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Abstract

In this thesis, we look at unit and integration test suites and look for ways to
improve the quality of the tests. The first step in this research is the development
of the JUnitCategorizer tool to distinguish between unit tests and integration tests.
JUnitCategorizer determines the actual class under test using a new heuristic and
ultimately decides whether the test method is a unit or integration test. We show that
JUnitCategorizer correctly determines the class under test with an accuracy of over
90%. Our analysis also shows an accuracy of 95.8% on correctly distinguishing unit
and integration tests. We applied JUnitCategorizer on several open and closed source
projects to obtain a classification of the test suites based on their ratio of integration
tests.

The second part of this research looks at applicable methods to increase the quality
of the tests, for example elimination of boiler-plate code and detection (and possibly
generation) of missing tests. Using the classification of test suites, we show that the
aforementioned test problems occur in both unit as integration tests. We then propose
a new tool called Java Test Assistant (JTA), which can generate boiler-plate tests and
some hard tests. An experiment was conducted to assess JTA and showed promising
results. Code coverage increased and several of our generated tests fail on the current
code base because the implementations are not entirely correct.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Company supervisor: Ing. R. Spilker, TOPdesk
Committee Member: Dr. T.B. Klos, Faculty EEMCS, TU Delft





Preface

Spending nine months full time on a single research project is unlike any other project in
my academic career. The available time allows a much deeper exploration of the subject,
but on the other hand requires discipline to stay focused and to keep making progress. I’d
like to thank several people who have helped me bring my master’s thesis to a successful
end.

First off, I’d like to thank my supervisors for all their support. Roel Spilker, supervisor
from TOPdesk, for aiding me with his great in-depth Java knowledge and great comments
and Andy Zaidman, supervisor from the TU Delft, for giving valuable feedback on my
drafts and his continuous availability to answer questions.

I want to thank TOPdesk for being a great employer and facilitating the wonderful
option of combining a research project with getting to know how development works in
practice. Development team Blue deserves a special mention for the warm welcome I got
in the team. And an even more special mention to Bart Enkelaar; without all his stories
about how awesome TOPdesk is, I might not have considered TOPdesk as potential for an
internship.

I also want to thank family, friends and colleagues for asking “what is it exactly that
you do for your thesis?”, requiring me to come up with comprehensible answers for people
with very different backgrounds.

Joep Weijers
Delft, the Netherlands

August 15, 2012

iii





Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Distinguishing unit and integration tests with JUnitCategorizer 5
2.1 Distinguishing unit and integration tests . . . . . . . . . . . . . . . . . . . 5
2.2 Detecting the called classes . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Detecting the Class Under Test . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Detecting unit and integration tests . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Application on open source projects . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Finding extension points for Project Lombok in developer testing 27
3.1 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Detected problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Extending Project Lombok with Java Test Assistant 41
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Related Work 57

v



CONTENTS

5.1 Detection of the class under test . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Test case prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Automated test case generation . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions and Future Work 61
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Discussion/Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 67

vi



List of Figures

2.1 Influence of the length of the interval of parameters x on the distribution of
correctly detected CUTs. The interval corresponding to interval length x is [0,
x−1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Influence of multiplying weights with the number of test methods on the
distribution of correctly detected CUTs. 0 indicates that none of the weights
are multiplied, s, f , p indicate that the weight of respectively a single called
class, a matching file name, or the weight of a matching package is multiplied. . 15

2.3 Influence of the weight of called classes wa on the number of CUTs detected. . 16
2.4 Influence of the weight of matching file name w f on the number of CUTs

detected, with wa = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Influence of the weight of inner classes wi and the matching package wp on the

number of CUTs detected, with wa = 7 and w f = 7. . . . . . . . . . . . . . . . 18
2.6 Influence of the weight of inner classes wi and the single class ws on the number

of CUTs detected, with wa = 7 and w f = 7. . . . . . . . . . . . . . . . . . . . 18
2.7 Influence of the weight of matching package wp and the single class wp on the

number of CUTs detected, with wa = 7, w f = 7 and wi = 0. The plane is drawn
at CUTs detected correctly = 565. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Scatter plot showing the duplicate lines of code in TOPdesk’s application-utils
test suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Scatter plot showing the duplicate lines of code in Maven’s model test suite. . . 33
3.3 Scatter plot showing the duplicate lines of code in TOPdesk’s core test suite. . . 34
3.4 Scatter plot showing the duplicate lines of code in TOPdesk’s application test

suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Change in mutations killed and coverage, adjusted for change in lines of test
code, plotted against the original coverage of each test suite . . . . . . . . . . . 52

vii





Chapter 1

Introduction

In order to assess quality of software, it is submitted to various tests. E.g. high-level
acceptance tests to see if the software performs the correct functions, and fine-grained tests
to ensure sub-systems behave as specified. It is an important step in software development
and there are various ways to accomplish this. In this research, we look at unit and
integration test suites and look for ways to improve the quality of the tests. The first
step in this research is the development of a tool to distinguish between unit tests and
integration tests. With that division in hand, we will look at applicable methods to increase
the quality of the tests, for example elimination of boiler-plate code and detection (and
possibly generation) of missing tests. We will then propose an extension to Project Lombok,
a compiler plug-in which removes boiler-plate code from Java programs. An experiment is
conducted to assess this extension.

1.1 Terminology

The most important distinction to be made in this research is between unit testing and
integration testing. Binder defines unit testing as “testing the smallest execution unit” and
integration testing as “exercising interfaces among units to demonstrate that the units are
collectively operable” [1]. But what should be considered as a unit? Is it a sub-system, a
class, or a single method? We prefer classes and methods over entire sub-systems, because
they are more fine-grained than sub-systems and thus errors can be detected at a lower
level. This argument also implies preferring methods over classes, however many authors
consider classes as the units under test. Pezzè and Young note that “treating an individual
method as a unit is not practical, because [. . . ] the effect of a method is often visible only
through its effect on other methods” [2]. While this is true, the functionality of a class is
defined by its public methods. So in order to test a class, we still need to test each of its
public methods. Therefore, we will consider methods as the units under test. The class
these methods under test (MUT) belong to, will be referred to as class under test (CUT),
following the terminology Binder uses [1].
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1. INTRODUCTION

How can we distinguish between unit and integration tests? According to Koskela [3], a
good unit test abides several rules:

• A good test is atomic.
• A good test is isolated.
• A good test is order independent.
• A good test should run fast (typically in the order of milliseconds).
• A good test shouldn’t require manual set-up.

The atomicity criterion is vague, i.e. what is atomic? The author means that a good test
should test only a small, focused part of the system, so in our case: a good test tests a single
method. The test isolation criterion says that a test must not be influenced by external
factors, like other tests. To show this is a desirable property, take for example the case
where a certain test B depends on a field set by a preceding test A. If A fails, the field is not
set and thus B will also fail. When a programmer sees that both A and B failed, it is not clear
for him if A is the only problem or if B also has a problem. As Beck puts it: “If I had one
test broken, I wanted one problem. If I had two test broken, I wanted two problems” [4].
Test order independence directly follows from test isolation, because if a test is completely
isolated from the other tests, it does not depend on the order of the tests.

In order to find defects early, the programmer must test his classes often. This can be
inhibited by test suites taking a long time to run or requiring a complex action before starting
a test suite. Hence the two rules that tests should run fast and should not require manual set-
up. Ideally, we want the entire unit test suite to only take some seconds. The JUnit testing
framework handles the set-up of tests and can be integrated into an Integrated Development
Environment like Eclipse so running a test suite is just a press of a button. Note that not all
fast tests are unit tests; integration tests may be fast too.

Feathers [5] suggested a set of concrete rules to indicate practical cases where a test is no
longer working on a single unit and should be considered an integration test. A test is not a
unit test when:

• It talks to the database.
• It communicates across the network.
• It touches the file system (e.g read from or write to files through the code).
• It can’t run at the same time as any of your other unit tests.
• You have to do special things to your environment (such as editing configuration files)

to run it.

Excluding these cases from unit tests advocates the implementation and use of mock objects
to replace the real database, network, and file system adapters. A mock object is a “substitute
implementation to emulate or instrument other domain code. It should be simpler than the
real code, not duplicate its implementation, and allow you to set up private state to aid in
testing” [6]. The benefit of this approach is that unit tests are isolated from influences that
not necessarily are problems with the unit itself, e.g. network time-outs due to unavailability
of the network, slow database connections or file system errors. We do want to detect these
problems, but they are at the integration level. Note that the list is not exhaustive; we

2



1.2. Research Questions

can also add system dependent values like the current time or the machine platform and
architecture to the list. Generally, when in a test a mock object is replaced by the real
implementation of that object, we speak of an integration test.

JUnit is a testing harness for the Java programming language. Using JUnit, programmers
write their test cases in Java and can easily run and re-run an entire test suite, inspecting the
test results in between different runs. Due to its widespread use in Java applications, JUnit
will be the testing harness we apply this research on.

A test command (TC) is a test method, annotated in JUnit with the @Test annotation, which
contains one or more assertions. An assertion is a method that evaluates an expression and
throws an exception if the assertion fails. For each public method of a class, developers
write one or more test commands. Test commands that share a common setup, known as
fixture, are grouped together in a test class. This usually, but not necessarily, leads to one
test class per CUT. A JUnit test suite consists of several test classes.

One of the Java applications that will be subject of this research is TOPdesk, a Service
Management tool which has been in development for over a decade with varying levels of
code consistency. This has resulted in a giant organically grown code-base, including all
problems that come with working with legacy code of varying code quality.

Boiler-plate code are sections of code that have to be included in many places with little
or no alteration. The code often is “not directly related to the functionality a component is
supposed to implement” [7]. In those cases we can consider it a burden to write. Due to
its repetitive nature, it suffers from problems identical to code duplication, such as being
difficult to maintain.

The tool we will use and extend in this research is Project Lombok. Project Lombok
is a compiler plug-in that aims to remove boiler-plate code from Java programs. This
is accomplished by using declarative programming, mainly by the use of annotations.
For example, if the developer adds @Data to a class, getter and setter methods will
be created for all fields, as well as the methods equals(Object o), hashCode() and
toString(). Since the boiler-plate code is omitted, only relevant code remains. Since
error-prone equals(Object o) and hashCode() implementations are generated, using
Project Lombok should result in improved program behavior.

1.2 Research Questions

The goal of this research is to improve the quality of tests by creating and applying an
extension of Project Lombok. The main test subject will be TOPdesk.

First we will write a tool called JUnitCategorizer to review several test suites, including the
current TOPdesk test suite, to determine the applicability of a generalization of JUnit tests
using Project Lombok. We want to know where Project Lombok is best applicable, either in
unit tests, integration tests, or both. Since both unit and integration tests can be written in a
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1. INTRODUCTION

single testing harness, it has become common practice in JUnit test suites to use one single
suite for both unit and integration tests. Our first objective is to separate those. Additionally,
two separate test suites, one for pure unit tests and one for integration tests, are beneficial,
because they can be utilized in a two-step testing approach. Using this approach, a developer
first runs the unit test suite and if it passes, runs the integration test suite. This ensures that
the integration test suite, with essential tests to check the interoperability of classes, uses
correctly behaving units. So far, to the best of our knowledge, there are no automatic tools
to split this single large and possibly slow test suite to one suite for unit tests and one suite
for integration tests. The development of such a tool could lead to a more efficient method
of testing, because the integration tests are not run if the unit tests fail. This saves time since
not all tests are run, but, more importantly, this lets the developer focus on the failing tests
at the unit level.

The second objective is the analysis of a sample of the tests to determine which boiler-plate
code can be removed by Project Lombok, e.g. many similar (cloned) tests. Additionally, we
would like to determine common errors in test cases, such as trivial tests a tester typically
omits. If Project Lombok can alleviate these problems, untested code will become tested,
which is an increase in code coverage. To accomplish these objectives, we will use tools
that provide the required insight, e.g. CCFinderX to detect code clones.

The next step is to extend Project Lombok to include annotations or other constructs to ease
the implementation of unit tests. This extension will be applied to the TOPdesk test suite
and the results will be analyzed. We expect that these constructs decrease the number of
lines of test code significantly as well as increase the quality of the tests.

The research questions investigated in this thesis are:
• How can we distinguish unit and integration tests in JUnit?
• Which types of tests are best suitable to extend Project Lombok to?
• Which code can be considered as boiler-plate in tests based on JUnit?
• Which common test errors could be alleviated by using the extension of Project

Lombok (e.g. trivial tests a tester typically omits)?
• What does the extension of Project Lombok add to existing tooling?
• Does the extension of Project Lombok increase the quality of unit testing, compared

to manually writing unit test code?

These questions will be treated in the following chapters. Chapter 2 will explain how we
distinguish unit and integration tests and will discuss the implementation and analysis of our
tool. We locate and analyze possible extensions of Project Lombok in chapter 3. Chapter 4
will discuss the implementation of these extensions and will analyze them. Scientific work
related to the subject discussed in this thesis will be mentioned in chapter 5 and we will
conclude in chapter 6.
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Chapter 2

Distinguishing unit and integration
tests with JUnitCategorizer

In this chapter we explain how we distinguish unit and integration tests. We will discuss
how we implemented the distinction in our tool called JUnitCategorizer. We then present an
analysis of JUnitCategorizer, where we assess how reliably it can determine classes under
test and how accurate the detection of unit and integration tests is.

2.1 Distinguishing unit and integration tests

In our definitions, we stated that when a mock object is replaced by the real implementation
of that object, we speak of an integration test. Conversely, if a test only uses the object
under test and mock objects, it is likely a unit test. Likely, but not definitely, because the
test might still be order dependent or slow. If we can determine all objects called from a test
method, determine the class under test and identify mock objects, we can make an educated
guess if the test is unit or integration.

