
Distributional
Reinforcement Learning
for Flight Control
A risk-sensitive approach to aircraft attitude
control using Distributional RL

Peter Seres

Distributional
Reinforcement Learning

for Flight Control

A risk-sensitive approach to aircraft attitude control using
Distributional RL

Thesis report

by

Peter Seres

to obtain the degree of Master of Science
at the Delft University of Technology

to be defended publicly on November 9, 2022 at 9:00

Thesis committee:
Chair: Dr. Coen de Visser
Supervisors: Dr. Erik-Jan van Kampen

Cheng Liu
External examiner: Dr. Erwin Mooij
Place: Faculty of Aerospace Engineering, Delft
Project Duration: January, 2022 - October, 2022
Student number: 4370716

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Peter Seres, 2022
All rights reserved.

Preface

In the next few decades, the field of reinforcement learning (RL) and other machine learning techniques
are expected to solve increasingly complex real-world problems and might prove to be vital to solving
engineering, economical, medical and climate-related challenges of the 21st century. The foundation of
these algorithms and their implementations are inspired by nature and mimic the way humans learn. The
ability of such algorithms to learn without human input is what inspired me throughout the research project,
together with the hope that this work makes a contribution towards making RL-based flight control safer
and one step closer to real-world application. In order to serve the reproducibility of results obtained
during this thesis, and to assist future students and researchers, the code repository has been made
publicly available.1

This thesis marks the end of my studies at the Delft University of Technology and I want to thank those
who made this project possible. First and foremost, thank you to my supervisor, Dr. Erik-Jan van Kampen
for his continued support and guidance. Thank you to Cheng Liu for providing his expertise and constantly
steering me towards better research and better results. Thank you to my family - especially my dad - for
your unconditional support and encouragement.

1Code publicly available at: https://github.com/peter-seres/dsac-flight

ii

https://github.com/peter-seres/dsac-flight

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Autonomous Control Systems for Flight Control . 1
1.2 Reinforcement Learning for Aerospace Systems . 2
1.3 Research Formulation . 3
1.4 Structure of the Report . 4

I Scientific Article 5
2 Distributional Reinforcement Learning for Flight Control 6

2.1 Introduction . 6
2.2 Background . 7
2.3 Methodology . 10
2.4 Results & Discussion . 14
2.5 Conclusion . 16

II Preliminary Analysis 21
3 Literature Review 22

3.1 Fundamentals of Reinforcement Learning . 22
3.2 Deep Reinforcement Learning . 33
3.3 Distributional Reinforcement Learning . 46
3.4 Reinforcement Learning for Flight Control . 57

4 Preliminary Work 64
4.1 Methodology . 64
4.2 Results . 69
4.3 Synthesis . 73

III Additional Results 74
5 Robustness Analysis 75

5.1 Varying Initial Flight Conditions . 75
5.2 Biased & Noisy Sensors . 76
5.3 Synthesis . 77

6 Verification & Validation 80
6.1 Verification . 80
6.2 Validation . 81

7 Wall Clock Time 83
7.1 Number of parameters . 83
7.2 Average training time. 84

iii

Contents iv

IV Closure 85
8 Conclusion 86

8.1 Closing Remarks . 86
8.2 Research Questions . 87

9 Recommendations 89

References 96

Nomenclature

List of Abbreviations

ACD Adaptive Critic Design

ADP Action-dependent HDP

ADP Approximate Dynamic Programming

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPW Cumulative Probability Weighting

CVaR Conditional Value at Risk

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q-Network

DHP Dual Heuristic Dynamic Programming

DNN Deep Neural Network

DOF Degree of freedom

DP Dynamic Programming

DPG Deterministic Policy Gradient

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSAC Distributional Soft Actor-Critic

EOM Equations of Motion

FCSD Flight Control System Design

GDHP Global DHP

GPI Generalized Policy Iteration

HDP Heuristic Dynamic Programming

HRL Hierarchical Reinforcement Learning

IBS Incremental Backstepping

IDHP Incremental DHP

IID Independent and identically distributed

INDI Incremental Nonlinear Dynamic Inversion

IQN Implicit Quantile Network

LOC Loss of Control

LQR Linear Quadratic Regulator

MC Monte Carlo

ML Machine Learning

MSE Mean Squared Error

nMAE Normalized Mean Absolute Error

OBM On-board Model

PID Proportional-Integral-Derivative

QR Quantile regression

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RQ Research Question

RTV Right Truncated Variance

RV Random Variable

SAC Soft Actor-Critic

SGD Stochastic Gradient Descent

TCV Tail Conditional Variance

TD Temporal Difference

TD3 Twin-delayed DDPG

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VTOL Vertical Take-off and Landing

List of Symbols

A Set of Actions

α Step-size / Angle of attack

v

Nomenclature vi

B Mini-batch of transitions

β Distortion function / Angle of sideslip

:= By definition

D Memory buffer

δa Aileron deflection

δe Elevator deflection

δ TD-error
D
= Equality by distribution

δr Rudder deflection

ϵ Exploration coefficient

η Entropy Temperature

γ Discount factor

H Entropy

k Parameter vector

k Value-function parameter vector

κ Huber-loss parameter

L Loss function

λ Decay-rate

λS Spatial smoothness loss weight

λT Temporal smoothness loss weight

M Markov Decision Process

µ Behavioural Policy

N Normal distribution

Ω Angular velocity

P State Transition

ϕ Roll angle

π Policy

Ψ Distortion risk-measure

ψ Yaw angle

R Set of Rewards

S Set of States

T MDP transition

τ Quantile fraction

θ Parameter vector / Pitch angle

u Control input vector

δ Control surface deflections

w Policy parameter vector

x Dynamic state vector

ξ Risk-distortion parameter

ζ Polyak step-size

A Advantage function

a Action

DKL Kullback-Leibler divergence

G Discounted Return

J Objective function

Q Action-value function

q Pitch rate

R Reward function

r Reward

s State

s′ Next State

t Time-step

U Uniform distribution

u Forward velocity component

V Value function

v Sideways velocity component

w Vertical velocity component

Wp p-Wasserstein metric

Z Value distribution function

T Transition tuple ⟨s, a, r, s′⟩

List of Figures

3.1 Adapted from [21]; Agent-environment interaction in a reinforcement learning task. 23
3.2 Depiction of the MDP following policy π(a | s), with Markov Process ⟨P, R⟩. 25
3.3 Adapted from [37]; Generalized Policy Iteration (GPI) iterates through an evaluation step

followed by a policy improvement step. 26
3.4 Adapted from [37]; overview of common approaches in terms backup depth and width. . . . 30
3.5 Adapted from [21]; classes of RL approaches based on agent type. 31
3.6 Adapted from [28]; Depiction of a single neuron unit, the weight and bias parameters and

the optional normalization and activation functions. 34
3.7 Depiction of a multi-layered perceptron (MLP) with two hidden fully-connected layers. . . . 35
3.8 Depiction of the DQN algorithm . 37
3.9 RL Agent interacting with the environment in an actor-critic architecture. 42
3.10 Depiction of the m-dimensional multivariate tanh-Gaussian stochastic policy network used

by the SAC algorithm. 44
3.11 Adapted from [28]; Depiction of the SAC algorithm. 45
3.12 Depiction of the implicit quantile network (IQN) based on [31]. 50
3.13 Adapted from [31]; Depiction of the different parameterization methods to estimate the re-

turn distribution Zk(s, ak) for a given state s. 51
3.14 Depiction of the distributional SAC (DSAC) algorithm architecture. 55
3.15 Example of a flat-RL and a cascaded hierarchical RL control architecture. 59
3.16 Adapted from [28]; Cascaded HRL architecture to control several DOF of the PH-LAB air-

craft using multiple SAC agents. 62

4.1 Adapted from [105]; openAI gym Pendulum-v1 environment. 65
4.2 Cessna 500 (Ce500) short period model with two states: angle of attack (a.o.a) α and pitch

rate q. The control input is the elevator deflection δe. 65
4.3 Experiment matrix for the preliminary analysis of applying applying Distributional RL to a

continuous control task . 66
4.4 Example of a randomized step sequence used as an α-tracking reference signal for training. 67
4.5 RL architecture to control the angle of attack of the Ce500 LTI model. 67
4.6 Angle of attack reference signals for evaluating trained SAC and DSAC agents. 68
4.7 Learning curve (N=30) of the SAC and DSAC agents (Pendulum-v1) with sample efficiency

markers. 69
4.8 Average (k=10) score statistics of SAC and DSAC agents after training. 70
4.9 Learning curve (N=15) of the SAC and DSAC agents for the Ce500 control task, with mean

µ and standard deviation. 70
4.10 SAC post-training control tracking performance evaluation. 71
4.11 DSAC post-training control tracking performance evaluation. 72

5.1 Evaluation of agents at a different initial flight condition; IFC: h = 10, 000 [m], V = 90 [m/s] 78
5.2 Evaluation of agents trained using ideal sensors with sensor noise and bias. 79

6.1 Pulse response of the simulated PH-LAB environment (red diamond markers) and the orig-
inal DASMAT Simulink environment (dark cross markers) show identical trajectories. 81

6.2 Same pseudo-random seed used for the training of two agents results in identical learning
curves and repeatable experiments. 82

vii

List of Tables

3.1 Core algorithms developed for Distributional RL. 51
3.2 Table of ACD methods . 60

4.1 Ce500 LTI model parameters . 66
4.2 Hyperparameters for the training signals, simulation, reward signal and evaluation signal

definitions . 68
4.3 Hyperparameters for training the SAC and DSAC agents for the pendulum task. 69

5.1 Initial Flight Conditions used for training and additional post-training evaluation. 75
5.2 Evaluation at varying IFCs; nMAE values for each agent type with indicated relative im-

provements and p-values. 76
5.3 Adopted from [28]; Sensor noise and bias characteristics of the Cessna Citation PH-LAB

research aircraft. 76
5.4 Evaluation with sensor noise and bias nMAE values for each agent type, with indicated

relative improvement (Rel.). The p-value shows the t-test confidence level for the mean
nMAE improvement. Bold values show statistically significant differences with 5e-2 threshold. 77

6.1 Relative RMSE of force and moment coefficients of the DASMAT Citation 500 model com-
pared to PH-LAB flight data. 81

7.1 Trainable parameter count of the distributional critics relative to the traditional SAC critics
with C = 64 embedding size. 83

7.2 Average training time (mm:ss) per episode (3000 samples) for each type of agent. 84

viii

1
Introduction

1.1 Autonomous Control Systems for Flight Control
In recent years, technological advancements have resulted in significantly increased complexity in both
the design and operations of aerospace systems. These systems include a variety of designs outside
of conventional aircraft, such as Unmanned Aerial Vehicles (UAVs), flapping wing systems such as the
DelFly [1, 2], aircraft with morphing wings [3, 4], flying-v aircraft [5, 6], convertiplanes [7] and vertical take-
off landing (VTOL) systems [8, 9]. Often, these systems have to perform safety-critical multi-objective
control tasks without the possibility of human intervention in non-static, partially observable environments.
These factors drive the need for an increased level of intelligence and autonomy in the control of aerospace
systems, for both low-level control tasks and high-level decision making.

The added complexity of modern aerospace systems and the desire for increased levels of autonomy
has posed great challenges for classical flight control system design (FCSD) methods. Traditional control
law synthesis requires a pre-determined set of operating conditions and rely on accurate models of the
plant dynamics [10], resulting in controllers that are unable to respond to unexpected scenarios. Further-
more, obtaining high-fidelity models of modern aerospace systems is a costly, non-trivial process that
involves specialized flight test instrumentation systems, carefully designed experiments, skilled test pilots
and a complex process of model parameter estimation and validation [11]. Therefore, there is a need
for model-independent controller synthesis, that can produce strategies with high levels of generalization
power.

There has been a great deal of research on advanced control techniques to deal with the aforemen-
tioned need for adaptability and autonomy. Modern model-based methods rely on high accuracy model
representations of aerospace systems. Robust control methods, such as H∞ control [12] assess the
effect of model mismatches and model uncertainties at the cost of degraded control performance [13].
Control methods based on Nonlinear Dynamic Inversion (NDI) rely on an on-board model (OBM) rep-
resentation of the aircraft dynamics and successfully address most modern flight control design needs,
however struggle with control law complexity and robustness to model uncertainties [14, 15]. Sensor-
based approaches, such as Incremental Nonlinear Dynamic Inversion (INDI) require a reduced control
effectiveness model of the input dynamics, as opposed to a globally accurate model, making the imple-
mentation process significantly easier and providing improved robust performance [16]. INDI control laws
have demonstrated adaptability [17] and fault-tolerance [18, 19], however they face additional challenges
with sensor synchronization and filtering [20].

The last decade has shown great advancements in machine learning (ML) techniques and bio-inspired
artificial intelligence (AI). The field of decision making and control is connected to these AI techniques by
the field of reinforcement learning (RL), which is a class of methods capable of finding near-optimal strate-
gies to solve complex problems with minimal priori knowledge of the process and the environment. Such
model-independent, self-learning algorithms can be beneficial for the aforementioned ever-increasingly
complex design of aerospace control systems, and can achieve the increasing requirements of adaptabil-
ity and autonomy.

1

1.2. Reinforcement Learning for Aerospace Systems 2

1.2 Reinforcement Learning for Aerospace Systems
Reinforcement learning is a class of goal-directed, bio-inspired computational methods that learn using
direct interaction with the environment [21]. In an RL task, the agent learns to choose from a set of
actions that maximize the amount of expected cumulative reward. For real-world tracking control and
robotics tasks, the RL agents learn to choose control actions to manipulate the dynamic states of the
system, such as velocity, position, and rotational rates. Traditional RL methods like Q-learning [22] and
SARSA [21] had been developed for finite, discrete state-action space problems, where initially lookup-
tables were used (tabular methods). Scaling these methods up to real-world control tasks and using
high-dimensional observations and actions leads to an exponential growth of the state-action space. This
phenomenon is often regarded as the ”curse of dimensionality” [23] and a great deal of RL research is
directed at overcoming such limitations.

The ability of RL algorithms to solve real-world tasks has significantly improved since the demonstra-
tion of the Deep Q-Network (DQN) algorithm [24, 25], where deep learning (DL), i.e. the use of deep
neural networks (DNNs) as universal function approximators was utilized to find optimal control strategies
on a discrete action space. The field of Deep Reinforcement Learning (DRL) has demonstrated signif-
icant scalability and showed superhuman performance on problems that had previously been thought
unsolvable, such as the game of Go [26, 27], which was originally though to require human intuition and
creativity. In addition to discrete actions and decision making, the use of DNNs as function approximators
in a policy-based and actor-critic algorithms enables the application of DRL to continuous control tasks.

These advancements make RL an attractive alternative to traditional FCSD methods, provided that
the aforementioned need for adaptability, fault-tolerance and autonomy can be achieved. There are two
primary challenges of applying RL to flight control. Firstly, RL algorithms require a large amount of sam-
ples to converge, due to the complexity and dimensionality of the system. Given that flight control tasks
are complex, high-dimensional problems, the curse of dimensionality is one of the biggest challenges to
overcome to achieve complete 6 degree of freedom (DOF) flight control. Secondly, since flight control
is a safety-critical process, there are safety concerns both in the training phase during exploration, and
post-training when the agent encounters unexplored states.

It has been shown that sample efficient, online algorithms, such as Increment Dual-Heuristic Program-
ming (IDHP) can achieve fault-tolerant, adaptive control. Such algorithms struggle with generalization
power and can only be applied to control tasks with limited dimensionality. Previous work on DRL-based
flight control has shown that fault-tolerant control of a jet aircraft can be achieved using state-of-the-art
actor-critic methods, such as the soft actor-critic (SAC) algorithm [28]. Even though the robust capability
of SAC has been demonstrated for flight control applications, it was found that the training process results
in inconsistent outcomes and a low success rate.

A promising class of RL algorithms is the field of distributional RL1, where the total cumulative rewards
are represented by their full probability distribution functions, as opposed to their expectations like in
traditional RL [29]. This approach of adding a distributional representation has shown increased sample
efficiency and state-of-the-art learning performance [30]. Furthermore, having a representation of the
return distribution enables the use of risk-sensitive policies [31], which is an essential aspect of safe flight
control applications. Further advancements in distributional RL research have shown the feasibility of risk-
sensitive continuous control [32] and have applied the distributional methods to a variety of control tasks,
such as the station-keeping control of under-actuated balloons [33], minimally-invasive surgery guidance
[34] and robust bus traffic control [35].

1The abbreviation DRL is customarily used for Deep Reinforcement Learning, therefore this report refers to the class of distribu-
tional methods as distributional RL.

1.3. Research Formulation 3

1.3 Research Formulation
As presented above, there is a variety of promising RL methods that have the potential to improve the
adaptability and autonomy of modern aerospace systems and to reduce the time and development costs
of the traditional FCSD process. The scope of this research project is within investigating the sample
efficiency and learning characteristics of RL algorithms applied to flight control tasks, and investigating
the ability of RL methods to overcome the challenge of safety.

In order to establish a clear research objective and research questions, a few aforementioned concepts
must be defined explicitly. Firstly, the challenge of efficiency relates to the data intensive learning process
and the amount of data samples required to train an RL agent. Therefore, an RL method with high sample
efficiency needs a low amount of data points during training in order to reach a certain level of tracking
performance.

When discussing performance, this report distinguishes between learning performance and tracking
performance. A good learning performance corresponds with not only high sample efficiency, but also
with a stable learning process that is robust to hyperparameter changes and partial observability. On the
other hand, tracking performance is specific to the control tracking task that is required for flight control
applications. Good tracking performance describes a controller with low error between the reference and
the controlled dynamic state of the plant.

The primary objective of this research project is to improve the learning performance of dis-
tributional Reinforcement Learning applied to a continuous flight control task and compare its
tracking performance to state of the art traditional RL methods.

Research Objective

Numerous RL algorithms exist with countless additional extensions that are application specific. It is
of primary interest to survey promising state of the art techniques that can be used for solving the flight
control RL task, where high-dimensional continuous state-action spaces and the need for safe learning
pose additional challenges. Therefore, the first research question (RQ) can be defined as the following:

What state-of-the-art RL methods are most suitable for flight control tasks?

Research Question 1

Section 1.2 mentioned that distributional RL is a promising extension of reinforcement learning that not
only comes with learning performance benefits, but also allows the use of risk-sensitive policies. For this
research the primary interest is the use of distributional RL for a control task and therefore the following
research question can be posed:

What state-of-the-art distributional RL techniques are the most applicable to flight control
tasks?

Research Question 2

Distributional RL research has shown that estimating the value distribution increases the sample ef-
ficiency and also results in final performance improvements [29]. Applying distributional RL methods to
continuous action spaces is essential to study their effectiveness at flight control tasks. Therefore, RQ. 3
can be defined:

How does the learning performance of distributional RL methods compare to traditional value-
based RL methods when applied to flight control tasks?

Research Question 3

Due to the dimensionality of the control task, one of the main challenges of applying RL to flight control
is achieving 6 DOF control. A simulation gap exists between offline and online RL and improving both
classes of methods is required to cross this gap. Improvements are necessary not only in terms of sample
efficiency, but also robustness, stability, generalization power and tracking performance. Studying how
the performance of distributional RL scales when applied to high-dimensional tasks is of primary interest
and therefore RQ. 4 can be defined:

How does the learning and tracking performance of distributional RL compare to traditional RL
methods when applied to high-dimensional flight control tasks?

Research Question 4

Since distributional RL methods estimate the entire value distribution, a wide class of control strategies
can be defined, which opens the possibility for risk-sensitive policies and control. Such policies have the
ability to respond to different uncertainty levels when interacting with the environment.

How do risk-sensitive distributional RL agents respond to uncertainties in high-dimensional
flight control tasks?

Research Question 5

Recent developments in distributional RL applications have proposed methods to synthesize risk-
averse policies. It is an open question how such risk-sensitive / risk-averse policies can best be exploited
to reduce the risk associated with applying RL to flight control tasks.

How can risk-sensitive agents best be applied to high-dimensional flight control tasks to im-
prove learning performance, tracking performance and safety?

Research Question 6

1.4 Structure of the Report
The purpose of this report is to present the findings of the research project and answer the research
questions listed above. State-of-the-art traditional and distributional RL methods are discussed and the
most suitable algorithms are selected to investigate the relative learning and tracking performance of the
RL agents trained in a controlled stochastic environment. This report also includes a literature review,
which builds a foundation of RL theory and discusses recent advances in deep RL, distributional RL and
flight control applications.

The structure of the report is as follows. Firstly, Chapter 2 presents the scientific article and the primary
findings of the research project. Secondly, the preliminary analysis is discussed in Chapters 3 and 4, which
present the literature review and preliminary work respectively. Then, additional results are discussed in
Chapter 5 about the robustness of the trained agents, followed by a discussion of the verification and
validation approach in Chapter 6. Moreover, a brief discussion of the wall clock time of training is given
in Chapter 7. Lastly, concluding remarks are given in Chapter 8 followed by recommendations for future
research in Chapter 9.

4

Part I
Scientific Article

5

Distributional Reinforcement Learning for
Flight Control

Peter Seres ∗

∗ Aerospace Engineering, Delft University of Technology, 2629HS Delft
(e-mail: peter.seres.ae@gmail.com).

Abstract:
With the recent increase in the complexity of aerospace systems and autonomous operations,
there is a need for an increased level of adaptability and model-free controller synthesis. Such
operations require the controller to maintain safety and performance without human intervention
in non-static environments with partial observability and uncertainty. Deep Reinforcement
Learning (DRL) algorithms have the potential to increase the safety and autonomy of aerospace
control systems. It has been shown that the soft actor-critic (SAC) algorithm can achieve
robust control of a CS-25 certified aircraft and has the generalization power to react to failure
scenarios. Traditional DRL approaches, such as the state-of-the-art SAC algorithm struggle with
inconsistent learning in high-dimensional tasks and fall short of modelling uncertainty and risk
in the environment. In contrast, distributional RL algorithms estimate the entire probability
distribution of rewards, improve the learning characteristics and enable the synthesis of risk-
sensitive policies. This paper demonstrates the improved learning characteristics of distributional
soft actor-critic (DSAC) compared to traditional SAC and discusses the benefits of risk-sensitive
learning applied to flight control. We show that the addition of distributional critics significantly
improves learning consistency, and successfully approximates the uncertainty when applied to a
fully-coupled attitude control task of a jet aircraft.

Keywords: Reinforcement Learning, Computational Intelligence in Control, Aerospace,
Intelligent Autonomous Vehicles

1. INTRODUCTION

In recent years, technological advancements have resulted
in significantly increased complexity in the design and
dynamics of aerospace systems. Such systems include a
variety of designs such as various vertical take-off and
landing (VTOL) systems, aircraft with morphing wings
(Weisshaar, 2013; Ajaj et al., 2016), flapping wing systems
(de Croon et al., 2009, 2016), flying-V aircraft (Faggiano
et al., 2017; Ruiz Garcia et al., 2022) and convertiplanes
(Saeed et al., 2015). Often these complex systems have to
perform multi-objective control tasks while maintaining
safety and performance without the possibility of human
intervention. Furthermore, state-of-the-art applications
of aerospace systems require autonomous operations in
challenging, non-static environments, often with partial
observability and unforeseen circumstances. These factors
drive the need for an increased level of intelligence and
autonomy in the control of aerospace systems for both low-
level control tasks and high-level decision-making problems.

Traditional approaches to flight control synthesis rely on
the costly identification of high-fidelity aerodynamic models
(Morelli and Klein, 2016) and a predefined set of operating
conditions (Stevens et al., 2015). Such classical control
approaches and gain-scheduling architectures reduce the
adaptability and robustness of control systems, and are not
able to handle unexpected scenarios. Advanced incremental
techniques such as incremental non-linear dynamic inver-
sion (INDI) (Sieberling et al., 2010), backstepping control

(IBS) (van Gils et al., 2016) reduce modelling requirements,
show improved robust performance, and have shown fault-
tolerant capability (Sun et al., 2021; Wang and Sun, 2021),
but introduce challenges with sensor synchronization and
filtering (Pollack and Van Kampen, 2022).

With the rapid advancements in bio-inspired machine
learning (ML) techniques, Deep Reinforcement Learning
(DRL) methods have shown promising capability to solve
large-scale real-world problems in decision making and
control. Reinforcement Learning (RL) is a goal-oriented
model-free approach to synthesize near-optimal policies
for complex systems which has the potential to reduce
the model-dependency of flight control system design and
to increase the autonomy of aerospace systems. State-of-
the-art algorithms, such as the soft actor-critic (SAC)
(Haarnoja et al., 2018) have been shown to be capable
of fault-tolerant flight control of fully coupled aircraft dy-
namics while maintaining robustness to varying initial flight
conditions (IFC) and sensor noise (Dally and Van Kampen,
2022).

Even though such offline algorithms show great control per-
formance and generalization power, the learning behaviour
of these agents is inconsistent and sensitive to hyperpa-
rameters. In order to facilitate the eventual application of
DRL algorithms on real-world safety-critical systems, it is
desired to improve the reliability of these approaches.

1

Unlike traditional RL methods, distributional RL algo-
rithms (Bellemare et al., 2017; Dabney et al., 2017, 2018)
represent the full probability distribution of the reward
and achieve improved learning characteristic as a result.
Additionally, distributional RL unlocks the training of risk-
sensitive policies and the synthesis of risk-averse control
laws. Liu et al. (2022) has shown that the use of risk-
sensitive distributional RL agents improves the safety of
drone navigation in uncertain environments. The efficient
exploration approach of Mavrin et al. (2019) demonstrated
that distributional value-based methods successfully esti-
mate the intrinsic uncertainty of the environment. The ap-
proach proposed by Ma et al. (2020) applies distributional
critics to the SAC architecture and enables risk-sensitive
learning in continuous action spaces.

The contribution of this paper is three-fold. Firstly, we
demonstrate that using a distributional soft actor-critic
(DSAC) for a flight control task improves on the sample
efficiency, and significantly improves on the consistency
and stability of learning. Secondly, we demonstrate that
the tracking performance of DSAC is similar to state-of-
the-art SAC flight controllers, while modelling the full
probability distribution of returns. Lastly, we demonstrate
that distributional RL successfully models the uncertainty
in the environment, unlocking the synthesis of safer, risk-
averse RL-based flight controllers.

The structure of the paper is as follows. Firstly, Section
2 provides a brief formulation of the RL task, the SAC
architecture, distributional RL and the flight control
environment. Secondly, Section 3 discusses the methodology
used to construct risk-sensitive distributional attitude
controllers for the validated model of a CS-25 certified
research aircraft. Then, Section 4 presents the results
conducted on the learning and tracking performance
comparison of the traditional and distributional approaches.
Lastly, concluding remarks are given in Section 5.

2. BACKGROUND

This section provides a formal definition of RL tasks,
introduces maximum entropy RL and distributional RL
concepts, and discusses the flight control task formulated
under RL.

2.1 Reinforcement Learning

Reinforcement learning is a bio-inspired machine learning
technique where an agent learns by interacting with the
environment. The sequential decision making task that RL
agents solve is formulated as a Markov Decision Process
(MDP) described by the structured setM∼ ⟨S,A, R,P, γ⟩,
with state-space S ⊂ Rn, action-space A ⊂ Rm, reward
function R : S × A → R, stochastic state transition
dynamics P : S × S × A → [0,∞) and discount factor
γ ∈ (0, 1). The RL agent chooses action at ∈ A according to
policy a ∼ π(a|s) at time-step t, and observes the transition
tuple Tt = ⟨s, a, r, s′⟩, where r is the immediate reward and
s′ is the simplified notation for the next-state st+1. The goal
of traditional model-free RL is to find the optimal policy
π∗ that maximizes the expected return, i.e. the expected
cumulative rewards of this sequential decision making task.

The action-value function Qπ : S ×A → R is the expected
return of the agent choosing action a in state s and following
policy π thereafter, as given by (1):

Qπ(s, a) := E

[∞∑
t=0

γtR(st, at)

]
s0 = s

a0 = a

st+1 ∼ P(·|st, at)
at+1 ∼ π(at|st)

(1)

In order to find the optimal policy π∗, RL algorithms
repeatedly apply the contractive Bellman operator T π

shown in (2):

T πQ(s, a) := E [R(s, a)] + γEP,π [Q(s′, a′)] (2)

Where s′ and a′ denote the next-state and next-action
respectively.

The field of deep reinforcement learning (DRL), introduces
deep learning concepts to RL and uses deep neural
networks (DNNs) as universal function approximators to
estimate the action-value function (value-based methods),
the policy directly (policy-based methods) or both (actor-
critic methods).

Value-based critic-only DRL approaches, such as DQN
(Mnih et al., 2015), approximate the action-value function
Qk(s, a) ≈ Q(s, a) with parameter vector k and define the
policy implicitly using ϵ-greedy action selection, where the
action chooses a random action with probability ϵ ∈ [0, 1]
to facilitate exploration. When the environment requires
continuous actions, critic-only methods require an addi-
tional optimization step to find the action corresponding
to the highest action-value estimate.

In order to handle continuous action spaces, policy-based
methods can be used which parameterize the policy directly,
such that πw(s) ≈ π∗(s), where w is the parameter vector
of the approximation and π∗ is the optimal policy. Policy-
based, actor-only methods such as (Silver et al., 2014)
require unbiased samples of the return, which in turn
results in high-variance, slow convergence and limits the
use of such method to episodic environments. State-of-the-
art algorithms, such as Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2016) improve on
the convergence characteristics of actor-only approaches.

Actor-critic methods combine value-based and policy-
based methods in a joint architecture where the critic
estimates the action-value function and the actor estimates
the optimal policy, combining the advantages of both
approaches. Actor-critic methods can handle continuous
action spaces due to the direct parameterization of the
policy, and the action-value function can be used as a
biased estimate of the return, improving the variance of
the policy. State-of-the-art actor-critic algorithms, such
as Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015), Twin-Delayed DDPG (TD3) (Fujimoto et al.,
2018) and soft actor-critic (SAC) (Haarnoja et al., 2018)

2

have been shown to be capable of tackling high-dimensional
complex control and robotics tasks.

2.2 Soft Actor-Critic

The state-of-the-art soft actor-critic algorithm (SAC) origi-
nally proposed by Haarnoja et al. (2018, 2019) makes use of
the maximum entropy RL (Ziebart, 2010) framework which
introduces an additional entropy term to the objective
function to maximize not only the expected cumulative
rewards, but to also encourage the diversity of actions.

Maximizing the entropy of the policy Hπ results in more
efficient exploration, as the entropy serves as a metric of
randomness of the stochastic policy over the state space.
The entropy is given by the log-likelihood of the policy, as
shown in (3), and the resulting soft Bellman operator is
shown in (4):

H(πw(·|s)) = Ea∼πw [−log (πw(a|s))] (3)

T π
S Q(s, a) := E [R(s, a)] + γEP,π

[
Q(s′, a′)

− η log π(a′|s′)
]

(4)

Where η is the temperature parameter introduced to scale
the entropy term Hπ and balance the prioritization of
future rewards and the information content of the policy.

Since SAC is an off-policy method, the actor and critic
networks are trained by sampling a mini-batch B of tran-
sitions from an experience replay buffer D = {T0,T1, ...}.
The algorithm proposed by Haarnoja et al. (2019) utilizes
a double-critic architecture to prevent the overestimation
of the action-value function (Fujimoto et al., 2018). This
means that two soft Q-functions are trained in parallel with
subscripts l = 1, 2: Qk1,2

(s, a) and the minimum over the
two estimates is taken to determine the temporal-difference
(TD) error. In order to stabilize learning, the target Q-
networks are fixed relative to the behavioural Q-networks
and Polyak averaging (Polyak and Juditsky, 1992) is used
with step size ζ to interpolate the parameters of the target-
network towards the local network. The parameter vectors
of the fixed Q-networks are denoted using k̄. The critic loss
function minimizes the mean-squared TD-error δl given in
(5) for both Q-networks l = 1, 2:

δl = r + γ
(

min
l=1,2

Qk̄l
(s′, a′)− η log πw(a

′|s′)
)
−Qkl

(s, a)

LB
Q(kl) = EB

[
δ2l
]

(5)

Where the mini-batch B of transitions {⟨s, a, r, s′⟩ , ...} is
sampled from the experience replay buffer D, the next
action a′ is sampled from the policy πw(·|s), the term
Qkl

(s, a) is the local action-value function estimate and
Qk̄l

(s′, a′) is the one-step ahead prediction to calculate
the TD-error, which is corrected by the entropy term
ηH(πw(a′|s′)).
SAC uses a stochastic policy as an actor to ensure improved
exploration. Namely, the actor is an m-dimensional multi-
variate Gaussian distribution with a diagonal covariance
matrix. The mean vector µw ∈ Rm and the covariance

diagonal σw ∈ Rm are estimated by a fully-connected feed-
forward DNN. The actions sampled from the distribution
are passed through a tanh squashing function to ensure
they are defined on a finite bound. Even though the actor
is stochastic during training, the behaviour of the agent is
deterministic during evaluation, when the mean µw vector is
chosen as the action. The action selection of policy πw(a|s)
is shown in (6):

ãw(s) ∼ N (µw(s), σw(s)) (6)

aw(s) = tanh(ãw(s))

Where in practice an additional reparameterization step
is implemented to ensure that the Gaussian policy is
differentiable with respect to the parameter vector w for
the stochastic gradient descent (SGD) optimization step
(Haarnoja et al., 2019). The loss function of the SAC policy
can be formulated to maximize not just the return but also
the entropy term, as shown in (7):

LB
π (w) = EB

[
η log πw(aw|s)− min

l=1,2
Qki

(s, aw(s))

]
(7)

An approach proposed by Haarnoja et al. (2019) adapts
the temperature parameter η dynamically to achieve a
target entropy H̄ in order to improve exploration and
reduce the sensitivity to the hyperparameter η. The target
entropy is often chosen to be related to the dimension of
the action space, such that: H̄ = −m. Equation (8) shows
the loss function that optimizes the adaptive temperature
coefficient:

LB(η) = EB
[
ηH̄ − η log πw(a|s)

]
(8)

The resulting baseline SAC architecture is depicted in
Figure (1).

Memory Buffer Environment

Temperature Loss Lη

Critic Loss LQ Policy Loss Lπ

Double
Q-function Qk

Target Double
Q-function Qk̄

Policy πw

min
l=1,2

Qkl

πw

πw

⟨s, a, r, s′⟩ a

mini-batch B

B B
η η

πw∇wLπQk∇kLQ

min
l=1,2

Qk̄l

k1,2

ActorCritic

Fig. 1. Soft actor-critic (SAC) architecture with adaptive
temperature η optimization and double critic soft Q-
networks.

