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Abstract

To allow for e�cient and robust gait pattern, humans instantaneously modulate their joint
impedance. Lower-limb amputees and patients su�ering from neurological diseases partly
lack that ability. Therefore, prosthetic and rehabilitative devices have been designed to re-
store and repair nominal locomotion. For bio-inspired control of these devices, the underlying
physiological behavior of the lower-extremity must be identified and quantified. Deeper under-
standing is also important to determine appropriate therapy for patients with upper motor
neuron diseases. Di�erent identification methods exist to quantify joint impedance during
well-controlled, static tasks using continuous random perturbations. However, methods are
lacking which quantify joint impedance during walking

The goal of this Master thesis was to experimentally validate a novel method to identify joint
impedance during the stance phase of walking. The thesis investigated whether transient
endpoint perturbations applied using an instrumented treadmill were su�cient to identify
the dynamics of a single-joint system where all properties were known. The influences from
the experimental setup were evaluated and finally, the method was applied in a pilot study
of a human subject standing on the treadmill.
Results indicate that joint parameters of the system could be consistently estimated with a
good fit. However, they were not physically meaningful and did not match the true parameters
of the system. This was caused by e�ects from the experimental setup, which could not be
directly subtracted from the data. Model simulation demonstrated the sensitivity of the
method to measurement noise.

The limitations of the method and the available experimental setup were carefully identified
in this study. Thorough guideline for the method was developed which facilitates the use of
the method and sharpens the goal for further research.

Keywords Transient Endpoint Perturbations (TEP), System Identification and Parameter
Estimation (SIPE), joint impedance, validation, simulation
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Chapter 1

Introduction

1-1 Motivation

Understanding and quantifying the physiological properties of the ankle joint during walking
is important to replicate natural gait with active exoprostheses, exoskeletons or orthoses.
Only then can the behavior of a healthy ankle be mimicked and used to develop realistic,
biologically inspired control schemes for the active devices [3]. Deeper understanding is also
clinically relevant for improved diagnosis and therapy assessment of patients su�ering from
Upper Motor Neuron Disease (UMND)[4].

1-2 Joint impedance

At a first glance, it appears that human walking is a simple, repetitive process that is easily
understandable. Learned already at an early age, humans seem to walk with little e�ort.
While interacting with their environment, they can simultaneously alter their walking speed,
maintain stability and correct for unexpected disturbances. They can perform a broad spec-
trum of various movements without paying close attention to how exactly these movements
are generated. One means to express the adaption of the joint is the joint impedance. It
describes the dynamic relation between the position of the joint and the torque acting about
it [3] (Figure 1-1):

I ◊̈ + B◊̇ + K◊
◊ ·

Figure 1-1: Joint impedance: the dynamic relationship between joint angle ◊ (input) and the
resulting torque · (output) acting about the joint.

Humans show impressive ability to instantaneously modulate their joint impedance during
walking [5]. As the heel strikes the ground, the leg muscles must alter their force production
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2 Introduction

to increase the impedance of the hip, knee and ankle joints. This is essential for carrying
the entire body weight, increase stability and to absorb unexpected impact. Insu�cient joint
impedance might result in stumbling or falling. Simultaneously, the joint impedance of the
opposite leg must decrease significantly to ensure that the leg can swing [6].
Two main components have been identified which are responsible for modulating joint impedance
during healthy walking. Intrinsic components arise from the active and passive properties
of the muscles, tissues and tendons around the joint. Reflexive components originate as
the a�erent sensory feedback resulting in the activation of the muscles. Information from the
proprioceptors (Muscle Spindles and Golgi Tendon Organs) and the mechanoceptors (sensing
pressure, pain and vibrations in the skin) influence the contribution of the reflexive com-
ponents [7]. To compensate for changes in tasks and environment, each component can be
significantly altered and tuned by the Central Nervous System (CNS) [8]. Joint impedance is
also known to vary depending on the task [9], the perturbation type [8, 10] and time [11]. To
date, it is still under investigation to what extent intrinsic and reflexive components contribute
to total impedance.

1-3 State of the art in joint impedance identification

Physiologists and biologists study joint impedance either in ex vivo or by experimentally ma-
nipulating the physiological behavior of the joint. Some studies use surgical dea�erentation
while others used vibrations, ischemia or electrical stimulation [12, 13]. The mechanical be-
havior of the joint under normal condition is then compared to the behavior observed in a
joint which has been manipulated. A major challenge is to ensure that conditions are properly
matched between the baseline and the manipulated condition. These studies are important
to gain fundamental understanding of physiological joint behavior, although results are not
verified and are subjective to experimental conditions [14].

The physiological approach is in contrast with the engineering approach, which uses System
Identification and Parameter Estimation (SIPE) methods to study joint impedance analyti-
cally [8, 10, 15]. SIPE is a discipline that originates from the field of control engineering. It
focuses on formulating mathematical models of dynamic systems using measurements of their
inputs and outputs. The challenge is to derive a model of the joint dynamic (i.e. the system
dynamics) by analyzing the relation between the input (either position or torque) and the
output (torque, position or EMG)[16]. The advantages of using SIPE methods is that the
internal behavior of the human body can be estimated. The methods are then useful to point
out flaws in past theories and to suggest new theories and experiments [17].

Regardless of the system under study, the SIPE process tends to follow the same, logical flow
(Figure 1-2). Based on the prior knowledge of the system, an experiment is designed and
data is collected. A certain model set is then chosen to describe the system as well as the
criterion for the fit. Using the recorded data and the chosen model structure, the parameters
of the system’s model are calculated. Finally, the calculated model is validated in terms of
how well it manages to represent the true dynamics of the system. In case the model is not
accurate enough, it must be revised and the whole process is adjusted and repeated [1].
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Experimental
design

Data

Choose
Model Set

Choose
Criterion

of Fit

Calculate
Model

Validate
Model

Prior knowledge

OK: Use it

NotOK: Revise

Figure 1-2: The SIPE loop as described in [1]

In the beginning of the identification process, it is important to consider how to describe the
dynamics of the joint, i.e. how it should be modeled. The term model refers to the concep-
tual or quantitative framework which is chosen to describe the system and/or its behavior [16].

Parametric models preferably use a minimal set of parameters to describe a physical system.
The models are usually derived from empirical findings or principles which means that a pri-
ori knowledge is needed about the system. Parametric identification methods are then used
to estimate the parameters of the model [14].
Parametric models are useful when the goal is to estimate dynamic behavior but inappro-
priate without prior knowledge about the system [18]. Parametric identification routines
are generally computationally e�cient because of their compact representation of the system
dynamics. However, in cases where the parametric model di�ers from the real system, the
resulting parameters might be precisely estimated but will not be physically meaningful. Only
if the appropriate model structure has been determined can parametric methods be used with
confidence [19].

Non-parametric models do not require any a priori knowledge about the equations describing
the system response. They are useful if a time-varying behavior can be easily repeated [18].
However, the disadvantage is that there is no direct relationship between the estimated non-
parametric model and the underlying physiological components responsible for the system’s
output [20].
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4 Introduction

Joint impedance experiments generally consist of applying position and/or force perturbations
to the joint and measure the resulting joint displacement and torque. Single-joint impedance
under static conditions has been thoroughly studied, i.e. by studying only a single joint and
keeping the deviations of the joint angle as small as possible. Ankle [9, 21, 22], knee [6, 15],
wrist [23] and shoulder [8, 24] have been extensively studied in this manner. Such studies
are beneficial to give an insight to the physiological properties of joint impedance, but give
limited information about its functional role. Postural studies on both upper [4, 25] and lower
[26, 27] extremity are examples of multi-joint studies which have been performed to shed a
light on how humans maintain their position and stability.
Existing SIPE methods have also been evaluated and investigated using model simulations
[26]. They allow for prediction of the joint behavior under various conditions which might be
di�cult to implement in reality. They are therefore a meaningful tool to optimize experiments
and to reduce the experimental e�ort.

Compared to the number of dynamic studies on joint impedance, relatively few in vivo studies
have been done on the human during walking [15]. The challenges of studying the human dur-
ing walking can partly be explained by the complexity of the human itself. During walking,
the human can be viewed as multi-joint system demonstrating both non-linear and time-
varying behavior. This behavior is challenging to model using simple linear, time-invarying
techniques. The experimental setup poses also limitations. On one hand, the experiment
requires a device which applies persistently exciting perturbations to yield useful data which
are rich in information [28, 29]. At the same time, the device must not hinder the subject’s
natural movements [3, 30].

1-4 Problem statement and outline

The properties of the ankle joint during natural, dynamics tasks such as walking have not
been determined successfully. Intrinsic ankle joint impedance has been studied by applying
transient endpoint perturbation at the sole of the foot [3, 31] during the stance phase of
walking. However, the conceptual feasibility of applying such perturbations has never been
systematically studied. Furthermore, the influences from the available experimental setup
have not yet been evaluated.

