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Smoothed floating node method for modelling 2D arbitrary crack 
propagation problems 
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A B S T R A C T   

In this work, Floating Node Method (FNM), first developed for fracture modelling of laminate composites, is 
coupled with cell-wise strain Smoothed Finite Element Method (SFEM) for modelling 2D linear elastic fracture 
mechanics problems. The proposed method is termed as Smoothed Floating Node Method (SFNM). In this 
framework, FNM is used to represent the kinematics of crack and the crack front inside the domain without the 
requirement of remeshing and discontinuous enrichment functions during crack growth. For smoothing, a 
constant smoothing function is considered over the smoothing domains through which classical domain inte-
gration changes to line integration along each boundary of the smoothing cell, hence derivative of shape 
functions are not required in the computation of the field gradients. The values of stress intensity factor are 
obtained from the SFNM solution using domain based interaction integral approach. Few standard fracture 
mechanics problems are considered to check the accuracy and effectiveness of the proposed method. The pre-
dictions obtained with the proposed framework improves the convergence and accuracy of the results in terms of 
the stress intensity factors and energy norms.   

1. Introduction 

Defects such as cracks and voids are inevitable in the engineering 
materials and are mainly responsible for the fracture and failure of 
materials during the service. It is significant to study the amalgamation 
of the inherent micro cracks and voids, crack initiation and propagation 
of cracks in the structural components to predict the life span. The Finite 
Element Method (FEM) can be the best suited numerical tool to carry out 
such simulations of fracture mechanics problems. In FEM, mapped 
element takes part as a paired set between physical and natural coor-
dinate system to maintain the exact equivalence. Thus, element distor-
tion is not permitted as it causes singularity in the inversion of the 
stiffness matrix. Moreover, in simulations of crack propagation behav-
iour using FEM, conformal meshing is required to capture the crack 
discontinuity [1]. This mesh update in the crack tip vicinity corre-
sponding to crack growth makes the simulation complex and time- 
consuming. In addition to this, remeshing during crack growth in-
troduces error while shifting the field variables data from the previous 
mesh to the new one. Therefore, it becomes cumbersome to model crack 
propagation and evolving discontinuity using FEM approach alone. A 
more robust framework is desirable for the prediction of progressive 

failure. To this end, efforts have been made by researchers to establish 
different advanced numerical methods, such as the meshfree method 
[2–3], extended finite element method [4–6], phantom node method 
[7–8], boundary element method [9–10], isogeometric analysis 
[11–12], floating node method [13–14], continuum damage models 
[15–18], phase field method [19–21] etc. In this paper, we focus mainly 
on the discrete modelling approaches, hence only the ones closely 
related to this work are reviewed in the following paragraphs. 

The detailed concepts of meshfree methods and their implementa-
tion aspects can be found in literature [22–23]. Meshfree methods have 
emerged as an alternative numerical method to alleviate the short-
comings related to conformal mesh requirement and element distortion 
in FEM. In meshfree methods, nodes are scattered inside the problem 
domain as well as on the boundary of the domain [24–26], and the nodal 
distribution density can be managed as per the requirement. The field 
variable is approximated at a point by considering the local support 
nodes surrounding the point of interest. The local support domain shape 
and size are not having a standard methodology but are user-dependent 
[27–29]. Usually, circular and rectangular shaped local supports are 
considered for the computation of field variables. Each integration 
domain is associated with a particular node and using one integration 
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point for the domain, equivalent to the reduced integration technique in 
FEM, may cause instability due to the higher order shape functions [30]. 
In practice, a very high number of Gauss points are required for inte-
gration, which makes it computationally expensive. 

Another versatile approach to alleviate the FEM shortcomings is the 
Extended Finite Element Method (XFEM) wherein partition of unity 
property is incorporated [31–32]. In XFEM, crack discontinuity prob-
lems have been solved considering the displacement jump across the 
discontinuity by locally adding the enrichment functions to FEM 
approximation. In XFEM, a level set technique is used to capture the 
evolution of the discontinuity in the domain, which omits the require-
ment of remeshing [33–34]. This method has since been extended for 
fatigue crack growth [35], interfacial crack [36], elasto-plastic crack 
growth [37–39], dynamic crack growth [40], and functionally graded 
materials [41–43] etc. Despite its success, there exists some limitations i. 
e. it introduces an error in the solution during mapping of discontinuities 
from physical to natural space [44], requirement of different enrichment 
functions to tackle different material problems [45], numerical solution 
is sensitive to integration scheme used for enriched elements [46], and 
the use of blending elements for connecting the enriched elements to 
standard elements makes its implementation complex [47]. 

Extended Isogeometric Analysis (XIGA) is the other recently devel-
oped computational technique to analyse the moving discontinuities. 
XIGA is the extension of IGA which has been proposed as a tool to bridge 
the gap between design and analysis by using the non-uniform rational 
B-splines [48–49]. In IGA, the basis functions that are used to define the 
geometry of the domain are also used for the analysis part. This saves 
time that goes into defining the mesh and prevents geometric errors in 
the analysis. Further, XIGA has been extended for crack growth analysis 
of isotropic and orthogonal materials [50–51] and cortical bone fracture 
modelling [52]. However, it also requires different enrichment functions 
to model different material problems similar to XFEM. 

Another approach proposed by Hansbo and Hansbo [53] models the 
discontinuities within an element with the use of additional nodal de-
gree of freedoms (dof) present at the standard nodes. This concept is 
further extended into the Phantom Node Method (PNM) by Song and co- 
workers [54]. In this method, when an element is cut by a discontinuity, 
extra nodes are superposed with the original standard nodes and two 
superposing sub-elements are formed. This method avoids the mixed 
terms of stiffness Kua and Kau at the interface of enriched and non- 
enriched elements and leads to a better-conditioned system matrix. 
However, the phantom node method is equivalent to the step-enriched 
XFEM [54] for modelling the strong discontinuities. Due to this simi-
larity, the error associated with XFEM also occurs in PNM when map-
ping the discontinuity from physical to natural space. 