2.3 Distributional RL

While traditional RL aims to maximize the expected
cumulative rewards, distributional RL instead gets rid of
the expectation and uses information about the entire
probability distribution of returns to improve the policy
of the agent. This probability distribution of cumulative
rewards is called the return distribution function and maps

3

Z : S × A → Z, where Z is the action-value distribution
space with finite moments for all state-action pairs, as
shown in (9) (Bellemare et al., 2023):

Z =
{
Z : S ×A →P(R)|

E
[
∥Z(s, a)∥p

]
<∞,∀(s, a), p ≥ 1

} (9)

The action-value function as defined in (1) is the first
moment of the return distribution, s.t.: Qπ(s, a) :=
E [Zπ(s, a)] and the random variable Z is the discounted
cumulative reward:

Zπ(s, a) =

∞∑
t=0

γtR(s, a) (10)

As shown by Bellemare et al. (2017), the distributional
Bellman operator T π

D can be formulated as given in (11):

T π
DZ(s, a)

D
:= R(s, a) + γZ(s′, a′) (11)

Where
D
= denotes equality by distribution, i.e. the notion

that two random variables are equal when their distribu-
tions are equal.

A distributional RL method is primarily defined by two
attributes: the probability metric used to measure distances
between distributions and the parameterization of the
approximate return distribution.

Bellemare et al. (2017) showed that the distributional
Bellman operator is a contraction under a p-Wasserstein
metric defined in terms of the inverse cumulative distribu-
tion function (c.d.f.) of the random return. Given random
variable Z, the c.d.f. is defined as FZ(z) := P [Z < z] and
the quantile function is F−1

Z (τ) := inf {z ∈ R : τ ≤ FZ(z)},
where τ is the quantile fraction. The p-Wasserstein metric
is shown in (12) for random variables u and v, and a
visualization of the metric is shown in Figure (2) for two
example return distribution functions. Hereinafter, the
notation Zτ (s, a; k) is used to denote the approximate
quantile function of the return with parameter vector k.

Wp(u, v) =

(∫ 1

0

∥∥F−1
u (τ)− F−1

v (τ)
∥∥
p
dτ

)1/p

(12)

There are several ways to parameterize the return distri-
bution. The C51 algorithm (Bellemare et al., 2017) uses
N = 51 discrete atoms, whereas QR-DQN (Dabney et al.,
2017) uses quantile regression (QR) to approximate the
location of a uniform mixture of N diracs. The implicit
quantile network (IQN) representation proposed by Dab-
ney et al. (2018) further improves the QR approach by
approximating the continuous quantile function implicitly
by passing quantile fractions sampled from a uniform
distribution τ ∼ U([0, 1]) through a DNN. Using IQN
is a parametrically and computationally efficient way of
representing the return distribution.

Figure (3) shows the difference between a Deep Q-Network
estimating the scalar expectation and an Implicit Quantile

Fig. 2. Adapted from (Bellemare et al., 2023); Illustration of
the p-Wasserstein metric between the quantile function
of two normal distributions.

Network estimating the return distribution for randomly
sampled quantile fractions.

Traditional Critic (DQN)

Distributional Critic (IQN)

return
at

at+1

at+2

Q(s, at)

return
at

at+1

at+1

Zτi
Zτi+1

Zτi+2

Fig. 3. Traditional and distributional representation of the
return for a given state s and choosing action at at
time-step t; Adapted from Dabney et al. (2018)

2.4 Flight Control as an RL Task

When RL is applied to flight control tasks, the environment
often includes partially observable flight dynamics and
stochastic processes such as turbulence and sensor noise. It
is important to make a distinction between the RL state
vector s, which is the observation of the agent, and the
dynamic state vector x, which describes the dynamics of
the generalized non-linear non-affine system shown in (13):

ẋ = f(x, u, t) ≈ f(x, u) (13)

Where f is the non-linear state transition function, x ∈ Rn′

is the dynamic state vector of the aircraft and u ∈ Rm′

is the control input vector. Equation (13) makes the
assumption that the aircraft dynamics are stationary on
short time scales.

A tracking control task requires the agent to track desired
trajectories and minimize the tracking error between
reference signal and certain controlled states of the dynamic
system. To formulate a tracking control task as an MDP, a

4

subset of the dynamic state vector x has to be augmented
with the reference signals yr. The reward function is often
defined as a penalty proportional to either the absolute
tracking error Ra ∝ ∥yr − xc∥1 or the squared tracking
error Rs ∝ ∥yr − xc∥2, where yr is the reference trajectory
and xc ⊂ x is the vector of controlled states.

A major assumption of traditional RL is that the MDP
M ∼ ⟨S,A, R,P, γ⟩ has the Markov-property, i.e. the
observation vector s ∈ S fully predicts the outcome of the
transition P(s′|a, s). Flight control tasks on the other hand
often contain intrinsic uncertainty, either due to stochastic
processes such as turbulence and sensor noise, or due to
the influence of unobservable states on the dynamics of the
aircraft.

There are two primary challenges when it comes to applying
RL for flight control tasks. Firstly, the large dimensionality
of the state-action space demands algorithms to efficiently
use transition samples and be able to generalize learned
behaviour across the flight envelope. Secondly, since flight
control is a safety-critical task, exploration poses a challenge
of safety both during the training phase and the post-
training state when the RL agent encounters unexplored
states (Pollack and Van Kampen, 2019).

Due to the challenges of safety and sample efficiency, there
exists a simulation gap between RL agents trained in an
offline simulated environment and the online, real-world
application of RL-based flight controllers. In order to reduce
dependence on a high-fidelity model of the system, it is
desirable to synthesize robust control laws that are capable
of handling uncertainty in the environment.

DRL methods have the generalization power to achieve
robust fault-tolerant control in high-dimensional environ-
ments (Dally and Van Kampen, 2022), although may
present safety concerns when trained online due to the
continually changing policy. Teirlinck and Van Kampen
(2022) showed how a hybrid approach of SAC (Haarnoja
et al., 2018, 2019) and Incremental Approximate Dynamic
Programming (IADP) methods, such as IDHP (Zhou et al.,
2018) can cross the gap between offline, simulation-trained
methods and online, adaptive methods. However, they
observed inconsistent convergence of the offline training of
SAC agents with high sensitivity to hyperparameters and
stochastic processes.

3. METHODOLOGY

This section discusses the risk-sensitive distributional soft
actor-critic algorithm, the aircraft control task considered
for this research and the implementation details.

3.1 Distributional Soft Actor-Critic (DSAC)

In order to use distributional RL for continuous control
tasks, it is necessary to parameterize the policy directly
and resort to policy-based or actor-critic approaches. A
distributional actor-critic framework proposed by Ma
et al. (2020) extends the SAC algorithm to distributional
RL architecture by using critics that approximate the
return distribution. This combination of maximum entropy
RL and distributional RL facilitates not only effective
exploration, but also allows the use of risk-sensitive policies.

The distributional soft actor-critic (DSAC) algorithm
adopts the quantile regression approach (Dabney et al.,
2017) and uses the quantile Huber loss (Huber, 1992) as
a substitute for the Wasserstein metric. The pairwise TD-
error between two quantile fractions τi and τj is given by
(14):

δlij = r + γ

(
min
l=1,2

Zτi(s
′, a′; k̄l)− η log πw(a

′|s′)
)

− Zτj (s, a; kl) (14)

Where the quantile fractions are sampled independently
τi, τj ∼ U([0, 1]), a′ ∼ πw(·|s′), and the subscript l = 1, 2
denotes each Z-network in the double-critic architecture.
The Huber loss for quantile fraction τ is given by (15):

ρκτ (δ) = |τ − I{δ < 0}| · Lκ(δ),with

Lκ(δ) =

1

2
δ2 for |δ| ≤ κ

κ

(
|δ| − 1

2
κ

)
otherwise

(15)

Where I is the indicator function, and the Huber loss
Lκ(δ) provides smooth gradient-clipping with threshold
parameter κ.

In order to estimate approximate quantile loss for all
quantile levels, a set of N independent quantile fractions
is sampled for both the target and local networks. Thus,
the critic loss function for the return distribution estimator
Zτ (s, a; k) can be written as:

LB
Z(kl) = EB

 1

N2

N−1∑
i=0

N−1∑
j=0

ρκτj (δ
l
ij)

 (16)

Adapting the approach from (Dabney et al., 2018), risk-
sensitive learning can be achieved by maximizing a dis-
torted expectation of the soft action-value distribution. Let
Ψ : [0, 1] → [0, 1] be a continuous monotonic distortion
function under which the distorted expectation is given by:

QΨ
k (s, a) = Eτ

[
ZΨ(τ)(s, πw(·|s); k)

]
(17)

Where Ψ acts as a distortion risk measure. The Wang risk-
distortion function (Wang, 2000) provides a straightforward
way to parameterize the risk-distortion towards risk-averse
or risk-seeking learning, and is shown in (18):

Wang(ξ, τ) = Φ(Φ−1(τ) + ξ) (18)

Where Φ is the c.d.f. of the normal distribution and ξ is
the risk-distortion parameter that determines the learning
behaviour, such that ξ < 0 results in risk-averse, and
ξ > 0 results in risk-seeking learning. For the synthesis
of risk-neutral policies the risk-distortion function is the
identity mapping. Figure (4) shows the difference in the risk-
distorted expectation of two random variables with different
variances. A value distribution with smaller uncertainty
under risk-averse distortion results in a higher relative
expected reward.

5

−1.0 −0.5 0.0 0.5 1.0
Reward

0

1

2

3

4

p
(x

)

Probability Density Functions

u ∼ N (0, 0.1)

v ∼ N (0, 0.3)

µu, µv

−1.0 −0.5 0.0 0.5 1.0
Reward

0.00

0.25

0.50

0.75

1.00

τ

Risk-averse distortion C.D.F Wang(-1.0)

F−1
u

F−1
Ψ;u

µΨ;u

F−1
v

F−1
Ψ;v

µΨ;v

0.2 0.4 0.6 0.8
τ

0.00

0.25

0.50

0.75

1.00

Ψ
(τ

)

Distortion Risk Measure

neutral

Wang(-1.0)

Wang(1.0)

−1.0 −0.5 0.0 0.5 1.0
Reward

0.00

0.25

0.50

0.75

1.00

τ

Risk-seeking distortion C.D.F Wang(1.0)

F−1
u

F−1
Ψ;u

µΨ;u

F−1
v

F−1
Ψ;v

µΨ;v

Fig. 4. Expectations under risk-averse ξ < 0 and risk-
seeking ξ > 0 distortions for two normal distributions
with the same mean and different variances.

Figure (5) shows the DSAC architecture where the critic
networks are distributional Z-function approximators, and
an additional risk-distortion step is introduced in the policy
loss function to train risk-sensitive agents.

Memory Buffer Environment

Temperature Loss Lη

Critic Loss LZ Policy Loss Lπ

Double
Z-function Zτ

k

Target Double
Z-function Zτ

k̄
Policy πw

Risk

Distortion ΨZk

QΨ
k

πw

πw

⟨s, a, r, s′⟩ a

mini-batch B

B B
η η

πw∇wLπZk∇kLZ

min
i=1,2

Zk̄i

k1,2

ActorDistributional Critic

Fig. 5. Distributional Soft Actor-Critic (DSAC) archi-
tecture with adaptive temperature and risk-sensitive
learning.

3.2 Policy regularization

A common phenomenon of converged DRL policies is
the lack of smoothness of control actions, especially in
continuous control and robotics settings. The oscillatory
behaviour and high-frequency content in the actions causes
undesirable behaviour and reduces the practical utility of
synthesized control laws (Mysore et al., 2021). In the control
of real robotics and aerospace systems, such oscillations
may degrade the tracking performance, cause overheating,
high power usage, and actuator failure.

In order to avoid such oscillatory converged policies, Dally
and Van Kampen (2022) used an incremental control
architecture, where the action of the RL agent is an
incremental change of control action. This approach further
augments the observation space with the current actuator
state and increases the dimensionality of the problem. Early
experiments in this research showed that the incremental
approach does not guarantee control law smoothness and
therefore this paper uses a policy regularization technique
proposed by Mysore et al. (2021).

The approach of Conditioning for Action Policy Smoothness
(CAPS) adds two regularizing terms to the policy loss

function: a spatial and a temporal loss term. The spatial
loss term LS given by (19) ensures that similar states result
in similar actions and the temporal term LT given by (20)
ensures that two neighbouring time-steps produce similar
actions. Two additional hyperparameters λS , λT tune the
prevalence of the smoothness regularization term in (21).

LS = ∥πw(s)− πw(s̃)∥2 (19)

LT = ∥πw(s)− πw(s′)∥2 (20)

LC
π = λSLS + λTLT (21)

Where the transition tuple is sampled from the mini-batch
⟨s, a, r, s′⟩ ∼ B, and the proximal states s̃ are sampled from
a normal distribution s̃ ∼ N (s, σ̃).

Thus, the final objective function of the policy maximizes
the entropy term ηHπ to facilitate diverse actions, maxi-
mizes the risk-distorted soft action-value QΨ

k to facilitate
risk-sensitive action selection, and ensures smooth, prac-
tical control laws using the regularization term LC

π . The
combined policy objective is formulated as a loss in (22):

LB
π (w) = EB

[
η log πw(aw(s)|s)−QΨ

k (s, a) + LC
π

]
(22)

3.3 Attitude Control

The tracking task investigated in this paper is the attitude
control of a validated high-fidelity model of the PH-LAB
Cessna Citation II research aircraft with fully-coupled non-
linear dynamics (Van den Hoek et al., 2018). The attitude
control task is to track pitch θr and roll angle ϕr reference
trajectories, and to regulate the sideslip angle to βr = 0.

3.3.1 Aircraft Model

The model has 12 dynamic states visualized in Figure
(6), which include the airspeed components: true airspeed
V , angle of attack α and angle of sideslip β, the angular
velocities p, q and r for roll, pitch and yaw rate respectively,
and the angular orientation of the aircraft is represented
using Euler-angles: ϕ, θ and ψ for roll, pitch and yaw
(heading), respectively. Additionally, the translational
positions are given with respect to a local tangent plane
reference frame: Xe and Ye for the horizontal position and
altitude h for the vertical position.

Similarly to the methodology of (Dally and Van Kampen,
2022), the actions of the agent are limited to aerodynamic
surface deflections and the thrust control is delegated to
an inner control loop that regulates velocity, thus reducing
both the size of the state-action space and the overall
control complexity. The available control surfaces are the
elevator deflection δe, the aileron deflection δa and the
rudder deflection δr. This approach results in the following
dynamic state vector x ∈ R12 given by (23) and control
input vector u ∈ R3 given by (24). The dynamic states and
control inputs of the aircraft are shown in Figure (6).

x = [p, q, r, V, α, β, ϕ, θ, ψ, h,Xe, Ye]
T (23)

u = [δe, δa, δr]
T (24)

6

Xe

Ye

Ze

Xb

YB

ZB

V

p

q

r

θ

ϕ

α
β

δe

δa

δr

Fig. 6. Visualization of the dynamic states of the aircraft,
where Xb, Yb and Zb define the body frame with
attitude [ϕ, θ, ψ] relative to the inertial frame. The
heading ψ is depicted as zero for visual clarity.

At the start of the simulation, the aircraft is initialized from
a trimmed condition at an altitude of h = 2, 000 (m) and
airspeed of V = 90 (m/s). The refresh rate of the simulation
is 100 (Hz). Additionally, ideal sensors are assumed and the
actuators are modeled using low-pass filter dynamics with
fixed deflection saturation limits. The actuator deflection
limits are given by (25) (Konatala et al., 2021) and define
the action space of the control policy:

←−δe−→ ←−δa−→ ←−δr−→
A = {[−17◦, 15◦]× [−19◦, 15◦]× [−22◦, 22◦]} ⊂ R3 (25)

3.3.2 Controller Architecture

Previous studies by Dally and Van Kampen (2022) and
Teirlinck and Van Kampen (2022) have shown the robust
fault-tolerant capability of the SAC architecture using a
cascaded hierarchy of RL agents to control the attitude
and altitude of the PH-LAB aircraft model.

In order to investigate the isolated effect of distributional
RL and risk-averse learning, this paper only considers
the safety-critical inner-loop attitude control task with-
out the additional complexity of a multi-agent control
system. Figure (7) shows the control diagram considered
in this research, where the RL agent controls the actuator
deflections directly and the observation vector is varied to
investigate the effect of dimensionality and observability.

PH-LAB
SAC/DSAC
Attitude
Controller

x

θr θe

ϕr ϕe

βr = 0 βe

δe, δa, δr

⊆ {p, q, r, α}

β

ϕ

θ

Ra

+

−
+

−
+

−

Fig. 7. SAC/DSAC attitude controller architecture with
direct deflection control a = u = [δe, δa, δr]

T .

−10

0

10

20

θ r
(d
eg

)

0 5 10 15 20 25

t (s)

−40

−20

0

20

φ
r

(d
eg

)

Fig. 8. Pitch θr and roll ϕr reference signals for training
are randomly generated sequences of cosine smoothed
steps, shown for a single episode.

The baseline observation vector s1 is given in (26) and was
used by Dally and Van Kampen (2022) to synthesize fault-
tolerant SAC attitude controllers. This paper investigates
the use of an augmented vector s2 given in (27), which adds
angle of attack to the observation of the agent with the
purpose of reducing the partial observability of the MDP.

s1 = [θe, ϕe, βe, p, q, r]
T ∈ R6 (26)

s2 = [θe, ϕe, βe, p, q, r, α]
T ∈ R7 (27)

Where θe, ϕe, and βe are the pitch, roll and sideslip tracking
errors respectively. The tracking error vector is given by
(28):

e = [θe, ϕe, βe]
T = [θr − θ, ϕr − ϕ, βr − β]T (28)

The reward function used by Dally and Van Kampen (2022)
is adopted to penalize the weighted L1 norm of the tracking
error:

R(s, a) = −1

3

∥∥∥∥clip [c⊙ error] ,−1, 0]∥∥∥∥
1

(29)

Where c ∈ R3 is the associated relative cost of the controlled
states, set higher for the sideslip angle due to its lower
magnitude, as seen in (30):

c =
6

π
[1, 1, 4]T (30)

The agents are trained using 30 (s) episodes with randomly
generated pitch θr and roll ϕr reference signals. The
reference signals are sequences of cosine-smoothed step
inputs with amplitudes that are uniformly sampled from a
set of discrete levels. The amplitudes and step widths are
chosen based on previous work (Dally and Van Kampen,
2022). Figure (8) shows an example realization of the
training signals.

3.4 Critic and Actor Networks

As described in (3.1), the distributional critic is an implicit
quantile network which estimates the continuous quantile
function of the return. In practice, N randomly sampled

7

quantile fractions τ ∼ U([0, 1]) are passed through a cosine
embedding layer, given in (31):

Cj(τ) := F

(
N∑
i=1

cos(πiτ)wij + bj

)
(31)

Where F is a nonlinear activation function, and wij , bj are
the individual weight and bias parameters of the cosine
embedding layer.

Interaction between the input features, i.e. the state-action
pair [s, a]T ∈ Rn+m and the sample embedding is achieved
using the multiplicative Hadamard product, as outlined by
Dabney et al. (2018), and layer normalization is utilized Ba
et al. (2016) to ensure well-bounded quantile magnitudes.
Figure (9) shows the DNN architecture of the Z-function
approximator networks.

...

...

...

...
...

...

...
...

...
...

s0

sn

a0

am

τ1

τN

Ei
1

Ei
h̄

C1

Cc

Eτ
1

Eτ
h̄

H1
1

H1
2

H1
h̄−1

H1
h̄

H2
1

H2
2

H2
h̄−1

H2
h̄

Zk(s, a; τ1)

Zk(s, a; τN)Quantiles Cosine

States &

Actions

Embedding Hadamard

⊙
Hidden 1 Hidden 2 Return

distribution

layer size: (h̄)

Fig. 9. Depiction of the implicit quantile network (IQN)
based on Dabney et al. (2018), with 2 hidden fully-
connected feed-forward layers of size h̄, cosine embed-
ding layer size C and N generated quantiles fractions.

In order to optimize the parameters of the critic, stochastic
gradient descent (SGD) optimization is used (Kingma and
Ba, 2017) with the quantile Huber loss function defined in
(16).

Figure (10) shows the multivariate Gaussian network used
to approximate the policy of SAC agents. In practice,
the DNN estimates the log(σ) terms for more efficient
computation of the entropy term defined in (3). In order to
compute back-propagation, the required reparameterization
step (rsample) is provided by popular machine learning
frameworks. The tanh squashing function is applied to the
sampled actions as described by (6) and the mean µ is
taken for deterministic action selection in post-training
evaluations.

3.5 Experiment Design

In order to assess the effect of distributional RL, the
performance of DSAC agents is compared to baseline
SAC agents. For the purpose of assessing the risk-sensitive
capabilities of the DSAC algorithm, risk-neutral and risk-
averse agents are trained using the Wang distortion risk
measure, shown in (18) and the risk-distorted action-value
(17). The comparison of the three agents, i.e. baseline SAC,
risk-neutral (R.N.) DSAC and risk-averse (R.A.) DSAC is
done for two environments: the baseline environment with

...
...

...
...

...

...

N (µ, σ)

s0

sn

I1

Ih̄

H1
1

H1
2

H1
h̄−1

H1
h̄

H2
1

H2
2

H2
h̄−1

H2
h̄

µ1

µm

σ1

σm

ã ∈ Rm

rsample

States Input layer Hidden 1 Hidden 2 Gaussian

distribution

layer size: (h̄)

Fig. 10. Depiction of the multivariate tanh-Gaussian policy.

observation vector s1 (26), and the environment with the
α-augmented observation vector s2 (27).

Both observation vectors result in partially observable
environments, as the angle of attack α has a great effect
on the longitudinal dynamics of the aircraft, whereas the
airspeed V and altitude h influence all dynamic modes
of the aircraft, due to the different dynamic pressure and
Mach number. This partial observability appears as an
intrinsic uncertainty to an agent with limited knowledge of
all dynamic states and the distributional critic estimates
this uncertainty (Mavrin et al., 2019).

The performance of the algorithms is assessed with respect
to two aspects. Firstly, the learning performance of the
algorithms is evaluated in terms of sample efficiency, final
converged rewards and consistency. Secondly, the tracking
performance of the agents is assessed, with the use of a
normalized mean absolute error (nMAE) metric, where
the θe, ϕe tracking errors are normalized with respect to
the maximum amplitude of training signals and βe is
normalized in [−5◦, 5◦], similarly to the methodology of
Teirlinck and Van Kampen (2022).

Additionally, risk-neutral and risk-averse agents trained
using different ξ risk-parameters are compared with respect
to their ability to model uncertainty and handle high-risk
manoeuvres.

The hyperparameters used for the experiments are shown
in Table (1), a subset of which are shared across all agent
types. The linearly decreasing learning rate, discount factor
γ, network size, batch size |B|, and Polyak step-size ζ
parameters have been set to the baseline SAC attitude
controller investigated by Dally and Van Kampen (2022).
The size of the memory buffer |D| is increased to 1e6
in order to stabilize learning and discourage catastrophic
forgetting behaviour. The CAPS smoothing parameters
λS,T are set to 400 based on early experiments by Teirlinck
and Van Kampen (2022).

The parameters of the IQN critics are chosen according to
the findings of Dabney et al. (2018), who showed thatN = 8
quantiles are sufficient to estimate the return distribution.
Ma et al. (2020) found that using the Sigmoid activation
function achieves smoother embedding of the quantile
information compared to the original ReLU activation. The
distortion risk measure is set to identity for the risk-neutral
agents and is set to ξ = −0.5 for the risk-averse agents.

8

Table 1. Hyperparameters for the SAC and
DSAC agents, with shared parameter subsets.

Hyperparameter Notation Value

Shared
Optimizer Adam

Learning rate 4.4e-4 → 0
Entropy target H̄ −m = −3
Discount factor γ 0.99
Dense network activation ReLU

Hidden neurons h̄ 64× 64
Memory buffer size |D| 1, 000, 000
Mini-batch size |B| 256
Polyak step-size ζ 0.995
Policy-smoothing λS,T 400

Distributional critic
Nr. of quantiles N 8
Nr. of cosine neurons C 64
Embedding activation F Sigmoid

Nr. of quantiles for QΨ
k T 16

Huber threshold κ 1.0

Risk-averse learning
Distortion risk measure Ψ Wang
Risk parameter ξ −0.5

In order to ensure reproducibility, the pseudo-random
stochasticity during training is controlled for both environ-
ment and agent.

4. RESULTS AND DISCUSSION

This section presents the results of the baseline (SAC)
and distributional (DSAC) control law synthesis for both
risk-neutral and risk-averse settings.

4.1 Learning performance

The number of training samples required to train SAC
agents for flight control is on the order of 1e6 transitions
(Dally and Van Kampen, 2022). The agents are trained for
7.5e5 samples, i.e. 250 episodes with each episode lasting
30 (s).

The learning curves are shown in Figures (11, 12). Due to
the early convergence, the first 2e5 samples are shown and
Savitzky-Golay smoothing is applied for visual clarity. It
can be seen that for the baseline environment the distribu-
tional agents achieve earlier convergence, demonstrating an
increase in sample efficiency of 56.3% for the risk-neutral,
and 43.7% for the risk-averse distributional agents. The
improvement in sample efficiency is slightly lower for the
augmented observation vector with 33.9% for the risk-
neutral and 28.5% for the risk-averse agents. The difference
in convergence between the two environments indicates that
the early relative learning performance of distributional
agents is improved for environments with more intrinsic
uncertainty.

Furthermore, the sample efficiency of all three types of
agents have increased by approximately 95% relative to the
baseline SAC approach by Dally and Van Kampen (2022),
which required 1e6 samples to converge. This significant
improvement can be attributed to the omission of the
incremental control approach, which reduces the size of

the observation space from R9 to R6,7 and the addition of
policy regularization, which eliminates the convergence to
local-optima that result in oscillatory control laws.

Fig. 11. Mean learning curve and standard deviation (n=10)
for each agent type trained in the baseline environment
(s1).

Fig. 12. Mean learning curve and standard deviation
(n=10) for each agent type trained in the augmented
environment (s2).

Fig. 13. Mean learning curve and standard deviation (n=10)
for each agent type trained in the augmented environ-
ment (s2) using a modified set of hyperparameters.

9

In addition to the improved sample efficiency, two further
improvements can be observed: higher converged rewards
and a reduction in variance.

Table (2) summarizes the converged average return µ
and converged standard deviation of return σ for both
environments and the two distributional agent types,
indicating the relative improvement as a percentage for
both the variance and mean return. The p-value is shown
for the hypothesis that the mean return of distributional
agents is higher, given two independent distributions of
agents with non-equal variance. Additionally, the p-value
for the lower achieved variance is shown, calculated using
an f-test of different variances.

Due to the sample size (n=10), the higher achieved rewards
are not statistically significant and early experiments
showed that the improvement of returns is dependent on
the environment. However, the reduced variance of distri-
butional agents is statistically significant and is highlighted
in Table (2). The reduced variance indicates improved
learning stability and a reduction in catastrophic forgetting,
as well as improved robustness to the stochasticity of the
environment.

In order to ensure that the conclusions can be generalized,
an additional batch of agents were trained using a modified
hyperparameter set. The hyperparameter modifications
consist of reduced smoothing coefficients λS,T = 300,
increased network sizes 128×128, and an increased number
of quantiles used (T = 32) to estimate the risk-distorted
expectation of the return Qr

k.

Table 2. Converged rewards of the three agents
for both environment settings and for the mod-
ified hyperparameter set. The p-value shows
the significance of mean µ reward improvement
and the variance σ improvement. Bold values
show statistically significant differences with

5e-2 threshold.

SAC R.N. DSAC R.A. DSAC

Value (Rel.) p Value (Rel.) p

Baseline env.
µ -148 -138 (+7%) 4e-1 -145 (+1.7%) 5e-1
σ 78 41 (-46%) 3e-2 69 (-12%) 4e-1

Augmented env.
µ -149 -122 (+18%) 3e-1 -118 (+21%) 3e-1
σ 177 32 (-82%) 5e-6 31 (-82%) 5e-6

Augmented env. & Modified hyperparameters
µ -1778 -292 (-93%) 2e-1 -295 (-83%) 2e-1
σ 6170 608 (-90%) 5e-8 117 (-98%) 2e-14

The mean learning curves with the modified hyperpa-
rameters are shown in Figure (13) and indicate a clear
improvement in the stability of learning relative to the
baseline SAC learning curves. Furthermore, Table (2)
indicates the mean reward improvements and significant
variance improvements. This shows that the DSAC agents
have outstanding stability in the augmented environment,
even with larger network sizes. Moreover, the risk-averse
agents trained using the modified hyperparameter set show
an additional 81% improvement in variance compared to
risk-neutral agents, with a p-value of 2e−5.

4.2 Tracking performance

An evaluation routine similar to that of Dally and Van Kam-
pen (2022) is used to show the attitude tracking control
response of the converged controllers. Since a batch of
agents (n=10) was trained for each algorithm variant and
environment type, the time-domain response is plotted
using the mean across all agents of the type, with a
2σ (≈ 95%) confidence interval. Example time-domain
responses are shown in Figure (14) and (15) for the baseline
SAC agents and risk-averse DSAC agents, respectively.

Fig. 14. Evaluation of SAC agents trained using the baseline
observation s1. Red dashed lines show the reference
signals, solid blue lines show the mean response and
the shaded areas show the 95% confidence interval.

In the tracking response, adequate attitude tracking can be
observed for both ϕ and θ, while β is successfully regulated
within the [−1◦, 1◦] range. At t ≈ 10 (s), the pitch tracking
error increases as a banking manoeuvre is initiated. The
oscillatory behaviour of the policy is eliminated for most
states. High frequency control actions can be observed on
the lateral control surfaces, however the confidence interval
indicates that the magnitude of such actions is limited to
a few degrees and the oscillations do not propagate to the
controlled states.

As a metric of control tracking performance, the normalized
Mean Absolute Error (nMAE) is used to compare the
distributional agents to the baseline. The resulting nMAE
values are shown in Table (3), where it can be seen that
similar tracking performance is achieved for all agent types.
Table (3) also shows the relative percentage improvements
compared to the baseline SAC performance and the p-value
indicates the statistical significance of the improvements.

10

Fig. 15. Evaluation of risk-averse DSAC agents trained
using the augmented observation s2. Red dashed lines
show the reference signals, solid blue lines show the
mean response and the shaded areas show the 95%
confidence interval.

Table 3. nMAE values for each agent type,
with indicated relative improvement (Rel.). The
p-value shows the t-test confidence level for
the nMAE improvement. Bold values show
significant differences with 5e-2 threshold.

SAC R.N. DSAC R.A. DSAC

nMAE nMAE p nMAE p

Baseline env.
12.5 12.1 (-3.0%) 4e-3 12.5 (-0.2%) 9e-1

Augmented env.
12.5 12.4 (-1.5%) 5e-1 12.0 (-4.0%) 8e-3

Augmented env. & Mod. hyperparameters
14.0 12.8 (-8.2%) 1e-1 12.6 (-9.9%) 4e-2

It can be seen that risk-averse DSAC agents slightly
improve on the tracking performance compared to SAC
when trained using the augmented observation vector s2.
This shows that DSAC agents perform similarly and often
outperform SAC agents in tracking performance depending
on the environment.

4.3 Risk-sensitive learning

In order to investigate the effect of risk-averse learning
on the synthesized control laws, the reference signals are
modified to assess the behaviour of the control laws in near-
stall situations. In addition to the modified evaluation, a
set of risk-averse DSAC agents are trained with varying ξ
risk parameters.

The learning curves of the risk-averse agents are shown
in Figures (16) and (17) for the baseline environment s1
and the augmented environment s2, respectively. It can be

seen that highly distorted distributions result in neither
degraded, nor improved learning performance.

Fig. 16. Learning curves with varying Wang(ξ) distortion
parameters; baseline environment s1.

Fig. 17. Learning curves with varying Wang(ξ) distortion
parameters; augmented environment s2.

The aforementioned modified evaluation task of the risk-
neutral and risk-averse agents is to follow a high pitch-up
manoeuvre to near-stall conditions. Such a situation is
chosen for two reasons. Firstly, it is expected that the
uncertainty of such near-stall conditions is high, due to the
lack of exploration and due to the unobservable dynamics
that depend on airspeed and altitude. Secondly, such
situations connect the uncertainty of return directly to flight
risk (ICAO, 2018), as such flight conditions are considered
hazardous and may lead to loss-of-control (LOC).

The tracking response to a near-stall condition is shown
in Figure (18) for both risk-neutral (left) and risk-averse
(right) agents. Figure (18) only depicts the longitudinal
states, as the reference roll and sideslip angles are both kept
at zero. Throughout the manoeuvre, the sustained high
pitch-angle reference causes the aircraft to lose airspeed and
gain altitude. The 45◦ pitch angle reference at t = 60 (s) is
unattainable by the agent without entering stall-induced
oscillations and instability. The risk-neutral DSAC agent
(left) responds to the reference signal by further deflecting
the elevator, inducing undesirable oscillatory behaviour.
On the other hand, the risk-averse agent (right) avoids the
stall-induced oscillations and keeps α at ∼ 10◦.

The variance of the return distribution estimated by the
trained critic is also shown for each state-action pair during

11

Fig. 18. Comparison of near-stall attitude control task
of risk-neutral (left) and risk-averse (right) DSAC
controllers; augmented observation s2; Risk-averse
trained using Wang(-2.0); Red dashed lines show the
reference signals.

the high-risk manoeuvre. The variance of return can be used
as a metric of estimated uncertainty (Mavrin et al., 2019).
Figure (19) shows both the immediate and cumulative
rewards achieved by the risk-neutral and risk-averse agents
for each time-step throughout the manoeuvre. It can be
seen that the risk-averse controller sacrifices immediate
rewards to avoid states with high-uncertainty.

Even though the risk-averse controller slightly outperforms
the risk-neutral agent in the first half of the episode, it
chooses more conservative actions following the 45◦ pitch
angle reference at t = 60 (s). The risk-averse agent achieves
a reduced end-of-episode return, but manages to avoid
stall-induced oscillations. This indicates that training the
actor to prioritize state-action pairs with low variance in
the return distribution inherently increases the safety of
flight.

The risk-averse behaviour is achieved without the addition
of human-domain knowledge, such as reward shaping.
Whether the critic’s estimate of uncertainty is due to
parametric or intrinsic uncertainty in the environment is
not pertinent to the safety of control and decision making,
as both unexplored and highly stochastic state-action are
to be assigned a lower risk-distorted action-value, in order
to reduce flight risk.

5. CONCLUSION

This research contributes to the synthesis of risk-averse
model-free flight controllers for non-linear fully-coupled
aerospace systems, and lays the foundation for deep
reinforcement learning flight controllers that approximate
the uncertainty of the environment. The distributional soft

Fig. 19. Rewards, cumulative rewards and the distribu-
tional critic’s variance estimate during the near-stall
manoeuvre evaluation for both risk-neutral and risk-
averse DSAC agents.

actor-critic algorithm used in this paper does not optimize
for higher expectation of rewards, but rather a trade off
between rewards, uncertainty, action diversity, and action
smoothness.

