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Sonja Schmida),b) and Thorsten Hugelb)

Institute of Physical Chemistry II, University of Freiburg, Albertstr. 23 a, 79104 Freiburg, Germany

(Received 26 September 2017; accepted 1 December 2017; published online 26 December 2017)

Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Espe-
cially single molecule Förster resonance energy transfer (smFRET) provides access to enzymati-
cally important time scales, combined with molecular distance resolution and minimal interference
with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental
shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of
single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In
contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every
data point and combines the information of many short traces in one global kinetic rate model.
We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by differ-
ent ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation
between conformational dynamics and ATPase activity in Hsp90. Published by AIP Publishing.
https://doi.org/10.1063/1.5006604

INTRODUCTION

Single molecule time traces are particularly suited to
investigate kinetic and thermodynamic questions in molecu-
lar machines, such as proteins. In fact, it is the unique feature
of single molecule time traces to reveal the time evolution
of one molecule through individual kinetic states—notably in
real time and at steady-state, without the need for external syn-
chronization. This allows one to explore the energy landscape
or to uncover the molecular driving force powering a protein’s
function.

Single molecule Förster resonance energy transfer
(smFRET) is a popular method to study protein folding as
well as native dynamics.1–6 However, the experimental detec-
tion of single molecule fluorescence time traces is complicated
by the antagonistic relation between the three key numbers
illustrated in Fig. 1: the signal-to-noise ratio (SNR), time res-
olution, and observation time. An excellent SNR—although
itself desirable—requires a relatively high excitation power.
This comes with faster photo-bleaching and, thus, a reduced
observation time for a given fluorophore. Likewise, high time
resolution—i.e., a fast sampling rate—needs even higher exci-
tation powers to reach an equivalent SNR at shorter exposure
times. At the core of this vicious circle lies the finite num-
ber of photons an individual fluorophore can emit—typically
a few million photons7,8—before it undergoes irreversible
photo-bleaching.

In the regime of typical smFRET experiments where
the fluorescence of an individual dye molecule is detected

a)Present address: Department of Bionanoscience, Kavli Institute of
Nanoscience Delft, Delft University of Technology, Van der Maasweg 9,
2629 HZ Delft, The Netherlands.

b)Authors to whom correspondence should be addressed: s.schmid@tudelft.nl
and th@pc.uni-freiburg.de

over time [e.g., using total internal reflection fluorescence
(TIRF) or confocal microscopy] a simple relation between
observation time τbl and SNR can be derived (see Theory),
namely,

τbl =
const.

SNR2
. (1)

It holds regardless of the specific time resolution, i.e., sam-
pling rate, of the experiment, and helps to decide how to
best spend the precious photons in an experiment. In con-
trast to pure distance determination experiments, where a high
signal-to-noise ratio is the only goal, kinetic analysis also
requires a large enough observation time for the detection of
possibly complex dynamics (e.g., kinetically heterogeneous
behavior). It can be shown in this case that sacrificing SNR
to a certain extent yields a disproportionately high increase
in observation time, thus augmenting the total gain in kinetic
information.

Nevertheless, the maximum detection bandwidth achieved
in single molecule fluorescence time traces is still remarkably
low—even among single molecule techniques. This is prob-
lematic for any dwell-time based analysis, which has been the
recognized standard in single molecule kinetics for decades.6,9

While it may have been adequate for long patch clamp tra-
jectories, it is clearly unfit for shorter fluorescence traces, as
well as more and more complex dynamics.10 In fact, it is
biased toward short dwells, which causes a systematic over-
estimation of all rates. And more severely, it can lead to even
qualitatively wrong interpretations. Additional complication
arises from experimental noise and signal variations between
individual molecules (i.e., different intensities of individual
fluorophores).

