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Amorphous systems have rapidly gained attention as promising platforms for topological matter. In this work,
we establish a scaling theory of amorphous topological phase transitions driven by the density of lattice points
in two dimensions. By carrying out a finite-size scaling analysis of topological invariants averaged over discrete
and continuum random geometries, we discover critical properties of Chern and Z2 glass transitions. Even for
short-range hopping models, the Chern glass phase may persist down to the fundamental lower bound given by
the classical percolation threshold. While the topological indices accurately satisfy the postulated one-parameter
scaling, they do not generally flow to the closest integer value in the thermodynamic limit. Furthermore, the
value of the critical exponent describing the diverging localization length varies continuously along the phase
boundary and is not fixed by the symmetry class of the Hamiltonian. We conclude that the critical behavior of
amorphous topological systems exhibit characteristic features not observed in disordered systems, motivating a
wealth of interesting research directions.

DOI: 10.1103/PhysRevResearch.2.013053

I. INTRODUCTION

While topological classification of matter is in principle
completely independent of the symmetry-breaking classifi-
cation, much recent literature is devoted to the increasingly
subtle interplay of topology and spatial order [1]. However,
by adopting a completely complementary starting point, a
number of recent studies have identified amorphous systems
without reference to a band structure as fruitful platforms for
topological states [2–8]. This crucial property sets amorphous
topological systems apart from disordered and Anderson
topological insulators [9,10], where nontrivial topology relies
on residual spatial order. Amorphous topological states are
extremely appealing for two reasons. In contrast to crystalline
topological states, they do not rely on the specific spatial
distribution of their microscopic constituents, and thus are
exceptionally robust. Furthermore, the possibility of fabricat-
ing topological states through randomly located dopants could
allow access to a whole new class of designer topological
systems. This aspect was recently highlighted in concrete pro-
posals for amorphous topological superconductors [11] and
insulators [12]. The existence of amorphous topological states
has become a well-established fact with a rapidly growing
number of novel proposals.

Previously, it has been shown that various hopping models
with randomly distributed dopants will undergo topological
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phase transitions at sufficiently high densities [2,11]. The
purpose of this work is to establish a quantitative description
of this phase transition in representative topological models
with randomly generated geometries in two dimensions. Our
work highlights the interplay of physics of topological matter
[13,14], the Anderson localization [15,16], and classical per-
colation theory [17]. In contrast to semiclassical or effective
network studies [18], our theory is based on fully quantum-
mechanical evaluation of topological invariants of represen-
tative microscopic models averaged over random geometries
and studying their finite-size scaling properties in the vicinity
of the critical density.

A topological phase transition in an amorphous system can
be thought of as a proliferation of wave functions carrying
topological indices through the random lattice as depicted
in Figs. 1(a)–1(c). We consider both continuum and discrete
random geometries that are commonly studied in classical
percolation theory. Discrete lattices with randomly occupied
sites represent systems where random dopants have preferred
absorption sites. Furthermore, when the correlation length of
the underlying classical percolation problem is comparable or
larger than the system size, discrete and continuum random
lattices describe a similar large-scale geometry insensitive
to short-range details, as illustrated in Figs. 1(d)–1(f). We
establish that the divergence of the localization length of the
wave functions carrying topological quantum numbers satisfy
the scaling behavior ξ = (p − pQ

c )−ν̄ , where p denotes the
probability of a lattice site to be occupied, pQ

c is the criti-
cal probability, and ν̄ > 0 is a critical exponent. Continuum
models are shown to obey a similar relation where the site
occupation probability is replaced by density of particles ρ.
Unexpectedly, the nontrivial phase for paradigmatic short-
range hopping models may survive down to the fundamental
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FIG. 1. Panels (a)–(c) illustrate the proliferation of topologically
nontrivial wave functions through amorphous systems as the density
of lattice sites is increased. The dots represent randomly distributed
dopants that support electronic orbitals hybridizing with nearby
sites. The red and orange regions represent the magnitude of wave
functions with the largest spatial extent. Configuration (c) supports
an extended state, thus defining a topologically nontrivial system.
(d) The course-grained geometry of large clusters of discrete perco-
lation lattices is largely insensitive to the lattice-scale details shown
in the inset. The square and triangular site percolation configurations
shown in panel (e) give rise to statistically similar long-distance
random geometries. (f) The colored area represents the modulus of
topological wave function |ψ | on a critical percolating cluster on a
square lattice.

