that a trade-off can be made be-
tween computational efficiency and approximation accuracy, which is directly related to
the negotiation outcome. The parameters of the checking procedure allow the tuning of
the negotiation algorithm to increase either the computational efficiency or decrease the
risk of erroneous bids. Derived from experimental results, we propose specific values for
these parameters that ensure a reasonable balance between computational costs and out-
come deviation (in terms of utility) in many domains. Finally, we present experimental
results that show that the approach of adding a checking procedure to the negotiation al-
gorithm is scalable and allows an agent to negotiate about high-dimensional utility spaces.

The paper is organized as follows. The next section reports on the related work in the field.
Section 7.3 provides a formal definition of utility spaces with dependencies between is-
sues and gives a leading case study that is used throughout the paper to illustrate the
method. Section 7.4 describes the approximation method for eliminating such dependen-
cies. The theme of Section 7.4.5 is the bid search algorithm based on the approximation
method and shows that by varying certain parameters of the method a trade-off can be
made between outcome deviation and computational costs. Section 7.5 analyzes perfor-
mance of the proposed bid search algorithm in an experimental setup. Finally, section 7.6
concludes the paper.

169



7.2 Related Work

In [12] authors propose a negotiation protocol based on the mediated single text nego-
tiation [18]. The protocol is specifically desigen to handle complex utility spaces with
dependencies between issues. In the protocol, a mediator proposes an offfer that is ini-
tially generated randomly. Each agent then votes to accept or reject the offer. In case when
both agent vote to accept the offer, the mediator mutates the offer and the new offer is sent
back to the agents. If at least one of the agents rejects the offer the mediator mutates the
the most recent mutually acceptable contract and sends it to the agents. This procedure
is repeated for a fixed number of times. This protocol can be scaled to negotiations with
more than two agents.

Two types of agent strategies are used in [12]: “hill-climbers” and “annealers”. The
hill-climbers accept an offer from the mediator if it has high utility than the most recent
mutually accepted offer. The annealers can accept contracts worse than the one that is
muttualy accepted with a given probability. The probability depends on the utility change
between the contracts and the time to the negotiation deadline. The annealers are tunned
in such a way that the probability of accepting worse contracts is higher in the beginning
of a negotiation and decreses to zero when the negotiation time approaches the deadline.

In the experimetal setup the annealers showed better negotiation results than the hill-
climber due to the fact that the hill-climbers tend to stuck in a local optimum while the
annealers can explore utility space more extensively by accepting worse offers. How-
ever, in negotiation setting with mix of a hill-climber and a annealer the hill-climber take
advantage of the anmnealer by dragging him into its own local optimum.

In [13] the work of [12] was extended by introducing annelaing into the mediator. In
this protocol, the mediator uses annealing to persue not only the mutually accepted offers
but also the ones that are rejected be the agents. To increase the mediator’s efficience
the agents are requierd by the protocol to annotate their votes with a form of strangth:
weak/medium/strong accpet (reject). This modification allows to overcome the problem
of negotiation settings with a mix of the hill-climbers and the annealers. However, the
protocol can be sentsitive to the truthfullness of the agents in annotating the stringth of
their votes.

The utility spaces that are used in [12] and [13] are defined by means of constraints in
a multi-dimensional space. Every constraint is defined on a range of values in every
dimension and has a signle utility value. The utility space is than a sum of utilities of
all constraints satified for a specific offer. The utility spaces defined in such a way is
characterized by a “bumpiness” of the utility, i.e. sharp increases and decreases of the
utility and a high number of local optimums. Such negotiation circumstances do not
seem to be common in negotiation practice (see [11] for a number of examples of utility
functions used in negotiation and decsion making case studies) where prefernces have
some structure that is far from such “wild” behaviour.

In [9] the idea of using a mediator for negotiations with issue dependencies proposed in
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[12] is extended by introducing a more advanced negotiation protocol. In the protocol, the
agents randomly sample their own utility spaces to find areas of high utility and share them
as well as the utilities of the areas with a mediator. The mediator finds overlaps between
the reported areas and selects the one with the highest social welfare. The main disadvan-
tage of the poroposed protocol is in the necessity of a trusted third-party that would play
the role of mediator. The mediator has to be trusted in keeping the shared information
about the agent’s utility spaces secret and being honest to all agents in maximization of
the social welfare when searching for the final negotiation outcome. Furthermore, in the
proposed protocol the agent’s have an insentive to lie about their utilities in order to get
better negotiation outcome for themselves.

The problem of negotion with dpendencies between issues is also studied in the context
of bundling items under negotiation. Utility of a bundle can be non-linear with respect to
the presense of items in the bundle, that is utility of two items in a bundle has different
utility than a sum of utilities of the two items individually. Robu at al. in [20] propose
a graph-based technique to learn complex opponent’s profiles. The authors propose an
algorithm of exponential computational complexity for searching through a learned utility
space of the opponent. The main interest in [20], however, is the scalability of a model
for representing an opponent’s profile which is different from the approach proposed here
to simplify an agent’s profile. The technique can be only applied to negotiation domains
with binary issues that represent presence of a product in the bundle.

In [23] authors propose a negotiation algorithm for a shop negotiating with a customer
about a bundle of products and a price. The strategy is able to handle non-linear utility
functions of bundles. It tries to combine aggregated knowledge about preferences of a
potenial customer with a prefernce model of a customer that is learned during negotiation
on-line. Unfortunately, the strategy is tested only on relatively smaal domains with up to
ten products in a bundle (that is 210−1 = 1023 possible bundles).

An interesting approach to approximation of non-linear utility functions is proposed in
[6]. The authors split the non-linear untility function in several interval and then approx-
imate those intervals with linear functions. This can significantly improve computational
tractability of a bid search algorithm. Authors assume that the approximations as well as
the corresponding approxiation error are given and do not give any recomendations on
how build them. Furthermore, authors do not consider the case of dependencies between
the issues and leave it for future work.

7.3 Utility of Interdependent Issues

The overall utility of a set of independent issues can be computed as a weighted sum of
the values associated with each of the separate issues. As is common (see e.g. [10, 19]),
an evaluation function is associated with each issue variable and the utility of a bid then
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is computed by the following weighted sum of the issue evaluation functions:

u(x1, . . . ,xn) =
n

∑
i=1

wievi(xi) (7.1)

In equation 7.1, the (weighted) contribution of each issue to the overall utility only de-
pends on the value associated with that issue and the contribution of a single issue can
be modeled independently from any other issues. Evaluation functions for independent
issues thus have exactly the same properties as the utility function associated with the bids
that consist of multiple issues: it maps issue values on a closed interval [0,1]. This setup
can be used for issue values that are numeric (e.g., price, time) as well as for issue values
taken from ordered, discrete sets (e.g., colors, brands).

Bid utility functions that are weighted sums of the contribution of single issue values to
the overall utility cannot be used, however, for modeling dependencies between issues.
The value of one issue may depend on that of another, thus influencing the utility of a bid
that includes both issues. Dependencies between these issues give rise to a generalization
of equation 7.1 to:

u(x1, . . . ,xn) =
n

∑
i=1

wievi(x1, . . . ,xn) (7.2)

The representation of a utility space with non-linear issue dependencies as in equation 7.2
is similar to the model proposed in [12]. The main difference is that instead of considering
only binary issue values, we allow multi-valued, discrete, as well as continuous issue
ranges.

The complexity of a utility function determines the computational complexity of the ne-
gotiation process. One of the main problems in dependent multi-issue negotiation is the
computational complexity associated with searching for appropriate bids in the corre-
sponding utility spaces. In case a utility function of multiple issues is non-linear in these
issues, i.e. there are issue dependencies, finding a particular bid in the utility space is
intractable. Computationally simple and efficient approaches covered in [14] mostly rely
on the independence of issues to determine their next bid and are not applicable1.

As an illustrative example of dependent issues, in this paper, we consider the negotiation
of an employment contract where two important issues are at stake: the number of days
that have to be worked and the number of days that childcare will be provided by an em-
ployer. In the example, the candidate employee additionally has to take into account a
dependency between these two issues: working time (issue variable x1) needs to be bal-
anced with the time s/he needs to spend with his/her child (issue variable x2). Assuming
that the partner of the candidate is working too and can take responsibility for only part of

1As we discuss below, however, the approach can be adapted by using exhaustive search through the
utility space, but becomes intractable and in practice works only for small utility spaces.
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Figure 7.1: Utility space of the candidate employee with issue dependencies.

the childcare, the candidate has promised that s/he will take care of the child for at least 2
days, either by taking care in person, or by finding professional childcare. Thus the child
care issue is really important and in case the employer proposes a contract for 5 days our
candidate will try to negotiate a result which includes at least 2 days of childcare. In terms
of utility, bids with 5 working days and less than 2 days of childcare have a low utility
(e.g. u(5,0)≈ 0.1, (5,1)≈ 0.5). In case the employer proposes a contract for only 4 days,
the candidate will need to negotiate a result including only one day of childcare and a bid
of 4 working days and one day of childcare has an acceptable utility value associated with
it (e.g. u(4,0) ≈ 0.25, u(4,1) ≈ 0.55) though the candidate would prefer to work more.
With respect to bids of the employer that require the candidate to work 3 days or less,
there is no problem regarding the caretaking of the child. In that case, the childcare issue
has much less influence on the value of the bid (e.g. u(3,0)≈ 0.35, u(3,1)≈ 0.55. Even
in this relatively simple example, the values associated with each of the issues cannot be
modelled independently and overall utility cannot be calculated using equation (7.1). The
contribution of the childcare issue to overall utility depends on the number of working
days associated with the other issue and vice versa in a way that introduces non-linear
dependencies between the issues. Such non-linear dependencies can only be modelled by
equation (7.2). To make the example concrete, the candidate’s preferences are modelled
using the following evaluation functions:

ev1(x1,x2) = 0.01x2
1 +0.03x1x2 +0.028x2

2 (7.3)

ev2(x1,x2) =−0.04x2
1 +0.13x1x2−0.11x2

2 +1 (7.4)

Figure 7.1 shows the utility space of the candidate employee defined by the evaluation
functions (7.3) and (7.4) and weights w1 = w2 = 0.5.
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Figure 7.2: The WAID method overview.