2.2 Detecting the called classes

Our objective of registering which objects are called is achieved by a technique called
bytecode instrumentation. Java programs are compiled to bytecode, machine readable
instructions in a *.class file that the Java Virtual Machine can execute. This bytecode
can be changed after compilation, for example using a bytecode manipulation library like
ASM. The change can be static, i.e. replacing the *.class files, or dynamic, i.e. changing
a class at the moment it is loaded. We want to inject a method call to a Collector class in
every method of every class. So, as soon as any method of a certain class SomeClass is
called, it will signal the collector and tell that class SomeClass is called. This is a type of
dynamic analysis, i.e. the analysis is performed when the program is running, either through
the testing framework, or an actual run.
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2. DISTINGUISHING UNIT AND INTEGRATION TESTS WITH JUNITCATEGORIZER

2.2.1 Instrumenting class files

Our initial approach tried the static transformation in which the actual *.class files are
replaced. We extended the open source Cobertura code coverage tool1, because it uses
static instrumentation and is designed to work with JUnit. Cobertura uses the ASM
library and was easily extended to call a modified collector to register which classes are
called. The next step was to register the called classes per test method, since Cobertura
registers the entire program run at once. To this end, we added a public static void
nextTestMethod(String className, String methodName) method.

The major drawback of using Cobertura is its static method of instrumenting. Overwriting
*.class files by their instrumented counterparts is aimed at code that you wrote and
compile yourself. It is much less suited to instrument and replace the core Java class
files. For the completeness of the analysis, we also want to register called core Java system
classes, for example to register if classes from the java.io package are used to access files
during a test. A solution was found by using bytecode instrumentation on the fly.

2.2.2 Instrumentation on the fly

If a class is used for the first time in the Java Virtual Machine, its class file will be loaded
by a ClassLoader from the hard drive into the memory of the computer. This also holds
for core Java classes, so if we can transform the bytecode at the moment it is loaded into
memory, we can also instrument those classes. This technique, also known as bytecode
weaving, can be achieved in two ways: writing a custom ClassLoader, or using a Java
agent. A Java agent is a jar file containing an agent class which contains some specific
methods to support instrumentation. The Java agent is specifically designed for bytecode
instrumentation and is therefore preferred over writing a custom ClassLoader.

One catch is that classes that are already loaded before the Java agent is operational, like
java.lang.ClassLoader and java.util.Locale, are not instrumented by the Java agent.
However, since Java 6, they can be instrumented by forcing a retransformation, so we are
able to register calls to all core Java classes by requiring a Java 6 JVM.

2.2.3 Bytecode transformations

We have specified a number of bytecode transformations with ASM to insert different calls
to the collector.

We add a call to Collector.touchedMethod(String className, String methodName)
to every method. This is the method that collects all called classes. Listing 2.2 is the Java
representation of the change in bytecode when the transformer is applied to the example
method in listing 2.1.

1http://cobertura.sourceforge.net
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2.2. Detecting the called classes

1 public class ACertainClass {
2 public void someMethod() {
3 // Method content
4 ...
5 }
6 }

Listing 2.1: Example method

1 public class ACertainClass {
2 public void someMethod() {
3 Collector.touchedMethod(

"aCertainClass",
"someMethod");

4 // Method content
5 ...
6 }
7 }

Listing 2.2: Method instrumented

In order to exclude some classes from instrumentation, we created an empty DoNotInstrument
interface. If a class implements the DoNotInstrument interface, then the transformer
will not instrument the class. The most important example of a class that should not be
instrumented is the collector. We enter an infinite loop if touchedMethod calls itself to
signal it has been called, resulting in a program crash.

We need to add a call to Collector.nextTestMethod(String className, String
methodName, String methodType) to certain methods related to JUnit tests. There are
five methodTypes we want to register, each identified by their respective JUnit annotation:

• Test indicates a test method and informs the collector to register all incoming called
methods for this test method.

• BeforeClass indicates a method that is run once, namely at the initialization of the
test class. Typically used to setup a fixture for a certain test class.

• Before indicates a method that is called before every test method, for example the
setup of a fixture.

• After indicates a method that runs after every test method, for example the teardown
of a fixture.

• AfterClass indicates a method that is run once, after all test methods of the test class
have been run.

Classes called in BeforeClass, Before, After and AfterClass are considered to be
needed by the test method and will therefore be added to the list of called methods of these
test methods. Since JUnitCategorizer depends on the JUnit annotations, we require the unit
tests to be written in JUnit version 4 and up.

We also included a Collector.finishedTestMethod(String className, String
methodName, String methodType), to prevent the collection of classes called in between
two test methods, e.g. several JUnit internal methods. We also use this method to detect the
end of an AfterClass method, so we can append all classes called in that AfterClass
method to all test methods in the same test class. Listing 2.4 shows how an example
test method as in listing 2.3 is transformed. This transformation is identical for methods
annotated with BeforeClass, Before, After and AfterClass.

7



2. DISTINGUISHING UNIT AND INTEGRATION TESTS WITH JUNITCATEGORIZER

1 public class ACertainTest {
2 @Test
3 public void testSomeMethod() {
4 // Test method content
5 ...
6 }
7 }

Listing 2.3: Example test method

1 public class ACertainTest {
2 @Test
3 public void testSomeMethod() {
4 try {
5 Collector.nextTestMethod(

"aCertainTest",
"testSomeMethod",
"Test");

6 // Test method content
7 ...
8 }
9 finally {

10 Collector.finishedTestMethod(
"aCertainTest",
"testSomeMethod",
"Test");

11 }
12 }
13 }

Listing 2.4: Test method instrumented

Note that our implementation with a single collector requires that the test methods are run
sequentially. Tests that run concurrently will not register called classes correctly.

2.2.4 Filtering

We do not wish to list all called classes, because usage of certain classes does not render a
test an integration test. We allow a test method to use many Java core classes, for example
java.lang.String. JUnitCategorizer provides three methods of filtering the list of called
classes: a blacklist, a suppressor and a whitelist.

Blacklist

The first way to limit the registration of called classes, is a blacklist. The blacklist is a list
of methods whose classes we only want to collect if that particular method is called. For
example, java.util.Locale has a getDefault() method that relies on the current system
settings. If a test uses this method, it potentially is system dependent and therefore not a
unit test. However, all other operations on java.util.Locale are not dependent on the
current system settings, so we adopted the following practice: if we don’t list a blacklisted
class in the list of called classes, we know that only safe methods are used. If it is listed,
then we know it potentially is an integration test.

Suppressor

There are some methods of which we don’t care what happens in that method. For example,
java.lang.ClassLoader has a method loadClass which loads the bytecode of a class
into memory. If the loaded class is in a jar file, it uses several classes from the java.io

8



2.2. Detecting the called classes

1 public class ACertainClass {
2 public void

someSuppressedMethod() {
3 // Suppressed content
4 ...
5 }
6 }

Listing 2.5: Example suppressed method

1 public class ACertainClass {
2 public void aSuppressedMethod() {
3 try {
4 Suppressor.startSuppress();
5 // Suppressed content
6 ...
7 }
8 finally {
9 Suppressor.stopSuppress();

10 }
11 }
12 }

Listing 2.6: Suppressed method instrumented

and java.util packages. We don’t wish to record this inner working of loadClass in the
current test method, since loading a class does not determine the difference between a unit
or integration test.

The solution we introduced is called a Suppressor. The bytecode transformer sur-
rounds the suppressed method with method calls to Suppressor.startSuppress and
Suppressor.stopSuppress. As long as Suppressor.isSuppressed returns true, we
will not collect called classes in touchedMethod. Listings 2.5 and 2.6 show the result
of the bytecode transformation.

Our implementation uses an XML file to specify per class the names of methods to
suppress. This ignores method overloading, so suppressing the println method in
java.io.PrintStream, will suppress all the ten different println methods.

Whitelist

We needed a third method of filtering that operates on the list of called classes. While a
good number of unwanted classes are kept out of the list by the suppressor and the blacklist,
classes from used frameworks, especially JUnit, and several core Java classes show up on
the called classes list. To filter these, we could use the blacklist, but it requires specifying
all methods in a class. We therefore opted to introduce a whitelist: an XML file which
defines classes that are allowed to be used by the test methods. The whitelist provides easy
whitelisting of entire packages, single classes or classes that contain a specific string in their
name. This last option was added to allow all Exception classes, both Java core as custom
exceptions.

2.2.5 What classes to blacklist, suppress or whitelist?

The following types of classes each have reasons why they could be blacklisted, suppressed
or whitelisted, in order to improve the accuracy of JUnitCategorizer.
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2. DISTINGUISHING UNIT AND INTEGRATION TESTS WITH JUNITCATEGORIZER

Locale sensitive classes

Several Java core classes contain locale sensitive methods, i.e. they accept a Locale as
parameter for internationalization purposes, or refer to the system default locale if it is not
specified. As mentioned before, if a test depends on the default system locale, it is an
integration test. To detect the usage of the default locale in locale sensitive classes, we
register calls to the getDefault method in java.util.Locale.

This is not the ideal solution, since it falsely reports testCompareDefaultLocale in listing
2.7 as an integration test. The outcome of the test does not depend on the default locale (as
in testCompareNonDefaultLocale), since we only compare the defaults. Another valid
unit test in listing 2.7 is testSetGetDefaultLocale, where we set a default locale before
getting it, thus we are not depending on the original system default locale.

A correct way to solve these problems would be to implement a kind of taint analysis,
which verifies that either a default locale is never compared to a specific locale, which is
unrelated to the current system settings, or ensures that a default locale has been set prior
to the comparison. Due to time constraints, this solution has not been implemented in
JUnitCategorizer. As a results we might mark a number of unit tests as integration test,
which is preferred over erroneously marking integration tests as unit tests.

1 public class TheLocale {
2 public static boolean checkLocale(Locale aLocale) {
3 String country = Locale.getDefault().getCountry();
4 return country.equals(aLocale.getCountry());
5 }
6 }
7

8 public class TheLocaleTest {
9 @Test

10 public void testCompareDefaultLocale() {
11 Locale defaultLocale = Locale.getDefault();
12 assertTrue(TheLocale.checkLocale(defaultLocale));
13 }
14

15 @Test
16 public void testCompareNonDefaultLocale() {
17 Locale nonDefaultLocale = Locale.US;
18 assertFalse(TheLocale.checkLocale(nonDefaultLocale));
19 }
20

21 @Test
22 public void testSetGetDefaultLocale() {
23 Locale.setDefault(Locale.US);
24 Locale defaultLocale = Locale.getDefault();
25 assertTrue(defaultLocale.getCountry().equals("US")));
26 }
27 }

Listing 2.7: Problematic tests using Locale
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Time dependent classes

There are also several classes that depend on the system’s time settings. For example,
java.util.TimeZone has getDefault and getDefaultRef methods to get the system’s
current timezone. We added these methods to the blacklist, so if TimeZone shows up in the
list of called classes, then either getDefault or getDefaultRef have been called, and the
test might be depending on the current system setting.

Another important class is java.util.Date, which has an empty constructor which
constructs a Date object for the current system time. As with Locale and TimeZone, if the
default system value is compared in a test to a value that is unrelated to the current system,
the test is not a unit test. Listing 2.8 illustrates a simple example: testDateInFuture is not
a unit test, whereas testDateRunningInFuture is. Unfortunately, apart from being unable
to detect the comparison of a system default value against fixed value, we can not blacklist
the Date constructor, since it is used for both creating a Date object with the current system
time as one with a fixed value.

1 public class DateTest {
2 @Test
3 public void testDateInFuture() {
4 Date now = new Date();
5 // Future is 29-06-2012 12:00:00
6 Date future = new Date (1340989200000L);
7 assertTrue(now.before(future));
8 }
9

10 @Test
11 public void testDateRunningInFuture() {
12 Date now = new Date();
13 Date future = new Date(now.getTime() + 1000);
14 assertTrue(now.before(future));
15 }
16 }

Listing 2.8: Problematic tests using Date

A solution would be to blacklist currentTimeMillis in java.lang.System, which
provides the current system time. This would also solve a deeper problem, namely
the collection of all tests that are using the current system time in one way or another.
Unfortunately, this is not possible, because currentTimeMillis is a native method, i.e.
it has no method body to add the call to the collector in. The correct way of instrumenting a
native method requires the method to be wrapped in a non native method and adding the call
to the collector in the new non native method. Java does not allow the addition of methods
or fields into the System class, so we can’t wrap currentTimeMillis and therefore we can
not instrument it.

Another solution for registering the correct Date constructor would be to extend the
blacklist to include method signatures, i.e. the precise specification of return type and
argument of a method. Since this does not solve the collection of tests using the current
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system time and because we can not detect whether only default values are compared, we
did not implement this.

Framework classes

Most software depends on external libraries or frameworks that provide part of the
implementation. Some frameworks used in TOPdesk are Apache Commons, Google
Commons, JFreeChart and SLF4J. Classes from these frameworks appear often in the list
of called classes. We add these packages to the whitelist for TOPdesk, since we assume
that these frameworks are properly tested themselves and put them in the same league as
the Java standard library.

Additionally, the whitelist depends on the program under test. For example, if we look at
the JUnit test suite, whitelisting all JUnit classes will have a negative impact on the results.

2.2.6 Detecting the class under test

We use a relatively simple algorithm for detecting the Class Under Test (CUT), based on
the assumption that a test class has a single CUT. We award points for hints that a certain
called class is the CUT. Class SomeClass is possibly the CUT if:

• it is used in a test, i.e. only classes that are registered as called in the methods of this
test class may be the CUT.

• there are tests that only exercise SomeClass, i.e. they have exactly one called class,
namely SomeClass.