lower limit given by the classical site percolation threshold.
Equally unexpectedly, the critical exponent ν̄ is nonuniver-
sal and varies continuously within a symmetry class of the
Hamiltonian. This behavior is in sharp contrast to excessively
studied topological transitions in disordered systems. How-
ever, our results do not contradict the previous studies of
topological transitions in disordered systems. Despite the su-
perficial analogy to disordered transitions, the density-driven
topological phase transitions are genuinely different. By vary-
ing p (or ρ), one is simultaneously modifying the average
lattice geometry, the number of degrees of freedom, and the
spectrum of the system. The parameters driving the transition
in disordered problems do not have the corresponding effects
on the system. For example, the extensively studied quantum
Hall transition is commonly characterized by the localization
length divergence as a function of energy ξ = (E − Ec)−ν

at fixed disorder strength and lattice geometry. While the
localization length indeed exhibits singular behavior when the
energy is tuned through Ec, the system is not affected by E
driving the transition. While aspects of fluctuating geometry
can be adopted to disordered models, the previously stud-
ied physical mechanisms driving the criticality are crucially
different [19]. Thus, one should not expect that our results
could be understood in terms of previous results. Our findings
stimulate a large number of research directions in the rapidly
rising field of amorphous topological matter.

II. THEORETICAL APPROACH

The purpose of our work is to formulate a quantitative
theory of topological phase transitions in amorphous two-
dimensional (2d) systems. We consider systems with broken

time-reversal symmetry characterized by nonzero Chern num-
bers as well as time-reversal invariant systems classified by a
Z2 invariant [20]. The minimal representative lattice models
for these cases have two and four orbitals per lattice site. The
minimal models are expected to capture a generic behavior of
the topological phase transition because amorphous systems
do not exhibit spatial symmetries that would enforce addi-
tional band degeneracies. An effective tight-binding Hamil-
tonian for the Chern insulator can be expressed as

H1 =
(

(2 − M )δi j + Ti j iTi je−iϕi j

iTi jeiϕi j −(2 − M )δi j − Ti j

)
, (1)

where M is the onsite energy difference of the two orbitals
in the units of characteristic hopping amplitude and Ti j =
− 1

2 e−ri j/ηθ (R − ri j ) describes the spatial decay of the hopping
amplitudes. Here ri j = |ri − r j | is the distance between sites
i, j, the parameters η, R describe the decay of hopping, and

the phase factor is given by eiϕi j = rx
i j+iry

i j

ri j
, where rx

i j = xi − x j .
Introducing two additional orbitals, the studied time-reversal
invariant Z2 model can expressed as

H2 =
(

H1 



† H∗
1

)
(2)

and describes two time-reversed copies of H1 coupled
by the off-diagonal block 
 = iα Diag[iTi je−iϕi j , iTi jeiϕi j ].
This model can be thought of as an amorphous Bernevig-
Hughes-Zhang (BHZ) model [21] with a Rashba-type
inversion-breaking term parametrized by α. If the models
are discretized on a square lattice with η = ∞ and R
just above the lattice constant, these models reduce to a
paradigmatic two-band Chern insulator H1(k) = sin kxσx +
sin kyσy + [2 − M − cos kx − cos ky]σz and an inversion-
broken BHZ model H2(k) = Diag[H1(k), H1(−k)∗] +
α[− sin kxτy + sin kyτxσz], where σi and τi are two sets
of Pauli matrices.

We will study the behavior of the topological invariants of
models (1) and (2) averaged over different random geometries
as a function of the density of lattice sites, assuming that half
of the orbitals are populated. To gain insight into the thermo-
dynamic limit, we will study the finite-size scaling behavior
of the topological invariants. The invariants are calculated
by the real-space Chern number and Bott index algorithms
that require a single diagonalization of the Hamiltonian per
configuration [22,23]. We will consider continuum problems
with randomly distributed lattice sites characterized by a
density per unit area ρ, as well as discrete random geometries
familiar from the percolation theory shown in Figs. 1(d)–(f).
Percolation theory studies the cluster properties on different
lattices where the sites are independently occupied with prob-
ability p. A cluster in the discrete problem is defined as a
collection of lattice points that are connected by a nearest-
neighbor connecting path and in continuum problems as a
set of points that belong to a union of site-centered disks of
fixed radius. Above one dimension, there generically exists
a critical probability 0 < pcl

c < 1 or critical density 0 < ρcl
c

above which infinite systems contain an infinite cluster, defin-
ing a second-order phase transition. A course-grained long-
distance random geometry generated by different percolation