7.4 Weighted Approximation Method

Due to the inherent computational complexity and the limited number of negotiation
strategies that can be used to handle issue dependencies in negotiations, it would be ben-
eficial to have methods that simplify the negotiation process of dependent issues without
using a mediator. One particularly interesting option is to investigate the complexity of
the utility space itself and try to eliminate the dependencies between issues. In case is-
sue dependencies can be eliminated, various alternatives for efficient negotiation become
available: Searching through the utility space of multi-issue bids becomes feasible and
negotiation strategies for independent issues can be applied.

In this section, a method based on weighted approximation is proposed to eliminate issue
dependencies (see Figure 7.2) . It uses an averaging technique (weighted approximation)
in which some general observations about negotiation have been integrated (the m-point
and the wightning function that will be explained later) and which can take available
knowledge about a negotiation domain into account. In particular, knowledge about the
relative importance of bids and about outcomes which reasonably can be expected are
part of the weighted averaging method.

Although elimination of issue dependencies implies a loss of information and accuracy
with regard to utility, it is shown in this paper that if the influence of one issue on the
associated value of another issue is “reasonable” (i.e., the utility space is not too wild) a
good approximation of the complex utility space can be obtained.

The approximated utility can be used by a negotiation strategy to find an offer given some
criteria, e.g. find an offer with a certain utility. The strategy can adopt a bid search
algorithm proposed in this paper. Due to approximation error the found offer can have a
significant deviation of utility in the original utility space. This deviation can be easily
calculated due to the fact that calculating utility of an offer even using non-linear utility
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space is computationaly cheap. If the deviation is unaccpetable the search algorithm
would propose another offer. Such procedure is repeated until an offer with acceptable
utility deviation is found.

The averaging technique proposed in this paper for eliminating dependencies is valid for
utility spaces that have a certain “smooth” structure. The technique averages the values of
bids close to each other. Therefore, utilities should not fluctuate too much from one bid to
another within the proximity range set by the technique. In real life, common negotiations,
this limitation on the applicability of the method is not seen as a problem considering that
it is cognitively hard to make sense of wildly fluctuating utility spaces. As an indication,
we think that the techniques are applicable to utility functions that can be modeled by
polynomial functions of modest power. If the nature of the utility space is not clear,
the applicability of the proposed techniques has to be tested for that case. A case study
illustrates that the elimination of dependencies does not result in significant changes of the
negotiation outcome. Additionally, a method for analyzing and assessing the difference
between the original and approximated utility space is provided. This method analyze
and assess the results can always be applied to arbitrary utility spaces.

Our main objective thus is to find and present a method for transforming a utility space
u(x1, . . . ,xn) based on dependent issues that can be represented by equation (7.2) to a
utility space u′(x1, . . . ,xn) without such dependencies that can be represented by equation
(7.1). There exist various techniques to transform complex (utility) spaces with non-
linear functional dependencies between variables to spaces which are linear combinations
of functions in a single variable [18]. For our purposes, we are particularly interested in
the linear separability of non-linear evaluation functions of dependent issues2. The main
idea is to transform a utility space u(x1, . . . ,xn) into an approximation u′(x1, . . . ,xn) of
that space by approximating each of the evaluation functions evi(x1, . . . ,xn) by a function
ev′i(xi) in which the influence of the values of other issues x j, j 6= i, on the associated
value evi(x1, . . . ,xn) have been eliminated. Mathematically, the idea is to “average out” in
a specific way the influence of other issues on a particular issue.

The WAID method takes as input a utility space based on non-linear issue dependencies
(i.e. issues cannot be linearly separated and transforms it into a utility space that can
be defined as a weighted sum of evaluation functions of single issues (i.e. issues are
independent). The WAID method consists of the following steps:

1. As a first step, estimate the utility of an expected outcome that is reasonable (given
available knowledge). This estimate is called the “m-point” and is used to define a
region of utility space where the actual outcome is expected to be.

2. Select a type of weighting function. The selection of a weighting function is based
on the amount of uncertainty about the estimated m-point (expected outcome) in
the previous step.

2In geometry, when two sets of points in a two-dimensional graph can be completely separated by
a single line, they are said to be linearly separable. In general, two groups are linearly separable in n-
dimensional space if they can be separated by an n−1 dimensional hyperplane.

175



3. Calculate an approximation of the original utility space based on non-linear issue
dependencies using the m-point and the weighting function determined in the pre-
vious step. The result of this step is a utility space that can be defined as a weighted
sum of evaluations of independent issues (a function of the form of equation (7.1))3.

4. Perform an analysis of the difference of the original and approximated utility space
by means of a ∆-function to assess the range of the error for any given utility level.
In this final step, based on the assessment, thresholds for breaking off the negotia-
tion or accepting opponent’s bids can be reconsidered.

Finally, the results of the WAID method can be used in combination with a particular
negotiation strategy. In section 7.5.1, we study the results of using an approximated utility
space for the child care example in a negotiation strategy and compare the results with an
approach based on the original utility space. The sections below explain each of the steps
in more detail and illustrate how these steps achieve the objective of eliminating issue
dependencies.

7.4.1 Estimate an Expected Outcome

Any approach based on using uniform arithmetical averaging methods has the effect of
discarding information uniformly. Such an approach does not take the final goal of ne-
gotiation into consideration: the negotiation outcome. A uniform averaging method is
indifferent to the fact that even before negotiation starts it can be assumed that certain
regions of the utility space are more relevant to the negotiation than others. Some general
observations about the structure of utility spaces that can be associated with negotiations
taken from actual practice provide additional insight that can be used to increase the ef-
fectiveness of an approximation technique.

Consider, to make clear what we mean, a worst case scenario in which two agents A and
B associate completely opposite utilities with bids. In other words, what is valuable for
agent A is of no value for agent B. Formally, we can express this opposition in terms of
utility functions as follows:

uA(x1, . . . ,xn) = 1−uB(x1, . . . ,xn) (7.5)

Given these utility functions, it is easy to see that the Nash product is 0.25 with associated
utility values uA(x1, . . . ,xn) = uB(x1, . . . ,xn) = 0.5 and the same point within the utility
space is an efficient negotiation outcome when using Kalai-Smorodinsky criteria, that is,
a Pareto-optimal outcome with equal utilities for both parties. Assuming such opposite
interests, none of the agents would ever accept a bid which has a utility below 0.5.

3In the more general case of more than two issues, an evaluation function may depend on more than two
issues and one of those issues has to be selected to be separated from the other issues.
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Typically, however, negotiations do not fit such worst case scenarios and there is some-
thing to gain for both parties. Formally, this means that there exist acceptable negotiation
outcomes, i.e. bids, with associated utilities that are higher than 0.5. In such cases, the
utility spaces of the negotiating opponents are not completely opposite as expressed by
(7.5). This line of reasoning makes clear that in general we may assume that the expected
outcome of the negotiation is located somewhere in the open utility interval (0.5;1) and
this region in the utility space is generally of more importance in a negotiation.

It follows from the previous considerations that some regions within the utility space are
more important for obtaining a good negotiation outcome than others and in the WAID
method proposed should be approximated as good as is possible. As a first step to identify
these regions, an agent can estimate an expected outcome which would identify with some
probability one of the more relevant points in the utility space. We call this point the “m-
point”.

An agent will be able to estimate an expected outcome with reasonable exactness only if
it has some knowledge about the opponent’s profile. In that case, as we illustrate below,
the m-point can be computed in two steps. But even if an agent lacks any information
whatsoever about its opponent an m-point can be based on considerations of the agent’s
own utility space. In the latter case, we propose that the m-point can be identified with the
average of the break-off point (an agent breaks off a negotiation in case any utility with
a lower utility is proposed) and the maximum utility in the utility space. In the childcare
example, the break-off point equals 0.37, which is equal to the minimum utility that still
satisfies the candidate employee’s childcare constraint.