• inner classes of SomeClass are used, e.g. SomeClass$SomeInnerClass.
• the name of the test class is SomeClassTest, SomeClassTests or TestSomeClass.
• the test class is in the same (sub)package as SomeClass.

The exact number of points awarded, or weight, for each criterion is specified in the analysis
section. The class that received the most points is the most likely class under test. If there
are multiple classes with the same highest score, we are probably looking at an integration
test class and we determine that the class under test is “unknown”.

2.2.7 Detecting mock objects

We distinguish two ways of creating mock objects: using a mocking framework like
EasyMock and Mockito or creating mock objects manually. The first way allows for an easy
way to not collect classes that are being mocked. We suppress all relevant methods from the
mock framework used. Mockito additionally required to allow classes that contain “$En-
hancerByMockitoWithCGLIB$” in their class name, since their mocked classes show up as
for example $java.util.List$$EnhancerByMockitoWithCGLIB$$[someHexValue].

It is much harder to detect manually created mock objects. The best method we currently
provide to not collect these mock objects as called classes, is to use “Mock” in the class
name as naming convention, and then whitelist classes that contain “Mock” in their name.
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2.2.8 Unit or integration?

The final decision of JUnitCategorizer whether a test method is unit or integration depends
on the amount of called classes that remains after the whitelisting and filtering of the class
under test. If the test method has no called classes, we can conclude it is a unit test. If it
used other classes than a possible class under test, then we conclude it is an integration test.

2.3 Detecting the Class Under Test

As mentioned in section 2.2.6, we use an algorithm based on weights for five parameters.
In this section we will determine and analyze the optimal weights for the parameters, such
that we detect a high number of CUTs correctly.

The five parameters used in the algorithm are: called class, called single class, called inner
class, matching file name and matching package. We wish to detect a high number of CUTs
correctly, because if we can not determine the CUT, it will not be removed from the list
of called classes for that test class. This results in methods erroneously being marked as
integration tests, while they only exercise the CUT. To get an optimal set of parameters, we
performed an experiment to determine the optimal weights.

The test set we used in the experiment contains 588 test classes in seven projects and
has been compiled from test suites included in TOPdesk, Maven, JFreeChart, and Apache
Commons. We manually determined the CUT in every test class for comparison to the
output of JUnitCategorizer.

2.3.1 Determining the possible values for the parameters

Suppose we try a certain amount of values for each parameter and call this amount x. The
values we use will be the integers in the interval [0,x−1]. This results in x5 combinations
of the five parameters. We try all these combinations on every test class of our test set,
to determine which combination has the highest fitness, i.e. which combination yields the
most correctly detected CUTs in most of the test suites. But we first need to determine a
suitable value of x, i.e. one that both returns fit combinations, as well as returns results in a
reasonable amount of time.

We create box plots, also known as box-and-whisker plots [8], for different values of x. A
box plot is a visualization of data on the vertical axis with a box containing three horizontal
lines showing the values of the median, lower quartile and upper quartile of the data. The
other two horizontal lines, known as whiskers, mark a distance of 1.5 times the interquartile
range (IQR) from the median. The IQR is the difference between the upper and lower
quartile. If the maximum or minimum value of the data lie within 1.5 times the IQR, then
the corresponding whisker marks that value instead of 1.5 times the IQR.

The box plots for interval lengths up to and including 10 are depicted in figure 2.1. From
these box plots we can conclude that the larger the interval length, the more combinations
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Figure 2.1: Influence of the length of the interval of parameters x on the distribution of correctly
detected CUTs. The interval corresponding to interval length x is [0, x−1]

of parameters yield more correctly detected CUTs. Any interval length larger than seven
ensures that a large majority of combinations correctly detect at least 500 CUTs. This
indicates that when certain parameters are set to seven or higher, their combinations detect
a high number of CUTs. We conclude that an interval length of eight is a suitable choice.

2.3.2 Parameter dependence on the number of methods in a test class

We expect that the points for some of the parameters should relate to the number of test
methods in a test class. For example, if the name of the test class is either SomeClassTest,
SomeClassTests or TestSomeClass, we award the points for a matching file name once
per test class. The points awarded for classes and inner classes called in the test methods are
awarded per test method. This results in the effect of the one time bonus of a matching file
name or matching package being diminished if there are many test methods. This problem
might also apply, to a lesser extent, to test methods testing a single class in the case of having
one method testing a single class and many other test methods that test multiple classes. To
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Figure 2.2: Influence of multiplying weights with the number of test methods on the distribution of
correctly detected CUTs. 0 indicates that none of the weights are multiplied, s, f , p indicate that
the weight of respectively a single called class, a matching file name, or the weight of a matching
package is multiplied.

counteract this effect, we can multiply the number of points by the number of methods in a
test class.

We conducted the experiment for all eight possible combinations of multiplying the number
of test methods in a test class to a single called class, matching file name and matching
package. We encoded these combinations as follows: 0 indicates that none of the weights
are multiplied, s, f , p indicate that the weight of respectively a single called class, a
matching file name, or the weight of a matching package is multiplied. The parameters
can be combined, so for example f p means that both the weight of a matching filename as
the weight of a matching package and s f p means all parameters are multiplied.

The resulting box plots can be found in figure 2.2. Multiplying the parameter for a single
called class has no significant influence, since there is no significant difference between 0,
p, f , f p and s, sp, s f , s f p, respectively. Multiplying the matching package parameter has a
negative influence, as shown by p having its lower quartile at less correctly detected CUTs
than the lower quartile of 0.
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Figure 2.3: Influence of the weight of called classes wa on the number of CUTs detected.

Multiplying the parameter for the matching file name (cases f and s f ) results in a higher
mean and quartiles compared to not multiplying (0 and s). This effect carries over to f p
and s f p, where the negative influence of multiplying the matching package is decreased,
but still is visible. We therefore settle for the benefit of only multiplying the weight of a
matching file name.

2.3.3 Determining a fit combination

With the possible values of the parameters set and the multiplier applied to the matching
file name parameter, we start the search for a fit combination. We could just search for
the set of combinations that yield the most correctly detected CUTs and randomly select a
combination from that set. This does not give us much insight into the data set, so we apply
some exploratory data analysis.

We first try to set two parameters, so the search space reduces from five dimensions to three
dimensions. The best candidate is the weight that is assigned to all called classes wa. Figure
2.3 shows that the higher the parameter is set, the more CUTs are correctly detected. We
therefore set this value wa = 7.
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Figure 2.4: Influence of the weight of matching file name w f on the number of CUTs detected, with
wa = 7.

Next we consider the weight of the file name w f . Also for w f holds: the higher it is set,
the more CUTs we detect correctly, as shown in figure 2.4. We set it to the maximum value
of 7. Note that applying the CUT detection algorithm with the weight of a file name set to
0 is equivalent to applying the algorithm on a test set that does not adhere to the naming
conventions we assume in the algorithm. So the distribution on w f = 0 gives an indication of
how the CUT detection algorithm performs when our naming conventions are not followed.

The third parameter we inspect is the weight of called inner classes wi. Figures 2.5 and 2.6
show how it interacts with the weights of single class and matching package, provided that
w f = 7 and wa = 7. In both figures, the number of correctly detected CUTs increases if wi

goes to zero, so we set wi = 0.

That leaves the two weights for matching package wp and single class ws, which we plotted
in figure 2.7. With all the points very closely to, and many exactly on, the plane at 565
correctly detected CUTs, we can conclude that if wa = 7, w f = 7 and wi = 0, then the
values for wp and ws are of no significant influence. This means that we can assign wp = 0
and ws = 0, showing that three of the five cases we identified as being hints for the CUT are
irrelevant and can be left out of the algorithm.
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Figure 2.5: Influence of the weight of inner classes wi and the matching package wp on the number
of CUTs detected, with wa = 7 and w f = 7.

Figure 2.6: Influence of the weight of inner classes wi and the single class ws on the number of
CUTs detected, with wa = 7 and w f = 7.
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Figure 2.7: Influence of the weight of matching package wp and the single class wp on the number
of CUTs detected, with wa = 7, w f = 7 and wi = 0. The plane is drawn at CUTs detected correctly
= 565.

2.3.4 Validating the chosen combination

To validate the combination of parameters we selected, we state an hypothesis and inspected
it against the accumulated results of three more projects. The projects, TOPdesk’s
mangomodels and Maven’s model builder and settings builder, contain 31 test classes and,
as with the original test set, we determined all classes under test.

Our hypothesis H0 is that the combination wa = 7, w f = 7, wi = 0, wp = 0 and ws = 0 is a fit
combination. More specifically, we state that this combination is able to determine at least
90% of the CUTs correctly. Our test statistic T in this case is the percentage of correctly
detected tests. In the previous results, we correctly detected 96% of the CUTs: 565 correctly
detected CUTs out of 588 test classes, but we allow for a margin of error, hence the more
pessimistic expectation. The expectation of T is E[T ] = 0.9∗N, where N is the number of
test classes.
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Our alternative hypothesis H1 is that the combination is unfit and detects few CUTs
correctly. Test statistic T can take values from 0 to 31, where any value between 0.9∗31 =
28 and 31 is a sign that our hypothesis H0 is correct. Values lower than 28 are grounds to
reject H0.

Applying JUnitCategorizer with parameters wa = 7, w f = 7, wi = 0, wp = 0 and ws = 0
results in 29 correctly detected CUTs. This is above our set threshold of 28, so we do not
reject the hypothesis H0.

2.3.5 Incorrectly detected CUTs

We manually inspected the incorrectly detected CUT, determined why our tool did not
correctly detect the CUT, and listed the reasons in table 2.1. The most important reason why
JUnitCategorizer is unable to detect a CUT, is that the test class only contains integration
tests. An integration test uses at least two different classes. If all test methods are
integration, then there are several potential CUTs. In these cases there is not one single
CUT, but JUnitCategorizer usually understands which class the programmer intended to be
the CUT.

There are two special cases of integration test classes where JUnitCategorizer could
not determine the intended CUT. The first case is that the inner class of the CUT
would be used as a tie breaker. For example, a test uses SomeClass, AnotherClass
and SomeClass$ItsInnerClass. We would expect SomeClass to be the CUT. In all
combinations for the optimal CUT detection, the number of points awarded for inner classes
is set to zero, so JUnitCategorizer can not decide on the CUT in these cases.

The second case is the “non matching file name” reason, which indicates that the file
name would have been used as a tie breaker, but it did not match the expected form
of SomeClassTest, SomeClassTests or TestSomeClass. This occurs several times in
Apache Commons Collections, because there are two test classes that test a class, for
example DualTreeBidiMap is tested by two test classes, namely TestDualTreeBidiMap
and TestDualTreeBidiMap2. We can’t add TestSomeClass2 to the expected forms of test
class name, because it introduces ambiguity. We can not say if TestSomeClass2 is the
second test class of SomeClass or if it tests SomeClass2.

Reason Number of CUTs
Inner class influence 8
Non matching file name 6
Integration test 4
CUT is whitelisted 4
Found CUT in abstract class 1
Total 23

Table 2.1: Incorrectly detected Classes Under Test grouped by reason of incorrectness.

20



2.4. Detecting unit and integration tests

2.4 Detecting unit and integration tests

With the optimal parameters set for the CUT detection algorithm, we applied JUnitCatego-
rizer on several Java test suites to see how well it performs the task of distinguishing unit
tests from integration tests. We will measure four metrics on a set of test suites using three
different combinations of whitelists and compare the results.

To determine how well JUnitCategorizer distinguishes between unit and integration tests,
we manually classified tests from several test suites as either unit or integration. The suites
we analyzed are from the TOPdesk code base: application, application-utils and
core. We also created a JUnitCategorizer.examples test suite containing many border
cases that are known to be troublesome for our tool, e.g. locale sensitive and time dependent
classes.

There are several metrics to assess our tool. The ones we will use depend on the number of
true and false positives and true and false negatives. A True Positive (TP) is a correctly
detected unit test and a True Negative (TN) is a correctly detected integration test. A
False Positive (FP) occurs when JUnitCategorizer detected a unit test while expecting an
integration test, and a False Negative (FN) is detecting an integration test while expecting a
unit test.

These values are used in the following metrics that we will use to assess JUnitCategorizer:
accuracy, precision, specificity and recall. Accuracy is the fraction of correct classifications,
precision is the fraction of correctly detected unit tests from all detected unit tests, specificity
is the fraction of correctly detected integration tests from all integration tests and recall
is the fraction of expected unit tests. They are defined as accuracy = T P+ T N/(T P+
FP+T N +FN), precision = T P/(T P+FP), speci f icity = T N/(T N +FN) and recall =
T P/(T P+FN) [9].

Table 2.2 lists the results of applying JUnitCategorizer to the various test suites and we
calculated the metrics in table 2.3. For all metrics hold: the closer to one, the better the
performance in that metric is. The test was run without all Java core classes on the whitelist,
but a handpicked set of safe Java core classes, e.g. the java.io package is not whitelisted,
but java.util.HashSet is.

JUnitCategorizer yields the correct result (accuracy) on 87% of the hard test cases in
JUnitCategorizer examples, which are designed to indicate flaws in the detection. It
is less accurate on TOPdesk’s application-utils and core with an accuracy of only 80%
and 78.8%, respectively. These projects have a lot of false negatives,which occur
almost exclusively in tests that exercise date dependent and locale sensitive code, so
java.util.Locale, java.util.TimeZone and java.util.Date show up in the list of
called classes. Combining this fact with the low number of true negatives results in a very
low specificity in application-utils. In other words, if JUnitCategorizer detects an integration
test in application-utils, it is usually wrong.
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Detected Expected
Project name Total Unit Integr. Unit Integr.
JUnitCategorizer examples 54 17 37 24 30
TOPdesk application 9 3 6 3 6
TOPdesk application-utils 95 72 23 91 4
TOPdesk core 297 120 177 210 87

Table 2.2: Number of detected unit and integration tests for different Java projects, without the Java
core packages on the whitelist.