013053-2
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FIG. 2. (a) Configuration averaged Chern number for a nearest-neighbor Chern insulator generated by random square lattices. The
topological index is averaged over 20 configurations on a 20 × 20 lattice. The dashed line marks the classical percolation threshold pcl

c . (b) The
same as panel (a) but for triangular random lattices. [(c), (f)] Configuration averaged DOS of a square lattice Chern glass at optimal value
M = 1.14 for different fillings p. The figures are calculated by the kernel polynomial method [25] for 80 × 80 lattices using 300 moments, 200
random vectors, and averaged over 200 realizations. (g) Configuration averaged Chern number for different system sizes as a function of the
site filling probability for square lattice generated geometries at the optimal point M = 1.14. (h) Scaling collapse of panel (g). The extracted
pQ

c and ν̄ values are in agreement with the classical percolation threshold pc and correlation length exponent ν. [(i), (j)] Same as panels (g) and
(h) but for M = 0.9.

lattices is similar to continuum percolation problems. Indeed,
as confirmed here explicitly, the critical properties for discrete
and continuum random geometries are essentially similar.

Our scaling hypothesis for the amorphous topological
phase transition is formulated in terms of topological invari-
ants averaged over random geometries. We propose that the
averaged Chern number obeys the scaling

C̄ = f
[(

p − pQ
c

)
L1/ν̄

]
(3)

as a function of the occupation probability and linear system
size L. Here f (x) is an a priori unknown scaling function
which approaches to 0 (1) for x � 0 (x � 0). For continuum
problems, we postulate a similar expression with p and pQ

c
substituted by particles per unit area ρ (in appropriate units)
and its critical value ρQ

c . The scaling form (3) has important
ramifications. First, it implies that the phase transition is
sharp in the thermodynamic limit, taking place at the critical
value pQ

c , which we call the topological quantum percola-
tion threshold. Second, ν̄ is a critical exponent describing
the diverging localization length of wave functions carrying
the Chern number through the relation ξ = (p − pQ

c )−ν̄ near
the transition. In addition, due to the connection between
the Chern number and the Hall conductance, Eq. (3) also
describes the scaling of the Hall response (in the units of e2/h)
in amorphous systems. This provides a concrete connection
between our theory and observables. The Z2 invariant can be
evaluated through a configuration-averaged spin Bott index C̄s

[24], for which we assume a similar scaling form. It should
be stressed that while the scaling hypotheses for topological
invariants are superficially similar to the scaling of percolation
probability [17], they characterize the topology of quantum
ground states of models (1) and (2), which is conceptually
completely independent of the classical percolation problem.

III. RESULTS

A. Chern glass transitions

We first consider the discrete random geometries. The
topological phase diagrams as a function of density for square
and triangular random lattices are illustrated in Figs. 2(a)
and 2(b). The nontrivial phases in amorphous systems are
protected by a mobility gap rather than a true energy gap.
This is reflected in the fact that the gapped spectrum of a
pristine system is rendered gapless for p < 1 by randomly
missing sites, as illustrated by the density of states (DOS) in
Figs. 1(c)–1(f). The location of the phase boundary between
trivial and nontrivial phases and the corresponding critical
filling pQ

c is seen to depend strongly on the value of the
mass parameter M. Strikingly, for the optimal values of M
the topologically nontrivial state is seen to extend all the way
down to the classical percolation threshold pcl

c . While there
is recent convincing evidence of a localization transition for
nontopological quantum percolation models for p < 1, it is
thought to be possible only in the close vicinity of p = 1
[26–28]. Therefore, it is remarkable that the topological phase
may persist all the way down to the classical percolation
threshold. At the site percolation threshold, at which point
there is no longer a meaningful separation between bulk and
edge, there appears a critical cluster characterized by a fractal
dimension d = 1.9. For the optimal values of M, the Chern
glass model avoids Anderson localization even at pcl

c . As illus-
trated in Appendix B, topological wave functions efficiently
penetrate the bottlenecks of the critical cluster. It should
be noted that pcl

c gives the lower bound for the existence
of the topological phase in the thermodynamic limit since
below that the system is disconnected and cannot support
extended states for nearest-neighbor models. The signatures
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FIG. 3. (a) Configuration averaged Chern number for continuum Chern glass model with constant hopping inside disk with radius R. The
topological index is averaged over 20 configurations on a 16 × 16 lattice. The dashed line marks the classical percolation threshold pcl