A second, more informed method to determine an expected outcome can be used when
the agent does have some information, e.g. based on previous experience, concerning the
opponent’s profile. In the childcare example, assuming that the employer will take the
child care request seriously into consideration, but will try to minimize his contribution in
this regard, bids with 1-2 child care days are reasonable to expect. Additionally, it may be
more or less certain that the employer prefers the employee to work as much as possible
and that these issues are independent from the other. Then, as an estimated model of the
opponent’s profile, the following evaluation functions can be used, which, using equal
weights of 0.5, result in the utility space depicted in figure 7.3:

ev1(x1) = x1/5 (7.6)

ev2(x2) = (3− x2)/3 (7.7)

An estimate of the expected outcome can now be computed from the agent’s own utility
space and the educated guess of the opponent’s utility space using Kalai-Smorodinsky cri-
teria, which ensures that a Pareto-optimal outcome is selected and the expected outcome
is not strongly biased in favour of either one of the parties (see figure 7.3). Calculating
the utility in our example yields m = 0.74. This estimate may still be quite uncertain, but
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Figure 7.3: Utility space of the candidate employee with issue dependencies.

we will discuss this issue more extensively below. The estimated outcome only defines
one parameter of the approach.

7.4.2 Select Weighting Function

As discussed above, not all points within the utility space are equally important for obtain-
ing a good negotiation outcome. To take into account the relative importance of certain
regions within the utility space, we introduce a weighting function associating a weight
with each point (its “importance”) in the utility space. In general, there are two use-
ful considerations that can be made which provide clues for constructing an appropriate
weighting function.

The first consideration is that a certain range of utility values are of particular interest in
the negotiation. Also, certain bids may be more “appropriate” than others in a negotiation.
As an example, bids with utility values below a break-off point are less significant than
other bids and do not have to be approximated as well as others. In the childcare exam-
ple, provided with the relevant domain knowledge, it is moreover unreasonable for our
candidate employee to propose to do no work and at the same time to request 5 childcare
days.

The first consideration concerning the approximation of the utility space can be given a
formal interpretation by associating the highest weight with the expected outcome (the
“m-point” identified above, located within the (0.5;1) interval).

The second consideration is the fact that an agent may be more or less uncertain about its
estimate of the utility of the negotiation outcome. To take this into account, we propose
to use two different functions depending on the level of uncertainty that the agent has
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Figure 7.4: Example of ψ function for m = 0.74.

about the estimate of the m-parameter. In case the agent does not have information about
the opponent, nor any past experience with the particular negotiation domain and is quite
uncertain about the most probable outcome, a relatively broad range of utility values
around the expected outcome should be assigned a high weight. As a consequence, bids
in a rather wide neighborhood of the m-point are equally important for the negotiation and
only extreme points (with utilities close to one or zero) do not have to be approximated
very accurately. Given a relatively large uncertainty, we propose to use a polynomial
function of the second order, which is rather flat near the m-point and declines closer to
the extreme utilities (see figure 7.4 (left)). The corresponding weighting function ψ then
can be computed as follows:

ψ(x1, . . . ,xn) =
2
m

u(x1, . . . ,xn)−
1

m2 u2(x1, . . . ,xn) (7.8)

In the case the agent is reasonably certain about the estimate, for example, when the
most probable region of the negotiation outcome is well defined on the basis of domain
knowledge, knowledge about the opponent or experience gained in previous negotiations,
a weighting function with a stronger differentiation of utilities values can be used. In that
case, a Gaussian function that is defined in terms of a maximum point m and spread σ can
be used that assigns high weights only to bids with a utility close to the expected outcome
m (see figure 7.4 (right)):

ψ(x1, . . . ,xn) = e−
(u(x1,...,xn)−m)2

σ2 (7.9)

The spread parameter σ provides an indication of the agent’s certainty about expected
outcome. In both cases, the m-parameter represents the expected outcome and is a point
in the interval (0.5;1); ψ assigns the m-point the maximal weight of 1.0.

In our example, an educated guess of the opponent’s profile could be made and therefore
a Gaussian weighting function is selected and a value for the “spread” σ needs to be
determined. To this end, we use the 3σ rule (or “Empirical rule”), which says that (most
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likely) 99,7% of all outcomes will be in the interval (m− 3σ ,m + 3σ), which gives us
σ = (0.37+0.74)/(2∗3) = 0.19.

7.4.3 Compute Approximation of Utility Space

Using the weighting function ψ a weighted approximation technique can be defined. The
weighted approximation technique proposed here first multiplies each evaluation value
with its corresponding weight and then averages the resulting space by integration. In
the equation below, a function ω is introduced instead of ψ since the weighting must be
normalized over the interval of integration. The range of integration is identical to the
range of the integrated issue4. In case a negotiation involves n issues with interdependen-
cies between these issues, and evaluation functions evi(x1,x2, . . . ,xN) for the ith issue are
given:

ev′i(xi) =
∫

V ψi(x1, . . . ,xn)evi(x1, . . . ,xn)dV∫
V ψi(x1, . . . ,xn)

(7.10)

Here V is a volume of n−1 dimensionality build on the dimensions x1,x2, . . . ,
xi−1,xi+1, . . . ,xn. Of course, not all issues have to depend on all others. The approxima-
tion technique can be applied sequentially for each evaluation function in the negotiation
setup, which involves dependencies between issues.

As an illustration, we apply the weighted averaging technique to our employment con-
tract negotiation. Figure 7.5 shows the ψ-functions for the original utility space using a
polynomial function (7.8) for the left chart and a Gaussian function (7.9) for the right one.
The flat section in the middle of the left chart represents a rather wide neighborhood of the
m-point: this corresponds to the expected outcome and weights in its neighborhood are
high. Outside this region the weighting function slowly declines to zero. For the Gaussian
function (right chart) we obtain a different picture: the function has high values (close to
1) for the small band of bids with utility values close to the m-point and declines rapidly
for the remainder of the utility space.

We apply expression (7.10) to the evaluation functions of our employment contract negoti-
ation example to derive an approximated utility space without interdependencies from the
original utility space. Figure 7.6 shows the original (top) and approximated utility spaces
obtained by approximation with a polynomial weighting function (left) and obtained by
using a Gaussian weighting function (right).

The utility spaces obtained by approximation with the polynomial and Gaussian weight-
ing functions have a similar structure. However, the Gaussian weighting function due
to its stronger utility discrimination power makes it more precise in the vicinity of the
m-point. This is explained in more detail in the next section.

4If the issue has discrete values, integration simply means summation over all these values.
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7.4.4 Analyze Difference ∆ with Original Utility Space

The technique presented approximates the original utility space and consequently, intro-
duces an error in the utility associated with bids. To obtain a measure for the distance of
the values of bids in the original utility space compared to the bids in the approximated
utility space, a difference function ∆ can be defined as follows:

∆(x1, . . . ,xi) = |u(x1, . . . ,xN)−u′(x1, . . . ,xN)| (7.11)

As is to be expected, the ∆-values for the approximation using the Gaussian weighting
function shift the utility considerably for some bids. For certain bids in the childcare
example, the difference is almost 0.5. However, this only is the case for bids that are
unreasonable and are not relevant for reaching a negotiation outcome. In particular, this
shift in utility occurs for bids that involve more days of child care than working days.
Approximations of the utility of bids that are close to the m-point are very good and close
to zero.

To see the effect of the weighted averaging method near the m-point we take a section
in the original utility space for the m-point (m = 0.74 for our negotiation example). By
fixing the utility to 0.74, an expression can be obtained for the value of one of the issues
as a function of another one:

u(x1,x2) = 0.74⇒ x1 = f (x2) (7.12)

The function thus obtained can be substituted into the expression of the delta function
(7.11). This provides us with the values of ∆ for a fixed utility as a function of only one
of the issues, and can be obtained for other utility values in a similar way.
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Figure 7.8: Original and averaged utility values running through maximum ∆-point.

The ∆-values obtained by weighted averaging with the polynomial weighting function
and the Gaussian weighting function for utility equal to 0.74 are rather small for both (see
Figure 7.7 (right)), but weighted averaging with a Gaussian function produces smaller
approximation errors: it is almost twice as good. For bids with utilities of 0.9 the ∆-
values (see Figure 7.7 (bottom)) rise in comparison with that of 0.7, however, the Gaussian
weighting function still gives a better result. For bids with a utility of 0.5 (see Figure 7.7
(left)) the ∆-values are quite similar.

In figure 7.8, a worst case analysis is illustrated. It presents the utilities for extreme values
of childcare (figure 7.8(left)) and for the number of working days (figure 7.8 (right))
that run through the maximum ∆-value, corresponding to the bid with 0 working days
and 3 days of childcare. It shows that the evaluation function associated with 0 days of
child care (0 working days) is almost mirrored with respect to the evaluation function
associated with 3 days of child care (5 working days). In effect, this shows that our child
care example presents a serious test for our WAID method that somehow has to average
these differences.

7.4.5 Bid Search Algorithm

The negotiation algorithm that is used plays a key role in obtaining a good negotiation
outcome. The approximation of a preference profile allows an agent to more efficiently
compute counter bids during negotiation, but does not in itself provide a guarantee that
against arbitrary opponents a good negotiation outcome will be reached. More insight is
required to assess the effects of using approximations of real preference profiles.