The goal of this Master thesis is to experimentally validate a novel identification method,
Transient Endpoint Perturbation System Identification and Parameter Estimation (TEP-
SIPE). The method was developed to identify ankle joint impedance during the stance phase
of walking by applying transient endpoint perturbations using an instrumented treadmill.
The recorded data is processed in time-domain by fitting short data segments, including only
the perturbation, to a model of the system’s dynamics.
The thesis investigates whether the TEP-SIPE method is able to identify the impedance of
a single-joint system where all properties are known. The influences from the experimental
setup are evaluated and finally, the method is applied in a pilot study of a human subject
standing on a treadmill.
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Figure 1-3: Summary of the methods applied in this Master thesis

Chapter 2 addresses the perturbation experiments and simulations conducted to validate the
TEP-SIPE method. The true properties of an single-joint ankle dummy were estimated in a
benchmark experiment, using the Wristalyzer. The properties of the ankle dummy were then
estimated with the TEP-SIPE method, using an instrumented treadmill. Weight experiment
was conducted to evaluate the treadmill dynamics. The parameters estimated in the Wrist-
alyzer and on the treadmill were evaluated in a model simulation. The model simulation was
also used to investigate the influence of noise on the parameter estimates. As an addition to
this study, a pilot study with a human subject standing on a treadmill was performed.

Chapter 3 is concerned with the post processing of the recorded experimental data. The
SIPE method to estimate the true parameters of the ankle joint is explained as well as the
TEP-SIPE method used for the treadmill data and the model simulation. The evaluation the
treadmill dynamics shown as well as the first steps to process the data from the pilot study.
For clarity, the outline of chapters 2 and 3 is summarized in Figure 1-3.
Chapter 4 presents the the results from all experiments and model simulations. Preliminary
data from the pilot study is shown.
In Chapter 5, the parameters estimated with the TEP-SIPE method are evaluated. The
influences from the treadmill dynamics are discussed as well as the results from the model
simulation. Outlook is given for future research.
Chapter 6 concludes this study.
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Chapter 2

Experiments and simulations

The validation of the TEP-SIPE method was three-fold. First, an established method based
on perturbation experiments using the Wristalzyer [32] was used to identify joint impedance
of a single-joint ankle dummy. Second, the TEP-SIPE method based on transient endpoint
perturbations using an instrumented treadmill [31] was used to identify these parameters.
Third, the parameters estimated in the two experiments were evaluated in a model simulation.
This was done by simulating the treadmill experiment using a SimMechanics model of the
ankle dummy. To define properties of the ankle joint in the simulation, parameters estimated
with the Wristalyzer-based SIPE (scenario 1), and with TEP-SIPE (scenario 2) were used.
Input to the simulation were the perturbation profiles used in the real treadmill experiment.
On the one hand, the resulting movements in both scenarios were compared to the movement
recorded from the real treadmill experiments. On the other hand, parameter estimation was
conducted using simulated kinematics and torques. The model simulation was also used to
investigate the influence of noise on the quality of the parameter estimation. A pilot study
was then conducted with a human subject standing on the instrumented treadmill.
The evaluation of the experimental setup was done in a weight experiment. The reliability of
recorded forces and moments were investigated to see whether the treadmill dynamics could
be successfully determined. Table 2-1 summarizes the experiments and simulations presented
in this chapter.

Validation Application

Setup Wristalyzer Treadmill Simulation Treadmill
Subject Ankle Dummy Ankle dummy Weight Ankle dummy Human

Purpose

Benchmark
experiment TEP-SIPE Evaluate treadmill

dynamics

Evaluate
TEP-SIPEparameter estimates

TEP-SIPE
Sensitivity analysis

Table 2-1: Overview of experiments and simulations. The method and experimental setup are
validated with the ankle dummy and weight. The method is applied on a human in a pilot study
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8 Experiments and simulations

2-1 TEP-SIPE Validation

A simplified model of a leg with a single joint, representing the ankle joint, was needed for
the validation. A brick was used as the foot and a wooden rod was used as the leg. The two
segments were connected together with a rubber joint representing the ankle joint (Figure 2-1).
The geometrical and mechanical properties of the dummy were obtained by directly weighing
and measuring the two segments segments (Table 2-2).

Figure 2-1: The ankle dummy used for the TEP-SIPE validation. The brick, rod and rubber
joint represent the foot, leg and ankle joint respectively.

width [cm] depth [cm] length [cm] mass [kg] inertia [kg · m2]

Foot 21 10 5.5 2.1 0.008
Leg 4.5 2.5 89.7 0.4 0.027

Table 2-2: Geometrical and mechanical properties of the ankle dummy

K.L. Ragnarsdottir Master of Science Thesis



2-1 TEP-SIPE Validation 9

2-1-1 Wristalyzer

Experimental setup

The Wristalyzer is a 1 DoF torque-controlled manipulator, intended for dynamic investiga-
tion of wrist properties of neurological patients. It can measure the motion of the wrist under
various mechanical conditions with a high accuracy [2]. The joint admittance, i.e. the rela-
tionship between the applied torque and the resulting position, is assessed by perturbing the
joint with torque disturbances and observing the angular deviation [32].

The manipulator is a rotating device which can exert both flexion and extension torques
around the joint (Figure 2-2). The drive train is driven by an electromotor attached to the
hand and arm rest. A brushless disc motor (Baumüller, DSM130N) drives the manipulator
with the motor current supplied by a combined amplifier/control unit (Baumüller BUM60),
which includes current feedback to improve motor performance. A SinCos encoder (Stegmann
SRS50) is used to accurately measure the joint angle. A torque transducer consisting of strain
gauges (HBM, XK13E-3/350) is used to measure the torque exerted by the subject [32].

Figure 2-2: The Wristalyzer setup [2]

A control software software application (D-flow, Motek Medical, Amsterdam, Netherlands)
was used to apply force perturbations ·

P

(t) to the joint at 2048 Hz. During a single trial, the
motor angle ◊(t) was were recorded at approximately 163 Hz.

Experimental protocol

The ankle dummy was fixed to the Wristalyzer (Figure 2-3). The foot was placed on the hand
rest and fixed tightly with a strap. The center of the ankle joint was placed directly above
the rotating platform of the robot. The leg was fastened to the arm rest using the straps of
the setup.

Continuous random force perturbations were applied for 60 sec. The perturbation signal was a
multisine signal with a frequency bandwidth ranging from 1 - 20 Hz. Five trials were recorded
whith the amplitude of the perturbation signal scaled with five scaling factors: 0.08, 0.12,

Master of Science Thesis K.L. Ragnarsdottir



10 Experiments and simulations

Figure 2-3: Fixation of the ankle dummy in the Wristalyzer. The foot was fixed to the hand
rest. The ankle joint was fixed directly above the rotating platform. The rod was fixed tightly to
the arm rest.

0.16, 0.20 and 0.24. Signals generated with the lowest scaling factor were just large enough
to excite the dynamics of the ankle dummy. Signals generated with the highest scaling factor
were just small enough to not damage the dummy. Figure 2-4 shows the perturbation signal,
i.e. the torque generated with the lowest and the highest scaling factor.
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Figure 2-4: Segment of the perturbation signal applied by the Wristalyzer. The solid line shows
the signal scaled with the lowest scaling factor (0.08). The dashed line shows the signal when
scaled with the highest scaling factor (0.24).
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2-1 TEP-SIPE Validation 11

2-1-2 Treadmill

Experimental setup

A dual-belt instrumented treadmill (ForceLink B.V, Culemborg, The Netherlands) measured
the forces and moments exerted by the subject. Each belt has 7 force transducers: 4 measure
vertical forces, 2 measure medio-lateral forces (ML) and 1 measures anterio-posterior (AP)
forces. The transducers are ring torsion load cells with a capacity of 1000 kg (Vishay Revere
Transducers, Breda, The Netherlands) and accuracy of ± 0.02%. Using a 12◊14 calibration
matrix, the 14 signals measured from the two belts were translated to forces and moments
referenced to the coordinate system of the treadmill. This resulted in 3 forces (F

x

, F
y

and F
z

)
and 3 moments (M

x

, M
y

and M
z

) for each belt. The treadmill belts are actuated at the rear
by two ELAU PacDrive high dynamic SM-140 servo motors (Schneider Electric SA, France)
with a capacity of 6.5 kW. The treadmill is controlled in real-time using Matlab/Simulink
and a xPC Speedgoat target (The Mathworks Inc., Natick, Massachusetts). Belt velocity was
generated using voltage signals as input to the treadmill.