c = 4.52
[31]. (b) Topological transition curves for the model in panel (a) with M = 0.85. (c) Scaling collapse of panel (b), yielding pQ

c = 4.44 and ν̄ =
1.36, in agreement with the classical values within numerical accuracy. (d) The same as panel (a) but for exponentially decaying hopping with
R = ∞. (e) Topological transition curves for the model in panel (d) with M = 2.0. (f) Scaling collapse of panel (e). (g) Configuration averaged
Z2 phase diagram on a square lattice with nearest-neighbor hopping and α = 1. The topological index is averaged over 40 configurations on
a 16 × 16 lattice. (h) Topological transition curves for the model in (g) with M = 1.5 and α = 1. (i) Scaling collapse of the curves in panel
(h). (j) Table of calculated critical data for amorphous topological phase transitions, performed with sample sizes between 300 and 1000. Two
values for the same parameters correspond to two different statistical samples with the same number of realizations. Below we have included
our results for known classical percolation problems for similar systems sizes to benchmark our method of calculating the transition curves
and extracting scaling data. The benchmark calculations can be compared to the percolation literature values (bottom).

of a topological phase below pcl
c reflect finite-size effects and

numerical accuracy.
The onset of the topological phase transition and its scal-

ing behavior is illustrated in Figs. 2(g)–2(j). The method
of calculating the configuration-averaged transition curves is
explained in Appendix A. For a fixed M, the topological index
exhibits very accurate finite-size scaling of the postulated
form (3), implying that the localization length of the topolog-
ically nontrivial states diverges as ξQ = (p − pQ

c )−ν̄ near the
critical filling pQ

c . From the scaling collapse, we can estimate
the values of the critical filling pQ

c and critical exponent ν̄.
While the phase diagram shows that pQ

c depends sensitively
on M, the properties of quantum Hall transitions in disordered
systems [16,18] might suggest that the critical exponent ν̄

could be universal in a symmetry class of Hamiltonians [29].
However, this is not the case. We observe that the value of ν̄

varies even by a factor of 1.6 as a function of M. As discussed
in Appendix A, the relative accuracy of extracted pQ

c and ν̄

values is expected to be around 5–10%. This estimate follows
from estimating the accuracy of the scaling collapse and
benchmarking our method of evaluating the transition curves

for classical percolation problems with comparable system
sizes and statistical sampling and comparing to values in the
literature. In topological and classical problems, the main
source of error comes from the limited configuration sampling
and is of the same order of magnitude. Therefore, the numer-
ical uncertainty is very small compared to the variation of ν̄

along the phase boundary and can be ruled out as a source
for observed nonuniversality of ν̄. For the optimal M values
for which the topological threshold and the classical threshold
agrees pQ

c ≈ pcl
c , the extended nontrivial states are restricted

to the critical cluster. Thus, the linear extent of these states
should be of the order of the diameter of the classical critical
cluster and the value of ν̄ should agree with the correlation
length exponent of classical percolation ν = 4/3. Indeed, our
results reproduce this fact within numerical accuracy. The
values of critical data for selected points are given in the
table in Fig. 3. It is a remarkable feature of the Chern glass
transition that the value of a configuration-averaged Chern
number is not universal at pQ

c ; in particular, it does not
need to be a half-integer. This is in a striking contrast to the
disordered quantum Hall transitions, where the critical value

013053-4



TOPOLOGICAL PHASE TRANSITIONS IN GLASSY … PHYSICAL REVIEW RESEARCH 2, 013053 (2020)

is a half-integer and the Hall conductance flows to the closest
integer multiple of e2/h in the thermodynamic limit [30]. An
amorphous system can flow to e2/h even if the initial value is,
say, 0.3e2/h, as implied by Fig. 2(g).

The topological properties of the continuum Chern glass
are in qualitative agreement with the discrete models. First, to
make a precise comparison with the classical disk percolation,
we consider a continuum model without exponential decay
(η = ∞) but with a constant hopping amplitude within the
radius R. In Figs. 3(a)–3(c), we have plotted the topological
phase diagram as a function of density ρ and studied the
scaling properties of the transition. We discover again that the
nontrivial phase may reach the vicinity of the classical disk
percolation threshold ρcl

c . The critical exponent ν̄ describing
the diverging localization length through ξQ = (ρ − ρQ

c )−ν̄ is
also found to vary strongly along the phase boundary. How-
ever, at the optimal point where ρQ

c ≈ ρcl
c , we again expect

it to agree with the classical percolation result ν = 4/3 for
the same reasons as in the discrete models. This expectation
is confirmed within numerical accuracy. In Figs. 3(d)–3(f),
we have plotted results for a physically more realistic expo-
nentially attenuated hopping where the hard cutoff is taken
to infinity R = ∞. In practice, the cutoff at R is basically
irrelevant when R > 4η. The scaling behavior in the expo-
nential Chern glass model is the same as for the disk model.
While the critical exponent does not exhibit universality, the
discrete and continuum Chern glass models share qualitatively
similar critical properties. Our main conclusion regarding the
scaling behavior of the transition and the nonuniversality
of the localization length exponent is independently veri-
fied by two-terminal conductance calculations presented in
Appendix C.