Project name TP FP TN FN Acc Pre Spe Rec
JUnitCategorizer examples 17 0 30 7 0.87 1.0 0.81 0.71
TOPdesk application 3 0 6 0 1 1 1 1
TOPdesk application-utils 72 0 4 19 0.80 1.0 0.17 0.79
TOPdesk core 118 2 116 61 0.788 0.983 0.655 0.659

Table 2.3: Performance on different Java projects, without the Java core packages on the whitelist.
TP are the True Positives, FP are the False Positives, TN are the True Negatives, FN are the False
Negatives, Acc is Accuracy, Pre is Precision, Spe is Specificity and Rec is Recall.

Whitelisting the date dependent and locale sensitive classes will reduce the number of false
negatives, but might increase the number of false positives. In general, we rather have false
negatives than false positives, because a slow integration test incorrectly being marked as
unit test will slow down the entire unit test suite. A false negative means that a unit test is
marked as integration test, which might slightly reduce the traceability of errors. The speed
impact of a false positive is much larger than the traceability impact of a false negative,
since the speed impact will show every test run. The traceability will only be an issue if
an integration test fails. However, in this particular case of whitelisting date dependent and
locale sensitive classes, the induced false positives are generated by fast core Java classes,
so the speed impact is minimal.

Tables 2.4 and 2.5 shows the results of running the tool with the java.util package
allowed. In this case, we give programmers using the default locales and timezones the
benefit of the doubt, expecting that they have used them in such a way that the tests are
not system dependent. Almost all metrics improve, for example the accuracy on TOPdesk’s
application-utils and core test suites rises to 99% and 96.3% of the tests correctly detected,
respectively. However, as expected, we do get nine more false positives in core, resulting
in a lower precision (94.2% now versus 98.3% before). JUnitCategorizer detects the same
number of tests in JunitCategorizer examples correctly, but it finds two more false positives,
which also results in a lower precision, but higher specificity rate.

We also applied our tool on the test suites with the java, sun and com.sun packages
whitelisted and report the results in tables 2.6 and 2.7. Whitelisting these packages means
that we register system specific tests, like file and network access, as unit instead of
integration. Ignoring system specific restrictions in unit tests allows the focus on test case
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Detected Expected
Project name Total Unit Integr. Unit Integr.
JUnitCategorizer examples 54 21 33 24 30
TOPdesk application 9 3 6 3 6
TOPdesk application-utils 95 90 5 91 4
TOPdesk core 297 190 107 210 87

Table 2.4: Number of detected unit and integration tests for different Java projects, with the
java.util packages on the whitelist.

Project name TP FP TN FN Acc Pre Spe Rec
JUnitCategorizer examples 19 2 28 5 0.87 0.91 0.85 0.79
TOPdesk application 3 0 6 0 1 1 1 1
TOPdesk application-utils 90 0 4 1 0.99 1.0 0.80 0.99
TOPdesk core 179 11 107 0 0.963 0.942 1.00 1.00

Table 2.5: Performance on different Java projects, with the java.util packages on the whitelist.
TP are the True Positives, FP are the False Positives, TN are the True Negatives, FN are the False
Negatives, Acc is Accuracy, Pre is Precision, Spe is Specificity and Rec is Recall.

Detected Expected
Project name Total Unit Integr. Unit Integr.
JUnitCategorizer examples 54 24 30 24 30
TOPdesk application 9 6 3 3 6
TOPdesk application-utils 95 90 5 91 4
TOPdesk core 297 190 107 210 87

Table 2.6: Number of detected unit and integration tests for different Java projects, with the Java
core packages on the whitelist.

Project name TP FP TN FN Acc Pre Spe Rec
JUnitCategorizer examples 19 5 25 5 0.82 0.79 0.83 0.79
TOPdesk application 3 3 3 0 0.7 0.5 1 1
TOPdesk application-utils 90 0 4 1 0.99 1.0 0.80 0.99
TOPdesk core 179 11 107 0 0.963 0.942 1.00 1.00

Table 2.7: Performance on different Java projects, with the Java core packages on the whitelist.
TP are the True Positives, FP are the False Positives, TN are the True Negatives, FN are the False
Negatives, Acc is Accuracy, Pre is Precision, Spe is Specificity and Rec is Recall.
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Conservative util allowed Core allowed
Project name Total Unit Integr. Unit Integr. Unit Integr.
Apache Commons Collections 1005 232 773 232 773 242 763
Apache Commons Digester 200 17 183 17 183 18 182
JFreeChart 2209 194 2015 236 1973 290 1919
Maven core 237 15 222 15 222 15 222
Maven model 148 96 52 96 52 96 52
TOPdesk application 9 3 6 3 6 6 3
TOPdesk application-utils 95 72 23 90 5 90 5
TOPdesk core 297 120 177 190 107 190 107

Table 2.8: Number of detected unit and integration tests for different Java projects. The
“conservative” approach has only handpicked Java core classes on the whitelist, “util allowed”
has the entire java.util package on the whitelist and “core allowed” has all Java core packages
on the whitelist.

atomicity. The metrics on TOPdesk’s application-utils and core test suites have exactly
the same value as with only the java.util package on the whitelist. The accuracy and
precision on the JUnitCategorizer examples and TOPdesk application test suites drops, in
the latter case because it uses java.io.File, which is now whitelisted.

JUnitCategorizer produces the best results if we allow the entire java.util package and
thereby do not try to minimize the number of false positives. It has an accuracy of 95.8%
(436 out of 455) over all the test cases we used in the analysis. The most conservative
approach, where we do not depend on the programmer correctly using default locales,
timezones and dates, has an accuracy of 80.4% (366 out of 455) over all the test cases.
Allowing all Java core classes correctly distinguishes between unit and integration tests in
94.5% (430 out of 455) of the cases, but has the most false positives.

We expect that if JUnitCategorizer would use dynamic taint analysis as described in section
2.2.5, it will match or improve on the best results currently, while still using the conservative
approach. This is an interesting research question for future work.

2.5 Application on open source projects

We implemented JUnitCategorizer to distinguish between unit and integration tests, so we
can inspect which type is the best candidate for boiler-plate removal. Besides the TOPdesk
code base, we selected test suites from several open source projects for inspection. To
get the division between unit and integration tests, we applied JUnitCategorizer on them.
This will also provide some insights into how unit and integration tests are distributed in
those test suites. Table 2.8 lists the results of applying the tool with the same whitelist
configurations as the three accuracy tests.

It is noteworthy that none of the JUnit test suites consists solely of what we define as
unit tests. To get a more clear insight into the distribution of unit or integration tests, we
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Project name Total Unit Integr. % Integr. Classification
Apache Commons Collections 1005 232 773 76.9 mostly integration
Apache Commons Digester 200 17 183 91.5 purely integration
JFreeChart 2209 236 1973 89.3 purely integration
Maven core 237 15 222 93.7 purely integration
Maven model 148 96 52 35.1 mostly unit
TOPdesk application 9 3 6 66.7 mostly integration
TOPdesk application-utils 95 90 5 5.2 purely unit
TOPdesk core 297 190 107 36.0 mostly unit

Table 2.9: Classification of test suites on the percentage of tests detected as integration.

classify test suites by the percentage of tests that are detected as integration. We use four
classifications: purely unit (0 - 15% integration), mostly unit (15 - 50%), mostly integration
(50 - 85%) and purely integration (85 - 100%). This is a somewhat arbitrary scale, but it
is only used to get an indication of the percentage of integration tests. The classifications,
based on the results with java.util whitelisted, are listed in table 2.9.

Table 2.9 shows that only three test suites are classified as unit tests and the other five
consist mainly of integration tests. A quick look at the different test suites shows that
these classifications match the test suites. For example, Maven core really is an integration
test suite, testing the interactions between the different Maven components, whereas the
Maven model package consists of simple classes describing the conceptual model of Maven,
thus requiring simple tests that are mostly unit tests. The Apache Commons Digester tests
several aspects and extensions of an XML digester. Almost every test integrates an aspect
or extension, implemented as a Java class, with the main Digester class, so those tests use
at least two classes and are integration.

2.6 Conclusion

A shown in the previous sections, JUnitCategorizer is able to detect a CUT reliably.
Apart from some hard border cases it can also detect the difference between a unit and
integration test very well. Our application on several Java projects has given us the division
between unit and integration tests needed for the remainder of this thesis. It additionally
provided insight into the types of test suites, showing that most test suites consist mainly of
integration tests.
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Chapter 3

Finding extension points for Project
Lombok in developer testing

In this chapter we will look at possible extensions of Project Lombok. We first determine
which type of tests to focus on: unit tests, integration tests or both. With that focus set, we
will search for boiler-plate code and common testing errors and propose solutions to remove
the boiler-plate and alleviate test errors.

3.1 Focus

In the previous section, we classified several test suites into five categories in table 2.9:
purely unit test, mostly unit tests, mixed, mostly integration tests and purely integration
tests. We would like to establish which type of tests is the best candidate for boilerplate
removal or common test error alleviation. We try to track down boilerplate code by looking
at duplication of code. We will apply the mutation testing technique to detect common
testing errors. Additionally, we will also look at the code coverage metric.

3.1.1 Duplication

We detect duplicate pieces of code using the CCFinderX tool as introduced by Kamiya
et al. [10]. Duplicate code, or code clones, might resemble boiler-plate code, so a large
percentage of code clones contains more opportunities for boiler-plate.

There are several algorithms for detecting code clones, for example comparing code
line-by-line or even by comparing (small groups of) characters. CCFinderX uses token
based duplication detection, where the groups of characters that are compared are sensible
combinations for individual programming languages. Compared to character or line
based duplication detection, token based duplication detection is much less susceptible to
insignificant textual differences, like whitespace. A parser is used to transform the stream
of characters into tokens. However, since every programming languages has different
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Figure 3.1: Scatter plot showing the duplicate lines of code in TOPdesk’s application-utils test suite.

syntax, CCFinderX requires a parser for each programming language. Luckily, CCFinderX
includes parsers for several programming languages, including Java.

For this experiment we look at three line-based metrics: SLOC, CLOC and CVRL. SLOC
is the count of lines, excluding lines without any valid tokens. The tokens are specific to
CCFinderX, for example the definitions of simple getter and setter methods in a Java source
file will be entirely neglected by CCFinderX. CLOC is the count of lines including at least
one token of a code fragment of a code clone. CVRL is the ratio of the lines including a
token of a code fragment of a code clone. CV RL =CLOC/SLOC.1

CCFinderX also outputs a scatter plot which indicates where the code clones are located, for
example figure 3.1, which is the scatter plot of the duplications in TOPdesk’s application-
utils test suite. The source code lines are positioned along both the x and y axes. If two lines
of code are duplications of each other, a point is plotted at their coordinates. The diagonal,
where every line of source code is compared to itself, is colored gray. The boxes with
thick gray borders indicate packages and the smaller boxes with light gray borders represent
classes. Figure 3.1 shows us that the fifth and sixth class are almost fully duplicated between
themselves. Additionally the large class in the bottom right corner has some occurrences of
duplication within itself.

1http://www.ccfinder.net
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Note that we are interested in duplications in the test code, not the code under test, so we
applied CCFinderX only on the folder containing the test code. In all cases, the folder
containing the tests is different from folder containing the code under test.

3.1.2 Mutation testing

Mutation testing is a technique where the code of a program is mutated before a test run
to see if this mutation causes tests to fail. If the tests fail then the mutation is said to be
killed; if the tests pass, in spite of running with modified code, then we say the mutation has
survived. The percentage of mutations killed can then be used as a measure of test adequacy.
We however, will apply mutation testing to determine whether mutators typically survive
in unit or integration tests. Additionally, mutators that typically survive might indicate a
(common) testing error, so we will also keep the mutation test results in mind when looking
for common testing errors.

As indicated by an extensive literature survey [11], mutation testing has been a field of
research for several decades, tracing back to the seventies. Mutation testing for Java started
in 2001 with Jester [12] which led to several other approaches, like MuJava [13], Jumble
[14] and Javalanche [15]. The mutation testing tool we use is called PIT2, whose earliest
versions were based on Jumble. PIT was preferred over the other mutation testing tools,
because it is in active development, has a reasonable amount of documentation and has
support for many build systems, including Maven, so it was easy to apply to our projects
under test.

We used all the default mutators that PIT provides3:

• Conditionals Boundary Mutator, e.g. change > to ≥ and vice versa.
• Negate Conditionals Mutator, e.g. change != to == and > to ≤.
• Math Mutator, e.g. change + to - and vice versa.
• Increments Mutator, e.g. change i++ to i−−.
• Invert Negatives Mutator, e.g. change -i to i.
• Return Values Mutator, e.g. always return 0 for integers.
• Void Method Calls Mutator, remove methods that return void.

3.1.3 Code coverage

Initial runs with mutation testing showed that many mutations are not killed because the
code they mutate is not covered by a test. We therefore decided to also get an indication of
how much code is covered by the test suites. Because we only need an indication, we opt
for the relative simple metric line coverage, i.e. the ratio of lines of code covered by a test
suite to the total number of lines of code. A quick search in a survey of coverage tools for
Java [16] showed that Cobertura is a feasible option. Combining this fact with our previous
experience with Cobertura, we decided to use it to calculate the line coverage.