Previously, Dally and Van Kampen (2022) found low
training reliability in the training of the baseline SAC
algorithm. We show that the DSAC algorithm significantly
improves on the learning characteristics by combining
maximum entropy RL with distributional critics, which
proves to be effective at exploration and provides more
stable and consistent learning for partially observable, high-
dimensional control tasks.

The estimation of the return distribution enables the
synthesis of risk-sensitive policies. This paper implements
the method of distorted expectations, as a risk-measure to
train risk-averse control laws. The resulting risk-neutral and
risk-averse DSAC agents show similar tracking performance
compared to the baseline SAC agents.

Additionally, we show that training risk-averse policies
using highly distorted expectations results in control
laws that prioritize state-action pairs with low variance,
increasing the safety of RL-based flight control.

5.1 Significance

Improving the robustness of offline RL algorithms with
regards to uncertainty is a crucial step in bridging the
simulation gap in flight control applications of RL and
reducing the model-dependency of adaptive controller
synthesis. It is expected that DRL controllers trained in
simulated environments will provide the initial starting
point for online, adaptive controllers, as demonstrated
by Teirlinck and Van Kampen (2022). Modelling the
uncertainty of the environment and/or the uncertainty

12

of model parameters is an essential step of applying offline
simulated RL controllers to real-world aerospace systems.

As mentioned above, the synthesized risk-averse control
laws increase the safety of flight by avoiding uncertainty
in the return. This is achieved using minimal human-
domain knowledge and is purely a result of goal-oriented
interaction. Such approaches are needed to reduce the
model-dependence of control synthesis and to enable the
real-world application of continually learning RL-based
controllers for safety critical systems.

5.2 Recommendations

Variety of Risk-measures This paper only considers the
risk-distorted expectation as a mode of synthesizing risk-
sensitive control laws. Having access to the return distribu-
tion provides wide array of risk-sensitive approaches.

Unused Trained Critic More importantly, the DSAC
algorithm outlined in this paper does not utilize the
return distribution estimate post-training, even though
it is demonstrated that the variance of the return is a
valuable predictor of flight risk. Future work is needed to
make full use of the trained critic networks, in a potentially
adaptive, continually learning setting.

Monotonic Constraints During early stages of learning,
the monotonicity of the quantile function is not guaranteed
and the return distribution estimate is ill-defined. An
approach by Théate et al. (2021) could improve the early
learning performance and improve the early estimate of
uncertainty.

Hyperparameter Sensitivity While the sensitivity of
DSAC to hyperparameter changes was outside the scope
of the research, early experiments suggest robustness
to hyperparameter changes. Additional experiments and
parameter sweeps are needed to investigate the robustness
to hyperparameters explicitly.

Recurrent Neural Networks Since most DRL flight con-
trollers train using partially observable MDPs, the use of
recurrent neural networks could improve the estimation
of uncertainty, and the risk-averse response at the cost of
more difficult learning.

6-DOF Flight Control This paper focuses on the isolated
effect of adding distributional RL to low-level flight control
and trained attitude controllers in a limited flight envelope.
With the observed improvements in learning performance,
it is expected that 6-DOF control of an aircraft may be
achieved using a hierarchy of DRL agents and ensuring
thorough exploration of the flight envelope.

REFERENCES

Ajaj, R.M., Beaverstock, C.S., and Friswell, M.I. (2016).
Morphing aircraft: The need for a new design philosophy.
Aerospace Science and Technology, 49, 154–166. URL
https://doi.org/10.1016/j.ast.2015.11.039.

Ba, J.L., Kiros, J.R., and Hinton, G.E. (2016). Layer
Normalization. arXiv:1607.06450 [cs, stat]. URL http://
arxiv.org/abs/1607.06450.

Bellemare, M.G., Dabney, W., and Munos, R. (2017). A
Distributional Perspective on Reinforcement Learning.
International Conference on Machine Learning, 449–458.
URL https://arxiv.org/abs/1707.06887.

Bellemare, M.G., Dabney, W., and Rowland, M. (2023).
[under review] Distributional Reinforcement Learning.
MIT Press. http://www.distributional-rl.org.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R.
(2018). Implicit Quantile Networks for Distributional
Reinforcement Learning. URL http://arxiv.org/abs/
1806.06923.

Dabney, W., Rowland, M., Bellemare, M.G., and Munos,
R. (2017). Distributional Reinforcement Learning with
Quantile Regression. URL http://arxiv.org/abs/1710.
10044.

Dally, K. and Van Kampen, E.J. (2022). Soft Actor-Critic
Deep Reinforcement Learning for Fault Tolerant Flight
Control. In AIAA SCITECH 2022 Forum. San Diego,
CA & Virtual. URL https://arc.aiaa.org/doi/10.2514/6.
2022-2078.

de Croon, G., de Clercq, K., Ruijsink, R., Remes, B., and
de Wagter, C. (2009). Design, Aerodynamics, and Vision-
Based Control of the DelFly. International Journal of
Micro Air Vehicles, 1(2), 71–97. URL http://journals.
sagepub.com/doi/10.1260/175682909789498288.

de Croon, G., Perçin, M., Remes, B., Ruijsink, R., and
De Wagter, C. (2016). The DelFly. Springer Netherlands,
Dordrecht. URL http://link.springer.com/10.1007/
978-94-017-9208-0.

Faggiano, F., Vos, R., Baan, M., and Van Dijk, R. (2017).
Aerodynamic Design of a Flying V Aircraft. In 17th
AIAA Aviation Technology, Integration, and Operations
Conference. Denver, Colorado. URL https://arc.aiaa.
org/doi/10.2514/6.2017-3589.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing
Function Approximation Error in Actor-Critic Methods.
In Proceedings of the 35th International Conference on
Machine Learning, 1587–1596. PMLR. URL https://
proceedings.mlr.press/v80/fujimoto18a.html.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
International conference on machine learning, 1861–
1870. PMLR. URL https://proceedings.mlr.press/v80/
haarnoja18b.html.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. (2019). Soft Actor-Critic Algorithms and

13

Applications. URL http://arxiv.org/abs/1812.05905.

Huber, P.J. (1992). Robust estimation of a location
parameter. In Breakthroughs in statistics, 492–518.
Springer.

ICAO (2018). Doc 9859: Safety management manual, fourth
edition, 2018. URL https://skybrary.aero/bookshelf/
books/5863.pdf.

Kingma, D.P. and Ba, J. (2017). Adam: A Method for
Stochastic Optimization. URL http://arxiv.org/abs/
1412.6980.

Konatala, R., Van Kampen, E.J., and Looye, G. (2021).
Reinforcement learning based online adaptive flight
control for the cessna citation ii (ph-lab) aircraft. In
AIAA Scitech 2021 Forum, 0883. URL https://arc.aiaa.
org/doi/10.2514/6.2021-0883.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous
control with deep reinforcement learning. URL http://
arxiv.org/abs/1509.02971.

Liu, C., van Kampen, E.J., and de Croon, G.C.H.E. (2022).
Adaptive Risk Tendency: Nano Drone Navigation in Clut-
tered Environments with Distributional Reinforcement
Learning. URL https://arxiv.org/abs/2203.14749.

Ma, X., Xia, L., Zhou, Z., Yang, J., and Zhao, Q. (2020).
DSAC: Distributional Soft Actor Critic for Risk-Sensitive
Reinforcement Learning. URL http://arxiv.org/abs/
2004.14547.

Mavrin, B., Yao, H., Kong, L., Wu, K., and Yu, Y. (2019).
Distributional Reinforcement Learning for Efficient Ex-
ploration. International Conference on Machine Learning,
4424–4434. URL http://proceedings.mlr.press/v97/
mavrin19a.html.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529–533. URL http://www.nature.com/
articles/nature14236.

Morelli, E.A. and Klein, V. (2016). Aircraft system
identification: theory and practice, volume 2. Sunflyte
Enterprises Williamsburg, VA.

Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K.
(2021). Regularizing Action Policies for Smooth Control
with Reinforcement Learning. IEEE International Con-
ference on Robotics and Automation (ICRA), 1810–1816.
URL http://arxiv.org/abs/2012.06644.

Pollack, T. and Van Kampen, E.J. (2019). Safe Curriculum
Learning for Primary Flight Control. Master Thesis,
Technical University of Delft, Delft. URL http://resolver.
tudelft.nl/uuid:1b2becfd-c2db-43fc-a273-a3ff6a9ba50a.

Pollack, T. and Van Kampen, E.J. (2022). Robust Stability
and Performance Analysis of Incremental Dynamic
Inversion-based Flight Control Laws. In AIAA SCITECH
2022 Forum. San Diego, CA & Virtual. URL https://

arc.aiaa.org/doi/10.2514/6.2022-1395.

Polyak, B.T. and Juditsky, A.B. (1992). Acceleration of
Stochastic Approximation by Averaging. SIAM Journal
on Control and Optimization, 30(4), 838–855. URL https:
//epubs.siam.org/doi/abs/10.1137/0330046. Publisher:
Society for Industrial and Applied Mathematics.

Ruiz Garcia, A., Brown, M., Atherstone, D., Arnhem, N.v.,
and Vos, R. (2022). Aerodynamic Model Identification
of the Flying V from Sub-Scale Flight Test Data. In
AIAA SCITECH 2022 Forum. San Diego, CA & Virtual.
URL https://arc.aiaa.org/doi/10.2514/6.2022-0713.

Saeed, A.S., Younes, A.B., Islam, S., Dias, J., Seneviratne,
L., and Cai, G. (2015). A review on the platform design,
dynamic modeling and control of hybrid UAVs. In
2015 International Conference on Unmanned Aircraft
Systems (ICUAS), 806–815. IEEE, Denver, CO, USA.
URL http://ieeexplore.ieee.org/document/7152365/.

Schulman, J., Levine, S., Moritz, P., Jordan, M.I., and
Abbeel, P. (2015). Trust Region Policy Optimiza-
tion. URL http://arxiv.org/abs/1502.05477. ArXiv:
1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2016). Proximal Policy Optimization
Algorithms. URL http://arxiv.org/abs/1707.06347.

Sieberling, S., Chu, Q.P., and Mulder, J.A. (2010). Robust
Flight Control Using Incremental Nonlinear Dynamic
Inversion and Angular Acceleration Prediction. Journal
of Guidance, Control, and Dynamics, 33(6), 1732–1742.
URL https://arc.aiaa.org/doi/10.2514/1.49978.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. (2014). Deterministic policy gradient
algorithms. In International conference on machine
learning, 387–395. PMLR. URL http://proceedings.
mlr.press/v32/silver14.html.

Stevens, B.L., Lewis, F.L., and Johnson, E.N. (2015).
Aircraft control and simulation: dynamics, controls
design, and autonomous systems. John Wiley & Sons.

Sun, S., Wang, X., Chu, Q., and Visser, C.d. (2021). Incre-
mental Nonlinear Fault-Tolerant Control of a Quadrotor
With Complete Loss of Two Opposing Rotors. IEEE
Transactions on Robotics, 37(1), 116–130. URL https://
ieeexplore.ieee.org/document/9160894/.

Teirlinck, C. and Van Kampen, E.J. (2022). Reinforce-
ment Learning for Flight Control: Hybrid Offline-Online
Learning for Robust and Adaptive Fault-Tolerance.
Master Thesis, Technical University of Delft. URL
http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-
a49f-41c25bea8a85.

Théate, T., Wehenkel, A., Bolland, A., Louppe, G., and
Ernst, D. (2021). Distributional Reinforcement Learning
with Unconstrained Monotonic Neural Networks. URL
http://arxiv.org/abs/2106.03228.

Van den Hoek, M., de Visser, C., and Pool, D. (2018).
Identification of a cessna citation ii model based on
flight test data. In Advances in Aerospace Guidance,
Navigation and Control, 259–277. Springer. URL https://
doi.org/10.1007/978-3-319-65283-2 14.

14

van Gils, P., Van Kampen, E.J., de Visser, C.C., and Chu,
Q.P. (2016). Adaptive incremental backstepping flight
control for a high-performance aircraft with uncertainties.
In AIAA Guidance, Navigation, and Control Conference,
1380. URL https://arc.aiaa.org/doi/10.2514/6.2016-
1380.

Wang, S.S. (2000). A class of distortion operators for
pricing financial and insurance risks. Journal of risk and
insurance, 15–36.

Wang, X. and Sun, S. (2021). Incremental fault-tolerant
control for a hybrid quad-plane UAV subjected to a
complete rotor loss. Aerospace Science and Technology,
107105. URL https://linkinghub.elsevier.com/retrieve/
pii/S1270963821006155.

Weisshaar, T.A. (2013). Morphing Aircraft Systems:
Historical Perspectives and Future Challenges. Journal
of Aircraft, 50(2), 337–353. URL https://arc.aiaa.org/
doi/10.2514/1.C031456.

Zhou, Y., van Kampen, E.J., and Chu, Q.P. (2018). Incre-
mental model based online dual heuristic programming
for nonlinear adaptive control. Control Engineering
Practice, 73, 13–25. URL https://linkinghub.elsevier.
com/retrieve/pii/S096706611730285X.

Ziebart, B.D. (2010). Modeling purposeful adaptive
behavior with the principle of maximum causal entropy.
Carnegie Mellon University.

Appendix A. DSAC ALGORITHM

Algorithm 1: Distributional soft actor-critic with
policy regularization

Data:M = ⟨S,A,P, R, γ⟩ , Nep

Result: πw(s), Zk(s, a)
Hyperparameter: |B|, N, κ, T, ζ, σ, λS , λT , H̄

Init: memory D ← {}
Init: critics Zk1,2 , Zk̄1,2

and policy πw
Init: temperature η ← 1

for episode n← 1 to Nep do
Initialize s
while s not terminal do

sample action a ∼ πw(·|s)
observe transition r ← R(s, a), s′ ∼ P(s′|s, a)
store transition D ← D ∪ ⟨s, a, r, s′⟩

Update networks

sample mini-batch B i.i.d∼ D
⟨s, a, r, s′⟩ ∼ B
sample next action a′ ∼ πw(·|s)
sample quantile fractions τi, τj

N∼ U([0, 1])
for l← 1 to 2 (each critic) do

for i← 1 to N do
for j ← 1 to N do

Z← min
l=1,2

Zτi(s
′, a′; k̄l)

Hπ ← −log πw(a′|s′)
δlij = r + γ (Z+ ηHπ)− Zτj (s, a; kl)

end
end
quantile huber loss

LZ(k)← 1
N2

∑N
i=1

∑N
j=1 ρ

κ
τj (δ

l
ij)

update critic weights
kl ← Adam (∇kLZ)

k̄l ← ζk̄l + (1− ζ)kl
end
sample new action ā ∼ π(·|s)
risk-distorted soft action-value

τΨi ← Ψ(τ), with τi
T∼ U([0, 1])

QΨ
k ← min

l=1,2

[
1
T

∑T
i=1 ZτΨ

i
(s, ā; kl)

]
smoothness loss terms
LS ← ∥π(s)− πw(s̃)∥2 ,with s̃ ∼ N (s, σ)
LT ← ∥π(s)− πw(s′)∥2
update policy

Lπ(w)← η log πw(ā|s)−QΨ
k + λSLS + λTLT

w ← Adam (∇wLπ(w))

update temperature

L(η)← ηH̄ − ηlog πw(ā|s)
η ← Adam (∇ηL(η))

end
end

15

*This part has been assessed for the course AE4020 Literature Study.

Part II
Preliminary Analysis

21

3
Literature Review

3.1 Fundamentals of Reinforcement Learning
Reinforcement learning is a bio-inspired algorithm that facilitates learning by interaction. An agent must
discover the best action to take by interacting with the environment in order to reach a certain goal, i.e. to
maximize the reward it gets from the environment. Reinforcement learning as a concept is quite mature,
as even Alan Turing theorized a bio-inspired ”pleasure-pain system” [36, 21], however recent advance-
ments in machine learning methods have laid the foundation for a vast field of modern techniques and
approaches to RL.

Reinforcement learning deals with finding a solution to a sequential decision making process. As op-
posed to other machine learning techniques, RL has no supervisor, as the agent learns from the samples it
collects via direct interaction with the environment. In a sequential decision making process, the gathered
data sequences are not independent and identically distributed (IID), which means that the state, action
and reward signals the RL agent learns from are highly correlated. One of the major attractive properties
of RL algorithms is that no priori knowledge is required about the environment or the underlying process.
Additionally, the learning is goal-oriented and the optimal strategies can be found by the agent without
ever having been given hints about a solution.

The purpose of this chapter is to establish a foundation of RL methods and to provide an overview
of existing approaches. Firstly, Subsection 3.1.1 presents the core elements of reinforcement learning
and provides a formal framework to define the RL problem. Secondly, dynamic programming (DP) is
introduced in Subsection 3.1.2 followed by a discussion of model-free prediction methods like Monte-Carlo
(MC) and Temporal-difference (TD) in Subsection 3.1.3. Then, Subsection 3.1.4 presents model-free
tabular methods that find near-optimal policies. Moreover, Subsection 3.1.5 discusses ways to categorize
RL methods, in order to provide a better overview of the variety of approaches. Lastly, Subsection 3.1.6
provides a brief overview and synthesis of the chapter.

3.1.1 Formulation of the RL Problem
Reinforcement learning methods aim to solve sequential decision tasks on a set of problems. This sec-
tion presents the framework for defining RL tasks using Markov Decision Processes (MDPs). This chapter
assumes that the state and action spaces of the RL problems are finite and countable for simpler formu-
lations and to allow the use of tabular methods. Section 3.2 then extends these concepts to real-world
scalable scenarios. Most of the fundamental concepts of this chapter are adapted from [21] and [37].

Elements of Reinforcement Learning

The main concept that separates reinforcement learning from other types of machine learning, namely
supervised and unsupervised learning is direct interaction. Reinforcement learning is formulated as a se-
quential decision making problem, where the agent is the decision making entity that repeatedly interacts
with a process, the environment, and subsequently receives a certain numeric reward. Additionally, the
actions chosen by the agent influence the state of the environment, which provides measurements, i.e.

22

3.1. Fundamentals of Reinforcement Learning 23

observations of its state. The goal of this sequential decision making process is for the agent to maximize
the expected cumulative reward received from the environment.

This interaction between agent and environment is shown in Fig. 3.1, where an action at discrete time-
step t: At is chosen by the agent, which determines the next state St+1 and reward in the sequence
Rt+1.

Agent Environment
at ∈ A

st+1 ∈ S

rt+1 ∈ R

Figure 3.1: Adapted from [21]; Agent-environment interaction in a reinforcement learning task.

Often, the realizations of the random variables S, A and R at time-step t are denoted by: s, a and r
respectively. Another common short-hand notation is the next-state St+1 being represented by s′. With
this notation, the one-step transition of the process depicted in Fig. 3.1 is Tt = ⟨s, a, r, s′⟩.

Reinforcement learning defines the boundary between agent and environment somewhat differently
with respect to control theory, where a controller determines the inputs in order to stabilize or control a
certain process. In RL, the environment contains not only the plant dynamics, but also all of the sen-
sors, actuators, disturbances and even the reward signal. Therefore, the environment often describes a
stochastic, nonlinear process with time-varying elements and possible delayed rewards.

An agent may be composed of several elements, namely a policy which can be a deterministic a = π(s),
or a stochastic mapping a ∼ π(a|s) from state to action, a value function v(s)which describes the expected
total reward for being in certain states and lastly an agent may contain a model representation of the
environment.

A crucial and unique element of reinforcement learning is the constant trade-off between exploration
and exploitation. When the agent has a limited knowledge of the effect of certain actions and states,
a greedy choice of exploiting immediate rewards can have negative effects, when a better option exists
outside of the knowledge of the agent. Thismeans that in the early stages of learning, choosing exploration
at the cost of immediate reward can increase the total future reward received by the agent.

There is an important distinction between two types of problems in sequential decision making: plan-
ning and reinforcement learning. In a planning problem, the agent has access to a model of the environ-
ment and can improve its policy using calculations with the model without any external interaction with
the environment. On the other hand, in a reinforcement learning problem the environment is initially un-
known and the agent improves its policy by interaction. There are certain model-based RL methods that
successfully combine interaction with an intermediate planning step [38].

An additional remark on the definition of RL concepts is the distinction between prediction and control.
In the context of reinforcement learning, prediction refers to an evaluation problem, i.e. determining how
successful a certain policy is. RL control1 on the other hand is an optimization problem, where the best
policy is to be found to reach a certain goal. Most often RL control methods are recursive iterative two-step
algorithms: first an evaluation step is made, followed by a policy improvement step.

Markov Decision Process

In order to formulate a framework for the sequential decision making problem, Markov Decision Processes
(MDPs) can be defined. A Markov process is a memory-less process where the current state is a sufficient
statistic of the future. Almost all RL problems can be formulated as aMarkov Decision Process, or in case
of partially observability, as a Partially Observable MDP.

1Control in RL refers to finding the optimal policy, whereas control theory and control system design refer to designing algorithms
that can determine the actions to take to regulate dynamic systems.

3.1. Fundamentals of Reinforcement Learning 24

A Markov process is described by two attributes: the set of possible states S ⊂ Rn and the stochastic
transition dynamics of the environment P. The state of the environment is the random variable Se

t ∈ S,
with realization s at discrete time step t, and the state transition is described by the distribution function P.

For the process to have the Markov property, the state signal must contain enough information such
that the state of the system at time step t+ 1 only depends on state St, as opposed to depending on the
entire history of states. Therefore, the state St is Markov if and only if:

P [St+1 | St] = P [St+1 | S1, ..., St] (3.1)

The Markov process can be defined as the tuple ⟨S,P⟩, where P is the state transition probability
distribution function described by:

Ps,s′ = P [St+1 = s′ | St = s] (3.2)

Where s′ is used to denote a realization of the next state at time t+ 1.

In order to describe the full MDP, the formulation is extended with the set of rewards R with reward
function R and with the actions made by the agent At ∈ A, where A is the set of all actions. The reward
function can be defined as:

Ra
s = E [Rt+1 | St = s,At = a] (3.3)

With actions introduced, the state distribution function depends on the actions made by the agent,
therefore the transition dynamics can be written as:

Pa
s,s′ = P [St+1 = s′ | St = s,At = a] (3.4)

The signal Rt is an immediate reward. In order for an agent to be able to maximize not only the reward
at the next time step, the discounted return Gt at time-step t is defined as the following:

Gt = Rt+1 + γ ·Rt+1 + γ2 ·Rt+1 + ... =

T−t−1∑
k=0

γk ·Rt+k+1 (3.5)

Where γ ∈ [0, 1] is the discount rate. This formulation is generalized for both episodic tasks with terminal
states and continuing tasks. With each component defined, the full MDP can written as the structured set
M = ⟨S,A,P,R, γ⟩.

The agent operating in the MDP uses policy π to make decisions. The policy can be deterministic
a = π(s) or more often a stochastic mapping:

π(a | s) = P [At = a | St = s] (3.6)

Since the next state s′ fully characterizes future rewards due to the Markov property, policy π does not
depend on the history of states and actions.

With the MDP fully defined, as well as the policy that chooses the action, the sequential decision
making process can be depicted in Fig. 3.2, where state sn is either terminal or the process is continuing,
i.e. n→∞.

Bellman Equations

Since the goal of the agent is to maximize the total cumulative rewards, the formulation of the MDP
M = ⟨S,A,P,R, γ⟩ makes it possible to define the value of a certain state: Vπ(s), which represents the
total expected discounted return when following policy π from state s thereafter:

3.1. Fundamentals of Reinforcement Learning 25

s0

π

P

a0

s1

πR

P

a1r1

sn−1

πR

P

an−1rn−1

sn

Figure 3.2: Depiction of the MDP following policy π(a | s), with Markov Process ⟨P, R⟩.

Vπ(s) = Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
(3.7)

Similarly, the action-value function can be defined as the total expected return of state s, choosing
actions a and following policy π thereafter:

Qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(3.8)

Noticing the recursive nature of this sequential process, the Bellman expectation equation defines the
value function2 as the expected sum of the next immediate reward and the discounted value of the next
state, while following policy π [23]:

Vπ(s) = Eπ [Rt+1 + γ Vπ(St+1) | St = s] (3.9)
Qπ(s, a) = Eπ [Rt+1 + γ Qπ(St+1, At+1) | St = s,At = a] (3.10)

The maximum value function over all policies is the optimal value function V∗(s) = max
π

Vπ(s) and
corresponds to the best possible performance in the MDP and therefore the MDP is considered solved
when V∗(s) is known. Similarly, the optimal action-value function is Q∗(s, a). Given that there exists an
optimal policy π∗ that achieves the optimal value function V∗(s), this policy can be found by maximizing
over Q∗(s, a) which can be written in the deterministic form:

π∗(s) = argmax
a∈A

Q∗(s, a) (3.11)

Similar to the Bellman expectation equations, this relationship between optimal value functions follows
a recursive pattern. The Bellman optimality equations for V∗(s) and Q∗(s, a) can be written as:

V∗(s) = max
a

(
Ra

s + γ
∑
s′∈S

Pa
s,s′V∗(s

′)

)
(3.12)

Q∗(s, a) = Ra
s + γ

∑
s′∈S

Pa
s,s′ max

a′
Q∗(s

′, a′) (3.13)

Due to the non-linearity of the optimality equations no closed form solutions exist, but several iterative
approaches can be taken which are discussed in subsequent sections.

2Value function often refers to both the value function V (s) and action-value function Q(s, a).

3.1. Fundamentals of Reinforcement Learning 26

3.1.2 Dynamic Programming
Dynamic Programming (DP) is a general solution method of solving complex problems which have two
properties: optimal substructures that can be solved in an optimal way and overlapping substructures that
recur multiple times. The reason dynamic programming is prevalent in RL methods is because MDPs
possess both of these properties. The Bellman equations provide a recursive decomposition of the MDP
and the value function stores and reuses previous solutions. Dynamic Programming in RL solves the
planning problem, i.e. performing calculations with a given model of the MDPM = ⟨S,A,P,R, γ⟩ to either
evaluate a policy (prediction) or to find an optimal policy (control). Since the Bellman equations pose a
nonlinear optimization problem, most often an iterative approach is constructed as a closed-form solution
does not exist. In generalized terms, Dynamic Programming creates full-width backups of the decision tree
using all states and actions and utilizes value iteration (VI) or policy iteration (PI) to propagate information
of the rewards through the states. The two approaches mentioned, i.e. value iteration and policy iteration
are discussed in Subsection 3.1.2 and Subsection 3.1.2.

Value Iteration

Value iteration estimates the optimal value function V∗(s) by iteratively applying the Bellman optimality
equations defined in Eq. (3.12):

Vk+1(s) = max
a∈A

(
Ra

s + γ
∑
s′∈S

Pa
s,s′Vk(s

′)

)
(3.14)

Note that value iteration can also use the action-value function instead. Since the value iteration
operates purely in value space, there is no explicit definition of policy in this process, however at any time-
step a policy can be defined implicitly by choosing the action with the highest value, i.e. acting greedily
against the value function estimate.

Policy Iteration

Policy iteration is a two-step iterative approach, in which first a policy evaluation step is done to evaluate
the value-function Vπ(s), followed by a policy improvement step. This comes at additional computation
cost as several non-optimal intermediate policies have to be evaluated. In order to evaluate the policy,
the value of each state Vk(s) is updated after k iterations using the value of the corresponding successor
state, utilizing the Bellman expectation equation defined in Eq. (3.9):

Vk+1(s) =
∑
a∈A

π(a | s)

(
Ra

s + γ
∑
s′∈S

Pa
ss′Vk(s

′)

)
(3.15)

Then, a new policy π′ can be obtained by acting greedily with respect to Vπ(s), which ensures that the
optimal policy is found with sufficient iterations as k → ∞. This iterative process is depicted in Fig. 3.3
and defines Generalized Policy Iteration (GPI), which is a core concept within reinforcement learning.

π v

Evaluation

v → vπ

Improvement

π → greedy(v)

Figure 3.3: Adapted from [37]; Generalized Policy Iteration (GPI) iterates through an evaluation step
followed by a policy improvement step.

3.1. Fundamentals of Reinforcement Learning 27

Remarks on Dynamic Programming

Asmentioned, Dynamic programming does full-width backups, considering all states and all actions, which
results in a computational complexity of O

(
mn2

)
for n states andm actions. When action-value functions

are used (Qπ(s, a) orQ∗(s, a)) instead of value functions (Vπ(s) or V∗(s)) the complexity grows to O
(
m2n2

)
.

This causes DP to suffer from the curse of dimensionality for large problems.

Some approaches use a function approximator V (s; θ) to estimate the value function in order to gen-
eralize and scale the method, whereas other algorithms use samples from the environment to reduce the
computational complexity of the backups.

3.1.3 Model-Free Prediction
Whereas dynamic programming solves a known MDP, model-free approaches require the agent to learn
from samples taken from interacting with the environment. This section describes two commonly used
approaches, namely Monte-Carlo (MC) and Temporal-Difference (TD) methods to solve the prediction
problem, i.e. to estimate the value function of interacting with an unknown MDP under policy π.

Monte-Carlo Methods

In Monte-Carlo approaches, the agent collects the end-of-episode returns to estimate the value function
from its experience and interactions with the environment. The returns are collected at the end of the
episodes and therefore provide an unbiased sample of the true return. One of the downsides of MC is
that the end of the episode must be reached before an update step can occur, which also means that it
can only be applied to episodic environments.

In essence, Monte-Carlo methods use an empirical mean to estimate the expected return. This empir-
ical mean can be calculated using the update rule given by:

V̂π(s) =
1

N

N∑
n=0

G(s) (3.16)

Where state s has been encountered N times during the episode and G(s) represents the end of episode
return observed after encountering state s. With N → ∞, this simple update rule is guaranteed to con-
verge to the true value function Vπ(s). The incremental form of the Monte-Carlo update is also useful as
it is able to learn non-stationary problems:

V (s)← V (s) + α (Gt − V (s)) (3.17)

Where α is the step-size towards the actual return Gt.

MC methods provide an unbiased estimate of the value function as the true return is used at the end
of each episode, however they often encounter higher variance during learning which is associated with
the high variance of the return.

Temporal-Difference Methods

Temporal-difference methods update the value function instantly after each step by taking the next step’s
expected return as a target. This process of updating a guess towards another guess is called bootstrap-
ping and introduces bias into the learning process, however TD-methods can be applied to continuing
environments that have no terminal states. Furthermore, updating the value function every step lowers
the variance and stabilizes the learning process.

The estimated return of the next step is given as the sum of the next immediate reward and discounted
expected return of the next state: r + γV (s′), which is the so-called TD-target. TD-methods update the
value function towards this next step estimate by the update rule:

3.1. Fundamentals of Reinforcement Learning 28

V (s)← V (s) + α (r + γV (s′)− V (s)) (3.18)

Where the term r + γV (s′)− V (s) is often denoted using δ, called the TD-error.

As mentioned, this update rule can be used on continuing episodes, as the final outcome is not re-
quired to complete the backup. TD-methods exploit the Markov property and are therefore generally
more efficient in Markov environments.

Eligibility Traces

In most cases it is desirable to be able to tune the amount of bootstrapping the method uses and hence
set the method to use the reward frommultiple steps taken in the environment. For this, n-step predictions
can be used to as a TD-target and a tunable decay parameter λ ∈ [0, 1] is defined to average over each
consecutive n-step return. The multi-step λ-return is then:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt;n (3.19)

Where Gt;n is the n-step return and is calculated by considering each consecutive expected return:

Gt;n = r + γRt+2 + · · ·+ γn−1Rt+n + γnv(St+n) (3.20)

With Gλ
t as the n-step TD-target, the update step for forward-view TD(λ) can be defined:

V (s)← V (s) + α
(
Gλ

t − V (s)
)

(3.21)

In practice, it is often more practical to use a backward-view of the equivalent update rule using the
eligibility trace signal E(s). The eligibility trace keeps track of two heuristics: the frequency and recency,
by keeping track of the state-visitation count and decaying the signal with each time step:

Et(s) = γλEt−1(s) + 1(St = s) (3.22)

Where λ ∈ [0, 1] is the aforementioned decay-rate, the eligibility trace is initialized with E0(s) = 0 and E(s)
is updated for all states for each time-step t. This update rule produces the equivalent backward-view of
the TD(λ) method. At the two extremes TD(0) is equivalent to the previously defined TD-method, whereas
TD(1) approaches the every-visit Monte-Carlo method.

3.1.4 Model-free Control
Previous sections have considered either planning tasks where the MDP is known, or prediction ap-
proaches where the objective is to determine the value function under a given policy π. Model-free RL
control deals with finding the optimal policy for an unknown MDP.

RL algorithms utilize the GPI paradigm from dynamic programming, where an evaluation step is fol-
lowed by a policy improvement step as shown in Fig. 3.3. The evaluation step can be adapted from the
model-free prediction methods discussed in Subsection 3.1.3, whereas the policy improvement can sim-
ilarly be a greedy-action selection w.r.t the updated value-function. The modification that is required for
the model-free control task is to use the action-value function Q(s, a) instead of the value function V (s),
in order to be able to define the greedy policy improvement:

π′(s) = argmax
a∈A

Q(s, a) (3.23)

3.1. Fundamentals of Reinforcement Learning 29

In order to ensure correct exploration of certain state-action pairs the ϵ-greedy policy can be defined
to choose a random3 action with probability ϵ ∈ [0, 1]. Often, ϵ is initialized at a high value to ensure early
exploration and decayed to allow the RL algorithm to converge to a near-optimal policy. The subsequent
subsections discuss the application of previously mentioned approaches to a model-free control problem.

Monte-Carlo Control

A natural way to define an algorithm for control is to collect end of episode returns and update the action-
value function based on the visited state-action pairs during the episode. Similarly to the method in Sub-
section 3.1.3, Monte-Carlo control waits until the terminal state to update the value function at each visited
state-action pair and then does a policy improvement step by acting greedily towards the updated action-
value function.

SARSA

Another way to find the optimal policy is to use bootstrapping as defined in Subsection 3.1.3. Just like in
the prediction case, this approach is able to learn online using the one-step or multi-step backups. Taking
the TD-target to be the next-step predicted action-value, results in the following update rule [21]:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (3.24)

Where a′ is the action chosen in the next state s′ using the ϵ-greedy policy implicitly derived from Q.

Q-Learning

Whereas SARSA uses the current policy to make the next step prediction, Q-learning [22] follows an off-
policy architecture: the agent uses a behavioural policy µ(a | s) to make decisions but uses target policy
π(a | s) to evaluate the action-value function.

In this architecture, the update target uses the alternate action a′ taken by the greedy target policy
π(s) = argmax

a′
Q(s′, a′) instead of the behavioural policy µ(s) which chooses the exploratory actions to

interact with the environment. The update rule defined in Eq. (3.24) then becomes the off-policy update
given by Eq. (3.25):

Q(s, a)← Q(s, a) + α(r + γQ(s′, argmax
a′

Q(s′, a′))−Q(s, a)) (3.25)

Where action a is chosen using µ(s) = ϵ-greedy (Q(s, a)).

