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Propositions

accompanying the dissertation

SEMICONDUCTOR NANOWIRE JOSEPHSON JUNCTIONS
IN THE SEARCH FOR THE MAJORANA

by

David Johannes VAN WOERKOM

1. Majorana fermions, as proposed by Ettore Majorana, cannot be measured.

2. Detection of fractional Josephson radiation is a key experiment towards braiding
of Majorana zero modes.

3. Theoretical work on topological quantum computation is at least a decade ahead
of experimental work.

4. The Nobel prize in physics is a prize of honor and should not come with money.

5. The world would be more peaceful with one religion.

6. Measuring remotely reduces the quality of experimental results.

7. PhD students should also be judged on their social skills.

8. Survival of the fittest in academia is required to guarantee the high standard
of a PhD title.

9. Results of elections are determined by fear.

10. Finishing a marathon requires more persistence than finishing a PhD.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor prof. dr. ir. L. P. Kouwenhoven.



Stellingen

behorende bij het proefschrift

SEMICONDUCTOR NANOWIRE JOSEPHSON JUNCTIONS
IN THE SEARCH FOR THE MAJORANA

door

David Johannes VAN WOERKOM

1. Majorana fermionen, zoals voorgesteld door Ettore Majorana, kunnen niet
worden gemeten.

2. De detectie van fractionele Josephson straling is een belangrijk experiment
richting het vlechten van Majorana toestanden.

3. Theoretisch werk over topologische kwantumcomputatie loopt minimaal
een decennium voor op experimenteel werk.

4. De Nobelprijs in de natuurkunde is een prijs van eer en zou niet
gepaard moeten gaan met geld.

5. De wereld zou vrediger zijn met slechts één godsdienst.

6. Meten op afstand verlaagt de kwaliteit van experimentele resultaten.

7. Promovendi zouden ook moeten worden beoordeeld op hun sociale kwaliteiten.

8. Het overleven van de sterkste in de acedemische wereld is nodig om
de hoge standaard van de doctors titel te garanderen.

9. Verkiezingsuitslagen worden bepaald door angst.

10. Het uitlopen van een marathon vereist meer doorzettingsvermogen dan
het afmaken van een promotietraject.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor prof. dr. ir. L. P. Kouwenhoven.
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SUMMARY

Due to the collective behaviour of electrons, exotic states can appear in condensed mat-
ter systems. In this PhD thesis, we investigate semiconducting nanowire Josephson junc-
tions that potentially have Majorana zero modes (MZM) as exotic states. MZM are ex-
pected to form a robust quantum bit and quantum operations are done by interchange,
otherwise known as braiding. The presence of MZM in a Josephson junction creates
a topological junction, with properties which are drastically different from a normal
Josephson junction. Understanding such topological junctions is of key importance in
developing circuits for MZM braiding.

We begin by investigating the InSb nanowire contact recipe and developing a fabri-
cation protocol to obtain the highest possible electron mobilities. We find that it is key
to clean the substrate with oxygen plasma before nanowire deposition and thoroughly
pump the sample space to obtain high mobilities. We conclude that the presence of
water, organic residues or fabrication solvents reduces nanowire quality in terms of the
measured field-effect mobility.

To engineer MZM in condensed matter, InSb nanowires are often interfaced with Nb-
based superconductor contacts to induce superconductivity. We measure for the first
time parity in this superconductor, with parity lifetimes up to 1 minute in NbTiN. Even
in an applied magnetic field of 150mT we still observe lifetimes in the millisecond range.
Parity conservation is essential in revealing the topological properties of a junction with
MZM and it is also a requirement for any MZM braiding experiment.

Topological junctions exhibit the fractional AC Josephson effect. We investigate this
effect by analysing the emissions from a nanowire Josephson junction. The dominant
frequency should differ by a factor of 1/2 from the standard Josephson frequency. In our
initial experiments we characterize the measurement circuit and the photon-assisted-
tunneling detection method using an on-chip thin oxide junction. After circuit and de-
vice improvements, we are able make measurements in a magnetic field of up to 300mT.
We find a value of e/h1 for the ratio between detected frequency and applied nanowire
voltage at finite magnetic field, instead of the usual 2e/h. This signature is robust against
changes in magnetic field and applied gate voltage. This hints at a topological origin for
the detected signal.

The properties of any Josephson junction are determined by the underlying proper-
ties of the Andreev bound states. We perform on-chip microwave spectroscopy of these
states and introduce them one-by-one with local gate tuning. We use a theoretical model
that includes interactions with the plasma mode of the circuit to describe the measured
spectrum. We find transmissions of up to 0.9 for the Andreev bound states, indicating
ballistic transport. By applying a magnetic field of up to 300mT, we are able to measure
spin-split Andreev bound states. These are supported by a model which includes Zee-

1Electron charge divided by the Planck constant.
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man effect and spin-orbit coupling. In a gate regime with multiple Andreev bound states
we observe symmetry-broken Andreev bound states by applying a moderate magnetic
field of 40mT.

Important steps are taken in the fabrication, engineering and understanding of nanowire
Josephson junction systems. Further identification, control and understanding is needed
if we are to develop useful applications of MZM braiding.



SAMENVATTING

Door het collectieve gedrag van elektronen kunnen exotische toestanden voorkomen in
vaste stof systemen. In dit proefschrift onderzoeken we het systeem van een halfgelei-
dende nanodraad Josephson junctie met de mogelijke aanwezigheid van Majorana nul
toestanden (MNT). MNT zijn naar verwachting een mogelijkheid om een robuuste kwan-
tumbit te construeren. Kwantum operaties kunnen worden gedaan door middel van het
verwisselen (vlechten) van MNT. De aanwezigheid van MNT in Josephson juncties vormt
topologische juncties die totaal andere eigenschappen hebben dan de normale Joseph-
son juncties. Het begrijpen van een topologische junctie is van groot belang voor het
ontwikkelen van een circuit voor het vlechten van MNT.

De experimenten beginnen met het onderzoeken van het contactrecept voor InSb
nanodraden en het ontwikkelen van een fabricageprotocol dat ervoor zorgt dat de elek-
tronenmobiliteit zo hoog mogelijk is. We ontdekten dat het zeer belangrijk is om het
substraat voor de nanodraaddepositie schoon te maken met een zuurstofplasma. Ook
het vacuüm pompen van het cryogene systeem waarin de nanodraad zich bevindt bleek
essentieel voor het verkrijgen van een hoge mobiliteit. We concluderen dat water, organ-
ische residuen en de gebruikte fabricage-oplosmiddelen de kwaliteit van de nanodraden
negatief beïnvloeden wat betreft de gemeten elektronenmobiliteit.

MNT in vastestof systemen worden vaak gecreëerd door InSb nanodraden in contact
te brengen met een op Nb gebaseerde supergeleider. We meten voor het eerst pariteit
in deze supergeleiders en tonen pariteitsbehoud aan tot 1 minuut in NbTiN. Zelfs in een
magneetveld van 150mT is de tijdschaal van de pariteit nog in de orde van millisecon-
den. Pariteitsbehoud is essentieel voor het onthullen van de topologische eigenschap
van juncties met MNT en is een vereiste voor het vlechten van MNT in een experiment.

Topologische juncties zijn anders dan normale Josephson juncties omdat ze zich
gedragen volgens het fractionele AC Josephson effect. Het AC Josephson effect onder-
zoeken wij door de emissie van een nanodraad Josephson junctie te analyseren. De
dominante frequentie zou een factor 1/2 moeten verschillen van de normale Joseph-
son frequentie. In een eerste ronde experimenten karakteriseren we het meetcircuit
en het fotongeassisteerd tunnelen in een dunne oxide tunneljunctie als detectie meth-
ode. Na verbeteringen aan het circuit en het nanodraadsysteem is het mogelijk om deze
metingen bij een magneetveld van 300mT uit te voeren. Hierbij meten we een e/h-ratio2

tussen de nanodraadspanning en de gemeten frequentie, in plaats van de gebruikelijke
2e/h bij een normale junctie. We concluderen dat het gevonden signaal robuust is als
functie van magneetveld en elektrisch potentiaal van de gates onder de nanodraad. Dit
wijst in de richting van een topologische oorsprong van het gedetecteerde signaal.

De eigenschappen van elke Josephson junctie worden bepaald door het onderliggende
mechanisme van gebonden Andreev toestanden. Met microgolfspectroscopie laten we

2Elektron lading gedeeld door de constante van Planck.
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de gebonden Andreev toestanden zien en we kunnen met lokale gates de toestanden één
voor één introduceren. We gebruiken een theoretisch model dat ook de interactie met
de resonantiefrequentie van het circuit meeneemt om de gemeten spectra in detail te
verklaren. We concluderen dat we toestanden hebben met een transmissie tot 0.9, wat
ballistisch transport aanduidt. Door een magneetveld van 300mT aan te leggen, meten
we spingesplitste gebonden Andreev toestanden. Deze worden ondersteund door een
model met het Zeemaneffect en spin-baankoppeling. In een gatespanningsregime met
meerdere gebonden Andreev toestanden observeren we Andreevtoestanden waarvan de
symmetrie gebroken is in het gemeten spectrum bij een magneetveld van 40mT.

Belangrijke stappen zijn genomen richting het fabriceren, ontwikkelen en begrijpen
van het nanodraad Josephson junctiesysteem. Verdere identificatie, controle en inzicht
is nodig voor het ontwikkelen van circuits voor het doen van een MNT vlechtexperiment.
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INTRODUCTION

In the beginning, God created the heaven and the earth.

The Holy Bible

Everything must have a beginning.

For me, it began with my desire to answer questions by doing challenging experiments. Et-

tore Majorana had a similar motivation when he asked himself the question, ‘Is it possible

to find a solution to the Dirac equation without a negative energy solution?’ He indeed

found such a solution, leading him to propose the existence of the particle now known

as the Majorana fermion. To realize Majorana state zero modes (MZM), the condensed

matter versions of Majorana fermions, Alexei Kitaev suggested combining the properties

of a semiconducting nanowire and a superconductor. The interchange properties of these

MZM are different from those of regular Majorana fermions, since these modes are ex-

pected to be non-abelian. This special property can be used for topological quantum com-

putation, so many research groups are trying to find and control these MZM. We give a

brief overview of the current state of research into MZM.

1
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2 1. INTRODUCTION

1.1. CURIOSITY LEADS US ONWARDS
It is in the nature of humans to be curious about the world around us. This curiosity has
led us to explore the extremes, from the smallest parts of atoms to the origin of stars.
Science has made large leaps in understanding in both of these fields, but still there is
much that is unknown. It could even be that these diverse problems are related. One
particle that could exist both in atoms and in outer space is the Majorana fermion[1, 2].

In 1937, the bright young Italian scientist Ettore Majorana proposed the existence of
the particle which is now known as the Majorana fermion[3]. This particle is special in
the sense that it is its own anti-particle. Where normally an anti-particle has properties
opposite to those of its counterpart, in a Majorana fermion all these properties are zero.
This is necessary for it to be its own anti-particle, but because all its properties are zero1

it is very difficult to detect. Indeed, even the Large Hadron Collider at CERN in Geneva,
Switzerland has so far failed to detect any signature of this elusive particle[2]. As a result,
it is also a candidate to be dark matter.

1.2. ENGINEERING MAJORANA ZERO MODES IN NANOWIRES
Some scientific disciplines, such as high energy physics and astronomy, have to make do
with what nature gives them, but thankfully we are able to build our own experiments. It
was Alexei Kitaev who came up with the idea of engineering MZM in a condensed matter
system[4]. Due to the collective behaviour of electrons in materials, they can have new
properties like fractional charge (the fractional quantum Hall effect[5]) or the ability to
form charge waves (known as plasmons[6]). Kitaev considered, in a superconducting
regime, a one dimensional (1D) grid of lattice sites that could be occupied by electrons in
order to form MZM at the end of the grid. Unfortunately, the proposed superconductor
needs to be spinless, and such a material is not known to exist in nature. This made
Kitaev’s proposal an unrealistic toy model at the time.

In 2010, two independent groups, Lutchyn et al.[7] and Oreg et al.[8], proposed a way
to engineer such a spinless superconductor and thus create MZM. Two years later, the
group led by Leo Kouwenhoven at the University of Delft in the Netherlands found the
first signatures of MZM in the proposed system[9]. Multiple groups subsequently found
similar[10, 11], improved [12] and additional signatures [13–15].

1.3. NON-ABELIAN EXCHANGE STATISTICS
Theoreticians have proposed ways of engineering MZM in a realistic experimental setup.
These MZM differ from the original Majorana fermions in their exchange statistics.

Currently, all known particles in free space can be divided into two classes, fermions
and bosons, differing in their exchange statistics. Suppose you have a system composed
of two identical particles and described by |ψ(x1, x2)〉, where the first (second) particle
is at x1 (x2). Given an operation P that exchanges the particles, exchanging twice gives
P 2|ψ(x1, x2)〉 = |ψ(x1, x2)〉, recovering the original state of the system if the particles are
indistinguishable. So P 2 = 1, implying P =±1. These two solutions define fermions (P =
−1) and bosons (P = +1). MZM are not part of either of these two classes. They belong

1except mass
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to their own class, expected to be the class of non-abelian anyons[1, 4]. This is because
exchanging twice does not return the state to |ψ(x1, x2)〉, as for MZM the wavefunction
ψ itself changes under the action of the operator P [1].

This is interesting from a theoretical point of view, but we also have the opportunity
to make a robust ’quantum bit’ or qubit out of MZM[16, 17]. Quantum systems with a few
qubits (typically ∼ 5) already exist, and are promising proofs of the quantum computing
concept[18, 19]. However, these qubits are difficult to scale up because of decoherence
due to environmental noise. Imagine a qubit as a compass needle, with the value 1 if the
needle is pointing north, and 0 if it is pointing south. The slightest movement or gust of
wind will make the needle shake, potentially corrupting the pure state of 1 (north) or 0
(south). MZM are expected to be more robust against losing quantum information as it
is stored non-locally, making it less sensitive to local noise.

1.4. THE CURRENT STATUS OF THE FIELD
Multiple groups are trying to find more signatures and get better control of MZM. The
goal is to exchange MZM and demonstrate their non-abelian properties, leading to the
creation of a qubit. This is also the final goal of the work we report in this thesis. We in-
vestigate many aspects of systems that can host MZM, ranging from material optimiza-
tion to parity fluctuations in superconducting islands, switching current measurements
and Andreev bound state spectroscopy of nanowire Josephson junctions. All these ex-
periments are performed with materials that are used in, or can host, MZM.

Many other groups have recently conducted experiments related to MZM. The group
led by Charles Marcus in Copenhagen has recently made very good progress, and we
have also worked together with them on a few projects. The Marcus group developed
semiconducting nanowires with a thin aluminium shell[20]. The shell is deposited on
the nanowire in vacuum to obtain a clean interface. The aluminium becomes supercon-
ducting at low temperatures, nicely inducing superconducting properties in the nanowire
[21]. These nanowires are also used for the experiments in Chapters 8 and 9. In one of
their first experiments[22] with these nanowires, they created a superconducting island
and observed even-odd effects due to the superconductor preferring a 2e ground state.
In addition they also observed a poisoning effect with a characteristic timescale of 10ms.
In a follow-up experiment, Albrecht et al.[14] also observed even-odd effects, but after
they initially disappeared with increasing magnetic field they then observed oscillations
in the effect. They explained these oscillations by the presence of MZM at finite energy
due to overlap of the Majorana wavefunctions. Most recently[23], the same effect has
been observed in a double superconducting island.

In Delft we have also made progress using the nanowires from the Marcus group. The
2012 experiment with zero-bias-peak detection[9] was recently reproduced in a much
cleaner device[12].

1.5. OUTLINE OF THIS THESIS
In the first experiments reported here, we investigate the influence of cleanroom fabri-
cation on nanowire mobility. In Chapter 5 we draw conclusions as to whether the use of
solvents, contact recipes and cleaning harms or improves nanowire quality.
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To begin working towards braiding MZM, we make superconducting islands out of
NbTiN. This material was at the time the most used superconductor for Majorana de-
vices. We are able to read out the parity of the superconducting island, something that
has already been shown in aluminium islands[24, 25] but never in any other supercon-
ductor. In Chapter 6, we show these parity effects in a Nb-based superconductor for the
first time and demonstrate very long parity lifetimes even in a moderate magnetic field
of ∼ 150mT.