A transformation of the utility space will have an effect on the negotiation process as well
as on the negotiation outcome. To assess the impact of the WAID method, a negotiation
strategy is applied to the employment contract example. Here, we use the ABMP-strategy
proposed in [10].

The ABMP-strategy, outlined in Table 7.1, determines a bid in two steps: the strategy
first (a) determines the target utility for the next bid, and then (b) determines a bid that
has that target utility. The (b) part of the strategy is very efficient for independent utility
spaces. For the purpose of comparison, however, we can use exhaustive search through
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the complete utility space to find a bid in the second step, provided that the space is
discretized in a suitable manner (using small enough steps). In this way, the first step
(a) in the ABMP-strategy followed by the second step (b) using exhaustive search can be
applied to the original utility space whereas the original ABMP strategy can be applied to
its approximation.

An additional check is incorporated into the strategy when the approximated utility space
is used to avoid the risk of accepting bids with low utilities in the original space that
have much higher utilities in the approximated space. The bids with high ∆-values, that
have shifted significantly due to application of the averaging method, can be filtered out
in this additional step. When the agent receives a bid from its opponent, the agent has
to calculate the associated original utility as well and compare it with the bid acceptance
threshold.

We propose a parameterized procedure that can be used to control the probability of large
outcome deviations. The parameters of this procedure can moreover be used to influence
the tradeoff between the accuracy of the negotiation outcome and the computational effi-
ciency of the negotiation strategy. In the next sections, experimental results are presented
that allow the tuning of these parameters.

In the negotiation algorithm the bid selection procedure is the source of the deviation of
the negotiation outcome. In particular, in step 3 of the algorithm described in the previous
section the approximated space is used instead of the original space which gives rise to
outcome deviations. To avoid approximation errors that are too big, we propose to add a
checking procedure in this step which compares the utility of a bid in the approximated
space with the utility in the original space.

Table 7.1: Negotiation algorithm with bid search procedure
1 Evaluate bid bidA(i) received from opponent A:

Accept and end negotiation if ub(bidA(i)) > ub(bidB(i))
2 Compute concession and target utility:

Concession γ = β ∗ (1−µ/uB(bidB(i)))∗ (uB(bidA(i))−uB(bidB(i))))
Target utility: τ = uB(bidB(i))+ γ

3 Determine a next bid:
3a Find a bid with target utility

Find a bid bidB(i+1) such that u′B(bidb(i+1))≈ τ

3b Compare bid utility in approximated and original space
Check whether |uB(bidB(i+1))−u′B(bidB(i+1))|< δ

3c If not, find next candidate for the bid and repeat step (3b):
Find next candidate bid bidB(i+1) such that u′B(bidB(i+1))≈ τ

and utility with previous bid only differs minimally
4 Else, send bid to opponent

The proposed procedure integrated into the negotiation algorithm can be found in Table
7.1. The step to determine a next bid is refined and an iterative procedure is incorporated
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to check whether the difference in utility stays below a certain threshold δ . As before,
in step 3a a bid is computed that matches a certain target utility. In step 3b, however,
now a check has been incorporated that checks whether ∆U(bid) < δ , that is, whether
the absolute approximation error stays below a threshold δ . This additional check itself
is computationally cheap, since it involves only a simple calculation using equation (4).
If ∆U(bid) > δ , a bid bid′, which utility differs minimally from the previously computed
bid, is searched for, until ∆U(bid′) < δ . This iterative procedure for finding an appropriate
bid is called δ -checking.

The additional check is used to avoid the risk of proposing bids with (very) low utilities
in the original space that have (much) higher utilities in the approximated space. The
concessions made in step 3 thus are controlled by a parameter δ to ensure that they are
not too big.

The δ -checking procedure introduces additional search again into the computation of
a bid. Various heuristics could be applied again, however, to minimize the amount of
search. For example, a limit on the number of iterations could be introduced for spaces of
high dimensionality to ensure a bid would be found within a reasonable amount of time.
(The probability of finding an appropriate bid is high in high-dimensional spaces close to
the mpoint.) The relation of the value of the δ -parameter and the computational cost is
analyzed in more detail using experimental results in Section 7.5.4.

7.5 Experimental Evaluation

In this section, we present experimental results that show how the value of the δ -parameter
in the checking procedure relates to the distribution of the outcome deviation. These
results show that there is a direct relation between the size of δ and outcome distribution.

7.5.1 Case Study

In this section, the negotiation strategy outlined in 7.1 is used to study the bids that an
agent will offer during a negotiation using the original as well as the approximated util-
ity space. The negotiation strategy that an agent decides to use should not only fit the
agent’s personality profile and culture, its experience in general and the current domain
and negotiation partner, but it also has to be applicable given the utility space.

In our experiments, the same profile of the employer was used in the original as well as
in the approximated case. The employer’s profile that has been used is the same as that
introduced above.

Figure 7.9 (left) shows the outcome space build up out of the utilities of the employer
and employee per bid. Each point on the chart represents one bid. The coordinates of the
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Figure 7.9: Outcome space, optimality criteria, and negotiation paths (left) for the orig-
inal utility space of the employee, and (right) for the approximated utility space of the
employee.

bid are the utilities of the opponents (x-coordinate is the employer’s utility of the bid, y-
coordinate is the employee’s utility of the bid). The Nash product representing a bid with
the highest utilities simultaneously for both opponents of the original utility space equals
0.53 and corresponds to a bid of 5 working days with 2.5 days of childcare, which satisfies
the employee’s constraints. The Kalai-Smorodinsky solution is 1.5 days of child care and
5 working days. This bid is found by locating a bid on the Pareto-optimal frontier, which
is closest to the line drawn from points with utilities of (0; 0) to points with utilities (1; 1).
This bid represents a negotiation outcome where both parties get the same utility. Using
the ABMP strategy with exhaustive search for both parties, the negotiation lasts 4 rounds
(4 bids from each side, the employer starts) and finishes when the employee accepts a bid
of 2 days of childcare with 4.5 working days.

Figure 7.9(right) presents the result using the original ABMP strategy for both parties,
where the profile of the employee has been approximated. The bids in the utility space
are now concentrated around the employees original and approximated utility level of 0.7
(the m-point) with some spread towards lower utilities. The Nash product shifts to the bid
of 5 working days and 1.5 days of childcare and the Kalai-Smorodinsky solution now is
4 working days and 1.5 days of childcare.

The original outcome space and the approximated one are significantly different. How-
ever, the difference is not critical for the negotiation itself due to the fact that most of
the bids for which the difference is significant will not be used in a negotiation and we
basically aim for the efficient solutions (Kalai-Somorindinsky point, and Nash Product).
Also note that the bids are shifted only on the vertical axis (employee’s utility), because
the employer’s profile remains the same. The negotiation performed for the same setup
but using the approximated employee’s utility space is also finished in 4 rounds as in the
previous experiment and also results in a deal of 4.5 working days and 2 days of child-
care. This example shows that the approximation procedure leads to some shifts in the
efficient outcomes of the negotiation with respect to Nash and Kalai-Smorodinski. How-
ever, it also confirms that these bids and those around them preserve their meaning for the
negotiator. Negotiation outcomes for both utility spaces are rather close even though the
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negotiation paths are different.

7.5.2 Impact on Outcome Deviation

To analyze the impact of the WAID method on the negotiation outcome and computa-
tion costs a probabilistic experimental setup has been used. The negotiation outcomes
obtained by using the WAID are compared with those obtained using the original utility
space. The experimental results are obtained from utility spaces modeled by multivariate
quadratic polynomials. Such polynomials are widely-used in decision making theory to
represent preferences of a decision maker, e.g. see [15]. They are more expresive then
the classic multilinear or multiplicative forms studied by Keeney and Raiffa in [11] and,
thus, can cover wide range of domains including scheduling, assignment, quality con-
trol, facility layout, computer-aided process planning, and others (see [15]). On the other
hand, efficient methods for preference elicitation using polynomial representation exist
and studied in [15]. These methods are based on the fact that the polynomial can be easily
differencieate and the decision maker can use gradients of a polynomial function to assess
its utilities.

These polynomials may have multiplicative terms xix j which represent issues:

u(x1,x2, . . . ,xn) =
n

∑
l

wl

n

∑
i=0

n

∑
j=0

ai, jxix j,wherex0 = 1 (7.13)

Values of the coefficients ai, j are generated randomly from interval [−1;1]. Then, the
evaluation functions are normalized to interval of [0;1] using a Monte-Carlo method. It
is well-known that solving such quadratic programming problems is NP-hard, see e.g.
[7]. The m-point parameter that has to be fixed in order to apply the WAID-method is
determined for each utility space by a Monte-Carlo method.