Q(λ)-Learning

Similarly to Subsection 3.1.3, the amount of bootstrapping can be controlled by considering multi-step
updates and using the decay-rate parameter λ to control the amount of effect consecutive past states
have on the received reward. For this method definition, only the backward view is considered which uses
the concept of eligibility traces defined in Subsection 3.1.3 as a way to achieve the multi-step updates.

For each one-step transition in the episode, the eligibility trace of the visited state-action pair is incre-
mented E(s, a) ← E(s, a) + 1 and the trace is decayed for all state-action pairs by the discount factor
and the decay rate: E(s, a) ← γλE(s, a) with γ ∈ [0, 1] and λ ∈ [0, 1]. After observing the transition, the
TD-error is the same as with Q-learning:

δ = r + γQ(s′, argmax
a′

Q(s′, a′))−Q(s, a) (3.26)

3Most commonly sampled uniformly.

3.1. Fundamentals of Reinforcement Learning 30

However, the action-value function update step now depends on the eligibility trace and is done for all
state-action pairs:

Q(s, a)← Q(s, a) + αδE(s), ∀ ⟨s, a⟩ ∈ ⟨S,A⟩
E(s, a)← γλE(s, a), ∀ ⟨s, a⟩ ∈ ⟨S,A⟩ (3.27)

3.1.5 Categorization of RL Methods
The approaches mentioned so far discussed several ways to design algorithms: whether on-policy or off-
policy updates are used, whether an approach is model-free or model-based or whether end-of-episode
rewards should be used as opposed to bootstrapping. This section discusses these aspects as a way to
categorize RL methods and to provide a better overview of the variety of RL approaches.

Backup depth and width

The approaches listed above, namely Dynamic Programming, Monte Carlo and Temporal Difference ap-
proaches are all extreme variations of two parameters: the depth and the width of each update step. In
the fourth corner of the extremes is Exhaustive Tree Search (ETS), which entails a brute-force search
through the decision tree. This distinction between the four extremes is visualized in Fig. 3.4.

λshallow
backups

deep
backups

sample
backups

full width
backups

Temporal-
difference Monte-Carlo

Dynamic
Programming

Exhaustive
Tree Search

...

Figure 3.4: Adapted from [37]; overview of common approaches in terms backup depth and width.

The backup depth is tuned with the decay rate λ, as presented in Subsection 3.1.3, and is a measure
of how many steps the agent takes before updating the value function of the visited states. On one end
of the extreme is TD and DP, where an update of the current state is done after a single step; on the other
end of the spectrum is MC and ETS where the agent must run through the entire episode to collect the
unbiased return and complete the backup. In order to achieve the best sample efficiency, the decay rate
hyperparameter often lies somewhere between the two extremes: λ ∈]0, 1[[37].

The other parameter is the backup width and deals with the number of state-action choices to update
in a single step across the breadth of the state-action tree. On one end of the extreme are the sample-
based backups TD and MC, where only a single trajectory is taken into account; on the other end of the
spectrum is DP and ETS, where all states and actions are backed up during a single step. Most often the
MDP is given for the planning problem solved by DP and ETS, however due to computational complexity,
sample based methods tend to be more applicable in practice.

3.1. Fundamentals of Reinforcement Learning 31

Value-based and Policy-based methods

Previous sections have so far discussed value-based methods, where the policy of the agent is defined
implicitly using an estimate of the value function V (s) or action-value function Q(s, a). As opposed to
value-based methods, the class of policy-based methods use an explicit definition of the policy using a
parametric function approximation and use iterative approaches like gradient descent to find the optimal
policy directly.

Policy-gradient methods have better convergence properties, i.e. stable learning, and are effective for
high-dimensional and continuous action space, however they often suffer from low sample efficiency, high
variance and tend to converge to local optima. An additional option they offer is the ability to define both
deterministic and stochastic policies. Policy-based methods are discussed in Subsection 3.2.3 in more
detail.

To combine the benefits of both approaches, a third category can be constructed: the class of actor-
critic methods, which try to find both an estimate of the value function (critic) and an estimate of the optimal
policy (actor). Actor-critic methods are discussed in more detail in Subsection 3.2.4. This categorization
approach is depicted in Fig. 3.5.

Value-based Policy-basedActor-Critic

Figure 3.5: Adapted from [21]; classes of RL approaches based on agent type.

Model-free vs Model-based

Model-free RL methods learn the value function and/or the policy directly from gathered experience.
Model-based methods learn a model approximation of the underlying MDP M = ⟨S,A,P,R⟩ and use
planning methods to construct a value function and policy. This integrates learning and planning into
a single architecture. The primary advantage of this approach is that it efficiently learns a model by
supervised learning methods and that it can utilize model uncertainty to define complex policies. The
disadvantage of model-based methods is the added complexity and that another source of approximation
error is introduced to the learning process.

When discussing model-free and model-based methods in the context of flight control, a distinction has
to be made between the methodology of controller design and the model-usage of the RL method. Model-
free controller design can be defined such that no system identification work is required beforehand; no
a-priori model is provided for the RL learning process. On the other hand, Model-based RL methods use
an internal representation of the MDP built from the agent’s own experience and therefore fall within this
definition of model-free controller synthesis.

As mentioned model-based RL methods add another layer of complexity to the RL architecture, how-
ever they allow the use Dynamic Programming as a planning step that uses the approximate MDP M̂η =
⟨S,A,Pη,Rη⟩, where η are the model parameters. Using sample-based forward-search algorithms pro-
vides increased sample efficiency by using imagined samples generating using the approximate internal
model. Furthermore, a combination of both imagined and real-world samples can be used in architectures
like Dyna-2 [38], which utilizes a long-term memory sampled from real-world experiences to estimate gen-
eral domain knowledge and a short-term memory sampled from the model to estimate specific knowledge
about the current situation.

On-policy vs Off-policy

Another aspect of RL categorization is the concept of on-policy vs off-policy learning, which has been
briefly mentioned in Subsection 3.1.4 when discussing the off-policy Q-Learning method. Off-policy meth-
ods allow the agent to learn from transition samples generated by other agents or policies which enables

3.1. Fundamentals of Reinforcement Learning 32

the re-use of gathered experience. This is essential in stabilizing Deep Reinforcement Learning (DRL)
approaches as the non-IID transition samples made by the active behavioural policy must be decorrelated
for the stochastic gradient descent optimization step. Furthermore, the replay and re-use of experience
is beneficial to increase the sample efficiency of the algorithm via the re-use of samples.

3.1.6 Synthesis
This chapter presents the fundamental elements of RL and provides a framework to define an RL task,
within aMarkov Decision Process. SinceMDPs have a recursive nature, concepts fromDynamic Program-
ming can be adopted to amodel-free setting to find optimal policies using Generalized Policy Iteration. The
tabular methods presented are capable of solving relatively small-scale RL problems with countable finite
state and action spaces. A brief categorization of these approaches was also presented which classi-
fies agents based on how the transition samples are used, whether the agent estimates the action-value
function or the policy directly or whether the agent uses an internal representation of the MDP.

The most important take-away for subsequent chapters is how temporal-difference errors can be used
to learn from samples taken by the agent exploring the environment. Most real-world problems often have
high-dimensional state and action spaces and RL methods must be generalized in order to scale these
approaches to larger, more complex tasks. While the core concepts of using GPI and using bootstrapping
remain widespread in many RL methods, state of the art algorithms solve this generalization by using
deep learning concepts. Therefore, the following chapters elaborate on Deep Reinforcement Learning
algorithms, in order identify methods that can overcome the challenge of solving the high-dimensional
flight control task.

3.2. Deep Reinforcement Learning 33

3.2 Deep Reinforcement Learning
The RL methods discussed can be applied to relatively small problems with discrete action and state
spaces. However, in real-world applications the tabular approaches do not scale in neither their memory
and computational complexity, nor their ability to generalize their solution across high-dimensional state
and action spaces.

In order to scale the approaches mentioned in Section 3.1, several relatively recent advancements in
adjacent machine learning techniques can be used to extend RL algorithms, such as the use of deep neu-
ral networks (DNNs) as universal function approximators and stochastic gradient descent (SGD) methods.
The use of deep learning methods in combination with RL is commonly referred to as the field of deep
reinforcement learning (DRL) and refers to a wide array of RL approaches.

As opposed to supervised learning, RL agents do not have access to true labels, therefore the expe-
rience gathered from interacting with the environment is used to gradually learn either the value function,
the policy or both. When the action-value function is approximated it is often referred to as the critic of the
RL architecture; when the policy is approximated directly, it is generally referred to as the actor. A combi-
nation of value-based and policy-based methods yields the actor-critic architecture that aims to utilize the
advantages of both approaches.

The goal of this chapter is to present the variety of methods used in state of the art DRL research that
aim at tackling large-scale real-world problems and to survey methods suitable for flight control tasks as
posed by RQ 1. Firstly, function approximation approaches are introduced in Subsection 3.2.1 along with
a brief summary of deep learning concepts. Secondly, value-based deep RL methods are discussed in
Subsection 3.2.2 which presents recent advances in applying deep learning to RL methods along with
improvements that increase the sample efficiency and performance of DRL agents. Then, the family of
policy-based methods is presented in Subsection 3.2.3 where instead of estimating a value-function, the
agent optimizes the policy directly. Lastly, the class of actor-critic methods is discussed in Subsection 3.2.4
followed by an overview of the chapter in Subsection 3.2.5.

3.2.1 Function Approximation and Optimization
As mentioned above, in order to apply RL to real-world scenarios, generalization is required due to the
size of the state and action spaces and due to the complexity of real-world MDPs. Learning the value of
each state-action pair individually is too inefficient in terms of both time and memory, therefore function
approximation is needed to generalize either the value function or the policy directly.4

The true value function while following policy π is Vπ(s), while the value function approximate is de-
noted: V (s; θ), where θ is the parameter vector of the approximation. Similarly, the action-value function
approximate can be written as: Q(s, a; θ) ≈ Q(s, a).

There are numerous choices for function approximators, such as linear combinations of features or the
use of artificial neural networks (ANNs) as universal black-box methods. It is preferable to use function
approximators that are differentiable with respect to the parameter vector θ, so that gradient descent
methods can be used to estimate the parameters.

Subsection 3.2.1 discusses widely used gradient descent methods, then the use of ANNs as function
approximators are briefly presented in Subsection 3.2.1.

Gradient Descent

There are several approaches to estimate the parameters of function approximators. Incremental methods
are popular among ML algorithms, such as gradient descent which iteratively reduce the error by updating
the parameters in the direction that incrementally lowers a given loss function. For any differentiable
objective function J(θ), the gradient can be defined using the notation:

4This section often discusses function approximation in the context of estimating the action-value function (critic) however the
same concepts apply to policy-based and actor-critic methods.

3.2. Deep Reinforcement Learning 34

∇θJ(θ) =

[
∂J(θ)

∂θ1
, ...,

∂J(θ)

∂θn

]T
(3.28)

Often the objective is formulated in terms of loss L, and therefore the goal of gradient descent is to find
a local minimum of the loss function L(θ). The loss function L(θ) measures how well the model predicts
the true values the function estimate must adhere to. A simple gradient descent step can be written as
shown in Eq. (3.29), where the parameter vector θ is incrementally moved following the gradient using
step-size α for each time-step t:

θt+1 = θt + α∇θJ(θt) (3.29)

Where the step-size hyperparameter α is also referred to as the learning rate and is often set to follow
schedule, for instance a linear decay to ensure better convergence properties.

As opposed to supervised learning, RL methods do not have access to true labels at the start and
therefore learn from labeled samples collected via interacting with the environment. The optimization of
the loss function J(θ) must be done on a finite available training set. For this reason deep RL method
commonly rely on stochastic gradient descent (SGD) methods which use finite samples of the gradient
∇θJ(θt). This approach is common for high-dimensional problems, as it reduces the computational com-
plexity of a single iteration at the cost of slower convergence.

Modern sophisticated optimizers like Adam [39] utilize stochastic gradient approaches with further op-
timizations added: namely root mean square propagation (RMSP) and gradient descent with momentum.
For practical implementation of RL methods, the requirement to use such automated SGDmethods is that
the model must be differentiable with respect to the parameter vector.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are bio-inspired universal function approximators that use several layers
of neuronswith a large number of weighted connections. These weighted connectionsmimic the biological
analog of neurons strengthening their connections and activation functions mimic the firing behaviour of
biological neurons. The latter allows the use nonlinear activation functions which provides ANNs great
nonlinear approximation power [40].

In general terms, ANNs are black-box models with a large number of parameters. Using multiple
hidden layers renders them Deep Neural Networks (DNNs). Most often, deep RL methods use deep
feed-forward networks that are referred to as Multi-layered Perceptrons (MLPs) [41, 42].

A single neuron unit of the network is shown in Fig. 3.6, where the trainable parameters of this particular
connection are the weights w ∈ Rm, where x ∈ Rm is the input vector of the layer. An additional bias
parameter b is used to be able to shift the neuron activation by a constant. Often hidden neurons of ANNs
are output-normalized in order to keep the values bounded against diverging values.

Activation
FunctionNormalization

∑
w2

w1

wm

x2

x1

xm

...
...

b

y

Figure 3.6: Adapted from [28]; Depiction of a single neuron unit, the weight and bias parameters and
the optional normalization and activation functions.

These units are organized into layers and multi-layered networks, like the MLPs mentioned above. A
two-layered feed-forward network is shown in Fig. 3.7, where all layers are fully connected.

3.2. Deep Reinforcement Learning 35

...
...

...
...

...

x1

xn

I1

Ih

H1
1

H1
2

H1
k−1

H1
k

H2
1

H2
2

H2
k−1

H2
k

O1

Om

Input

vector

Input

layer

Hidden

layer 1

Hidden

layer 2

Output

layer

Figure 3.7: Depiction of a multi-layered perceptron (MLP) with two hidden fully-connected layers.

Activation Functions As mentioned before, a bio-inspired feature of ANNs is the fact that each unit
neuron can be assigned certain activation functions which determine how and when certain neuron can
’fire’, similar to their biological analog. Certain activation functions serve specific purposes, but generally
they enable the nonlinear function approximation power of the ANNs.

One of the most common activation functions is a rectifier function, often called Rectified Linear Unit
(ReLU). The ReLU activation function passes the positive part of its argument, as is shown in Eq. (3.30):

ReLU(xi) = max(xi, 0);
∂ReLU(xi)

∂x
=

{
1 if xi > 0

0 otherwise
(3.30)

The widespread use of ReLU activation functions in deep learning is due to its computational efficiency,
scale-invariance and sparse activation. Some variations of ReLU either allow some parts of the negative
arguments to be activated (Leaky ReLU, PReLU) or create a smooth transition between negative and
positive arguments (Softplus).

The Sigmoid activation function is often used as a squashing function, to clip large values and to keep
the layer responses bounded, as given in Eq. (3.31).

Sig(xi) =
exi

exi + 1
(3.31)

Another noteworthy activation function is the Softmax function given by Eq. (3.32), which is commonly
used to normalize the output of a layer to denote a probability distribution over the possible outputs.

Softmax(xi) =
exi∑K
j=1 e

xj

, x ∈ RK (3.32)

Each component of the Softmax output vector are f(xi) ∈ [0, 1] and the sum of all components is 1,
and can therefore be interpreted as a vector of probabilities.

Layer Types In deep learning methods, there are numerous layer types with their specific purposes.
The choice of DNN layers is largely dependent on the types of input & output data that is available and
the desired behaviour of the network.

The most common type of layer is the dense, fully-connected linear layer, where the output is easily
differentiable w.r.t. both the input and the parameter vector as shown in Eq. (3.33). Linear layers are
widely used due their universal approximation power and computational simplicity and efficiency.

3.2. Deep Reinforcement Learning 36

fi(x) = Aix+ bi;
∂fi(x)

∂Ai
= x;

∂fi(x)

∂x
= Ai; (3.33)

Normalization layers [43] focus on fixing the mean and variance of each hidden unit and bounding the
input-output behaviour of the DNN, preventing too large or too small runaway values.

Convolutional layers are commonly used to process image data as their primary strength is detecting
features and sub-features of smaller sub-grids, i.e. kernels of the image. A convolutional layer is an
image convolution of the previous layer and the weights specify the behaviour of the resulting convolution
filter. The use of convolutional layers in DNNs defines the class of convolutional neural networks (CNNs)
that are most commonly used for image processing and computer vision. CNNs are often used in RL
applications when the state of the MDP can be represented by pixel-data.

Pooling layers are commonly used to sub-sample image data for convolutional networks, by combining
the sub-grid of data samples into a single value. Several methods of choosing that value exist, but a
commonly used layer is a so-called max-pooling layer, that takes the maximum value of the sub-grid.

Recurrent layers add temporal behaviour to the model by adding memory to the network. Recurrent
units may use variable lengths of stored state/memory and process signals dynamically which makes
recurrent neural networks (RNNs) especially useful in the fields of speech and handwriting recognition. In
the context of RL, the use of RNNs is limited due to the underlying Markov-process assumption, however
they have recently been shown to be powerful in RL applications that involve partially observable MDPs
[44, 45].

Synthesis For the scope of this research, fully-connected linear layers with non-linear activation func-
tions and layer normalization are themost applicable architecture. Such feed-forward networks have great
universal approximation power and are capable of estimating nonlinear action-value functions or policies.
Since the continuous control problem revolves around receiving a state vector x ∈ Rn and deciding on
the control input vector u ∈ Rm, there is rarely a need to introduce recurrent memory or to handle image
data.

Additionally, there are several common problems that deep learning approaches have to deal with
in practice. Firstly, gradient descent methods often encounter the so-called vanishing gradient problem,
when the local gradient becomes too small, preventing the network to further change its parameters.
Secondly, catastrophic forgetting occurs when SGD methods applied to neural networks ‘unlearn‘ data
previously encountered, often caused by receiving sets of highly correlated samples. Lastly, a general
problem of all function approximation methods is the occurrence of over-fitting, which occurs when the
input-output behaviour of the model is perfect on the provided learning data set, but its generalization
power is lost in-between samples.

3.2.2 Value-based Deep RL
This section discusses the class of deep RL methods that focus on estimating the action-value function,
i.e. the Q-function using deep learning. Deep Q-Networks are introduced in Subsection 3.2.2 followed by
a discussion of improvements in Subsection 3.2.2.

Deep Q-Networks (DQN)

In order to extend the off-policy Q-learning concepts discussed in Section 3.1 to DRL, so-called Deep
Q-Networks (DQN) [24] can be used. DQN methods had shown super-human capability in Atari gaming
environments [25], where the pixel-information of each frame was used to estimate the action-value func-
tion using a convolutional feed-forward network. The mentioned set of Atari games today serves as a
standardized benchmark for deep RL algorithms [46].

The DQN algorithm is off-policy, similar to its tabular Q-learning equivalent discussed previously in
Subsection 3.1.4. The action-value function is estimated by the parameterized approximator Q(s, a; k) ≈
Q(s, a), where the parameter vector is k. This report often simplifies the notation of the approximate
action-value function Q(s, a; k) to Qk(s, a).

3.2. Deep Reinforcement Learning 37

The TD-error for DQN is similar to the Q-learning TD-update, with the action-value replaced with the
parameterized Q-network estimates, shown in Eq. (3.34)

δ = r + γ max
a′

Qk̄(s
′, a′)−Qk(s, a) (3.34)

Where k is the parameter vector of behavioural Q-network and k̄ is the parameter vector of the target Q-
network and the action a is distributed according to a so-called behaviour distribution a′ ∼ µ(s, a), hence
the off-policy nature of the algorithm.

In practice, the behaviour distribution µ(s, a) is often an ϵ-greedy action selection w.r.t. the Q-function
estimate. The Q-value next-step prediction used in bootstrapping chooses the action greedily w.r.t. the
Q-function, therefore in Eq. (3.34) the next-action is a′ = argmax

a′
Qk̄(s

′, a′).

In order to estimate the parameter vector k of the Q-network, a mean-squared error (MSE) based
loss function L(k) can be defined that the SGD optimizer can use to train the network parameters and
approach the true action-value function.

L(k) = E

[(
r + γ max

a′
Qk̄(s

′, a′)−Qk(s, a)

)2
]

(3.35)

Where ⟨s, a, r, s′⟩ are samples from interacting with the environment, following behavioural policy a ∼
µ(s, a). In practice however, two additional improvements are required to stabilize the SGD optimization
process of the DNN approximator, namely the use of a fixed Q-target network and the use of experience
replay.

Environment
Q-function
Qk(s, a)

Target Q-function
Qk̄(s, a)

Memory Buffer

Loss-function LQ

s

a

k

r, s′
⟨s, a, r, s′⟩

Qk(s, a) ∇kLQ
max
a′

Qk̄(s
′, a′)

mini-batch B

r

Figure 3.8: Depiction of the DQN algorithm

Fixed Q-targets Due to the off-policy behaviour of the algorithm, it is possible to stabilize the learning
process by freezing the target Q-network parameters and only updating its parameters every N update-
step. There are two methods used to update the frozen network: a hard update that synchronizes the
parameters directly or a soft update which linearly interpolates the parameters of the target network to-
wards the local network. The latter approach is commonly known as Polyak-averaging [47] and is shown
in Eq. (3.36):

k̄i+1 = ζk̄i + (1− ζ)ki (3.36)

Where ζ ∈ [0, 1] is the Polyak step-size, k is the parameter vector of behavioural Q-network and k̄ is the
parameter vector of the target Q-network.

3.2. Deep Reinforcement Learning 38

Experience Replay Due to the process of decision making and the nature of the MDP, RL methods deal
with time-series data where the signals are heavily correlated. Deep learning methods rely on IID data,
which means the sampled experience from the agent must be decorrelated for each learning step.

The off-policy nature of DQN allows the stabilization of learning by collecting the experienced transi-
tions into a memory buffer and sampling a random mini-batch B of transition samples for the stochastic
gradient update step to improve the Q-function estimate. This concept is called experience replay and is
widely used to stabilize the learning process for deep RL methods.

When the learning process is unstable, DNNs tend to struggle with the phenomenon of catastrophic
forgetting. For instance, when the replay buffer is full and the policy has converged to a local optimum
with no exploration, the buffer is filled with highly correlated data that only focuses on a limited state and
action space due to the convergence of the policy. This causes the DNN to ’forget’ the previously visited
states that are at that point outside the buffer. In order to counteract such scenarios, it is essential to
maintain a minimum exploration rate.

This report refers to nominal DQN with the two concepts of using fixed target Q-networks and using a
memory buffer added to the RL architecture. This architecture is shown in Fig. 3.8, where the behavioural
policy is implicitly defined by the local Q-function Qθ(s, a). The transition samples ⟨s, a, r, s′⟩ are collected
by the memory buffer where a uniformly sampled batch of transitions with size |B| is used to train the DNN
the represents the Q-function using the MSE loss LQ.

Extensions of DQN

This subsection discusses further extensions to the DQN method framework that focus on improving
sample efficiency, stabilizing the learning process and improving the overall performance w.r.t. the goal
of the agent.

Double DQN The nominal DQN algorithm is known to overestimate the action-value function. Double
DQN (DDQN) architectures [48] overcome this overestimation bias by using the online network to evaluate
the greedy policy but using the target network to estimate its value. This changes the TD-error to the
following:

a′ = argmax
a′

Qk(s
′, a′)

δdouble = r + γ max
a′

Qk̄(s
′, a′)−Qk(s, a) (3.37)

This formulation comes at the benefit of increased efficiency and reduction of overestimation bias
without having to add additional networks / parameters.

Some state of the art deep RL algorithms use the double DQN architecture in a way where two sep-
arate networks are trained and a pessimistic minimum is taken over the two networks, followed by SGD
optimization of both Q-networks. Such a double value estimate is used in the algorithms TD3 and SAC
[49, 50], discussed below in Subsection 3.2.4.

Prioritized Experience Replay Nominal experience replay samples mini-batches from the memory
buffer uniformly. Prioritized experience replay methods [51] improve upon the sample efficiency by re-
playing important transitions more frequently. The relative importance of a transition is approximated by
using the magnitude of the TD-error.

Prioritizing transitions introduces diversity issues due to the fact that early visit to low TD-error transi-
tions will have a lower chance to be encountered again and that greedy prioritization focuses on a small
subset of experiences. In order to overcome diversity issues, stochastic prioritization is introduced to
interpolate between greedy prioritization and random sampling. Additionally, prioritization changes the
distribution of the stochastic updates that the value estimation relies on. This introduced bias is corrected
by importance sampling which fully corrects for the change in distribution.

Applying prioritized experience replay improves the sample efficiency of DQN substantially and is
complementary to the other extensions discussed in this subsection.

3.2. Deep Reinforcement Learning 39

Dueling architectures It often occurs that the action-value function estimate is similar for two actions
in the same state. In those situations choosing any of the high value actions would suffice and it is of
interest how much better certain actions are relative to each other.

Dueling architectures [52] separate the action-value function into a state dependent action-advantage
term and a state-value term, such that Q(s, a) = A(s, a) + V (s). Using this formulation, the agent is able
to learn which states are not valuable without having to learn the effect of each action in those states and
therefore it is particularly effective for problems with large action spaces.

Rainbow The extensions discussed so far focus on speeding up and stabilizing learning. The ap-
proaches are modular improvements and can be combined into a single DQN-based method [53], which
the authors call Rainbow. The Rainbow algorithm combines the double architecture, prioritized replay
and the dueling architecture.

Furthermore, it adds learning from multi-step bootstrapping targets, adds stochastic layers to the Q-
network to encourage exploration [54] and adds Distributional RL [29] to further increase sample efficiency.
The latter is discussed in detail in Section 3.3. The combined architecture of [53] results in a state of the
art off-policy RL method that can generalize the continuous state-spaces and choose between a set of
discrete actions.

3.2.3 Policy-based Deep RL
Previously discussed value-based methods, also called critic-only approaches have to resort to an opti-
mization procedure to determine the best action given the value-function estimate. This is computationally
expensive and can be especially troublesome for continuous action spaces, therefore most value-based
approaches use discretized action spaces [55].

Another approach is to parameterize the policy directly as π(s, a;w) = P [at = a | st = s;w] 5 [56], which
leads to the class of policy-based approaches. Given that the policy is differentiable, i.e. ∂πw/∂w exists,
gradient descent methods can be used to find the optimal parameter vector w given the objective function
J(w) and its gradient ∇wJ(w).

The class of policy gradient methods come with several advantages over value-based approaches.
Firstly, infinitesimal changes in the action-value function estimate often push the value of one action over
another and therefore cause discontinuities in the implicitly defined policy and the overall performance [57].
Secondly, the direct parameterization allows the use of stochastic policies, which can be highly effective
for certain types of environments, such as when certain states are aliased or when the MDP is partially
observable. The third advantage is the fact that value-based methods must find the action corresponding
to the maximum value which can be problematic for high-dimensional and/or continuous action spaces.

This section establishes the fundamentals of policy-based methods in Subsection 3.2.3, then briefly
presents extensions and improvements to the policy gradient approaches in Subsection 3.2.3. The ex-
tensions discussed in this section are also commonly used within actor-critic architectures, i.e. they often
make use of a value function estimate, but the algorithms themselves focus on improving the policy gra-
dient approach and are therefore presented in an actor-only context.

Policy Gradient Theorem

The goal of policy gradient methods is to change the parameter vector w to find a local (or possibly
global) maximum of the differentiable objective function J(w). The objective is to increase the expected
cumulative rewards received from the environment, which for state st at time-step t is the value function
by definition: Vπ(st). Therefore, the policy gradient ascent step can be defined, similarly to Eq. (3.29), as
the following:

wt+1 = wt + α∇wVπ(st). (3.38)

5Occasionally, this report simplifies the notation of the policy π(s, a;w) to πw.

3.2. Deep Reinforcement Learning 40

Where α is the step-size and∇wVπ(st) is the policy gradient. The policy gradient theorem exploits the log
likelihood ratio trick to define the above mentioned policy gradient in terms of the so-called score function
∇wlog πw [56]. The theorem is shown in Eq. (3.39):

∇wVπ(st) = Eπw

[
T∑

t=0

∇wlog πw(a | s)Vt

]
(3.39)

Since the definition of the policy structure is up to the designer of the RL algorithm, the parameterization
can be chosen such that the score function gradient can be analytically solved for and no numerical
estimations are needed, such as estimating the gradient via perturbations.

The simplest actor-only RL algorithm that can be defined using the policy gradient is to use the end-
of-episode returns as unbiased samples of the value Vt and update the parameters for every transition
encountered throughout the episode. This forms the Monte-Carlo policy gradient method, also known as
REINFORCE [58] and its pseudo-code algorithm is shown in Algorithm 1:

Algorithm 1: Monte-Carlo Policy Gradient (REINFORCE) [58]
Data: M = ⟨S,A,P,R⟩ , Nep

Result: πw(s, a)
for episode i← 1 to Nep do

Initialize s
while s not terminal do

observe transitions
{⟨s, a, r, s′⟩ , ...} ∼ πw

end
for t← 1 to T do

w ← w + α∇wlog πw(s, a) · Vt
end

end

The resulting algorithm generally has great convergence qualities and learning stability at the cost of
high variance and slow, inefficient learning. The following subsection provides examples of policy-based
algorithms that improve upon the baseline concepts of policy gradient methods.

Policy Gradient Extensions

As mentioned policy gradient methods are inefficient and take a large number of samples to converge.
Furthermore, when using DNNs to train a certain parameterized policy, regular policy gradient approaches
are highly sensitive to the step-size hyperparameter α. Additionally, an early bad parameter update may
cause the rest of the data received from the interaction to lead to further policy deterioration. In order to
solve these issues, policy gradient extensions focus on increasing the efficiency and improving robustness
by either constraining the policy gradient update step or optimizing the step-size.

Trust region Policy Optimization (TRPO) Trust Region Policy Optimization (TRPO) [59] improves the
robustness of policy gradient methods by constraining the policy update step using the Kullback-Leibler
(KL) divergence [60] between the current policy and the improved policy. The algorithm denotes trust
regions as regions of the state-action space where the local function approximation is accurate.

In addition to the KL-divergence constrain, TRPO makes use of the advantage function, previously
mentioned in the context of dueling architectures in Subsection 3.2.2. The state-dependent action-advantage
function is shown in Eq. (3.40) and describes the difference in value of choosing a certain action compared
to choosing the action of the policy.

A(s, a) = Q(s, a)− V (s) (3.40)

3.2. Deep Reinforcement Learning 41

Let Â denote an approximator of the advantage function A(s, a). The constrained update rule of TRPO
is shown in Eq. (3.41):

maximize
w

J(w) = E
[
πw(a | s)
πwold

(a | s)
Â

]
(3.41)

subject to E [DKL (πwold
|| πw) ≤ δ]

Where wold is the parameter vector before the update and DKL is the KL-divergence. The solution to
such an optimization involves a conjugate gradient algorithm and linear & quadratic approximations of the
objective function and constraint respectively.

Proximal Policy Optimization (PPO) In practice, the optimization problem with the KL-divergence con-
straint in TRPO is computationally expensive to solve. Instead of using a hard constraint, the theory of
TRPO in [59] allows the use of a penalty term, such that:

maximize
w

E
[
πw(a | s)
πwold

(a | s)
Â

]
− ηE [DKL (πwold

||πw)] (3.42)

Where η denotes some tunable coefficient. In practice however, it has been found that it is difficult to
choose a single η such that the policy update performs well across multiple learning task or even across
the duration of the same learning task.

Proximal Policy Optimization (PPO) [61] increases the computational efficiency w.r.t. TRPO by remov-
ing the KL-divergence and improves upon the ease of implementation and tuning. The changed objective
function used in PPO is shown in Eq. (3.43):

JCLIP (w) = E
[
min(r(w) · Â, clip (r(w), 1− ϵ, 1 + ϵ) · Â

]
(3.43)

Where the notation r(w) is used to denote the probability ratio: r(w) = πw(a | s)
πwold

(a | s) , and ϵ is a coefficient
that clips the probability ratio within the bounds [1 − ϵ, 1 + ϵ]. The minimum operator is chosen to take a
pessimistic bound of the objective.

3.2.4 Actor-Critic Methods
The class of actor-critic methods aim to combine the advantages of both value-based and policy-based
methods, where the policy approximator is referred to as the actor and the value function approximator
as the critic [62]. The primary advantage of including the actor is to be able to discard the optimization
procedure of finding the best action, whereas the critic provides knowledge about the performance of the
agent. The action-value function estimate of the critic helps reduce the variance of the gradient, which
speeds up the learning process and improves on the convergence characteristics.

The ability to generalize not-only over the state space but the action space has made actor-critic
methods widespread in RL and many of the algorithms are considered state of the art in their ability
to solve real-world problems. Actor-critic methods are derived from the concept of Generalized Policy
Iteration (GPI) discussed in Subsection 3.1.2, which consists of a policy evaluation step and a policy
improvement step, based on the obtained value function. The agent-environment interaction for actor-
critics is shown in Fig. 3.9.

Deep Deterministic Policy Gradient (DPG)

As opposed to the stochastic policy gradient methods discussed in Subsection 3.2.3, the policy can also
be defined in a deterministic fashion, such that: a = πw(s). This formulation is called Deterministic Policy
Gradient (DPG) and was formulated in an actor-critic architecture [63]. DPG dramatically improves on
efficiency compared to stochastic policy gradient methods, however uses an off-policy formulation where

3.2. Deep Reinforcement Learning 42

Environment

Critic Actor

a
sr

TD-error

s

Agent

Figure 3.9: RL Agent interacting with the environment in an actor-critic architecture.

the behavioural policy uses an added noise to ensure sufficient exploration. This approach is analogous to
Q-learning [64], as both methods learn a deterministic policy, while following the behaviour of a stochastic
version of the greedy policy to explore [63].

DPG relies on the critic’s value function approximate by updating the parameters along the action-value
gradient. This parameter update is done by applying a chain rule to the expected return with respect to
the actor parameters, as shown in Eq. (3.44):

∆w ∝ ∂Qπ(s, a)

∂w
=
∂Qπ(s, a)

∂πw(s)

∂πw(s)

∂w
(3.44)

DPG is therefore also commonly known as gradient-ascent on value and this parameter update con-
cept is equivalent [65] to action-dependent heuristic dynamic programming (ADHDP)6 [66].

In order to eliminate function approximation bias, DPG limits the critic to use linear approximators.
This guarantees that the policy gradient update step will follow the true gradient, however this limits the
nonlinear generalization power of the algorithm. Deep deterministic policy gradient (DDPG) [67] extends
DPG by using DNNs as function approximators and is the deep RL variant of DPG [63].

Similarly to DPG, DDPG uses a Q-function to enable off-policy learning and uses a deterministic actor
that maximizes this Q-function. DDPG makes use of the DNN stabilization techniques used by nominal
DQN [24, 25], namely the addition of experience replay and a fixed target network. This combination
of DQN and DPG allows the algorithm to generalize not only over large observation spaces, but also
continuous action spaces.