The motion was recorded using Optotrak Certus (Northern Digital Inc., Ontario, Canada)
motion capture system with a 3D spatial accuracy of ± 0.1 mm. A position sensor detects in-
frared light emitted by marker diodes and collects the data in reference to a global coordinate
system. The markers are activated by a strober controlled by a System Control Unit (SCU).
The data from the motion capture system was collected and stored using a software applica-
tion, First Principles (Northern Digital Inc., Ontario, Canada). To synchronize the motion
data to the treadmill data, an external trigger signal was sent from the xPC to the SCU. The
data collection, belt movement and perturbations were initialized with a command from the
Matlab running on the host computer to the xPC. The forces were sampled at 1000 Hz and
motion was sampled at 250 Hz. A schematic of the complete setup is shown in Figure 2-5.

!!!!!!!!!!
!

!!
!!
!
!!
!!!!
-!!!!!!!!!!!!!

ForceLink R-mill 
dual belt treadmill   TM

Si
  

EM
G

 re
co

rd
in

gs

Host computer 
Data recording

O
pt

ot
ra

k 
 m

ot
io

n 
re

co
rd

in
gs

SCU Porti via 
USB

xPC Speedgoat running 
Simulink model in real time!

Generation of velocity signals  
 recording of force signals

Host computer running Matlab/Simulink  
Data recording

Figure 2-5: Schematic overview of the instrumented treadmill setup. For the ankle dummy and
weight experiments, the EMG recordings from the TMSi were not needed.
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12 Experiments and simulations

Experimental protocol

Ankle dummy experiment The ankle dummy was placed on the center of the right belt.
Eight active markers were placed on the dummy (Figure 2-6). A double tape under and on the
side of the dummy prevented it from from slipping on the treadmill during the experiment.
Each trial lasted 70 sec with perturbations applied every 4 sec. One trial was repeated with
perturbations applied every 8 sec. This was done to ensure that the e�ects from previous per-
turbations had decayed before the next perturbation was applied. The unperturbed position
of the dummy was recorded during the first 6 sec and last 8 sec of each trial to obtain the
reference position of the dummy.

Figure 2-6: The ankle dummy was placed on the right belt of the treadmill. Eight active markers
were attached to the dummy: three markers on the foot (markers 1-3), one marker on the ankle
joint (marker 4) and four markers on the leg (markers 5-8).

Weight experiment To determine the dynamics of the treadmill, the experiment was re-
peated when the treadmill was either empty or loaded with a 20 kg weight. The reliability
of the treadmill recordings could be evaluated by comparing forces and moments from the
empty belt to the forces and moments recorded with a known weight. During loaded trials,
the weight was placed in the center of the right belt. Four active markers were placed on
the weight (Figure 2-7). A double tape under the weight prevented it from slipping on the
treadmill during the experiment. Each trial lasted 60 sec with perturbations applied every
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2-1 TEP-SIPE Validation 13

4 sec.

Figure 2-7: The 20 kg weight placed on the treadmill. Four active markers were attached to the
dummy, one in each corner.

The same experimental protocol was followed for the ankle dummy, the empty treadmill and
the weight (Figure 2-8). The perturbation signal was designed such that it is suitable for
human experiments. The perturbation should be strong enough to elicit a reaction in the
joint. At the same time it should avoid disturbing the natural gait and should ideally not be
noticeable to the subject. Two perturbation profiles were tested: A sinusoidal and a minimum
jerk profile (Figure 2-9). The perturbation lasted for 100 ms, which is short compared to the
duration of the stance phase, which is around 700-800 ms. Five velocity amplitudes were
tested for each perturbation profile, ranging from 0.1 to 0.5 m/s.

Ankle dummy

Empty treadmill

20 kg Weight

Sine
perturbations

Min. jerk
perturbations

Velocity amplitudes:
0.1 - 0.5

Figure 2-8: The experimental protocol for the ankle dummy, the empty treadmill and the 20 kg
weight. Five velocity amplitudes were tested for each perturbation profile. During the ankle
dummy experiment, the highest velocity amplitude was applied in two trials. First with perturba-
tion applied every 4 sec and then with perturbations applied every 8 sec. The latter trial was done
to ensure that the e�ects of perturbations had decayed before the next perturbation was applied.
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Figure 2-9: An example of the two perturbation signals generated by the treadmill with a sinu-
soidal velocity of 10 Hz. The velocity amplitude ranged from 0.1 to 0.5 m/s, with the incremental
change of 0.1 m/s. The amplitude of minimum jerk profile is indicated in the picture.

2-1-3 Model simulation

Simulation setup

A 3D ankle dummy model was implemented and simulated in Simulink’s SimMechanics tool-
box (The Mathworks Inc., Natick, Massachusetts) using a fixed step ODE45 solver. To match
the sampling rate of the treadmill experiment, the simulation sampling rate was set to 250 Hz.
The dummy model was graphically built as blocks representing the foot, ankle joint and the
leg (Figure 2-10). The model’s geometrical and mechanical properties matched the experimen-
tally measured values of the real dummy. Only 2DoF were modeled: horizontal translation
along the y-axis and rotation about the x-axis. The ankle joint was modeled as a second order
mass-spring-damper system, which is commonly done to describe the visco-elastic behavior
of a mechanical system:

·
A

= I · ¨

◊(t)
A

+ B · ˙

◊(t)
A

+ K · (◊(t)
A

≠ ◊
ref

) (2-1)

The parameters I, B, K denote the inertia, damping and sti�ness of the ankle joint. The
ankle angular position ◊

A

, velocity ◊̇
A

and acceleration ◊̈
A

were measured with a joint sensor.
The reference angle ◊

ref

was defined as the resting position of the rod at 0 rad.

Perturbations of the treadmill were realized with a velocity controller. The velocity pertur-
bation profile recorded in the experiment, as well as its derivative and its integration served
as input to the controller. Thus, the perturbation caused a horizontal displacement of the
foot, identical to the one generated with the treadmill in the real experiment. The ankle joint
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Figure 2-10: The graphical representation of the ankle dummy as visualized in SimMechanics.

torque ·
Asim

, joint angle ◊
Asim

, velocity ◊̇
Asim

, acceleration ◊̈
Asim

, ground reaction forces
F

ysim

, F
zsim

, joint reaction forces F
Aysim

, F
Azsim

and the horizontal translation of the foot
y

fsim

, ẏ
fsim

, ÿ
fsim

were recorded.

Simulation protocol

The experimental protocol from the treadmill experiment described in subsection 2-1-2 was
repeated twice. First, using I, B and K parameters estimated with the Wristalyzer experiment
and second, using I, B and K parameters estimated with the treadmill experiment. The
purpose of these simulations was to find out how well the recorded movement of the dummy
could be replicated using two sets of parameters. Like that, the correctness of the parameter
estimates could be assessed. The validity of the TEP-SIPE method was tested by estimating
parameters of the simulated data where parameters were exactly known. Ideally, the TEP-
SIPE method should reveal these known parameters.

In a second step, the influence of measurment noise on the parameter estimation was evaluated
with a sensitivity analysis. Three configurations of measurement noise were added to the
simulated data and evaluated. This was done by adding noise to either the simulated torque,
the simulated angular angle or to both torque and angle. For each configuration, the noise
level was varied by changing the Signal-to-Noise Ratio (SNR). The SNR is the ratio between
the signal power and the noise power. Low SNR indicates that the noise is dominating whereas
high SNR indicates that the signal is dominating. The complete simulation protocol is shown
in Figure 2-11 and Figure 2-12.
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Ankle dummy

Wristalyzer
parameters

TEP-SIPE
parameters

Sine
perturbations

Min. jerk
perturbations

Velocity amplitudes
0.1 - 0.5 m/s

Figure 2-11: The experimental protocol for the first part of the simulation: The parameters
estimated with the two di�erent experimental approaches were evaluated in a simulation of the
treadmill experiment. The simulated angle torque and angle were compared to the measured
torque and angle from the treadmill experiment.

Ankle dummy

·
Asim

noise free
◊

Asim

noise free

·
Asim

noisy
◊

Asim

noise free

·
Asim

noise free
◊

Asim

noisy

·
Asim

noisy
◊

Asim

noisy

Signal-to-noise ratio
10 - 50 [dB]

TEP-SIPE

Figure 2-12: The experimental protocol for the second part of the simulation: The ability of the
TEP-SIPE method to reveal correct parameters was evaluated by estimating parameters of the
simulated datasets. The sensitivity of the method to noise was evaluated by estimating parameters
after the simulated data had been corrupted with measurement noise. Noise was added to a) the
ankle torque, b) ankle angle and c) both ankle torque and angle.

K.L. Ragnarsdottir Master of Science Thesis



2-2 TEP-SIPE Application 17

2-2 TEP-SIPE Application

Experimental setup

A pilot study was performed with one unimpaired female subject (24 years, 175 cm, 64 kg).
Eight active markers were placed on the subject; two on the foot, one on the ankle, two at the
shank and three at the thigh. Five pairs of electrodes measured the electromyographical
(EMG) response of five muscles (Figure 2-13). The signals were recorded with a signal
acquisition device (Porti7, TMSi, The Netherlands) at 1000 Hz. A safety harness attached to
the ceiling would have caught the subject in the case of falling. The harness did not constrain
the subject’s movement or provide additional support.