Recently, the floating node method is proposed based on the devel-
opment of PNM, which has a similar computational architecture to PNM, 
but the locations of additional nodes do not need to be fixed. These 
additional nodes are called floating nodes that move to the crack-edge 
intersections to form the crack by partitioning the original element 
into sub-elements. The complex crack networks can be modelled in an 
element by forming sub-elements that are conformal to the cracks. So 
far, FNM has been extended for numerous fracture problems, ranging 
from single crack to multiple crack problems on isotropic [55] and 
composite materials [13,56]. The FNM alleviates the limitations such as 
remeshing during crack propagation, enrichment functions require-
ment, error during mapping the discontinuity from physical to natural 
space etc. Despite its success in fracture problems, there exists some 
limitations during integration where during mapping a basic require-
ment is that the element has to be convex and severe distortion is not 
acceptable so that a one-to-one coordinates correspondence between 
physical and natural space associated with element can be guaranteed. 
More precisely, no interior angle should be greater than 180◦ for a 2D 
four-node element and the positivity of the Jacobian determinant should 
be ensured in numerical implementation [57], which increases the 
computational cost. Moreover, the modelling of an arbitrary crack in 

FNM is cumbersome as in FNM a crack divides the intact element into 
sub-elements. Sometimes these sub-elements may have poor aspect ratio 
depending on the crack direction, which deteriorates the convergence 
rate during the simulations. To alleviate this issue, Kumar et al. [14] 
considered one additional floating node in each standard element to 
maintain the aspect ratio of the sub-elements within the acceptable 
limit. To overcome these issues of integration, Liu et al. [58] proposed a 
smoothed finite element method by combining the FEM with strain 
smoothing technique of meshfree methods. In this approach, smoothing 
operations are performed over the elements, which eliminates the 
requirement of Jacobian determinant during numerical integration. The 
strain smoothing concept is further extended with FEM [59] and XFEM 
[60–61] for solving fracture problems. Though, by combining the 
smoothing procedures with FEM and XFEM, the requirement of mapping 
and positive Jacobian determinant during numerical integration is 
eliminated, the methods still suffer with the limitations associated with 
their basic framework, discussed in respective sections. 

To overcome the limitations associated with FEM, XFEM, XIGA, 
PNM, FNM, a new approach called as Smoothed Floating Node Method 
(SFNM) is proposed by combining the FNM with strain smoothing 
technique. In SFNM, FNM is used to represent the kinematics of crack, 
and the system stiffness matrix is calculated by using the strain 
smoothing technique over the domain of the smoothing cell associated 
with the element. The values of stress intensity factor (SIF) are obtained 
from the SFNM solution using domain based interaction integral 
approach. The major features of the proposed method are as follows:  

• No requirement of remeshing and enrichment functions to model the 
static and crack propagation behaviour. 

• Insensitivity to the element distortion due to the absence of iso-
parametric mapping.  

• Unlike XFEM, no mixed terms of stiffness occur, that results in better 
conditioning.  

• Simplify integration by transforming domain integration on Gauss 
points into line integration along the edges.  

• Shape function derivatives are not required for the field variable 
gradient matrix.  

• Element convexity restriction is less sensitive to the computational 
procedure, and maintaining the aspect ratio of the sub-divided ele-
ments in SFNM becomes redundant. 

To demonstrate the effectiveness of the proposed approach, three 
benchmark fracture mechanics problems are solved, and the results 
obtained by SFNM are compared with the available literature/theoret-
ical results. In the first problem, an edge cracked plate under mode-I 
loading is considered and the relative error in SIF and strain energy 
are obtained. The second problem deals with an edge cracked plate 
under mode-II loading condition. The error in SIF and strain energy are 
obtained and compared. In the third problem, a bi-material specimen 
having interfacial edge crack subjected to mode-I loading is solved. The 
paper is organized as follows: Section 2 describes the governing equa-
tions and mathematical formulation of SFNM and smoothing technique. 
Section 3 and Section 4 contain the SIF computation and crack growth 
criterion respectively. The numerical problems are presented in Section 
5 to demonstrate the effectiveness of the SFNM framework. Finally, the 
conclusions are drawn in Section 6. 

2. Numerical formulation 

In this section, the governing equations for the static analysis of an 
elastic medium containing a traction-free crack are briefly discussed. A 
brief review of FNM and SFEM is also presented for completeness. 
Further, the shape function generation, numerical integration procedure 
in SFNM and its implementation procedure is discussed. 

U. Singh et al.                                                                                                                                                                                                                                   
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2.1. Governing equations for elasto-statics 

Consider a linear elastic body with a discontinuity as shown in Fig. 1. 
The domain Ω is divided into three parts Γu where the displacement 
boundary conditions are applied, Γt where the traction boundary con-
ditions are applied and Γcr which is the traction-free surface representing 
the discontinuity. The strong form of the static equilibrium equation 
along with the boundary conditions are given as, 

∇.σ + b = 0 in Ω (1)  

σ.n̂ = t on Γt (2a)  

σ.n̂ = 0 on Γcr (2b)  

u = u on Γu (2c) 

where ∇ is the gradient operator, σ is the Cauchy stress tensor, b is 
the body force vector per unit volume, n̂ is the unit outward normal and 
t is the applied traction vector. For small strains and displacements, the 
strain-displacement relation can be written as, 

ε = ε(u) = ∇su (3) 

where ∇s is the symmetric part of the gradient operator. The 
constitutive relation for linear elastic material is given by Hooke’s law, 

σ = Dε (4) 

where D is the material elasticity tensor. 
By substituting the constitutive relation and the strain-displacement 

relation, the weak form of the equilibrium equation can be expressed as, 
∫

Ω
σ(u) : ε(v)dΩ =

∫

Ω
b.v dΓ +

∫

Γt

t.v dΓ (5) 

where u and v are the displacement trial and the test functions, 
respectively. Upon discretization of u and v, the above weak form can be 
transformed into the following discrete set of equations, 

Kd = f (6) 

where K is the global stiffness matrix, d is the nodal displacements 
vector and f is the externally applied force vector. 