B. Z2 glass transition

Now we complement our results regarding the Chern glass
transition by considering a Z2 model (2) on a random square
lattice with a nearest-neighbor hopping. The important tech-
nical difference to the Chern glass case is that now we have
to work with four orbitals per lattice site and the evaluation
of Z2 invariant with the help of the spin Bott index [24]
requires two diagonalizations per configuration. These facts
make the study computationally more expensive compared to
the Chern glass case, and thus we are restricted to smaller
systems. Here we concentrate on the α �= 0 case since for
α = 0 the model trivially reduces to the above-studied Chern
glass problem (mod 2). The phase diagram of the system is
shown in Fig. 3(g), illustrating how the topological threshold
of the Z2 transition is increased by the coupling between
the time-reversed Chern blocks. Nevertheless, as shown in
Figs. 3(g) and 3(h), the Z2 glass transition exhibits the same
form of scaling (3) near the critical density with a nonuni-
versal exponent ν̄. The uncertainty for the extracted values
of ν̄ is much larger than for the Chern glass models due to
the system size limitations. For example, we estimate that
for the parameters in Fig. 3(g) the uncertainty is of the order
ν̄ = 3.5 ± 1.

The studied Z2 glass phase diagram also highlights an
essential qualitative difference from a phase diagram of a
disordered BHZ model. A BHZ model with finite coupling be-

tween the Chern blocks α �= 0 and quenched disorder exhibits
a well-documented metallic phase between topological and
trivial insulating phases [32]. However, in the density-driven
Z2 glass transition, we do not observe signatures of such a
metallic intermediate state. A metallic state would give rise
to extended states on a fixed interval of p and constitute a
departure from the observed scaling form (3) which implies
that the strip of extended states (transition region) shrinks as
the system size is increased. This fact further supports our
findings that the topological properties of crystalline systems
with quenched disorder are qualitatively different from those
of amorphous systems.

IV. DISCUSSION AND OUTLOOK

Motivated by the rising interest in amorphous topologi-
cal states, we introduced a scaling theory of density-driven
topological phase transitions in glassy systems. Surprisingly,
glassy topological systems support unique critical properties
sharply different from extensively studied disordered systems.
While we showed that glassy systems accurately obey the
postulated finite-size scaling relation, the critical exponent
describing the delocalization transition is not universal. Fur-
thermore, the Hall conductance does not necessarily flow to
the closest integer multiple of e2/h in the thermodynamic
limit. Remarkably, the nontrivial Chern glass phase even for
short-range hopping models may persist down to the ulti-
mate lower bound, the classical percolation threshold, where
the geometry of the random lattice becomes fractal. For
the parameter values at which the topological and classical
percolation thresholds meet, the critical exponent describing
the delocalization transition is consistent with the correlation
length exponent of 2d percolation. This seems to be the only
universal aspect of the phase transition. While a numerical
approach cannot provide a definite answer to what happens
in the thermodynamic limit, we observe single parameter
scaling in the accessible system sizes. At the moment, there
exists a number of results [26–28] that seem to indicate
departures from the scaling theory of localization [33] in 2d
nontopological quantum percolation models. Therefore, it is
to be expected that also the topological transition and criti-
cal properties of amorphous topological models have unique
properties not encountered in disordered systems.

Our findings open an interesting line of research in amor-
phous topological systems. To list a few topics, we mention
a generalization of our results to higher dimensions, charac-
terizing the fractal nature of topological states and transport
properties near the critical density. Our work also provides a
basis in generalizing the theory of topological semimetals to
amorphous systems [34].