2http://www.pitest.org
3http://pitest.org/quickstart/mutators/
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Project name Classification CVRL Mutation Coverage
Apache Commons Collections mostly integration 0.3761 n.a. 0.8088
Apache Commons Digester purely integration 0.3612 0.470 0.7133
JFreeChart purely integration 0.54866 0.2992 0.55908
Maven core purely integration 0.2033 0.0152 0.1314
Maven model mostly unit 1.00 0.01047 0.0227
TOPdesk application mostly integration 0.12 0.034 0.0739
TOPdesk application-utils purely unit 0.257 0.522 0.613
TOPdesk core mostly unit 0.529 0.447 0.4346

Table 3.1: Result of several metrics for test suites and their classifications. CVRL is the ratio of the
lines including a token of a code fragment of a code clone. Mutation indicates the ratio of mutations
that were killed. Coverage indicates the ratio of code covered by the tests.

Project name Classification DUT DIT
TOPdesk application mostly integration 0 2
TOPdesk application-utils purely unit 48 1
TOPdesk core mostly unit 11 23

Table 3.2: Duplication in the TOPdesk test suites. DUT indicates the number of duplications in unit
tests, DIT indicates the number of duplications in integration tests.

3.1.4 Experimental results

We applied CCFinderX, PIT and Cobertura to the same set of test suites we used in the
previous chapter. Table 3.1 lists the results. We could not determine a mutation ratio for
Apache Commons Collections because PIT would not run properly on the test suite.

We first inspected the very high CVRL value of 1.00 for the Maven model test suite, because
this value means that all tests are in some way duplicated. Closer inspection shows that
indeed all the test classes are identical, differing only in the class they test as illustrated in
listings 3.1 and 3.2. These listings also show that only the hashCode(), equals(Object
o) and toString() methods are tested, whereas the classes under test contain many more
methods. This explains the very low coverage ratio of roughly 2%. A test suite with a low
coverage rating is likely to also have a low mutation rating, because a mutation in code that
is not covered by tests will survive.

The results in table 3.1 do not clearly point out a relation between the classification of the
test suite and a large number of clones or a low ratio of killed mutations. We therefore
inspected the TOPdesk test suites at the test method level to get a more fine-grained insight.
The results of this inspection are reported in table 3.2, and show that duplication occurs in
both unit and integration tests.

There is no apparent relation between the problems we sought for and the distinction
between unit and integration test, so we will focus our efforts to remove boiler-plate code
and alleviate test errors on both unit and integration tests.
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1 public class ActivationFileTest extends TestCase {
2 @org.junit.Test
3 public void testHashCodeNullSafe() {
4 new ActivationFile().hashCode();
5 }
6

7 @org.junit.Test
8 public void testEqualsNullSafe() {
9 assertFalse( new ActivationFile().equals( null ) );

10 new ActivationFile().equals( new ActivationFile() );
11 }
12

13 @org.junit.Test
14 public void testEqualsIdentity() {
15 ActivationFile thing = new ActivationFile();
16 assertTrue( thing.equals( thing ) );
17 }
18

19 @org.junit.Test
20 public void testToStringNullSafe() {
21 assertNotNull( new ActivationFile().toString() );
22 }
23 }

Listing 3.1: Test class for ActivationFile in Maven model

1 public class ActivationOSTest extends TestCase {
2 @org.junit.Test
3 public void testHashCodeNullSafe() {
4 new ActivationOS().hashCode();
5 }
6

7 @org.junit.Test
8 public void testEqualsNullSafe() {
9 assertFalse( new ActivationOS().equals( null ) );

10 new ActivationOS().equals( new ActivationOS() );
11 }
12

13 @org.junit.Test
14 public void testEqualsIdentity() {
15 ActivationOS thing = new ActivationOS();
16 assertTrue( thing.equals( thing ) );
17 }
18

19 @org.junit.Test
20 public void testToStringNullSafe() {
21 assertNotNull( new ActivationOS().toString() );
22 }
23 }

Listing 3.2: Test class for ActivationOS in Maven model
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3.2 Detected problems

We manually inspected the Maven model and the TOPdesk application, application-utils
and core projects to see which code can be marked as boiler-plate. Additionally, we
inspected the code to see if we could find some common testing errors, that might be
alleviated in the same way we will try to remove boiler-plate code.

3.2.1 Duplication in tests

The most obvious boiler-plate code is duplicated code. We split these into two categories:
inter test class duplication and intra test class duplication. Inter test class duplication is
duplication that occurs between different test classes, e.g. common tests for hashCode()
and equals(Object o) applied on each class under test. A good example of inter test class
duplication is the entire Maven model test suite, which is the same set of tests duplicated
over and over again for every model class.

Intra class duplication is duplication that occurs inside a single test class. Listing 3.3 shows
a typical example of code duplication in a test class from the TOPdesk core project. There
are seven test methods like the two listed here, testing various inputs to the DateParser
class.

1 @Test
2 public void testDayFirstLongWithDashes() {
3 Parser parser = new DateParser(new SimpleDateFormat("dd-MM-yy"));
4 assertEquals(getDate(2009, Month.JAN, 1), parser.parse("1-1-2009"));
5 assertEquals(getDate(2010, Month.DEC, 1), parser.parse("1-12-2010"));
6 assertEquals(getDate(2011, Month.JAN, 12), parser.parse("12-1-2011"));
7 }
8

9 @Test
10 public void testDayFirstLongWithoutDashes() {
11 Parser parser = new DateParser(new SimpleDateFormat("dd-MM-yy"));
12 assertEquals(getDate(2009, Month.JAN, 1), parser.parse("1 1 2009"));
13 assertEquals(getDate(2010, Month.DEC, 1), parser.parse("1 12 2010"));
14 assertEquals(getDate(2011, Month.JAN, 12), parser.parse("12 1 2011"));
15 }

Listing 3.3: Test class for DateParser in TOPdesk core.

The TOPdesk projects have very little inter test class duplication, only the four test classes
testing StringShortener contain duplications between them, as can be seen in figures 3.1,
3.3 and 3.4. The Maven model project exclusively has inter class duplication, as can be seen
in figure 3.2. This indicates that typical inter test class duplication is concerned with testing
similar functionality between different classes under test, concretely the hashCode(),
equals(Object o) and toString() methods.

In the TOPdesk projects the majority of detected duplications are intra test class. In
fact, if the four test classes testing StringShortener would have been put in a single
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Figure 3.2: Scatter plot showing the duplicate lines of code in Maven’s model test suite.

StringShortenerTest class, all duplication would be intra class. We found that typical
intra test class duplication consists of checking various inputs to methods, in the same way
as happens in listing 3.3.

3.2.2 No coverage

The biggest and most easily detected problem with tests is the lack thereof. Test code
coverage is the typical metric to show how much and which code is actually touched by
tests, but it will hardly say anything on the quality of the tests. The biggest gain from code
coverage is that it indicates how much code is not tested. Ideally, we want a code coverage
of 100% with quality tests, e.g. tests that are not written to just touch the code once just
to get it covered, but tests that extensively test the code to verify its correct operation in
multiple cases.

A metric that can give an indication about the quality of tests is the assertion density, i.e.
the amount of assertions per line of code. There is a negative correlation between the fault
density, i.e. the amount of faults per line of code, and assertion density. Thus, code with a
high assertion density implies a low fault density [17].

The “coverage column” in table 3.1 shows that for example the Maven model project
has a very low coverage (2%) and the TOPdesk projects having varying coverages, 7%
for applications, 61% for application-utils and 43% for core. As mentioned before, the
Maven model test suite tests only the hashCode(), equals(Object o) and toString()
methods. The classes under tests primarily consist of so called model classes, e.g. classes
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Figure 3.3: Scatter plot showing the duplicate lines of code in TOPdesk’s core test suite.

Figure 3.4: Scatter plot showing the duplicate lines of code in TOPdesk’s application test suite.
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that represent the data underlying the object [18]. A model class primarily contains methods
to set and get the fields of the class. A large improvement in code coverage can be made for
the Maven model test suite by adding tests for getting and setting fields in the classes under
test.

The TOPdesk application test suite tests only a few classes. To be precise, all code coverage
is located in eight out of 201 classes in the package. Even though those 201 classes include
interfaces and abstract classes which can not be tested, it is still a very low number of
classes under test. We inspected the untested classes and many of them have methods
to get the values of their fields and some override the hashCode(), equals(Object o)
and toString() methods. Testing these methods would greatly improve coverage in the
application test suite.

The TOPdesk application-util test suite achieves a reasonable level of coverage, with five
out of 14 classes untested. These untested classes are small utility classes with methods to
manipulate data. To increase coverage in this project, we need to know exactly what every
method is supposed to do and verify it with different inputs.

The TOPdesk core project consists of a mix of model classes and utility classes. To increase
coverage in this package, one needs to apply a combination of the previously mentioned
methods.

3.2.3 Corner cases

When conditional statements are used, decisions in the code will be made based on the
input. When testing conditional statements, it is impossible to test all the inputs, so we need
to select an interesting set of inputs, such that we can verify that all conditional statements
are executed as we expect them to execute. Interesting inputs are inputs around the corner
cases, mostly used to verify if a programmer correctly used the <, ≤, >, ≥, != or ==
operators. Mutation testing is an effective way to be notified about possibly missed corner
cases, since it will mutate the operator and expect the current tests to fail. A low rate of
killed mutations may be an indication that the corner cases are not adequately tested.

3.2.4 Equals and HashCode

In addition to easily being duplicated, the tests for the equals(Object o) and hashCode()
methods are often not complete. The equals(Object o) and hashCode() methods have
strict contracts, as can be read in the Java documentation4:

The equals method implements an equivalence relation on non-null object
references:

• It is reflexive: for any non-null reference value x, x.equals(x) should
return true.

4http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
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• It is symmetric: for any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

• It is transitive: for any non-null reference values x, y, and z, if x.equals(y)
returns true and y.equals(z) returns true, then x.equals(z) should return
true.

• It is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the objects
is modified.

• For any non-null reference value x, x.equals(null) should return false.

The general contract of hashCode is:

• Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode method must consistently
return the same integer, provided no information used in equals compar-
isons on the object is modified. This integer need not remain consistent
from one execution of an application to another execution of the same
application.

• If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce the
same integer result.

• It is not required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the hashCode method on
each of the two objects must produce distinct integer results. However,
the programmer should be aware that producing distinct integer results
for unequal objects may improve the performance of hash tables.

It is adamant that this contract is adhered to, because a bug in the equals(Object o) or
hashCode() might show up in unexpected places. For example, take a certain object o
with a bug that causes the equals method to not be reflexive, i.e. x.equals(x) returns
false. Suppose we add this object to a Set s, e.g. s.add(o). Now if we ask s if it
contains o, i.e. s.contains(o), it will return false, even though we just added it. The
contains(Object o) method returns true if and only if this set contains an element e
such that (o == null ? e == null : o.equals(e))5. Since o.equals(o) returns
false, the contains(Object o) method will also return false. This simple example
shows why equals(Object o) and hashCode() should be tested thoroughly.

5http://docs.oracle.com/javase/7/docs/api/java/util/Set.html#contains(java.lang.Object)
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3.2.5 An (unmodifiable) view or copy of collections

A problem that sometimes arises in practice, but can not be detected using our methods
described here, occurs when working with members of Java’s Collections framework or
subclasses thereof. Since it is a potential improvement to tests, we do consider it for an
extension to Project Lombok.

A field f in a class can be of type Collection. How it will be set and used, is up to the
programmer. If the programmer decides to store a reference to an existing Collection
x, we call f a view of x. The property of a view is that operations on the underlying
Collection, in this case x, reflect in the view f and vice versa.

Besides a view, f can also contain a copy of x. Operations on a copy do not reflect on the
original collection and vice versa. If we, for example, add an item i to copy f , the original
Collection x will not contain i.

In the Collections class, Java provides methods for creating unmodifiable collection
types. These UnmodifiableCollections throw an UnsupportedOperationException
if any modifier method is called on the UnmodifiableCollection, e.g. add(Object
o) or remove(Object o). An UnmodifiableCollection is a view of the underlying
Collection, so it can be changed by editing the underlying collection. If f is an
UnmodifiableCollection with underlying collection x, we say that f is an unmo-
difiable view of x. An unmodifiable copy of x can be created by setting f to be an
UnmodifiableCollection with a copy of x as underlying collection. As one might expect,
an unmodifiable copy f can neither be changed directly nor indirectly, since changing x does
not reflect in f . We say that f is immutable, as defined by the Java documentation6.

It does not always matter how the Collection is used, but in those cases it does,
programmers tend to not explicitly test nor document whether they actually use a view,
an unmodifiable view, a copy or an unmodifiable copy.

3.3 Solutions

In this section, we propose solutions for the detected problems. Some solutions are suitable
as extensions of Project Lombok, while others refer to already existing testing tools.

3.3.1 Duplication in tests

The inter test class duplication we ran into in the Maven model package can be reduced by
automatically generating tests for the hashCode(), equals(Object o) and toString()
methods. We will create an extension to Project Lombok that can be used in a test class to
generate test methods for these three methods. That will greatly reduce the duplication in at
least the Maven model project, but will also reduce the size of the test code in all projects.

6http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
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Intra test class duplication can be reduced by being able to separate the inputs and their
expected outputs from the code that actually tests an implementation. The long list of near
identical assertions can then be turned into a collection of inputs and expected outputs and a
single verifying test method. This concept is called Parameterized Unit Tests [19] and JUnit
4 has built-in support for it. The JUnit implementation is adequate and would solve a lot
of the observed intra test class duplication, so we will not further be concerned by intra test
class duplication.

3.3.2 No coverage

The ideal way of testing would be to not having to write tests at all, but have automated
test case generation that will test your implementation. The biggest challenge for those
generators is to determine what the expected output of applying a method on some input
will be. This is very difficult, if not impossible, so even automated test case generators need
a programmer to determine what the expected output is. An example of this research is
JMLUnit, which generates unit tests based on annotations in the Java Modeling Language
(JML) [20]. Examples of tools that request user input for generated test cases are Parasoft
Jtest or CodePro AnalytiX [21].