2.2. Basic formulation of FNM 

In FNM, each real node is characterized by its nodal coordinates and 
its associated dofs, and each element in the domain also contains a 
suitable number of floating dofs. Thus, discretized mesh contains of 
either intact element, or elements that encompasses a crack/disconti-
nuity. The floating nodes in the intact element are dormant and the 
element is thus identical to the standard finite element. Once a crack 

Fig. 1. A cracked domain with boundary conditions.  

Fig. 2. A schematic representation of strong discontinuity modelling in an element using floating node method.  
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appears inside the intact element, the floating nodes get activated to 
model the crack in the element. The nodal position vectors of the 
floating nodes are defined by the crack position coordinates (points with 
coordinates xr and xs), refer Fig. 2. Hence, the cracked element is split 
into two sub-elements ΩA and ΩB, depending on the direction of the 
crack [62]. The vectors of nodal coordinates of sub-elements are defined 
as, 

xT
ΩA

=
[
xT

r , x
T
s , x

T
3 , xT

4

]
and xT

ΩB
=

[
xT

1 , xT
2 , x

T
s , xT

r

]
(7) 

Now, each sub-element (ΩAand ΩB) has a separate Jacobian given as, 

JA =
dx
dξ

=
dN
dξ

xΩA and JB =
dx
dξ

=
dN
dξ

xΩB (8) 

The displacement uA and uB in the sub-elements are interpolated 
separately from the respective degrees of freedom dA and dB of the sub- 
element ΩA and ΩB respectively, 

uA = NdA and uB = NdB (9) 

where dT
A =

[
dT

7 , dT
8 ,d

T
3 ,d

T
4
]

and dT
B =

[
dT

1 ,d
T
2 , dT

5 , dT
6
]

The stiffness matrices and force vectors of the sub-elements are thus 
defined as, 

KA =

∫

ΩA

BT
ADBAdet(JA)dΩ and KB =

∫

ΩB

BT
BDBBdet(JB)dΩ (10)  

fA =

∫

ΩA

NTbdet(JA)dΩ +

∫

Γt∩ΓΩA

NTt det(JA)dΓ (11a)  

fB =

∫

ΩB

NTbdet(JB)dΩ +

∫

Γt∩ΓΩB

NTt det(JB)dΓ (11b) 

The equilibrium equations for both sub-elements are written as, 

KAdA = fA and KBdB = fB (12) 

Finally, the equilibrium equation of the floating node element is the 

assembly of the two sub-elements, and given as, 

Kd = f (13) 

where K =

[
KA
KB

]

, dT =
[
dT

A,d
T
B

]
and fT =

[
fT

A, fT
B

]
when the two sub- 

elements are fully separated. 
The crack tip modelling in FNM is a very important aspect for failure 

analysis of a structure. In FNM, each individual element has the floating 
nodes either dormant or activated. The crack is modelled by splitting the 
intact element into two sub-elements by activating the floating nodes, 
and positioning them to the points obtained from the intersection of 
crack with the element edge. The split element has two floating nodes at 
the edge E2 of the intact element, where the crack terminates, refer 
Fig. 3(a). Therefore, the crack tip remains open at the edge E2 as shown 
in Fig. 3(b). Though the crack tip can be modelled by considering two 
sets of dofs from both floating nodes at the crack tip to be identical, this 
procedure may lead to an artefact at the crack tip as shown in Fig. 3(c), i. 
e. the split elements at the crack tip do not have adequate topology for 
connecting with the adjacent intact element, resulting in a lack of 
displacement compatibility at the element edge E2. To alleviate this 
issue, the dofs at the crack tip are interpolated from the neighbouring 
dofs as illustrated in Fig. 3(d). Hence, the intact element adjacent to the 
crack tip is considered as a transition element (refer Fig. 3(e)) to 
maintain the displacement compatibility between the split element and 
intact element. The detailed procedure can be found in the literature 
[14]. The transition element is considered at the crack tip which is 
further divided into triangular elements to improve the accuracy of the 
results. 

2.3. Strain smoothing technique 

The strain smoothing was first introduced by Chen et al. [63] for 
meshfree methods, and later extended in the framework of FEM 
[59,64–67]. The strain smoothing technique can achieve higher accu-
racy and convergence rates than the standard finite element method, 

Fig. 3. Crack tip modelling in floating node method.  

U. Singh et al.                                                                                                                                                                                                                                   
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especially in the presence of singularities or distorted meshes, for a 
slightly smaller computational cost. In the meshfree method based on 
nodal integration form, the integration in Eq. (5) is performed over 
representative cells of nodes in the problem domain. To guarantee the 
convergence of the solution, the linear exactness in the solution of the 
weak form should be ensured. To meet this requisite, the following 

integration constraint should be satisfied [63,68], 
∫

Ω

BT
I (x)dΩ =

∫

Γt

NT
I (x)dΓ (14) 

with 

BI =

⎡

⎣
NI,1 0
0 NI,2

NI,2 NI,1

⎤

⎦, NI =

⎡

⎣
NIn1 0

0 NIn2
NIn2 NIn1

⎤

⎦ (15) 

where BI is the standard gradient matrix of node I, NI is the shape 
function of node I, n1 and n2 are the first and second components of the 
outward boundary normal vector of the smoothing cell. This condition is 
met by applying strain smoothing techniques for each representative 
nodal cell. 