In the remaining three chapters, two different techniques are used to investigate
nanowire Josephson junctions consisting of two superconducting electrodes in contact
with a single nanowire. These systems can host MZM and give strong signatures of their
existence.

The experiment described in Chapter 7 investigates the AC Josephson effect in such
a nanowire Josephson junction. In this experiment the junction has a bias voltage Vbias

and emits radiation at the Josephson frequency, 2eVbias/h, which changes to eVbias/h in
the presence of MZM. The radiation is detected by an on-chip detector via the photon-
assisted tunneling current. Due to limitations in the performance of the detector in a
magnetic field we were not able to measure at finite magnetic field. After adjusting the
design, material system and measurement technique, we are able to observe the e/h

radiation in a moderate magnetic field of ∼ 100mT. The status of this experiment is de-
scribed in Chapter 8.

In our final experiment, we perform spectroscopy of Andreev bound states in nanowire
Josephson junctions. The device used for this is very similar to the one for the radiation
experiments, but with some small adjustments. This time, the junction is embedded
in a superconducting quantum interference device (SQUID) loop, giving us the ability
to tune the phase of the nanowire. A superconductor-insulator-superconductor (SIS)
Josephson junction is used as an on-chip spectrometer, exciting Andreev bound states
in the nanowire. This excitation is measured in the spectroscopy junction using an en-
hanced current. Due to the gate tunability of the nanowire we can investigate both single
and multiple Andreev bound states, introducing them one by one. We indirectly observe
spin-split and symmetry-broken Andreev bound states in a finite magnetic field.

Suggestions for continuing and improving the reported experiments are presented in
the outlook chapter. Here we also discuss possible future steps towards MZM braiding.

Braiding Majorana Zero Modes

Materials

Semiconductor

Nanowire
CH5

Superconductor
CH6

Parity detection
CH6

Introduction

 & background
CH1 & CH2

Theory
CH3

Josephson coupling
Andreev bound state

Spectroscopy
CH9

Radiation detection
CH7 & CH8

Experimental

methods
CH4

Figure 1.1: Quick overview of the outline of the thesis
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BACKGROUND

History is important, because you can learn from it. The future is interesting, because you

can use the things you have learned there. In this chapter we look back at Ettore Majo-

rana’s prediction. From there we start our search for the Majorana fermion and then Ma-

jorana zero modes (MZM). Our search is strongly focused on condensed matter systems,

the topic of this thesis. For condensed matter systems, theoreticians have found a way to

engineer MZM using a combination of one-dimensional InSb or InAs nanowires in close

proximity to a superconductor in a parallel magnetic field. Theoreticians have proposed

that MZM could be a robust way of storing quantum information and may allow the cre-

ation of reliable quantum gates. This is why topological quantum computing is such a

promising idea, as we will discuss at the end of this chapter.

5
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2.1. INTRODUCTION
In this chapter, we briefly discuss the background and motivation for the discovery and
control of MZM.

Ettore Majorana’s proposal of Majorana fermions grew out of his study of the Dirac
equation, as shown in Section 2.1.1. The search for these particles in free space is dis-
cussed in Section 2.1.2.

MZM are the condensed matter equivalents of Majorana fermions. These states are
interesting for quantum computation, as we explain in Section 2.2. In Section 2.3, topo-
logical quantum computation is introduced. Starting from the definition of non-abelian
exchange statistics, we show that MZM are non-abelian. After that, we go on to explain
the formalism of MZM braiding.

2.1.1. ETTORE MAJORANA AND HIS EQUATION
This section is divided into two parts, discussing first Majorana’s history before delving
into his physics. We believe that he is a person of particular interest, and deserves a fuller
introduction.

ETTORE MAJORANA THE PERSON

We begin with two examples, one less and one more famous example of Ettore Majo-
rana’s unique talent and personality. Both examples are taken from the book [26], which
I received after my master’s graduation.

In 1928, at the age of 21, Majorana decided to become a theoretical physicist despite
receiving no support from his family. He joined a group of young Italian physicists led
by Enrico Fermi, now known as the Via Panisperna boys. Barely adults, they spent their
time wagering on who could solve differential equations the fastest and challenging each
other to come up with the craziest theories of the universe. When Majorana was first
introduced to Enrico Fermi, Fermi presented him with a problem they were working on
at the time. Majorana asked a few questions and left enigmatically[26].

The next day, when Majorana met Fermi again, he reproduced the problem, did some
quick calculations and congratulated Fermi on not making any mistakes. Majorana con-
tinued on the blackboard, rewriting the problem into a well-known textbook example
which went on to become the starting point for the problem’s solution. Enrico Fermi,
later winner of the 1938 Nobel prize, rated himself as merely second class in comparison
to Majorana, whom he ranked alongside Newton and Galileo[26].

Unfortunately, Ettore Majorana is more famous for his disappearance in 1938. On
Friday, March 25, 1938 he boarded a mail boat in Naples, heading for Palermo. When he
arrived in Palermo, he wrote a letter to his boss Antonio Carrelli, Director of the Naples
Physics Institute, with the remarkable statement that ’The sea rejected me’. A few days
later he returned to Naples, sharing a cabin with two other people, one of whom con-
firmed that Ettore was still asleep when they arrived at the port. After that, Ettore Majo-
rana was never seen nor heard from again.

ETTORE MAJORANA AND HIS PREDICTION

Majorana also worked on the Dirac equation, trying to solve the remaining mystery,
namely the presence of negative energy solutions.
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The Dirac equation is given by

E

c
Ψ(x, t ) =−→α ·−→p Ψ(x, t )+βmcΨ(x, t ), (2.1)

where E is the energy of the particle, c is the speed of light, Ψ(x, t ) is the wavefunction, −→p
is the momentum and m is the mass of the particle. −→α and β are constants, introduced
by Dirac to linearize the Klein-Gordon (KG) equation. To maintain consistency with the
KG equation, certain constraints must hold and these led Dirac to discover solutions for
the electron and the positron[27]. Using the same constraints, Majorana found

αx =σx

⊗
σx αy =σz

⊗
I

αz =σx

⊗
σz β=−σx

⊗
σy

where I is the 2 x 2 identity matrix and the σs are the Pauli matrices. In addition, Majo-
rana divided eq. 2.1 by −ħ

i
, substituted β′ =−iβ and used E = iħ d

d t
, the energy operator.

This gave equation (8)’ in ref. [3], namely

−→α ·−→∇Ψ−β′ mc

ħ
Ψ= 1

c

dΨ

d t
, (2.2)

a completely real equation. This yields a real expression forΨ, implying that the complex
conjugate Ψ

† is equal to Ψ, where Ψ
† is the anti-particle solution to the Dirac equation.

This means that the solutions to eq. 2.2 represent particles that are equal to their own
anti-particle. Majorana had already concluded that these particles are neutral in charge.
The only known neutral particles at that time were the neutron and the neutrino, but he
ruled out the neutron due to its large mass[3].

For historical reasons, because eq. 2.2 is effectively the Dirac equation and that equa-
tion describes the behaviour of fermions, the particle proposed by Majorana is known as
the Majorana fermion.

2.1.2. THE SEARCH FOR MAJORANA FERMIONS

The search for the Majorana fermion started with the first experimental investigation
of double β-decay[28]1. When an atom decays by the emission of two electrons, called
double β-decay, two electron anti-neutrinos (νe ) are emitted, as shown in the Feynman
diagram in Figure 2.1a and referred to as 2νββ. The two electrons have a maximal energy
of Qββ. In the case of Majorana neutrinos all the energy of the W − boson is transferred to
the electrons since no neutrinos escape from the process, so a joint energy measurement
on both electrons gives always Qββ. This decay process is called 0νββ, and is depicted
in Figure 2.1b.

There are ∼10 known isotopes that undergo 2νββ-decay. They all have typical half-
lifetimes of 1018-1022 years and their natural abundance is low, typically 5-10%. Re-
searchers have tried to use big blocks (up to 1 tonne) of purified isotopes such as 76Ge to
study double β-decay. The expected energy distribution is depicted in Figure 2.2a. The
two-electron energy is a distribution because the neutrino energies cannot be measured,

1This reference is used throughout this section.
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a) b)

Figure 2.1: Feynman diagrams of double β-decay. u (d) represents the up (down) quark, e− the electron or
β radiation, W − the W − boson, νe the electron anti-neutrino and νm the Majorana neutrino or Majorana
fermion. a) Double β-decay with the emission of two electron anti-neutrinos, referred to as 2νββ. b) Double
β-decay where the Majorana neutrinos νm are annihilated and no energy ‘disappears’ from the decay event,
referred to as 0νββ.

and is bounded above by Qββ. The 0νββ-decay process only adds counts at Qββ since
no energy leaves the system and all the energy is carried by the emitted electrons.

Figure 2.2b shows a Monte Carlo simulation of the energy spectrum around Qββ. For
this simulation a background rate of 1 count per keV and 50 0νββ-decay processes are
modelled, with an energy resolution of 3.5%. To make progress, this background rate
needs to be reduced and the energy resolution improved, as no 0νββ-processes have yet
been detected. Based on their sensitivity, experiments only can give lower bounds on
the half-lifetimes of 0νββ, currently known to be ≥ 1025 years.

a) b)

Figure 2.2: a) Schematic energy spectrum of the electrons emitted by 2νββ-decay (in blue) and 0νββ-decay
(in red). b) Monte Carlo simulation of 2νββ (grey) with a rate of 1 count/keV and 50 counts of 0νββ (in red)
with a full width at half maximum (FWHM) energy distribution of 3.5%. Figure reproduced from [28]. Qββ =

2039keV, the electron energy of 76Ge-decay. Figure reproduced from [29].

The detection of 0νββ-decay would have a great impact on the Standard Model of
particle physics. This is because lepton number is not conserved in this process. On the
left of the Figures in 2.1 there are only quarks (meaning the lepton number is 0) while on
the right, in the 0νββ case, there are two electrons for a lepton number of +2. This pro-
cess violates the conservation of lepton number by generating leptons, something that



2.2. ( TOPOLOGICAL) QUANTUM COMPUTATION

2

9

has never been observed before. By contrast, in Figure 2.1b the electron anti-neutrinos,
νe , have lepton number -1, meaning that lepton number is conserved in this case. We
also observe that processes breaking this conservation law must have occurred at some
point in the past, since there is currently more matter in the universe (positive lepton
number) than anti-matter (negative lepton number). The observation of 0νββ-decay
could give more insight into the creation of the universe.

2.2. ( TOPOLOGICAL) QUANTUM COMPUTATION
In this section we discuss why quantum bits are a promising way to increase the com-
putational power of future computers. Any two-level quantum system can be used as
a quantum bit. In particular, the condensed matter version of the Majorana fermion,
the MZM, can be used as quantum bit. Quantum computation with MZM is known as
topological quantum computation, which we will introduce later in this chapter.

2.2.1. QUANTUM COMPUTATION AND QUANTUM BITS

Currently, the computer that you have in your office or at home is based on bits, which
can be either 0 or 1. If you have 3 bits there are 23 = 8 possibilities (namely 000, 001, 010,
011, 100, 101, 110 and 111, which counts from 0 to 7 in the binary number system). In a
classical computer these bits can be for example 001, 101 or 111. A computation, called
(say)2 Q, can take one input value and produce one output value, turning 001 into Q001
for example.

Quantum computers rely on bits which exist in a regime where quantum mechanics
plays a role. The wavefunction of a particle can be interpreted as describing its location
(for example) statistically; it need not have a definite position. You can create two local
potential minimums (quantum wells) and arrange for the wavefunction to be finite in
both of them, known as a superposition state. If the particle is in the left quantum well
we can call that a value of 0, and if it is in the right one we can call it a value of 1. If the
wavefunction is finite in both wells, we can say that the value is both 0 and 1 at the same
time. Such a bit is known as a quantum bit or qubit[30].

With 3 qubits we have the same options, in the binary number system, as with bits
but now we can put the system in a quantum superposition state of 001+101+111 for
example, including all three options at the same time, as depicted in Figure 2.3. This
time, to perform a calculation Q on all three options, we would only have to perform it
once.

2.3. TOPOLOGICAL QUANTUM COMPUTATION
In topological quantum computation, the information is stored in multiple (at least four)
non-local MZM whose ground states are degenerate and separated from the excited
states by an energy gap. There is no energy difference between the 1 and 0 states, because
both are ground states of the system. This makes them insensitive to energy exchange
decoherence with the environment. Quantum gates rely on braiding the MZM, which
is non-trivial due to their non-abelian exchange statistics. The quantum gates must be

2What Q does is not important.
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Q

Your computer

Q

Future quantum computer

001

111

101

001+101+111 Q001+Q101+Q111

Q001

Figure 2.3: Schematic comparison between a computer and a quantum computer performing a calculation
Q. A classical computer, such as your computer, can only do calculations one by one, while a future quantum
computer will be able to do multiple calculations at the same time depending on how the qubits are prepared.

performed slowly, compared to the energy gap to the excited states, to make sure that
the system stays in the computational ground state.

In general, quantum computations using topological systems are expected to be more
robust to local perturbations because it is difficult to change the topology of a system[31].

Figure 2.4: A glass of (red) wine is topologically inequivalent to a beer mug or a donut. The beer mug and the
donut are topologically equivalent because both objects have a single hole. Parts of this image are adapted
from http://www.freepik.com/.

To explain topology, we begin with two of the most-used examples. A donut and a
beer mug both have one hole and can be slowly transformed into each other. This is not
possible with a glass of red wine3. With the glass, at some point you would have to poke
a hole in it to make it equivalent to the donut or the beer mug. This makes the donut and
the beer mug members of the same topological class, while the glass of wine is part of a
different class.

The quasiparticles which we investigate in this thesis are MZM in semiconductor
nanowires with induced superconductivity. At zero magnetic field the superconducting
gap is ‘positive’ (∆SC), while with a finite magnetic field this is inverted to a ‘negative’
(∆TOPO) gap. The moment of gap inversion is like poking a hole in the glass to make it a
donut. At the crossing point from ∆SC to ∆TOPO, MZM are created.

3Or white wine.
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2.3.1. NON-ABELIAN EXCHANGE STATISTICS
If particles are exchanged twice in 3D space, the resulting wavefunction is the same as it
was to start with, i.e. Ψ(t = t0) = P 2

Ψ(t = 0). This assumes that the time t = 0 was before
the exchanges and at t = t0 the exchange is finished. P is the exchange operator and
can return -1 (fermions) or +1 (bosons). That the interchange is performed in 3D is an
important consideration. Despite the limitations of this piece of paper or screen, please
imagine the sketches in Figure 2.5 in 3D. In Figure 2.5a a particle, drawn as a black circle,
moves in a small trajectory that takes it near another particle without enclosing it. If this
trajectory is made very small, effectively zero, the wavefunction is unperturbed. Now if
this trajectory is enlarged sufficiently the other particle can be enclosed, as depicted in
Figure 2.5c. In 3D this can be performed smoothly, because when we reach the situation
shown in Figure 2.5b the particle can use the third dimension to avoid the other particle.
In 2D the situation in Figure 2.5b is topologically different, as the trajectory is cut by the
second particle[31].

a cb

Figure 2.5: a A particle (black circle) is moved along a small trajectory without enclosing the other particle. b
This trajectory is different in 3D because the particle can use the extra dimension to pass by the other particle.
In 2D the other particle cuts the trajectory. c The particle’s trajectory fully encloses the other particle.

2.3.2. BRAIDING FORMALISM
4MZM are proposed to be non-abelian states in 1D and 2D condensed matter systems,
defined by U12U23 6=U23U12. Here Uij is an operator that exchanges MZM i and j . We can
see that MZM are clearly different from other states if we try to ‘count’ them. Normally
this count is given by nMZM = γ†γ, but because γ† = γ, nMZM is also equal to γγ. This
does not make sense, as it always gives 1. This comes from the definition introduced by
Kitaev[4] in his toy model, which is more extensively explained in Section 3.4.1. With
nMZM always returning 1 a different kind of counting is needed.

The normal counting operator for fermions is n = c†c, which can to be translated to
MZM operators via c = 1

2 (γ1 + iγ2) and c† = 1
2 (γ1 − iγ2). This gives

n1 = c†
1c1 =

1

2

(
1+ iγ1γ2

)
, (2.3)

where n1 = 0,1 corresponds to the fermionic state being occupied or empty and thus also
the MZM γ1 and γ2 being occupied or empty. From this we can conclude that it does not
make sense to talk about individual MZM occupation but only about joint occupation.