APPENDIX A: CALCULATION OF
CONFIGURATION-AVERAGED TOPOLOGICAL

TRANSITION CURVES

1. Discrete random geometries

In this Appendix, we detail our method of calculating
configuration-averaged Chern numbers C̄(p) as a function
of the occupation probability p of a single lattice site. This
procedure applies to Z2 transitions and classical percolation
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FIG. 4. The calculation of the transition curves C̄(p) is substantially more efficient by first calculating the data C̄(n) and then transforming
using Eq. (A1), illustrated here. (a) A rough sample average of C̄(n) for M = 1.14 on a 25 × 25 square lattice, with a sample size of 50. (b) The
red dots represent a configuration average of C̄(p) with a sample size of 1000, while the black graph is the transition curve obtained through
the use of (A1) on the data in panel (a). In panels (c) and (d), the same method is illustrated for lattice percolation �̄(p) on a 30 × 30 square
lattice, with the blue graph �̄(n) and the red dots �(p) having sample sizes of 100 and 500, respectively. (e) The critical exponent calculated
by collapsing two C̄(p) curves for each M, as a function of the sample size. Each new set of configurations cumulatively increases the accuracy
of the obtained curves, and hence the obtained critical values pQ

c , ν̄.

problems in essentially the same form. The key point is to
first calculate the Chern data C̄(n) as a function of the number
of occupied sites n randomly distributed in the lattice, and af-
terward analytically deduce C̄(p) for all p. This procedure has
crucial advantages over directly sampling configurations with
sites occupied by probability p. First of all, p, in contrast to n,
is a continuous variable and fixing appropriate p resolution for
scaling studies is not a priori clear. Second, as made explicit
below, C̄(p) for a single p value is obtained as a weighted
average over C̄(n) with several different n. This turns out to
reduce statistical fluctuations in the transition curves and to
allow more accurate evaluation of pQ

c and ν̄. This is especially
important in the studied problem where evaluation of topo-
logical indices, unlike the percolation probability, requires
diagonalization of the Hamiltonian, imposing limitations for
practical system sizes. We benchmark our method by applying
it to finite-size scaling of classical percolation problems and
show that percolation thresholds pc and correlation length
exponents ν can be extracted with good accuracy within the
system sizes employed in our study.

Assume we have acquired knowledge of the quantity C̄(n)
as a function of occupied sites n on a finite lattice of N = L2

sites. In practice, this is done by averaging the topological
index over different configurations with the same n. In total,
there are 2N possible configurations with varying amounts of
occupied sites n, and there are

(N
n

)
possible configurations for

a fixed n. We would now like to know C̄(p) for all p ∈ [0, 1].
Given a probability p for each lattice site to be occupied, the
probability to get exactly n occupied sites out of N possible
sites is given by the binomial distribution P(n, p). Thus, the
desired quantity C̄(p) can be calculated using the following
prescription:

C̄(p) =
∑

n

P(n, p)C̄(n) =
∑

n

(
N

n

)
pn(1 − p)N−nC̄(n).

(A1)

The validity of the procedure can be straightforwardly
tested. The comparison of C̄(p) calculated by applying (A1)
shows that the method indeed reproduces the correct C̄(p)
curves, as well as drastically reduces the statistical fluctua-
tions compared to sampling configurations with probability
p directly. Since the conversion from C̄(n) is performed
analytically, one can choose a much higher density for the

probabilities without the need to perform additional diago-
nalization. In Fig. 4, we have compared the transition curves
produced by either fixing p directly or beginning with even
very coarse sampling of C̄(n) and converting to C̄(p) using
(A1). Note that all errors come from sampling from the finite
set of configurations for fixed n—perfect knowledge of C̄(n)
would yield the exact transition curve C̄(p).

The method explained above for calculating the transition
curves can be applied to Z2 systems and classical percola-
tion by replacing C̄(n) by a spin-Bott index C̄s(n), or �̄(n),
giving the probability of the existence of a percolating path
connecting left and right edges of the sample. Applying
(A1) gives access to C̄s(p) and �̄(p). To benchmark our
method of calculating transition curves, we apply the method
to classical percolation problems. In Fig. 3(j) in the main
text, we have collected our critical data. Comparison to the
accurate reference values from the literature shows that the
relative error in pcl

c and ν for the comparable system sizes
available for topological studies is of the order of 5–10%.
The results obtained for the critical exponents become more
accurate as the sample size is increased, as the effects of
the statistical sampling decrease; see Fig. 4(e). Since the
main source of error for classical percolation and topological
problems originates from the limited statistical sampling and
both exhibit comparable fluctuations, we expect that the error
in pQ

c , ν̄ is of the same order. For classical problems, we could
go to much larger systems and obtain much more accurate
data, but evaluation of topological indices is computationally
much more expensive and we are limited to modest system
sizes. Nevertheless, the above considerations suggest that we
can reach good accuracy also in the topological data.