Fig. 4. Schematic of subcells formation for integration in SFNM: (a) crack 
growth in domain (b) intact element subcells (c) 2 sub-elements with inclined 
crack path and further subdivision into triangular subcells and (d) 2 quadri-
lateral sub-elements with inclined crack path and further subdivision into 
quadrilateral subcells. 

Fig. 5. Quadratic element division into smoothing subcells and integration scheme: (a) 1-subcell (b) 2-subcells (c) 3-subcells and (d) 4-subcells.  

Fig. 6. Triangular element division into smoothing subcells and integration scheme: (a) 1-subcell (b) 4-subcells.  

Table 1 
Shape function value at different sites within SC4Q4 element (Fig. 6 (d)).  

Site Node 1 Node 2 Node 3 Node 4 Description 

1 1 0 0 0 Field node 
2 0 1 0 0 Field node 
3 0 0 1 0 Field node 
4 0 0 0 1 Field node 
5 0.5 0.5 0 0 Edge midpoint 
6 0 0.5 0.5 0 Edge midpoint 
7 0 0 0.5 0.5 Edge midpoint 
8 0.5 0 0 0.5 Edge midpoint 
9 0.25 0.25 0.25 0.25 Intersection of two bi-medians  

U. Singh et al.                                                                                                                                                                                                                                   
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The motivation of this work is to develop a Smoothed FNM by 
incorporating the strain smoothing technique in the framework of FNM. 
In SFNM, sub-elements are formed as in the FNM, but they are further 
subdivided into several smoothing subcells (see Fig. 4) and integrated 
using the smoothing technique to elevate distortion sensitivity. When 
choosing a constant smoothing function, area integration over the sub-
cell becomes line integration along its boundaries, and no gradient of 
shape functions is required in computing the field gradients or in 
forming the stiffness matrix. The integration along the edges of each 
subcell is done numerically using 1D Gauss integration scheme. Fig. 5 
shows the field nodes and integration points corresponding to different 
number of subcells. A smoothing operation is performed to the gradient 
of displacement for all the subcells in an element. Let u represent the 
displacement along a certain direction, the smoothing operation for its 
gradient at a point xc (belonging to a subcell domain Ω C) is given as, 

∇̃ u(xc) =

∫

Ω

∇u(x)ϕ(x − xc)dΩ (16) 

Using Integration by parts, the right-hand side of Eq. (16) becomes, 

∇̃ u(xc) =

∫

Γ

u(x)n(x)ϕ(x − xc)dΓ −

∫

Ω

u(x)∇ϕ(x − xc)dΩ (17) 

Table 2 
Shape function values at different sites within SC1T3 element (Fig. 7(b)).  

Site Node 1 Node 2 Node 3 Description 

1 1 0 0 Field node 
2 0 1 0 Field node 
3 0 0 1 Field node 
4 0.5 0.5 0 Edge midpoint 
5 0 0.5 0.5 Edge midpoint 
6 0.5 0 0.5 Edge midpoint  

Fig. 7. Detailed procedure in SFNM for modelling crack initiation to 
final failure. 

Fig. 8. A rectangular plate with an edge crack under mode-I loading.  

Fig. 9. The convergence in strain energy for the rectangular plate with edge 
crack under mode-I loading. 

U. Singh et al.                                                                                                                                                                                                                                   
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where ϕ is a smoothing function. A piecewise constant smoothing 
function is considered here, which is constant within Ω C and vanish 
everywhere else, 

ϕ(x − xc) =

{
1/AC x ∈ ΩC
0 x ∕∈ ΩC

(18)  

AC =

∫

ΩC

dΩ 

The second term of the right hand side of Eq. (17) vanishes with the 
chosen ϕ. Substituting ϕ into Eq. (17), we get the smoothed gradient of 
displacement as, 

∇̃ u(xc) =

∫

ΓC

u(x)n(x)ϕ(x − xc)dΓ =
1

AC

∫

ΓC

u(x)n(x)dΓ (19) 

where ΓC is the boundary of the smoothing subcell. Here, the choice 
of piece-wise constant smoothing function ϕ converts the area integra-
tion (Eq. (16)) into line integration along the edges of the subcell. The 
smoothed displacement gradient becomes independent of xc, i.e., 

constant within ΩC. Repeating the above procedure for the displacement 
vector u and substituting the smoothed gradients into Eq. (3), the 
smoothed strain at xc can be obtained as, 

ε̃(xc) =
∑n

I=1
BI(xc)dI (20) 

where n is the number of nodes and BI is the smoothed strain matrix 
of node I. For 2D, it is written as, 

B̃I(xc) =

⎡

⎣
b̃I1(xc) 0

0 b̃I2(xc)

b̃I2(xc) b̃I1(xc)

⎤

⎦ (21) 

where 

b̃Ik(xc) =
1

AC

∫

ΓC

NI(x)nk(x)dΓ, (k = 1, 2)

If one Gaussian point is used for line integration along each segment 
of the boundary ΓC

i of ΩC, the above equation can be transformed to its 
algebraic form as, 

b̃ Ik(xc) =
∑M

i=1
NI
(
xGP

i

)
nC

iklC
i (22) 

where M is the number of boundary segments, xGP
i is the Gaussian 

point of the ith boundary segment ΓC
i , lCi is the length and nC

i the outward 
unit normal vector of ΓC

i , respectively. Once the smoothed gradient 
matrix over each subcell is evaluated, the smoothed element stiffness 
matrix of the sub-element e of SFNM can be obtained by assembly from 
all the subcells in the element as, 

KSFNM
e =

∑

∀C∈e
B̃

T
CDB̃CAC (23) 

where B̃C (i.e., [B̃I(xc),⋯,B̃n(xc)]) is the smoothed gradient matrix of 
the subcell C. Now, the final discretized algebraic system of equation for 
the split elements can be written as, 

KSFNM
A dA = fA and KSFNM

B dB = fB (24) 

Finally, the algebraic equation of SFNM is the assembly of the two 
sub-elements, 

Fig. 10. Comparison of convergence rate between FNM and SFNM in the SIF.  