However, we do propose the automated generation of tests for methods that get and set
fields, by providing an implementation with a single default value. This single default value
is needed, because we cannot make assumptions about the fields under test. If the setter
or getter method can accept this default value, then the automatically generated test can
be used to verify the correctness of the setter and getter method partially. If the getter or
setter cannot accept a default value, then the programmer will have to provide his own tests.
Note that the generated tests are not adequate, since they will only apply a single value, so
a programmer should provide tests for different inputs (like corner cases) either way. The
generator’s goal is to help programmers to find simple bugs with getter and setter methods
in boiler-plate free manner.

3.3.3 Corner cases

To test corner cases, a programmer needs to specify exactly what inputs should result
in which output. By stating these specifications in JML, unit tests can automatically be
generated. Parasoft Jtest or CodePro AnalytiX will try to find corner cases automatically
and will then ask the programmer what the output should be. These tools are very mature
and suitable for testing corner cases, so we will not consider corner cases for an extension
of Project Lombok.

3.3.4 Equals and HashCode

Testing equals(Object o) and hashCode() extensively can generate a lot of boiler-plate
and is quite hard to get correct. A former TOPdesk employee created the EqualsVerifier7,

7http://code.google.com/p/equalsverifier/
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a tool that extensively inspects the equals(Object o) and hashCode() methods of the
class it is passed. This tool has several configuration possibilities, but also provides
assumption free verification, where only the class under test is passed. We will use this
assumption free version in our generated tests for the equals(Object o) and hashCode()
methods.

3.3.5 An (unmodifiable) view or copy of collections

Verifying whether a field containing a Collection is a view, unmodifiable view, copy or
unmodifiable copy requires extensive testing. To be thorough, a programmer should test all
modifying methods of Collection to ensure that the correct behavior is exhibited. This
results in a lot of boiler-plate code to test a single field, so this is an ideal opportunity for an
extension to Project Lombok.

3.4 Conclusion

In this chapter, we determined that boiler-plate code and common testing problems occur
in both unit as integration tests. We detected the following problems: duplicate code in
tests, tests inadequately covering code, corner cases not fully tested, incomplete tests of the
equals(Object o) and hashCode() methods and untested behavior of collections. We
proposed solutions for all problems and will design extensions to Project Lombok to reduce
the duplicate code between test classes, increase code coverage, generate correct tests of the
equals(Object o) and hashCode() methods and verify the behavior of collections.
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Chapter 4

Extending Project Lombok with Java
Test Assistant

In this chapter we will explain the implementation of Java Test Assistant (JTA) in detail
in section 4.1. We set up an experiment to determine how JTA can help developers. The
experiment is explained in section 4.2 and the results are presented in section 4.3.

4.1 Implementation

The goal of our implementation is to create a tool that can achieve the goals we specified
in section 3.3, i.e. lower the duplication in test code, increase code coverage, correctly
test the equals(Object o) and hashCode() methods and generate tests to verify if a field
containing a Collection is a view, unmodifiable view, copy or unmodifiable copy.

The original vision we had for Java Test Assistant (JTA), was based on a tight IDE
integration, similar to what Project Lombok offers with its annotations. For example, in
Project Lombok you can set the @Data annotation on a certain class SomeClass and it
will generate the equals(Object o), hashCode() and toString() methods, as well as
getter methods for all fields and setter methods for all non-final fields. These generated
methods will not appear in the source file SomeClass.java, but they are available to
the programmer. Project Lombok can be integrated with the Eclipse IDE, in which case
the generated methods will be available in the outline of SomeClass and through the
autocomplete function.

Unfortunately, Project Lombok performs complex interactions with the IDE, using internal
Java classes to achieve this functionality. As a result, the information JTA needs about
the classes under test is not available, rendering a direct integration into Project Lombok
infeasible.

To preserve Project Lombok’s declarative style, we opted to create an annotation named
TestThisInstance, which must be placed on an instance field of the class under test
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1 public class SomeClassTest {
2 @TestThisInstance(getters={"*"}, setters={"someField"})
3 SomeClass instance;
4

5 // Developer written test methods for SomeClass here
6 }

Listing 4.1: Example usage of JTA’s TestThisInstance annotation.

in a test class, as shown in listing 4.1. Since version 6, Java provides an Application
Programming Interface for writing an annotation processor. An annotation processor works
at compile time and basically takes the annotation and the context in which the annotation
was placed and provides these to the developer.

We want to create a new test class containing generated test methods, so we take the
annotation and the context, inspect the annotated instance, generate test methods and write it
to a new Java source file. This new Java source file then needs to be compiled and included
in the test phase; a task that can easily automated in build systems like Ant and Maven,
resulting in an unobtrusive, one time setup, manner of generating new tests.

An annotation can contain data, as is demonstrated in listing 4.1 by the getters and
setters assignments. We use this feature to specify which functionalities should be applied
in the annotation processor, e.g. which test should we generate and which should we skip.
The functionalities included in the annotation processor are our implementations of the
solutions from section 3.3 and are listed in the following subsections.

4.1.1 Assumption free tests

As mentioned in the previous chapter, we want to automatically generate tests without
making assumptions on input or output values of methods. The most important feature
of JTA is the ability to generate default instances of Java objects for testing. We create such
default instances using the following heuristic:

• Java primitives will be initialized with the value 1 or true.
• List, Map, Set and Collection interfaces will be initialized as ArrayList,
HashMap, HashSet and HashSet respectively.

• For enumerations, return their first EnumConstant.
• For arrays, return an array of length 1 containing the default value of its component.
• For Objects, try to instantiate it with the constructor that requires no arguments. If

this fails, try all constructors with default instances for arguments.
• If all above fails and we are not instantiating a class under test, use Mockito to create

a mock and return it.
• If all above fails and we are not instantiating a class under test, return null.

We impose a requirement on the default instance of a class under test: it may not be a mock
or null, because testing on a mock or null has no use.
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1 public class SomeClass {
2 int someInt; // Java initializes this field as 0
3 ...
4 public void setSomeInt(int i) {
5 // Setter not implemented
6 }
7 public String getSomeInt() {
8 return someInt; // always returns 0
9 }

10 }
11

12 public class SomeClassTest {
13 SomeClass instance = new SomeClass();
14 @Test public void badTest() { // Passes
15 int test = 0;
16 instance.setSomeInt(test);
17 assertEquals(test , instance.getSomeInt());
18 }
19 @Test public void betterTest() { // Fails
20 int test = 1;
21 instance.setSomeInt(test);
22 assertEquals(test , instance.getSomeInt());
23 }
24 }

Listing 4.2: Example showing the need for default instances other than Java’s initial values for
fields

We explicitly chose to not use the default values that Java uses to initialize fields, i.e. false
for booleans, 0 for all other primitives and null for reference types1. Testing a value for
a field with which it also is initialized, is ineffective, as demonstrated in listing 4.2. The
badTest incorrectly assumes the test value was set with the setter method and will pass.
The betterTest will fail, indicating something is wrong with the getter or setter method,
since it will expect 1 but the actual result is 0.

The only assumption we make with this heuristic is that for every test using a default
instance, its method under test can accept such an instance as input. For example, if we test
a set method for a field of type integer, the set method should accept the default instance,
i.e. 1, as input value or our approach will not work.

4.1.2 Duplication in test

With this feature we want to address the test methods testing toString(), equals(Object
o) and hashCode(). We noticed that these tests are often duplicated or omitted. A valid
reason for omission is that the class under test does not override any of the three methods,
but instead relies on the default implementation in Object.

1http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.5
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The Java documentation mentions the following about the toString() method: “In
general, the toString method returns a string that “textually represents” this object. The
result should be a concise but informative representation that is easy for a person to read.
It is recommended that all subclasses override this method.”2. A computer cannot simply
detect whether a representation is concise, informative and easy to read for a person. There
are however three easy to detect cases that are definitely not informative, namely the null
value, an empty string and the default value, as created by the toString method of Object.
So the test generated by the TestThisInstance annotation for the toString() method
verifies if the toString() method of the class under test does not return the null value,
an empty String or the default value as created by Object.toString(). This implies that
JTA requires the developer to override the toString() method.

For the equals(Object o) and hashCode() methods we will use the EqualsVerifier3,
which is quite strict and requires all best practices to be applied when implementing
equals(Object o) and hashCode().

EqualsVerifier provides several configuration options, which are not used in the code
generated by the TestThisInstance annotation for two reasons. First, most configuration
options are options for the developer, because the EqualsVerifier could not determine
them heuristically, and neither can the TestThisInstance annotation. Second, to
provide these options, we need to add them to the options of the TestThisInstance
annotation. We aimed to keep our annotation simple and concise, and adding all options
of EqualsVerifier would clutter up the annotation. Additionally, if a developer needs to
configure EqualsVerifier, for example when testing the equals(Object o) in a class
hierarchy, it would be the best practice to configure EqualsVerifier directly in a test.

4.1.3 No coverage

To allow programmers to easily verify the correct working of their getter and setter methods
for fields of a class, the TestThisInstance annotation will generate tests for specified
fields (like the “setters” in listing 4.1), or, by default, test all fields. To test all fields, we
generate a test that uses Java’s reflection mechanism to gather all declared fields, find out
which ones have a getter or setter method defined and test those methods. JTA follows
the JavaBeans Specification4, which states that a setter method for field someField of type
someType is required to be setSomeField with one single parameter of type someType.
A getter method for field someField of type someType is required to be getSomeField
with return type someType, with the exception that if someType is boolean, then the
getter method is required to be named isSomeField. If a field does not comply with these
requirements, it is skipped in the test.

2http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#toString()
3http://code.google.com/p/equalsverifier/
4http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
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1 public class SomeClass {
2 String someString;
3 ...
4 public void setSomeString(String str) {
5 someString = "Hello World!" + str;
6 }
7 public String getSomeString() {
8 return someString.substring(12); // Chop Hello World! off
9 }

10 }

Listing 4.3: Example indicating the applicability of testing a getter method using its setter method

1 public class Point {
2 int x;
3 int y;
4 ...
5 public void setX(int newx) {
6 x = newx;
7 }
8 public int getX() {
9 return x;

10 }
11 public void setY(int newy) {
12 x = newy; // Error
13 }
14 public int getY() {
15 return x; // Error
16 }
17 }

Listing 4.4: Example showing an error that would not be detected when testing getter methods using
setter methods.

There are two ways to test getter and setter methods. If we have both a getter and a setter
method for a field, we can first set the value using the setter, retrieve it using the getter
and compare if we have the original value. The second way is to set the field using Java’s
reflection mechanism and then use the getter to see if the correct field was gotten. Similarly
for the setter method, the setter method is called and the test then uses reflection to see
if the correct field was set. Both methods have their use cases, as is indicated by listings
4.3 and 4.4. Listing 4.3 shows an example where using reflection to inspect the field will
not work, since a different value is stored in the field then the one passed into the setter
method. However, the getter method returns the original value, so it may be considered a
correct implementation. Listing 4.4 shows an example where calling a setter and a getter
will not detect the error that getY and setY operate on x. Calling setY(value) will ensure
getY returns value, but when inspected using reflection the test detects that y is not set to
value. To accommodate the two methods, the behavior of the tests can be toggled in the
TestThisInstance annotation with a boolean testGettersUsingSetters flag.
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1 public class SomeClass {
2 final String someString;
3

4 public SomeClass(String str) {
5 someString = str;
6 }
7 public String getSomeString() {
8 return someString;
9 }

10 }

Listing 4.5: Example showing the setting of fields using the constructor.

1 public class SomeClass {
2 String someString;
3

4 public SomeClass(String str) {
5 someString = str;
6 }
7 public String getSomeString() {
8 return someString;
9 }

10 public void setSomeString(String newString) {
11 // Do nothing
12 }
13 }
14

15 public class SomeClassTest {
16 SomeClass instance = new SomeClass("");
17

18 @Test
19 public void testSomeStringSetter() { // Passes
20 String test = "";
21 instance.set(test);
22 assertEquals(test , instance.getSomeString());
23 }
24 }

Listing 4.6: Example showing a test that can not detect if the field is set by the setter or by the
constructor.

There are many classes that do not have setter methods for fields, but instead set their
fields using the parameters of the constructor, as in listing 4.5. Since a mapping from the
parameters of the constructor to the fields they set is not available without complex analysis,
we cannot test the setting of fields in these cases. Using the reflection method of testing we
can however test the getter method. This motivates the separated settings for setters and
getters in the TestThisInstance annotation.
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The potential setting of fields using the parameters of the constructor raises another
problem. For the instantiation of the class under test we can not use a default instance
constructed by our heuristic, because it will call the constructor with test values, so some
fields might already be set to the values that the setter method will apply. This problem is
illustrated in listing 4.6: the test would not be able to detect an empty setter method. We
solve this by setting the field with Java’s initial values, i.e. false, 0 or null, at the start of
the test.

Of course, the generated tests for toString(), equals(Object o) and hashCode() also
aid in increasing the coverage of a test suite.

4.1.4 An (unmodifiable) view or copy of collections

To verify if the getter of a field containing a Collection or Map provides this field as a
view, we need to test if all modification operations on the field also reflect in the original
collection, i.e. the one which is set using the setter method. We also need to test the other
way around, i.e. modifications to the original collection need to be visible in the getter
method. The modification operations of Collection, List and Map are listed in table 4.1.
Note that the l.subList() method of some List l returns a view of (a part of) l, so
modifications made on this sublist will reflect in the original list l. The same holds for the
m.entrySet(), m.keySet() and m.values() methods on a Map m.