However, this interplay between the deterministic actor and the Q-function makes DDPG difficult to
stabilize and makes it sensitive to hyperparameter tuning. Two independent improvements have been
made to the DDPG algorithm: namely the twin-delayed deep deterministic policy gradient (TD3) [49] and
the soft-actor critic (SAC) [50, 68] algorithm.

TD3 [49] improves upon DDPG in three aspects. Firstly, double DQN architecture (twin) is used to
improve on the overestimation bias discussed in Subsection 3.2.2. The minimum of two action-value
function estimates is used in the TD-update as a pessimistic estimation. Secondly, delayed policy updates
are added, such that the Q-function approximator updates are more frequent than the policy gradient
step updates, in order to improve stability and convergence. Lastly, so-called target policy smoothing
regularization is added as a means to tackle over-fitting of the policy and is achieved by adding noise to
the otherwise deterministic actions of the policy.

Both TD3 and SAC are considered state of the art DRL methods that can generalize over high-
dimensional continuous state and action spaces and have similar learning and tracking performances.
A benchmark by [69] has found SAC to outperform TD3 in terms of sample efficiency in most complex
control tasks. Furthermore, SAC models the distribution of actions which makes it an attractive architec-
ture for studying distributional RL.

6ADHDP is a model-free variation of Adaptive Critic Designs (ACDs), discussed in more detail in Subsection 3.4.2.

3.2. Deep Reinforcement Learning 43

Soft Actor-Critic

Soft actor-critic (SAC), originally proposed by [50] to deal with large continuous action spaces, is an
extension of DDPG that uses stochastic policies to enable better exploration and to prevent premature
convergence to local optima. Similarly the DDPG and TD3, SAC is off-policy and makes use of experience
replay and fixed Q-networks in a double architecture to reduce overestimation bias. SAC uses to concept
of maximum entropy RL that aims at maximizing not only the action-value function, but also the entropy
of the policy and introduces the so-called soft action-value function.

Maximum entropy RL The formulation of SAC is derived from Soft Policy Iteration (SPI), a general
algorithm that uses the maximum entropy framework. An additional maximum entropy objective is defined
[70] that augments the expected return with an an additional entropy term H(π). In this framework the
optimal policy π∗ aims to maximize not only the expected cumulative reward, but also the entropy at each
visited state. Such maximum entropy methods result in significantly more stable and scalable algorithms
[68]. The entropy term serves as a metric of randomness in the probability distribution of the policy and
shows how much the policy is spread out over the action-space. The entropy is given by the log-likelihood
of the policy, as shown in Eq. (3.45):

H(πw(· | s)) = Ea′∼πw
[−log (πw(a

′ | s))] (3.45)

The temperature parameter term η is introduced that scales the entropy termH(π) to balance between
the prioritization of future rewards and entropy and therefore adjusts the stochasticity of the optimal policy.
Then, maximum entropy RL defines the optimum policy π∗ as shown in Eq. (3.46):

π∗ = argmax
π

E

[
N∑
i=0

γi(R(st+i, at+i) + ηH(π(· | st+i))))

]
∀st ∈ Rm (3.46)

Since the maximum objective of entropy RL in this framework differs from the objective of traditional
RL, the conventional objective can be recovered as η → 0 [68].

Critic As mentioned, SAC adapts several stabilizing concepts from value-based methods in order to
approximate the action-value function Q(s, a; k), where k is used to denote the parameter vector of the
critic. Firstly, experience replay is added to sample mini-batchesB of transitions to decorrelate the training
data. Secondly, double Q-function architecture is used to prevent the overestimation of the action-value
function. This means that two function approximators are trained in parallel with subscripts l = 1, 2:
Qk1,2(s, a) to estimate the value function and the minimum over the two estimates is taken to determine
the TD-error. Thirdly, the target Q-network is fixed w.r.t. the behavioural Q-network and Polyak averaging
is used with step-size ζ to interpolate the parameters of the target-network towards the local network. The
parameter vector of the target network is denoted with k̄. The loss-function of the critic is an MSE loss
over the mini-batch of transition samples using the off-policy TD-error and is given in Eq. (3.47):

LB
Q(kl) = E

[(
Qkl

(s, a)−
(
r + γ(min

l=1,2
Qk̄l

(s′, a′)− η log πw(a′ | s′)))
))2

]
(3.47)

Where the transition ⟨s, a, r, s′⟩ is sampled from B, the next action a′ is sampled from the policy πw(·|s),
the term Qki

(s, a) is the local action-value function estimate and Qk̄i
(s′, a′) is one-step ahead prediction

to calculate the TD-error, which is corrected by the entropy term ηH(πw(a
′ | s′)).

Policy SAC uses a stochastic policy to ensure better exploration, namely an m-dimensional multivariate
Gaussian distribution with a diagonal covariance matrix. The actions of the policy are passed through a
tanh squashing function to ensure they are defined on a finite bound. The mean vector and the covariance
matrix (in this case, covariance vector) are estimated for the entire state space by a DNN, usually an feed-
forward MLP with parameter vector θ, such that output of the DNN is: µθ and σθ as shown in Fig. 3.10:

3.2. Deep Reinforcement Learning 44

...
...

...
...

...

...

N(µ, σ) tanh

s0

sm

I1

Ih

H1
1

H1
2

H1
h−1

H1
h

H2
1

H2
2

H2
h−1

H2
h

µ1

µn

σ1

σn

a ∈ Rn

rsample

ã ∈ Rn

States Input layer Hidden 1 Hidden 2 Gaussian

distribution

layer size: (h)

Figure 3.10: Depiction of the m-dimensional multivariate tanh-Gaussian stochastic policy network used
by the SAC algorithm.

The actions of the policy are then sampled from this Gaussian distribution, however in order for the
objective function, as given in Eq. (3.46) to be differentiable a reparameterization of the sampling of actions
is needed [68], by using an additional independent noise vector. In practice, automatic gradient calculation
tools (such as Pytorch [71]) provide the reparameterization needed to sample from the normal distribution,
so the noise vector ξ defined in [68] is omitted in this report for notational simplicity. Then, the actions
chosen by the policy can be written as:

ãw(s) = tanh(aw(s)) with aw(s) ∼ N(µw(s), σw(s)) (3.48)

The policy loss function can be formulated based on Eq. (3.46) by using the critic’s estimate of the
action-value function as shown in Eq. (3.49):

LB
π (w) = E

[
η log π(ãw(s) | s)− min

l=1,2
Qkl

(s, ãw(s))

]
(3.49)

Where s is sampled from mini-batch B, ãw(s) is the action sampled from the distributional policy and η is
the entropy temperature.

Adaptive Entropy Temperature It was found that the nominal SAC algorithm is brittle w.r.t. the temper-
ature parameter η [50]. A proposed adaptive temperature adjustment can be made [68, 28] to dynamically
find the lower temperature that aims to achieve a target entropy. The temperature parameter can be found
using the following loss function:

LB(η) = −E
[
η ·
(
log πw(a | s) + H̄

)]
(3.50)

Where H̄ is the target entropy that has empirically been found to be set such that log H̄ = −m, where m
is number of action-space dimensions, i.e. A ⊂ Rm.

SAC Architecture Combining the discussed policy, critic and adaptive temperature into an RL algorithm
results in the architecture shown in Fig. 3.11. Similar to other deep RL methods, an experience replay
memory buffer is used to decorrelate the transition samples, thus providing a mini-batch of ⟨s, a, r, s′⟩
transitions to both the critic and the actor.

Application-oriented research has shown the SAC algorithm to be particularly effective at continuous
control & flight control tasks and is discussed in more detail in Section 3.4.

3.2. Deep Reinforcement Learning 45

Memory Buffer Environment

Temperature Loss Lη

Critic Loss LQ Policy Loss Lπ

Double
Q-function Qk

Target Double
Q-function Qk̄

Policy πw

min
l=1,2

Qkl

πw

πw

⟨s, a, r, s′⟩ a

mini-batch B

B B

η η

πw∇wLπQk∇kLQ

min
l=1,2

Qk̄l

k1,2

ActorCritic

Figure 3.11: Adapted from [28]; Depiction of the SAC algorithm.

3.2.5 Synthesis
This chapter gave an overview of the most commonly used, state of the art deep reinforcement learning
approaches. The generalization of value functions and policies has given RL the ability to tackle problems
that had previously been thought unsolvable. Recent advancements in RL have shown its ability to find
near-optimal solutions to real-world tasks in robotics and automation using a model-free framework. Many
improvements to the original Deep Q Network [24, 25] method have been developed that not only speed
up and stabilize learning but also improve on the final performance of the trained agent, which is shown
in the Rainbow agent [53] that combines the most widely used extensions.

Purely value-based, critic-only methods tend to struggle with the high-dimensional, continuous action-
spaces due to the optimization step required to find the best action, and they often resort to a discrete set
of action. Policy-based, actor-only methods directly parameterize the policy and enable the use of contin-
uous state-action spaces, which is crucial for complex control tasks. Actor-only policy gradient algorithms
have stable learning properties, however struggle with inefficiency, robustness and high variance.

Actor-critic architectures combine the best features of the two classes and use the value estimate of
the critic to improve the learning characteristics of the actor. Recent algorithms derived from DDPG [67],
namely TD3 [49] and SAC [68] have shown state of the art efficiency and effectiveness at complex tasks in
high-dimensional continuous state and action spaces and are therefore identified as candidate algorithms
suitable for flight control tasks, as posed by RQ 1.

The classes of RL methods discussed so far have all focused on improving the expected cumulative re-
ward, whereas the action-value function is an expectation of a probability distribution that can be exploited
to further increase sample efficiency and to introduce the ability of applying risk-sensitive policies. The
following chapter discusses RL methods that estimate the full distribution of the action-value function.

3.3. Distributional Reinforcement Learning 46

3.3 Distributional Reinforcement Learning
Traditional reinforcement learning frameworks use the expectation of cumulative future rewards as the
primary method of value representation for the learning task. The value function is an expected value
taken over all sources of randomness while interacting with the often intrinsically random environment.
The field of distributional RL captures not only the first moment, but the entire distribution of the action-
value function [29].

An often used analogy is comparing the difference between traditional and distributional value repre-
sentation to that of a gray-scale image and a colored image [72]. The hue of each pixel in the colored
image contains more information that otherwise cannot be recovered from the luminance signal alone,
however the black and white image can easily be obtained from the colored photo. Similarly, the expec-
tation of any distribution is easily obtained, but not vice versa.

The reasons to study distributional RL for flight control is two-fold. Firstly, numerous studies have
shown empirical results that distributional methods produce state of the art learning performance and
increased sample efficiency [29, 30, 73]. This difference in performance has been shown to be especially
beneficial when using nonlinear approximation [74]. Secondly, return distributions allow the use of a variety
of risk-sensitive policies that are crucial to achieve safety in RL-based flight control. Implicit representation
of the return distribution [31] allows a simple way to apply risk-distortions to skew the risk-tendency of the
agent.

Distributional RL methods are characterized by three things: the parameterization of the return dis-
tribution, the distance metric that the algorithm uses to optimize the parameters and the risk-sensitivity
method applied to either the learning process or the post-training strategy. The purpose of this chapter is
to provide an overview of existing distributional RL methods and identify candidate algorithms to be used
for flight control tasks, as posed by RQ 2.

First, the fundamentals and the core algorithms of distributional RL are presented in Subsection 3.3.1.
Secondly, Subsection 3.3.2 expands on the risk-sensitive methods that can be used in conjunction with
distributional algorithms. Then, an overview of additional methods is provided in Subsection 3.3.3 with
a focus on applying distributional RL to continuous control settings. Lastly, synthesis is provided on the
findings of this chapter in Subsection 3.3.4.

3.3.1 Distributional RL Algorithms
The field of RL has put most of its efforts into modelling the mean of the cumulative rewards and therefore
maximizing the expectation of the random return. However, distributional RL extends this axiomatic ap-
proach, as modelling only the expectation does not account for many complex phenomena in an RL task.
Value function representations in traditional RL methods are scalars for a given state, whereas distribu-
tional algorithms operate on collections of probability distributions, so-called return distribution functions.

In traditional RL, where real-valued vectors are used to represent the value function, the quality of an
agent’s prediction can bemeasured by an absolute difference as a distancemetric. With return distribution
functions, a probability metric has to be defined in order to quantify the distance between distributions. The
choice of metrics is important, as it is desirable for the distributional Bellman operator to be a contraction
using the chosen distance metric between distributions.

This section discusses the core distributional RL methods that arise from the several ways the return
distribution can be parameterized and the kind of distance metric and loss function used to apply the
Bellman updates. First, the distributional version of the Bellman equation is provided in Subsection 3.3.1.
Then, several core algorithms are discussed in Subsection 3.3.1 that established practical implementa-
tions of the distributional RL framework. Lastly, Subsection 3.3.1 provides a brief overview of the core
distributional RL algorithms.

Distributional Bellman Equations

As presented in Subsection 3.1.1, the Bellman equations represent the expected value of a state in a
compact way utilizing the recursive nature of the underlying MDP,M = ⟨S,A,P,R, γ⟩. The return, similarly
defined in Eq. (3.5) is the sum of discounted future rewards while following policy π.

3.3. Distributional Reinforcement Learning 47

Z(st, at) :=

∞∑
i=0

γiR(st+i, at+i) (3.51)

The notation Z is used to denote the action-value distribution function that maps Z : S×A→ Z, where
Z is the action-value distribution space. The space Z is defined with finite moments for all state-action
pairs, formally written in Eq. (3.52):

Z =
{
Z : S×A→P(R) | E

[
∥Z(s, a)∥p

]
<∞, ∀(s, a), p ≥ 1

}
(3.52)

Traditional RL defines the action-value function Qπ(s, a) as the expected cumulative reward collected
along a certain trajectory following policy π and aims at maximizing this expectation. With the sum of
discounted rewards given by the distribution function Zπ(s, a) as shown in Eq. (3.51), the value Qπ(s, a)
is the first moment of Z, i.e. the expectation:

Qπ(s, a) := E [Zπ(s, a)] (3.53)

In essence, distributional methods take the approach of removing the expectation and consider the
full return distribution Zπ instead of the action-value Qπ. Using the previously defined Bellman equation
in Eq. (3.13), its distributional version can be formulated, however one must utilize the concept of equality
by distribution, such that two random variables Z1, Z2 are equal in distribution when their probability
distributions are equal:

Z1
D
= Z2 ⇐⇒ P [Z1 ∈ U] = P [Z2 ∈ U] for any U ⊆ R (3.54)

This formulation is necessary to be able to compare random variables solely based on their probability
distributions and avoid directly equating random variables. Then, using the definition of Zπ given above,
the distributional Bellman equation can be defined as the following:

Zπ(s, a)
D
= R(s, a) + γZ(s′, a′) (3.55)

Where the sample transition model ⟨s, a, r, s′⟩ is used to denote a single transition in the MDP trajectory,
with s′ ∼ P(· | s, a), a ∼ π(· | s) and a′ ∼ π(· | s′). Considering the optimal policy π∗(s), the distributional
version of the Bellman optimality equation can also be defined, shown in Eq. (3.56).

Z(s, a)
D
= R(s, a) + γZ

(
s′, argmax

a′
EP,R [Z(s′, a′)]

)
(3.56)

The return distribution captures three sources of randomness: the randomness of the reward function
R, the stochastic transition P and the randomness of the next return distribution Z(s′, a′). Similar to
traditional RL, the distributional optimality equation can be used to define distributional RL algorithms that
make use of generalized policy iteration to find the optimal policy using model-free control concepts.

In order to define distributional RL algorithms, two additional formulations are needed: the way the
return distribution function is parameterized, and the way the distance metric is defined between two
distributions. The algorithms detailed in subsequent subsections primarily differ in these two aspects.

Distance metrics The choice of the distance metric is essential for the agent to converge on a near-
optimal policy. In [29] it was shown that the distributional Bellman update is a contraction operator, i.e.
the repeated application of the operator converges to a fixed-point when the p-Wasserstein metric is used
as a distance metric between distributions. Occasionally, the Wasserstein metric is also called the earth-
mover metric as it indicates the minimum energy cost needed to convert one ’pile’ of a distribution into
another, i.e. the amount of earth that needs to be moved times the distance.

3.3. Distributional Reinforcement Learning 48

The p-Wasserstein metric is the Lp metric on inverse cumulative distribution functions (c.d.f.) [31]. The
c.d.f. FU of the random variable U describes the probability: FU (u) = P [U ≤ u]. Its inverse, F−1

U (p) often
called the quantile function gives the unique real number u, such that FU (u) = p. The p-Wasserstein
metric is given by Eq. (3.57), where U and V are random variables with quantile functions F−1

U & F−1
V and

∥·∥p is the p-norm metric:

Wp(U, V) =

(∫ 1

0

∥∥F−1
U (ω)− F−1

V (ω)
∥∥
p
dω

)1/p

(3.57)

Even though the use of the p-Wasserstein distancemetric was shown to be a contraction, some distribu-
tional RL algorithmsmake use of the KL-divergence as a distance metric in their practical implementations.
The KL-Divergence is given in Eq. (3.59) for both discrete and continuous random variables:

DD
KL

(PD || QD) =
∑
x∈X

PD(x) · log
(
PD(x)

QD(x)

)
(3.58)

DC
KL

(PC || QC) =

∫ ∞

−∞
p(x) · log

(
p(x)

q(x)

)
dx (3.59)

Where PD and QD are discrete probability distributions on the same probability space, PC and QC are
continuous random variables and p and q are the probability density functions of PC and QC respectively.

Subsection 3.3.1 provide a brief overview on how the core RL algorithms implement the value distri-
bution representation, distance metric and loss function.

Categorical DQN

Early distributional RL research have used Gaussian parameterization of the return distribution [75] and
applied the Q-learning and SARSA frameworks to approximate value distribution functions. In [29], the
distributional representation is expanded to a categorical approach and is combined with value-based
deep RL concepts.

The categorical representation is described in the formulation of the algorithm C51 [29] where N ∈ N
(N = 51) discrete atoms are used within the domain [Vmin, Vmax] to approximate the distribution function,
where the supports are defined using Eq. (3.60) and their parameterized probabilities are defined using
Eq. (3.61).

zi = Vmin + i ·∆z, where ∆z =
Vmax − Vmin
N − 1

(3.60)

qi(s, a) :=
eki(s,a)∑
j e

kj(s,a)
(3.61)

This discretization of the approximate distribution is computationally efficient however requires an addi-
tional projection step, as the supports become disjointed between two Bellman updates. The C51 method
[29] uses the DQN architecture with the categorical representation approach and calls the framework Cat-
egorical DQN. Similarly to DQN [25], ϵ-greedy policy is used. The Bellman update is computed for each
atom zj and a projection step is done to align the supports.

While [29] presented proof of contraction of the distributional Bellman operator under the p-Wasserstein
metric defined in Eq. (3.57), the C51 algorithm itself did not directly make use of this metric to define the
loss function, and instead used KL-divergence as a metric between the Bellman updated distribution
Zk̃(s, a) and the old distribution Zk(s, a).

The approach presented in [29] established the fundamentals of distributional RL and showed state of
the art performance on Atari benchmarks, i.e. the Arcade Learning Environment (ALE) [76]. Even though

3.3. Distributional Reinforcement Learning 49

the distributional information is available, the C51 algorithmmaximizes the expected value much like nomi-
nal DQN. Therefore, the author attributed the observed sample efficiency and performance improvements
solely to the addition of the distributional representation.

Quantile Regression

An improved framework is defined in [30], where quantile regression (QR) is introduced to stochastically
adjust the return distribution to minimize the Wasserstein distance towards the target distribution. The pa-
rameterization of the distribution is changed from variable probabilities ofN fixed locations, as in Eq. (3.60)
and Eq. (3.61), to uniform probabilities of N variable locations. This discrete representation is a uniform
mixture of N Diracs and is given in Eq. (3.62). A visual representation of the discrete quantile represen-
tation is shown below in Fig. 3.13.

Zk(s, a)
D
=

1

N

N∑
i=1

δki(s,a) (3.62)

Where δx denotes a Dirac at location x ∈ R. This quantile distributionZθ assigns uniformweights qi = 1/N
for i = 1, ..., N and denotes the discrete cumulative probabilities of the c.d.f. by τi = 1/N for i = 1, ..., N .
This formulation does not require a projection step, as with C51 and no domain knowledge has to be
added via the parameters [Vmin, Vmax].

Lastly, quantile regression can be used to minimize the 1-Wasserstein distance between the distribu-
tion at time-step t and the Bellman updated distribution. The quantile regression framework in [30] is
adopted from value-at-risk economic settings and is proposed to train the quantile estimations using a
Huber quantile regression loss presented in Eqs. (3.63) to (3.66).

Lτ
QR =

1

N

N∑
i=1

N∑
j=1

[
ρκτi(r + γ kj(s

′, a′)− ki(s, a))
]

(3.63)

with a′ = argmax
a′

N∑
i=1

ki(s
′, a′) (3.64)

Where Lτ
QR is the QR loss at time-step t, the next action is selected according to Eq. (3.64) and ρκτi is

given by the following:

ρκτi(x) = |τi − I{x < 0}| · Lκ(x) (3.65)

Where I is the indicator function and Lκ(x) is the Huber-loss with parameter κ presented in Eq. (3.66).

Lκ(x) =

{
1
2x

2 for |x| ≤ κ
κ
(
|x| − 1

2κ
)

otherwise
(3.66)

Minimizing this loss for each quantile τi and parameter ki via SGD results in the minimization of the
1-Wasserstein distance. The Huber-loss defined in Eq. (3.66) is a squared loss in the interval [−κ, κ], an
absolute loss otherwise and retains smoothness where x = κ. It is used in [30] in the quantile regression
framework to ensure smoothness as x→ 0+.

Equation (3.63) and Eq. (3.64) describe the distributional Q-learning update step, where the next action
a′ is the greedy action w.r.t the mean of the next value distribution. Lastly, the DQN architecture is adopted
to establish the QR-DQN distributional algorithm.

3.3. Distributional Reinforcement Learning 50

Implicit Quantiles

The approach in [31] extends QR-DQN from learning a discrete set of quantiles to learning the full contin-
uous quantile function of the return distribution. By sampling each quantile τi from a uniform distribution
U([0, 1]) and passing it through an implicit quantile network (IQN), a continuous mapping is created be-
tween probabilities and return. This generalization does not depend on the discreteN number of quantiles,
but rather the size and training of the network itself and adds ease of tuning on the amount τ samples
used per update. Lastly, this formulation makes it simple to implement risk-sensitive policies by adding a
distortion mapping to the uniform distribution the samples are taken from. Such distortion functions are
discussed in Subsection 3.3.2.

The IQN deep neural network is a deterministic parametric function trained to reparameterize the τ
quantile samples from a base distribution τ ∼ U([0, 1]) to respective quantile values of a target distribution.
The framework in [31] also adapts the DQN architecture and uses the off-policy TD-targets to train the
network. The independently sampled quantiles are passed through a so-called cosine-embedding layer
in the following way: ϕj(τ) =

∑C−1
i=0 cos(πiτ)wij + bj , where C is the embedding dimension (C = 64), and

w, b are the weights and biases of the ANN layer. In [31], a ReLU activation function is used, however
in [32] it was found that a Sigmoid activation function applied to the cosine-embedding layer stabilizes
learning in practice. The output of the embedding layer is multiplied element-wise using the so-called
Hadamard product denoted with ⊙. Given that the state input layer is ψ(s), the input to the hidden layers
is ψ(s)⊙ ϕ(τ).

Figure 3.12 presents the implicit quantile network as described in [31] for an m-dimensional state-
space, a discrete action space with size k, with quantile samples of size n and two fully-connected hidden
layers of size h.

...
...

...
...

...

...
...

...
...

s0

sm

τ0

τn

Es
1

Es
h

C1

Cc

Eτ
1

Eτ
h

H1
1

H1
2

H1
h−1

H1
h

H2
1

H2
2

H2
h−1

H2
h

[Zs(a1; τ0), ..., Zs(a1; τn)]

[Zs(ak; τ0), ..., Zs(ak; τn)]

Quantiles
τ ∼ U([0, 1])

Cosine Embedding∑
cos(πiτ)wij + bj

States Embedding Hadamard
⊙

Hidden 1 Hidden 2 Return

distribution

layer size: (h)

Figure 3.12: Depiction of the implicit quantile network (IQN) based on [31].

3.3. Distributional Reinforcement Learning 51

Synthesis

Three major advances in distributional RL have been identified that each showed state of the art perfor-
mance w.r.t. traditional RL methods by exploiting the return distribution. As mentioned, in order to define
a distributional RL method, two frameworks have to be specified: the way the distributions are parameter-
ized and the way the distance metric is defined between the value distribution and the target distribution.
The core algorithms and the frameworks they use are summarized in Table 3.1.

Table 3.1: Core algorithms developed for Distributional RL.

Algorithm Distribution Representation Distance Metric Paper

C51 Categorical KL-divergence [29]
QR-DQN Variable location quantiles Quantile Huber loss [30]
IQN Stochastic quantiles Quantile Huber loss [31]

The different representation methods are shown in Fig. 3.13, where value distributions are depicted for
a given state. The traditional deep RL method DQN estimates the expected return Q(s, a) = E [Z(s, a)],
whereas C51 uses variable probabilities forN atoms separated by∆z distance. QR-DQN inverts the cate-
gorical formulation by using fixed probabilities and parameterizing variable quantile locations. This allows
the algorithm to use quantile regression to get rid of the projection step and achieve better convergence.
Lastly, IQN uses an implicit definition of the continuous return distribution and uses n quantile samples
that are passed through the value network.

return

DQN

ak

ak+1

ak+2

Q(s, ak)

C51

ak

ak+1

ak+2

zi zi+1 zi+2 return

return

QR-DQN

ak
θi θi+1 θi+2

ak+1

ak+2

return

IQN

ak
Zτi

Zτi+1
Zτi+2

ak+1

ak+1

Figure 3.13: Adapted from [31]; Depiction of the different parameterization methods to estimate the
return distribution Zk(s, ak) for a given state s.

The quantile generation of IQN is especially convenient for specifying a richer class of policies, by
distorting the original distribution that the τ quantile-levels are sampled from. Subsection 3.3.2 discusses
how to use such distortions to achieve risk-sensitive behaviour in distributional RL.

3.3.2 Risk-sensitivity in Distributional RL
Traditional RL policies always maximize the expectation of returns. However, when the expected returns
are replaced by value distribution functions, more complex strategies can be constructed that depend on
the full distribution, which enables the use of risk-sensitive policies. The results of C51 and QR-DQN had
shown significant improvements in sample efficiency, final performance and stability over traditional RL
methods, however both algorithms defined the policy purely based on the expectation as in conventional
value-based RL algorithms. The access to the distributional information enables a wide variety of policy
definitions that can be used as risk-sensitive strategies. In Subsection 3.3.2 several risk-distortion func-
tions are presented that can be used in risk-sensitive distributional RL methods. Then, Subsection 3.3.2

3.3. Distributional Reinforcement Learning 52

discusses potential approaches that can be used to deal with uncertainties when interacting with the en-
vironment.

Risk Distortions

The implicit formulation in IQN [31] makes it convenient to define so-called risk distortions that are applied
to the distribution that τ quantiles are sampled from. The distortion operator is denoted using β and is a
mapping that follows: β : [0, 1]→ [0, 1]. When β is identity, the policy is considered risk-neutral.

Several candidate distortion functions are listed in [31], namely conditional value-at-risk (CVaR), cu-
mulative probability weighting (CPW), Wang and a standard power formula (Pow), shown in Eqs. (3.67)
to (3.70) respectively. These are considered utility functions and the resulting policy follows the expec-
tation of the utility function applied to the sampling distribution, such that if the risk-distortion is convex,
the policy is risk-seeking and if it is concave, the resulting policy is risk-averse. A linear risk-distortion
corresponds with the risk-neutral tendency.

CVaR(ξ, τ) = ξτ (3.67)

CPW(ξ, τ) =
τ ξ

(τ ξ + (1 + τ)ξ)
1/ξ

(3.68)

Wang(ξ, τ) = Φ(Φ−1(τ) + ξ) (3.69)

Pow(ξ, τ) =

{
τ

1
1+|ξ| if ξ ≥ 0

1− (1− τ)
1

1+|ξ| otherwise
(3.70)

Where ξ is a risk-tendency parameter, and Φ is the standard Normal cumulative distribution function.
The way CVaR [77] modifies the sampling distribution is that it changes τ ∼ U([0, 1]) to τ ∼ U([0, ξ]).
CPW is a unique choice as it is locally concave for small τ values and locally convex for large τ values,
therefore provides a convenient risk-tendency manipulation with the distortion parameter ξ. The Wang
distortion results in risk-averse behaviour for ξ < 0 and therefore provides an easy switch between the
two behaviours. The same applies to the Pow formula, with ξ < 0 resulting in a risk-seeking and ξ > 0
resulting in a risk-averse setting.

In the study of these different policies [31] found that the best choice of risk-seeking / risk-averse
setting and the choice of distortion function significantly depends on the environment choice. However, a
tendency they observe is that risk-averse policies commonly outperform risk-neutral settings.

Handling uncertainties with Distributional RL

This subsection briefly discusses possible metrics to use within the MDP, which may drive complex risk-
sensitive strategies. The risk-tendency of a distributional RL policy can be dynamically set using a choice
of distortion function presented in Subsection 3.3.2. For instance, ART-IQN [78] adjusts the risk-tendency
of the RL agent dynamically based on a measure of uncertainty in the partially observable environment.
In model-based RL architectures the parametric uncertainty is explicit as an internal parametric represen-
tation of the MDP is used to solve the RL task. In model-free RL, this parametric uncertainty is implicit
and relates to the either the parameters of the value-function or the parameters of the policy.

Such risk-sensitive strategies can be applied either post-learning during the deployment / application
of the RL agent, or during training. It is an open question whether the adaptive risk-tendency can be
exploited during the training process to increase sample efficiency of the agent. The results in [31] show
that risk-averse policies have a tendency to outperform risk-neutral policies. Another motivation to study
such strategies is the challenge of increasing safety for flight control applications. Risk-averse or adaptive

3.3. Distributional Reinforcement Learning 53

risk-tendency strategies have the potential to find near-optimal policies while retaining safety based on
some measure of risk.

One of the most intuitive metrics to use for risk-sensitivity manipulation is some measure of uncertainty
within the MDP. Two primary sources of uncertainty can be defined within in the deep distributional RL
framework [79]. Firstly, interacting with the MDP comes with intrinsic uncertainty due to the randomness
of the transition dynamics, the rewards and observations. Additionally, a dominant source of intrinsic
uncertainty can be the partial observability of the MDP. Secondly, parametric uncertainty comes from
incomplete information about the environment and the finite amount samples gathered throughout the
learning process.

In [80] it was shown that the separation of intrinsic and parametric uncertainties is possible and can
be exploited to improve the exploration characteristics of QR-DQN. The paradigm of optimism in the face
of uncertainty is applied by using the Tail Conditional Variance (TCV) of the estimated distribution as an
exploration bonus metric. The general formula for TCV is given by Eq. (3.71) and the TCV for the QR-
DQN distributional representation is given by Eq. (3.72). Assigning a schedule to the upper tail variance
σ2
+ in Eq. (3.72) [80] improves the sample efficiency of QR-DQN.

TCVx(k) = V ar(k − k̄ | k > x) (3.71)

σ2
+ =

1

2N

N∑
i=N

2

(kN
2
− ki)2 (3.72)

In [78] it was shown that the intrinsic uncertainty of a partially observable MDP can be used to dy-
namically adapt the risk-tendency of the RL agent. ART-IQN [78] uses the lower half tail of the return
distribution as a measure of intrinsic uncertainty. This measure is then used to adapt the risk-tendency
using a CVaR distortion function. Instead of using the variance as an absolute measure of uncertainty,
ART-IQN uses exponentially weighted average forecasting to relate the variance of different states to each
other to account for the difference in varying value distributions across states.

3.3.3 Other Distributional RL Methods
This section discusses additional distributional RL frameworks that have either been derived from the core
algorithms or propose novel parameterization and distribution estimation methods. Additionally numerous
distributional RL methods are derived by combining the core algorithms mentioned in Subsection 3.3.1
with the deep RL architectures discussed in Section 3.2.

This section also surveys research about the application of distributional RL to continuous actions
and therefore the methods are divided into two groups. Firstly, several improvements and additional
distributional RL methods are briefly discussed, followed by approaches that focus on continuous action-
spaces in Subsection 3.3.3.

Following the success of DQN extensions detailed in Section 3.2 and the novel distributional RL ap-
proach of C51, [53] combines six improvements to the DQN algorithm to produce Rainbow and achieve
state of the art performance. The performance of the Rainbow algorithm shows that many of the deep RL
extensions are compatible not only with each other, but also with the distributional RL framework.

While IQN samples n quantiles randomly from a uniform distribution, the algorithm proposed by [81]
adds an additional fraction proposal network that is trained to provide optimal τ quantiles for the implicit
distribution definition. These fully parameterized quantile functions (FQF) therefore add a second DNN to
the architecture that is trained jointly together with the implicit quantile network tominimize theWasserstein
distance.

The framework in [82] introduces unconstrained monotonic neural networks (UMNN) as a novel way to
parameterize the return distributions. This method exploits the fact that the probability density functions
and quantile functions of random variables share the property of being strictly monotonic. Combining

3.3. Distributional Reinforcement Learning 54

this type of parameterization with DQN defines the distributional RL method of Unconstrained Monotonic
DQN (UMDQN). The flexibility of the UMDQN framework in [82] allowed the testing of different types
of probability metrics, namely KL-divergence, Cramer distance and Wasserstein distance. Their results
show no clear best metric to use and state that the best metric depends heavily on the environment.

In [83] an argument is made that a monotonic constraint is necessary, as C51, QR-DQN and IQN
all rely on the assumption that the quantile curve is non-decreasing. Since no global constraint is used
in the core algorithms the monotonicity cannot be ensured. Non-decreasing quantile function networks
(NDQFNs) are proposed in [83] for distributional RL methods in order to enforce the monotonicity and to
increase the efficiency of exploration.

Distributional RL for Continuous Actions

The algorithms discussed in Subsection 3.3.1 are all value-based methods, as they define their policies
implicitly based on the value distribution. Similar to traditional value-based RL methods, it is troublesome
to generalize such policies over high-dimensional action spaces, as an additional optimization problem
has to be solved to find the greedy action. In order to extend distributional RL algorithms to continuous
action spaces, actor-critic architectures can be used, where the role of the critic is filled by a distributional
approach that estimates the entire value distribution function.