The ABMP negotiation algorithm [10] (see Table 7.1) is used to assess the outcome devi-
ation that may occur when an approximated space is used instead ofq the original space
during a negotiation. In the experiments that were performed agent A also uses a vari-
ant of the ABMP strategy but does not approximate any issue dependencies in its utility
space. Instead it uses exhaustive search through its utility space in step 3 to determine
a next bid given a suitable discretization of this space (i.e. using small enough steps).To
compare outcomes for utility spaces of medium size, the same negotiation is performed
again with agent B using exhaustive search in step 3. Of course, exhaustive search can
only be used for utility spaces of medium size due to exponential time costs and memory
limitations. It is, however, imperative to use it if we want to calculate outcome deviation.
In the experiments, spaces with up to a number of 5 issues and a number of discretization
steps of at most 25 have been used (see also Section 7.5.2 and 7.5.3).

The main result of the experiments performed shows that the distribution of negotiation
outcome deviations is similar to a normal distribution with a mean value close to zero.
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Figure 7.10: Distribution of negotiation outcome deviation without checking procedire
(left) and with the procedure (right) for approximated spaces vs. original spaces for 4
issues (k=15).

Figure 7.10 (left) presents the distribution of outcome deviations for a negotiation about 4
issues. The deviation is a result of using the approximated space in the negotiation strat-
egy instead of performing an exhaustive search to find a good bid in the original space.
We use absolute values of the deviation in terms of utility instead of percentages here to
have uniform presentation of the parameters and results throughout the paper. Note, that
evaluation and utility functions are normalized into interval of [0;1]. The bell-shaped dis-
tribution on the figure (average=-0.02; std.dev.= 0.09) means that the negotiation over the
approximated space tends to produce the same result as the negotiation over the original
space using exhaustive search. This demonstrates that one may expect to obtain reason-
able outcomes when negotiating with approximated spaces instead of non-approximated
spaces.

Even though this result shows that approximating the original utility space to remove
issue dependencies may result in quite reasonable outcomes compared to those obtained
otherwise, it also shows that there is quite a high chance of deviating significantly. In
fact, for the 4 issue case figure 2 shows that there is a quite high probability of obtaining
outcomes that are worse by up to 20%. Additionally, the curve is not really symmetrical
and shows a tendency towards negative deviations. As an illustration, the probability of
obtaining a result that is worse than 10% equals 0.196. It is clear that in many domains
such a high risk will be unacceptable.

The impact of adding the δ -checking procedure to the negotiation algorithm on the out-
come distribution is significant, as is shown by Figure 7.10 (right). The experimental
setup is exactly the same but the negotiation algorithm used by agent B now includes the
checking procedure. It shows the outcome distribution for a threshold of δ = 0.01.

Clearly, the outcome distribution of the right plot in figure 7.10 is more symmetrical
than in dashed curve and more clustered around the mean; it has a mean=-0.00016 and a
standard deviation of 0.045. A more detailed analysis of the relation between ∆ and the
outcome deviation is presented in the Section 7.5.2.

The main conclusion thus is that additional measures need to be taken to reduce this risk.

188



 Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.0

2
0.0

7
0.1

1
0.1

5
0.2

0
0.2

4
More

Difference in outcome

P
er

ce
n

ta
g

e 
o

f 
ex

p
er

im
en

ts

10-0.01
15-0.01
20-0.01
25-0.01

 Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.0

2
0.0

7
0.1

1
0.1

5
0.2

0
0.2

4
More

Difference in outcome

P
er

ce
n

ta
g

e 
o

f 
ex

p
er

im
en

ts

10-0.02
15-0.02
20-0.02
25-0.02

 Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.0

2
0.0

7
0.1

1
0.1

5
0.2

0
0.2

4
More

Difference in outcome

P
er

ce
n

ta
g

e 
o

f 
ex

p
er

im
en

ts

10-0.03
15-0.03
20-0.03
25-0.03

Figure 7.11: The distribution of outcome deviations for 5 issues and δ = 0.01 (left),
δ = 0.02 (middle), δ = 0.03 (right). The various lines relate to different k-values.

The benefit of using approximated spaces is clear: issues can be negotiated independently
which makes the negotiation tractable. Controlled balance has to be found between the
computational costs and the risk of significantly deviating negotiation outcomes.

Additionally, we investigated the influence of the discretization per issue under consider-
ation on the outcome distribution. In the experiments we performed, the possible values
for each issue were reduced by discretizing the space to 10, 15, 20, and 25 values. In
order to assess the impact of adding the checking procedure to the negotiation algorithm,
we performed experiments with 3, 4, 5, and 6 issues. Finally, for the δ -parameter of the
checking procedure we used the values 0.001, 0.005, 0.01, 0.02, 0.03, and 0.05. In total,
we performed over 44.000 experiments in which the outcomes were compared with the
original space: 12.000 for 3 issues, 12.000 for 4 issues, 12.000 for 5 issues, and 6.000 for
6 issues. Comparisons of negotiation outcome for spaces of higher dimensionality were
not feasible. The higher the number of issues n and the higher the discretization parame-
ter k, the longer it takes to do the exhaustive search (it takes kn steps). To investigate the
scalability of the proposed approach, we ran in total 500 experiments with 7,8,9,10 and
15 issues for δ=0.02 and each k-value, so 2000 experiments in total. The results for 10
and 50 issues are presented in Section 7.5.4.

The experimental results relating the value of δ to the outcome distribution are depicted
in Figure 7.11. We do not show all results but only those for δ -values of 0.01, 0.02, and
0.03 which most clearly demonstrate the impact of different values on the distribution
and also define the turning points where decreasing this parameter further does not have
a very big impact anymore (see also Figure 7.13) and decreasing it results in significantly
worse outcomes.

In Figure 7.11, on the x-axis the outcome difference is set out. The outcome deviation may
be bigger than the value of the δ -parameter since errors may accumulate over multiple
rounds in the negotiation. The y-axis refers to the percentage of experiments having
particular outcome differences. The different lines correspond with different values of
the discretization parameter k. For each combination of a particular number of issues,
δ -value, and k-value, 500 experiments were run.

In general, as is to be expected since δ is supposed to control the error introduced by
the approximation, the experimental findings show that smaller values for δ result in
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Figure 7.12: Computational costs for 5 issues and δ = 0.01 (left), δ = 0.02 (middle),
δ = 0.03 (right). The various lines relate to different k-values.

negotiation outcomes that are closer to the outcomes in the original space.

The findings illustrated in Figure 7.11 are as follows. For δ = 0.01 (see Figure 7.11(left))
the standard deviation ranges from 0.0327 to 0.0442, and the average outcome difference
ranges from -0.0066 to 0.0015. For δ = 0.02 (see Figure Figure 7.11(middle)) the stan-
dard deviation ranges from 0.0350 to 0.05806 and the average outcome difference ranges
from -0.0142 to 0.0010. Finally, for δ = 0.03 (see Figure Figure 7.11(right)) the standard
deviation ranges from 0.0499 to 0.0717, and the average outcome difference ranges from
-0.0199 to -0.0151.

7.5.3 Impact on Computational Cost

Including the checking procedure implies that the bid determination part might need iter-
ations to find an appropriate bid. The previous section shows that smaller δ -values lead
to better outcome deviations, and it stands to reason that the smaller the value, the higher
the number of iterations needed. To get more insights into the frequency with which the
need for iterations causes high computational costs, a series of experiments have been
performed. The algorithm was tested for 4, 5, 6, and 10 issues, with the discretization
value k varying over {10,15,20,25} and δ varying over {0.005,0.001,0.03,0.02,0.01}.
Each test was performed 500 times with randomly generated original utility spaces.

Figures 7.12 shows the results for 5 issues, the results for other values are not shown, since
they do not provide additional insights. In these pictures, on the x-axis the logarithmic
costs are set out. The y-axis refers to the frequency with which an experiment had such
a logarithmic cost, with respect to the total number of experiments. The different lines
refer to different k-values.

The results clearly show the expected increase of high computational costs for higher δ -
values: higher percentages for higher computational values. However, when looking at
the areas underneath the lines, another interesting observation can be made. In Figure
7.12(left), for δ = 0.01, the bulk of the area underneath the lines ends approximately
at ln(x) = 6. In Figure 7.12(middle), for δ = 0.02 the bulk ends at ln(x) = 4, and in
Figure 7.12(right), for δ = 0.03 at ln(x) = 2. Evidently, the number of iterations needed
is bounded.
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Figure 7.13: Computational cost vs. outcome deviation for 5 issues and k=10.

7.5.4 Tunning Coumputational Costs

Combining the results of the outcome analysis of Section 7.5.2 and the computational
cost analysis of Section 7.5.3 shows that the need for a small outcome difference has to
be balanced against computational costs. In this a setting for the k, and δ parameters is
chosen that balances accuracy against efficiency.

To find a good balance between accuracy and cost, an integrated analysis has been per-
formed for the usual combination of parameters: the number of issues ranging over
{4,5,6,10}, k ranging over {10,15,20,25} and δ ranging over {0.001,0.005,0.01,0.02,0.03,0.05,1}.
δ = 1 corresponds to a setting without checking procedure.

Figure 7.13 presents the trade-off between negotiation outcome accuracy and the compu-
tational costs. Each point on the solid line of the chart represents the average of a series
of experiments where δ varies over {0.001,0.005,0.01,0.02,
0.03,0.05,1}. The top dashed line is an average+std.dev. and bottom dashed line is the
average-std.dev.