4For this section reference [32] is extensively used.
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Using equation 2.3, the parity operator can be defined as follows:

P1 = 1−2n1 =−iγ1γ2. (2.4)

The parity operator returns a value of -1 for odd parity (n1 = 1) and +1 for even par-
ity (n1 = 0). The wavefunction describing the MZM can be constructed from the states
|n1,n2, ..n j , ..nN 〉, where nj corresponds to MZM γ2j−1 and γ2j. The complete wavefunc-
tion is then described by including the weights αn1,n2,..nj,..nN , resulting in the expression

|Ψ〉 =
∑

αn1,n2,..nj,..nN |n1,n2, ..nj, ..nN〉, (2.5)

where the summation runs over all 2N−1 combinations of 0,1 for the nj.
Having constructed a wavefunction for the MZM, we need to prove that exchanging

MZM is non-abelian. Consider two MZM, γ1 and γ2, and the exchange γ1 ↔ γ2. To find
an operator U that achieves this we have to make sure that the operator is unitary, only
involves γ1 and γ2, and conserves the total parity of the system. To find such an operator,
we sandwich the MZM with the operator U , resulting in Uγ1U †. The derivation is given
in Appendix A.1, showing that U = 1p

2

(
1±γ1γ2

)
, where + (-) corresponds to clockwise

(anti-clockwise) exchange.
Figure 2.6 presents this braiding schematically, with evolved time on the y-axis. Fig-

ure 2.6a (c) shows the braiding for + (-), which is defined as clockwise (anti-clockwise)
in this thesis. The lines represent the positions of the MZM over time, which can be
exchanged by braiding.

Having derived U , it is now possible to check if the MZM exchange is non-abelian, as
defined by U12U23 6=U23U12. This is shown in Appendix A.2.

1 2 1 2 3 4

a b

c d

e

Figure 2.6: Schematic drawing of worldlines representing MZM braiding operations. a Clockwise braiding ofγ1
and γ2, performed by the operator U12 = 1p

2

(
1+γ1γ2

)
. b U23 performed with four MZM present, resulting in

a superposition of the (individual) parities. c Anti-clockwise braiding of γ1 and γ2, performed by the operator
¯U12 = 1p

2

(
1−γ1γ2

)
. d U12 = 1p

2

(
1+γ1γ2

)
performed with four MZM present. e The more complex braiding

operation U13 =U12U23U12 with four MZM.

To form a qubit out of MZM, we propose to use the fermion parity states +1 and -1
as a two-level system. We take one pair of MZM, γ1 and γ2, with the corresponding n1

creating a wavefunction |n1〉 according eq. 2.5. From the definition given in eq. 2.4, we
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see that the parity operator gives P |0〉 = +|0〉 and P |1〉 = −|1〉, which we will use as our
two levels.

As mentioned before, quantum gates are performed by braiding the MZM, so we use
U12 to (try to) change the parity of |n1〉:

U12|0〉 = 1
p

2
(1+ i )|0〉

U12|1〉 = 1
p

2
(1− i )|1〉. (2.6)

We see that U12 does not bring the wavefunction into a state of parity superposi-
tion. (U12|0〉 is explicitly calculated in Appendix A.3.) This makes sense, since in deriving
U12 we made the assumption that U is a parity-conserving operation, but this is a good
check. Instead, we can extend the wavefunction to four MZM and two fermionic states
|n1,n2〉. Now there are more MZM and more exchange options, so let us investigate
them:

U12|00〉 = 1
p

2
(1+ i )|00〉

U12|11〉 = 1
p

2
(1− i )|11〉

U23|00〉 = 1
p

2
(|00〉+ i |11〉)

U34|00〉 = 1
p

2
(1+ i )|00〉. (2.7)

With the operation U23, schematically depicted in Figure 2.6b and explicitly calcu-
lated in Appendix A.3, we are able to create a parity superposition for both n1 and n2.
However, if we measure the parity of the whole system we obtain 0, so U23 is still not
changing the overall parity. To check this we define the total parity operator Ptot as fol-
lows:

Ptot =
N∏

j=1
Pj = i N

2N∏

j=1
γj. (2.8)

Indeed Ptot|00〉 and U23|00〉 both return +1, meaning even parity.
To read out the MZM qubit, the parity of a single pair of MZM needs to be determined

by measurement. We conclude that pairs of MZM are can form qubits by being occupied
or empty. To make computations, braiding operations between different pairs of MZM
need to be performed. It is also possible to do more complex braiding operations, such
as for example U13 =U12U23U12, schematically depicted in Figure 2.6e.

2.3.3. BRAIDING MAJORANAS WITHOUT MOVING MAJORANAS
To perform braiding, the MZM need to be moved around each other. Early proposals
involved moving the MZM with electrostatic gates in T-junction nanowires[16]. This
method of MZM control has been tried but found to be difficult[33]. Later, van Heck et.
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al. came up with the idea of using the tunable charging energy Ec via the flux-controlled
Josephson coupling EJ to couple different MZM[34]. Effectively, this coupling of different
MZM is a basis change. Let us start with the fermionic states |n12,n34〉, where n12 (n34)
corresponds to c12 = 1

2 (γ1 + iγ2) (c34 = 1
2 (γ3 + iγ4)). The indices of the ns correspond to

the numbers of the MZM.
By changing the coupling between the MZM and the ability to read out, for example,

γ1 and γ4 we have performed a basis change. Say we want to read out n14 = c†
14c14, where

c14 = 1
2 (γ1 + iγ4). To check what n14 is, we have to go from |n12,n34〉 to |n14,n23〉.

After the basis change we have effectively preformed U34U23, as shown in Figure 2.7.
In the ground state |012,034〉5, we obtain the following equality:

1 2 3 4

1 2 34

Figure 2.7: The effective braiding performed by changing the basis from |n12,n34〉 to |n14,n23〉 .

|012,034〉 =
1
p

2
(|014023〉+ i |114123〉) . (2.9)

Two proposals[17, 35] to achieve braiding through basis change are being pursued
by multiple research groups[36].

5We keep the indices to see which MZM belongs to which fermionic state.
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THEORY

Your theory is crazy, but it’s not crazy enough to be true.

Niels Bohr

A proper understanding of the theory is very important if we are to make our experiments

work. In this chapter, we discuss most of the effects that are seen in, or are important

for, our measurements. Although we try to discuss everything in depth, we would also

point the interested reader to the references within this chapter, which often contain a

more extensive discussion of the topics.

We start with an introduction to superconductivity but try to move on as quickly as possi-

ble to the measurable effects of voltage, current and conductance response. The workhorse

systems which we use in our experiments are Josephson junctions with a thin oxide layer

or a nanowire as a weak link between the two superconductors. Nanowire systems with

superconductivity are especially interesting since it has been proposed that these systems

can host Majorana zero modes (MZM) when an external magnetic field is applied.

We also describe an on-chip detection technique for high-frequency radiation that can

provide a signature of the fractional Josephson effect and the origin of Majorana bound

states (MBS).

Finally, we discuss the subgap response of superconductor-insulator-superconductor (SIS)

junctions with an inelastic Cooper-pair tunneling current, which can probe the microwave

absorption of an Andreev bound state spectrum.

15
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3.1. INTRODUCTION
Although this is an experimental thesis, theory plays an important role in it. Getting a
firm grasp of theory and ‘understanding’ is beneficial for the experimentalist involved in
the experiment.

We start this chapter with the (almost magical) phenomenon of superconductivity,
in Section 3.2. First, we introduce BCS theory (Section 3.2.1) and from there we go on to
the mesoscopic effect of Andreev reflection on a superconductor-normal (SN) interface
(Section 3.2.2).

The next section (3.3) is dedicated to Josephson junctions. We start by discussing
the underlying cause of the supercurrent in Josephson junctions, namely the Andreev
bound states, in Sections 3.3.1 and 3.3.2. Roughly, Josephson junctions can be divided
into two types: junctions with a thin insulator as a weak link (Section 3.3.3) and ones with
a normal/semiconductor weak link (Section 3.3.4). Lastly, we discuss split junctions in
Section 3.3.5.

An important part of the theory of MZM is discussed in Section 3.4, starting with the
Kitaev model (the first proposal for MZM in 1D condensed matter systems), in Section
3.4.1. This is followed by a realistic model for the creation of MZM in accessible semi-
conductor nanowire systems in Section 3.4.2. Coupling between MZM is discussed in
Section 3.4.3. We show that the presence of MZM in an superconductor-normal metal-
superconductor (SNS) Josephson junction forms a topological junction in Section 3.4.4.

Charging physics with (or without) Josephson coupling is discussed in Section 3.5.
In Section 3.6 we discuss the quasiparticle response of an SIS junction in the presence

of a microwave field using noise theory.

3.2. SUPERCONDUCTIVITY
Superconductivity is important in this thesis and needs to be introduced and explained
properly. The macroscopic effect of superconductivity is that it is possible to pass a cur-
rent through a material without any dissipation[37]. Because of this, magnetic fields are
prevented from penetrating the material by dissipationless eddy currents, known as the
Meissner effect. This effect means that superconducting materials are perfect diamag-
nets, since no magnetic fields can exist in the core of a superconducting material.

As far as possible, we present an intuitive view of the physics with corresponding
formulas. Although the theory of superconductivity was developed by Bardeen, Cooper
and Schieffer (BCS)[38], in this section we refer to [39, 40] extensively as well as several
recent theses from Saclay[41–43].

3.2.1. BCS THEORY

The origin of superconductivity lies in the formation of electron-electron bound states,
called Cooper pairs. The formation of Cooper pairs seems on the face of it unlikely since
electrons have a negative charge, leading to mutual repulsion. Actually, this repulsion is
screened by the presence of a large background of free electrons and negatively charged
ions in the lattice. This screening effect does not lead to superconductivity since it does
not cause an attractive interaction between the electrons, but it does reduce the strength
of the repulsion.
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The attractive term comes in through the introduction of an electron-lattice inter-
action. The idea of electron-lattice interaction is as follows: when an electron passes
through the positively-charged ion lattice of a metal, the negative electron will disturb
the positive lattice locally, as shown in Figure 3.1a. Due to this interaction, the lattice is
deformed, increasing the local charge density slightly and making it more attractive for
another electron. The distortion of the lattice by the first electron is actually absorbed
by the second electron[44, 45]. This is schematically depicted in Figure 3.1. The lattice
distortion is called a phonon. If this phonon interaction is stronger than the screened
Coulomb repulsion, this leads to superconductivity. Lattice distortion is a key feature of
the theory of superconductivity and was experimentally confirmed in 1950. These ex-
periments measured multiple isotopes of superconducting mercury and found that the
superconducting transition temperature Tc is related to the mass of the nucleus (m) via

Tc ∝ m− 1
2 , indicating that the vibration of nuclei of different masses gives a small devia-

tion in Tc . This is known as the isotope effect[46, 47].

-

++
++++ +

++
++++ +

-

++
++++ +

++
++++ +

a

b

Figure 3.1: a An electron disturbs the positively charged lattice by exciting a vibrational mode, or phonon. This
makes it locally attractive to another electron, which absorbs the phonon in b.

Electrons preferentially form singlet pairings, since this is the lowest energy state. A
theoretical description that favours the lowest energy state, through singlet pairings and
zero-momentum states, seems reasonable since metals only exhibit superconductivity
at low temperatures, where the system is most likely to be in its lowest energy (or ground)
state. An important contribution by Cooper to the BCS theory was that only k and −k

correlations were necessary and not all possible options between k and k ′. This pairing
between k and −k gives Cooper pairs zero net momentum, the lowest energy state.

The BCS Hamiltonian shown in eq. 3.1 adds Cooper-pair creation and annihilation
operators to the Schrödinger equation. Second quantization language is used where c†

(c) creates (annihilates) an electron. The mean-field approximated Hamiltonian is

HBCS =
∑

k

[
ξk↑c†

k↑ck↑+ξk↓c†
k↓ck↓+∆c†

k↑c†
−k↓+∆ck↓c−k↑

]
, (3.1)
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where ξk↓,↑ = ħ2k2

2m
−µ comes from the Schrödinger equation. The first part is the kinetic

energy, where ħ is the reduced Planck constant, k the momentum, and m the mass. µ

is the (chemical) potential. ∆ is the bound-state energy of the Cooper pairs, which we
assume to be real and positive. The Hamiltonian conserves spin (↑,↓) and parity and
these are still good quantum numbers. However, the number of particles is not a good
quantum number due to the creation and annihilation of Cooper pairs in the last two
terms, which is a direct consequence of the mean field approximation.

BOGOLIUBOV-DE GENNES EQUATIONS

To investigate the BCS Hamiltonian further, we consider the Bogoliubov-de Gennes (BdG)

Hamiltonian. Introducing Ψk =
(

ck↑
c†
−k↓

)
it is as follows:

HBCS =
∑

k

Ψ
†
k

(
ξk↑ ∆

∆ −ξk↓

)
Ψk +

∑

k

ξ−k↓ =
∑

k

Ψ
†
kHBdGΨk +

∑

k

ξ−k↓. (3.2)

This approach divides HBCS into two parts, where the second part is the vacuum
state, which fills the complete k parameter space up to the Fermi energy. This depends
on the definition of Ψk, as is extensively discussed in ref. [42].

The first part describes excitations from the vacuum state. The energies (eigenval-

ues) of HBdG are E± = ±
√
ξ2

k +∆2, indicating that there are two (eigen)states. We pro-

pose |k+〉=
(
uk

vk

)
, corresponding to E+, and |k−〉=

(
vk

−uk

)
1, corresponding to E−. Solving

HBdG|k±〉= E±|k±〉 and normalizing the eigenstates gives

uk =
√√√√

1

2
+ 1

2

ξk√
ξ2

k +∆2
(3.3)

vk =
√√√√

1

2
− 1

2

ξk√
ξ2

k +∆2
. (3.4)

To understand this result, we turn superconductivity off by setting ∆→ 0 and com-
pare the result to eq. 3.1, which is now the normal Schrödinger equation. This gives

|k+〉=
(
1
0

)
, corresponding to E+ = ξk, which are the energies from the Schrödinger equa-

tion. We can conclude that uk = 1, vk = 0, together with the positive energy solutions,
describe electron excitations due to this correspondence with the Schrödinger equation
solutions. Similarly, |k−〉 and the negative energy solution (E− = −ξk) describes a hole2

excitation or annihilation of an electron for E < 0. |k−〉=
(

0
−1

)
.

When we turn superconductivity back on by setting ∆ 6= 0, we always obtain finite
values for both uk and vk, indicating that we have both electron and hole excitations at

1The states are defined so as to guarantee orthogonality and u and v are assumed to be real.
2The positive and negative energy solutions are like particle (electron) and anti-particle (hole or absence of

electron) solutions in the Dirac equation.
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the same time. For the E+ solution, we obtain an electron-like excitation since uk > vk,
as we can see from eqs. 3.3 and 3.4. In the same way, the E− solution gives a more hole-
like excitation since uk < vk. It is convenient to introduce new particle operators that
describe these excitations as electron and hole superpositions, called quasiparticles:

b+ = ue c†
k↑+ ve c−k↓ E > 0 (3.5)

b− = uhc†
k↑+ vhc−k↓ E < 0. (3.6)

To make it clearer whether u and v are electron- or hole-like, we redefine |k+〉 =(
uk

vk

)
≡

(
ue

ve

)
and |k−〉 =

(
vk

−uk

)
≡

(
uh

vh

)
. For larger positive (negative) energies (ξk →±∞)

we obtain more pure electron (hole) states due to the divergence of eqs. 3.3 and 3.4,
leading to ue ≫ ve (uh ≪ vh). At very high positive or negative energies the quasiparticles
do not feel the presence of the Cooper pairs any more.

We have introduced Cooper pairs and shown that we cannot talk about electrons or
holes individually any more, introducing instead the quasiparticle states b±. The cor-
responding energies are E± = ±

√
ξk +∆2, giving a minimum energy of ±∆ when ξk = 0.

The Cooper-pair creation not only introduced quasiparticle states but also a minimum
excitation energy of ∆ to the available states. This gap, without any quasiparticle states,
is called the superconducting gap, as was already briefly mentioned in Section 2.3.

In the absence of superconductivity (∆→ 0), electron momenta are described by k =√
2m
ħ2

(
E +µ

)
. With superconductivity (∆ 6= 0) we have ξ = ±

p
E 2 −∆2 = ħ2k2

2m
−µ, giving

the momenta as

k± =
√

2mµ

ħ2
± 2m

ħ2

√
E 2 −∆2, (3.7)

where k+ is actually ke and k− is kh. This is an important variable in describing Andreev
reflection at an SN interface.