In a similar fashion as the view, we can also define test cases for a copy. All modification
operations performed on the original collection of a copy should not reflect in the getter
method and vice versa. The unmodifiable view and unmodifiable copy need the same set of
tests as their modifiable counterparts, but require an UnsupportedOperationException to
be thrown whenever a modification operation is called on the collection stored in the field.

We implemented four different test classes for the four different behavior types of
collections. Each test class contains tests that cover the modification operations of
Collection, List and Map, that are checked in the “covered” column of table 4.1. The
developer using JTA specifies in the TestThisInstance annotation which fields should be
tested for which behavior and the test will select the appropriate modification operations to
test.

4.2 Experiment

Our experiment consists of annotating the test suites of several projects and measuring
several metrics before and after applying JTA. The test suites we annotated are from the
JFreeChart axis, Maven model, TOPdesk application, application-utils and core projects.
When annotating tests, we removed tests that were superseded by the generated tests, i.e.
the generated test asserts the same or even more than the already present test. For example,
a test calls the toString() method on a default instance and checks if it does not return
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Modification operation Collection List Map Covered
add(E) X X X
addAll(Collection<E>) X X X
clear() X X X X
iterator().next().remove() X X X
remove(E) X X X
removeAll(Collection<E>) X X X
retainAll(Collection<E>) X X X
add(index, E) X X
addAll(index, Collection<E>) X X
listIterator().next().set(E) X X
listIterator().next().add(E) X X
remove(index) X X
set(index, E) X X
all modifications on subList() X
put(K, V) X X
putAll(Map<K, V>) X X
remove(K) X X
entrySet().setValue() X X
all modifications on entrySet() X
all modifications on keySet() X
all modifications on values() X

Table 4.1: Modification operators for Collection, List and Map. The covered column lists the
modification operators that are covered by the tests generated by JTA.

null. Our test for the toString() method tests this exact same assertion and more, so we
remove the original test and let JTA generate a test.

We also inspected the code to find occurrences of (unmodifiable) views or copies. If the
behavior is specified either in comments or in code (for example, the unmodifiableList
method of Collections is called), we will test for the specified behavior. In all other cases
we will assume that a view is used.

If no test class was present for a class, and the class has properties testable by JTA, we
created a new test class containing only an instance definition and the annotation. The
default settings of JTA, i.e. test all getters, setters, equals(Object o), hashCode() and
toString(), might not be applicable to all classes under test. We configured the annotation
in each test class such that we can apply it in as many cases as possible. If equals(Object
o), hashCode() or toString() are not overridden, we will disable their respective tests.
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4.2.1 Expectation

We added annotations and even new test classes to place the annotations in, if the class
under test was previously untested. So we expect the code coverage to go up, since
previously untested code will now be tested. Unless the added tests only exercise code
that is not mutated by the mutation tool PIT, higher code coverage should lead to more
killed mutations.

During the annotating of tests, we removed some tests, especially in the Maven model test
suite. Since all tests in this test suite were duplicated, removing them should lead to a
decrease in duplication. Additionally, removing methods also decreases the size of the test
code.

So in summary, we expect JTA to increase the code coverage, decrease the number of
survived mutations, decrease the amount of duplication in test code and decrease the size of
test code.

4.2.2 Results

Tables 4.2 and 4.3 show the difference in metrics on the test suites before and after applying
JTA. Note that we did not include the generated tests, since these are a direct, automatic
translation of the TestThisInstance annotation, and are not written by developers
themselves. Additionally, we used the Cloned Lines Of Code (CLOC) metric to list the
change in duplicated test code, instead of the CVRL metric. The CVRL metric is defined
as CLOC / SLOC, where SLOC is the count of lines, in our case the Lines Of Test Code
(LOTC) excluding lines without any valid tokens. So since the LOTC increased by adding
annotations, the CLOC increased, and the CVRL value would be lower, even if we did not
remove any duplication.

Code coverage increased in all test suites, with the biggest improvement in Maven model
and TOPdesk application, the two projects that originally had the lowest coverage.

The number of killed mutations also increased in all test suites, in roughly the same ratio as

Before After Change
Project name Mutation Cover. Mutation Cover. Mutation Cover.
JFreeChart axis 0.248 0.472 0.304 0.491 1.23 1.04
Maven model 0.0105 0.0227 0.0431 0.0953 4.10 4.19
TOPdesk application 0.0337 0.0739 0.0905 0.172 2.68 2.33
TOPdesk app-utils 0.522 0.613 0.529 0.637 1.01 1.04
TOPdesk core 0.447 0.435 0.469 0.523 1.05 1.20

Table 4.2: Result of the mutation and coverage metrics for test suites before and after applying
JTA. Mutation indicates the ratio of mutations that were killed. Coverage indicates the ratio of code
covered by the tests. The change ratio is calculated by After / Before. For all values hold: the higher
the better.
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1 public class SomeClassTest {
2 @TestThisInstance
3 SomeClass instance;
4 }

Listing 4.7: Testing SomeClass using JTA.

1 public class SomeClassTest {
2 SomeClass instance;
3

4 @Before
5 public void before() {
6 instance = new SomeClass();
7 }
8

9 @Test
10 public void testToString() {
11 assertNotNull("toString method returned null", instance.toString());
12 assertFalse("toString method returned an empty String",

instance.toString().equals(""));
13 String defaultToString = instance.getClass().getName() + ’@’ +

Integer.toHexString(instance.hashCode());
14 assertFalse("toString method returned the default toString. Override

Object.toString()!", instance.toString().equals(defaultToString));
15 }
16

17 @Test
18 public void testEqualsAndHashCode() {
19 EqualsVerifier.forClass(SomeClass.class).verify();
20 }
21

22 @Test
23 public void testSomeStringSetter() {
24 String test = "";
25 instance.set(test);
26 assertEquals(test , instance.getSomeString());
27 }
28 // If a class has more fields, more tests are added here.
29 }

Listing 4.8: Testing SomeClass in the same way as listing 4.7 with all tests written down.
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Before After Change
Project name CLOC LOTC CLOC LOTC CLOC LOTC
JFreeChart axis 2081 9096 2081 9167 1.00 1.01
Maven model 777 2072 629 2066 0.810 0.997
TOPdesk application 26 424 26 669 1.00 1.58
TOPdesk application-utils 288 903 288 916 1.00 1.01
TOPdesk core 574 3899 574 4075 1.00 1.05

Table 4.3: Result of the CLOC and LOTC metrics for test suites before and after applying JTA.
CLOC is the number of the lines including at least one token of a code fragment of a code clone.
LOTC stands for Lines Of Test Code. The change ratio is calculated by After / Before. For all values
hold: the lower the better.

the coverage increased. It is possible that the change in mutations is larger than the change
in coverage. One possible reason is that the code that was already covered is again tested
by JTA and the generated test detects more mutations than the original test.

The number of CLOC lowered only in the Maven model test suite. CCFinderX does not
mark our annotation as duplication, so we never introduced new duplication by annotating
the test suites. As a result, we can conclude that we removed duplicated methods only in
Maven model.

The number of lines of test code increased in all suites, because we added annotations to
all test suites. Maven model is an exception, since most tests we removed were in Maven
model. The large increase of LOTC in the TOPdesk application test suite can be easily
explained. Before annotating the suite, it contained 7 test classes. Now, after annotation, it
has 36 test classes, of which 29 only include the TestThisInstance annotation.

4.3 Analysis

For completely untested classes, our annotation provides a simple and declarative way to
generate test methods. We can hypothesize as to why these classes are untested: the classes
might be considered too simple to break, or maybe there was a lack of time or interest of the
developer for testing. In our previous listings we have shown several small bugs that might
occur in simple code, so it is advisable to even test simple code. The time needed to test this
code is drastically decreased with JTA, since all a developer has to do is call our annotation.
Additionally, the generated tests prevent the developer of writing boiler-plate tests, as can
be seen by comparing listings 4.7 and 4.8.

Our goal of boiler-plate reduction leans on the notion of testing more with less code. Since
we added Lines Of Test Code with our annotation, we need to adjust our mutation and
coverage results to get a better indication whether we follow this notion. The adjustment we
applied is the normalization of the change in mutations killed and coverage on the change of
LOTC. The amount of testing is assessed by the code coverage and the number of mutations
killed. Table 4.4 shows the results after adjusting. In all cases we still have an improvement
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Before Change Change, adjusted
Project name Cover. Mutation Cover. LOTC Mutation Cover.
JFreeChart axis 0.472 1.23 1.04 1.01 1.22 1.03
Maven model 0.0227 4.10 4.19 0.997 4.11 4.20
TOPdesk application 0.0739 2.68 2.33 1.58 1.70 1.47
TOPdesk app-utils 0.613 1.01 1.04 1.01 1.00 1.03
TOPdesk core 0.435 1.05 1.20 1.05 1.00 1.14

Table 4.4: The change in mutation and coverage metrics, adjusted for the change in LOTC, Lines
Of Test Code. For all values hold: the higher the better.

Figure 4.1: Change in mutations killed and coverage, adjusted for change in lines of test code,
plotted against the original coverage of each test suite
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in coverage, indicating that for every project, the application of JTA results in a test suite that
covers more code per line of test code, compared to before applying JTA. For the mutations
killed, this holds for three projects. The application-utils and core projects of TOPdesk have
an adjusted change of 1.00, indicating that the generated tests detect the same amount of
mutations per LOTC as the original test suite.

Additionally, there seems to be a relation between the coverage before application of JTA
and the adjusted change in mutations killed and coverage caused by applying JTA. We
illustrated this relation in figure 4.1. The underlying cause of this explanation is that JTA
tests relatively simple properties, most of which are covered in the original test suite. In
other words, the profit of having JTA generate tests is the highest on untested classes, while
still having use on already tested classes.

4.3.1 Usability and applicability of the features

During the application of JTA we also evaluated the features we implemented. The most
interesting findings are listed below, sorted per feature.

Assumption free tests

Our tool was able to create test instances in most of the cases. We identified two cases
that were troublesome. The first one occured when testing toString() methods on objects
that return one of their string fields, e.g. a name field, in the toString() method. Since
the no-argument constructor of String is used by our heuristic for filling this field, the
field is empty, because that constructor returns a String object describing the empty string.
This results in a failing test, because we require the toString() method to not return an
empty string. The test does signal a potential fault, but if this is the specified behavior, our
test produces a false negative. We circumvented this by allowing the developer to actually
instantiate the annotated instance, so it could be instantiated with its name not set to the
empty string.

The second case that was a problem for creating default test instances, occurs when fields
are objects that are mocked by our heuristic. If the constructor performs operations on this
field (e.g. before setting a field file of type File, the setter method or constructor checks
if it is an actual file), then these operations are performed on a mock, returning undefined
results, which might throw exceptions (e.g. FileNotFoundException if the file can not be
found). Letting the developer instantiate the instance under test, also provides a solution in
this case.

Equals(Object o), hashCode() and toString() tests

The generated tests for the equals(Object o), hashCode() and toString() methods
require these methods to be overridden in the class under test. In general, all toString()
tests passed, with the exception mentioned above.
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1 public class SomeClass {
2 List <String > someStringList = new ArrayList <String >();
3 ...
4 public void addSomeStringList(String str) {
5 someStringList.add(str);
6 }
7 public String getSomeStringList(int index) {
8 return someStringList.get(index);
9 }

10 }

Listing 4.9: Example showing the wrapping of a field.

We could only sparsely make use of the EqualsVerifier to test the equals(Object o)
and hashCode() methods. The problem EqualsVerifier encountered the most, was that
the methods were not marked final. The only reason to not mark these methods as
final, is if the class under test will be subclassed and its subclasses provide their own
implementation. In this case EqualsVerifier expects the developer to provide some
examples of subclasses to test with, but we can provide none. We suspect that in some
of the cases, the equals and hashCode() methods could be marked as final.

If the Maven model classes would correctly implement equals(Object o) and hashCode(),
JTA would have completely removed the duplication in the test suite as well as drastically
decreased the lines of test code.

Getter and setter methods tests

We encountered relatively few problems in test suites with testing getters and setters. Some
classes did not adhere to the Java Bean Specification and named the getter methods for their
boolean field someBoolean getSomeBoolean() instead of isSomeBoolean().

We did see the delegating construction from listing 4.9 in several classes. The field
someStringList is only accessed using methods that delegate to the field. JTA can not
test someStringList, because there are no dedicated getter or setter methods for the entire
field.

An (unmodifiable) view or copy of collections

Our tests to verify the behavior of collections require the collection under test to have a
setter and getter method available. This is not often the case; we could only apply it four
times in the experiment. Most collection fields, and especially the immutable collections,
are declared final and are only set once, through the constructor. The only way to test
these cases is to use the constructor, which requires a mapping from constructor parameters
to fields. As mentioned before, this mapping requires complex analysis.
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4.3.2 Maintainability of Java Test Assistant and applicability in test-first
development

Usage of the default settings of JTA, i.e. testing the getters and setters of all fields, has the
advantage that the test code need not be updated if the class under test changes, e.g. a new
field is added. Van Rompaey et al. state that “the quality of the tests should not only be
measured in terms of coverage (i.e. increase the likelihood of detecting bugs) but also in
terms of maintainability (i.e. reduce the cost of adapting the tests).” [22]. JTA in the default
configuration is highly maintainable.

However, the default settings might not appeal to people who like test-first development,
where tests are explicitly written before the code under test. JTA can also be used effectively
in test-first development. For example, if a new field needs to be implemented, the developer
specifies that field as getter and setter. This will generate failing tests until that field and
its getter and setter method are implemented. The same holds also for the equals(Object
o), hashCode() and toString() methods.