The distributional deep deterministic policy gradient (D4PG)7 by [73] have shown the ability to estimate
rich return distributions and apply the distributional actor-critic framework to complex continuous control
tasks. The algorithm of D4PG is constructed by using the Categorical DQN approach as a critic within
the DDPG framework by [67]. The findings of the D4PG study show that the most significant sample
efficiency improvements can be attributed to the addition of the distributional representation, as opposed
to other extensions used, e.g. prioritized experience replay or n-step updates. In addition to formulating a
distributional version of DPG, [84] proposes distributional Maximum a-priori Optimization (DMPO). Real-
world comparisons have been conducted by [85] where DMPO [84] is compared to D4PG [73] in a real-
world setting, with added challenges of constraints, partial observability sparse & delayed rewards and
delayed observation feedback. In general distributional actor-critics have shown to be effective in solving
continuous control problems, therefore they are considered a candidate class of approaches to apply
distributional RL for flight control tasks.

Distributional Soft Actor-critic The distributional actor-critic approach proposed by [32] has shown
that the addition of a distributional critic to the state of the art SAC algorithm improves on the learning per-
formance of the algorithm. The motivation to use distributional soft actor-critic (DSAC) for risk-sensitive
flight control research is three-fold. Firstly, [32] has shown that modelling both the distributional aspect of
the action-space (as in SAC), and the distribution of returns is highly effective in learning high-dimensional
continuous control tasks. Secondly, DSAC has shown increase in sample efficiency of adding distribu-
tional critics compared to nominal SAC and the results of [32] have also shown that SAC outperforms TD3
using both traditional and distributional architectures8. Thirdly, DSAC defines a generalized framework for
risk-sensitive learning within the distributional soft policy iteration architecture which makes it possible to
apply risk-sensitive approaches. These factors elevate SAC and DSAC as candidate algorithms to study
their ability tackle continuous flight control tasks.

The formulation of DSAC [32] identifies three major contributions. Firstly, they define the distributional
soft Bellman equation and use quantile regression to estimate the soft discounted return. Second, they
formulate a generalized framework for risk-sensitive learning. Lastly, they demonstrate model-free RL on
continuous state-action spaces and outperform current state of the art SAC.

The distributional soft Bellman operator is given in Eq. (3.73), where an additional term is added to
maximize the entropy as well as the return. Similar to nominal SAC, the parameter η is used as the entropy
temperature parameter to trade-off stochasticity and maximizing the return.

Zπ(s, a)
D
= R(s, a) + γ [Z(s′, a′)− η log π(a′ | s′)] (3.73)

7The fourth ’D’ denotes the distributed parallelization that reduces wall-clock time.
8The distributional version of TD3 → TD4 is constructed in [32] to compare the distributional versions of SAC and TD3.

3.3. Distributional Reinforcement Learning 55

Memory Buffer Environment

Temperature Loss Lη

Critic Loss LZ Policy Loss Lπ

Double
Z-function Zτ

k

Target Double
Z-function Zτ

k̄

Policy πw
Risk

Distortion ΨZk

QΨ
k

πw

πw

⟨s, a, r, s′⟩ a

mini-batch B

B B

η η

πw∇wLπZk∇kLZ

min
i=1,2

Zk̄i

k1,2

ActorDistributional Critic

Figure 3.14: Depiction of the distributional SAC (DSAC) algorithm architecture.

The value distribution is estimated using a parameterized quantile value network Zτ (s, a; k) and similar
to TD3 [49] and SAC [68], double critic networks are used with parameters k1,2 to prevent overestimation
of the value distribution. The critic is the parameterized policy π(a|s; θ) with parameter vector θ. Using the
distributional soft Bellman operator, the pairwise TD-update rule of SAC can be modified for the distribu-
tional framework as presented in Eq. (3.74):

δlij = r + γ

[
min
l=1,2

Zτi(s
′, a′; k̄l)− η log π(a′ | s′;w)

]
− Zτj (s, a; kl) (3.74)

Where k̄ is the parameter vector of the target quantile value distribution network and the subscript l = 1, 2
is used to denote the two networks in the double-critic architecture. Quantile regression is used to estimate
the parameters as presented in [30], where quantile Huber loss is used as a probability metric. The critic
loss function can therefore be written as shown in Eq. (3.75)

LZ(k) = −
N−1∑
i=0

(τi+1 − τi)Zτi(s, a; k) (3.75)

The generalized risk-sensitivity framework in DSAC defines a risk measure function Ψ : Z→ R, where
Z is the action-value distribution space, such that in a risk-neutral setting Ψ [·] = E [·]. The risk-measure
Ψ is applied to the value distribution to obtain the so-called risk soft action-value: Qr(s, a) = Ψ [Z(s, a)].
In order to achieve risk-sensitive policies, [32] applies the variety of risk-distortion functions mentioned
previously in Subsection 3.3.2. The distributional form of the policy loss function uses the risk soft action-
value Qr and is given by Eq. (3.76):

Lπ(w) = E [Qr
k(s, ãw(s))− η log πw(ãw(s) | s)] (3.76)

with Qr
k(s, ãw(s)) = Ψ

[
min
i=1,2

Zki(s, ãw(s))

]
(3.77)

Where ãw(s) is sampled from the Gaussian policy network as defined in nominal SAC in Eq. (3.48).

3.3. Distributional Reinforcement Learning 56

Similar to SAC, the target double networks are soft-updated towards the current networks for training
stability using the Polyak step-size ζ. The architecture of DSAC is shown in Fig. 3.14, where the changes
w.r.t. nominal SAC in Fig. 3.11 are the distributional critic and the risk-measure applied to the Z-function
estimate. The critic is extended to the distributional representation and the loss function of the policy uses
a risk-distorted expectation Qr(s, a; k).

3.3.4 Synthesis
This chapter has presented an extension of deepRLmethods that estimate the entire distribution of returns.
The parameterization of the value distribution not only increases sample efficiency of w.r.t. traditional RL
agents, but also enables the use of risk-sensitive policies. Three core algorithms have been identified,
namely C51 [29], QR-DQN [30] and IQN [31], each of which improves on the representation and estimation
of the value distribution. IQN is capable of implicitly estimating a continuous value distribution while using
few additional parameters and hyperparameters. Additionally, IQN provides a simple implementation of
risk-distortion functions that can be applied to change the risk-tendency of the policy.

In order to apply distributional RL to high-dimensional continuous state-action spaces, as posed by
Research Question 2, it was found that the distributional soft actor-critic (DSAC) [32] is a promising can-
didate algorithm. The application of DSAC to flight control tasks can be compared to the nominal SAC
algorithm [68] as described in Section 3.2. The generalized risk-sensitivity framework of DSAC enables
the use of risk-distortions which makes it possible to study the effects of risk-sensitive learning.

Research Question 5 was posed to review how the risk-sensitivity of distributional RL affects their
performance at solving continuous control tasks. It has been found that risk-averse or adaptive risk-
tendency policies tend to outperform traditional risk-neutral settings. It is still an open question how the
risk-tendency during the learning process influences the sample efficiency or how the risk-tendency affects
the tracking performance of distributional RL controllers.

So far, this report has focused on providing background on RL methods and surveying state of the
art RL literature. Next, application oriented research is discussed that focuses on the use of deep and
distributional RL to solve flight control and relevant robotics control tasks.

3.4. Reinforcement Learning for Flight Control 57

3.4 Reinforcement Learning for Flight Control
The goal of applying reinforcement learning to flight control tasks is to introduce intelligent control systems
without requiring priori knowledge of the plant dynamics. In order to solve the flight control problem using
model-free RL, the agent must be able to tackle high-dimensional continuous action-spaces with highly
nonlinear transition dynamics and high levels of coupling in a 6 DOF environment. As discussed in Chap-
ter 1, traditional FCSD approaches have traditionally relied on known plant dynamics and have configured
automatic control systems to work in predetermined flight conditions. Recent research has demonstrated
that RL approaches improve the control system’s ability to handle unexpected scenarios and have the
ability to handle varying degrees of risk without the need of priori knowledge about the plant dynamics.

Previous chapters so far have provided background in the fundamentals of RL approaches and recent
advances in deep RL algorithms. Additionally, the class of distributional RL methods has been shown to
increase sample efficiency and provide the ability to define complex risk-sensitive behaviours. The goal
of this chapter is to place RL approaches within the context of flight control, survey application oriented
RL research that can be applied to high-dimensional continuous action spaces and to identify the state of
the art of RL flight control, as posed by RQ 1 and RQ 2.

Firstly, Subsection 3.4.1 formulates the continuous flight control as an RL problem and provides an
overview of the main challenges. Secondly, the class of adaptive critic designs (ACDs) is introduced in
Subsection 3.4.2 within the context of flight control research. Then, control applications of distributional RL
are presented in Subsection 3.4.3 that illustrate the applicability of distributional RL to real-world control
tasks. Lastly, state of the art RL research is discussed for flight control tasks in Subsection 3.4.4 follow
by a synthesis of the chapter in Subsection 3.4.5.

3.4.1 Flight Control as an RL Task
The motion of aircraft is described by nonlinear dynamics, where the state-action space is often high-
dimensional and continuous. The generalized nonaffine form can be written as shown in Eq. (3.78) where
the assumption is made that the dynamics are stationary on short time scales.

ẋ = f(x, u, t) ≈ f(x, u) (3.78)

Where f is the nonlinear state transition function of the system, x ∈ Rn is the state vector of the aircraft
and u ∈ Rm is the vector of control inputs. The state transition function f denotes the equations of motion
(EOM), where the nonlinearities are often due to the complex aerodynamics of the aircraft. The state
vector for 6 DOF may consist of position p ∈ R3, velocity v = [u, v, w]t ∈ R3, unit-quaternion rotation
q ∈ R4 or Euler-angle rotation [ϕ, θ, ψ]T ∈ R3 and angular velocity Ω = [p, q, r]T ∈ R3. The velocity vector
is often represented using the total airspeed V = ∥v∥, angle of attack α = atan

(
w
u

)
and angle of sideslip

β = atan
(

v√
u2+w2

)
due to to their aerodynamic significance. In the case of traditional fixed-wing aircraft,

the control input u is often the deflection of the control surfaces and the thrust setting. An example control
input is u = [δe, δa, δr, δT]

T depicting the elevator, aileron and rudder deflections and the thrust setting
respectively. Additional control inputs may be secondary control surface deflections, such as flaps and
slates that can change the aerodynamic properties of the aircraft.

Additionally, when dealing with fixed-wing aircraft the dynamics and the state-space can be separated,
i.e. de-coupled into longitudinal and lateral degrees of freedom. This de-coupling often allows RL research
to reduce the DOF of the control task while maintaining fidelity.

MDP Formulation

Regulation problems, i.e. control tasks may entail either state regulation, where the objective is to keep the
state near equilibrium or tracking control, where the objective is to track desired trajectories. Modelling
tracking control tasks as an MDP usually requires the use of an augmented system definition, i.e. the
system states are augmented with the tracking error signals and desired trajectories. For this reason, a
distinction has to be made between the observation vector s, that previous chapters referred to as the

3.4. Reinforcement Learning for Flight Control 58

state of the MDP, and the state vector x which describes the dynamic state of the plant. Often, especially
in a flat-RL case, x ⊂ s due to the augmentation, however this relation may vary depending on what
information is available to the RL agent in a given architecture. Generally, the actions available a are
either the same as the control inputs u or formulated in an incremental architecture: a = ∆u, in which
case the control input ut at time-step t is part of the observation vector [86].

An assumption is made that the observation vector s has the Markov-property for the plant dynamics
in question. The transition probability function was previously formulated as a stochastic mapping, such
that Ps′

s,a = P [a′ | a, s] for a given state-action pair. This directly translates to the state transition function
f , which describes the plant dynamics. The source of stochasticity in aircraft dynamics are in large part
due to the external disturbances acting on the system, such as wind gusts. The reward function is often
formulated, such that it is proportional to either the absolute tracking error Rabs(s, a) ∝ |yref − x| or the
squared tracking error Rsq(s, a) ∝ (yref − x)2 where yref is the reference trajectory [28]. Several appli-
cations of RL to robotics and control tasks also add an action penalty term to the reward function that
penalizes large action demands by the agent.

With the trajectory augmented action-space definition, the stochastic state transition given by the plant
dynamics and the tracking error-based reward function the flight control task can be formulated as an MDP
using the tuple M = ⟨S,A, R,P, γ⟩.

Challenges

As mentioned in Chapter 1, the two primary challenges of applying RL to flight control are the safety and
efficiency of learning and both of these challenges merit their own fields of research within flight control
RL applications.

Safety of Learning The application of RL to safety-critical systems poses the risk of the agent choosing
actions that lead to catastrophic outcomes. The agent exhibiting dangerous behaviour can take place
not only during exploration and training, but also post-training when a near-optimal policy has been found
and the agent encounters unexplored states [87]. Methods that focus on tackling such issues are Safe
Learning algorithms and often focus on constraining the actions of the flight control agent both during
and after training, such that the flight envelope of the aircraft is not breached and loss of control (LOC) is
avoided [88].

For flight control applications SHERPA was developed by [88, 89] which stands for: Safety Handling
Exploration with Risk Perception Algorithm. The SHERPA safety filter keeps track of a so-called fatal state
space and ensures that the agent stays away from states that have a high risk associated with them, i.e.
they lead towards the fatal state space. The set of safe states is gradually expanded during exploration.
SHERPA has been demonstrated to facilitate safe learning for low level flight control of UAVs in [90].

Efficiency of Learning The efficiency of learning is a challenge for aircraft control due to high-dimensionality
of the state-action space. The curse of dimensionality makes it exponentially more difficult to explore such
high-dimensional state-action spaces which additionally may have sharp nonlinearities due to complex
aerodynamic interactions.

In order to tackle the curse of dimensionality, concepts from Hierarchical Reinforcement Learning
(HRL) [91] are often adopted to use a cascaded structure of RL agents that each control a smaller, more
specific task within the control architecture. Hierarchical Reinforcement Learning (HRL) is an extension
of RL which attempts to solve the curse of dimensionality by decomposing the original learning task into
several smaller RL problems. The RL agents in a cascaded hierarchy use a subset of the augmented
state vector that corresponds with separated dynamics that the agent is controlling.

Such cascaded architectures make use of the concept of time-scale separation and allow the inner-
loop agents to control a subset of target states. This reduces the dimensionality of the RL problem and
increases the sample efficiency of the architecture. This paradigm of time-scale separation is often utilized
in traditional FCSD, as well. For example traditional airplanes, as well as multi-rotor or VTOL UAVs
generally exhibit rotational rate dynamics that have an order of magnitude faster time-scales w.r.t. attitude
dynamics, which allows the use of cascaded controller architectures. Figure 3.15 shows a simplified

3.4. Reinforcement Learning for Flight Control 59

PlantAgent

Reward

y

e a = u

x

r

x

+ −

(a) Flat-RL

PlantAgent 1

Reward 1

Agent 2

Reward 2

x = [x1, x2]
Ty2

e2 a2 = y1 e1 a1 = u

r1r2

x1

x2

+ − + −

(b) Cascaded-HRL

Figure 3.15: Example of a flat-RL and a cascaded hierarchical RL control architecture.

depiction of two control architectures. The flat-RL approach is shown in Fig. 3.15a, where one agent uses
the whole augmented observation. The cascaded HRL architecture is shown in Fig. 3.15b, where the
inner-loop dynamics is assumed to have much faster time-scales than the outer-loop dynamics. This way,
the state-space can be separated into x1 ∈ X1 and x2 ∈ X2, such that X1,X2 ⊂ X and multiple agents
can be trained to control a smaller dimensional state-action space.

In a more general context, HRL creates abstractions within the MDP, such as temporal abstractions
(Options) by [92] where the actions chosen by the agent may last for multiple time-steps, or hierarchies
of abstract machines (HAM) [93] where a hierarchy of agents use exploit priori knowledge to solve high-
dimensional RL tasks. Additionally, the approach of MAXQ [94] decomposes the value function of the
MDP into a combination of value-functions from sub-MDPs.

Options has been demonstrated to increase sample efficiency when applied to the flight control of an
F-16 [95]. Cascaded control architectures have been shown to result in more efficient and stable learning
for controlling CS-25 certified aircraft [86, 28].

Simulation Gap The concept of a simulation gap refers to the phenomenon of the discrepancy between
the simulated environment used to train RL agents or design controllers and the real-world environment
used to deploy the algorithms. Due to the fact that aircraft are safety-critical system, using online learning
alone is often not an option due to risk posed by stochastic exploration strategies and the cost associated
with complex systems. Therefore, it is standard practice to first train RL controllers offline and then transfer
the trained, or partially trained agent to the real-world system.

The performance of the RL agent degrades when the discrepancies between simulated environment
and real-world application are dominant. Such discrepancies are in part due to model-errors, measure-
ment, sensor and control input delays, and noisy/biased state estimates. This list is non-exhaustive and it
is an active research area to bridge this gap between simulation and real-world application without degra-
dation of control performance and loss of safety [96, 84]. The simulation gap also shows the importance
of studying the robustness of RL methods w.r.t. model errors, studying their ability to deal with failures and
their ability to generalize control laws over large state-action spaces. Distributional RL and risk-sensitive
approaches have the ability to improve on closing the simulation gap by providing risk-averse policies for
both exploration and post-learning deployment.

3.4.2 Adaptive Critic Designs
Adaptive Critic Designs (ACDs) are a class of Approximate Dynamics Programming (ADP) methods. Both
ADP and RL provide approximate solutions to the dynamic programming problem and have been used to
denote the same class of methods interchangeably. A distinction is made between Adaptive Critic Designs
and the RL methods discussed so far, due to the fact that ADP research has mostly focused on the optimal
control of continuous systems, while RL research had been extensive on discrete systems [97]. Since
ACD methods approach the RL problem from a control theory viewpoint, they are discussed primarily in
the context of flight control research, separately from deep RL methods. The reason ADP research has
been prevalent in flight control is two-fold. Firstly, ACD methods describe online adaptive methods which
is essential to achieve autonomous RL-based control systems. Secondly, the primary focus of ACDs is

3.4. Reinforcement Learning for Flight Control 60

the optimal control of continuous dynamic systems of the nonaffine form shown in Eq. (3.78) or the affine
form: ẋ = f(x) + g(x)u.

Three primary classes of ACDs can be defined. The most extensively researched class is Heuristic
Dynamic Programming (HDP), which uses a critic ANN to approximate the value function. The second
architecture is Dual Heuristic Dynamic Programming (DHP), where the critic estimates the derivative of
the value function with respect to the state variables. A combination of HDP and DHP results in Global
Dual Heuristic Dynamic Programming (GDHP) methods, which estimate both the value function and the
derivative at the cost of higher computational complexity for the benefit of high approximation accuracy.
All of these methods have an action-dependent variant, where the control policy is added to the inputs
of the critic network [66]. Such action-dependent ADP variants have similar architecture to that of DPG
approaches mentioned in Subsection 3.2.4. Most of the ACD algorithms estimate an online model of
the plant dynamics and are therefore model-based RL approaches. The incremental forms of ACDs aim
to reduce model-dependence through the use of linearized incremental model identification. Table 3.2
presents the mentioned variants of ACD architectures.

Table 3.2: Table of ACD methods

Heuristic Global Dual-Heuristic

HDP GDHP DHP
Action-dependent ADHDP ADGDHP ADDHP
Incremental (iADP) IHDP IGDHP IDHP

Traditional HDP methods update the model network by minimizing the difference between state pre-
diction and state measurement. The incremental approaches of ADP (iADP) [98] provide a framework
for model-free, adaptive control of nonlinear systems by updating a linearized model and exploiting incre-
mental model-identification techniques. Methods such as IHDP, IDHP and IGDHP[18] are model-free in
the sense that no priori model identification is needed, however use an internal incremental linear model
of the system that is identified online.

Even though IDHP and similar iADP methods are great at online learning and adaptation, due to the
local linearization tend to struggle with their generalization. The converged control policy of IDHP is often
a localized linear mapping between states and control actions which the algorithm adjusts online.

Furthermore, their effectiveness has only been shown for limited degrees of freedom and small state-
action spaces. ADP methods do not yet have the sample efficiency to achieve outer-loop control of cou-
pled 6DOF dynamics [28]. It is an open research how these methods can perform well in high-dimensional
state-action spaces. The combined use of IDHP with traditional stability augmentation systems (SAS) [99]
has proved to be a promising approach to increase the scalability of ADP methods.

Lastly, the continual learning behaviour iADPmethods pose an additional challenge for safety [98, 100].
Extended time periods with little excitation can cause continually growing weights which can destabilize
learning. While IDHP and similar ACD methods are considered state of the art for online adaptive control,
their application is not considered for this research project due to their lack of nonlinear generalization
power, small DOF applicability and a need for persistent excitation. However, such methods are a vital
part of RL-based flight control due to the fact that online learning is essential for crossing the simulation
gap.

3.4.3 Distributional RL for Flight Control
In Section 3.3 the class of distributional RL was presented as an extension of traditional RL methods.
Distributional RL has shown promising results in terms of sample efficiency and performance and several
studies have shown the benefits of risk-sensitive RL. This section presents application-oriented research
that applies distributional RL to real-world tasks in robotics, control and navigation.

A project with real-world application by [33] has shown that QR-DQN can successfully learn the control
of under-actuated stratospheric balloons, whose task is to maintain position around a reference location.

3.4. Reinforcement Learning for Flight Control 61

While their research is not focused on comparing distributional RL to traditional RL methods, their results
show a direct application of distributional RL in a control task for which traditional control system design
is non-trivial due to the complexity of under-actuated control and navigation.

The QT-OPT algorithm applied by [101] is a version of distributional RL that can be applied to continu-
ous actions. The algorithm was tested that on a robot grasping task that used computer vision and results
showed that the distributional tests achieve higher success rate using fewer samples. Furthermore, they
tested risk-sensitive policies using the distortion functions listed in Subsection 3.3.2, and found that often
risk-sensitive behaviours result in better learning performance w.r.t. risk-neutral and risk-seeking settings.
In special cases, such as extremely conservative risk-averse strategies the learning can be unstable.

In [34], a path planning framework is developed to assist in minimally-invasive surgeries using dis-
tributional RL. Universal Distributional Q-Learning (UDQL) is proposed to learn the action-value distri-
bution function and assist the surgeons in planning and risk-management during single-insertion point
multi-objective tasks. Their results show significantly improved accuracy and robustness achieved by the
distributional agent w.r.t. the compared nominal DQN approaches.

Robust bus control has been achieved by [35] using a continuous variant of the IQN framework. The
multi-agent RL architecture used risk-distortions to apply risk-sensitivity and make the system more ro-
bust to uncertainties, anomalies and perturbations. Furthermore, risk-sensitive robot navigation has been
demonstrated by [102], using their proposed risk-conditioned DSAC method. which is a distributional
actor-critic approach capable of adjusting its risk-tendency post-learning. The risk-sensitive approach re-
sulted in the increased safety of a robot navigating the partially observable environment. In addition to
the increased safety, the authors observed increase sample efficiency and performance.

Recent developments have shown that distributional RL agents can also adapt and adjust their risk-
tendency to deal with uncertainties or unexpected situations. A safe RL architecture proposed by [103]
uses distributional RL to adapt the conservatism of policies based on desired safety levels and desired
comfort level of the passenger in an autonomous vehicle. The safety verification layer in [103] penalizes
the distributional RL agent which in turn learns a risk-aware value distribution function. Their architecture
is based on the IQN parameterization and demonstrated the capability to perform safer lane merging and
turning manoeuvres with a self-driving car.

A similar approach was used in the proposal of a risk-adaptive IQN [78], where distributional RL frame-
work is used to navigate a multi-rotor UAV through obstacles in a partially observable environment. The
adaptive risk-tendency (ART-IQN) approach is proposed by [78] where the variance of the return distribu-
tion is used as an uncertainty metric to dynamically adjust the risk-tendency of the IQN agent.

3.4.4 State of the Art
This section presents recent research conducted on applying deep reinforcement learning to flight control
tasks. This part of the survey focuses on the application of the state of the art actor-critic methods SAC
& TD3 to continuous flight control tasks.

SAC and TD3 for Flying-wing Control A recent study by [104] has shown the successful use SAC
and TD3 methods to control and suppress high-angle of attack roll oscillations prevalent in flying-wing
designs. Such roll oscillations are inherently unsafe and increase the risk of LOC. Using traditional FCSD
techniques is difficult for such situations as the relevant aerodynamic phenomena are highly nonlinear
and complex resulting in non-trivial controller synthesis.

The model-free RL techniques of SAC and TD3 were applied in [104] to successfully suppress these
roll oscillations. Their findings shows a significant difference in learning stability, as the SAC algorithm
exploits its stochastic policy to ensure efficient exploration which makes the learning curve of TD3 more
stable in comparison with reduced variance.

When applying the agents to a real-world test setup, the authors have identified the presence of laten-
cies which render the dynamics of the aircraft non-Markovian. In order to counteract these delays and
to ensure the Markov-property, the observation space of the agents was extended to include a history of
previous time-steps, a memory that allows the agents to learn an implicit model of the complex aerody-

3.4. Reinforcement Learning for Flight Control 62

namic interactions. The results of [104] show the need for high nonlinear approximation and generalization
power and the need for methods that are capable of modelling complex dynamics of aerospace systems.

SAC for Fault-tolerant Flight Control Due to the prevalence of loss of control failures in flight accidents,
studying the fault-tolerant capabilities of RL is central to increasing the safety of complex aerospace sys-
tems. In a study by [28], the SAC algorithm was applied to achieve fault-tolerant flight control of the
validated model of the PH-LAB aircraft.

In order to achieve a robust control architecture, [28] defines a hierarchical cascade of multiple SAC
controllers that makes use of the time-scale separation of aircraft rotational dynamics, as shown in Fig. 3.16.
Altitude hR and attitude references ϕR, βR are given to two SAC controllers, which determine the incre-
mental actions: change in pitch angle reference∆θR and change in control surface deflections∆δ, where
δ denotes the vector of control surface deflections: δ = [δe, δa, δr]

T for shorter notation. This incremental
formulation requires the agents to store the current control input as part of the observation vector as seen
by the feedback of θR and δ in Fig. 3.16. Such incremental formulation produces smoother control policies
at the cost of increasing the dimension of the observation space.

PlantSAC Attitude
Controller

SAC Altitude
Controller

x

hR

ϕR

βR

∆θR θR

∆δ δ

p, q, r

h

β

ϕ

r̃ r̃

+ −

+

−

+

−

+ +

+ +

Figure 3.16: Adapted from [28]; Cascaded HRL architecture to control several DOF of the PH-LAB
aircraft using multiple SAC agents.

Six failure-cases / changes to the plant dynamics are introduced as an unexpected change not seen
during training. In addition to fault-tolerance, the robustness of the SAC controllers is tested for varying
initial flight conditions, sensor bias and noise and atmospheric disturbances.

The results of [28] demonstrate SAC’s fault-tolerance as the agent maintains stability and achieves
the tracking task in the face of induced unexpected failures. This robust, fault-tolerant capability of SAC
is attributed to its high generalization power and better exploration and the authors point out that unlike
model-based controllers, this approach can adapt to failed flight conditions.

Future work recommended by [28] focuses on increasing the training reliability of SAC to increase the
offline training consistency of the algorithm.

3.4. Reinforcement Learning for Flight Control 63

3.4.5 Synthesis
This chapter presented flight control as an RL task and surveyed recent developments in flight control
related RL research. The primary challenges of the application of RL to real-world aerospace systems is
the concern of safety, the efficiency of learning and the simulation gap that is currently present in flight
control research between the offline and online training of RL agents.

While numerous advancements have been made in the application of ACDs for online adaptive flight
control, state of the art ADP methods are limited in their generalization power and their sample efficiency
to learn large state-action spaces and to implicitly model complex aerodynamic phenomena.

It has been found that distributional RL has not been directly applied to low-level flight control, however
there are numerous robotics and flight control related examples of successful applications of risk-sensitive
distributional RL methods. Furthermore, there are multiple proposals of an adaptive risk-tendency frame-
work that allows the distributional RL agent to adjust its risk-sensitive tendency dynamically based on
uncertainties in the environment. A consensus between application oriented distributional RL research
papers is the fact that the parameterization of the return distribution improves the sample efficiency and
tracking performance of the agent.

Moreover, state of the art actor-critic DRLmethods have been successfully applied to high-dimensional
flight control tasks. SAC has been shown to achieve fault-tolerant and robust flight control at the cost
of inconsistent offline learning. A hierarchical cascade of SAC agents have the generalization power
to control high-dimensional continuous systems, which makes SAC a promising candidate to study its
extension to distributional RL. This chapter investigated the most suitable DRL methods for flight control
tasks as posed by Research Question 1. The most recent developments in flight control RL research
show that continuous control methods such as SAC and TD3 excel at the high-dimensional control tasks
and SAC has been shown to be able to maintain stability and tracking in the face of model errors, sensors
biases and failures.

Next, the methodology and results of the preliminary analysis are presented that aim to support the
findings of the literature review using empirical evidence and to show the feasibility of using distributional
RL for a continuous flight control task.

4
Preliminary Work

In order to further investigate Research Questions 1, 2 and 3, preliminary analysis has been done us-
ing simple RL environments that emulate the task of continuous flight control. The primary goal of the
preliminary analysis is to assess feasibility of applying distributional methods to flight control tasks. The
secondary goal is to support the literature driven findings of this report with empirical data on the learning
and tracking performance of certain traditional RL and distributional RL architectures.

The two environments used are a simple pendulum environment [105] with a continuous action space
and a linear model of a Cessna 500 aircraft [106] that has similar properties to the PH-LAB research
aircraft [107] which is the target aircraft model of this research project.

First, the methodology of the preliminary analysis is presented in Section 4.1 which elaborates on the
environments, the algorithm choice (SAC and DSAC) and the approach used to train and evaluate the
agents. Then, the results are summarized for both environments in Section 4.2, followed by a synthesis
of the preliminary work in Section 4.3.

4.1 Methodology
This section discusses the methodology of the preliminary analysis. First, the environment used for the
continuous control task is presented in Subsection 4.1.1. Secondly, the algorithms used for the analysis
are discussed in Subsection 4.1.2. Then, the training and evaluation methods are briefly elaborated in
Subsection 4.1.3.

4.1.1 Environments
The preliminary analysis is conducted on two environments. Firstly, the effectiveness of applying distribu-
tional RL is shown on the simple openAI pendulum environment [105]. Secondly, a linear time-invariant
(LTI) model of the short-period dynamics of a Cessna 500 is used to demonstrate the feasibility of applying
distributional RL to flight control.

Pendulum

The goal of the pendulum gym control task is to keep the pendulum in a vertical position. The observation
vector provided to the agent encodes three states: the sine and cosine of θ and the angular velocity of
the pendulum, i.e. the time-derivative dθ/dt, where θ is the orientation of the pendulum w.r.t. the vertical
as shown in Fig. 4.1.

The action available to the agent is a continuous torque signal T ∈ [−2, 2] [Nm] and the reward function
applies a penalty to larger deviations from the vertical, large angular velocities and large actions. This
results in the observation vector, action vector and reward function shown in Eqs. (4.1) to (4.3):

64

4.1. Methodology 65

s =

[
cos(θ), sin(θ), dθ

dt

]
(4.1)

a = [T] (4.2)

R(s, a) = −
(
θ2 + 0.1 · dθ

dt
+ 0.001 · T 2

)
, θ ∈ [−π, π] (4.3)

Figure 4.1: Adapted from [105]; openAI gym Pendulum-v1 environment.

Cessna 500

The primary objective of the research project is to control the validated simulation model of the CS-25
certified PH-LAB Cessna Citation II [107] research aircraft. To approximate the dynamics of the PH-LAB
research aircraft, an LTI model of the similar Cessna 500 (Ce500 henceforth) is used from [106]. The
state space model approximates the short period motion of the aircraft, trimmed at ≈ 60 m/s airspeed.

Figure 4.2: Cessna 500 (Ce500) short period model with two states: angle of attack (a.o.a) α and pitch
rate q. The control input is the elevator deflection δe.

The state space model has two states, namely the angle of attack α [rad] and the pitch rate q [rad/s],
and has a single continuous action that controls the elevator deflection δel [rad]. These states and the
elevator deflection are shown in Fig. 4.2. Only the state transition dynamics of the state space: A and B
are considered., i.e.: C = I and D = 0. The state space is given by:

A =

V
c̄

CZα

2µc−CZα̇

2µc+CZq

2µc−CZα̇

V
c̄

CMα+CZα

CMα̇
2µc−CZα̇

2µcK2
Y

V
c̄

CMq+CMα̇

2µc+CZq
2µc−CZα̇

2µcK2
Y

, B =

V
c̄

CZδe

2µc−CZα̇

V
c̄

CMδe
+

CMα̇
2µc−CZα̇

2µcK2
Y

(4.4)

Where the parameters are given in Table 4.1.

4.1. Methodology 66

Table 4.1: Ce500 LTI model parameters

Geometry & Trim Stability & Control Derivatives

V 59.9 m/s CZα
−5.16 CMα

−0.43
c̄ 2.02 m CZα̇

−1.43 CMα̇
−3.7

µc −1.55 CZq
−3.86 CMq

−7.04
K2

Y 0.98 CZδe
−0.62 CMδe

102.7

4.1.2 Algorithms used
Previous chapters have discussed state of the art RL methods that can be used for the continuous control
of high-dimensional state-action spaces. Section 3.2 has identified actor-critic methods, such as SAC as
the most promising class of approaches to control continuous action space. While purely value-based
approaches, such as DQN have great performance for discrete spaces, their application to control task
requires either an optimization step to find the best action or the discretization of the action space. Some
research in flight control application of RL, such as [95] has shown the method of discretizing the action
space. The required resolution to achieve high tracking performance comes with dimensionality costs to
purely value-based methods.

Furthermore, Section 3.4 discussed the prevalence of hierarchical cascades of RL agents used for
high-dimensional flight control tasks. Flat-RL architectures use the entire state-action space to control
complex systems whereas HRL architectures divide the control task into smaller sub-tasks, as mentioned
in Subsection 3.4.1. The use of a hierarchical cascade of agents is most likely necessary to achieve
successful control of a high-dimensional aircraft model.

Lastly, the objective of this research is to study the use of distributional agents. Section 3.3 has identi-
fied that IQN is an efficient way to parameterize the continuous return distribution. The DSAC algorithm,
which can make use of implicit quantile networks as critics has shown state of the art performance in
risk-sensitive control of continuous systems.

These 3 variations of RL methods, i.e. the type of action-space, the hierarchical structure of the control
system and the addition of distributional methods is depicted in the experiment matrix in Fig. 4.3.

Flat

Cascaded

Disc
retiz

ed

Con
tinuo

us
Traditional

Distributional

SAC

DSAC

DQN

IQN

Casc-DQN

Casc-IQN

Actio
n Spac

e Hierarchy

Figure 4.3: Experiment matrix for the preliminary analysis of applying applying Distributional RL to a
continuous control task

The most promising algorithms that were identified are the soft actor-critic method proposed by [50,
68], which is discussed in detail in Subsection 3.2.4. SAC has great generalization power and has been
found to outperform TD3 for certain control tasks [74]. More importantly, it models the action-space as a
Gaussian distribution and [32] has found that the combination of a distributional critic and a distributional
actor to significantly improve on performance and robustness.