Fig. 11. Static edge crack plate stress contours under mode-I loading: (a) σxx (b) σxy (c) σyy.  
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Fig. 12. A rectangular plate with an edge crack under shear (mode-II) loading, 
dimensions are in mm. 

Fig. 13. The convergence in strain energy for the rectangular plate with edge 
crack under mode-II loading. 

Fig. 14. Comparison of convergence rate of SIF vs mesh size (h) between FNM 
and SFNM; (a) convergence in SIF KI (b) convergence in SIF KII. 

Fig. 15. SIF variation with crack length under mode-I loading for edge 
crack plate. 
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KSFNMd = f (25)  

KSFNM =

[
KSFNM

A

KSFNM
B

]

2.4. Shape function construction and numerical integration scheme 

In this section, we focus on the construction of the shape functions 
and integration scheme for the elements used in SFNM. In SFNM, both 4- 
node quadrilateral and 3-node triangular elements are used for the nu-
merical simulations as shown in Fig. 4. The number of subcells in an 
element depends on the required accuracy. In this work during 
smoothing procedure, 4-node quadrilateral element is divided into 4- 
subcells, however the procedure for dividing the quadrilateral element 
from 1-subcell to 4-subcells is discussed and illustrated in Fig. 5. Simi-
larly, the 3-node triangular element is divided into 1-subcell during the 
simulations, but the procedure to divide it into 1-subcell and 4-subcells 
is illustrated in Fig. 6 for generalization. It is observed that SFEM solu-
tion using 1-subcell is equivalent to the FEM reduced integration [59]. 
The explicit shape functions themselves are used at the nodal points. The 

shape functions are interpolated simply by a linear function at any point 
on the boundary. For example, in Fig. 5(b) the element is divided into 2- 
subcells and the nodal points (1, 2, 3, 4) have the shape function values 
as node-1 (1, 0, 0, 0), node-2 (0, 1, 0, 0), node-3 (0, 0, 1, 0) and node-4 
(0, 0, 0, 1) for a quadrilateral element. At intermediate midpoints 5 and 
6, the shape functions are calculated through linear shape functions of 
two related nodes on the edge and obtained as (0.5, 0.5, 0, 0) and (0, 0, 
0.5, 0.5) respectively. In the same manner, we can write the shape 
functions for the edges of 3-subcells and 4-subcells shown in Fig. 5(c) 
and (d) respectively. Detailing of shape function values corresponding to 
4-subcells of quadrilateral (SC4Q4) element is given in Table 1. 

Through the 4-node quadrilateral elements are used for meshing the 
problem domain, the element inside the domain may have triangular 
sub-elements at the split element cut by an arbitrary crack (see Fig. 4(c)) 
and inside the transition element (see Fig. 3). Therefore, a set of nodal 
shape function values for triangular element may be taken as [(1, 0, 0), 
(0, 1, 0), (0, 0, 1)]. Table 2 represents the shape function values of 4- 
smoothing subcells of triangular element (SC4T3) as shown in Fig. 6 
(b). For simplicity, 1-subcell (Fig. 6(a)) of the triangular element is 
considered for the computational purpose in the current work. 

To compute the smoothed strain-displacement gradient matrix, the 
shape function is required only along the boundary of the subcells. The 
stiffness matrix is obtained from linear integration along the boundaries 
of each subcell. The division of the cracked element and intact element 
along with subcells formation is shown in Fig. 4. A crack separates an 
element into two sub-elements and each sub-element further qualifies 
for the number of subcells for the boundary integration. In case the crack 
makes a partition such that intact element is divided into 1-triangle and 
5-sided polygon, then that element is divided into the number of 
triangular subcells as shown in Fig. 4(c) and line integration is per-
formed along each boundary of the triangular subcell. Crack touching 
any standard node of FE element may lead to the development of 
triangular as well as quadrilateral sub-elements. The smooth stiffness 
matrix is computed using Eq. (23) for the smooth domain of subcell and 
global stiffness is calculated with the assemblage of the elemental 
stiffness. In the same way, smooth strain-displacement matrix and strain 
are computed corresponding to each subcell by using Eq. (21) and Eq. 
(20) respectively. 

For the comparison purpose, the conventional Gauss quadrature 
integration procedure is also applied with FNM, and the obtained results 
are compared with the SFNM results. Kumar et al. [14] discussed the 
integration scheme with respect to the aspect ratio for curved crack 
problems. A crack passing close to one of the standard nodes of the 
element may lead to a skewed aspect ratio. It shows the division of the 

Fig. 16. Normal stress contour of edge crack plate under normal load; (a) a
W = 0.2, (b) a

W = 0.3 and (c) a
W = 0.45  

Fig. 17. SIF variation with crack length under mode-II loading for edge 
crack plate. 
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element into a triangular and pentagon sub-elements. Integration of 
triangular sub-element using Gauss quadrature is straightforward but 
the pentagon sub-element is further divided into 3 triangles in case of 
the element is restricted to 4 floating nodes. To compensate the poor 
aspect ratio, instead of 4 floating nodes, 5 floating nodes are used to 
maintain the appropriate aspect ratio in accordance to Gauss quadrature 
integration. The 5th floating node inside the domain is inserted itera-
tively. The procedure to insert an extra float node and creating the 
triangular sub-elements is available in [14]. To tackle the poor aspect 
ratio, inserting an extra floating node adds the complexity in the 
computation. This drawback may be resolved precisely by using the 
smoothing integration approach as shown in Fig. 5 and Fig. 6. 