4.4 Conclusion

We implemented several proposed solutions from the previous chapter in JTA and applied
it on the JFreeChart axis, Maven model, TOPdesk application, application-utils and core
projects. The code coverage increased with factors between 1.04 and 4.19. The number of
mutations killed increased with factors between 1.01 to 4.10. All at the cost of a little more
lines of test code. Relatively, the increase in coverage and mutations killed was greater
than or equal to the increase in lines of test code. There is an inverse relation between the
coverage before applying JTA and the increase in killed mutations and coverage, i.e. the
lower the coverage before, the greater the increase in coverage and mutations killed will be.
Removal of duplicated code was less successful; only one of the five tested projects had its
number of duplications reduced.

The tests generated by JTA are maintainable and lower the amount of boiler-plate code.
The tests for equals(Object o) and hashCode() are very strict, and they show that many
implementations in the classes under test are not entirely correct. The generated tests for
the behavior of collection fields could be applied less often then expected, due to requiring
both a getter and a setter for the collection field.
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Chapter 5

Related Work

Three of the problems addressed in this thesis, namely the detection of the class under test,
test case prioritization and the automatic generation of tests, fall in a well explored domain
in computer science. This chapter will briefly list some of the research in these fields.

5.1 Detection of the class under test

Detecting the class under test is part of the ongoing research on test traceability. Software
Traceability is defined by the Institute of Electrical and Electronics Engineers as the degree
to which a relationship can be established between two or more products of the development
process [23]. The two products of interest in test traceability are the code under test and the
test code.

Van Rompaey and Demeyer compared four different approaches to obtaining the traceability
links between test code and code under test. The first approach relies on naming
conventions, more specifically dropping the “Test” prefix from the test class name, e.g.
TestSomeClass contains the tests for class SomeClass. The results of their experiment
show that the naming conventions are the most accurate way of determining the class under
test, but is not always applicable. The second approach, called “Last Call Before Assert”
(LCBA), uses a static call graph to determine which classes are called in the statement
before the last assertion. This approach does not suffer from a dependency on naming
conventions, but is much less accurate. Their third approach looks for textual similarities
between the test class and classes under test. The fourth approach assumes that the test class
co-evolves with the class under test. These latter two approaches were less successful than
the first two [24].

Qusef et al. took the LCBA approach and refined it, resulting in an approach that uses
Data Flow Analysis (DFA). They show that DFA provides more accurate results than both
LCBA and the naming conventions, but their case study also highlighted the limitations of
the approach [25]. To overcome the limitations, they introduced another approach using
dynamic program slicing to identify the set of classes that affected the last assertion. The
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approach is implemented in a tool called SCOTCH (Slicing and Coupling based Test to
Code trace Hunter). They show that SCOTCH identifies traceability links between unit test
classes and tested classes with a high accuracy and greater stability than existing techniques
[26].

Test traceability was also researched by Hurdugaci and Zaidman, who developed TestN-
Force. TestNForce is a Visual Studio plugin that helps developers to identify the unit tests
that need to be altered and executed after a code change. It uses test traceability to facilitate
the co-evolution of production code and test code [27].

Our approach of detecting the class under test uses naming conventions and dynamic
analysis and therefore leans on the work of Van Rompaey and Demeyer and Qusef et al.

5.2 Test case prioritization

One of the motivations for JUnitCategorizer is to improve error traceability by running
unit tests before integration tests. This assures that the integration tests are performed with
correctly operating units, so detected test failures occur at the integration level. This is a
form of test case prioritization.

Most test case prioritiziation techniques are focused on running tests in a cost-effective
manner [28]. Parrish et al. described a method to start with fine grained tests (unit tests)
and then increase the granularity to move to coarser tests (integration tests). Their method
has to be used when writing the test specifications and is not useful to apply at the moment
tests fail. [29]. Gälli et al. focused on the same problem we address, by focusing on the
error traceability through failed tests. They create a coverage hierarchy based on the sets
of covered method signatures and use that hierarchy to present the developer with the most
specific test case that failed [30].

5.3 Automated test case generation

Our approach focused on removing boiler-plate tests by generating tests and simple test data
automatically. Most research in this field takes another approach and focuses on generating
test data as input for any method. For example JMLUnit by Cheon et al., which generates
unit tests based on annotations in the Java Modeling Language (JML) [20]. Cheon and
Avila also created an implementation for AspectJ based on the Object Constraint Language
instead of JML [31].

Cheon et al. incorporated genetic algorithms to generate object-oriented test data for the
test methods generated by JMLUnit [32]. The usage of genetic algorithms was based on
earlier work by Pargas et al. [33].

Another mention in test data generation is for JMLUnitNG, which was created in part to
handle performance problems of JMLUnit. JMLUnitNG takes a similar approach to the test
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data generation as we do, but in the absence of a no argument constructor for a class under
test, JMLUnitNG looks reflectively to a developer written test class of the class under test
and uses the test objects defined there [34]. An effective way and a possible extension to
our test data generation heuristic.

Some researchers capture the generation of test methods in formal specifications based on
an algebraic formalism of Abstract Data Types by Guttag and Horning [35]. Examples
are DAISTS [36] and its successor for object-oriented programming languages (specifically
C++) Daistish [37]. The Junit Axioms, or JAX, are the Java specific version of ADT and
come in two versions: full or partial automation. Both versions require the developer to
specify some testing points, i.e. the test data. Full automation also requires the developer
to capture the entire code under test in algebraic axioms, after which all test methods can
be generated. In partial automation, the test methods are written by the developer, but JAX
will apply all combinatorial combinations of the test points on the test methods. Partial
automation is essentially parameterized unit testing [38].
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Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and draw some conclusions. Finally, some ideas for future work will
be discussed.

6.1 Contributions

One of the contributions of this thesis is a clear definition of the distinction between unit and
integration tests. We implemented this distinction in our tool JUnitCategorizer and used our
tool to provide an initial classification of test suites on the ratio of integration tests in the test
suite. This classification showed that the majority of JUnit test suites consist of integration
tests, with several test suites being purely integration, i.e. with more than 85% integration
tests.

For the correct working of JUnitCategorizer, we implemented an algorithm to detect the
class under test in a test class, which determines at least 90% of the classes under test
correctly.

Using JUnitCategorizer, we found that boiler-plate code and common testing errors occur
in both unit as integration tests. We detected the following problems: duplicate code in
tests, tests inadequately covering code, corner cases not fully tested, incomplete tests of the
equals(Object o) and hashCode() methods and untested behavior of collections.

Another contribution is our Java Test Assistant (JTA) tool, which was originally meant as
extension to Project Lombok, but due to incompatibility issues became a stand alone tool.
It has the ability to automatically generate several tests; replacing several boiler-plate tests
by a single call to our tool. JTA generates assumption free tests, thus requiring little to no
configuration when applied.

Application of JTA on five projects increased the code coverage by a factor of 1.04 to 4.19
and the number of killed mutations by a factor of 1.01 to 4.10. All at the cost of a little more
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lines of test code. Removal of duplicated code was less successful: only the Maven model
project saw a decrease in cloned lines of test code by a factor of 0.81.

6.2 Conclusions

We summarize our conclusions by answering the research questions we posed in the
introduction.

6.2.1 How can we distinguish unit and integration tests in JUnit?

In our definitions, we stated that when a mock object is replaced by the real implementation
of that object, we speak of an integration test. Conversely, if a test only uses the object
under test and mock objects, it is likely a unit test. Our tool JUnitCategorizer determines
all objects called from a test method, determines the class under test and identifies mock
objects, to make an educated guess if the test is unit or integration.

JUnitCategorizer uses on the fly instrumentation of Java class files to determine which
classes are called in a test method. This list is filtered in three ways: using a blacklist,
a suppressor and a whitelist. Any method that uses other classes than a single class under
test, is marked as integration.

We determine the class under test by a heuristic that scores potential classes under test,
where the highest score is the most likely class under test. We identified five cases that could
be used in the scoring, but an exploratory data analysis showed that the best results were
gained by only using two of the cases. The heuristic awards points if the name of the test
class is either SomeClassTest, SomeClassTests or TestSomeClass, or if there are tests
that only exercise SomeClass, i.e. they have exactly one called class, namely SomeClass.
The points for a matching file name are multiplied by the number of test methods in the test
class.

In an analysis to determine how well JUnitCategorizer distinguishes between unit and
integration tests, it reached an accuracy score of 95.8%.

6.2.2 Which types of tests are best suitable to extend Project Lombok to?

An experiment to answer this question could not determine whether most testing problems
are in unit or integration tests. We concluded that the problems occur in both, so we focused
the rest of our research on both unit and integration tests.

6.2.3 Which code can be considered as boiler-plate in tests based on JUnit?

We found occurrences of inter and intra test class duplication. Inter test class duplication
is duplication that occurs between different test classes, e.g. common tests for hashCode()
and equals(Object o) applied on each class under test. We consider these tests as boiler-
plate, so we created JTA to automatically generate these tests.
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Intra class duplication is duplication that occurs inside a single test class, for example testing
various inputs to a single method. It can be solved by using JUnit’s parameterized tests and
is therefore not handled in JTA.

6.2.4 Which common test errors could be alleviated by using the extension
of Project Lombok (e.g. trivial tests a tester typically omits)?

The biggest problem with tests is the lack thereof; we found several cases of low code
coverage. For example, getter and setter methods are sometimes considered too simple to
break, but we showed that it is wise to still test them, using some simple examples that
show what can go wrong. We also found that some behavior of the class under test is not
tested correctly. The hashCode() and equals(Object o) method are hard to correctly
implement and test. The toString() method often goes untested. The behavior of fields
that contain a collection is often unspecified; it can be a view, an unmodifiable view, a copy,
or an unmodifiable copy. JTA can easily generate tests for all these aforementioned cases.

6.2.5 What does the extension of Project Lombok add to existing tooling?

The most important feature of JTA is that it generates assumption free tests. We developed
a heuristic for creating simple test values that are suitable in most cases. The downside
of these assumption free tests is that the generated tests are not suitable for testing corner
cases.

6.2.6 Does the extension of Project Lombok increase the quality of unit
testing, compared to manually writing unit test code?

We have shown that the application of JTA on several test suites increased the code coverage
and number of mutations killed while hardly adding new test code. Additionally, several
tests that are generated by JTA are stricter than the tests currently present in the test suites,
since they fail on the current implementation.

6.3 Discussion/Reflection

Overall, we are satisfied with the results in this master’s thesis and how we got to those
results. But, even in a large project as the master’s thesis is, there are time constraints.
These constraints limited the implementations and analyses of JUnitCategorizer and JTA.
More time would enable the experiments to be applied on more projects, leading to more
accurate results. One pertinent example of a time constraint is that the validation of the
hypothesis in section 2.3.4 is performed on a very small test set.

JUnitCategorizer and JTA both approach known (sub)problems in research in their own
ways. There are state of the art tools that solve similar (sub)problems, where they might
have been compared against. These are different experiments from the ones we conducted.
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Our research should be seen as exploratory, e.g. whether our approaches work at all,
opposed to comparing our tools to state of the art tools.

6.4 Future work

Our suggestions for future work are based around the tools we implemented: JUnitCatego-
rizer and Java Test Assistant (JTA).

6.4.1 JUnitCategorizer

In section 2.2.5 we already mentioned future work for JUnitCategorizer, namely the
detection of dependence of system defaults for locales. To determine whether a default
locale is compared to a specific locale or whether a default locale has been set prior,
JUnitCategorizer needs to apply a kind of taint analysis. This analysis will improve the
correct distinction of unit and integration tests for classes depending on locales.

Since version 4.8 JUnit supports test groups, i.e. a test method can be annotated with zero
or more groups and then groups can be run in isolation. Applying separate JUnit groups
for unit and integration tests can result in better error traceability, since unit tests are run
before the integration tests. JUnitCategorizer could be extended to automatically annotate
test methods with the correct JUnit group.

Using the analysis JUnitCategorizer performs, we can even further improve error traceabil-
ity by introducing layered testing. Many applications use a layered architecture to separate
major technical concerns. Every layer has its own responsibilities and it is preferable to test
every layer in isolation [39]. JUnitCategorizer currently distinguishes between two layers:
the unit layer and the integration layer. An extension to JUnitCategorizer is to use n layers,
where every layer i only uses objects from layer j, with j < i. Conceptually, tests on layer i
are the integration tests of units from layer i−1. Using more layers results in an even better
error traceability than with two layers. Suppose we look at testing in n rounds, where every
round i runs all tests for layer i and if tests in a certain round fail, we skip the remainder
of the tests. Problems with units of layer i are detected in round i and don’t show in higher
layers, since those tests will not be run. Integration problems between units of layer i are
detected in layer i+ 1, so an error in units of a lower layer will not propagate into higher
layers. This is a variation of the research on ordering broken unit tests performed by Gälli
et al. [30].

6.4.2 Java Test Assistant

There are several possibilities to extend and improve JTA. Besides the issues mentioned
in section 4.3, a possible extension to JTA can be generation of tests for the clone()
method. Just like the equals(Object o) and hashCode() methods, it is very difficult
to get the implementation correct and it should be tested extensively. There are probably
more extensions possible to further increase code coverage in an assumption free manner.
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We used metrics to show that, in theory, JTA improves developer testing. It would also be
interesting to perform a user study on JTA, to assess its usability in practice.

Both tools are now used in relatively small experiments. A larger experiment will increase
confidence in the results and provides potentially more insights in the distribution between
unit and integration tests and the applicability of JTA in test suites.

Additionally, both tools solve (sub)problems that are also solved in other tools. Certain
properties might be compared to other state of the art tools, e.g. JUnitCategorizer’s ability
to detecting the correct class under test could be compared to the class under test detecting
part of Qusef et al.’s Data Flow Analysis.
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