4.1. Methodology 67

For these reasons SAC and DSAC algorithms are studied for the two environments mentioned above.
Since the environments are relatively simple and there is no obvious way to subdivide the MDP based on
time-scale separation, the preliminary analysis only considers flat-RL architectures, however the use of
HRL will be necessary for future work on high-dimensional models.

The pendulum environment is used to support the findings of literature about the increased sample
efficiency of distributional RL. The control of the Ce500 LTI model is used to show the feasibility of using
DSAC for a flight control task.

4.1.3 Training & Evaluation
In order to train the agents for the Ce500 control task, a randomized training signal is generated at the
start of each episode. The goal of the control task is to track the angle of attack (a.o.a) αR reference
signal throughout the episode. The generated random reference signal is a series of random steps with
amplitudes that are sampled from a uniform distribution U([−Atr, Atr]) [deg]. The width of each step block
is htr [s] with a slight offset in timing, in order to ensure the agent cannot take advantage of the periodicity.
An example of the randomized step sequence is shown in Fig. 4.4:

0 5 10 15 20 25 30 35 40

−5

0

5

10

Time [s]

α
R
[d
eg
]

Figure 4.4: Example of a randomized step sequence used as an α-tracking reference signal for training.

For the control of the Ce500 plant, incremental elevator deflection control inputs are used similarly
to the implementation in [28]. The agent controls the elevator deflection by applying incremental ∆δel
changes, that are limited by deflection rate saturations. In order to train the agent, the smallest possible
observation space of the control task MDP is produced by using the observation vector s = [αR − α, δel],
where αR is the reference angle of attack and αR − α is the tracking error. This results in a control
architecture shown in Fig. 4.5.

Ce500SAC / DSAC
Controller

q

α
αR

∆δel δel
α

r

+

−
+ +

Figure 4.5: RL architecture to control the angle of attack of the Ce500 LTI model.

The reward function is proportional to the tracking error and is given by Eq. (4.5):

R(s, a) = − ∆t

Tmax

[
Ce ·

∣∣αR − α
∣∣+ Cδe · δe + C∆δe ·∆δe

]
(4.5)

WhereCe is a tracking error penalty weight,∆t is the sampling time of the simulation, Tmax is the maximum
time of the episode. The term ∆t

Tmax
is used to make the scale of the reward signal invariant to different

time settings.

4.1. Methodology 68

The trained agents are evaluated on two types of reference signals. The first signal is a composite
sinusoid that has previously been used to study the performance of RL agents controlling similar aircraft
[28]. Furthermore, the sinusoid evaluation signal tests the capability of the agent to respond to reference
signals not encountered during training. The sinusoid is given by Eq. (4.6) using two frequencies chosen to
be f1 = 0.1 and f2 = 0.05. The amplitude Aev is chosen to be half of the maximum amplitude encountered
during training, similarly to the approach of [95]. The second evaluation reference signal used is a 3-2-1-1
signal which is a sequence of blocks with varying time duration. Both signals are shown in Fig. 4.6

αR
sine = Aev (sin(2πf1) + sin(2πf2)) (4.6)

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
R
[d
eg
]

(a) Sinusoidal evaluation reference signal

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
R
[d
eg
]

(b) 3-2-1-1 evaluation reference signal

Figure 4.6: Angle of attack reference signals for evaluating trained SAC and DSAC agents.

The architecture shown in Fig. 4.5, the reward function shown in Eq. (4.5) and the different types of
training signal results in a set of hyperparameters that define the control task that the RL agents learn.
The parameters used for the preliminary analysis are shown in Subsection 4.1.3.

Table 4.2: Hyperparameters for the training signals, simulation, reward signal and evaluation signal
definitions

Parameter Notation Value Unit Parameter Notation Value Unit

Time settings Training-signal

Sampling time ∆t 0.02 [s] Random amplitude Atr 10.0 [deg]
Episode duration Tmax 30 [s] Random block width htr 3.0± 0.2 [s]

Reward-function Evaluation-signals

Error weight Ce 1 [-] Evaluation amplitude Aev 5.0 [deg]
Deflection weight Cδe 0.001 [-] Sine-frequencies [f1, f2] [0.1, 0.05] [Hz]
Action weight C∆δe 0.005 [-] 3-2-1-1 block width hev 3.0 [s]

4.2. Results 69

4.2 Results
This section presents the results of training SAC and DSAC agents on the two simplified continuous control
task environments. Firstly, the learning performance of the two methods is compared using the training
on the pendulum environment in Subsection 4.2.1. Then, the feasibility of applying SAC and DSAC on
the Ce500 α-tracking flight control task is presented in Subsection 4.2.2.

The same hyperparameter set was used for the two algorithms SAC and DSAC. The hyperparameters
are slightly different for the two environments as shown in Table 4.3 and were tuned to produce stable
learning curves. The DSAC algorithm has 3 additional hyperparameters that tune the size of the quantile
embedding layer of the implicit quantile network and the size of the quantile tensor used to approximate
the return distribution. The values chosen are based on the original IQN paper [31] and on ART-IQN [78].

Table 4.3: Hyperparameters for training the SAC and DSAC agents for the pendulum task.

Parameter Notation Pendulum Ce500

Nr. of hidden layers Nlayers 5 3

Nr. of hidden units Nunits 64 64

Learning rate αLR 1e−3 3e−4
Discount rate γ 0.99 0.99

Batch size |B| 128 256

Buffer size |D| 1e6 1e5
Polyak step-size ζ 0.995 0.995

IQN parameters (DSAC only)

Nr. of cosine embedding units C 64 64

Nr. of quantiles N 8 8

Nr. of quantiles for expectation K 16 32

4.2.1 Learning performance
In order to study the learning performance, 30 agents were trained for both SAC and DSAC on the pen-
dulum environment. The learning curve for the pendulum environment is presented in Fig. 4.7 for both
agents. The lines represent the mean curves over the 30 trained agents of each algorithm and the color
filled areas represent the standard deviations.

0 5 10 15 20 25 30 35 40 45

−1,500

−1,000

−500

0

Episodes [-]

R
ew

ar
ds

[-]

µSAC
µDSAC
SAC final score
SAC converged
DSAC converged

Figure 4.7: Learning curve (N=30) of the SAC and DSAC agents (Pendulum-v1) with sample efficiency
markers.

4.2. Results 70

It can be seen in Fig. 4.7 that the distributional agent generally has better final tracking performance,
a learning curve with less variance and the distributional agents tend to converge using fewer samples,
which points to an increased sample efficiency.

In order to quantify the observed improvements, the trained agents are evaluated on a set of k = 10
episodes and the average scores are taken to represent the final trained tracking performances. The
box plot in Fig. 4.8 shows a significant decrease in variance of results and a general increase in median
performance for the DSAC algorithm. The final tracking score is increased by 86.6, which is a 32% relative
improvement, with a two-tailed p-value of 2.14%.

In addition to the reduced variance of the learning curve, the final tracking scores also exhibit lower vari-
ances, as shown in Fig. 4.8. A 55% reduction in final score variance can be observed in the performance
of the trained agents and a 72% reduction in the variance of end-of-episode rewards can be observed
during training. This reduction in variance points to the distributional agent’s robustness to stochastic
processes and shows increased consistency in the outcomes of converged policies.

σ = 106.7

σ = 58.86

−55%

µ = −266

µ = −180

−800 −600 −400 −200 0

DSAC

SAC

End-of-episode rewards

+32%

Figure 4.8: Average (k=10) score statistics of SAC and DSAC agents after training.

In order to quantify the sample efficiency improvement of the DSAC agent w.r.t. the SAC method, the
amount of samples each algorithm requires to reach a given performance has to be determined. Due to
the 32% relative increase in final score, the converged end-of-episode return of SAC (the lower of the two)
is used as a point of interest to compare the sample efficiency of the two methods. As shown in Fig. 4.9
the DSAC agent reaches the converged final score 4.6 episodes sooner, which translates to an increased
sample efficiency of 20% with a two-tailed p-value of 1.6e−6.

For the Ce500, the learning curve of the two agents is shown in Fig. 4.9, with a smaller sample size
(N = 15). Additionally, due to the environment and the control task of tracking angle of attack resulted in
a relatively fast learning performance from both methods with little variance in results.

0 2 4 6 8 10 12 14 16 18

−2

−1

0
·104

Episodes [-]

R
ew

ar
ds

[-]

µSAC
µDSAC

Figure 4.9: Learning curve (N=15) of the SAC and DSAC agents for the Ce500 control task, with mean
µ and standard deviation.

4.2. Results 71

4.2.2 Flight Control Feasibility
As shown in Fig. 4.9 a number of agents were trained for the angle of attack tracking control task. This
subsection presents examples of trained agents and their control tracking performance evaluated on the
two reference signals mentioned in Section 4.1. With the selected hyperparameter set shown in Table 4.3,
both methods have a high success rate at angle of attack tracking.

The angle of attack tracking results of an example trained SAC agent are shown in Fig. 4.10 and the
results of en example DSAC agent are shown in Fig. 4.11 for both a sinusoidal and a 3-2-1-1 evaluation
signal. For the evaluation task, the aircraft model starts in trimmed conditions, i.e. [α, q]T = 0. Both
agents achieve adequate tracking performance for the evaluation signals, however the converged policy
often results in poor damping for step inputs.

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
[d
eg
]

a.o.a
reference

(a) Sinusoidal reference

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
[d
eg
]

a.o.a
reference

(b) 3-2-1-1 reference

Figure 4.10: SAC post-training control tracking performance evaluation.

High-frequency oscillations

In some cases, (in about 30% of agents) the converged policy contains high-frequency high-amplitude
oscillations that manage to achieve high returns on the a.o.a. tracking task. However, such policies are
not practical for real-world use cases and robotics/flight control applications. The tendency to converge
on such binary policies can be reduced by a number of approaches. Firstly, increasing the penalty weight
of high actions (Cδe , Ca) in the reward function reduces the occurrence of such policies. Secondly, a
regularization approach can be implemented as proposed by [108], where additional loss terms are added
to the policy objective function to encourage the policy to be smooth both in a temporal sense (ensure
subsequent actions are similar) and in a spatial sense (ensure that similar states result in similar actions).
The implementation of realistic control laws can be investigated in future work with higher fidelity models

4.2. Results 72

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
[d
eg
]

a.o.a
reference

(a) Sinusoidal reference

0 5 10 15 20 25 30 35 40

−5

0

5

Time [s]

α
[d
eg
]

a.o.a
reference

(b) 3-2-1-1 reference

Figure 4.11: DSAC post-training control tracking performance evaluation.

where actuator dynamics plays a more vital role in the behaviour of the aircraft.

Wall-clock time

Due to the offline nature of the training it is also important to briefly discuss the computational complexity of
the twomethods. Although, the analysis of wall-clock time was not the focus of the preliminary analysis, no
significant increase in computation time was observed with the addition of the distributional representation.
The IQN representation of the return distribution function adds a low amount of additional parameters to
the DNN and therefore doesn’t come with a significant computational burden to

There are three sources of additional computational requirements that accompany the addition of
the double Z-function critic. Firstly, the SGD step has to be performed on the parameters of the cosine
embedding layer. Secondly, N quantile levels have to be generated which means that the size of the
input tensor for each forward pass is multiplied by factor of N = 8. Thirdly, the expectation (or risk-
distorted expectation) is obtained by performing a forward pass using K = 32 quantiles. In general,
these additional computations do not increase the overall complexity of the algorithm however future
investigation is required when dealing high-dimensional control tasks, such as the PH-LAB model.

4.3 Synthesis
This chapter gave an overview of the preliminary analysis done on applying a distributional actor-critic
method, namely DSAC to continuous control task. The openAI gym pendulum environment was used to
show that adding the distributional representation increases the sample efficiency (20%) and final track-
ing performance (32%) of the agent and achieves more consistent outcomes, when the comparison is
controlled for all hyperparameters and stochastic processes. A short period LTI model of the Cessna 500
aircraft was used to demonstrate the feasibility of using distributional SAC for flight control tasks. Both
methods consistently produce agents that are capable of tracking the angle of attack of the short period,
even if the agent did not encounter the evaluation reference signal.

During the process of hyperparameter tuning it was found that the choice of control task settings is
as important as the hyperparameters of the agent, which this report categorizes as the weights of the
reward function and the training & evaluation signals. A reward function with incorrect weights results in
inadequate control laws, or control laws that achieve adequate tracking control but use high-frequency
binary policies to do so.

Furthermore, this chapter has provided empirical evidence to support the findings of the literature,
i.e. that the addition of distributional RL increases the learning and tracking performance of the agent.
Furthermore, it has shown that DSAC is a viable architecture for flight control, with the ability to produce
risk-sensitive policies. Next, the findings of the literature review and preliminary work are concluded and
the future work of the research project is outlined to answer the remaining research questions.

73

Part III
Additional Results

74

5
Robustness Analysis

The simulated PH-LAB RL environment presented in Chapter 2 initializes the aircraft model at the same
trimmed initial flight condition (IFC) for each training episode and assumes ideal sensors and observa-
tions. The generalization power and robust performance of a cascaded SAC controller architecture has
been demonstrated by [28] for varying IFCs, model errors, and biased sensors polluted with noise. This
research project investigates the isolated effect of distributional RL and presents the findings that distribu-
tional SAC achieves similar tracking performance, while significantly improving the learning characteristics
of the agent.

In order to generalize the findings regarding achieved tracking performance, this chapter discusses the
response of the SAC and DSAC controllers when subjected to different IFCs and subjected to non-ideal
sensor measurements. Section 5.1 presents the evaluations performed at two additional flight conditions,
whereas Section 5.2 presents the tracking performance of the agents with noisy and biased measure-
ments.

5.1 Varying Initial Flight Conditions
As mentioned, the nominal training environment is initialized at the same trimmed flight condition for each
episode: at 2, 000 [m] altitude with an airspeed of 90 [m/s]. In order to investigate the robust performance
of each agent variant, i.e. SAC, risk-neutral (R.N.) DSAC and risk-averse (R.A.) DSAC, the trained agents
are subjected to evaluation attitude tracking tasks at two additional IFCs shown in Table 5.1.

Altitude [m] Airspeed [m/s]

training 2,000 90
IFC 1 2,000 150
IFC 2 10,000 90

Table 5.1: Initial Flight Conditions used for training and additional post-training evaluation.

The same reference signals outlined in Chapter 2 are used to evaluate tracking performance and the
nMAE metric is used to compare the tracking error. The nMAE values of the three agent variants are
shown in Table 5.2 for the two additional IFCs. Since, batches (n=10) of agents have been trained for
each variant, the mean nMAE performance metric is shown, along the with a p-value of the statistical
significance of distributional RL achieving better results.

It can be seen that all agent variants show degraded tracking performance for both additional IFCs,
compared to the results shown in Section 2.4. This is expected due to the lack of exploration in different
regions of the flight envelope. Additionally, the tracking performance of all variants is notably worse at IFC
2, as there are significant differences in aircraft dynamics at an altitude of 10, 000 [m].

75

5.2. Biased & Noisy Sensors 76

Table 5.2: Evaluation at varying IFCs; nMAE values for each agent type with indicated relative
improvements and p-values.

SAC R.N. DSAC R.A. DSAC

IFC nMAE nMAE (Rel.) p nMAE (Rel.) p

h=2,000 [m], V=150 [m/s] Baseline env.
12.8 12.4 (3.0%) 1.6e-1 12.8 (-0.2%) 9.2e-1

Augmented env.
13.6 13.5 (-0.4%) 9e-1 13.0 (-4.2%) 1.4e-1

h=10,000 [m], V=90 [m/s] Baseline env.
107.4 30.2 (-71.8%) 3.7e-1 14.4 (-86.6%) 2.7e-1

Augmented env.
20.1 13.9 (30.6%) 2.7e-1 22.7 (+12.9%) 8.2e-1

Figure 5.1 shows example time-domain responses at IFC 2, where the tracking performance changes
are significant. Figure 5.1(a, b) each show the mean response of a batch of agents where the shaded
area shows the 95% (2σ) confidence interval. It can be seen that the tracking response of SAC agents
is unreliable in all degrees of freedom, whereas risk-averse DSAC agents retain adequate lateral control
in most cases, with some oscillatory behaviour. The longitudinal response of risk-averse DSAC agents
shown in Fig. 5.1(b) also shows improvement relative to SAC, which is highlighted by the smaller variance
of end-of-episode altitude.

In addition to the batch visualizations, Fig. 5.1(c, d) show individual responses of the best performing
agents. Despite degraded longitudinal tracking performance, it can be seen that distributional agents are
capable of generalizing across unobservable states when considering lateral degrees of freedom.

5.2 Biased & Noisy Sensors
An assumption made in the training of SAC and DSAC agents, is that the PH-LAB simulated aircraft
model uses ideal sensors without noise and bias. In order to investigate the robustness of agents trained
using ideal state observations, Gaussian white noise and stationary bias is added to the RL state vector,
similarly to the methodology of [28]. The sensor noise statistics from [109] are used and are summarized
in Table 5.3.

State observation p, q, r [rad/s] θ, ϕ [rad] α, β [rad]

Noise STD 6.3e-4 3.2e-5 2.7e-4
Sensor Bias 3.0e-5 4.0e-3 1.8e-3

Table 5.3: Adopted from [28]; Sensor noise and bias characteristics of the Cessna Citation PH-LAB
research aircraft.

The nMAE results of evaluation are summarized in Table 5.4. Slightly degraded performance can be
observed for all agent variants, as expected for noisy observation. Despite the added noise and bias, all
variants achieve adequate tracking throughout the evaluation attitude control task.

When the sensors are polluted with noise and bias, Table 5.4 indicates the augmenting the observation
with noisy measurements of α can result in degraded performance for the SAC and risk-neutral DSAC
agents. However, since risk-averse DSAC agents are better at handling uncertainty in the environment,
a small relative improvement can be observed.

5.3. Synthesis 77

Table 5.4: Evaluation with sensor noise and bias nMAE values for each agent type, with indicated
relative improvement (Rel.). The p-value shows the t-test confidence level for the mean nMAE

improvement. Bold values show statistically significant differences with 5e-2 threshold.

SAC R.N. DSAC R.A. DSAC

nMAE nMAE (Rel.) p nMAE (Rel.) p

Baseline env.
13.2 12.95 (-2.02%) 4e-1 13.10 (-0.93%) 7e-1

Augmented env.
13.6 13.15 (-3.16%) 3e-1 12.89 (-5.07%) 6e-2

Example time-response of the agent variants are shown in Fig. 5.2 where the observation of the agent
is polluted with noise and bias according to Table 5.3. Figure 5.2 visualizes the mean response with a 95%
(2σ) confidence interval. As expected, the variance of trajectories is increased with the added stochasticity
of observations. No significant improvement of DSAC can be observed relative to the trained SAC agents,
however this investigation of added sensor noise shows the robust capability of the constructed algorithm.

5.3 Synthesis
In order to synthesize RL-based control laws that can be used in real-world aircraft, it is important to show
the generalization power of these algorithms, and to show their ability to handle real-world phenomena,
such as sensor noise and bias. Furthermore, the findings of Chapter 2 are specific to the assumptions
used to train the different agent variants. Two scope-limiting assumptions are the limited exploration of
the flight envelope and the use of ideal, non-biased observations of the dynamic states of the aircraft.

This chapter investigates the tracking performance of the baseline SAC and DSAC agents when eval-
uated at flight conditions not explored during training. Additionally, sensor noise and bias is added to the
observation of the agents that mimic the noise levels of the real-world aircraft.

It is shown that the trained agents are capable of handling realistic levels of measurement noise and
bias, resulting in a slight increase in variance. Furthermore, it is shown that all agent variants can gen-
eralize control laws to regions of the flight envelope where the aircraft dynamics are similar to that of the
training conditions. However, initializing the simulation at an altitude of 10, 000 [m] drastically changes to
the longitudinal dynamics resulting in degraded control performance and reduced consistency. Both risk-
neutral and risk-averse DSAC agents demonstrated the ability to retain adequate lateral control even at
the unexplored high altitudes. In order to obtain better generalization and reliability, thorough exploration
of the flight envelope is required.

5.3. Synthesis 78

(a) SAC; baseline observation; mean response with 2σ
confidence interval

(b) Risk-averse DSAC; baseline observation; mean
response with 2σ confidence interval

(c) Risk-neutral DSAC; augmented observation; response
of best-performing agent

(d) Risk-averse DSAC; augmented observation; response
of best-performing agent

Figure 5.1: Evaluation of agents at a different initial flight condition; IFC: h = 10, 000 [m], V = 90 [m/s]

5.3. Synthesis 79

(a) SAC; baseline observation (b) Risk-neutral DSAC; baseline observation

(c) SAC; augmented observation (d) Risk-averse DSAC; augmented observation

Figure 5.2: Evaluation of agents trained using ideal sensors with sensor noise and bias.

6
Verification & Validation

When conducting machine learning experiments in a simulated environment, it is important to draw conclu-
sions in the context of the assumptions and limitations of the algorithm, the simulation and the experiments.
The purpose of this chapter is to summarize the steps taken to control the quality of method implementa-
tions and the conducted experiments, and to summarize the validity of the results of the research project.
Section 6.1 discusses the verification steps, followed by a summary of validation details in Section 6.2.

6.1 Verification

6.1.1 Implementation of RL algorithms
The RL algorithms used in this research project are built upon several years of deep reinforcement learn-
ing research and include numerous individual, modular tools, approaches and components. Such ap-
proaches are for example the use experience replay buffers, double critic networks, the widespread use
of SGD optimizers and the implementation of DNNs. In order to ensure that algorithms, such as the
soft actor-critic have been implemented correctly, preliminary experiments have been conducted to show
that the performance of the agent stands up to state-of-the-art baselines when compared against popular
benchmarks.

The benchmark environment presented in Chapter 4 is the simple pendulum environment, which pro-
vides a continuous action space to be able to seamlessly transfer the implementation to flight control
problems. Both traditional SAC and distributional SAC achieve high rewards and converge to optimal
policies on the pendulum environment, indicating a correct integration of state-of-the-art methods and
continuous action-space environments.

The flight control problem implementation is tested against the simple LTI model of the Ce500 aircraft,
which verifies the augmentation of the observation vector with reference signals and verifies the correct
implementation of common reward signals used in automatic control and robotics. Additionally, the imple-
mentation of sub-components is verified by the ensuring that the learning and tracking behaviour of the
agents responds to hyperparameter changes as expected.

6.1.2 Simulated Environment
Throughout the primary research phase, the high-fidelity validated aerodynamic model of the PH-LAB
aircraft has been used as the simulated environment. The model was constructed using the Delft Univer-
sity Aircraft Simulation Model and Analysis Tool (DASMAT) [110] from real-world flight data of a Cessna
Citation 500 and is primarily available as a simulated environment in Matlab/Simulink.

The correct implementation of the simulated environment has been verified by comparing the step
response of the aircraft to that of the DASMAT Citation Simulink model. The verification method of [86] is
adopted and the aircraft dynamics are excited using pulse signals on both the elevator and aileron control
surfaces to verify expected behaviour. Figure 6.1 shows the comparison of the simulated RL-environment
to the original validated Simulink model. As expected, negative elevator deflections results in positive pitch

80

6.2. Validation 81

rate q and pitch angle θ values. The rather aggressive positive aileron deflection at t = 5 [s] results in
an immediate roll rate p and roll angle ϕ response, with a slightly delayed yaw rate response. This is
expected behaviour that shows the excitation of the dutch roll eigenmode of the aircraft.

Figure 6.1: Pulse response of the simulated PH-LAB environment (red diamond markers) and the
original DASMAT Simulink environment (dark cross markers) show identical trajectories.

6.2 Validation
Validation steps are required to ensure the quality of the conclusions and findings of the research project
and to highlight the specific circumstances in which some of the findings may not hold true. This section
discusses the validity of the simulation model, the assumptions used when training the RL agents and
discusses the repeatability and reproducibility of the findings, which is crucial for ML-based research.

6.2.1 PH-LAB Simulation Model
One of the primary tools used to investigate the ability of SAC and DSAC to handle flight control tasks has
been the high-fidelity aerodynamic model of the PH-LAB research aircraft. As mentioned in Section 6.1,
the DASMAT tool [110] was used to construct the model based on flight data from a Cessna Citation
500. The Cessna 500 is a similar aircraft to the Cessna Citation II PH-LAB research aircraft, however
there are differences in its wing design, fuselage length and engine performance. Despite the differences
in design, the DASMAT Citation 500 model shows good prediction power when compared to flight data
of the PH-LAB research aircraft, with a Root Mean Squared Error (RMSE) shown in Table 6.1, for both
longitudinal, and lateral forces and moments. This shows that the validated aerodynamic model used to
the ML experiment predicts realistic aircraft dynamics in nominal flight conditions.

Table 6.1: Relative RMSE of force and moment coefficients of the DASMAT Citation 500 model
compared to PH-LAB flight data.

Longitudinal Lateral

Forces 9% 7%
Moments 13% 9%

6.2. Validation 82

Figure 6.2: Same pseudo-random seed used for the training of two agents results in identical learning
curves and repeatable experiments.

6.2.2 Assumptions
Several assumptions and scope limiting simplifications have been made, which pose limitations on of the
findings. Firstly, the aircraft is initialized form the same trimmed flight condition at the start of each episode.
This simplifies the learning task, however limits the generalization capability of the RL agents. In order
to show the robustness of the SAC and DSAC algorithms, Chapter 5 presents additional evaluations
conducted post-training at different IFCs and shows how significant changes in aircraft dynamics may
result in inconsistent results.

Secondly, it is assumed that the RL agents receive perfect observations of the dynamic states of the
aircraft. In real-world flight tasks, the sensors are biased, noisy with additional time-delays and possi-
ble difficulties with synchronization. Chapter 5 investigates the post-training of SAC and DSAC agents
using noisy and biased sensors and shows that adequate tracking performance is achieved with slightly
degraded performance.

Thirdly, the DASMAT Simulink model used in this research includes an inner-loop PID yaw damper
and thrust controller, which simplifies the RL task. The resulting RL agents are only trained to control
the surface actuators and have no access to thrust control, flap deflections and trim tabs. Moreover,
the control surface actuators are modelled using first-order lag dynamics, with angle saturations. This
assumes no signal delays between agent command and actuator response. Lastly, several sources of
stochastic processes and uncertainty are excluded from the simulation, such as atmospheric disturbances
and model uncertainty between the simulated environment and the post-training evaluation environment.

6.2.3 Repeatability & Reproducibility
Asmentioned in Chapter 2, in order to assure reproducible results, the pseudo-random number generators
used in both the environment and stochastic agent have been controlled. This is done in order to ensure
repeatability and reproducibility.

As a demonstration of repeatable experiments, two SAC agents have been trained using the same
pseudo-random seed, which results in identical learning curves shown in Fig. 6.2. The identical learning
curve means that each of the episodes are identical, which includes randomized training reference signals,
stochastic decisions made by the agent and the random sampling of experiences used for SGD. This
results in fully reproducible experiments given that certain software and framework dependencies are
met.

7
Wall Clock Time

The addition of distributional RL to the baseline SAC architecture comes with increased computational
costs, which can be attributed to two sources: the additional trainable parameters needed to represent
the return distribution and the computation of the pairwise TD-error between the randomly generated
quantile fractions.

This chapter presents the increase of required wall clock time (WCT) to train distributional agents.
Firstly, Section 7.1 discusses the increase in parameter count w.r.t. the chosen hyperparameters and the
dimensionality of the environment. Then, Section 7.2 presents empirical measurements of WCT for the
chosen hyperparameter set.

7.1 Number of parameters
Traditional DRL approaches use deep feed-forward neural networks to represent the action-value function
with mapping S × A → R. When introducing the IQN critics, as proposed by [31], N discrete quantile
fractions are passed through the networks the produce the implicit representation of the inverse cumulative
distribution function. This results in a DNN that maps: S×A× RN → RN .

The network size of the critic is controlled by the number of hidden layers and the number of hidden
neurons per layer. Adding the distributional representation by using IQN critics adds an additional embed-
ding layer of size C. Previous research found that C = 64 embedding neurons are sufficient to encode
the distributional information [31]. The agents in this research project were trained using two types of
observation vectors: S ⊆ R6 and S ⊆ R7.

The resulting increase in the number of parameters is shown in Table 7.1 below, with the relative
increase indicated as a percentage. The hyperparameters used in this research includes network sizes of
either 64x64 or 128x128, therefore the relative parameter cost of using DSAC is in the range of 41− 53%.

Table 7.1: Trainable parameter count of the distributional critics relative to the traditional SAC critics with
C = 64 embedding size.

SAC DSAC Relative increase
Network size Nr. of observations

64× 64 6 3.2e4 4.9e4 53.4%
64× 64 7 3.2e4 4.9e4 53.1%
128× 128 6 1.2e5 1.7e5 41.7%
128× 128 7 1.2e5 1.7e5 41.6%
256× 256 6 4.7e5 6.4e5 35.3%
256× 256 7 4.7e5 6.4e5 35.3%

83

7.2 Average training time
For the assessment of learning & tracking performance of distributional RL, two batches of agents were
trained using two types of observation vectors s1 ∈ R6 and s2 ∈ R7, with n = 10 agents trained for each of
the three approaches, namely the baseline SAC method, risk-neutral (R.N.) DSAC and risk-averse (R.A.)
DSAC.

With all agents simulated and trained on the same hardware, the relative increase in wall clock time
can be compared to provide an indication of the time-costs of distributional RL. Table 7.2 provides the
empirical measurements of average training time per episode.

Table 7.2: Average training time (mm:ss) per episode (3000 samples) for each type of agent.

SAC R.N. DSAC R.A. DSAC
Observation

s1 01:30 01:54 (+27.4%) 01:54 (+27.1%)
s2 01:29 01:52 (+25.5%) 01:53 (+26.0%)

Previously, traditional SAC has been found to be produce inconsistent results with a success rate
of 26% [28]. Chapter 2 shows that distributional RL significantly improves on the learning consistency
and variance of converged policies. In terms of wall clock time, the use of distributional RL increases
the training time by approximately 25% − 28%, which results in a beneficial trade-off in the practicality of
synthesizing DRL control laws.

Themeasurements are limited to a single set of hardware specifications. Early experiments on different
hardware and cloud virtual machines have showed a similar increase in WCT.

84

Part IV
Closure

85

8
Conclusion

Recent years have shown significant increase in the complexity of control systems required for aerospace
applications, which is driven both by the ever-increasing complexity of system dynamics and the growing
demand for higher levels of autonomy and adaptability. Deep reinforcement learning, a class of bio-
inspired machine learning techniques have shown promising results in finding complex near-optimal con-
trol strategies for high-dimensional problems in a model-free setting.

Applying DRL methods to flight control tasks comes with a multitude of challenges, such as safety,
robustness, adaptability and sample efficiency. Incremental improvements to state-of-the-art RL methods
are needed to cross the simulation gap that is currently present in flight control RL research and to apply
safe and sample efficient RL techniques to real-world aircraft.

Whereas traditional RL methods learn the policy that maximizes the estimated expectation of cumula-
tive rewards received from the environment, the field of distributional RL extends this axiomatic approach
to estimate not just the expectation but the entire return distribution function. This parameterization of the
return distribution improves on the learning and tracking performance of the algorithms, while enabling
the use of complex risk-sensitive strategies that can improve the robustness and safety of the agent.

This chapter provides closing remarks on the findings of this report in Section 8.1. Then, Section 8.2
gives reflections on the findings with regards to the research questions posed in Chapter 1.

8.1 Closing Remarks
State-of-the-art DRL algorithms have been shown to excel at tasks previously deemed unsolvable. These
RL approaches learn by direct interaction with the environment which enables the model-free synthesis
of complex near-optimal control algorithms. Recent application oriented research has shown that distri-
butional RL can be widely used in robotics and control applications, thus improving the RL agent’s ability
to deal with uncertainties and risk.

This research project investigates the application of risk-sensitive distributional RL methods for the
attitude control a CS-25 certified Cessna Citation II research aircraft (PH-LAB). The attitude control task
used in this research contains non-linear fully-coupled dynamics and is considered a high-dimensional
RL task due to the large amount of states and control actions within the MDP.

Chapter 2 presents the distributional soft actor-critic (DSAC) framework used to investigate the risk-
sensitive approach to controller synthesis. The combination of maximum entropy RL, i.e. the soft actor-
critic (SAC) framework and the distributional critic significantly improves on the sample efficiency and
consistency of learning, while achieving similar tracking performance. This improvement in consistency
is crucial to train reliable and robust DRL agents for the safe control of real-world aircraft.

In addition to the improvements in learning characteristics, DSAC allows the synthesis of risk-averse
control laws. Risk-averse agents are trained to trade-off immediate rewards against uncertainty in the
environment. Whether the estimated uncertainty is intrinsic to the environment due to unknown stochastic
processes or is due to lack of exploration is not pertaining to flight risk. Therefore, risk-averse DSAC
agents achieve safer flight control by prioritizing state-action pairs with lower estimated uncertainty.

86

8.2. Research Questions 87

This is achieved using minimal added human-domain knowledge. The agents are trained using a
goal-oriented reward signal that is proportional solely to tracking error. The ability to infer risk from the es-
timated uncertainty in the environment is a crucial step towards achieving increased levels of adaptability,
autonomy and safety in RL-based flight control.

8.2 Research Questions
Chapter 1 poses RQ 1, 2 and 3 to identify candidate traditional RL and distributional RL methods for flight
control applications and to compare their learning characteristics which is a major aspect of applying RL
algorithms to high-dimensional flight control tasks. Research Questions 4, 5 and 6 focus on investigating
the application of risk-sensitive distributional RL to a high-dimensional flight control task. The research
questions posed in Chapter 1 are repeated below for convenience.

What state-of-the-art RL methods are most suitable for flight control tasks?

Research Question 1

The most suitable algorithms found focus on implementing an actor to parameterize the policy directly,
to be able to deal with continuous action spaces. Algorithms such as SAC [68] and TD3 [49] are not only
considered state of the art within the general field of DRL, but also for application-oriented research for
fixed-wing [28] and multi-rotor flight [104]. While ADP methods such as IDHP [98, 111] have state of the
art performance at online learning and adaptive optimal control, they struggle with generalization power
and sample efficiency to achieve high DOF flight control [28]. A recent effort to combine offline and online
RL in a hybrid architecture [112] has proved to be a promising direction to apply RL to real-world aircraft.

What state-of-the-art distributional RL techniques are the most applicable to flight control
tasks?

Research Question 2

Distributional algorithms are defined by two frameworks: the way they parameterize the return dis-
tribution and the metric they use to estimate the difference between two value distributions [29]. This
report identifies IQN [31] as a method of parameterization that comes with several advantages. Firstly,
IQN uses relatively few additional parameters and uses little additional computations. Secondly, IQN es-
timates the full continuous distribution function implicitly instead of discretization methods used in C51
[29] and QR-DQN [30]. Lastly, IQN provides a simple way to implement risk-sensitive learning and risk-
sensitive strategies by applying risk-distortion functions to the distribution of quantiles.