(a) Sagittal view (b) Posterior view

Figure 2-13: The placement of the eight motion markers and ten EMG electrodes. The motion
markers are labelled from 1-8. The EMG electrodes are labelled from A-E indexing A =Tibialis
Anterior (TA), B = Soleus (SOL), C = Gastrocnemius (GAS), D = Biceps Femoris (BF), E =
Rectus Femoris (RF).

Experimental protocol

Figure 2-14 shows the experimental protocol, which consisted of 16 trials in total. The subject
stood comfortably on the treadmill, placing both feet on the right belt of the treadmill. Two
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instructions were giving during the experiment; to relax or to stand as sti� as possible. The
subject was asked to keep crossed arms throughout the trial.
Treadmill experiments with the ankle dummy revealed that fit was worse with the minimal
jerk profile. Furthermore, the velocity amplitude of 0.1 m/s gave bad fit for both sine and
min.jerk perturbation. Those conditions were therefore omitted in the pilot study. Two
perturbation profiles, a positive and negative sinusoid, were applied using the treadmill. Four
velocity amplitudes were tested for perturbation profile, ranging from 0.2-0.5 m/s. Each trial
lasted 65 sec with the perturbations applied randomly every 4-8 sec. The perturbation velocity
amplitude was presented randomly between each trial.

Human
subject

Instruction:
Relax (joints)

Instructions:
Sti�en up joints

Sine
perturbation

Negative sine
perturbation

Velocity amplitudes
0.2 - 0.5 m/s

Figure 2-14: The experimental protocol for the pilot study. The subject was given two tasks:
to relax or stand as sti� as possible. The two perturbation profiles were tested using velocity
amplitudes ranging from 0.2 - 0.5 m/s.
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Chapter 3

Parameter Estimation

The true parameters of the ankle dummy were estimated in frequency domain using estab-
lished identification methods. The TEP-SIPE method was then applied to estimate parame-
ters from the treadmill data and the simulation.
Analyzing and estimating parameters from the pilot study data was not the primary goal of
this study. Therefore, data was only post-processed and the parameter estimation is left for
future research. As a measure of validity of all parameter estimates, the Variance Accounted
For (VAF) was calculated. The VAF gives information about how much of the variance of a
signal ◊

A

is captured by the predicted signal ˆ

◊

A

:

V AF (%) = (1 ≠
q

q(n)
q(1) (◊

A

(t) ≠ ˆ

◊

A

(t))2

q
q(n)
q(1) ◊

A

(t))2
) · 100% (3-1)

VAF of 100% means that ◊̂
A

perfectly describes ◊
A

[9]. The Standard Error of the Mean
(SEM) was calculated to determine how accurately the parameters could be estimated. The
accuracy is estimated using the residual error R and the Jacobian J:

SEM =
Û

R

T · R · ((JT · J)≠1)
ÎRÎ (3-2)

Calculating only the VAF for each trial runs the risk of overparameterizing the model. In
that case, the model may describe the noise as well as the system dynamics. This is avoided
by using a cross-validation prediction. Then, the VAF is computed using a validation dataset
di�erent from the reference dataset which is used for the identification. This minimizes the
contribution from noise in the estimates and provides a more realistic estimate of the model
accuracy [33]. Finally, the treadmill dynamics were evaluated by comparing the data from
the empty belt recordings and the weight experiment. All codes for post-processing were
customized and specially programmed for this analyzes. Table 3-1 summarizes the post-
processing and parameter estimation performed on the experimental and simulated data.
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Validation Application

Experiment Wristalyzer Treadmill Simulation Pilot study
Subject Ankle dummy Ankle dummy Weight Ankle dummy Human
SIPE TU Delft TEP-SIPE ≠ TEP-SIPE ≠
Domain Frequency Time
Recorded Data ·

P

, ◊
A

GRF, ◊
A

GRF, ◊
A

GRF, ·
Asim

, ◊
Asim

, ◊̇
Asim

, ◊̈
Asim

GRF, ◊
A

, EMG
Filter forces &
motion data

4th order bidirectional Butterworth lowpass filter with f
c

= 20Hz

Further

postprocessing

≠

Derive ◊̇
A

, ◊̈
A

Derive ◊̇
A

, ◊̈
A

≠

Derive ◊̇
A

, ◊̈
A

Calculate ·
A

Calculate ·
A

from inverse dynamics from inverse dynamics
Filter EMG

Identification

Admittance Impedance Force and mass Impedance ≠
·

P

(s) æ ◊
A

(s) ◊
A

(t) æ ·
A

(t) F̂
y

, m̂
w

◊
A

(t) æ ·
A

(t) ≠

Model

◊
A

(s)
·

P

(s) = 1
Is2 + Bs + K

·
A

(t) = I ◊̈
A

(t) + B◊̇
A

(t) + K(◊
A

(t) ≠ ◊
ref

) ≠ ·
A

(t) = I ◊̈
A

(t) + B◊̇
A

(t) + K(◊
A

(t) ≠ ◊
ref

) ≠

Data fitting Whole dataset Perturbation only Whole dataset Perturbation only ≠

Table 3-1: Overview of the various steps taken to post-process the experimental data, to estimate parameters of the ankle dummy and to
evaluate the dynamics of the treadmill.
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3-1 TEP-SIPE Validation

3-1-1 Wristalyzer

The experimental data was cut and resampled at 256 Hz. It was filtered with a 4th order
bidirectional, lowpass Butterworth filter with the cuto� frequency of 20 Hz. The first and last
6 sec were cut o� to remove the transients parts of the data.

Non-parametric fitting

The admittance of the joint was estimated non-parametrically in frequency domain by calcu-
lating the open-loop spectral estimate Ĥ

·◊

(f):

Ĥ
·◊

(f) = Ŝ
·◊

(f)
Ŝ

··

(f)
(3-3)

in which Ŝ
·◊

(f) denotes the cross-spectral density of external torque perturbation ·
p

(f) and
the ankle joint angle ◊

A

(f). Ŝ
··

(f) denotes the auto-spectral density of the external torque
perturbation. To reduce the variance, the data was frequency averaged before calculating the
cross- and auto-spectral densities. The linearity of the model was checked with the coherence:

�̂
·◊

(f) = | Ŝ
·◊

(f) |2

Ŝ
··

(f) · Ŝ
◊◊

(f)
(3-4)

The coherence function �̂
·◊

(f) ranges from 0 to 1. Low coherence indicates no linearity while
1 indicates a linear system without noise.

Parametric fitting

The admittance was estimated parametrically by fitting the spectral estimate Ĥ
·◊

(f) to a
second order linear mass-spring-damper model:

Ĥ
model

(s) = ◊
A

(s)
·

P

(s) = 1
Is2 + Bs + K

(3-5)

Hereby, s = ⁄ + ä2f with ⁄ = 0, the admittance of the joint is described wit inertia I,
damping B and sti�ness K components. A non-linear least-squares algorithm was used for
the parameter estimation. The open loop spectral estimate Ĥ

·◊

(f) showed that the system’s
dynamics were dominating on frequencies below 9 Hz (Figure 3-1). Parameters were therefore
estimated on the frequency range of 1-9 Hz. Fitting the model to higher frequency would
include noise or the e�ects of the straps used to fasten the foot to the hand rest. The
fit procedure was guided with boundaries to prevent negative parameter values and bad
convergence (Table 3-2). The fit criterion was chosen as the squared logarithmic di�erence
between the nonparametric model Ĥ

·◊

(f) and the parametric model Ĥ
model

(f) according to
eq: (3-6). The logarithmic di�erence was multiplied with

Ò
1

fvec
· �

·◊

(f) to compensate for
few data in low frequency regions and to emphasise reliable frequencies:

e =
Û

1
f

vec

· �
·◊

(f)· | log Ĥ
·◊

(f)
Ĥ

model

(f)
| (3-6)

A schematic overview of the steps taken during the post-processing is found in Appendix A.
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Figure 3-1: Top: The spectral estimate, Ĥ·◊(f), shows that the ankle dummy is not excited at
frequencies higher than 9 Hz. This determined the choice of frequency band estimation. Center:
The phase. Bottom: The coherence drops significantly for frequencies higher than 20 Hz.

I B K
Initial search values 0.001 0.1 10
Lower boundaries -10 0.01 -20
Upper boundaries 10 10 20

Table 3-2: Initial values and parameter boundaries guiding the fit procedure.