QUASIPARTICLE DENSITY OF STATES

In early (condensed matter) Majorana experiments the density of states (DOS) was in-

vestigated using tunnel spectroscopy. The DOS is proportional to dξ
dE

and is given by[39]

DOS ∝
{ |E |p

E 2−∆2
|E | >∆

0 |E | <∆

. (3.8)

This is shown in Figure 3.2. There is a clear gap of 2∆ and the DOS has peaks at
around ±∆.

3.2.2. THE SUPERCONDUCTOR-NORMAL INTERFACE

In the previous section, via eqs. 3.3, 3.4 and 3.7, we found complete expressions for
quasiparticle states in superconductors. When investigating the interface between the
superconductor (S) at x > 0 and the normal metal (N) at x < 0, we have to satisfy bound-
ary conditions at x = 0. Assuming no (δ-function) barrier between the superconductor
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DOS

E

-E

a b

E=0

Figure 3.2: a Superconductor DOS with all the available states below E = 0 filled. There is a 2∆ gap around E = 0,
known as the superconducting gap. b Same as a but a single quasiparticle is excited, forming an electron-hole
pair.

and the normal metal, these conditions are[48]:

ΨSC(0) = ΨN(0) (3.9)
dΨSC(0)

d x
= dΨN(0)

d x
. (3.10)

The wavefunctions for the N and S sides are given by

ΨN(x) =
(

1
0

)
e i kN,ex +B

(
1
0

)
e−i kN,ex + A

(
0
1

)
e i kN,hx (3.11)

ΨSC(x) = C

(
ue

ve

)
e i kex +D

(
uh

vh

)
e−i khx . (3.12)

The momenta kN,e and kN,h can be obtained from eq. 3.7 with ∆ = 0. We continue
by assuming µ ≫ ∆ ∼ E , which is typically the case for metals where µ ∼ 1− 10eV and

superconductors where E ∼ ∆ ∼ 0.1− 3meV. Thus kN,e ≃ kN,h ≃ ke ≃ kh ≃ kF =
p

2mµ

ħ .
This simplification makes the boundary condition given by eq. 3.10 easier to fulfill.

ANDREEV REFLECTION

We now consider an electron coming in from the N side by setting the electron amplitude
of the term with +kN,e in the exponent to one in eq. 3.11. The trajectory of this electron is
coloured blue in Figure 3.3. At the SN interface the electron can either reflect specularly,
via an Andreev process, or both. We start by analyzing full specular reflection, shown as
event 2 in Figure 3.33.

3In eq. 3.11 the incoming electron is perpendicular to the SN interface, which is why there is a minus sign in
front of the momentum for the reflected electron. In Figure 3.3a the electron is depicted as coming in at an
angle to make drawing it easier.
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Quasiparticle

a

1

2
2∆

SN

x=0 x-x x=0 x-x

y

b

E

E=0
1

2

Electron Hole Cooper-pair

SN

Figure 3.3: a Schematic drawing of specular reflection where an electron (blue arrow) bounces off the SN in-
terface due to the presence of a high barrier. Alternatively, it could undergo Andreev reflection, where the
incoming electron is reflected by a hole (black arrow), leaving a Cooper pair on the S side. b The same event as
in a but now showing energy versus position (x).

With full specular reflection there is a barrier at the SN interface that effectively makes
the superconductor irrelevant, and since the wavefunction does not penetrate the super-
conductor we can set C = D = 0. If we also set A = 0 and B = 1, indicating full electron
reflection, the current IN S is as follows[49]:

IN S = GN

e

∫∞

−∞

[
f (E −eV )− f (E)

][
1−|B(E)|2 +|A(E)|2

]
dE , (3.13)

where e is the electron charge, GN the normal state conductance of the barrier and f (x) =(
1+e

− x
kb T

)−1
the Fermi-Dirac distribution. T is the temperature and kb is Boltzmann’s

constant. For the case of specular reflection 1−|B(E)|2 +|A(E)|2 = 0 and hence the total
current is zero for all voltages, V , as expected for full reflection.

If there is no barrier, the transmission T = 1 and the specular reflection amplitude
B = 0. Transmission now happens via Andreev reflection, namely via retroreflection of a
hole from the interface (event 1 in figure 3.3a) and the creation of a Cooper pair on the S
side. The probability of retroreflection is |A|2, derived by using the boundary condition
(eq. 3.9) at x = 0. We obtain

1 = Cue +Duh (3.14)

A = C ve +Dvh . (3.15)

Since the inbound electron has an excitation E > 0, it makes sense that the quasipar-
ticle on the S side should also have positive energy. We can therefore set the hole-like

excitation amplitude D = 0, giving the Andreev probability |A|2 =
∣∣∣ ve

ue

∣∣∣
2

. The amplitude

|A| and the argument arg(A) are plotted in Figure 3.4a and b. In the region |E | < ∆, |A|2
is 1. For this region 1− |B(E)|2 + |A(E)|2 = 2, indicating a doubling of the current as a
function of applied voltage, V . This current enhancement can also be seen from the
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Figure 3.4: a The amplitude of A with no barrier at the SN interface, and hence T = 1. b The same as a but now
plotting the phase of A. c-f The amplitudes of A and B for transmissions of 0.9, 0.6, 0.3 and 0.1.

wavefunction since for every incoming electron a hole is reflected back. The momen-
tum of the hole on the N side is the same4 as the incoming electron but in the opposite
direction. Before we analyse what happens on the S side after the Andreev reflection, we
analyse the case where the probability of transmission is finite, 0 < T < 1.

By introducing a barrier (I) we obtain an SIN system, and by adjusting the barrier
height we can obtain any finite transmission, 0 < T < 1. The barrier is a δ-function at x =
0, which breaks the boundary condition eq. 3.10[48]. By solving the boundary conditions
we can find B and A, which are given in ref. [49] as

B = ueveT

u2
e + (T −1)v2

e
(3.16)

A =
p

1−T
(
u2

e − v2
e

)

u2
e + (T −1)v2

e
. (3.17)

4We do not analyse the momentum in this thesis, but it has been done in ref. [40]. There is actually a small
momentum difference, on the order of ∆

µ . µ (the Fermi energy) is typically measured in electronvolts but ∆ is

at most a few millielectronvolts, so this is negligible.
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Figure 3.5: In a the current is calculated as function of applied voltage V using eq. 3.13. The dashed line is the
current-voltage relation of a linear element. b The differential conductance G of the SN interface as a function

of V , obtained by d I
dV

, normalized to the the normal state conductance GQT . GQ = 2e2

h
is the conductance

quantum.

|B | and |A| are plotted for a few different transmission values in Figure 3.4c-f. From
the amplitudes of B and A it is possible to calculate the current through the SIN junction
and the differential conductance as a function of applied V using eq. 3.13. These are
plotted in Figure 3.5 for the same transmission values.

From Figure 3.5b it can also be seen that the conductance within the gap depends
only on the transmission. Beenakker derived a formula for the ratio between the con-
ductance outside the gap (V →∞) and at zero voltage[50]:

G(0)

G(∞)
= 2T

(2−T )2
. (3.18)

This conductance ratio is often used to claim that Andreev reflection is the dominant
effect at an SN interface.

From the conductance trace shown in Figure 3.5b for T = 1 we can see that the con-
ductance doubles. For each incoming electron, a hole is reflected and a Cooper pair is
created on the S side. This doubling is not obvious from eq. 3.11. That wavefunction only
includes eigenstates of HBdG, which are quasiparticle excitations from the ground state.
The ground state, however, consists of Cooper pairs, which are not described by HBdG. If
we take a closer look at the quasiparticles on the S side, we observe that the wavefunc-
tion is an exponentially decreasing function due to the complex momenta defined by
eq. 3.7 within the gap (|E | < ∆). This effectively means the quasiparticle wavefunction
is composed of evanescent waves. The current carried by these quasiparticles is trans-
ferred to the Cooper-pair condensate, and is calculated in the supplement of ref. [49].
The decaying wavefunction increases the charge of the Cooper-pair condensate. Also,
the Andreev reflection itself increases the charge of the condensate, since the electron
charge −e is not fully absorbed by the quasiparticle, which has charge (v2

e −u2
e)e. This

charge mismatch at the S(I)N-interface directly increases the Cooper-pair condensate
charge.

This intermediate state of quasiparticle decay is shown in Figure 3.3. For T = 1, there
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is no quasiparticle decay since C and D are zero, the Cooper pairs being directly created
in the condensate by the Andreev reflection.

In the model used in this section and in ref. [43, 49] the proximity effect is not taken
into account. To do this (even more) properly, we need to take ∆=∆(x) in HBdG, which
makes it self-consistent since Andreev reflection leads to the proximity effect. In ad-
dition the electron, hole and quasiparticle momenta are expected to be unperturbed
because only ballistic trajectories are described. This is not expected to be the case for
quasiparticles in strong disorder superconductors such as NbTiN. Another important as-
sumption we made is that kN,e ≃ kN,h ≃ ke ≃ kh ≃ kF, which is correct when the N side is
a metal but not when it is replaced by a semiconductor.

It is almost magical that the model can still be used and works even with a semicon-
ductor, a finite-size barrier, the proximity effect and scattering[12, 21, 51].

3.3. JOSEPHSON JUNCTIONS
Josephson junctions consist of two superconducting electrodes, where the supercon-
ducting phases are linked via a bound state. The bound state is hosted in a weak link
which could be almost anything. To derive the bound states in the weak link we use an
N section so that we can make use of the formulas derived in Section 3.2.2. Our model
therefore describes a SNS junction, as drawn in Figure 3.6. This gives us two SN inter-
faces where Andreev reflections can occur. Also, since there is now a bound region due
to the interfaces, bound states can be established. Due to the Andreev reflection at the
interfaces such a bound state is called an Andreev bound state (ABS).

SX

x=0 x-x

S

d

0

|Ψ|
Re Ψ

Figure 3.6: Schematic drawing of an SNS Josephson junction showing the real part of the wavefunction versus
position. An Andreev bound state is present between the two SN interfaces, allowing Cooper pairs to transfer
from one side to the other.

3.3.1. THE ANDREEV BOUND STATE
To understand the physics of Josephson junctions we have to introduce the supercon-
ducting phase that we neglected before. In general, the superconducting phase (φ) can
be neglected if only a single superconductor is considered. We have seen this, for ex-
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ample, with Andreev reflection. If there are multiple superconductors, however, a phase
difference can be defined which can host interesting physics. A Josephson junction is
such an example and in Appendix B we derive the allowed energies of the ABS. Due to
their confinement between the two SN interfaces, not all energies are allowed. Only dis-
crete energy states that depend on the superconducting phase difference δ are found.

There is a clear difference between the energy states in long N regions, d ≫ ξCOH, and
short ones, d ≪ ξCOH, where d is the length of the weak link, see Figure 3.6, and ξCOH

is the superconducting coherence length. When d ≪ ξCOH, the junction is considered
short. Effectively, the SN interfaces are so close to each other that only one ABS per
channel can be established in the N part of the junction. The energy dispersion of this
state with perfect transmission is

EA =±|∆|cos
δ

2
. (3.19)

This dispersion in depicted in Figure 3.7b by the black line.
In the derivation of the ABS energy, a single subband is assumed. We find that each

conductance channel can handle a single ABS in the short junction limit. And since the
Andreev reflection mechanism does not mix up conductance bands, additional conduc-
tance channels do not affect each other.

It is possible to add an impurity to the channel that can cause backscattering. The
Andreev bound state energy is then

EA =±|∆|

√

1−T sin2 δ

2
. (3.20)

Short-junction ABS with T = 1 and T = 0.5 are depicted in Figure 3.7b.
The opposite limit, d ≫ ξCOH, is known as the long junction limit and the ABS ener-

gies are given by

±EA,±,l ≃ħvF

d

[
δ

2
−π(

1

2
± l )

]
, (3.21)

where l = 0,1,2, . . . , N . N is reached when EA is close to |∆| and the approximation
arcsin EA

|∆| ≈ 0 ceases to hold. This assumption is used in Appendix B. The energy lev-
els of the ABS in a long junction are depicted in Figure 3.7a, both for perfect and finite
transmission.

For long junctions the arcsin-term causes non-linear dispersion in the ABS, increas-
ing as EA → |∆|. This dispersion will be important when we discuss the supercurrents
carried by ABS in long Josephson junctions.

3.3.2. SUPERCURRENTS CARRIED BY ANDREEV BOUND STATES
We need to find an expression for the supercurrent in a Josephson junction. For this we
use the general expression for the power P , which is

P = dE

d t
= dE

dφ

dφ

d t
= IV. (3.22)

The voltage across a Josephson junction is given by the AC Josephson effect, namely[52,
53]



3

26 3. THEORY

0

∆

a b

0

-∆
2π 4π02π 4π0

πħ
v

F

d

-πħ
v

F

d

δ δ

EE

 d > T=1T=0.5T=10<T<1   < ξ
COH

> ξ
COH

 d <

Figure 3.7: a The energy levels of ABS in long junctions with perfect transmission (black line) and finite trans-
mission (grey line). b The energy levels of ABS in short junctions with perfect transmission (black line) and a
transmission of T = 0.5 (grey line).

V = ħ
2e

dφ

d t
. (3.23)

By combining eqs. 3.22 and 3.23 we find the following general expression for the
current carried by phase-dependent energy states:

I = 2e

ħ
dE

dφ
, (3.24)

where E represents the energy states that are occupied. In the low temperature limit
|∆|≪ kBT , all the ABS below E = 0 are occupied.

When only the state below E = 0 is occupied we are in the ground state, which we call
the zero state, |0〉. When the state is occupied by a quasiparticle, this changes the parity
of the ABS to the one state, |1〉. This uncontrolled process of ABS occupation by quasi-
particles is called quasiparticle poisoning. In the |1〉 state either both Andreev bound
states are occupied or both are empty. If a second quasiparticle joins a |1〉 state, or a
Cooper pair breaks from a |0〉 state, the ABS changes to |2〉. In this state, the state −EA is
empty and EA is filled. These four states can be viewed in two different ways, the semi-
conductor picture and the excitation picture. Both pictures describe the same physical
situation but visualize it differently, as shown in Figure 3.8.

Now we shall consider the corresponding supercurrent for all four possible states.
We are going to use both pictures to explain the supercurrent and the excitations shown
in Figure 3.8. In the |0〉 state, the state corresponding with −EA is filled since we are in
the ground state. The supercurrent in this case, assuming perfect transmission, is5

I|0〉 =−2e

ħ
dEA

dφ
= e|∆|

2ħ
sin

δ

2
−π< δ<π. (3.25)

The range of δ is set to ensure that EA is the ground state. The excitation picture
shows no excitation since in the ground state only Cooper pairs are considered. The

5We do not take into account the 2-fold spin degeneracy of the ABS.
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Figure 3.8: a The four occupation possibilities for Andreev bound states in the semiconductor picture. b As a
but shown using the excitation picture.

excitation is better described by this picture since adding a single quasiparticle occupies
EA, changing the state to |1〉. The same state can be reached by either adding or removing
a quasiparticle in the semiconductor picture. Changing to the excitation picture changes
the quasiparticle representation defined in eqs. 3.5 and 3.6, as these were defined for the
semiconductor picture. Now instead we have

b†
+ = b†

↑ (3.26)

b− = b†
↓. (3.27)

In the second quantization formalism, the possible transitions to the |1〉 state can be
described as follows: |1〉 = b†

+|0〉 = b−|0〉 = b†
↑|0〉 = b†

↓|0〉. The two different pictures also
give different energies for the states, as shown in Figure 3.8. Both views are still physical
since the Hamiltonian H can be raised by any constant potential, in this case EA. The
relative energies between all states are equal in both views.

The semiconducting picture better describes the supercurrent. For example, as can
be seen from the picture the state |1〉 does not carry any supercurrent, since the states
are either symmetrically filled or empty around zero energy. This indicates that either
there is no supercurrent or there is a supercurrent in both directions at the same time,
which is effectively the same as having no supercurrent.

The last case we need to consider is the |2〉 state, where only the excited level is oc-
cupied (in the semiconductor picture), or the ABS is double-occupied (in the excitation
picture). This state can be reached either by adding another quasiparticle (|2〉 = b†

+|1〉 =
b−|1〉 = b†

↑|1〉 = b†
↓|1〉) or by breaking a Cooper pair to go directly from |0〉 to |2〉. In the
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semiconductor picture this second possibility is described as |2〉 = b†
+b−|0〉 = b−b†

+|0〉,
while in the excitation picture it is |2〉 = b†

↑b†
↓|0〉 = b†

↓b†
↑|0〉.