In order to use distributional RL for continuous control, this report identifies the approach of extending
SAC [32] using distributional IQN critics as the most efficient and diverse approach, which also provides
a generalized framework to apply risk-distortions to continuous policies. Additionally, DSAC was shown
to outperform not only nominal SAC and nominal TD3, but also TD4 [32], the distributional equivalent of
TD3.

How does the learning performance of distributional RL methods compare to traditional value-
based RL methods when applied to flight control tasks?

Research Question 3

The conclusions about the comparison of traditional and distributional RL agents are drawn from three
sources, namely application oriented research, the empirical evidence presented in Chapter 4 and the
empirical evidence shown in Chapter 2.

In general, distributional RL agents show an increased sample efficiency and better tracking perfor-
mance. This improvement is often observed for the risk-neutral case and points to a more efficient use

8.2. Research Questions 88

of transition-samples by the distributional agents. The analogy mentioned in Section 3.3 that compares
distributional RL to taking a colored photo vs a greyscale image tends to hold true, as distributional agents
exploit more information content about the environment.

The preliminary analysis confirms these findings by showing a statistically significant improvement of
22.4% in sample efficiency of DSAC with respect to traditional SAC on simple benchmark environments.
Additionally, this research project controls for the pseudo-random stochastic processes present in both
the agents and the environment, which means that the improvements in the learning characteristics can
be attributed solely to the addition of the distributional critic.

How does the learning and tracking performance of distributional RL compare to traditional RL
methods when applied to high-dimensional flight control tasks?

Research Question 4

The findings of comparing DSAC to SAC in the fully coupled attitude control task show a significant
improvement in the variance and stability of learning, while achieving similar tracking performance. Chap-
ter 2 shows that the improved learning consistency is even more pronounced for sub-optimal hyperparam-
eters, and when there are additional observation dimensions.

How do risk-sensitive distributional RL agents respond to uncertainties in high-dimensional
flight control tasks?

Research Question 5

This report presents DSAC agents trained using high-levels of risk-distortion to show the effect of risk-
averse learning relative to risk-neutral policies. Chapter 2 demonstrates that risk-averse agents sacrifice
immediate rewards in order to avoid uncertainty, resulting in safer flight control.

How can risk-sensitive agents best be applied to high-dimensional flight control tasks to im-
prove learning performance, tracking performance and safety?

Research Question 6

In order to answer RQ 6, Chapter 2 presents the framework used to train risk-sensitive policies. A
distortion risk-measure was identified as a promising way to trade off uncertainty against reward in the
policy loss function, further augmenting the maximum entropy RL framework.

The results of Chapter 2 show that risk-averse agents have better learning consistency for more difficult,
high-dimensional tasks. Furthermore, the robust analysis of Chapter 5 shows that risk-averse DSAC
agents are capable of generalizing flight control laws to unexplored states, where SAC and risk-neutral
DSAC have degraded performance. Lastly, Chapter 2 shows that risk-averse distributional agents achieve
safer flight control without the addition of human-domain knowledge, such as reward shaping.

9
Recommendations

This chapter provides a brief overview of the primary recommendations for the future continuation of this
research project.

Unused post-training critics

The DSAC algorithm used in this report does not make use of the value distribution estimate post-training,
even though Chapter 2 demonstrates that the variance of the return can be a valuable online metric to
improve the safety of flight control. Post-training, only the policy is used for inference of the RL-agent.
Future work should investigate a method to adapt the policy and the risk-tendency of the agent based on
the variance of the critic, similarly to the approach demonstrated by [78].

Risk-sensitive policy synthesis

This research only considers risk-distorted expectations for synthesizing risk-sensitive policies. When
an estimate of the value distribution is available, a wide array of risk-measures can be used to trade-off
immediate rewards against uncertainty.

Non-monotonic distributions

The DSAC algorithm used in this research project adopts the IQN value distribution estimator network
[31], which poses no constraints on the estimated quantile function. The estimated inverse c.d.f. is often
non-monotonically increasing and is ill-defined throughout the training, especially during early episodes.
Furthermore, due to the random initialization of the critic DNN, the variance estimate of the critic is sig-
nificantly smaller than expected, given the initially high parametric uncertainty and lack of exploration.
The approach proposed by [82] points this out and suggests a new method to estimate monotonically
increasing return distribution functions.

Use of Model Uncertainty

With the DSAC architecture, the agent has access to a model of uncertainty, which consists of the para-
metric uncertainty caused by state visitation and exploration and the uncertainty that is intrinsic to the
environment. In order to achieve a safe transition from offline, simulation trained DRL agents to online,
applied RL agents in real-world flight control, a third source of uncertainty can be inserted from human do-
main knowledge. Supplying the distributional critic with model parameter uncertainties and synthesizing
risk-averse control laws has the potential to improve the robustness of RL flight control and reduce the
fidelity requirements of the simulated environment.

89

References

[1] G.C.H.E. de Croon et al. “Design, Aerodynamics, and Vision-Based Control of the DelFly”. In:
International Journal of Micro Air Vehicles 1.2 (2009), pp. 71–97. URL: http://journals.sagepub.
com/doi/10.1260/175682909789498288.

[2] G.C.H.E. de Croon et al. The DelFly. Dordrecht: Springer Netherlands, 2016. URL: http://link.
springer.com/10.1007/978-94-017-9208-0.

[3] Terrence A.Weisshaar. “Morphing Aircraft Systems: Historical Perspectives and Future Challenges”.
In: Journal of Aircraft 50.2 (2013), pp. 337–353. URL: https://arc.aiaa.org/doi/10.2514/1.
C031456.

[4] Rafic M. Ajaj et al. “Morphing aircraft: The need for a new design philosophy”. In: Aerospace Sci-
ence and Technology 49 (2016), pp. 154–166. URL: https://doi.org/10.1016/j.ast.2015.11.
039.

[5] Francesco Faggiano et al. “Aerodynamic Design of a Flying V Aircraft”. In: 17th AIAA Aviation
Technology, Integration, and Operations Conference. Denver, Colorado, 2017. URL: https://
arc.aiaa.org/doi/10.2514/6.2017-3589.

[6] Alberto Ruiz Garcia et al. “Aerodynamic Model Identification of the Flying V from Sub-Scale Flight
Test Data”. In: AIAA SCITECH 2022 Forum. San Diego, CA & Virtual, 2022. URL: https://arc.
aiaa.org/doi/10.2514/6.2022-0713.

[7] Adnan S. Saeed et al. “A review on the platform design, dynamic modeling and control of hybrid
UAVs”. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Denver, CO,
USA: IEEE, 2015, pp. 806–815. URL: http://ieeexplore.ieee.org/document/7152365/.

[8] Avy. B.V. Avy - Drones for Good. Feb. 2022. URL: https://avy.eu/.

[9] Wingcopter GmbH.Wingcopter - Technology with a Purpose. Feb. 2022. URL: https://wingcopter.
com/.

[10] Brian L Stevens et al. Aircraft control and simulation: dynamics, controls design, and autonomous
systems. John Wiley & Sons, 2015.

[11] Eugene A Morelli et al. Aircraft system identification: theory and practice. Vol. 2. Sunflyte Enter-
prises Williamsburg, VA, 2016.

[12] R.A. Nichols et al. “Gain scheduling for H-infinity controllers: a flight control example”. In: IEEE
Transactions on Control Systems Technology 1.2 (1993), pp. 69–79. DOI: 10.1109/87.238400.
URL: http://ieeexplore.ieee.org/document/238400/.

[13] Sigurd Skogestad et al.Multivariable feedback control: analysis and design. Vol. 2. Citeseer, 2007.

[14] P. Smith. “A simplified approach to nonlinear dynamic inversion based flight control”. In: 23rd Atmo-
spheric Flight Mechanics Conference. Boston,MA,U.S.A.: American Institute of Aeronautics and
Astronautics, 1998. DOI: 10.2514/6.1998-4461. URL: https://arc.aiaa.org/doi/10.2514/6.
1998-4461.

[15] Phill Smith et al. “Flight test experience of a non-linear dynamic inversion control law on the VAAC
Harrier”. In: Atmospheric Flight Mechanics Conference. Denver,CO,U.S.A.: American Institute of
Aeronautics and Astronautics, Aug. 2000. DOI: 10.2514/6.2000-3914. URL: https://arc.aiaa.
org/doi/10.2514/6.2000-3914.

[16] S. Sieberling et al. “Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and
Angular Acceleration Prediction”. In: Journal of Guidance, Control, and Dynamics 33.6 (2010),
pp. 1732–1742. URL: https://arc.aiaa.org/doi/10.2514/1.49978.

90

http://journals.sagepub.com/doi/10.1260/175682909789498288
http://journals.sagepub.com/doi/10.1260/175682909789498288
http://link.springer.com/10.1007/978-94-017-9208-0
http://link.springer.com/10.1007/978-94-017-9208-0
https://arc.aiaa.org/doi/10.2514/1.C031456
https://arc.aiaa.org/doi/10.2514/1.C031456
https://doi.org/10.1016/j.ast.2015.11.039
https://doi.org/10.1016/j.ast.2015.11.039
https://arc.aiaa.org/doi/10.2514/6.2017-3589
https://arc.aiaa.org/doi/10.2514/6.2017-3589
https://arc.aiaa.org/doi/10.2514/6.2022-0713
https://arc.aiaa.org/doi/10.2514/6.2022-0713
http://ieeexplore.ieee.org/document/7152365/
https://avy.eu/
https://wingcopter.com/
https://wingcopter.com/
https://doi.org/10.1109/87.238400
http://ieeexplore.ieee.org/document/238400/
https://doi.org/10.2514/6.1998-4461
https://arc.aiaa.org/doi/10.2514/6.1998-4461
https://arc.aiaa.org/doi/10.2514/6.1998-4461
https://doi.org/10.2514/6.2000-3914
https://arc.aiaa.org/doi/10.2514/6.2000-3914
https://arc.aiaa.org/doi/10.2514/6.2000-3914
https://arc.aiaa.org/doi/10.2514/1.49978

References 91

[17] Ewoud J. J. Smeur et al. “Adaptive Incremental Nonlinear Dynamic Inversion for Attitude Control
of Micro Air Vehicles”. In: Journal of Guidance, Control, and Dynamics 39.3 (2016), pp. 450–461.
DOI: 10.2514/1.G001490. URL: https://arc.aiaa.org/doi/10.2514/1.G001490.

[18] Sihao Sun et al. “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss
of Two Opposing Rotors”. In: IEEE Transactions on Robotics 37.1 (2021), pp. 116–130. URL:
https://ieeexplore.ieee.org/document/9160894/.

[19] Xuerui Wang et al. “Incremental fault-tolerant control for a hybrid quad-plane UAV subjected to
a complete rotor loss”. In: Aerospace Science and Technology (2021), p. 107105. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S1270963821006155.

[20] Tijmen Pollack et al. “Robust Stability and Performance Analysis of Incremental Dynamic Inversion-
based Flight Control Laws”. In: AIAA SCITECH 2022 Forum. San Diego, CA & Virtual, 2022. URL:
https://arc.aiaa.org/doi/10.2514/6.2022-1395.

[21] Richard S Sutton et al. Reinforcement Learning: An Introduction. 2nd. The MIT Press, 2015.

[22] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards”. In: King’s College,
Cambridge United Kingdom (1989).

[23] Richard Bellman. “Dynamic Programming”. In: Science 153.3731 (July 1966), pp. 34–37. DOI:
10.1126/science.153.3731.34. URL: https://www.science.org/doi/10.1126/science.153.
3731.34.

[24] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv:1312.5602 [cs]
(Dec. 2013). URL: http://arxiv.org/abs/1312.5602.

[25] VolodymyrMnih et al. “Human-level control through deep reinforcement learning”. In:Nature 518.7540
(2015), pp. 529–533. URL: http://www.nature.com/articles/nature14236.

[26] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm”. In: arXiv:1712.01815 [cs] (2017). URL: http://arxiv.org/abs/1712.01815.

[27] David Silver et al. “A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play”. In: Science 362.6419 (2018), pp. 1140–1144.

[28] Killian Dally et al. “Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control”.
In: AIAA SCITECH 2022 Forum. San Diego, CA & Virtual, Jan. 2022. URL: https://arc.aiaa.
org/doi/10.2514/6.2022-2078.

[29] Marc G Bellemare et al. “A Distributional Perspective on Reinforcement Learning”. In: International
Conference on Machine Learning (2017), pp. 449–458. URL: https://arxiv.org/abs/1707.
06887.

[30] Will Dabney et al. “Distributional Reinforcement Learning with Quantile Regression”. In: (Oct. 2017).
URL: http://arxiv.org/abs/1710.10044.

[31] Will Dabney et al. “Implicit Quantile Networks for Distributional Reinforcement Learning”. In: (June
2018). URL: http://arxiv.org/abs/1806.06923.

[32] Xiaoteng Ma et al. “DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learn-
ing”. In: (June 2020). URL: http://arxiv.org/abs/2004.14547.

[33] Marc G. Bellemare et al. “Autonomous navigation of stratospheric balloons using reinforcement
learning”. In: Nature 588.7836 (Dec. 2020), pp. 77–82. DOI: 10.1038/s41586-020-2939-8. URL:
https://www.nature.com/articles/s41586-020-2939-8.

[34] Xiaoyu Tan et al. “Robot-assisted flexible needle insertion using universal distributional deep rein-
forcement learning”. In: International Journal of Computer Assisted Radiology and Surgery 15.2
(Feb. 2020), pp. 341–349. DOI: 10.1007/s11548-019-02098-7. URL: http://link.springer.
com/10.1007/s11548-019-02098-7.

[35] JiaweiWang et al. “Robust Dynamic Bus Control: A Distributional Multi-agent Reinforcement Learn-
ing Approach”. In: arXiv:2111.01946 [cs] (Nov. 2021). URL: http://arxiv.org/abs/2111.01946.

https://doi.org/10.2514/1.G001490
https://arc.aiaa.org/doi/10.2514/1.G001490
https://ieeexplore.ieee.org/document/9160894/
https://linkinghub.elsevier.com/retrieve/pii/S1270963821006155
https://linkinghub.elsevier.com/retrieve/pii/S1270963821006155
https://arc.aiaa.org/doi/10.2514/6.2022-1395
https://doi.org/10.1126/science.153.3731.34
https://www.science.org/doi/10.1126/science.153.3731.34
https://www.science.org/doi/10.1126/science.153.3731.34
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
http://arxiv.org/abs/1712.01815
https://arc.aiaa.org/doi/10.2514/6.2022-2078
https://arc.aiaa.org/doi/10.2514/6.2022-2078
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1806.06923
http://arxiv.org/abs/2004.14547
https://doi.org/10.1038/s41586-020-2939-8
https://www.nature.com/articles/s41586-020-2939-8
https://doi.org/10.1007/s11548-019-02098-7
http://link.springer.com/10.1007/s11548-019-02098-7
http://link.springer.com/10.1007/s11548-019-02098-7
http://arxiv.org/abs/2111.01946

References 92

[36] Alan M Turing. “Intelligent machinery, a heretical theory”. In: The Turing test: Verbal behavior as
the hallmark of intelligence 105 (1948).

[37] David Silver. Lectures on Reinforcement Learning. url: https://www.davidsilver.uk/teaching/.
2015.

[38] David Silver. “Reinforcement Learning and Simulation-Based Search in Computer Go”. PhD thesis.
University of Alberta, 2009.

[39] Diederik P. Kingma et al. “Adam: A Method for Stochastic Optimization”. In: (2017). url: http :
//arxiv.org/abs/1412.6980.

[40] David Kriesel. “A Brief Introduction to Neural Networks. dkriesel. com”. In: Online) http://www.
dkriesel. com/en/science/neural_networks (last retrieved 30-10-2015 (2005).

[41] Ian Goodfellow et al. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.

[42] Aston Zhang et al. Dive into Deep Learning. https://d2l.ai. 2020.

[43] Jimmy Lei Ba et al. “Layer Normalization”. In: (July 2016). url: http://arxiv.org/abs/1607.
06450.

[44] Kevin P. Murphy. “A survey of POMDP solution techniques”. In: environment 2 (2000), p. X3.

[45] Gautam Singh et al. “Structured World Belief for Reinforcement Learning in POMDP”. In: Proceed-
ings of the 38th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July
2021, pp. 9744–9755. url: https://proceedings.mlr.press/v139/singh21a.html.

[46] Marc G Bellemare et al. “The arcade learning environment: An evaluation platform for general
agents”. In: Journal of Artificial Intelligence Research 47 (2013), pp. 253–279.

[47] B. T. Polyak et al. “Acceleration of Stochastic Approximation by Averaging”. In: SIAM Journal on
Control and Optimization 30.4 (1992). Publisher: Society for Industrial and Applied Mathematics,
pp. 838–855. url: https://epubs.siam.org/doi/abs/10.1137/0330046.

[48] Hado Van Hasselt et al. “Deep reinforcement learning with double q-learning”. In: Proceedings of
the AAAI conference on artificial intelligence. Vol. 30. Issue: 1. 2016.

[49] Scott Fujimoto et al. “Addressing Function Approximation Error in Actor-Critic Methods”. In: Pro-
ceedings of the 35th International Conference on Machine Learning. PMLR, July 2018, pp. 1587–
1596. url: https://proceedings.mlr.press/v80/fujimoto18a.html.

[50] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor”. In: International conference on machine learning. PMLR, 2018, pp. 1861–
1870. url: https://proceedings.mlr.press/v80/haarnoja18b.html.

[51] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952 (2015).

[52] Ziyu Wang et al. “Dueling network architectures for deep reinforcement learning”. In: International
conference on machine learning. PMLR, 2016, pp. 1995–2003.

[53] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep Reinforcement Learning”. In:
Thirty-second AAAI conference on artificial intelligence (2017). url: http://arxiv.org/abs/1710.
02298.

[54] Meire Fortunato et al. “Noisy networks for exploration”. In: arXiv preprint arXiv:1706.10295 (2017).

[55] Ivo Grondman et al. “A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Pol-
icy Gradients”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 42.6 (Nov. 2012). Conference Name: IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), pp. 1291–1307. doi: 10.1109/TSMCC.2012.2218595.

[56] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function Approx-
imation”. In: Advances in Neural Information Processing Systems. Vol. 12. MIT Press, 1999. url:
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.
html.

https://www.davidsilver.uk/teaching/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.deeplearningbook.org
https://d2l.ai
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v139/singh21a.html
https://epubs.siam.org/doi/abs/10.1137/0330046
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
https://doi.org/10.1109/TSMCC.2012.2218595
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html

References 93

[57] Richard S Sutton et al. “Comparing policy-gradient algorithms”. In: IEEE Transactions on Systems,
Man, and Cybernetics (2000).

[58] Ronald J.Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement
learning”. In: Machine learning 8.3 (1992). Publisher: Springer, pp. 229–256.

[59] John Schulman et al. “Trust Region Policy Optimization”. In: (2015). arXiv: 1502.05477. url: http:
//arxiv.org/abs/1502.05477.

[60] S. Kullback et al. “On Information and Sufficiency”. In: The Annals of Mathematical Statistics 22.1
(1951). Publisher: Institute of Mathematical Statistics, pp. 79–86. url: https://www.jstor.org/
stable/2236703.

[61] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: (2016). url: http://arxiv.
org/abs/1707.06347.

[62] Vijay Konda et al. “Actor-critic algorithms”. In: Advances in neural information processing systems
12 (1999).

[63] David Silver et al. “Deterministic policy gradient algorithms”. In: International conference on ma-
chine learning. PMLR, 2014, pp. 387–395. url: http://proceedings.mlr.press/v32/silver14.
html.

[64] Christopher JCH Watkins et al. “Q-learning”. In: Machine learning 8.3 (1992). Publisher: Springer,
pp. 279–292.

[65] Hado van Hasselt. DeepMind x UCL RL Lecture Series. Youtube. 2021. url: https://youtu.be/
y3oqOjHilio?t=5384.

[66] D.V. Prokhorov et al. “Adaptive critic designs”. In: IEEE Transactions on Neural Networks 8.5 (Sept.
1997). Conference Name: IEEE Transactions on Neural Networks, pp. 997–1007. doi: 10.1109/
72.623201.

[67] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: (2015). url:
http://arxiv.org/abs/1509.02971.

[68] Tuomas Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In: (2019). url: http://
arxiv.org/abs/1812.05905.

[69] Joshua Achiam. “Spinning up in deep reinforcement learning”. In: GitHub repository (2018). url:
https://github.com/openai/spinningup/.

[70] Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[71] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[72] Marc G Bellemare et al. Distributional Reinforcement Learning. MIT Press, 2022. url: http://www.
distributional-rl.org.

[73] Gabriel Barth-Maron et al. “DistributedDistributional Deterministic Policy Gradients”. In: (Apr. 2018).
url: http://arxiv.org/abs/1804.08617.

[74] Clare Lyle et al. “A Comparative Analysis of Expected and Distributional Reinforcement Learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 2019), pp. 4504–4511.
doi: 10.1609/aaai.v33i01.33014504. url: https://aaai.org/ojs/index.php/AAAI/article/
view/4365.

[75] Tetsuro Morimura et al. “Parametric Return Density Estimation for Reinforcement Learning”. In:
Proceedings of the Conference on Uncertainty in Artificial Intelligence (2010), p. 8.

[76] Marc G. Bellemare et al. “The arcade learning environment: An evaluation platform for general
agents”. In: Journal of Artificial Intelligence Research 47 (2013), pp. 253–279.

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://www.jstor.org/stable/2236703
https://www.jstor.org/stable/2236703
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
https://youtu.be/y3oqOjHilio?t=5384
https://youtu.be/y3oqOjHilio?t=5384
https://doi.org/10.1109/72.623201
https://doi.org/10.1109/72.623201
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://github.com/openai/spinningup/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.distributional-rl.org
http://www.distributional-rl.org
http://arxiv.org/abs/1804.08617
https://doi.org/10.1609/aaai.v33i01.33014504
https://aaai.org/ojs/index.php/AAAI/article/view/4365
https://aaai.org/ojs/index.php/AAAI/article/view/4365

References 94

[77] Carlo Filippi et al. “Conditional value-at-risk beyond finance: a survey”. In: International Transac-
tions in Operational Research 27.3 (2020). Publisher: Wiley Online Library, pp. 1277–1319.

[78] Cheng Liu et al. “Adaptive Risk Tendency: Nano Drone Navigation in Cluttered Environments with
Distributional Reinforcement Learning”. In: (2022). url: https://arxiv.org/abs/2203.14749.

[79] Antonio Loquercio et al. “A General Framework for Uncertainty Estimation in Deep Learning”. In:
IEEE Robotics and Automation Letters 5.2 (Apr. 2020), pp. 3153–3160. doi: 10.1109/LRA.2020.
2974682. url: https://ieeexplore.ieee.org/document/9001195/.

[80] Borislav Mavrin et al. “Distributional Reinforcement Learning for Efficient Exploration”. In: Interna-
tional Conference on Machine Learning (2019), pp. 4424–4434. url: http://proceedings.mlr.
press/v97/mavrin19a.html.

[81] Derek Yang et al. “Fully Parameterized Quantile Function for Distributional Reinforcement Learn-
ing”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. url: https : / / proceedings . neurips . cc / paper / 2019 / file /
f471223d1a1614b58a7dc45c9d01df19-Paper.pdf.

[82] Thibaut Théate et al. “Distributional Reinforcement Learning with Unconstrained Monotonic Neural
Networks”. In: (June 2021). url: http://arxiv.org/abs/2106.03228.

[83] Fan Zhou et al. “Non-decreasing Quantile Function Network with Efficient Exploration for Distribu-
tional Reinforcement Learning”. In: arXiv:2105.06696 [cs] (May 2021). url: http://arxiv.org/
abs/2105.06696.

[84] Abbas Abdolmaleki et al. “A Distributional View on Multi-Objective Policy Optimization”. In: Pro-
ceedings of the 37th International Conference on Machine Learning 119 (2020), pp. 11–22. url:
https://proceedings.mlr.press/v119/abdolmaleki20a.html.

[85] Gabriel Dulac-Arnold et al. “An empirical investigation of the challenges of real-world reinforcement
learning”. In: arXiv:2003.11881 [cs] (Mar. 2021). url: http://arxiv.org/abs/2003.11881.

[86] Killian Dally. Deep Reinforcement Learning for Flight Control. Master Thesis. Delft: Technical Uni-
versity of Delft, 2021. url: http://resolver.tudelft.nl/uuid:fcef2325- 4c90- 4276- 8bfc-
1e230724c68a.

[87] Javier Garcıa et al. “A comprehensive survey on safe reinforcement learning”. In: Journal of Ma-
chine Learning Research 16.1 (2015), pp. 1437–1480.

[88] Tommaso Mannucci et al. “SHERPA: a safe exploration algorithm for Reinforcement Learning con-
trollers”. In: AIAA Guidance, Navigation, and Control Conference. 2015, p. 1757.

[89] Tommaso Mannucci et al. “Safe exploration algorithms for reinforcement learning controllers”.
In: IEEE transactions on neural networks and learning systems 29.4 (2017). Publisher: IEEE,
pp. 1069–1081.

[90] Tijmen Pollack et al. Safe Curriculum Learning for Primary Flight Control. Master Thesis. Delft:
Technical University of Delft, 2019. url: http://resolver.tudelft.nl/uuid:1b2becfd-c2db-
43fc-a273-a3ff6a9ba50a.

[91] Matthias Hutsebaut-Buysse et al. “Hierarchical Reinforcement Learning: A Survey and Open Re-
search Challenges”. In: Machine Learning and Knowledge Extraction 4.1 (Feb. 2022), pp. 172–
221. doi: 10.3390/make4010009. url: https://www.mdpi.com/2504-4990/4/1/9.

[92] Richard S. Sutton et al. “Between MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning”. In: Artificial Intelligence 112.1-2 (Aug. 1999), pp. 181–211. doi:
10.1016/S0004-3702(99)00052-1. url: https://linkinghub.elsevier.com/retrieve/pii/
S0004370299000521.

[93] Ronald Edward Parr. Hierarchical control and learning for Markov decision processes. University
of California, Berkeley, 1998.

https://arxiv.org/abs/2203.14749
https://doi.org/10.1109/LRA.2020.2974682
https://doi.org/10.1109/LRA.2020.2974682
https://ieeexplore.ieee.org/document/9001195/
http://proceedings.mlr.press/v97/mavrin19a.html
http://proceedings.mlr.press/v97/mavrin19a.html
https://proceedings.neurips.cc/paper/2019/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
http://arxiv.org/abs/2106.03228
http://arxiv.org/abs/2105.06696
http://arxiv.org/abs/2105.06696
https://proceedings.mlr.press/v119/abdolmaleki20a.html
http://arxiv.org/abs/2003.11881
http://resolver.tudelft.nl/uuid:fcef2325-4c90-4276-8bfc-1e230724c68a
http://resolver.tudelft.nl/uuid:fcef2325-4c90-4276-8bfc-1e230724c68a
http://resolver.tudelft.nl/uuid:1b2becfd-c2db-43fc-a273-a3ff6a9ba50a
http://resolver.tudelft.nl/uuid:1b2becfd-c2db-43fc-a273-a3ff6a9ba50a
https://doi.org/10.3390/make4010009
https://www.mdpi.com/2504-4990/4/1/9
https://doi.org/10.1016/S0004-3702(99)00052-1
https://linkinghub.elsevier.com/retrieve/pii/S0004370299000521
https://linkinghub.elsevier.com/retrieve/pii/S0004370299000521

References 95

[94] Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function De-
composition. Tech. rep. arXiv:cs/9905014. arXiv:cs/9905014 type: article. arXiv, May 1999. doi:
10.48550/arXiv.cs/9905014. url: http://arxiv.org/abs/cs/9905014.

[95] J M Hoogvliet. Hierarchical Reinforcement Learning for Model-Free Flight Control. Master Thesis.
Technical University of Delft, 2019. url: http://resolver.tudelft.nl/uuid:d66efdb7-d7c7-
4c44-9b50-64678ffdf60d.

[96] Tengyang Xie et al. “Policy finetuning: Bridging sample-efficient offline and online reinforcement
learning”. In: Advances in neural information processing systems 34 (2021).

[97] Derong Liu et al. “Adaptive Dynamic Programming for Control: A Survey and Recent Advances”.
In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 51.1 (Jan. 2021). Conference
Name: IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 142–160. doi: 10.
1109/TSMC.2020.3042876.

[98] Y. Zhou. “Online reinforcement learning control for aerospace systems”. PhD thesis. Delft Univer-
sity of Technology, 2018. doi: 10.4233/UUID:5B875915- 2518- 4EC8- A1A0- 07AD057EDAB4. url:
http://resolver.tudelft.nl/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4.

[99] Hangxu Li et al. “Incremental Dual Heuristic Dynamic Programming Based Hybrid Approach for
Multi-Channel Control of Unstable Tailless Aircraft”. In: IEEE Journals & Magazine (2022). url:
https://ieeexplore.ieee.org/abstract/document/9734032.

[100] S. Heyer. Reinforcement Learning for Flight Control. Master Thesis. Delft: Technical University of
Delft, 2019. url: http://resolver.tudelft.nl/uuid:dc63cae7-4289-47c7-889e-253f7abd7c72.

[101] Cristian Bodnar et al. “Quantile QT-Opt for Risk-Aware Vision-BasedRobotic Grasping”. In:Robotics:
Science and Systems XVI (July 2020). doi: 10.15607/RSS.2020.XVI.075. url: http://arxiv.
org/abs/1910.02787.

[102] Jinyoung Choi et al. “Risk-Conditioned Distributional Soft Actor-Critic for Risk-Sensitive Naviga-
tion”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China:
IEEE,May 2021, pp. 8337–8344. doi: 10.1109/ICRA48506.2021.9560962. url: https://ieeexplore.
ieee.org/document/9560962/.

[103] Danial Kamran et al. “Minimizing Safety Interference for Safe and Comfortable Automated Driving
with Distributional Reinforcement Learning”. In: 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). Prague, Czech Republic: IEEE, Sept. 2021, pp. 1236–1243. doi:
10.1109/IROS51168.2021.9636847. url: https://ieeexplore.ieee.org/document/9636847/.

[104] Yizhang Dong et al. “Self-learned suppression of roll oscillations based on model-free reinforce-
ment learning”. In: Aerospace Science and Technology 116 (Sept. 2021), p. 106850. doi: 10 .
1016/j.ast.2021.106850. url: https://www.sciencedirect.com/science/article/pii/
S1270963821003606.

[105] Pendulum - Gym Documentation. 2022. url: https : / / www . gymlibrary . ml / environments /
classic_control/pendulum/.

[106] J. A. Mulder et al. Flight Dynamics AE3202. Lecture Notes. Delft University of Technology, 2013.

[107] Citation PH-LAB - Delft University of Technology. 2022. url: https : / / cs . lr . tudelft . nl /
citation.

[108] Siddharth Mysore et al. “Regularizing Action Policies for Smooth Control with Reinforcement Learn-
ing”. In: 2021.

[109] Fabian Grondman et al. “Design and flight testing of incremental nonlinear dynamic inversion-
based control laws for a passenger aircraft”. In: 2018 AIAA Guidance, Navigation, and Control
Conference. 2018, p. 0385.

[110] CAAM Van Der Linden. “DASMAT-Delft University aircraft simulation model and analysis tool: A
Matlab/Simulink environment for flight dynamics and control analysis”. In: Series 03: Control and
Simulation 03 (1998).

https://doi.org/10.48550/arXiv.cs/9905014
http://arxiv.org/abs/cs/9905014
http://resolver.tudelft.nl/uuid:d66efdb7-d7c7-4c44-9b50-64678ffdf60d
http://resolver.tudelft.nl/uuid:d66efdb7-d7c7-4c44-9b50-64678ffdf60d
https://doi.org/10.1109/TSMC.2020.3042876
https://doi.org/10.1109/TSMC.2020.3042876
https://doi.org/10.4233/UUID:5B875915-2518-4EC8-A1A0-07AD057EDAB4
http://resolver.tudelft.nl/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4
https://ieeexplore.ieee.org/abstract/document/9734032
http://resolver.tudelft.nl/uuid:dc63cae7-4289-47c7-889e-253f7abd7c72
https://doi.org/10.15607/RSS.2020.XVI.075
http://arxiv.org/abs/1910.02787
http://arxiv.org/abs/1910.02787
https://doi.org/10.1109/ICRA48506.2021.9560962
https://ieeexplore.ieee.org/document/9560962/
https://ieeexplore.ieee.org/document/9560962/
https://doi.org/10.1109/IROS51168.2021.9636847
https://ieeexplore.ieee.org/document/9636847/
https://doi.org/10.1016/j.ast.2021.106850
https://doi.org/10.1016/j.ast.2021.106850
https://www.sciencedirect.com/science/article/pii/S1270963821003606
https://www.sciencedirect.com/science/article/pii/S1270963821003606
https://www.gymlibrary.ml/environments/classic_control/pendulum/
https://www.gymlibrary.ml/environments/classic_control/pendulum/
https://cs.lr.tudelft.nl/citation
https://cs.lr.tudelft.nl/citation

References 96

[111] Ye Zhou et al. “Incremental model based online dual heuristic programming for nonlinear adaptive
control”. In: Control Engineering Practice 73 (Apr. 2018), pp. 13–25. url: https://linkinghub.
elsevier.com/retrieve/pii/S096706611730285X.

[112] Casper Teirlinck et al. Reinforcement Learning for Flight Control: Hybrid Offline-Online Learning
for Robust and Adaptive Fault-Tolerance. Master Thesis. Technical University of Delft, 2022. url:
http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85.

https://linkinghub.elsevier.com/retrieve/pii/S096706611730285X
https://linkinghub.elsevier.com/retrieve/pii/S096706611730285X
http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85

	List of Figures
	List of Tables
	Introduction
	Autonomous Control Systems for Flight Control
	Reinforcement Learning for Aerospace Systems
	Research Formulation
	Structure of the Report

	I Scientific Article
	Distributional Reinforcement Learning for Flight Control
	Introduction
	Background
	Methodology
	Results & Discussion
	Conclusion

	II Preliminary Analysis
	Literature Review
	Fundamentals of Reinforcement Learning
	Deep Reinforcement Learning
	Distributional Reinforcement Learning
	Reinforcement Learning for Flight Control

	Preliminary Work
	Methodology
	Results
	Synthesis

	III Additional Results
	Robustness Analysis
	Varying Initial Flight Conditions
	Biased & Noisy Sensors
	Synthesis

	Verification & Validation
	Verification
	Validation

	Wall Clock Time
	Number of parameters
	Average training time

	IV Closure
	Conclusion
	Closing Remarks
	Research Questions

	Recommendations
	References