2.5. SFNM outline 

FNM formulation is explained in section 2.2. Detailing of the division 
of an intact element into sub-elements due to discontinuity and the 

activation and positioning of the floating nodes is also demonstrated in 
the same section. In the continuation of this, strain-displacement matrix 
according to the smoothing approach is required. Displacement gradient 
for the calculation of smoothed domain given in Eq. (23) can be recalled 
from the Eq. (21). The explicit shape functions as mentioned in Table 1 
and normal unit vectors are sufficient to proceed for the line integration 
approach. The steps required in SFNM to model crack propagation are 
detailed in the flow chart given in Fig. 7. 

3. SIF computation 

The stress intensity factor is a critical parameter that has frequently 
been used in fracture mechanics problems of brittle materials. The vir-
tual crack closure technique (VCCT) and interaction integral approach 
are the commonly used approach in literature for calculating the SIF 
values. However, the VCCT approach is cumbersome to implement in 
generic crack propagation problems as it generally requires uniform 
mesh. Therefore, in this paper, a domain-based interaction integral 
approach is used in conjunction with SFNM to compute the values of SIF. 
For two independent equilibrium states of a cracked body, the domain 
form of interaction integral can be written as, 

I(1,2) =
∫

A

[

σ(1)
ij

∂u(2)
i

∂x1
+ σ(2)

ij
∂u(1)

i

∂x1
− W(1,2)δ1j

]
∂q
∂xj

dA (26) 

where W(1,2) is the interaction strain energy term associated with 
actual and auxiliary states, q is a smoothing weight function,σij is the 
stress field, 1 and 2 signify the actual and auxiliary state respectively. 
For the bi-material interface cracked body, the interaction integral form 
can be written as, 

I(1,2) =
∑2

m=1

∫

Am

[

σ(1)
ij

∂u(2)
i

∂x1
+ σ(2)

ij
∂u(1)

i

∂x1
− W(1,2)δ1j

]
∂q
∂xj

dA (27) 

where m represents a particular material in the bi-material domain. 
In LEFM, the relationship between interaction integral and SIF is given 
as, 

I(1,2) =
2
(

K(1)
I K(2)

I + K(1)
II K(2)

II

)

E*cosh2(π∊)
(28) 

where 

Fig. 18. Stress contour plots of edge crack plate under shear load at a
W = 0.5: (a) σxx (b) σxy (c) σyy  

Fig. 19. Crack growth trajectory comparison of an edge crack plate under 
mode-II loading. 
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2
E* =

1
E1

+
1
E2 

For bi-material interfacial cracks, the auxiliary fields [69] can be 
written as,  

Fig. 20. (a) Bi-material plate with an interfacial edge crack under mode-I loading; (b) Crack growth trajectory comparison of a bi-material interface edge crack.  

Table 3 
Properties of the constituents of bi-materials rectangular plate.   

Young’s Modulus, 
E (GPa) 

Poisson’s 
ratio, ν 

Fracture toughness, KIC 

(MPa.m0.5) 

Material- 
1 

74  0.30 40 

Material- 
2 

200  0.30 60  

Fig. 21. SIF vs crack length plot for bi-materials edge crack plate under mode-I 
loading; Literature results refer [14]. 

Fig. 22. Deformed configuration with element subdomains for bi-material edge 
crack plate under mode-I loading. 
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where μ is the shear modulus, (r, θ) are the polar coordinates. The 
details of computing the functions f1 and f2 can be found in the literature 
[35]. The parameters ∊ and κ are bi-material constants and defined as, 

∊ =
1
2π log

(
1 − β
1+ β

)

where, β is the second Dundurs parameter and defined as, 

β =
μ1(κ2 − 1) − μ2(κ1 − 1)
μ1(κ2 + 1) + μ2(κ1 − 1)

and 

κi =

⎧
⎪⎨

⎪⎩

3 − 4υi plane strain
3 − υi

1 + υi
plane stress 

where υ is Poisson’s ratio. 
The mixed-mode SIF values can be obtained from Eq. (28) using K(2)

I 

= 1 and K(2)
II = 0 and vice versa. 

KI =
E*cosh2(π∊)

2
I(1) (30a)  

KII =
E*cosh2(π∊)

2
I(2) (30b)  

4. Crack propagation criterion 

To determine the crack growth direction, a particular requisite cri-
terion needs to be prescribed. Due to the cyclic loading, the crack may 
reach to the critical length which causes severe fracture failure of the 
structural components. To avoid the fracture failure, crack growth rate 
and propagation direction are predicted. The discrete set of equations 
are solved to obtain the displacements, and the stress intensity factor 
values are extracted from Eq. (30). The range of SIF for both mode-I and 
mode-II under constant amplitude cyclic loading is defined as, 

ΔK = Kmax − Kmin (31) 

where Kmax and Kmin are the SIF values corresponding to maximum 
and minimum applied loads respectively. In this study, the maximum 
circumferential stress criterion is employed to obtain the direction of 
crack growth. The equivalent SIF and the direction of crack growth θc, at 
each crack increment are obtained using the following expressions, 

ΔKIeq = ΔKIcos3
(

θc

2

)

− 3ΔKIIcos2
(

θc

2

)

sin
(

θc

2

)

(32)  

θc = 2arctan
1
4

⎧
⎨

⎩

KI

KII
± sign(KII)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
KI

KII

)
2 + 8

√ ⎫
⎬

⎭
(33) 

Failure takes place whenever (ΔKIeq)max > KIC, where (ΔKIeq)max is the 
equivalent stress intensity factor corresponding to maximum load 
and KIC is the fracture toughness of the material. 