3-1-2 Treadmill

Ankle dummy The force and marker data was cut and re-sampled at 250 Hz. A 4th order,
bidirectional lowpass Butterworth filter with cuto� frequency of 20 Hz was used to filter the
data. The marker data provided the segment coordinates of the CoM (CoM) (foot: y

f

, z
f

,
leg: y

leg

, z
leg

). The segment angles ◊
f

and ◊
leg

and joint angle ◊
A

were derived from marker
data using standard rigid body approach. The angles were defined w.r.t. the vertical axis.
Velocities and accelerations were obtained by taking the first and second derivative of the
position and angle (foot: ẏ

f

, ÿ
f

, ◊̇
f

, ◊̈
f

, leg: ẏ
leg

, ÿ
leg

, ◊̇
leg

, ◊̈
leg

, ankle joint: ◊̇
A

, ◊̈
A

).
The sum of forces and moments acting about the two segments (foot:

q
F

fy

,
q

F
fz

,
q

M
f

,
leg:

q
F

legy

,
q

F
legz

,
q

M
leg

) are described with the equations of motion (3-7). The geomet-
rical and mechanical properties l

f

, l
leg

, m
f

, m
leg

, I
f

and I
leg

were presented in Table 2-2. The
forces F

y

and F
z

denote the ground reaction forces measured with the treadmill (Figure 3-2).
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Figure 3-2: Two dimensional free body diagram of the ankle dummy. The unknown joint reaction
forces FAy, FAz and ankle torque ·A are denoted with dotted, green lines.

ÿ
F

fy

= F
y

+ F
Ay

≠ m
f

· ÿ
f

= 0
ÿ

F
fz

= F
z

+ F
Az

≠ m
f

· g ≠ m
f

· z̈
f

= 0
ÿ

M
f

= F
y

· l
f

2 ≠ F
Ay

· l
f

2 + ·
A

≠ I
f

· ◊̈
f

= 0
ÿ

F
legy

= ≠F
Ay

≠ m
leg

· ÿ
leg

= 0
ÿ

F
legz

= ≠F
Az

≠ m
leg

· g ≠ m
leg

· z̈
leg

= 0
ÿ

M
leg

= ≠F
Ay

· l
leg

cos(◊
leg

)
2 ≠ F

Az

· l
leg

sin(◊
leg

)
2 ≠ ·

A

≠ I
leg

· ◊̈
leg

= 0

(3-7)
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These six equations are su�cient to calculate the unknown ankle joint forces F
Ay

and F
Az

and the ankle joint torque ·
A

:

F
Ay

= ≠m
leg

· ÿ
leg

F
Az

= ≠m
leg

· g + m
leg

· z̈
leg

·
A

= ≠F
Ay

· l
leg

cos(◊
leg

)
2 ≠ F

Az

· l
leg

sin(◊
leg

)
2 ≠ I

leg

· ◊̈
leg

(3-8)

Parametric fitting

The ankle dummy parameters were estimated in time-domain. The data was segmented into
short windows including only the length of the perturbation. It was noted that the actual
perturbation signal applied by the treadmill was longer then the 100 ms signal command sent
from the host computer. Therefore, the size of the evaluation window was adjusted to include
the the actual length of the perturbation (Figure 3-3). Each data segment served as input to
solve the linear equation describing the properties of the ankle joint:

·

A

(t) = I · ¨

◊

A

(t) + B · ˙

◊

A

(t) + K · (◊
A

(t) ≠ ◊
ref

) (3-9)

The mean I,B,K parameters from all data segments were used to predict the ankle torque
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Figure 3-3: An example of the window segment used for the parametric fitting. The example
data is from a sinusoidal perturbation with the velocity amplitude of 0.5 m/s.
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of the whole dataset. The VAF (eq. 3-1) and SEM (eq. 3-2) values were calculated to
evaluate the quality of the fit, both for each single perturbation and for the complete dataset.
Furthermore, the mean set of parameters from every trial was used as a reference data for
a cross-validation. A full schematic overview of all the steps for the post-processing and
parameter estimation is found in Appendix A.

Weight experiment The data was segmented into short windows of 300 ms, starting with
the perturbation onset. The ideal force ˆ

F

y

that should theoretically be measured during the
weight experiment was calculated from accelerations:

ˆ

F

y

= m
w

· ÿ

w

(3-10)

The ideal force ˆ

F

y

was then subtracted from the actual force F

y

measured with the treadmill.
The di�erence between the ideal and measured force was then compared to the force F

y0
measured with an empty belt. Ideally, the di�erence between the ideal and measured force
during the weight experiment should only arise from the treadmill dynamics so that:

ˆ

F

y

≠ F

y

= F

y0 (3-11)

If that was the case, it should be su�cient to subtract the forces F

y0 from the experimental
data to remove the e�ects of treadmill dynamics. To evaluate reliability of recorded forces,
the known mass of the weight was compared to the mass solved from the linear equation:

m̂
w

= ÿ

w

\F

y

(3-12)

3-1-3 Model simulation

To avoid biased results when using ·
Asim

directly from a joint sensor, the ankle torque was
calculated with inverse dynamics as ·

Asim

= ≠F
ysim

· lf

2 + F
Aysim

· lf

2 + I
f

· ◊̈
f

. Since the
foot was not allowed to rotate, ◊̈

f

= 0. After the measurement noise had been added to the
simulated data, it was filtered with a 4th order, bidirectional lowpass Butterworth filter with
cuto� frequency of 20 Hz. This was done to be consistent with the post-processing of the
treadmill data.

Parametric fitting

The force and marker data was cut and re-sampled at 250 Hz. The data was then segmented
to short windows containing only the perturbations. The parametric fitting and validation
was then performed in the same manner as explained for the treadmill experiment using eq:
(3-9).
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3-2 TEP-SIPE Application

The post-processing and calculation of segment and joint angles was done in similar fashion
as with the ankle dummy data. The Center of Pressure (CoP) of the foot was calculated as:

y
CoP

= M
x

F
z

(3-13)

where the M
x

and donates the moment around the x-axis as measured with the treadmill.

The EMG data was processed according to standard guidelines provided by SENIAM 1. First,
the EMG signals were filtered with a 4th order bidirectional Butterworth filter with the fre-
quency bandwith of 20-300 Hz. The signals were then rectified by taking their absolute value.
Finally, the the data was lowpass filtered with a 4th order bidirectional Butterworth filter
with a cuto� frequency of 6 Hz. The use of a bidirectional filter for the EMG data was chosen
to be consistent with the filtering of the force and motion data.

The ankle torque was calculated by summing the moments around the ankle joint, applying
the parallel axis theorem on the moment of inertia and solving for ·

A

:

·

A

= (y
A

≠ y

CoP

) ◊ F

y

≠ (y
A

≠ y

f

) ◊ (m
f

· ÿ

f

)
≠ (y

A

≠ y

f

) ◊ (m
f

· g) ≠ I
f

+ m
f

· r

Af

(3-14)

y
A

and y
f

denotes the y-position of the ankle joint and the CoM of the foot, respectively. ÿ
A

is the acceleration of the CoM of the foot. r
Af

denotes the distance between the ankle joint
and the CoM of the foot.
The segmentation of the data and fitting it to a parametric model was not part of this study.

1
www.seniam.org
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Chapter 4

Results

4-1 TEP-SIPE Validation

4-1-1 Wristalyzer

The parametric model estimate Ĥ
model

(f) was able to represent the nonparametric spectral
estimate Ĥ

·◊

(f). Coherence was high on all frequencies but dropped down to 0.737 around
the eigenfrequency of 4.6 Hz ( Figure 4-1).
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Figure 4-1: The spectral estimate (solid line) compared to the model prediction (dashed line)
when the perturbation signal was scaled by a factor of 0.16.
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The I B, K parameters could be consistently estimated for all scaling factors (Table 4-1).
Validation with the same dataset gave high VAFs for all scaling factors, ranging from 87-
95% (Figure 4-2). Cross-validation with di�erent datasets gave also high VAFs, with the
mean values from each reference dataset ranging from 84-94% (Figure 4-3). The inertia and
damping parameters could be accurately estimated as can be seen by low SEM values. The
sti�ness was estimated less accurately as can be seen by higher SEM values.

Dfact 0.08 Dfact 0.12 Dfact 0.16 Dfact 0.20 Dfact 0.24

I [Nms2/rad] 0.015 0.015 0.015 0.015 0.015
B [Nms/rad] 0.099 0.101 0.097 0.101 0.101
K [Nm/rad] 10.012 10.000 9.967 10.000 10.000
SEM of I [-] 0.021 0.026 0.019 0.014 0.013

SEM of B [-] 0.180 0.177 0.130 0.123 0.126
SEM of K [-] 13.793 17.021 12.260 8.521 7.510

error [-] 1.268 1.304 1.472 1.788 1.952
VAF [%] 91 94 95 91 87

V AF
C≠V

[%] 88 92 94 90 84

Table 4-1: The estimated parameters from the Wristalyzer. The best fit was found for Dfact =
0.16. Validation with the same dataset and cross-validation (C-V) with other datasets resulted
in high VAFs for all set of parameters.
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Figure 4-2: Prediction in time domain using the parameters estimated from a dataset with
scaling factor Dfact = 0.16. The VAF ranged from 84 - 95 %. For a better observation, only ten
seconds of data are presented.
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Figure 4-3: Surface plot of the cross validation. The mean VAF values range from 81 - 95% for
all datasets.