The results show that a good compromise is a δ -value of 0.02: for δ < 0.02 the costs
increase, for δ > 0.02 the outcome approximation gets worse. Furthermore, the standard
deviation drops off at this value, but does not decrease further for even smaller δ -values.

To analyse the scalability of the modified negotiation algorithm we performed a series of
negotiations with 10-issues. Exhaustive search as a benchmark for the negotiation is no
longer possible due to the extremely large utility space. Figure 7.14 shows average of the
computational cost depending on the number of issues for δ = 0.02,k = 20. The figure
suggests that the most of the randomly generated utility spaces remain tractable for the
negotiation algorithm with the δ -checking procedure.
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Figure 7.14: Computational costs for 10 issues and δ = 0.02. The different lines refer to
different k-values

7.6 Conlusions

In this paper we introduced a new approach that allows agents to deal with complex utility
functions in a negotiation environment with interdependent issues. Instead of representing
the negotiation task as an optimization task for interdependent issues we propose an ap-
proximation method to simplify the agent’s utility using the observation that in common
negotiation settings the expected negotiation outcome is approximately known and the
insight that the nature of utility spaces for such common negotiation settings has enough
structure to make our approach applicable. The method provides a means to analyze the
impact of the approximation on a particular utility space, thereby making it possible to
determine up front, whether or not the approximation is useful in any particular domain.

The main advantage of the proposed method is that it enables applicability of a wider
range of computational negotiation strategies without introducing a mediator into the ne-
gotiation. Available information about the domain and the most probable negotiation
outcome can be used to increase the accuracy of the method in the utility area around the
expected outcome, which is most important for the negotiation.

However, using an approximation always comes with a risk. In the case of multi-issue
negotiation, the risk is that a bid is proposed (and accepted by the other party) that seems
to have a good utility, but in fact, in the original utility space has a much lower utility.
The δ -checking procedure proposed in this paper offers a way to avoid this risk at the
cost of additional computations. Experimental results show, however, that a tradeoff can
be made between the accuracy of the bids and the computational overhead this entails. If
the δ -parameter in the checking procedure is set to 0.02, the utility of the bids made is at
most 0.02 away from the real utility, on a scale from 0 to 1. Moreover, using this value
for the δ -parameter, the negotiation algorithm including the δ -checking procedure can
handle high-dimensional utility spaces. the negotiation outcome obtained in this manner
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only slightly deviates from the outcome obtained without approximation.

The additional check that compares the utility of exchanged bids with the utility of the
original utility space during a negotiation prevents an agent from accepting low-utility
bids in the original space with a high error in the approximated space. This check in itself
is computationally cheap and ensures reasonable negotiation performance.

To conclude, in this paper an effective balance is found of accuracy versus efficiency for
multi-issue negotiation with issue dependencies in which the dependencies are removed
by approximation.
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Chapter 8

Conclusions and Future Work

Negotiation is a research topic addressed from various disciplines: management studies,
social science, and computer science/artificial intelligence. Negotiation is the most im-
portant process that allows people to form alliances, cooperations, and underlies all trade.
In this thesis we address single-session negotiations from an artificial intelligence per-
spective. Single-session negotiations are negotiations in which people negotiate once on
a particular topic. This subclass of negotiations occurs frequently in real-life.

This thesis proposes a principled design method for efficient and generic strategies for
single-session negotiations. Our method is based on principles of heuristics and game
theory, full analysis of outcome, dynamics, and domain, best-practice design, and empir-
ical evaluation. In this way, our method takes into account the inherent complexity of
the variation in negotiation domains (including scale and issue-dependencies), negotia-
tors (human and software agents), and negotiation settings (number of parties involved
and protocol).

These principles were derived by applying an analytical method proposed in Chapter 2
to state-of-the-art automated negotiating strategies. The method extends the conventional
outcome analysis with an analysis of dynamic properties of a negotiation strategy. Fun-
damental is the use of a classification of negotiation moves and the introduction of ne-
gotiation behaviour metrics. We show how the analytical part of our design method was
used to evaluate our new strategies in which the comparison to state-of-the-art negotiation
strategies and the way humans negotiate plays an important role. Our hypothesis that the
domain of negotiation might influence the performance of a strategy was confirmed. Our
analysis of domains, strategies, and dynamics of negotiations led to a number of design
guidelines for the design of efficient negotiation strategies:

• Knowledge about the opponent is essential to reach near Pareto-efficient outcomes.

• The strategy must be tested in domains with different characteristics, such as pre-
dictability of the issues (i.e., domain knowledge can be used to predict issue prefer-
ences), size of the domain, dependencies between issues.
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• The strategy must be tested against a range of strategies, as well as against humans.

• The strategy must be tested for a range of profiles (for user and opponent).

• Study the dynamics of the strategy in tournaments using the properties formulated
in the analytical method.

• Challenge other researches and/or students to outperform the strategy in a repeated
negotiation setting, i.e., a setting where they can learn over multiple sessions.

To support our design method according to these guidelines, in Chapter 3 we developed
the General Environment for Negotiation with Intelligent multi-purpose Usage Simula-
tion (GENIUS). The main purpose of GINIUS is to evaluate a strategy in a simulated
negotiation. For that purpose GENIUS offers a range of tools: an analytical toolbox, a
tournament simulator, a preference elicitation user interface, user interfaces for human ne-
gotiators. It includes a repository with a number of negotiation domains and negotiating
agents. To minimize the programming efforts, GENIUS provides an application program-
ming interfaces (API) to access negotiation protocols, domains, preference profiles, and
a skeleton of a negotiating agent. An existing negotiating strategy can be integrated in
GENIUS by means of adapters which are used to wrap the code.

One of the main criteria formulated in Chapter 2 concerns the fact that an efficient strat-
egy needs (at least to approximate) a model of the opponent’s preferences. Therefore, in
Chapter 4, a learning technique to learn opponent’s preferences in single-session nego-
tiations, called BOP, is proposed. Using the Bayesian learning BOP is able to construct
a model of both the preferences associated with issue values and the weights that rank
the importance of issues to an opponent. The learning algorithm allows for the incorpo-
ration of prior available opponent knowledge, e.g., derived from domain knowledge or
previous interactions, to improve learning performance. However, it does not require any
such knowledge. BOP was tested in a rigorous experimental setup using GENIUS. The
learning performance of BOP was studied in various negotiation settings according to the
proposed design method, see 4 for details. In addition, our results show that the effi-
ciency of offers generated by a strategy can be improved by using a model of opponent’s
preferences learned by BOP.

In Chapter 5 we propose a behaviour-based negotiation strategy that uses an (real or
learned) opponent model to classify the opponent’s moves, select a response move, and
search for efficient counteroffers. In every move the strategy tries to increase the chance
of acceptance by moving towards the Pareto optimal frontier without conceding. The re-
sponse move (counteroffer) is selected using the last opponentŠs move in a Tit-for-Tat
manner. The strategy was instantiated with the BOP learning algorithm to construct a
model of the opponentŠs preferences. The strategy was implemented and tested in GE-
NIUS. Evaluation results of the strategy in GENIUS show a significant increase in utility
of negotiation outcomes obtained by the proposed strategy compared to the state-of-the-
art strategies.

In Chapter 6 we extend the results obtained in this thesis to one-to-many negotiations.
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We used the BOP learning technique to approximate Qualitative Vickrey Auction (QVA)
[4] with a negotiation setup. This auction is a generalization of the well-known Vickrey
auction to a general complex multi-issue setting where payments are not essential. The
QVA requires the buyer (a single negotiating party on one side) to publicly announce its
preferences to all sellers (multiple negotiating parties on the other side). Given public
preferences it can be shown that the outcome is Pareto efficient and the mechanism is
strategy-proof.

To overcome the limitation of public preferences we propose a negotiation protocol that
consists of multiple negotiation rounds in which buyer does not have to announce its pref-
erences publicly. Instead, the sellers observe the buyer’s bidding behaviour and try to
learn buyer’s preference profile using the BOP learning technique. Our experimental re-
sults show that the negotiation protocol approximates the outcome of QVA. Furthermore,
we show in numerous experiments that the BOP learning technique in combination with
a concession strategy dominates a Zero Intelligence strategy [3] with random offers.

Finally, in Chapter 7 we addressed the problem of issue dependencies in negotiation do-
mains. Such issue dependencies result in non-linear utility spaces. Finding good bids in
such spaces is computationally complex as the space grows exponentially in the number
of issues. We propose an off-line method that approximates the original non-linear utility
space with a linear space. The method minimizes the distance between the original space
and its linear approximation, especially in the area of the potential agreement. Note, that
such an approximation comes with the risk that a bid is proposed (and accepted by the
other party) that seems to have a good utility, but in fact, in the original utility space has
a much lower utility. We propose a checking procedure that offers a way to avoid this
risk at the cost of additional computations. The experimental results show that a balance
between risk and additional computations can be determined per negotiation domain.

Future Work

We believe that our results show the need for benchmark negotiation problems. An in-
teresting direction for future research in this area would be to propose measures for ex-
ploitability and robustness of a negotiation strategy. A good negotiation strategy must be
able to withstand a seemingly weird opponent strategy, such as Random Walker, as well
as strategies that try to exploit it.