Fig. 23. Stress and Strain contour plot at failure condition; (a) strain contour plot in y-direction (b) stress contour plot in y-direction.  

ui =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
4μ1cosh(π∊)

̅̅̅̅̅
r

2π

√

fi(r, θ, ∊, κ1) for upper half plane
1

4μ2cosh(π∊)

̅̅̅̅̅
r

2π

√

fi(r, θ, ∊, κ2) for lower half plane (29)   
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5. Numerical examples 

In this section to illustrate the accuracy and effectiveness of the 
proposed SFNM, both static and crack propagation examples are 
considered for simulations and the results obtained by SFNM are 
compared with the FNM and available literature results. All the simu-
lations are performed under plane strain condition. In all the problems, a 
uniform initial mesh of quadrilateral elements is used in the entire 
domain. The LEFM theory is considered in the simulations, where the 
crack tip is singular at the crack tip. Thus, special crack tip elements are 
required to model the crack tip singularity. However, in the present 
work, an special transition element within the SFNM framework is used 
just ahead of the crack tip (see Fig. 3e), which improves the accuracy of 
the results. Moreover, the values of SIF are obtained using the domain- 
based interaction integral approach, which considers the global quan-
tities far from the crack tip for SIF computation and reduces the effect of 
singularity on the numerical results. 

5.1. Static crack examples 

In this section, the accuracy and convergence properties of the pro-
posed SFNM are numerically studied within the LEFM framework in 2D 
static crack problems under mode-I and mode-II loading conditions. The 
numerical results from the proposed SFNM formulation are compared 
with the FNM and literature results. The strain energy and error in SIF 
are used to estimate the error and convergence properties of the pro-
posed SFNM. 

5.1.1. Plate with an edge crack under mode-I loading 
In this example, a rectangular plate with an edge crack is analysed 

under tension loading (σ = 10 MPa). The basic geometry along with the 
dimensions (a = 4 mm, H = 16 mm, W = 8 mm) and boundary condi-
tions are shown in Fig. 8. The thickness of the plate is taken as 1 mm. The 
material properties are taken from Ref. [67]. They are given as: Young’s 
modulus E = 1 MPa, Poisson’s ratio ν = 0.3 . The strain energy and the 
error in the SIF are given as, 

E(Ω) =
1
2

∫

Ω
εT D ε dΩ (34)  

ek =

⃒
⃒
⃒
⃒
⃒

Knum
SIF − Kref

SIF

Kref
SIF

⃒
⃒
⃒
⃒
⃒

1/2

× 100%, SIF = I, II (35) 

where the superscript “ref” denotes the reference solution and “num” 
denotes the numerical solution. 

For the simulation purpose, the domain is discretized by a structured 
mesh with 4-node quadrilateral (Q4) elements for both FNM and SFNM. 
Different mesh sizes i.e. 242 nodes (11 × 22), 882 nodes (21 × 42), 1922 
nodes (31 × 62), 3362 nodes (41 × 82), 5202 nodes (51 × 102) and 
7442 nodes (61 × 122) are considered for checking convergence prop-
erties of the proposed approach. The strain energy and relative error in 
SIF values are computed and plotted with respect to mesh size, then 
SFNM results are compared with the FNM and literature results. Fig. 9 
shows the comparison of strain energy values obtained through SFNM 
and FNM with the literature in mode-I loading. From the figure, it is 
apparent that the convergence of SFNM is slightly better than FNM. 
Further, the relative error in SIF values is plotted with the mesh size in 
log scale for SFNM and FNM as shown in Fig. 10. From the comparison, 
it is evident that the SFNM technique is more accurate and gives better 
convergence rate than the FNM. The SIF relative error using SFNM is 
significantly less in comparison to SIF relative error using FNM as shown 
in Fig. 10. The stress contours are also plotted for illustration purpose in 
Fig. 11. 

5.1.2. Plate with an edge crack under shear 
Next, to illustrate the ability of the SFNM, we consider a rectangular 

plate with an edge crack subjected to pure shear traction on the top 
surface as shown in Fig. 12. The bottom of the plate is fixed and plane 
strain condition is assumed for simulation. The geometry parameters 
used in the computation are: width W = 7 mm, height H = 16 mm, crack 
length a = 3.5 mm. The material properties; Young’s modulus E and 
Poisson’s ratio ν are taken as 3 × 107 Pa and 0.25 respectively. The 
reference values of SIFs for this case are taken from the literature [71] 
and given as KI = 34Pa

̅̅̅̅̅̅̅̅
mm

√
, KII = 4.55Pa

̅̅̅̅̅̅̅̅
mm

√
. Different mesh sizes i. 

e. 882 nodes (21 × 42), 1922 nodes (31 × 62), 3362 nodes (41 × 82), 
5202 nodes (51 × 102), 7442 nodes (61 × 122) and 10,082 nodes (71 ×
142) are considered to analyse the convergence properties of the pro-
posed framework. The strain energy convergence with respect to mesh 
refinement is shown in Fig. 13, which depicts that the strain energy 
convergence is better in SFNM than in FNM. In addition, the mesh 
convergences of stress intensity factors KI and KII are presented in Fig. 14 
(a) and Fig. 14(b) respectively. In both cases, it is evident that a sig-
nificant reduction of error is achieved in SFNM as compared to FNM. 

5.2. Crack propagation examples 

After verifying the accuracy and convergence properties of SFNM for 
static crack problems under mode-I and mode-II loading conditions, here 
we extend it for simulating the crack propagation problems. Three 2D 
problems are considered in this section for verifying the accuracy of the 
proposed SFNM. In the first problem, an edge crack plate is simulated 
under mode-I cyclic loading. In the second problem, an edge crack plate 
is considered under mode-II cyclic loading. Finally, a plate with a bi- 
material interfacial edge crack is simulated under mode-I cyclic loading. 