To cope with these shortcomings and to acquire maxi-
mal information from realistic experiments, we have devel-
oped a single molecule analysis of complex kinetic sequences

0021-9606/2018/148(12)/123312/8/$30.00 148, 123312-1 Published by AIP Publishing.
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FIG. 1. (a) In smFRET experiments, there is an antagonistic relation between the signal-to-noise ratio (SNR), time resolution, and observation time. Increasing
one of the three has a negative effect on the remaining two. (b) The empirical relation of observation time (limited by the time constant of photo-bleaching, τbl)
and SNR derived from the experiment (see section titled Theory). A SNR of about 4 comes with τbl = 90 frames in typical alternating laser excitation (ALEX)
experiments, yielding the empirical const = 1350. As indicated, a reduction of 25% in SNR may result in as much as 70% longer observation time.

(SMACKS),10 which applies specifically fine-tuned Hidden
Markov models (HMMs) that consider every data point. Since
we cannot give a full introduction to HMM in this article,
the reader is referred to the classic introduction by Rabiner11

or textbooks, e.g., Ref. 12. While SMACKS is applicable
to all kinds of single molecule time traces, herein we aim
to discuss and highlight helpful adaptations of the formal-
ism to smFRET time traces, obtained from TIRF or confocal
experiments.

The advantage of these adaptations is demonstrated on
the basis of conformational changes of the 90kDa heat-shock
protein Hsp90. The presented approach allows us to quan-
tify even the small kinetic effects caused by different ionic
strengths and even different cations. As intra-molecular inter-
actions of proteins depend strongly on the ionic strength of
their environment, a systematic salt screen provides valuable
information on critical intra-molecular interactions and the ori-
gin of conformational stabilization or destabilization. While
Hsp90’s adenosine triphosphate (ATP) hydrolysis has been
studied under varied potassium chloride concentrations,13 cor-
responding information on sodium chloride was not previously
available. In particular, it was unclear whether potassium and
sodium would cause a similar effect, as differing results were
reported concerning other GHKL ATPases: maximal ATPase
activity was previously found in the presence of sodium for
MutL;14 whereas for DNA gyrase, higher activity was found
in the presence of potassium.15 Further differing effects were
found regarding Hsp90-client interactions. A concentration
dependent increase in the Hsp90-glucocorticoid receptor asso-
ciation was observed in the presence of potassium ions—but
not sodium ions.16

Here, we find a clear relationship between the salt-
dependence of Hsp90’s ATPase activity on the one hand, and
its conformational kinetics, on the other hand.

THEORY

In realistic TIRF experiments, three assumptions apply:
(i) no fluorophore saturation, (ii) stochastically indepen-
dent sources of noise, and (iii) negligible laser-independent
noise.

The hardware limit for maximal time resolution depends
on the utilized detector. For electron-multiplying charge-
coupled device (EMCCD) cameras—still the most frequent

detector for single molecule fluorescence time traces—the
maximal frame rate is less than 60 Hz. Higher sampling
rates are achieved by cropped chip exposure or using alter-
native detectors, such as s-CMOS cameras or APDs. On the
other end of the time window, an extended observation time
is desirable for kinetic analysis. This restricts the experi-
mentally applicable laser powers to levels below fluorophore
saturation. Consequently, the intensities of excitation and flu-
orescence scale linearly, and so does the time constant of
photo-bleaching (see below). Thus, within the experimen-
tally relevant regime, the following statements in units of
time t remain general—independent of the actual sampling
rate.

A typical organic fluorophore emits a few million pho-
tons before irreversible photo-bleaching,7,8 which defines the
observation time of an individual molecule. Because these
dyes have a high fluorescence quantum yield, the mean of
the exponentially distributed total number of excitation/de-
excitation cycles is N̂ tot

cycles ≈ 106.
In the absence of fluorophore saturation, the time constant

of bleaching in units of time ∆t is given by

τbl =
N̂ tot

cycles

ncycles
=

N̂ tot
cycles

εex · nex
ph

, (2)

where ncycles is the number of excitation cycles per∆t, which is
determined by the excitation quantum yield εex and the number
of excitation photons per ∆t, nex

ph. The latter is linked to PLaser ,
the incident laser power at the sample, and the photon energy
hν by

nex
ph = PLaser

∆t
hν

. (3)