In the semiconductor picture, it is clear that the state occupation is the mirror (about
zero energy) of that for the ground state. The energy is EA, meaning the supercurrent is
as follows:

I|2〉 =
2e

ħ
dEA

dφ
=−e|∆|

2ħ
sin

δ

2
−π< δ<π. (3.28)

The supercurrent has changed without changing the shape of the ABS itself, comparing
the |2〉 state to the |0〉 state. The |1〉 state does not carry any supercurrent.

As we have seen, it takes two quasiparticles to go from the |0〉 state to the |2〉 state.
This means they have the same parity, namely even parity. This is clearly visible in the
excitation picture but not in the semiconductor picture. In general, superconducting
systems prefer even-parity ground states, defining the ground state parity. In experi-
ments this even ground state is often found, but sometimes quasiparticle poisoning is
also observed[54, 55].

3.3.3. WEAK LINKS: SIS JUNCTIONS

In an SIS junction the weak link is an insulator (I). Often aluminium (Al) is used for the
superconducting leads and aluminium oxide (AlOx) for the insulating barrier, as in Chap-
ters 7, 8 and 9. A schematic drawing of an Al/AlOx/Al SIS junction is shown in Figure 3.9a.
However, one superconducting lead can also be a different metal, such as the NbTiN that
is used in Chapter 6.

Since the barrier is insulating the transmission is low, because the electrons can
hardly penetrate the high barrier of the insulator. To obtain the desired supercurrent the
barrier thickness, d , can be tuned – typically from a few Ångstroms up to 10 nanometers.
This is often done by adjusting the oxidation time of the aluminium, as was done for the
SIS junction in this thesis.

The number of channels (NCH) is large for a SIS junction, typically 5 · 103/µm2[56,
57]. Combining the transmission with the number of channels gives the normal state
resistance, GN, as follows:

GN =GQ

NCH∑

i=1
Ti. (3.29)

This is known as the Landauer formula[53], where GQ = 2e2

h
= R−1

Q is the conductance

quantum GQ and RN =G−1
N is the normal state resistance or conductance.

JOSEPHSON EQUATIONS FOR SIS JUNCTIONS

To calculate the supercurrent in an SIS junction we use eq. 3.24, where in the ground
state (low temperature) all ABS with transmission Ti are occupied. Since Andreev reflec-
tion does not mix up conductance channels, we can write the ground state energy for an
SIS junction as

ESNS =−|∆|
NCH∑

i=1

√

1−Ti sin2 δ

2
. (3.30)



3.3. JOSEPHSON JUNCTIONS

3

29

Eq. 3.24 can be used to derive the supercurrent:

ISNS =
e|∆|
2ħ

NCH∑

i=1

Ti sinδ
√

1−Ti sin2 δ
2

. (3.31)

In the limit of low transmission in all channels (Ti ≪ 1) and making use of the Lan-
dauer formula we obtain

ISIS =
π|∆|

2eRN
sinδ= IC sinδ. (3.32)

This last equation shows the DC Josephson effect. First derived by Brian D. Josephson[52],
it won him the Nobel prize in 1973. It describes the current that flows in an SIS junction
as a function of the phase difference δ between the superconductors. The upper limit on
the current that the ABS of an SIS junction can carry is IC = π|∆|

2eRN
. The maximum current

is obtained when δ = ±π
2 . If a current larger than IC is applied, the junction becomes

resistive and a voltage drop appears across the SIS junction. This voltage drop winds the
phase evaluation according to the AC Josephson effect, given in eq. 3.23.

From the AC and DC Josephson equations the Josephson inductance for an SIS junc-
tion can also be derived:

V = L
d I

d t
→ L =V

(
d I

d t

)−1

= ħ
2eIC cosδ

. (3.33)

The Josephson inductance can be tuned by changing the phase between the super-
conductors, which makes it a non-linear element. The phase can be tuned by current-
biasing the Josephson junction using the DC Josephson effect.

Finally, we also would like to know how to include an SIS junction in a Hamiltonian.
For this, start from eq. 3.30 and do a Taylor expansion for a single energy solution to first
order in Ti (since we have assumed Ti ≪ 1), which yields:

EA ≃−|∆|
NCH∑

i=1

(
1−Ti sin2 δ

2

)
=−|∆|

4

NCH∑

i=1
(Ti cosδ−Ti +4) . (3.34)

Since Hamiltonians do not care about constants, we drop those and redefine
|∆|
4

∑NCH
i=1 Ti = EJ. EJ is called the Josephson coupling strength and is proportional to IC as

follows: EJ = ħIC
2e

. The SIS junction Hamiltonian therefore becomes

H =−EJ cosδ. (3.35)

This is the Hamiltonian we will use for the analysis in Section 3.5.

THE RCSJ MODEL

The RCSJ model describes the current-voltage (IV) characteristic of a Josephson junction
in a realistic environment. The environment is modelled by a capacitor and a resistor in
parallel, depicted in Figure 3.9b. SIS junctions often have a thin barrier between the two
superconductors, and this overlap naturally forms a shunting parallel-plate capacitor, as
can be imagined from the drawing in Figure 3.9a. Often this intrinsic capacitance makes
the largest contribution to the total capacitance.
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The intrinsic resistance for an SIS junction is made up of the quasiparticle resistance
RQP, for |V | < 2e

∆
, and the normal state resistance RN, for |V | ≫ 2e

∆
. The quasiparticle

resistance is high for kBT ≪∆, due to the superconducting gap present in the DOS which
suppresses the current flow. The normal state resistance is determined by the thickness
and area of the barrier, typically (in this thesis) in the range 5kΩ–100kΩ.

AlO
x

Al

R

JJ

C

I

a b

Figure 3.9: a Schematic drawing of an SIS junction made out of aluminum/aluminium oxide/aluminum
(Al/AlOx/Al). Due to the large overlap and the thin barrier, the parallel-plate capacitance of the two super-
conductors is the dominant capacitance. b Schematic drawing of the electronic circuit that represents an SIS
junction in the RCSJ model.

The current through an SIS junction is described by Kirchhoff’s circuit laws, giving a
total current of

I = IC sinδ+ V

R
+C

dV

d t
. (3.36)

This gives the total current in terms of two variables. To eliminate one variable we use
the AC Josephson relation (eq. 3.23):

0 = IC sinδ− I + ħ
2eR

dδ

d t
+ ħC

2e

d 2δ

d t 2
. (3.37)

This is similar to the equation of motion but with the phase difference δ instead of the
position x:

0 = dU (x)

d x
+ c

d x

d t
+m

d 2x

d t 2
, (3.38)

where U (x) is the potential of an object with mass m and friction c. This makes the fric-
tion proportional to 1

R
and the mass proportional to the capacitance C . In this analogy,

the potential is then given by6

U (δ) =−ħI

2e
δ−EJ cosδ. (3.39)

The potential for different bias currents is shown in Figure 3.10a. This potential is
often referred to as the washboard potential7.

Since SIS junctions also have an inductance, given by equation 3.33, we can also con-
sider the circuit as a parallel LCR circuit, meaning we can define a plasma resonance

ωP = 1p
LC

=
√

2eIC cosδ
ħC

and a quality factor Q =ωPRC = R

√
2eC IC cosδ

ħ .

6We have multiplied U (δ) by ħ
2e to give it the proper units of potential energy.

7Named after the bumpy metal plate that our (great-)grandparents used for washing clothes. Do not worry if
you have not heard of it, it is not relevant.
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THERMAL FLUCTUATIONS

To maintain the analogy with the equation of motion, we are tilting the potential U (δ) by
current-biasing the SIS junction. For I < IC there is a potential minimum, which gives a
static solution of δ. The bias current fluctuates due to noise, which means the potential
tilt also fluctuates. We can incorporate this by rewriting the current as I = I +δI , i.e. as
an average current of I with fluctuations on the order of δI .

The fluctuations in current change the tilt of the potential (on top of the I tilt), while
phase fluctuations change the minima of the washboard potential. These two equiva-
lent views of the noise in the system are drawn in Figure 3.10b. If the noise gets too large,

it can overcome the remaining barrier height ∆U ≃ 2EJ

(
1− I

IC

) 3
2

, as depicted in Figure

3.10c. In this case, the system settles into the next minimum, winding the phase. This
phase winding will produce a voltage according to the AC Josephson effect. If the ‘mass’,
C , is large (Q > 1) the system will not stop at this next minimum and instead will con-
tinue to gain phase and voltage[58]. The phase velocity will increase until the V of the
resistor R is high enough to take all the DC current. Ideally, the resistor R will now be
the normal state resistance RN because the quasiparticle resistance is too large to allow
enough current to flow.

I=0

2I=I
C

I=I
C

I=2I
C

U

δ

2I=I
C

δ

2E
J

ΔU

2I=I
C

a b

c

Figure 3.10: a The potential of an SIS junction for different bias current values. This potential is often called
the washboard potential due to its bumpy shape and tilt. b Fluctuations in the bias current effectively tilt the
potential, and can also be seen as fluctuations in the phase of the system. c For a bias current of I < IC, it is
possible for the additional noise to overcome the potential barrier ∆U , in which case the system settles into
the next minimum and the phase winds by 2π. When C is large, the system can continue winding the phase
and enter the running state.

The current needed to prematurely cause a voltage across the junction in this way
is called the switching current ISW. IC is only the maximal value of the experimentally
accessible ISW. After many successive measurements, the average value of ISW can be
approximated by[59]8

〈ISW〉 ≃ IC

[
1−

[
kBT

2EJ
ln

(
ωP∆t

2π

)]]
, (3.40)

where ∆t is the time that is needed to sweep the current through the distribution of
switching currents. It is important to note that for constant temperature 〈ISW〉 seems to
be proportional to IC, but this is not actually the case since both EJ and ωP depend on IC.

8The exact limits on the validity of this formula are given in ref. [59].
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To give an example of the reduction of the measured 〈ISW〉 versus IC, let us assume an
SIS junction with C = 2fF, IC = 20nA,T = 20mK and a ∆t of 0.1s. This gives 〈ISW〉=8.1nA,
compared to only 0.7nA for IC = 10nA.

R0(I ) = h

4e2

ħωP

kBT
e
− ∆U

kBT . (3.41)

Z (ω)-ENVIRONMENTS

We investigated switching currents in SIS junctions by considering their intrinsic capac-
itance and resistance. In real measurements, there could also be stray capacitances from
the grounding leads or additional inductances. Large inductances can result from the ki-
netic inductance of the superconducting leads. We model the environment as a parallel
element Zenv(ω) in Figure 3.9b. The Josephson junction is an AC current source at finite
voltage with an output of I = IC sin 2eV t

ħ = IC sinωJt , whereωJ is the Josephson frequency.
The total DC and AC dissipation is then

P = IV =
I 2

C

2
ℜ [Z (ω)]+

V 2

RQP
, (3.42)

which gives an extra current term of I = I 2
C

2V
ℜ[Z (ω)], where we combined Zenv(ω) and C

to form Z (ω). The possibility of dissipation into the environment changes eq. 3.37, and
influences ISW.

In general, Zenv(ω) is constant due to fixed resistors, capacitors and geometric/kinetic
inductance. However, if there are multiple junctions in a circuit, the Josephson induc-
tance can change a lot due to gate- or flux-dependent IC.

In Chapter 7 and 8, the environment is dominated by a resistor R. This case is studied
extensively in [41, 60], and the influence of temperature on the subgap current is plotted
in Figure 3.11a. The zero temperature result is exact. The other IV traces are for EJ ≈ kBT ,
but the approximation in the equation used is also valid for EJ ≪ kBT . The results are
close to what is expected based on the exact results in refs. [41, 60].

We see two clear regions. One is the zero-voltage region where the supercurrent
branch is, although due to phase diffusion a voltage develops at finite temperature. The
second region is where the current drops as the voltage rises, since the power that the
environment can absorb stays constant. This effect explains the experimental IV trace
shown in Figure 3.11b.

In Appendix E, we discuss and show the subgap current (0 < 2eVbias < ∆) of an SIS
junction in different Z (ω)-environments. This is essential to understanding the experi-
ments in Chapters 7 and 8, and especially in Chapter 9.

3.3.4. WEAK LINKS: SNS JUNCTIONS
The important difference between an SIS junction and an SNS junction is that we cannot
take the limit of many channels and low transmission which brought us from eq. 3.31 to
eq. 3.32. If we stick to eq. 3.31, however, we can do all the same derivations as in Section
3.3.3.

We give an overview of the SNS junctions used in our lab in Figure 3.12a and indicate
typical transmission ranges, numbers of ABS and the short- and long-junction limits.
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Figure 3.11: a Simulated IV of a Josephson junction for V < ∆, for zero temperature (blue) and increasing
temperature (blue<red<green<purple). The zero temperature result is an exact solution, while the other IV
traces are analytic approximations for EJ ≪ kBT and 10−100R ≈ RN. The equations given in ref. [60] are used.
b Measured IV trace of a device used in Chapter 8, with a parallel resistance of ∼ 500Ω when RQP ≈ 0.5MΩ.
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Figure 3.12: a Junctions with ξ∼ d (ξ≫ d) are shown in light grey (red). Information about typical transmission
ranges and numbers of ABS is extracted from refs. [43, 56, 61–63] with large error bars. b The CPRs for a single-
channel SNS junction in the short-junction limit, for several different transmissions.

Many junctions are not clearly short or long, which makes analysis of the ABS more
difficult. For this thesis we use nanowire junctions with typical lengths of 50–200nm
and a coherence length in the nanowire of 260nm[14]. This makes them more like short
junctions than long junctions, so we will use the short junction ABS equations.

SUPERCURRENTS IN SNS JUNCTIONS

We use eq. 3.31 to calculate the supercurrent and for simplicity we assume one channel.
A single-channel regime is easily achieved in the nanowires used in this thesis[12, 64, 65].
Additional channels can also be added to the mode since Andreev reflection does not mix
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channels. The supercurrent can be calculated as a function of the phase:

ISNS =
e|∆|
2ħ

T sinδ
√

1−T sin2 δ
2

. (3.43)

In Figure 3.12b the current phase relations (CPRs) for different transmissions are
shown. The CPRs for high transmission are skewed forward compared to a normal si-
nusoidal CPR. The CPR can be expressed in terms of Fourier series as follows:

ISNS =
e|∆|
2ħ

∞∑

n=1
An(T )sinnδ, (3.44)

where the Fourier coefficient An(T ) is transmission-dependent. It is important to notice
that the only higher frequencies that can occur are multiples of the CPR frequency. The
amplitudes of the higher harmonics increase with increased transmission. The presence
of the higher harmonics can be observed directly by Shapiro measurements[33, 66].

LANDAU-ZENER TUNNELING

If a system is driven by a non-adiabatic source, it can change its eigenstate. This is also
possible in a system with ABS and we call this effect Landau-Zener (LZ) tunneling. This
is shown in Figure 3.13a (b) for long (short) junctions. We consider the short junction
model. The gap at δ = π,3π... is given by EA,gap = 2∆

p
1−T . When the system is driven

with a voltage V , on the order of EA,gap/e, it is possible to change ABS occupation at
δ= π,3π.... Such a transition is allowed since it conserves parity, as can be seen in both
the excitation and semiconductor pictures in Figure 3.13d. Intuitively, LZ tunneling can
be understood as follows. The voltage is proportional to the phase velocity, which is
essentially the same as the velocity, as we move along the x-axis of the energy spectrum.
At higher velocities δ=π,3π..., there is a larger probability to shoot through to the other
branch. This probability p is given by[67]:

p = e−
(1−T )∆

eV . (3.45)

We are going to investigate the ABS case with T = 0.99, depicted in Figure 3.13b. The
gap at δ=π is 0.1∆, and if we apply a voltage of V = 0.1∆/e the probability of LZ tunnel-
ing is ∼ 73%. This means that there is a large double-period (half-frequency) component
in the current-phase relation at this voltage. The probability is plotted for different trans-
missions and applied voltages in Figure 3.13g.