4-1-2 Treadmill

The TEP-SIPE method could estimate parameters with high VAFs and low SEM values.
This was true for both sinusoidal and mininum jerk perturbation profiles. (Table 4-2 and
4-3). Increasing the perturbation velocity amplitude lowered the standard deviation of the
parameter estimates (Figure 4-4). Cross-validation gave high VAF values (> 99, 5%) for all
datasets.

Sinusoidal perturbation profile

Velocity Amplitude [m/s]
0.1 0.2 0.3 0.4 0.5 0.52

I [Nms2/rad] 0.061 0.061 0.614 0.061 0.061 0.061
B [Nms/rad] -0.007 -0.008 -0.006 -0.002 -0.002 0.0138
K [Nm/rad] 6.722 6.629 6.913 5.499 5.341 4.533
SEM of I [-] 2·10≠4 8·10≠4 1.6 ·10≠4 8.7 ·10≠5 1.3·10≠4 1·10≠4

SEM of B [-] 0.009 0.003 0.006 0.004 0.006 0.005
SEM of K [-] 0.470 0.199 0.322 0.219 0.342 0.246

V AF of perturbation [%] 99.99 99.99 99.99 99.99 99.98 99.99
VAF of full dataset [%] 99.8 99.93 99.92 99.92 99.93 99.94

Table 4-2: The parameters estimated with the TEP-SIPE method as well as their SEM and
VAF values. Sinusoidal perturbations were applied with the velocity amplitude ranging from 0.1
- 0.5 m/s. The velocity amplitude denoted as 0.52 indicates the trial where perturbations were
applied every 8 sec instead of every 4 sec.
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Minimum Jerk perturbation profile

Velocity Amplitude [m/s]
0.1 0.2 0.3 0.4 0.5 0.52

I [Nms2/rad] 0.061 0.061 0.611 0.061 0.061 0.061
B [Nms/rad] -0.011 -0.009 -0.008 -0.002 0.010 0.009
K [Nm/rad] 6.611 6.104 5.849 5.579 4.798 4.709
SEM of I [-] 2.7·10≠4 1.7·10≠4 1 ·10≠4 2 ·10≠4 8 ·10≠5 8·10≠5

SEM of B [-] 0.013 0.008 0.005 0.006 0.004 0.004
SEM of K [-] 0.700 0.445 0.284 0.330 0.219 0.227

V AF of perturbation [%] 99.94 99.98 99.99 99.99 99.99 99.99
VAF of full dataset [%] 99.49 99.88 99.94 99.95 99.94 99.92

Table 4-3: The parameters estimated with the TEP-SIPE method as well as their SEM and VAF
values. Mininum jerk perturbations were applied with the velocity amplitude ranging from 0.1
- 0.5 m/s. The velocity amplitude denoted as 0.52 indicates the trial where perturbations were
applied every 8 sec instead of every 4 sec.
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Figure 4-4: Box plot of the parameters estimates with the TEP-SIPE method over all perturbation
profiles. The labels S and M denote sinusoidal and mininum jerk profiles, respectively. The
numbers 1-5 denote the perturbation velocity amplitude ranging from 0.1-0.5 m/s, respectively.
The labels S52 and M52 denote the trial where perturbations were applied every 8 sec instead of
4 sec. I, B, K denote the mean of parameter estimates over all datasets.
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Weight Experiment The mean forces F
y0 recorded with the empty belt did not match the

di�erence �F
y

between the actual and ideal forces F
y

and F̂
y

(Figure 4-5). �F
y

was highest
in turning points of the treadmill, i.e. during maximum velocity. The di�erence increased
as the perturbation amplitude increased and was highest for the mininum jerk profile with
amplitude of 0.5 m/s. The standard deviation of the estimated mass m̂

w

was highest for low
velocity amplitudes (sine 0.1 m/s = 20.±0.5 kg and min.jerk 0.1 m/s = 19.7±0.9kg). As the
perturbation amplitude increased, the mass estimation decreased (sine 0.5 m/s = 19.5±0.2
kg and min.jerk 0.5 m/s = 19.4±0.2 kg) (Figure 4-6).
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Figure 4-5: a) The mean of forces Fy0 over all perturbations recorded from the empty treadmill.
b) The mean of �Fy = F̂y ≠ Fy over all perturbations recorded in the weight experiment. The
legends S0.1 - S0.5 denote sinusoidal perturbations with velocity amplitudes ranging from 0.1-0.5
m/s. The legends M0.1 - M0.5 denote minimum jerk perturbations with velocity amplitudes
ranging from 0.1-0.5 m/s. Note, that the scaling of the y-axis is di�erent.
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Figure 4-6: Box plot of the estimated mass of the weight over all perturbation profiles. The
mass was estimated as m̂w = ẍw\Fy.
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4-1-3 Model simulation

Evaluation of parameter estimates When the Wristalyzer parameters were used to describe
the properties of the ankle joint, ◊

Asim

matched well the measured ◊
A

from the treadmill
experiment. When using the TEP-SIPE parameters , ◊

Asim

did not match ◊
A

and amplified
during the course of the simulation (Figure 4-7). When perturbations were applied less
frequently, ◊

Asim

amplified less, but did not follow ◊
A

(Figure 4-8).
The opposite was found when comparing the simulated and measured ankle torque. The
TEP-SIPE parameters could describe ·

A

calculated with inverse dynamics but the Wristalyzer
parameters were unable to do so (Figure 4-9).
This contrast is visible when comparing the VAFs for ◊

Asim

and ·
Asim

(Figure 4-10 and
Figure 4-11). Using the TEP-SIPE parametes gives high VAF for ·

Asim

but not for ◊
Asim

.
Using the Wristalyzer parameter gives high VAF for ◊

Asim

but not for ·
Asim

. Only examples
from two datsets are shown in this subsection, with the results from all datasets presented in
Appendix B.
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Figure 4-7: Simulated ◊Asim using sinusoidal perturbations with the velocity amplitude of 0.5
m/s. Perturbations were applied every 4 sec. Wristalyzer parameters: I = 0.015, B = 0.1, K
= 10. TEP-SIPE parameters: I = 0.061, B = 0.0015, K = 5.34. Left: ◊Asim using TEP-SIPE
parameters amplifies (green line). ◊Asim using Wristalyzer parameters follows measured ◊A from
treadmill experiment (red line). Right: Measured ◊A (blue solid line), ◊Asim using TEP-SIPE
parameters (green dashed line), ◊Asim using Wristalyzer parameters (red dashed-dotted line)
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Figure 4-8: Simulated ◊Asim when sinusoidal perturbations with the velocity amplitude of 0.5
m/s were applied every 8 sec. Wristalyzer parameters: I = 0.015, B = 0.1, K = 10. TEP-
SIPE parameters: I = 0.061, B = 0.0137, K = 4.53. Left: ◊Asim using TEP-SIPE parameters
(green line). ◊Asim using Wristalyzer parameters (red line). Right: Measured ◊A (blue solid line),
simulated ◊Asim using TEP-SIPE parameters (green dashed line) and Wristalyzer parameters (red
dashed-dotted line)
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Figure 4-9: ·A calculated with inverse dynamics (blue solid line), ·Asim simulated with TEP-
SIPE parameters (green dashed line) and with Wristalyzer parameters (red dashed-dotted line).
Sinusoidal perturbations with velocity amplitude of 0.5 m/s were applied in the simulation.
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Figure 4-10: VAF for the measured ·A and simulated ·Asim for a single perturbation
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Figure 4-11: VAF for the measured ·A and simulated ·Asim for a full dataset
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Sensitivity to noise When the TEP-SIPE method was applied in a simulation of the tread-
mill experiment, the estimated parameters matched the true model parameters perfectly.
However, when adding measurement noise to the simulated data, the estimated parameters
no longer matched the true model parameters.

For all combinations of measurement noise, the quality of the estimated parameters appeared
to be good. The SEM values were low for all parameters and for all combinations of noise.
VAFs were high when comparing the ·

Asim

without noise and the ·̂
Asim

estimated from the
noisy data. (Table 4-4).
For all configurations of noise, the inertia Î was estimated 2.6 times bigger than the I pa-
rameter of the model. The estimated damping B̂ was only 1

3 of the true B parameter of the
model. For the sti�ness K̂, the parameters were also smaller than the true model parameter
but di�ered depending on the noise configuration.
Adding noise to ·

Asim

resulted in parameters estimated with a high standard deviation, with
the biggest deviation for the smallest perturbation amplitudes. The standard deviation of
the estimation decreased when noise was only added to ◊

Asim

. Varying the SNR had no clear
e�ect on the parameter estimation (Figure 4-12). Overall, the parameters were lower than
the true model parameters. Cross-validation using the parameter estimates to predict the
·

Asim

gave the highest VAFs when measurement noise had only been added to ◊
Asim

.