In real-life negotiations domains are not fixed; new issues can be discovered during the
whole negotiation process. Therefore, future work is to design an adaptable version of
BOP and GENIUS (including the analytical framework) that can handle a change in the
number or structure of issues.

Furthermore, we plan to integrate the BOP learning technique and the NMS strategy in
the Pocket Negotiator a negotiation support system that assists human negotiators. The
strategy as well as the learning technique can be used for various purposes. For example,
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a model of the opponent preferences learned by BOP can be presented to the user thus
enabling the user to improve the efficiency of his/her offers. The NMS strategy can be
used to give an advice about the next negotiation move. The form of the advice requires
further investigations.

The BOP algorithm can be initialized with a priori knowledge about probable preferences
in a specific negotiation domain. Such knowledge can be learned from previously stored
negotiations, if available. Clustering techniques can be applied to a set of opponent mod-
els (learned by BOP or gathered in a different way) to find typical opponent profiles for
a specific domain, and recurring themes over domains. The Pocket Negotiator can store
such opponent profiles in a repository that can be used in future in case of a recurrent ne-
gotiation with the same opponent or with a different opponent in the same domain. Such
information can be shared between users.

An important direction for future work is negotiation in domains with issues dependen-
cies. In chapter 7 we show that interdependencies increase computational complexity of
a negotiation strategy. Most of the existing negotiating strategies are designed for linear
additive utility functions. In this thesis we propose an approximation method to allow
such strategies to deal with negotiation domains with issue dependencies. The method
decreases computational complexity of a search in a utility space for a bid with a given
utility. The learning algorithm proposed in this thesis is based on an assumption that
the opponentŠs preferences can be modelled without issue dependencies. In future, we
will study influence of issue dependencies in a negotiation domain on the learning perfor-
mance. Furthermore, we will extend the learning algorithm to deal with issue dependen-
cies that cannot be tolerated.

Recently, qualitative models for preferences have received a significant attention in the
negotiation [5] and decision making research [1, 2]. This work is motivated by the fact
that in some negotiation domains it is difficult to elicit quantitative models (e.g., based
on utility functions) from humans, since humans generally express their preferences in a
more qualitative way. Thus, in our future work we plan to extend and modify the proposed
techniques for the qualitative preference representation models.

Heuristic methods used in this thesis focus on the exchange of proposals that denote single
points in the negotiation space without any additional information. The only feedback that
can be received from an opponent is a counter-proposal, which itself is another point in the
space. The argumentation-based approach typically extends classic negotiation protocols
with a possibility to exchange arguments. This information explains explicitly the opinion
of the agent making the argument. In future, we will investigate when and what arguments
a negotiating agent should use in a negotiation to improve the negotiation efficiency.

Bibliography
[1] Craig Boutilier. Toward a logic for qualitative decision theory. In In Proceedings of

the KR’94, pages 75–86. Morgan Kaufmann, 1992.

200



[2] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David
Poole. Cp-nets: A tool for representing and reasoning with conditional ceteris paribus
preference statements. Journal of Arti
cial Intelligence Research, 21:135–191, 2004.

[3] Dhananjay K. Gode and Shyam Sunder. Allocative efficiency in markets with zero
intelligence (zi) traders: Market as a partial substitute for individual rationality. In
Journal of Political Economy, 100(1):119–137, 1993.

[4] P. Harrenstein, M.M. de Weerdt, and V. Conitzer. A Qualitative Vickrey Auction. In
Proceedings of the EC. ACM Press, 2009.

[5] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Argumentation-based
preference modelling with incomplete information. In Proceedings of 10th Interna-
tional Workshop on Computational Logic in Multi-Agent Systems (CLIMA-X), 2009.

201



202



Samenvatting

Het hoofddoel van dit proefschrift is het ontwikkelen van generieke en efficiënte geau-
tomatiseerde strategieën voor bilaterale onderhandelingen waarin de twee onderhande-
lende partijen hun voorkeuren niet expliciet kenbaar maken. Een onderhandelingsstrate-
gie is het beslissingsmechanisme dat bepaalt welke acties de onderhandelaar dient te ne-
men. De term generiek verwijst in dit proefschrift naar het idee dat een dergelijke strate-
gie niet op voorhand hoeft te beschikken over kennis van het onderhandelingsdomein
of de tegenpartij. Een strategie dient dus generiek te zijn in die zin dat deze succesvol
kan worden toegepast in elk willekeurig onderhandelingsdomein en dat deze afgestemd
kan worden op domein specifieke kenmerken voor het behalen van nog betere onder-
handelingsresultaten. De term efficiëntie verwijst in dit proefschrift naar het feit dat een
strategie in staat moet zijn om op effectieve wijze te onderhandelen met zowel geau-
tomatiseerde agenten als menselijke onderhandelaars zodat het uiteindelijke onderhan-
delingsresultaat voor geen van beide partijen voor verbetering vatbaar is. Het ontwerp
van de in dit proefschrift voorgestelde onderhandelingsstrategie is gebaseerd op op anal-
yses van state-of-the-art onderhandelingstrategieën. Daarbij is gebruik gemaakt van een
eveneens in dit proefschrift ontwikkelde analytische methode. Doordat deze methode
de dynamische eigenschappen van een onderhandelingsstrategie analyseert, vormt deze
methode een significante bijdrage aan de huidige onderhandelingsijkpunten (negotiation
benchmarks). Een van de belangrijkste bevindingen van dit deel van het onderzoek is
dat een strategie de voorkeuren van de tegenpartij in een onderhandeling dient te leren
om de efficiëntie van deze onderhandelingen te verhogen. Deze bevindingen zijn in lijn
met de bevindingen uit de in de management wetenschappen en sociale wetenschappen
beschikbare literatuur over onderhandelen. Wij hebben onze resultaten in het leren van
de voorkeuren van de tegenpartij in onderhandelingen toegepast in een one-to-many on-
derhandelingssituatie. Tevens hebben wij het probleem van afhankelijkheden tussen ver-
schillende onderhandelingskwesties (negotation issues) geadresseerd. De afhankelijkhe-
den tussen onderhandelingskwesties vormen een onoverbrugbare hindernis in het huidige
onderzoek naar onderhandelingsstrategieën. Wij hebben daarvoor een benaderingsmeth-
ode ontwikkeld die deze afhankelijkheden elimineert. Hoewel op het eerste gezicht dit
deel van het onderzoek een zijspoort lijkt te vormen in dit proefschrift, was het niettemin
van fundamenteel belang dat wij dit probleem hebben aangepakt om zo de schaalbaarheid
en toepasbaarheid van onze onderzoeksresultaten aan te tonen.

Kort samengevat zijn de ondezoeksvragen waarop dit proefschrift is gebaseerd de vol-
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gende:

1. Hoe kunnen wij state-of-the-art geautomatiseerde strategieën ontwerpen voor multi-
issue bilaterale onderhandelingen waarin enkel biedingen worden uitgewisseld?

2. Wat voor een analytisch raamwerk is essentieel voor het ontwikkelen van dergelijke
geautomatiseerde strategieën?

3. Is het mogelijk om in een onderhandeling het preferentieprofiel van de tegenpartij
te leren gegeven het feit dat enkel een sequentie van biedingen wordt uitgewisseld?

4. Kunnen wij deze preferentieprofielen op een effectieve wijze gebruiken in geau-
tomatiseerde biedingsstrategieën?

5. Kunnen wij onze resultaten toepassen in one-to-many onderhandelingssituaties?

6. Kunnen wij de onderhandelingsruimten van onderhandelingen met afhankelijkhe-
den tussen de onderhandelingskwesties benaderen door gebruik te maken van on-
derhandelingsruimten zonder dergelijke afhankelijkheden?

Onderhandelen is een type interactie, waarbij twee of meerdere op het eigen gewin gerichte
agenten (elk met eigen doelstellingen, behoeften en gezichtspunten) raakvlakken proberen
te ontdekken inzake onderhandelingskwesties en proberen een akkoord te bereiken om
een kwestie van wederzijds belang te regelen of om een conflict op te lossen (cf. [1]).
Mensen onderhandelen zowel in hun persoonlijke leven als in hun professionele leven
[2]. Alhoewel de meeste mensen zich zelf beschouwen als effectieve onderhandelaars,
blijkt uit tal van experimenten dat zij niet het onderste uit de kan halen (“leave money
on the table”) (cf. [2]). Vooruitgang op het gebied van kunstmatige intelligentie [3] en
managementwetenschappen [2] bood inspiratie voor de ontwikkeling van de eerste onder-
steuningssystemen voor mensen tijdens onderhandelingen, alsmede voor de ontwikkeling
van software-agenten die uit hun naam onderhandelen.