At small magnetic fields, such that the ABS split linearly, LZ transitions can also occur.
It was not possible to find a proper reference for LZ transitions at finite magnetic field,
but since this effect is important for the experiments in Chapter 8 we still discuss it here.
In Figure 3.13c, two possible LZ transitions are drawn. Possibility 1, shown at δ = π, is
for both spin ABS to change branch. In this case (for small fields) the energy difference
stays the same, indicating that the LZ probability does also. The transition is parity-
conserving, as can seen in the excitation picture in Figure 3.13e. Possibility 2 is shown at
δ = 3π. In principle this is not an allowed transition but due to quasiparticle poisoning
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it may be possible9. An important difference between this and possibility 1 is that the
energy gap of possibility 2 is smaller, indicating a larger probability of LZ tunnelling.
However, not only is this transition not allowed by parity, it is also not spin conserving.
This will (probably) reduce the probability, but by precisely how much is unclear.

It is also possible to LZ tunnel at δ = 0,2π.... The system loses or gains two particles
depending on the availability of quasiparticles above or below the gap. After a successful
LZ tunneling event at δ = π,3π..., it is also possible to LZ tunnel to the continuum at
δ= 0,2π..., giving again a CPR with a normal period[68].

THE ANDREEV HAMILTONIAN

In Figure 3.8 the the four possible ABS are shown, with their corresponding energies. The
Hamiltonian can be constructed both in the semiconductor and the excitation picture,
and both give the same result up to an energy difference, which is irrelevant as previously
discussed. Using the semiconductor picture, we obtain

HA = EA

(
b†
+b+−b†

−b−
)

. (3.46)

We can introduce ΨA =
(
b−
b+

)
to obtain

HA =−EAΨ
†
A

(
1 0
0 −1

)
ΨA =−EAσz, (3.47)

where σz is the Pauli z matrix. It is important to note that we have obtained a Hamilto-
nian with only two eigenvalues, ±EA. These energies correspond to the parity-conserving
states |0〉 (−EA) and |2〉 (EA).

The Hamiltonian of eq. 3.47 is valid for a constant or adiabatically slowly-changing
phase difference between the superconductors. In the case of phase dynamics, LZ can,
for example, result in different state occupations with certain probabilities p. To show
this we assume a time-dependent state |ψ(t )〉 = a(t )|0〉+b(t )|2〉, governed by the time-
dependent Schrödinger equation:

iħ∂|ψ(t )〉
∂t

= HA|ψ(t )〉 (3.48)

iħ
[
∂a

∂t
|0〉+ ∂b

∂t
|2〉+ ∂δ

∂t

(
a
∂|0〉
∂δ

+b
∂|2〉
∂δ

)]
= −EA [b(t )|2〉−a(t )|0〉] . (3.49)

We take the following relation from ref. [43]:

∂|0〉
∂δ

= c(δ,T )|2〉 (3.50)

∂|2〉
∂δ

= −c(δ,T )|0〉, (3.51)

9The phase winding in experiments is typically 5–40GHz, and quasiparticle poisoning on that timescale seems
unlikely given the results of experiments with similar setups[43].
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Figure 3.13: a Long-junction Andreev bound states, with multiple gaps in the spectrum where LZ can occur.
b Short-junction ABS with T = 0.99. At δ = π,3π..., LZ can occur with probability p. This doubles the period
of the current-phase relation in SNS junctions. c Possible LZ events in ABS with small applied magnetic fields
which give spin-split ABS. d Semiconductor and excitation pictures of the (parity-conserving) LZ depicted in
b. e Excitation picture of the LZ tunneling event which is drawn as event 1 in c. f Same as e but for LZ event 2.
It can clearly be seen that this event is not parity conserving.
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where c(δ,T ) is a constant that depends on the phase difference δ and the transmission
T . Combining this with eq. 3.49, we can calculate 〈0|HA|ψ(t )〉 and 〈2|HA|ψ(t )〉.

iħ
[
∂a

∂t
+ ∂δ

∂t
b

]
= a(t )EA (3.52)

iħ
[
∂b

∂t
+ ∂δ

∂t
a

]
= −b(t )EA (3.53)

The ABS states are coupled. We can rewrite the static Hamiltonian HA as the dynamic
Hamiltonian H̃A[43, 69]

H̃A =
(

−EA iħc ∂δ
∂t

−iħc ∂δ
∂t

EA

)
=−EAσz −ħc

∂δ

∂t
σy. (3.54)

For any phase dynamics
(
finite ∂δ

∂t

)
the Pauli y matrix, σy, is part of the Hamiltonian,

meaning that |0〉, |2〉 are no longer eigenstates of the Hamiltonian.

The last thing that we need to take into account is the quantum behaviour of the
phase and charge. It is not possible to talk about well-defined phase and charge states
as we did in Figure 3.8 to derive the eigenstates if the ABS system is hooked up to an ex-
ternal circuit. The reason for this is that the charge and phase operators, N̂ and δ̂, do not
commute:

[
δ̂, N̂

]
= i . This also needs to taken into account for the Andreev Hamiltonian,

which was done by Zazunov et al.[70, 71]. The result is

ĤA =−ℜ(U )σz −ℑ(U )σy, (3.55)

where U = ∆

[
cos δ

2 + i
p

1−T sin δ
2δ

]
e−

p
1−T δ

2 . This is the proper expression for the An-

dreev Hamiltonian, as will also be used in Chapter 9.

JOSEPHSON EQUATIONS – SNS

We have seen in the derivation of the CPR for SNS junctions that it is not perfectly sinu-
soidal. In eq. 3.44 we wrote the CPR as a Fourier series, indicating the clear presence of
higher harmonics. Due to LZ tunneling, subharmonics are also possible: Figure 3.13b
shows a halving of the frequency due to LZ tunneling. The DC Josephson relation can be
written as[41, 72]

IABS =
e|∆|
2ħ

∑
n

∑
m

An,m(T )sin
n

m
δ. (3.56)

We did not say that n,m range from 1 to ∞. In principle this should be the case, but
typically in experiments (performed using short junctions with high transmission) the
range for n is between 1 and 4 while m is 1 or 2[41, 73].

The phase winding is still given by the AC Josephson effect, namely δ = 2πV
ħ t . By

substituting this into eq. 3.56, it can be seen that there are now current oscillations
with frequencies of 2πn

m
V . This could result in fractional voltage steps, called Shapiro

steps[41, 66].
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Figure 3.14: a The nanowire model used in this section, where ∆
∗ is the induced gap in the nanowire. The grey

region is a superconductor with a gap of ∆, which is kept constant in all models. b-e ABS with transmission
T = 0.74 and gap ∆ are shown in grey. For all subfigures the magnetic field is varied according the inset value
of β.

π AND φo JUNCTIONS

The ABS in the previous section are textbook in the sense that they only interact with the
NS interface twice and have a scatter point giving a transmission of 0 < T < 1. In MZM
research, we also need to consider magnetic field and spin-orbit coupling in ABS. In refs.
[64, 74, 75], ABS are calculated accounting for magnetic field and spin-orbit coupling.

The model we consider is an SNS junction where only the N part is exposed to the
magnetic field. This leaves the S parts unmodified by the magnetic field10. The nanowire
in Figure 3.14a has two regions with induced superconductivity ∆

∗ and an N part with
a scatter point which reduces the transmission from unity. The ABS energy solutions
are given in ref. [75] and plotted in Figure 3.14b-e. The strength of the magnetic field

is expressed by β = µBBd
ħvF

, where d is the junction length. When β = π, the ABS is fully

10In Chapter 9 a theory will be discussed (arising out of the theory collaboration with Yale University on that
project), which includes the reduction of the induced gap in the nanowire due to Zeeman splitting. See also
ref. [64].
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inverted, as shown in Figure 3.14e. The lowest energy is now at δ=π11 and this junction
is called a π junction. The magnetic field is applied along the nanowire in the model of
ref. [75]. The dispersion relation (without superconductivity, ∆ = 0) is plotted in Figure
3.21c-d and is strictly symmetric. This also results in symmetric ABS. Due to the angle-
dependence of the magnetic field and the effective spin-orbit field, however, the disper-
sion is asymmetric[76]. This can lead to ϕ0 junctions, which were recently demonstrated
experimentally[77].

JOSEPHSON RADIATION

When a Josephson junction is voltage-biased, the phase winds according to the AC Joseph-
son relation. By putting the AC relation into the DC relation, we obtain (for SIS junctions)
I = IC sin 2eV

ħ t , where 2eV
ħ =ω. For ABS we obtain

IABS =
e|∆|
2ħ

NCH∑

i=1

Ti sinωt
√

1−Ti sin2 ωt
2

. (3.57)

Both the SIS and SNS junction expressions give an oscillating supercurrent at finite
voltage. These supercurrents are composed of Cooper pairs oscillating from one super-
conductor to the other. Figure 3.15a shows a visualisation of the way these Cooper pairs
jump forwards and backwards.

V V

a b

Figure 3.15: a Oscillating supercurrent, shown as Cooper pairs tunneling forwards and backwards. b A Cooper
pair jumps to the other side by emitting a photon (Ephoton =ħω= 2eV ). The Cooper pair cannot tunnel back
to its original side, due to the inelastic process of emitting a photon.

When a Cooper pair jumps in Figure 3.15a, we can visualize this as the emission of
a (virtual) photon. This photon is then reabsorbed by the Cooper pair so that it can
tunnel back to the original side. In Figure 3.15b, this photon is instead absorbed by the
environment, meaning that the Cooper pair tunnels inelastically.

We can look at the spectrum that is emitted due to these current oscillations. For an
SIS junction, the spectrum is

SI,SIS(ω) =
I 2

C

4

[
δ

(
ω+ 2eV

ħ

)
+δ

(
ω− 2eV

ħ

)]
, (3.58)

where δ(x) is a Dirac-delta pulse (0 everywhere, except at x = xo where the function is
∞) and the integral over all x is one. The peak in the spectrum at negative frequency in-
dicates emission and the one at positive frequency is due to absorption. We will continue
this noise spectrum analysis in Section 3.6.

11We only show +EA, but the ground state energy is −EA.
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3.3.5. SPLIT JUNCTIONS
A split junction is also known as a superconducting quantum interference device (SQUID).
It consists of two superconducting arms, with a Josephson junction in each. Figure 3.17a
and b shows a DC-SQUID. The DC-SQUIDS used in this thesis have SIS junctions in both
arms (Chapter 7 and 8) or an SIS junction in one arm and a nanowire junction in the
other (Chapter 9). Scanning electron microscope (SEM) images of these two cases are
shown in Figure 3.16.

a b

Figure 3.16: a SEM image of a SQUID with an SIS Josephson junction in both arms. The tunnel junctions are
Al/AlOx/Al overlap junctions, as shown in Figure 3.9a. b SEM image of a hybrid SQUID with an SIS junction in
the right arm and an SNS nanowire Josephson junction in the other.

The total current in the SQUID is conserved and in case of two SIS junctions it is

Itot = IC,1 sinδ1 + IC,2 sinδ2. (3.59)

We now have to calculate the maximum allowed supercurrent Itot. For this we have
to find the allowed values of δ1,δ2. If we neglect any possible phase gradients in the
arms, except at the SIS junctions, we obtain the following relation for the magnetic flux
applied to the loop:

δ1 −δ2 =
2π

Φ0

∫
B ·dA = 2π

Φ

Φ0
=ϕ, (3.60)

where the surface A is defined by the dashed square in Figure 3.17b. If we fill in this
relation we get

Itot = IC,1 sin
(
ϕ+δ2

)
+ IC,2 sinδ2. (3.61)

We have now obtained a CPR for a SQUID where can set ϕ using the external flux.
If the SQUID is current-biased, the phase δ2 will adjust to conform to eq. 3.61 up to
a maximum current of Itot, which is the critical current of the SQUID. The critical cur-
rent for different ratios between IC,1 and IC,2 is shown in Figure 3.17c. For large current
asymmetries (IC,1 ≪ IC,2), δ2 ≈ π

2 and the applied flux drops over the weaker junction,
determining the critical current oscillations. In this limit the CPR of a junction with IC,1

can be probed by a π
2 phase shift.

If we keep Itot = 0 and instead phase-bias the junction, we get δ2 ≈ 0 in the asymmet-
ric limit and the phase applied via the flux will drop over the weaker junction.
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Figure 3.17: a Schematic of a SQUID with one Josephson junction in each arm. b Schematic of a SQUID with
finite-size arms, where the dashed box shows the region that encloses the flux, Φ. c Critical current oscillations
as a function of applied flux, obtained by maximizing eq. 3.61 for δ2.

The other case we consider is a SQUID with an SIS junction in one arm and a nanowire
junction in the other, described using the SNS model. This SQUID is drawn as an inset
to Figure 3.18d and is called a hybrid SQUID. For simplicity, we assume a single channel
(NCH = 1), giving a total current of

Itot =
e|∆|
2ħ

T sin
(
ϕ+δ2

)
√

1−T sin2 ϕ+δ2
2

+ IC,1 sinδ1. (3.62)

In this case, the SQUID is asymmetric for e|∆|
2ħ T ≪ IC,1 and all of the phase due to

the applied flux drops over the nanowire junction. In the supplement to Chapter 9, we
discuss the case where e|∆|

2ħ T < IC,1. There we give an analytic approximation and an
exact numerical result for the phase drop δ1 over the SIS junction in a nanowire SQUID.
In Figure 3.18 we show, for e|∆|

2ħ T ≈ IC,1 and e|∆|
2ħ T < IC,1, the ABS winding, δ2 and critical

current of a nanowire SQUID as a function of applied flux, ϕ. More examples are shown
in Appendix D.
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Figure 3.18: a-c For e|∆|
2ħ T ≈ IC,1, we show in a the ABS with δ2=0 and the analytically exact results obtained

from eq. 3.62. b Numerically exact values and analytical approximations of the phase drop δ2. c The maximum

allowed supercurrent for a nanowire SQUID. d-f The same as a-c but in the limit e|∆|
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3.4. MAJORANA PHYSICS
The goal of the research group within which this PhD was conducted is to further under-
stand and control MZM. The theory of MZM is therefore important and will be discussed
in this section. There have been many developments in the theory after the initial experi-
ment confirming the existence of MZM[9]. We cannot discuss them all, and will only dis-
cuss the landmark papers which led to the initial idea of creating MZM in semiconductor
nanowires. We start with the Kitaev (toy) model that shows the existence of MZM in one-
dimensional systems. This is followed by a discussion of the proposed experimentally-
accessible system, which models 1D nanowires including spin-orbit coupling, super-
conductivity and magnetic fields. Possible signatures of MZM in Josephson junctions
are discussed in Section 3.4.4.

3.4.1. THE KITAEV TOY MODEL
The system proposed by Kitaev is a 1D system with N lattice sites, where each site j can
be occupied by a single (spinless!) electron[4]. The Hamiltonian is

Hchain =
N∑

j=1

−t (c†
j cj+1 + c†

j+1cj)−µc†
j cj +∆

∗cjcj+1 +∆c†
j+1c†

j , (3.63)

where the creation and annihilation of electrons is represented by the operators c† and
c. t is the hopping term, µ the on-site charging energy and ∆ the superconducting gap.
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The last two terms of Hchain represent the creation and annihilation of a paired electron,
i.e. a Cooper pair.

The idea of ‘spinless’ electrons does not seem right. Actually, however, if eq. 3.63
included spin it still would work, but all the spins would have to be ↑ or ↓: the system
would have to be spin-polarized.

Due to the creation and annihilation terms for Cooper pairs in the Hamiltonian, par-
ticle number is not a conserved quantity. This gives rise to a superposition state of an
electron c† and the absence of an electron c. These excitations are called Boguliubov
quasiparticles, which were introduced in Section 3.1. They can be defined as follows:

γ2j−1 = γ†
2j−1 = (c†

j + cj) (3.64)

γ2j = γ†
2j = i (c†

j − cj). (3.65)

This is a special case, since the superposition is an equal superposition of c† and c,
meaning γ= γ†. This is (so far) not a realistic system since the electrons c† are spinless,
but it is still useful.

The definitions given in eqs. 3.64 and 3.65 make the Majoranas in this system non-
fermionic. The normal fermionic commutation relations are

{cn,c†
m} = δnm (3.66)

{cn,cm} = {c†
n,c†

m} = 0, (3.67)

where δnm is 1 (0) if n = m (n 6= m). These commutation relations allow us to calculate
commutation relations for the MZM, which are

{γi,γj} = {γ†
i ,γ†

j } = {γ†
i ,γj} = 2δij (3.68)

γγ† = γ†γ = 1. (3.69)

These are not the same as the fermionic commutation relations.
To rewrite Hchain using Majorana operators γ, we rewrite eqs. 3.64 and 3.65:

cj = 1

2
(γ2j−1 + iγ2j) (3.70)

c†
j = 1

2
(γ2j−1 − iγ2j). (3.71)

Kitaev’s Hamiltonian using Majorana operators is therefore

H =
N∑

j=1
i (t +|∆|)γ2j−1γ2j+2 + i (t −|∆|)γ2j+1γ2j −µ(iγ2j−1γ2j+1). (3.72)

A special case arises when t =−|∆| and µ= 0, as now

H = i t
N−1∑

j=1
γ2jγ2j+1. (3.73)
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This is interesting, since γ1 and γN are no longer part of the Hamiltonian; they are un-
paired MZM at the end of the 1D lattice[4]. The uncoupled MZM form a non-local
fermion, c = 1

2 (γ1 + iγN) and c† = 1
2 (γ1 − iγN). This means that in this limit the Hamil-

tonian does not have a preference for an odd or even number of electrons, due to this
non-local fermionic state with zero energy.