2. Continuum random geometries

For continuum models, we need to carry out a configu-
ration average of the topological index C̄(ρ) as a function
of density. In contrast to the above, we do not have a fixed
underlying lattice where the lattice points are either occupied
or unoccupied. First of all, we have two separate cases that we
will consider: constant hopping in a finite radius r � R and
hopping which decays exponentially ≈e−r/η. We can denote
the cutoff by θ (r − R)e−r/η, the former case corresponding
to η = ∞ and the latter to R = ∞. We will first look at the
former case; the latter will be handled analogously. Denote
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FIG. 5. Same as in Fig. 4, except for continuous systems with no underlying lattice structure, and where the prescription of calculating
transition curves is now (A3). Panels (a) and (b) are for the continuum model Chern number C for a 25×25 system with R = ∞, and the
parameter M = 1. Panels (c) and (d) are for the inclusive disk percolation for a 30×30 system, where R stands for the maximal hopping radius
between lattice points. N0 = L2 is the number of lattice sites analogous to the maximum N for finite lattices, with the difference that n can here
exceed N0.

by ρ the density ρ = Sum of area of disks
Total area = nπR2

L2 = D(n)πR2,
where n is the number of lattice points in our region of size L2,
and D(n) = n/L2 is the particle number per system size. For
our purposes, in order for ρ to describe a meaningful density,
it needs to depend on R. Given a large system with overall
particle number density D(n), if we choose a subsystem of
size L2, we will, on average, find n = D(n)L2 lattice sites in
it. Every lattice point is located either within the confines of
the subsystem or not, completely independently of all other
points. What we have described is a Poisson distribution with
the intensity λ = D(n)L2. The probability to find k lattice
points in our system is

Pλ(k) = λke−λ

k!
, k = 0, 1, 2, . . . . (A2)

Thus, the quantity C̄R(D) for fixed particle number density D
and radius R can be calculated using

C̄R(D) =
∑

n

Pλ(D)(n)C̄R(n), (A3)

where λ(D) = DL2. Finally, in terms of the density ρ, we
can give the desired quantity as C̄(ρ) = C̄(DπR2) = C̄R(D).
For the case of R = ∞, where the exponential decay is con-
trolled by a finite η, the quantity of interest is instead C̄(ρ) =
C̄(Dπη2) = C̄η(D). Evaluation of the configuration-averaged
Chern numbers using this method is illustrated in Fig. 5.

Again, the amount of densities ρ to evaluate C̄(ρ) can be
chosen as high as desired as the conversion from C̄(n) to C̄(ρ)
is calculated analytically. Note that, in contrast to the binomial
distribution for the lattice problem above, the sum

∑
n here

goes to infinity, so one must include the terms until Pλ(D)(n)
becomes negligible. Again, the strongest confirmation of the
validity of this method comes from benchmarking it for disk
percolation. We can calculate the disk percolation probability
�̄(ρ) from Eq. (A3) by replacing the topological index C̄(n)
by configuration-averaged percolation probability as function
of lattice points �̄(n). This enables us to extract the critical
density and the critical exponent and to compare them to
their known values ρc = 4.52 [31] and ν = 4/3. For system
sizes up to L = 30 with N = L2 particles averaged over 1000
configurations, we obtain the values ρc = 4.55 and ν = 1.35.
Since the main source of error for the topological problem and
disk percolation is the limited statistical sampling, we expect
similar relative error for ρQ

c and ν̄.

APPENDIX B: CRITICAL WAVE FUNCTIONS
AT THE PERCOLATION THRESHOLD

In the main text, we pointed out that for optimal values
of the mass parameter M, the topologically nontrivial phase
may persist down to the site (disk) percolation threshold
for short-range hopping models with discrete (continuum)
random geometries. The percolation threshold provides a
theoretical lower bound for the existence of a nontrivial
topological phase for these models since no extended states
can exist below the threshold when the underlying system
consists of a collection of finite clusters. At the threshold, the
underlying critical cluster is a random fractal with dimension
d = 1.9 in two dimensions [17]. Remarkably, as required by
the presence of a nontrivial phase, extended states may survive