The SNR is defined as the mean number of signal photons nsig
ph

per standard deviation of the noise σnoise
ph ,

SNR =
nsig

ph

σnoise
ph

. (4)

In TIRF experiments, the number of signal photons per ∆t
is defined as the difference between detected photons ndet

ph

and background photons nbg
ph. It is further determined by nex

ph,
εex, the fluorescence quantum yield φfl and the detection sen-
sitivity δsens. Below, the later constants are summarized in
Csig,
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nsig
ph = ndet

ph − nbg
ph = nex

ph · εex · φfl · δsens ≡ nex
ph · Csig. (5)

The dominating noise sources (variances) are classified, on
the one hand, into laser-dependent noise including (i) auto-
fluorescence, nex

phcautofl ; (ii) Raman scattering, nex
phcscat ; (iii)

shot-noise, nex
ph ·Csig; and, on the other hand, laser-independent

noise, such as (iv) detection noise, ρdet , originating from read-
out, dark-current, and the analog-to-digital converter; or (v)
additional noise, β, e.g., from dust. The total noise level of
these stochastically independent noise sources is given by the
root sum of the respective variances,

σnoise
ph =

√
nex

ph · cautofl + nex
ph · cscat + nex

ph · Csig + ρdet + β.

(6)
Furthermore, it is known from TIRF experiments that laser-
dependent noise is by far dominating leading to the following
approximation:

σnoise
ph ≈

√
nex

ph · cautofl + nex
ph · cscat + nex

ph · Csig =
√

nex
ph · Cnoise,

(7)
with C2

noise = cautofl + cscat + Csig.
Equation (4) then becomes

SNR =
√

nex
ph ·

Csig

Cnoise
. (8)

Finally, combining Eqs. (2) and (8) results in

τbl =
N̂ tot

cycles

εex · SNR2
·

(
Csig

Cnoise

)2

=
const

SNR2
. (9)

It is worth noting that by eliminating nex
ph we also got rid

of ∆t and PLaser . Consequently, the relation between τbl

and SNR depends exclusively on fluorophor-specific constants
(N̂ tot

cycles, εex, φfl) and setup-specific constants (δsens, cautofl ,
cscat).

EXPERIMENTAL METHODS

The protein constructs were recombinantly expressed in
E. coli and purified as previously described.10 Single cys-
teines at position 61 or 385 were used for site-specific flu-
orescent labeling with the Förster resonance energy transfer
(FRET) donor Atto550 or the acceptor Atto647N, respectively.
An artificial c-terminal zipper motif was used to keep dis-
sociated dimers in close proximity. C-terminal enzymatic in
vivo biotinylation allowed for Neutravidin (Thermo Fisher)-
mediated immobilization of Hsp90 on a functionalized cover-
slip during the TIRF experiments. If not stated differently, all
chemicals were purchased from Sigma Aldrich.

Single molecule FRET was measured using a home built
TIRF setup as previously detailed.10 Measurements were per-
formed in potassium buffers (40 mM HEPES potassium salt,
10 mM MgCl2, KCl as specified, pH 7.5 by HCl) or sodium
buffers (40 mM HEPES anhydrous, 10 mM MgCl2, NaCl as
specified, pH 7.5 by NaOH).

Single molecule data were corrected for background flu-
orescence, leakage, direct excitation, as well as, dye-specific
excitation efficiencies, laser intensities, quantum yields, and
detector sensitivities, using the 2D stoichiometry vs. effi-
ciency approach.17 Kinetic models were obtained using