This creation of unpaired MZM happens at the sweet spot t = −|∆| and µ = 0. Ref.
[4] shows that in fact the condition for unpaired MZM is |µ| < |2t | and ∆ 6= 0, making it
robust against small fluctuations in µ, t or ∆. The difference between this and the sweet
spot is that the wavefunctions of the unpaired MZM do not extend into the rest of the
system and the MZM do not overlap.

1 2 3 4 65 2N-1 2N

1 2 3 4 65 2N-1 2N

a)

b)

Figure 3.19: a A representation of lattice sites (green plates) occupied by electrons which contain two coupled
MZM. b In the limit of |µ| < |2t | and ∆ 6= 0, MZM of neighboring sites are coupled, leaving two unpaired MZM
at the end of the 1D chain.

If the wavefunctions of the outer MZM do overlap with strength t ′, the contribution
to the Hamiltonian is

Hoverlap = i t ′γ1γN = t ′ (2nMZM −1) , (3.74)

which is actually the parity operator introduced in Section 2.3. We can conclude that fill-
ing the outer MZM with an electron without MZM wavefunction overlap costs no energy.
If there is an overlap, it costs an additional energy of 2t ′[78].

3.4.2. THE SEMICONDUCTOR/SUPERCONDUCTOR APPROACH
As was mentioned in the previous section, a p-wave superconductor is effectively needed
to create MZM in condensed matter systems. Unfortunately, no materials with that kind
of superconducting property exist in nature. To create a p-wave superconductor, we
need to combine several material properties[7, 8]. At the heart of this proposal is a 1D
semiconducting nanowire. The necessary ingredients of the nanowire are strong spin-
orbit interaction (SOI), a large g-factor and low disorder12. This, in combination with ap-
plied magnetic field and induced superconductivity, can lead to the emergance of MZM.

As we will see, the orientation of the 1D nanowire compared to the spin-orbit direc-
tion and magnetic field is important. We define the nanowire direction to be along the
x-axis, which is also the direction of the magnetic field. The nanowire is on a surface with

12This is not derived or explained in this thesis, but good references are [79, 80]
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Figure 3.20: Schematic depiction of a cylindrical nanowire on a surface. This picture is important in defining
the co-ordinate system of the nanowire.

a gate dielectric in the negative z direction. This nanowire orientation is shown in Figure
3.20. We can construct a full Hamiltonian for this system, including all the necessary ef-
fects to create MZM, similarly to eq. 3.1. If we take eq. 3.1 without the superconductivity
(∆= 0), we obtain the Schrödinger equation. The kinetic and potential energy solutions
for the Hamiltonian[48] are

E↑,↓ =
ħ2k2

x

2m
−µ. (3.75)

We obtain two solutions since we treat particles with different spins separately. The di-
rection of spin ↑,↓ is chosen arbitrarily since the Hamiltonian has no direction prefer-
ence. The energy solutions are shown in Figure 3.21a.

The first ingredient of MZM that we discuss is the SOI. The Hamiltonian for the spin-
orbit interaction, derived in Appendix C, is

HSO =−α

ħ
pxσy. (3.76)

Due to the potential gradient in the nanowire, the moving electron sees an effective mag-
netic field. The electron spin aligns with this effective magnetic field, giving the spin a
preferred direction, namely the eigenstates of σy, which we define as ←,→. The energy
solutions are

E←,→ =
ħ2k2

x

2m
−µ±αkx, (3.77)

as shown in Figure 3.21b. The two parabolas are shifted in momentum by the spin-orbit
effect, with an offset of kSO = mα

ħ2 . They are also shifted down in energy by the spin-orbit

energy ESO = mα2

2ħ2 .
The magnetic field is aligned with the nanowire direction, i.e. the x-axis. The Hamil-

tonian for the magnetic field13 is

HZ = 1

2
gµB(B ·σ) = 1

2
gµBBxσx. (3.78)

g is the g -factor, which is material-dependent and is like an amplification factor between
the magnetic field and the Zeeman energy, EZ. µB is the Bohr magneton. The energy so-
lutions with only a magnetic field are given by EZ =± 1

2 gµBBx for the two spin directions
of σx. The solutions are plotted in Figure 3.21c.

13We use the index Z for the magnetic field Hamiltonian because the effect of magnetic field on spin is called
the Zeeman effect.
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Figure 3.21: Energy dispersion of a nanowire Hamiltonian with different combinations of effects. In all cases,
µ = 0. a Solutions to the Schrödinger equation alone b Solutions including the spin-orbit effect or c only the
Zeeman effect. d The spin-orbit and Zeeman effects combined. The limit ESO = 2EZ = m = ħ = 1 is used for
plotting.

More interesting is the combination of the Schrödinger equation with both a mag-
netic field and the spin-orbit effect. The energy solutions are

E± =
ħ2k2

x

2m
−µ±

√
α2p2

x +E 2
Z. (3.79)

These energy solutions are plotted in Figure 3.21d for 1 = ESO = 2EZ = m =ħ. At zero mo-
mentum the spin-orbit effect does not play a role, and the spin states are simply eigen-
states of HZ. For large momentum, when α2k2

x ≫ EZ, the eigenstates are defined by the
spin-orbit effect. This is also shown by the spin orientation in Figure 3.21d.

Without superconductivity we have seen that there is pairing, which results in the
zero momentum and singlet-spin configuration shown earlier in this section. If we turn
on superconductivity (∆ 6= 0) the only available states at −k and +k are electrons with
spins of ց,ւ. This results (partly) in triplet pairing of Cooper pairs if superconductivity
is induced in the system. One can ask why SOI is necessary in the first place, as from
Figure 3.21c it looks like it would be possible to obtain full p-wave pairing with only a
magnetic field. We will try to explain this in the next section.

Adding superconductivity to the Hamiltonian, we get a gapped system, as shown at
the beginning of this chapter and also in Figure 3.22 (grey line). In this gapped system,
two different gaps can be defined. The gap at zero momentum (k = 0) is given by

Egap,k=0 =
√
∆2 +µ2 −|EZ|. (3.80)
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Figure 3.22: Energy dispersion of a nanowire Hamiltonian including superconductivity (∆= 1) and with µ= 0.
For all subfigures, the grey lines are for the energy solutions with 1

2 ESO = m = ħ = 1 and EZ = 0. The spin

direction is drawn for the k = 0 case but offset to finite k for visibility. a 1
2 ESO = m =ħ= 2EZ = 1 b 1

2 ESO = m =
ħ= EZ = 1 c 1

2 ESO = m =ħ= 1
2 EZ = 1 d m =ħ= 1

2 EZ = 1 and ESO = 0.

When we increase the magnetic field in Figure 3.22a-c, we indeed see the gap at zero
momentum closes when∆= |EZ|. But after this point the gap opens up again for∆< |EZ|.
This inverted gap is topologically different from the gap shown by the grey line (Figure
3.22c). If we have an inverted gap in the nanowire system (at x = xo), there must also
be two points where it crosses to the trivial gap (one at x < xo and the other at x > xo),
as shown in Figure 3.22b. These crossings between the trivial and topological gaps are
the locations of the MZM. Although not shown here, the eigenstates obey the Majorana
condition of eqs. 3.64 and 3.65. The parameters ∆ and µ can change as a function of x,
getting us in and out of the topological gap. There are MZM at all these transitions.

The gap at finite momentum is given approximately by[33]

Egap,k ≃
2∆ESO√

ESO

(
2ESO +

√
E 2

Z +4E 2
SO

) . (3.81)

For ESO
EZ

≪ 1, this simplifies to Egap,k ≈
∆

p
ESOp
EZ

. In this limit, it is clear that ESO needs to be

finite to obtain a gapped system. The opposite limit is ESO
EZ

≫ 1, where the gap is given by
∆.

The gap can also be closed by changing the angle of the magnetic field to line up with
the effective magnetic field of the SOI. This tilts the spectrum of Figure 3.22, where we
find the gap also closes at finite magnetic field as shown in ref. [76].
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3.4.3. EXPONENTIAL COUPLING BETWEEN MAJORANAS
We have seen that MZM are zero-energy states and that they always come in pairs. The
MZM wavefunctions are described by [81]

Ψ(x) ∝ e
− x

ξ e i kFx , (3.82)

where ξ is the effective coherence length of the MZM (measured at 260nm in ref. [14])
and kF is its effective Fermi momentum. Both parameters depend on ESO, EZ andµ as we
will discuss later, the exact expressions being given in ref. [81]. The MZM wavefunction
overlap makes the MZM couple, giving them a finite energy splitting. They push each
other away from zero energy. The splitting is given by

∆E ≈ħ2kF
e
− 2L

ξ

mξ
cos(kFL) , (3.83)

where L is the distance between the MZM. Assuming this distance is fixed, changing kF

gives energy oscillations and weak amplitude changes. The effective coherence length,
ξ, strongly influences the amplitude due to being in the exponent. When EZ is increased,
ξ and the oscillation amplitude also increase[81].

If it is possible to extend the topological region (by gate tuning[16]) the MZM become
more separate and the coupling and oscillation amplitude decrease. If the induced su-
perconductivity gap is larger, then the coherence length decreases ( 1

ξ ∼ ∆). The discus-
sion of ESO is more complicated, though it is discussed in certain limits in ref. [81].

3.4.4. TOPOLOGICAL JUNCTIONS
Topology was introduced in Section 2.3 as the study of different classes of objects. Now
we would like to discuss the difference between trivial junctions (such as the ones we
have already discussed) and the non-trivial junctions we will consider in this section.
Non-trivial junctions are often referred to as topological junctions. These junctions are
topologically different because the bound state has an odd number of crossings with
E = 0 (for 0 < δ < 2π), where trivial junctions have an even number of crossings as can
seen in the examples in Figure 3.7b and 3.13b. A trivial ABS with T = 1 seems to have an
odd number of crossings, but the whole lower branch is the same parity state (|0〉), so in
fact there are no crossings there.

As a consequence, the ABS states for a topological junction are 4π-periodic, instead
of the 2π periodicity of the trivial junctions discussed before.

MAJORANA BOUND STATES

No phase dependence was introduced in the Kitaev model in Section 3.4.1 when we de-
fined the MZM. This is important when there are multiple superconductors involved, as
we have seen in Appendix B. Taking phase into account, eqs. 3.64 and 3.65 become

γ1 = (c†
1e i

φ1
2 + c1e−i

φ1
2 ) (3.84)

γ2 = i (e−i
φ2
2 c†

1 − c1e i
φ2
2 ), (3.85)

where φ1,φ2 are the superconducting phases on the left and right superconductors and
γ1,γ2 are overlapping as shown in Figure 3.23a. These are the only MZM used in deriving
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Figure 3.23: a Schematic view of MZM (in purple) overlapping in a topological junction. b The energy-phase
relations for MBS states with even parity (solid line) and odd parity (dashed line). c Zoomed-in view of the
MBS at δ=π,3π, ..., where the outer Majorana’s overlap with the middle ones is taken into account, leading to
opening of a gap. Figure adapted from ref. [82].

MBS. (Perhaps this junction is a ring, or extends very far in both directions compared
to the coherence length.) When γ1 and γ2 overlap, they form a fermionic state whose
occupation n can be defined via eq. 2.3. Defining φ2 = δ

2 and φ1 = −δ
2 , we get a phase

difference of φ2 −φ1 = δ and the joint occupation n1 becomes

n1 =
1

2

(
1+ iγ1γ2

)
= 1

2

(
1−e i δ

2

)
+ c†

1c1 cos
δ

2
, (3.86)

which is indeed eq. 2.3 if we take δ= 0. When we wind the phase (δ= 2π), the occupation
is opposite because we obtain n1 = 1−c†

1c1; a fermion has effectively been transferred to
the MBS[4]. Another wind (δ= 4π) is necessary to change back to the original situation.
The occupation of MBS is now again given by n1 = c†

1c1 and another fermion is trans-
ferred to the MBS, making the Josephson current 4π-periodic and topologically different
from a trivial ABS.

The energy of the bound state between the two MZM is[83, 84]

EMBS =±∆TOPO

p
T cos

δ

2
, (3.87)

which is 4π-periodic as expected and, as with the trivial junction, has positive and neg-
ative solutions. These two energy solutions are plotted in Figure 3.23b. One MBS state
is bound to E = 0, the other instead bound to the gap edge. The two energy solutions
differ by occupation difference, as with ABS. The solid line shows even parity (n = 0) and
the dashed line odd parity (n = 1). This means that the ground state parity changes if we
wind the phase. Now there is no parity preference (for even parity) as there was with triv-
ial ABS, since there are now zero-energy Majoranas. If there are quasiparticles and the
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phase winds slower than the quasiparticle poisoning time, MBS can change occupation
and the energy becomes 2π-periodic.

We have neglected the presence of MZM at the other end of the topological region. If
there were, for example, also MZM at the leftmost and rightmost sides of the junction in
Figure 3.23a, these MZM could also overlap with the MZM at the junction. The overlap of
these MZM opens the gap at δ=π,3π, ..., as shown in Figure 3.23c. But when the phase is
driven quickly compared to the energy gap, the system can LZ tunnel to the other branch
and still show 4π-periodicity.

JOSEPHSON EQUATIONS - TOPO

Using eq. 3.24, we can calculate the DC Josephson effect for an MBS, giving

I = e∆TOPO
p

T

2ħ
sin

δ

2
= IMBS sin

δ

2
, (3.88)

assuming that the system cannot change occupation due to a long quasiparticle poison-
ing time. If it is possible to relax to the ground state, the CPR is I ∝ |sin δ

2 |, which is
2π-periodic. Apart from the difference in periodicity, there is also a clear difference in
the strength of the supercurrent. In the MBS case I ∝

p
T , while for ABS it is I ∝ T .

The last important difference is the gap. In case of MBS, it is a topological gap, which
is (far) above the topological transition given by eq. 3.81 and depends on the spin-orbit
strength, the initial zero-magnetic-field gap ∆ and the adjustable Zeeman energy.

If we substitute the conventional AC Josephson relation, ħω = 2eV , into eq. 3.88,
we obtain current oscillations at half the characteristic Josephson frequency. Often this
effect is described in the literature as the fractional Josephson effect[85].

MAJORANA RADIATION

Due to the 4π-periodicity of the MBS, the CPR is also 4π-periodic. The noise spectrum
of the current changes to

SI,MBS(ω) =
I 2

MBS

4

[
δ

(
ω+ eV

ħ

)
+δ

(
ω− eV

ħ

)]
. (3.89)

Where before we could describe the Josephson radiation in terms of Cooper pairs
jumping and emitting photons, we now have photons with half the energy. We can see
this as electrons jumping and emitting photons with energy ħω= eV .

When the junction is voltage-biased with a finite voltage which is smaller than the en-
ergy gap due to the overlap of the outer MZM (see Figure 3.23c), the CPR is 2π-periodic
but the amplitude of the current oscillation is still IMBS. A detailed analysis is performed
by Pikulin and Nazarov in ref. [82]. Another way of recovering 2π-periodicity is by quasi-
particle poisoning, discussed in detail by San-Jose et. al. in ref. [86]. The last possible
effect that can restore the 2π-periodicity is LZ tunneling to the continuum, which was
discussed in ref. [68] by Houzet et. al. When there is LZ tunneling to the continuum, the
state also changes occupation and 2π-periodicity can be restored naively. In the supple-
ment to ref. [68], the noise spectrum for this case is calculated but no strong 2π signal is
found. This effect leads to broadening of the 4π signal.
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These three effects set limits on the voltage bias. Without discussing the three papers
in detail, we set a voltage window where 4π-periodicity should be observed. For a 2µm-
long topological section, the MZM coupling strength is less than a microvolt [14]. If we
then set a (low) voltage bias, V = 2µV, ∆TOPO = 30µV and a transmission of T = 0.5 we
obtain an LZ probability of 0.75. This is enough to reveal a clear strong 4π effect, as is
shown in ref. [82].