FIG. 6. Modulus of critical wave functions |�| on percolating clusters for the nearest-neighbor Chern glass model on 100 × 100 lattices at
the percolation threshold. All states have energies E � 10−4M. [(a), (b)] Square lattice percolations geometries with M = 1.14 and p = pc =
0.59. [(c), (d)] Triangular lattice percolation geometries with M = 1 and p = 0.52, almost at the threshold pc = 0.5.
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FIG. 7. (a:) Configuration averaged two-terminal conductance calculated for system sizes L = 30, 40, 50, with M = 0.85 and η = ∞.
(b) Scaling collapse of panel (a), yielding ρQ

c = 4.79 and ν̄ = 1.35. Within numerical accuracy, this is in agreement with the results from
classical disk percolation. Panels (c) and (d) are the same as panels (a) and (b), except for exponentially decaying hopping with R = ∞, and
M = 1, yielding ρQ

c = 1.25 and ν̄ = 1.07. The curves in panels (a) and (c) are calculated with sample sizes of 300.

even in this extreme limit. In Fig. 6, we have plotted the
modulus of the wave functions living on critical clusters of
square and triangular lattices. These extended states nucleate
at E = 0 at the critical density pc and the linear extent of
these states is limited by the critical cluster. This provides a
natural explanation for why the localization length exponent at
the percolation threshold coincides with the correlation length
exponent of the percolation cluster.

APPENDIX C: SCALING OF CHERN
GLASS CONDUCTANCE

The purpose of this Appendix is to consolidate our main re-
sult concerning the nonuniversality of the localization length
critical exponent at the Chern glass transition. A methodolog-

ically independent calculation of scaling properties of two-
terminal conductance confirms our conclusions for the studied
density-driven topological phase transition. Since it does not
require diagonalization of the Hamiltonian, we can perform
this check on larger system sizes than were considered in the
calculation of the topological index.

We employ the method that was previously adopted to
study thermal conductance of amorphous topological super-
conductors in Ref. [11]. We employ open boundary conditions
in the direction perpendicular to transport. The Green’s func-
tions of the Chern glass are given by

G−1
r,a (E ) = E − H − �r,a, (C1)

where � is a self-energy term originating from the coupling
to electronic leads. This, in turn, can be found to be

�r (E , m, n) =

⎧⎪⎨
⎪⎩

1
Ly/a+1

( tC
tL

)2 ∑
k sin(kma)

(
ε − i

√
4t2

L − ε2
)

sin(kna), |ε| < 2tL,

1
Ly/a+1

( tC
tL

)2 ∑
k sin(kma)

(
ε − sgn ε

√
ε2 − 4t2

L

)
sin(kna), |ε| > 2tL,

(C2)

where ma, na are the y coordinates of sites connected to the
leads, while tC and tL are the hopping parameter between
the lead and the Chern glass and the hopping parameter within
the lead. We assume that the leads are modeled as square
lattice structures and define

ε = E − 2tL cos(ka). (C3)

In the above expressions, k takes values k( j) = jπ
a(Ny+1) for

j = 1 . . . Ny, where Ny denotes the number of fixed sites on
each side of the scattering region. The conductance through
the Chern glass (in the units of e2/h) is then given by

g = Tr
[

LGLR

r 
RGRL
a

]
. (C4)

Here, we have defined 
L,R = −2 Im �L,R as well as the
matrices GLR

r,a and GRL
r,a . The latter two are the subblock of the

Green’s function connecting the leftmost and rightmost edges
of the sample.

A quantized conductance is the topological response of
the system. Here we study the scaling of conductance in the
density-driven phase transition by carrying out configuration
averaging with Eq. (A3) but replacing the Chern number by

conductance. In the single-parameter scaling regime, the only
quantity governing the behavior of the system is the local-
ization length, so the conductance data give us an indepen-
dent method to extract the critical behavior. The conductance
curves as function of density are calculated using the same
procedure as for the topological index: An average conduc-
tance is first calculated as a function of number of particles,
and the conversion to density is performed analytically using
Eq. (A3). In Fig. 7, we present the finite-size scaling for two
separate cases and confirm that the critical exponent describ-
ing the topological phase transition is nonuniversal. Close to
the point where topological and classical thresholds agree, the
critical exponent is expected to obtain the value 4/3, seen in
Fig. 7(b). As described in the main text, the critical exponent
varies continuously along the phase boundary: Changing the
mass parameter, we find large deviations from the classical
value. In Fig. 7(d), we reproduce, within numerical accuracy,
the critical exponent (ν̄ = 1.03) given in the table of Fig. 2(j)
in the main text. Thus, the critical behavior extracted from the
conductance and topological index calculations agree within
the estimated error margin.
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