the single molecule analysis of complex kinetic sequences
(SMACKS).10

The ATPase activity of Hsp90 was measured in a regen-
erative assay:18 0.2 mM NADH, 2 mM phosphoenol pyruvate
(PEP), 2 U/ml pyruvate kinase (Roche), 10 U/ml lactate dehy-
drogenase (Roche) coupled to NADH oxidation, which was
followed as a decrease in absorption at 340 nm. All-sodium
or all-potassium conditions were prepared using correspond-
ing reagents: NADH Di-Na (Roche) or Di-K, PEP Na or K
(Bachem), ATP Mg-salt. The above enzymes were further dia-
lyzed against the corresponding low salt buffer: 40 mM Hepes,
10 mM MgCl2, 50 mM NaCl or KCl, pH 7.5 by NaOH or KOH,
respectively. Measurements were performed at 37 ◦C in 40 mM
Hepes, the indicated NaCl or KCl concentration, 10 mM
MgCl2, pH 7.5. Each measurement was followed by radici-
col inhibition and addition of excess adenosine diphosphate
(ADP) as a positive control for regeneration.

RESULTS AND DISCUSSION
The input data

Figure 2(a) shows an illustration of the TIRF experi-
ment on an Hsp90 dimer, where one monomer is labeled
at residue 61 with Atto550 and the other one at residue
385 with Atto647N (see Experimental Methods for details).
Figure 2(b) shows the resulting experimental raw data for
three different potassium concentrations. The individual traces
recorded under 50, 150, or 750 mM KCl show no signifi-
cant difference: mainly low FRET is observed—representing
v-shaped, open conformations of Hsp90—with intermittent
high-FRET spikes of varied length, representing sporadic
closure. Interestingly, these dynamics are observed in the
absence of an external energy source other than thermal
energy.

Accordingly, the FRET efficiency histograms of many
such traces show a large low-FRET population and only
a small high-FRET population. While the peak positions—
representing the predominant conformations—remain unaf-
fected, a slight but reproducible depopulation of Hsp90’s
closed conformations is observed under increasing KCl con-
centrations [Fig. 2(c)]. Interestingly, this effect was abolished
by the addition of ADP [Fig. 2(d)]. For similar sodium con-
centrations [Fig. 2(e)], the trend toward prevalence of open
conformations was less pronounced.

The equilibrium shift toward open conformations under
high salt conditions can either be caused by screening of elec-
trostatic cross-protomer interactions or by the stabilization
of hydrophobic interactions within the open conformation,
thereby burying potential hydrophobic cross-protomer con-
tacts. Interestingly, the more pronounced effect observed for
potassium as compared to sodium ions matches the Hofmeister
trend, i.e., stronger hydrophobic interaction under the larger
cation with lower charge density.19 This hints toward a domi-
nating role of hydrophobic stabilization of the open conforma-
tion. It is further in line with cation-induced Hofmeister effects
reported for cytochrome c.20

Further kinetic insight is gained using SMACKS. It comes
in two steps: the first one applies trace-wise HMMs to capture
the heterogeneity between individual molecules. This serves
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FIG. 2. (a) Illustration of the TIRF
experiment. An objective-type TIRF
microscope was used to record the flu-
orescence of surface-immobilized pro-
tein molecules. FRET between two
specifically attached dyes allows one
to distinguish v-shaped, N-terminally
open (left) from closed (right) con-
formations. (b) Experimental raw data
recorded in real time under three dif-
ferent potassium chloride concentra-
tions as indicated. Fluorescence inten-
sities are color coded: donor (green),
FRET sensitized acceptor (red), directly
excited acceptor (gray), and FRET effi-
ciency, E (black). Colored or white over-
lays indicate HMM-derived low-FRET
or high-FRET states, respectively. [(c)–
(e)] Cation dependence of Hsp90’s con-
formations for potassium chloride (c),
including ADP (d), or sodium chloride
(e) as specified.

as a basis for the second step consisting of a semi-ensemble
HMM optimization, which directly provides one global kinetic
rate model for the entire data set. A comparison of alternative
approaches to single molecule kinetics can be found in Table
S1 of the supplementary material.

Step I: Trace-by-trace HMM

The above data—the individual traces and the aggregate
histograms—suggest that a 2-state model is a good starting
point for further kinetic analysis using SMACKS. Thus, we use
a 2-state hidden Markov model λ(π, A, B), which is parameter-
ized by start (π), transition (A), and emission (B) probabilities
in a first trace-wise optimization.