5.2.1. Plate with an edge crack under tensile loading 
In this section, we revisit the problem of an edge crack as mentioned 

in Section 5.1.1 under cyclic loading condition. The initial crack length 
is considered as a

W = 0.2. The crack is considered to propagate under 
mode-I condition and analysed in the range of a

W = 0.2 to a
W = 0.6. The 

plate is subjected to a tensile load of intensity σ = 10 MPa at the top edge 
of the plate as shown in Fig. 8. The material properties and other geo-
metric conditions are given in Section 5.1.1. It is well known that the 
numerical results are strongly mesh size dependent, hence a converged 
uniform initial mesh of 7442 nodes (61 and 122 nodes in x- and y- di-
rections respectively), is adopted for the simulation, refer section 5.1.1 
for more detail. To compare the SFNM results, the stress intensity values 
are also calculated theoretically. Further, the SIF values obtained by 
SFNM are compared with the analytical (theoretical) solutions. They are 
found to be in good agreement as shown in Fig. 15. Finally, the normal 
stress contour plots obtained by smoothed FNM are shown in Fig. 16 for 
different crack lengths. From the results, it is observed that the SFNM 
captures the crack propagation behaviour effectively without the 
requirement of remeshing and additional enrichment terms. 

5.2.2. Plate with an edge crack under shear loading 
A rectangular plate with an edge crack under pure shear, shown in 

Fig. 12 is considered for the simulation. The geometry parameters used 
in the computation are: width W = 7 mm, height H = 16 mm, initial 
crack length is taken as a

W = 0.2 where a is the crack length. The material 
properties Young’s modulus E and Poisson’s ratio ν are taken as 3 × 107 

Pa and 0.25 respectively. The specimen is subjected to shear load τ =

1MPa at the top edge of the plate. A converged initial mesh with 7442 
nodes (61 and 122 nodes in x- and y- directions respectively), is 
considered for the simulation as discussed in section 5.1.2. For the 
simulations, crack propagation range is taken as a

W = 0.2 to a
W = 0.6. The 

SIF values obtained by SFNM using interaction integral approach are 
plotted against crack length and compared with FEM results, shown in 
Fig. 17. Further, the stress contour plots obtained through SFNM are also 
shown in Fig. 18 under pure shear loading. Due to pure shear all three 
stress components variation is plotted at a crack to width ratio of 0.5. 
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From these results, it is observed that the SFNM captures the crack 
propagation behaviour effectively even for the curved crack growth 
problems. Finally, the crack trajectories obtained through SFNM and 
FEM are compared in Fig. 19 and found in good agreement. 

5.2.3. Bi-materials edge crack under normal load 
A bi-material plate of size 50 mm × 100 mm with an interfacial edge 

crack of initial length a = 10 mm ( a
W = 0.2) is taken for the simulation as 

shown in Fig. 20(a). The thickness of the plate is assumed to be 1 mm. A 
tensile load of intensity σ = 50 MPa is applied at the top edge of the 
plate, while the bottom edge of the plate is constrained. An initial uni-
form mesh of 7442 nodes (61 and 122 nodes in x- and y- directions 
respectively), is taken for simulations. There is a difference in the elastic 
properties of the two materials on either side of the interface and sym-
metry is disrupted even though the geometry of the body is symmetric. 
The material properties of both the base materials are taken from the 
literature [14] and given in Table 3. 

The fracture toughness of the interface is considered higher than 
both the base materials for simulation purpose, hence the crack may 
propagate into either of the material depending on their material 
properties. The computed equivalent SIF (ΔKIeq) is compared with the 
local fracture toughness of both materials to determine the crack tra-
jectory. For this purpose, two ratios R1 and R2 are calculated as [41], 

R1 =
(ΔKIeq

)

m1

(KIC)m1
and R2 =

(ΔKIeq
)

m2

(KIC)m2 

where m1 and m2 represent material-1 and material-2 respectively. If 
the R1 > R2, the crack will propagate into the first material along the 
predicted angle θ = θc. Otherwise, it will propagate into the second 
material. 

The obtained crack path through SFNM is compared with the liter-
ature in Fig. 20(b). Further, the obtained SIF values using SFNM are 
compared with the literature results and a good agreement is obtained as 
shown in Fig. 21. The angle of crack propagation is computed using the 
maximum circumferential stress theory as discussed in Section 4. The 
advancement of crack divides the element into several sub-elements. 
The final deformed configuration at enlarged scale along with sub- 
elements is depicted in Fig. 22. A small portion of the growth path is 
magnified and shown in the same figure to illustrate the split and 
transition elements. From the zoomed view, it can be observed that some 
of the sub-elements in the split element and transition element maintain 
poor aspect ratio, lead to error during integration and may deteriorate 
the convergence rate in FNM. However, in the smoothed FNM such kind 
of issue does not occur as the domain integral is converted into line 
integral using the smoothing procedure. The SFNM could be more 
effective for large deformation problems, where an element distortion is 
a major problem which reduce the accuracy and convergence rate. The 
normal stress and normal strain contours at final crack length are shown 
in Fig. 23. 

6. Conclusions 

In this work, a smoothed floating node numerical framework for the 
2D linear elastic problem is developed by combining FNM with the 
smoothed FEM. The cell-based smoothening procedure is adopted for 
the sub-element integration. The proposed framework is easy to imple-
ment and can be applied to triangular or quadrilateral or any distorted 
elements. Field gradients are computed directly using shape functions at 
midpoints of the boundary segments of the smoothing cells. The com-
bination of SFNM with interaction integral approach offers accurate and 
path independent evaluation of SIFs. The issue of (sub-)element distor-
tion can be avoided as it does not require the inverse of Jacobian during 
integration. As a result, SFNM’s convergence rate is better than FNM, 
hence computationally more efficient. From the simulations of this 
work, it is observed that the SFNM combines the advantages of SFEM 

and FNM, making it an attractive method for solving fracture mechanics 
problems. 
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[32] I. Babuška, Z. Zhang, The partition of unity method for the elastically supported 
beam, Comput. Methods Appl. Mech. Eng. 152 (1-2) (1998) 1–18, https://doi.org/ 
10.1016/S0045-7825(97)00231-4. 
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