Dit proefschrift concentreert zich op generieke en efficiënte biedingsstrategieën voor een-
malige onderhandelingssessies tussen twee onderhandelaars. De biedingsstrategieën kun-
nen worden ingezet door onderhandelende software-agenten. Voor de nadruk op eenma-
lige onderhandelingssessies is gekozen omdat diverse belangrijke onderhandelingen in
het echte leven eenmalige onderhandlingsessies zijn. Voorbeelden hiervan zijn het kopen
van een huis, het kopen van een auto of het voeren van arbeidsonderhandelingen. In tech-
nisch opzicht brengt deze beperking tot eenmalige onderhandelingsessies met zich mee
dat het niet mogelijk is te leren van voorgaande ervaringen met een bepaalde onderhan-
delingspartner1.

In dit proefschrift betogen wij dat de ontwikkeling van generieke en efficiënte bied-
ingsstragieën een analytisch raamwerk behoeft voor grondige evalatie van biedingsstragieën.

1Ter verduidelijking noemen wij de twee onderhandelende partijen in een bilaterale onderhandeling de
gebruiker en de tegenpartij. De software-agenten die wij ontwikkelen handelen altijd in het belang van de
gebruiker. De andere onderhandelende partij wordt de tegenpartij genoemd. Hierbij hebben wij volledig
kennis genomen van de argumenten die door de Harvard Business School zijn aangevoerd om de term
tegenpartij te vermijden.
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Hiervoor hebben wij de General Environment for Negotiation with Intelligent multi-
purpose Usage Simulation (GENIUS) ontwikkeld. Wij tonen aan dat een juiste analyse van
onderhandelingsstragieën het bestuderen van de dynamiek van de onderhandeling omvat
en niet louter het bestuderen van de onderhandelingsresultaten. Dit laatste is typisch voor
het huidige state-of-the-art onderzoek naar geautomatiseerde onderhandelingen. Hiertoe
hebben wij een reeks aan dynamische eigenschappen ontwikkeld die hun nut in onze anal-
yses hebben bewezen. Deze eigenschappen zijn opgenomen in de analytisch omgeving
die onderdeel uitmaakt van het GENIUS raamwerk.

Onze analyse van het state-of-the-art onderzoek naar geautomatiseerde bilaterale onder-
handelingstrategieën hebben de volgende belangrijke criteria opgeleverd voor het on-
twikkelen van generieke en efficiënte biedingsstragieën:

• Kennis over de tegenpartij is essentieel om resultaten te bereiken, die de toestand
van Pareto-efficiëntie dicht naderen.

• De strategie moet worden getest in domeinen met verschillende karakteristieken.
Hiervoor hebben we domein karakteristieken ontwikkeld zoals voorspelbaarheid,
grootte en afhankelijkheden. Tevens, hebben wij in GENIUS een repository van
domeinen opgenomen.

• De strategie moet worden getest met een reeks van profielen (zowel voor de ge-
bruiker als voor de tegenpartij). Daarom hebben wij in GENIUS voor elk domein
een repository van profielen opgenomen.

Aangezien veel state-of-the-art onderhandelingsstrategieën niet om kunnen gaan met afhanke-
lijkheden tussen onderhandelingskwesties, hebben wij een benaderingsmethode voor het
elemineren van deze afhankelijkheden ontwikkeld. Deze methode kan worden gecombi-
neerd met die strategieën die, voordat ze de tegenstander een bod te doen, naar onderhan-
delingsbiedingen zoeken met een bepaalde utiliteit.

Onze analyses hebben aangetoond dat state-of-the-art onderhandelingsstrategieën in es-
sentie op concessie gebasseerde stragieën zijn. Kenmerkend voor deze strategieën is
dat ze op de tegenbiedingen van de tegenpartij geen reactie geven waaruit de aanvaard-
baarheid van die tegenbieding zou kunnen blijken. Deze stragieën garanderen niet al-
tijd dat er pas een concessie wordt gedaan als de tegenpartij een soortgelijke concessie
doet. Bovendien richten de ontwikkelaars van state-of-the-art onderhandelingsstrategieën
zich niet op het feit dat, om een aanvaardbare overeenkomst te bereiken in de onderhan-
delingen, de kans op een overeenkomst zou moeten worden gemaximaliseerd. In dit
proefschrift hebben wij een generieke en op gedrag gebaseerde strategie ontwikkeld en
getest, die uitdrukkelijk rekening houdt met deze knelpunten. Deze strategie heet de Nice
Matching Strategy (NMS), daar zij de gebruik maakt van een tit-for-tat aanpak om zo een
goede uitkomst voor de agent zelf veilig te stellen en daar zij zogenaamde vriendelijke
biedingen doet om zo de kans dat de tegenpartij een bod accepteert te maximaliseren. De
NMS strategie maakt gebruik van een op Bayesiaans leren gebaseerde techniek om de de
voorkeuren van de tegenpartij te leren: Bayesian learning algorithm for Opponent Pref-
erences (BOP). NMS gebruikt dit geconstrueerde model van de tegenpartij om een soort
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spiegel-strategie te implementeren. Het spiegelen is een geavanceerde variant van de tit-
for-tat strategie. Onze analyse toont aan dat NSM superieur is aan de state-of-the-art.

Het leren van de voorkeuren van de tegenpartij tijdens een onderhandeling, dat wil zeggen
zolang er biedingen worden uitgewisseld, is essentieel in de context van eenmalige on-
derhandelingssessies. Dit is een uitkomst van onze analyse methode voor onderhandel-
ingsstrategieën. Onze analyse toont tevens aan dat zonder kennis van het model van de
tegenpartij generieke biedingsstrategieën niet efficient zijn. Dit leerdoel is met name een
uitdaging daar waar we aannemen dat onderhandelingen gesloten zijn, dat wil zeggen,
daar waar de enige beschikbare informatie bestaat uit de biedingen die worden uitgewis-
seld. BOP is geëvalueerd in zowel een bilaterale onderhandelingssituatie als in een one-
to-many onderhandelingssituatie. Het BOP leermechanisme dat we hebben ontwikkeld is
geëvalueerd met behulp van de GENIUS omgeving waaruit bleek dat BOP de voorkeuren
van de tegenpartij tijdens eenmalige onderhandelingssessies goed kan benaderen.

De methode die wij hebben gebruikt om generieke en efficiente biedingsstrategieën te
ontwikkelen is gebaseerd op een iteratieve aanpak waarin GENIUS een centrale rol speelt
:

1. Allereerst, door het toepassen van GENIUS hebben wij de sterke en zwakke punten
(inefficienties) van bestaande biedingsstratgieën geïdentificeerd.

2. Ten tweede, van de analytische resultaten aldus verkregen is gebruik gemaakt om
nieuwe technieken te identificeren die de efficiëntie verhogen en om verbeterde
stratgieën te ontwikkelen.

3. Ten derde, met behulp van de ontwikkelingskit van GENIUS zijn de voorgestelde
technieken geïmplementeerd.

4. Ten vierde, de validiteit van de nieuwe strategieën is getest en geanalyseerd door ge-
bruik te maken van GENIUS om tegen de strategieën te onderhandelen in de diverse
onderhandelingsdomeinen verzameld in de GENIUS repositories door het houden
van een GENIUS toernooi.

De methode die wij hebben gebruikt om generische en efficiënte biedingsstrategieën te
ontwikkelen is gebaseerd op een herhaalde benadering waarin GENIUS een centrale rol
speelt:

1. Eerst, door GENIUS toe te passen identificeren wij sterke punten en zwakheden
(ondoelmatigheden) van bestaande biedingsstrategieën

2. Ten tweede, worden de zo verkregen resultaten gebruikt om nieuwe technieken te
identificeren die de efficientie verhogen en zo betere strategieën te ontwikkelen

3. Ten derde, wordt de ontwikkelingsuitrusting van GENIUS gebruikt om de voorgestelde
technieken te implementeren

4. Ten vierde, wordt de validiteit van de nieuwe strategieën getest en geanalyseerd
door het houden van toernooien tegen de verschillende strategieën en in diverse
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onderhandelingsdomeinen die in de repository van GENIUS worden verzameld.

Wij sluiten deze samenvatting af met een lijst van de belangrijkste kenmerken van GE-
NIUS. De GENIUS omgeving is ontwikkeld tijdens dit promotie traject als een volwaardig
hulpmiddel voor onderzoek. De belangrijkste kenmerken zijn:

• Het ondersteunt de implementatie en toetsing van nieuwe strategieën.

• Het bevat repositories bestaande uit onderhandelingsdomeinen, preferentieprofie-
len per domein en strategieën die de analyse van onderhandelingsagenten faciliteren
voor een reeks aan verschillende opstellingen.

• Het verschaft een grafische gebruikersinterface voor het construeren en toevoegen
van nieuwe onderhandelingsdomeinen en preferentieprofielen.

• Het verschaft een grafische gebruikersinterface waarmee mensen tegen bekende of
onbekende tegenstanders kunnen onderhandelen. De tegenstanders kunnen mensen
of software-agenten zijn.

• Het verschaft een toernooi-omgeving die de gebruiker in staat stelt om diverse
strategieën tegen elkaar te laten onderhandelen in elke combinatie van onderhan-
delingsdomeinen en preferentieprofielen.

• Het verschaft een analytische omgeving die de ondezoeker ondersteunt in het anal-
yseren van de gegevens die uit het runnen van een toernooi worden verkregen.
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