Two adaptations are useful when dealing with smFRET
data: first fluorescence time traces—not FRET efficiency
traces—are the preferred input data. The robustness of the
HMM with respect to uncorrelated noise is significantly
increased by exploiting the original two observables—donor
and acceptor fluorescence—instead of the FRET efficiency
(only one observable). In addition, FRET efficiencies come
with unfavorable spikes—due to occasional, noise related divi-
sion by zero—which are absent in the original fluorescence
traces. Therefore, no previous smoothing is required if flu-
orescence traces are used as the HMM input. Figure 3(a)
demonstrates both the superiority of the 2D approach regard-
ing uncorrelated spikes and also noise induced poles of the
FRET efficiency.

Corresponding 1D and 2D histograms are displayed in
Figs. 3(d) and 3(e), further highlighting the higher amount
of information in the 2D case. Such fluorescence signals
are appropriately described by a 2D Gaussian probability

density function (PDF) for each state. These are parameter-
ized by the vector of means, µi, for each state, i, and the
covariance matrix, V i, of the donor and acceptor intensi-
ties. A representative emission PDF is displayed in Fig. 4(a)
(top right).

As a second adaptation to FRET data, we exploit the phys-
ical relation between the means of the donor and acceptor
intensities, µi ,A and µi ,D, which must add up to the average
total intensity of the respective trace,

〈Itot〉 =
∑T

t=1

(
xt,A + xt,D

)
T

= µi,A + µi,D = const. ∀i, (10)

where xt ,A and xt ,D are the acceptor and donor intensities
at time t, corrected for experimental cross talk and “the γ-
factor.”21 And T denotes the total time of a single trace i.
As a result, the available parameter space for the means,
µi ,A + µi ,D, shrinks to one line. This FRET line is dis-
played in Fig. 4(a) (top, right) in red. To comply with
experimental variations between individual molecules as seen
in Fig. 3(e), the line is determined individually for each
molecule.

Each model λ(π, A, B) is iteratively rated by the forward-
backward algorithm and optimized by the Baum-Welch algo-
rithm until convergence to maximum likelihood. Because the
likelihood function reaches very flat plateaus between steep
descents, it is not a convenient reporter for convergence.
By contrast, the normalized changes of the diagonal entries
of the transition matrix have proven useful for monitoring
convergence of the HMM,

Normalized Changes =
∑n−1

i=0

���aii − a′ii
���

aii
, (11)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011898
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FIG. 3. [(a) and (b)] The superior robustness of 2D HMM demonstrated by two example traces: FRET efficiency (FRET E, black), fluorescence intensity of the
donor (green), acceptor (orange), Viterbi path (blue, right axis, state 0: low FRET, state 1: high FRET). (a) Blink events (highlighted in yellow) are misinterpreted
by FRET efficiency based 1D HMM. (b) 1D HMM diverges under high noise conditions. Ergo, the Viterbi path is not defined. In contrast, 2D HMM still derives
a suitable Viterbi path. (c) smFRET data as input for HMM: color code as in (a), plus directly excited acceptor (gray), and Viterbi path as gray and white overlays
indicating high- and low-FRET states, respectively. (d) The FRET efficiency histogram of multiple traces provides only 1D information, although 2D information
was originally recorded. (e) 2D histogram of donor fluorescence intensity vs. acceptor fluorescence intensity for every time point (black to light gray: minimal
to maximal counts, white: no counts). The markers indicate the means of the low-FRET state (green) and the high-FRET state (orange) of 36 individual traces.
Global Gaussians, as derived for the entire data set, are displayed as corresponding contours.

where a′ii are the diagonal matrix elements of the previous
iteration and the sum goes over all states i. In this work,
no further changes were found, once this quantity fell below
10�8.