Measurement noise
No noise ·

Asim

◊
Asim

·
Asim

and ◊
Asim

Î [Nms2/rad] 0.015 0.039 0.039 0.039
B̂ [Nms/rad] 0.1 0.031 0.027 0.029
K̂ [Nm/rad] 10 2.963 0.028 0.011
SEM of I [-] 0 8·10≠4 1 ·10≠4 7·10≠4

SEM of B [-] 0 0.032 0.006 0.035
SEM of K [-] 0 1.915 0.039 0.152

V AF
·A of perturbation [%] 100 96 96 96

V AF
·A of full dataset [%] 100 96 96 96

V AF
·AC ≠ V of full dataset [%] ≠ 72 99 71
V AF

◊A of perturbation [%] ≠ 90 0 0
V AF

◊A of full dataset [%] ≠ 0.6 0 0

Table 4-4: The parameter estimates using the TEP-SIPE method. SEM values are low for all
parameters. V AF·A values are high when comparing ·Asim. When the estimated parameters are
used to predict the motion of the dummy, the V AF◊As for ◊Asim are low.
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Figure 4-12: The estimated parameters when sinusoidal perturbations the velocity amplitude of
0.1-0.5 m/s were applied in the simulation (denoted as S1-S5 on the x-axis). All datasets had a
SNR of 20 dB. The true model parameters were I = 0.015, B = 0.1, K = 15. Left: Measurement
noise added to ·Asim. Center: Measurement noise added to ◊Asim. Right: Measurement noise
added to ·Asim and ◊Asim.
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4-2 TEP-SIPE Application

The transient endpoint perturbations are very well visible in the recorded ankle angle and
torque data (Figure 4-13). The delayed onset of the muscular activity is visible when it is
compared to the actual onset of the perturbation (4-14).
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Figure 4-13: Angular angle ◊A, velocity ◊̇A, acceleration ◊̈A measured from the motion tracking
system. Ankle torque ·A calculated from inverse dynamics. The data is from a standing trial
applying sinusoidal perturbations with the amplitude of 0.4 m/s. The subject was instructed to
maintain a relaxed position.

Master of Science Thesis K.L. Ragnarsdottir



38 Results

0 0.1 0.2 0.3
0

0.5
1

Time (sec)

µ
V

TA

0 0.1 0.2 0.3
0
2
4

Time (sec)

µ
V

SOL

0 0.1 0.2 0.3
0

5

Time (sec)

µ
V

GAS

0 0.1 0.2 0.3
0
1
2

Time (sec)

µ
V

RF

0 0.1 0.2 0.3
0
1
2

Time (sec)

µ
V

BF

0 0.1 0.2 0.3
-50

0
50

Time (sec)

N

F
y

Figure 4-14: The plots starts at the onset of every perturbation and shows the EMG responses
for all five muscle groups measured in pilot study. Bottom: The measured force Fy from the
treadmill.
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Chapter 5

Discussion and Outlook

This study evaluated the ability of TEP-SIPE method to identify joint impedance. The
method consists of applying transient endpoint perturbations using an instrumented tread-
mill. The recorded data is processed in time-domain by fitting short data segments, including
only the perturbation, to a model of the system’s dynamics.
The validation was performed in the three steps. First, an established method based on
perturbation experiments using the Wristalyzer was used to identify joint impedance of a
single-joint ankle dummy. Second, the TEP-SIPE method based on transient endpoint per-
turbations using an instrumented treadmill was used to identify these parameters as well.
Third, the treadmill experiment was simulated using a SimMechanics model of the ankle
dummy. The influences from the instrumented treadmill used for the experiments were eval-
uated in a weight experiment. The weight experiment was an important step to investigate
the reliability of the recorded forces and moment and to see whether force recordings from
an unloaded belt were su�cient to describe the dynamics of the treadmill. Finally, the TEP-
SIPE method was applied in a pilot study with a human subject standing on a treadmill.

Influences from treadmill dynamics

The weight experiment demonstrated that the e�ects from treadmill dynamics are influencing
the results of the TEP-SIPE method and must be removed. The mean forces F

y0 recorded
with the empty treadmill could not be simply subtracted from the forces recorded with the
the weight and ankle dummy. Fitting the forces of the treadmill to a simple second order
model was not su�cient either, indicating that the dynamics are more complex. When trying
to remove the unwanted e�ects from the treadmill with a lower cuto� frequency of 10 Hz, F

y0
resembled �F

y

qualitatively, but not quantitatively (Figure 5-1).

The di�erence was highest at maximum velocity of the treadmill and increased with increasing
perturbation amplitude. It appears that the recorded F

y

does not increase proportionally to
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Figure 5-1: a) Forces measured with the empty treadmill b) The di�erence of forces measured in
the weight experiment. The forces were filtered with a 4th order Butterworth filter with a lowpass
cuto� frequency of 10 Hz. Only 4 perturbation profiles are shown; sinusoidal perturbations with
velocity amplitude 0.1-0.4 m/s denoted as S1 - S4.

the increased perturbation amplitude. That might explain why the mass estimation lowered
as the perturbation amplitude increased.

Interpretation of the quality of parameter estimates

The joint parameters of the ankle dummy could be accurately estimated with the Wristalyzer,
as was seen by high VAFs and low SEM values. The sti�ness K had higher SEM-values than
the I and B parameters. This might be explained by poor frequency resolution on low frequen-
cies, where the sti�ness is dominating. The perturbation signal in the Wristalyzer contained
a frequency bandwidth of 1-20 Hz, but parameters were estimated on a lower bandwidth.That
was done to account for potential short-comings in the fixation of the dummy. A transition
line was visible at frequencies above 9 Hz, indicating influences from the fixation strap. That
frequency was thus chosen as the upper threshold of the frequency band used for the pa-
rameter estimation. The parameter boundaries were tuned to avoid reaching local minimum
with the optimization algorithm. Using di�erent boundaries, parameters were also estimated
which gave high VAFs, but cross-validation gave poor results. The uniqueness of the current
set of parameters was validated in the model simulation which showed that the parameters
were able to describe the measured angular movement of the real dummy.

It is questionable whether the inertia parameter estimated with the Wristalyzer and TEP-
SIPE methods are directly comparable. The ankle dummy was tested in two di�erent config-
urations. In the Wristalyzer, the dummy’s foot pivoted about the ankle joint while the rod
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remained fixed to the arm rest. In the treadmill experiment, the rod pivoted about its end-
point over the ankle joint while the foot was fixed to the treadmill. If the moment of inertia is
calculated using the mass and moment arm of the segment pivoting about the rotation point,
di�erent values are expected.
The point of rotation might pose another limitation. In the Wristalyzer, the ankle dummy was
tightly fastened above a fixed rotation point. In the simulation, the ankle joint also defined
as a single ankle joint with a fixed rotation point. However, in the treadmill experiment, the
ankle dummy is less constrained. It is possible that the point of rotation translates slightly
during the experiment, thus influencing the further the parameter estimate.

Using the TEP-SIPE method resulted in set of parameters with high VAF and low SEM
values. However, model simulation with the TEP-SIPE parameters clearly showed that the
measured motion of the dummy was not matched. It appears that the method is prone to
reach local minima, where the parameters are not physically meaningful and a unique solution
is not found. Furthermore, using the VAF and SEM as a measure of parameter quality seems
an insu�cient measure. Further measures are needed as was shown with the model simulation.

It is important to keep in mind the primary goal of the TEP-SIPE method, which is to estimate
physically meaningful parameters for the use of bio-inspired control of prosthetic devices or
for therapeutic assessment of patients su�ering from UMND. The TEP-SIPE parameters
could describe the torque trajectory for a impedance controlled prosthetic device, but one
must note that the parameters might not be physically meaningful. As for the therapeutic
assessment, the TEP-SIPE method could reveal the absolute di�erence between the healthy
subjects and patients when using the same experimental setup and post-processing steps. As
such, it can therefore assist in di�erentiating between healthy and impaired joint behavior.
However, the method might not be applicable when using more than one experimental setup
(i.e. measuring healthy subjects and patients in a separate setup) which further limits the
application of the method.

The e�ects of varying perturbation profiles

The quality of the parametric fit suggested that sinusoidal perturbation profiles were more
suitable than minimal jerk profiles. Furthermore, higher perturbation velocity amplitudes
resulted in parameters estimated more consistently (i.e with a lower standard deviation).
Accurate onset detection of the perturbations is very important when estimating parameters
with the TEP-SIPE method. Sinusoidal perturbations profiles are better repeatable than
minimum jerk profiles, which facilitates perturbation detection in the post-processing. Higher
perturbation velocity amplitudes are also more visible, which makes automatic onset detection
easier.