Next, the Viterbi algorithm is used to compute the most
probable state sequence for each trace given the trace-specific
model. The visual comparison of the resulting Viterbi path
to the original input data serves as a quality control of the
underlying parameters. Quite conveniently, HMM emulates
a characteristic requirement for single-molecule fluorescence
data, by searching for flat plateaus. Therefore, traces that are
not well described by the Viterbi path are often sub-quality

traces and as such sorted out. On the other hand, the apparent
model must be revised if the HMMs fail repeatedly at good
quality traces (with respect to signal-to-noise, signal regularity,
etc.).

As a direct consequence of the finite observation time (due
to bleaching) not every time trace shows transitions between
distinct FRET efficiencies. Importantly, even such static traces
contain kinetic information. We include static traces using the
mean emission PDFs of all non-static traces in the data set
because they would not converge sensibly in a trace-by-trace
run with more than one state. Typical Hsp90 data sets contained
about 30% static traces.

FIG. 4. (a) Semi-ensemble HMM optimizes a global kinetic model based on a complete data set (normally > 100 traces). While the kinetic parameters—start
probabilities and transition matrix—are optimized globally, the predetermined, individual emission PDFs are held fixed. This allows further to identify states not
only by a characteristic signal but also based on their kinetic behavior. For the example trace displayed, this results in a Viterbi path (overlays) with 4 kinetic states
despite only 2 distinguishable FRET efficiencies. (b) Transition maps “before” and “after” optimization of the HMM. A fitting rate model generates well-defined
clustering: the mean FRET efficiencies of the dwell preceding a transition (initial FRET E) are plotted against those of the following dwell (Final FRET E). The
initial state is color-coded: state 0 (red), 1 (green), 2 (blue), 3 (pink), for further details see Ref. 10.
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Step II: Semi-ensemble HMM

In the second step, a semi-ensemble HMM run is per-
formed to derive one kinetic model based on a set of traces. To
this end, the global start and transition probabilities are opti-
mized, while the emission PDFs (individual for every trace
and trained in the previous step) are held fixed [see illustration
in Fig. 4(a)].

Distinct kinetic states that cause experimentally indis-
tinguishable smFRET signals are frequently observed with
proteins.10,22–24 Using semi-ensemble HMM, such kinetic het-
erogeneity can be investigated by comparing the fit of dif-
ferent state models including duplicates and triplicates of the
apparent states. It is obvious that with an increasing number of
degrees of freedom also the likelihood of the model increases.
In the extreme case, a model could consist of one state per
time step and thus describe the data perfectly—but without
any physical meaning. Therefore, parsimony criteria are com-
monly used to identify the optimal model—that is to say, a
model that describes the data well, while keeping the model
complexity moderate. Here the Bayesian information criterion
(BIC)25 is used for model selection, similar to earlier stud-
ies.26–29 It balances the likelihood, L, against the number of
free parameters, k, and the number of data points, n,

BIC = −2 · ln(L) + k · ln(n). (12)

Once the optimal number of states is deduced and the model
fits the raw data as shown by the transition map [Fig. 4(b)],
we use the procedure by Bruno et al.30 to find the simplest,
plausible reaction scheme given the data. Based on the 4-state
model with 2 open (o) and 2 closed (c) states (No = Nc = 2
as previously determined by BIC), we compare models of the
so-called canonical “MIR”-form (manifest interconductance
rank) of rank 1 (linear o-o-c-c) and rank 2 (cyclic -o-o-c-c-) in
a likelihood ratio (LR) test,

LR = 2 · [ln(LR2) − ln(LR1)]



≤ χ2
0.95,df=2 → rank 1,

> χ2
0.95,df=2 → rank 2,

(13)

whereLRx denotes the likelihood of rank x. The null hypothesis
(rank 1 model) is rejected if the likelihood ratio exceeds the
95% confidence interval given by the χ2-distribution for 2
degrees of freedom (df ). Note that one missing link equals
a difference of two transitions. For apo Hsp90, rank 1 was
found.

Normally, the next step is the determination of the number
of links N l within this rank R by comparing different schemes
by BIC. The number of mathematically identifiable links is
limited to Nl ≤ R(No + Nc − R). So for the discussed case
(No = Nc = 2; R = 1), the only option is N l = 3, and the link
determination is redundant. Please note that models with the
same rank and the same number of links are mathematically
equivalent. Thus, without prior knowledge or further exper-
imental data, we cannot discriminate the models displayed
in Fig. 5(a) from the kinetic data alone. Further information
on the interpretation of degenerate state models is given in
Refs. 30–32. Regarding our apo Hsp90 data, the existing struc-
tural information supports the linear o-o-c-c model, Fig. 5(a)
(top).

FIG. 5. (a) Three models that are mathematically equivalent as they all have
2 + 2 states and rank 1. (b) Determination of confidence bounds: every rate k is
gradually moved away from its maximum likelihood estimator. The likelihood
ratio between the old and new models is displayed as a function of the modified
rate constant. The 95% confidence bounds are reached where the likelihood
ratio crosses χ2

df=1(α = 0.95) = 3.84.

A model without an uncertainty estimate is worthless.
Thus, we calculate confidence intervals similar to Refs. 10
and 27. As illustrated in Fig. 5(b), every rate is gradually
moved away from its maximum likelihood estimator. At every
step, the likelihood is evaluated and compared to the orig-
inal maximum likelihood in a likelihood ratio test. As the
likelihood ratio follows a χ2-distribution, the 95% confi-
dence bounds are reached where the likelihood ratio crosses
χ2

df=1 (α = 0.95) = 3.84.
In addition, multiple runs with random start parameters

are performed to recognize potential local minima. The anal-
ysis of subsets of the data is useful to estimate the data-set
heterogeneity. Finally, it is illustrative to re-simulate dwell-
time distributions given the obtained model. Comparison to
the original, experimental dwell-time distributions gives a
qualitative estimate of the fit of the model and the data. If
the experimental bleach rate and data-set size are retained, it
reveals also the purely statistical variability of the results.

Salt effects on conformational and functional
kinetics of Hsp90

Figures 6(a)–6(d) show Hsp90’s transition rates between
open and closed conformations and their uncertainties deduced
by SMACKS, as described above. In agreement with ear-
lier findings, SMACKS infer a kinetic 4-state model with 2
closed and 2 open states. The 2 closed states presumably differ
in a small secondary structure element—the very N-terminal
β-sheet providing extra stabilization to the long-lived closed
state by reaching over to the opposite monomer, whereas a
shorter-lived closed state is found in the absence of those addi-
tional cross-monomer contacts.33–35 Conversely, the 2 open
states mimic the kinetics of a much larger conformational
ensemble, which is beyond the time and distance resolution of
smFRET time traces but detectable using the large micro-time
statistics of confocal smFRET in solution.36

Figure 6(a) shows that in addition to the observed popula-
tion shift, there is an overall growth of the rate constants with
increasing potassium concentrations. Conversely, no signifi-
cant change is observed under equal sodium concentrations
[Fig. 6(b)]. Although all shifts are small, they occurred con-
sistently upon buffer change: e.g., the data at 150 mM KCl
was measured after that at 750 mM KCl. It agrees well with
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FIG. 6. Dissimilar cation dependence
of Hsp90’s kinetics under varied
potassium (a) or sodium concentrations
(b), in linear (top) or logarithmic
scale (bottom). The rates are labeled
according to the state model in (c). State
0,1: low FRET; state 2,3: high FRET;
circle sizes represent populations;
arrow weights represent transition rate
constants. (d) The average number
of transitions observed per trace for
each data set. [(a)–(d)] The number
of molecules included in the dataset
prev. 150/50/150/750 mM KCl is
154/107/102/129, respectively; and for
50/150/750 mM NaCl, it is 105/70/140,
respectively. (e) Hsp90’s ATPase
activity under varied cation conditions:
KCl, left; NaCl, right. Measurements
were performed with 3 different Hsp90
variants: wild-type (wt), 61C with
C-terminal zipper (zip), and 385C
with C-terminal zipper. Individual
rates were normalized to the value
obtained using 150 mM monovalent
cation. For KCl, these values were
0.8/0.8/0.7 ATP/min/monomer; for
NaCl: 1.2/0.7/0.4 ATP/min/monomer
(in the above order). The lines connect
the average measured rates.

a previous data set under the same conditions [“prev. 150” in
Fig. 6(a)].