Sensitivity to measurement noise

The simulation showed that measurement noise influences the parameter estimation, where
parameters were incorrectly estimated for all configurations of noise. Without measurement
noise, the TEP-SIPE algorithm was able to estimate the model parameters perfectly. Adding
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measurement noise, all parameter estimates were incorrect. An interesting finding was that
despite incorrect parameter estimation, the VAFs were high and SEM values were low. This
was in line with the experimental results, where the parameters estimated with the TEP-SIPE
gave good fit although they were not correct. This further indicates that measurement noise,
or more importantly, the treadmill dynamics might be included in the parametric fitting for
the of the treadmill data.

The force data is influenced by measurement noise in the real experiment. The motion
recordings are less influenced by measurement noise. This is an important aspect when
calculating the ankle torque from inverse dynamics. One could either use equations of motion
for the foot or the leg segment to derive the torque. The equations for the foot include the
treadmill forces and might therefore result in noisy torque. The equations for the leg include
only the recorded motion of the leg, which might reduce the e�ect of noise in the ankle torque.

The e�ects of filtering

It is possible that influences from measurement noise and treadmill dynamics can be circum-
vented to some extent with an adequate choice of filter. All experimental and simulated data
was filtered with a 4th order bi-directional Butterworth filter with a cuto� frequency of 20 Hz.
Due to the number of experimental setups and protocols it was important to be consistent
in the choice of filter to reduce the number of uncertainties. The data had to be carefully
synchronized and a bi-directional filter was therefore chosen since it does not shift in data.
However, since it is a recursive filter, it introduces a slight distortion in the data which might
influence the results. Using a uni-directional filter causes a shift in the data. As a result,
filtering with both uni-and bidirectional filters must be done with care to ensure that the
data stays synchronized.

Applying TEP-SIPE in human experiments

The pilot study was an important point in the future direction, although the data evalua-
tion was not part of the thesis. It was among the first experiments aiming to identify joint
impedance during standing using only transient endpoint perturbations from an instrumented
treadmill.
The treadmill experiments with the ankle-dummy might give conditional support of the use
of the TEP-SIPE method, but they give no proof. The joint properties of the single-joint
ankle dummy can be described with a simple, second order model. The joint properties of a
multi-joint human require a more complex model incorporating the neural reflexive pathways,
time delays and activation dynamics. Therefore, validating the TEP-SIPE method with the
ankle dummy might not apply for the human. To assume that the human behaves like an
inverted pendulum during standing is thus a crude simplification and disregards many im-
portant aspects. The mechanical coupling of the ankle, knee and hip joints will inevitably
influence the impedance estimates. The movements from the upper body will influence the
movements of the lower body and vice versa [26].
Still, the pilot study was important to evaluate whether transient endpoint perturbations are
su�cient to elicit reflexes at all. Perturbations can be well distinguished in the force and
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motion data. Furthermore, the EMG recordings from the pilot study showed distinct muscu-
lar reaction which might indicate that reflexes are elicited. Di�erentiation into intrinsic and
reflexive components might therefore be possible.

Future research

The next steps should focus on carefully quantifying and modeling the treadmill dynamics
so that they can be separated from the joint dynamics. Only then is it possible to continue
the validation of TEP-SIPE method and investigate if the method returns a unique set of
physiologically meaningful parameters. It is possible that a more sophisticated calibration
matrix accounting for the e�ects from the treadmill dynamics can partly solve this problem.
Another possibility is to model the dynamics of the treadmill in a similar way as has been
done in a di�erent study [34].

As for the conceptual feasibility of applying transient endpoint perturbation to identify joint
impedance, some studies suggest that an independent perturbation is needed for each de-
gree of freedom [26, 35]. A model simulation, similar to the one used in the thesis, might
be useful to shed a light on whether multiple perturbations are needed in a real human ex-
periment. The single-joint model can be extended to a multi-joint model, incorporating a
neuro-musculoskeletal model to describe the joint properties. Knowing all the parameters
of the model, the simulation could indicate whether increasing the number of perturbations
improves the parameter estimates. Di�erent points of application could be tested as well as
di�erent perturbation timings (e.g. perturbations during swing phase). The simulation study
can therefore provide meaningful information while simultaneously reducing the experimental
e�ort. The model simulation could also be a useful tool to optimize the type of filter used
in the post-processing. Ideally, the unwanted e�ects from the treadmill should be removed
without excluding the dynamic response of the joint.

The experimental data from the pilot study should be analyzed, with the aim to quantify
the intrinsic and reflexive components of the joint impedance. The EMG can be used as a
measure to determine the onset of reflexes.
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Chapter 6

Conclusion

This goal of this study was to validate the ability of TEP-SIPE method to identify joint
impedance. The method consists of applying transient endpoint perturbations using an in-
strumented treadmill. The recorded data is processed in time-domain by fitting short data
segments, including only the perturbation, to a model of the system’s dynamics.

The TEP-SIPE method was able to precisely estimate joint parameters with high VAFs and
low SEM values. However, the parameters were not physically meaningful and did not match
true parameters estimated in the Wristalyzer. Forward simulation further demonstrated that
the measured motion of the dummy could not be matched when using the TEP-SIPE param-
eters to describe the joint properites.
This could be explained by the influences from the treadmill dynamics. The weight exper-
iment showed that e�ects from the treadmill dynamics were substantial and could not be
easily subtracted from the data. Forward simulation showed that the TEP-SIPE method is
sensitive to measurement noise and is prone to reach local minima. The use of VAF and SEM
values to determine the quality of the fit might be thus be insu�cient. In the pilot study,
the transient endpoint perturbations were clearly distinguished in motion and EMG data,
indicating that further evaluation of the data is possible.

In general, the TEP-SIPE method could not be validated with experiments, i.e. the unique-
ness of the estimated parameters could not be guaranteed. However, the limitations of the
method and the available experimental setup were carefully identified. Thorough guideline
for the TEP-SIPE method has been developed which facilitates the use of the method and
sharpens the goal for further research.
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Appendix A

Data post-processing

This section presents the schemes for post-processing the Wristalyzer and treadmill data. The
schemes can be interpreted as possibility pathways, showing alternative options for each part
of the post-processing. All options were considered during the course of this Master thesis,
before choosing the path shown with red arrows.

Master of Science Thesis K.L. Ragnarsdottir



Choices made when postprocessing the dummy data in the Wristalyzer
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Choices made when postprocessing the dummy data on a treadmill
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Choices made when postprocessing the weight data on the treadmill
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Appendix B

Model simulation

This sections shows the output from the simulation, when all perturbation profiles were tested.
Each simulation was repeated using two sets of parameters, first with the Wristalyzer param-
eters and then with the TEP-SIPE parameters. For all perturbation profiles, the Wristalyzer
parameters (shown in red) are able to adequately follow the measured angular trajectory
from the experiment. The TEP-SIPE parameters were unable to match the measured an-
gular trajectory, and the simulated motion became unstable for some perturbation profiles.
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Figure B-1: Sinusoidal perturbation with velocity amplitude 0.1 m/s
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Figure B-2: Sinusoidal perturbation with velocity amplitude 0.2 m/s
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Figure B-3: Sinusoidal perturbation with velocity amplitude 0.3 m/s
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Figure B-4: Sinusoidal perturbation with velocity amplitude 0.4 m/s
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Figure B-5: Sinusoidal perturbation with velocity amplitude 0.5 m/s
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Figure B-6: Sinusoidal perturbation with velocity amplitude 0.5 m/s. Perturbation were applied
every 8 seconds.
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Figure B-7: Minimum jerk perturbation with velocity amplitude 0.1 m/s
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Figure B-8: Minimum jerk perturbation with velocity amplitude 0.2 m/s
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Figure B-9: Minimum jerk perturbation with velocity amplitude 0.3 m/s
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Figure B-10: Minimum jerk perturbation with velocity amplitude 0.4 m/s
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Figure B-11: Minimum jerk perturbation with velocity amplitude 0.5 m/s

K.L. Ragnarsdottir Master of Science Thesis



57

10 20 30 40 50 60
-0.01

-0.005

0

0.005

0.01

0.015

Dataset M5
2

Time (sec)

θ
A
(
r
a
d
)

(a) Complete simulation

14 16 18 20 22
-5

0

5

10

15
x 10

-3 Dataset M5
2

Time (sec)

θ
A
(
r
a
d
)

 

 
Exp
TEP-SIPE
Wrist

(b) Short window of the simulation

Figure B-12: Minimum jerk perturbation with velocity amplitude 0.5 m/s. Perturbations applied
every 8 seconds.
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Figure B-13: Comparison of the measured ·A and the simulated ·Asim
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List of Acronyms

UMND Upper Motor Neuron Disease

SIPE System Identification and Parameter Estimation

DoF Degree-of-Freedom

SNR Signal-to-Noise Ratio

TEP Transient Endpoint Perturbations

CoM Center of Mass
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