So the energy barriers between Hsp90’s conformations
shrink gradually under increasing KCl concentrations, which
can be interpreted as an increased overall flexibility. Along
with that, the mean number of transitions per trace grows for
increasing potassium—but not sodium—concentrations [cf.
Fig. 6(d)].

Despite the significantly different effects of potassium and
sodium on the transitions, the effects on the ATPase activity
are similar. Figure 6(e) shows that Hsp90’s ATPase activity
grows about 3-fold with increasing potassium or sodium con-
centrations between 50 mM and 1M, which was consistently
found for three individual Hsp90 constructs. A similar effect
of potassium chloride on the ATPase activity has also been
measured before.13

Up to now, an increased ATPase rate was typically related
to an increased population of closed conformations in Hsp90
(e.g., by mutations or cochaperones), which was commonly
interpreted as Hsp90’s active state.34 This is clearly not the
case here, where the occupation of the closed state even
decreases with increasing salt [Figs. 2(c) and 2(e)]. There-
fore, in the following, we discuss potential other mechanisms.
Essentially two things can increase the ATPase rate: either a
more efficient hydrolysis process or altered nucleotide affini-
ties. A faster product release (i.e., lower ADP affinity) could
increase the ATPase rate. This is however unlikely due to the
observed repression of the salt effect in the presence of ADP
[Fig. 2(d)]. But an increased ATP affinity cannot be ruled
out because salt-dependent ATP affinities are very difficult
to determine precisely, both by fluorescence related methods

(due to artifacts of the nucleotide-dye conjugate) and by
calorimetry (due to hydrolysis induced heat). On the other
hand, local changes in the ATP binding pocket can also lead
to a more efficient hydrolysis process. Such local changes are
not yet accessible by smFRET, but they are currently investi-
gated by molecular dynamics (MD) simulations. Altogether,
we guess that local rearrangements at the nucleotide binding
pocket are responsible for the observed increased ATPase rate.

CONCLUSION

In this study, we detail the HMM-based single molecule
analysis of complex kinetic sequences (SMACKS), and use
this tool to determine the salt-dependent conformational kinet-
ics of the protein Hsp90. We find that all rate constants for
Hsp90’s large conformational changes become faster with
increasing KCl concentrations but not NaCl concentrations.
This implies lower energy barriers between individual confor-
mations in the presence of KCl. In addition, high salt condi-
tions shift the conformational equilibrium toward open confor-
mations. In agreement with the Hofmeister trend, a larger effect
was detected with KCl. This suggests that the observed shift
to open conformations is caused by strengthened hydrophobic
intra-monomer interactions, rather than weakened electrostatic
interactions.

At the same time, an increase in Hsp90’s ATPase activity
with growing salt concentrations was found. This is remark-
able as the closed conformation is generally accepted to be
Hsp90’s active state. Given the conservative effect of ADP,
an increased product release due to a lower affinity for ADP
seems unlikely. However, further experiments are needed to
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eventually pin down if the cause is an altered catalysis process
or a salt-dependent nucleotide affinity.

The strength of our approach lies in the combination of
robustness regarding experimental noise, on the one hand,
and the accumulation of fragmented kinetic information in
one global model, on the other hand. It is this shortcut from
raw data to kinetic information—notably avoiding the earlier
detour over biased dwell times—that makes SMACKS par-
ticularly efficient in distilling information from experimental
data. Herein, we focused primarily on adaptations of the HMM
formalism to smFRET, but SMACKS is suitable for all kinds
of single molecule data.

SUPPLEMENTARY MATERIAL

See supplementary material for a comparison of different
approaches to analyze smFRET time traces based on Hidden
Markov Modeling.
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