We can analyse LZ tunneling to the continuum with the same gap and transmission.
If we take a high voltage bias of V = 15µV, the probability to LZ is 0.314. This probability
still shows a strong 4π contribution in the noise spectrum, as is seen in the supplement
to ref. [68].

The quasiparticle poisoning time in nanowire devices has been shown to be around
10ms[22], and the voltage range needed is 2–15µV. This corresponds to 1–10GHz, which
is much faster than the expected quasiparticle poisoning time. It is therefore not ex-
pected that quasiparticle dynamics can destroy the 4π periodicity.

3.5. CHARGING AND JOSEPHSON PHYSICS
The proposed realization of MZM braiding relies on charging and Josephson physics[17,
35]. As discussed earlier, braiding changes the parity of the MZM and for this reason we
investigate the parity of NbTiN in Chapter 6. To do this we put two Josephson junctions

in series with NbTiN in-between forming an island, with charging energy EC = e2

2C
. This

setup is shown in Figure 3.24a. The maximum allowed supercurrent depends on the
parity of the island, giving us access to the parity lifetime.

3.5.1. SINGLE ELECTRON TRANSISTORS

Single electron transistors (SET) are often mixed up with quantum dots (QD). The differ-
ence is that on the island of a SET there are many electrons. The only additional energy
required to add an electron is the charging energy EC, since the orbital energy is negli-
gible. A QD exists in a few-electron regime where the orbital energy is sizeable. A SET
is schematically depicted in Figure 3.24b. In direct current measurements, the current
flows from the source (S) to the drain (D). This is possible since the capacitors drawn
in Figure 3.24b are (normal) tunnel junctions. The island is capacitively coupled to a
gate which can change the ground state energy of the system. The gate is not a tunnel
junction. The Hamiltonian of an island is given by

Hisland = EC

(
n −

VgCg

e

)2

= EC
(
n −ng

)2
, (3.90)

where n is the discrete number of electrons on the island, Vg the voltage potential of the
gate and Cg the capacitance of the gate to the island. The total charging energy is defined

by EC = e2

2CΣ
, where CΣ =Cg +C1 +C2, which are all the capacitances between the island

and the outside world. The energy levels are shown in Figure 3.24c, where although we
are in the many-electron regime we start counting from n = 0 for convenience. If the
gate voltage is changed slowly, the system will stay in the ground state, indicated by the

14We read this off from Figure 1 in ref. [68], which gives numerical results for LZ tunneling to the continuum.
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thick black line. For ng = 1
2 , 3

2 , . . . the island adds or removes an electron to the source or
drain to stay in the ground state.
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Figure 3.24: a An island is formed with two SIS junctions in series and a gate coupled to the island. b A SET with
two tunnel junction with capacitance C1, C2 and a gate with capacitance Cg. Electrons can tunnel from the
tunnel junction to change n and keep the system in the ground state. c The energy solutions of the Hamiltonian
eq. 3.90, with the thick line indicating the ground state of the system.

3.5.2. SINGLE ELECTRON TRANSISTORS WITH JOSEPHSON COUPLING
A superconducting single-electron transistor is often referred to as a Cooper-pair tran-
sistor (CPT) since Cooper pairs are the main charge carriers for zero or low voltages. In
addition, the ground state of the island has a preference for an even number of charges
due to the double-charge nature of Cooper pairs. A new charging energy can be defined

for a Cooper pair, namely EC,super = 2e2

CΣ
= 4EC. We can also redefine the charging energy

in eq. 3.90, taking n as the number of Cooper pairs15.
A single quasiparticle can only occupy a state above the gap ∆. In Chapter 6 we will

also see that there is a finite subgap DOS due to oxidization of the NbTiN, recently an-
alyzed in detail in ref. [87]. We can describe the quasiparticles in the Hamiltonian us-
ing HQP = ∑

j εjb
†
j bj, for j quasiparticles with energy εj[88]. This Hamiltonian describes

quasiparticle poisoning, which is uninteresting in the ideal case.
For a CPT, the tunnel junctions are replaced by SIS junctions, as shown in Figure 3.9a

and b. Both junctions have a Josephson energy and for a CPT the Hamiltonian derived
in eq. 3.35 becomes[88]

HJJ =−EJ,1 cosδ1 −EJ,2 cosδ2. (3.91)

We can define the total phase difference of a CPT as δ= 1
2 (δ1 +δ2). Similarly, we can

define the difference in the phases of the two junctions as θ = δ1 −δ2, which is zero for
symmetric junctions. For symmetric junctions EJ,1 = EJ,2 = 1

2 EJ, giving a Hamiltonian of
H =−EJ cosδ16. Thus the total Hamiltonian is

H =−EJ cosδ+EC
(
n −ng

)2 +
∑

j
εjb

†
j bj. (3.92)

In a CPT both phase and charge are operators but they do not commute. A measure-
ment of charge makes the phase undetermined and vice versa.

15Except in Chapter 9, where we use EC,super
16We left out the cosθ term, which is zero if the junctions are symmetric.
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The Josephson effect changes the ground state by adding or removing a Cooper pair.
A complete charge-based Hamiltonian is given by[53]

H |n〉 = E |n〉 = EC
(
n −ng

)2 |n〉− EJ

2
(|n −2〉+ |n +2〉) . (3.93)

In our case, j = 0, so there are no quasiparticles. This is the Hamiltonian we will use to
obtain any further results unless stated otherwise.

THE LIMIT EJ ≪ EC

In the limit where the Josephson coupling is small compared to the charging energy, the
charge number n is well-defined. This can be seen from the energy solutions, plotted for
EC = 10EJ in Figure 3.25. The bands are very similar to the case where EJ = 0, except that
around ng = 1,3, ... there is an anti-crossing since the Josephson energy couples bands
of different charge. Due to the coupling to the source and drain leads, Cooper pairs
can flow, making the charge number uncertain. At exactly ng = 1, the system is in a
superposition of charge states |0〉± |2〉.
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Figure 3.25: a The energy solutions of eq. 3.92 with 10EJ = EC and no quasiparticle poisoning. b Zoomed-in
view of a, showing the anti-crossing due to the Josephson coupling.

THE LIMIT EJ ≫ EC

In the limit where the Josephson energy dominates, we expect to find that phase is well-
defined. There is a potential minimum at δ = 0, giving a ground state energy close to

−EJ with phase fluctuations of ∼
(

EC
EJ

) 1
4 ≪π[53]. The cosine-shaped potential is approx-

imated by
EJ
2 δ2 around δ = 0, as can seen in Figure 3.26a for EJ = 50EC. This quadratic

potential is known as a harmonic potential with equidistant energy solutions. This can
also be seen in the energy spectrum depicted in Figure 3.26b. The energy difference be-
tween the ground state and the first excited state is

√
8EJEC, which is indeed similar to

the energy difference between the first excited state and the second excited state up to a
correction of EC (which is expected to be small). The excitation

√
8EJEC is called ωp, the

plasma mode of the circuit.
The harmonic potential has wavefunction solutions around a phase of zero, making

it well-defined17. The charge is undefined as every energy solution is independent of

17For a nanowire SQUID with
EJ
EC

∼ 7, these wavefunctions are calculated in Chapter 9.
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gate charge and there is no preferred charge state, as can been seen in Figure 3.26b and
d. In Figure 3.26c we see that there is actually a very small charge dispersion, with an
amplitude of

U ≃ (−1)mEC
24m+5

m!

1
p

2π

(
EJ

2EC

) m
2 + 3

4

e
−

√
8

EJ
EC , (3.94)

where m = 1 for the ground state and increases by one for every higher mode.

In Figure 3.26b-d we have also added a grey line, which is the same as the black line
but shifted by one charge. This represents the situation where a quasiparticle tunnels to
the island and shifts the solution’s charge by one. After the tunneling of a quasiparticle,
the plasma mode changes by an amount on the order of 2U1, which is exponentially

small with respect to
EJ
EC

and makes it charge-insensitive. Ref. [89] has been used for this
section, and is recommended for further reading.
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Figure 3.26: a The Hamiltonian as function of phase for EJ = 50EC (in red). For small δ the potential can be
approximated as a harmonic oscillator, as explained in the text. b Energy level as function of gate charge ng.
In this limit there is almost no state dispersion as a function of gate charge. c Zoomed-in view of the ground
state of d, where a small dispersion as a function of gate charge can be seen. The amplitude of the dispersion
is exponentially small, as can seen from eq. 3.94. The y-axis is offset to zero so that the oscillation amplitudes
can be more clearly read off. d The same as b but with no visible energy dispersion at higher plasma modes.
The oscillations become more apparent as the energy of the state approaches +EJ.
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THE CASE EJ ∼ EC

We have looked at the two extremes of the
EJ
EC

ratio and now we are going to discuss the

intermediate regime where EJ ∼ EC. The actual crossover regime is 4EC = EJ
2 [53], but

here we focus on EJ ∼ EC as this is relevant for Chapter 6.

We can set the phase, δ, externally over the two junctions using a bias current and the
gate charge, ng, at the island. We can solve for these two parameters using eq. 3.92, and
the results are plotted in Figure 3.27a. We can see that it is 2e-periodic in gate charge,
but this changes when quasiparticles poison the island, shifting the gate charge by one.
Due to this poisoning we can calculate the two ground state (GS) energies, as shown in
Figure 3.27b. The ground states have clear differences in modulation: the ng = 0 has
the maximal slope at π

2 , whereas for ng = 1 it is at δ→ π. This maximal slope gives the
maximal allowed supercurrent, shown in Figure 3.27c in blue. The red line in Figure
3.27c shows the maximal allowed supercurrent when the island is poisoned.
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Figure 3.27: a The energy bands of an island with external gate charge ng, with EJ = EC. The energy levels
depend strongly on ng and δ. b The GS of a CPT at ng = 0 and the GS and excited state (EX) at ng = 1. c The
maximal allowed supercurrent, calculated as a function of gate charge, is in blue. In red, we also depict the
blue line, except shifted by e due to possible quasiparticle poisoning. Figure obtained from ref. [90].

As with highly-transmitting ABS, there could also be LZ tunneling in CPT. At a gate
charge of ng = 1, there is no gap at δ=±π. When LZ tunneling occurs, the energy-phase
relation and the CPR are both 4π-periodic, leading to a fractional Josephson effect with-
out topological origin, as shown by Billangeon et al.[91].

For the switching-current experiments performed in Chapter 6, the RSCJ model can
be described by a junction with a washboard potential similar to the GS energy in Figure
3.27b. Depending on the parity, we may get large modulation and high switching current
(ng = 1) or a low switching current (ng = 0). Thus, in the absence of an exact circuit model
the reduction in switching current can be used to define the parity states.
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3.6. NOISE THEORY
For this section we use references [36, 92, 93], to which we would direct the reader seek-
ing more details. We start by introducing noise. We have already described the current
oscillations of the (fractional) AC Josephson effect using the power spectral density SI. In
these examples, oscillations were described by a spectrum. Experimentally, the current
I through a wire fluctuates with amplitude δI (t ) = I (t )− I , where I is the average cur-
rent. The fluctuations δI (t ) can have arbitrary shape. To analyse the noise we would like
to see if there are, for example, beats or repeating patterns in the fluctuations. For this
reason, we define the correlation function

C (τ) = 〈δI (τ+ t )δI (t )〉. (3.95)

From the correlation function we can obtain the power density function via the Fourier
transform

SI(ω) =
∫∞

−∞
e iωτC (τ)dτ, (3.96)

which we also used to obtain eqs. 3.58 and 3.89. The positive frequencies in the power
density function S(ω) represent the absorption part of the spectrum and S(−ω) the emis-
sion. For a system at low temperature, ħω∼ kBT , the emission spectrum is expected to
be lower than the absorption spectrum. At zero temperature, a system cannot emit pho-
tons because it has reached the ground state and can only be excited by absorption.
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Figure 3.28: a Schematic view of the noise source of a voltage-biased nanowire, 0 < Vbias < 2∆, with a power-
density spectrum given by eqs. 3.58 and 3.89. b View of the electrical circuit used in Chapter 7 and 8, with all
significant elements. The junctions in the red and green boxes are Josephson junctions that can be modelled
by the RSCJ model. c Schematic view of detection in an SIS junction via photon-assisted-tunneling.

The current fluctuations of the AC Josephson effect cause voltage fluctuations in the
rest of the circuit. The strength of the voltage oscillations is described by the coupling,
which we call transimpedance:

SV(ω) = SI(ω)|Z (ω)|2. (3.97)

We are interested in the voltage oscillations over the detector (red box), as shown
in Figure 3.28b. The voltage oscillations due to an AC Josephson junction are V (t ) =
Z · IC cosωt .

We use the Tien-Gordon approach [92], combined with the review of Tucker and
Fieldman[93], to understand this voltage oscillation, try to measure it and extract the
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Figure 3.29: a-f Analysis of noise detection in an SIS junction. All SV are a factor of ∼100 larger than typical
spectrums in the measurements for clarity. Figure obtained from ref. [94]. a Noise spectrum of a single-
frequency 23µV (11.3GHz) source with a full width at half maximum (FWHM) of 3µV. b The IV trace of an
irradiated SIS junction with a single gaussian noise source. c Noise spectrum of a double-frequency, 11.5µV
(5.6GHz) and 35µV (17GHz) source. d IV trace of an irradiated SIS junction with a double-gaussian noise
source. e White noise spectrum. f SIS junction irradiated with a white noise spectrum, smoothing IQP,0.
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radiation frequency. The voltage oscillations are in the microwave regime. We can see
these oscillations as microwave photons, offsetting the Hamiltonian. An arbitrary Hamil-
tonian will change as follows: H = H0+e Z · IC cosωt . Without knowing the exact form of
the initial Hamiltonian, we can write the new solution as follows:

Ψ(−→r , t ) = f (−→r )e−
i Et
ħ

(∑
n

Jn (α)e−i nωt

)
, (3.98)

where f (−→r ) is the spatial solution of H and the Jn (α) are the Bessel functions with argu-
ment α= e Z ·IC

ħω . In principle, n ranges up to ±∞ but in our case only n = 0,±1 are visible,
so those are the only values we consider. The energy solutions for this case are E , E ±ħω,
i.e. the original solution with the addition of lower and higher energy solutions offset by
the oscillation frequency ω.

An unperturbed Hamiltonian with solutions f (−→r ) would result in a DOS of ρ(E),
while the irradiated DOS would become:

ρ′(E) =
∑
n
ρ(E +nħω)J 2

n(α). (3.99)

The original DOS changed, due to the microwave field, into an effective DOS, chang-
ing the current flow in the process. To measure the change in the DOS, a (highly) non-
linear DOS is needed. For this, we use the DOS of an SIS junction. Figure 3.28c shows the
DOS of an SIS junction with an extra quasiparticle current induced by the microwave
field. This subgap current is only possible due to the presence of the microwave field,
and as a result the current is called a photon-assisted-tunneling (PAT) current.

Due to the PAT current, flow is already possible within the gap. Since the modified
DOS is actually a shift of the normal DOS with an energy difference of ħω, the current
within the gap is actually a step. Where normally the current onset is at 2∆, with irradia-
tion by a signal with frequency ω it is at 2∆−ħω. For single-frequency photon absorption
and for α≪ 1, we obtain the following approximate formula for the PAT current[93]18:

IPAT(V ,ω) =
(

e|Z | · IC

2ħω

)2

IQP,0

(
V + ħω

e

)
, (3.100)

where IQP,0(V ) is the normal IV trace of a tunnel junction without radiation, such as the
black curve in Figure 3.29. We make the approximation J1 = α

2 in the limit α≪ 1. We can
extend the case of single-frequency photon absorption to an arbitrary noise spectrum of
SV = |Z |2SI, giving[36]

IPAT(V ) =
∫∞

0
dω

( e

ħω

)2
SV(ω)IQP,0

(
V + ħω

e

)
. (3.101)

Figure 3.29 shows three examples of power spectral densities: single- and double-
frequency and white noise radiation are plotted, together with the corresponding IV
traces of an SIS junction irradiated using each spectrum. The examples use an SV that

18We used refs. [92, 93] to obtain this expression for the PAT current, which is a factor of 1
2π different than that

given in ref. [36], eq. (3.9). The error in ref. [36] originates from eq. (3.6), which was taken from ref. [95] but
where (we believe) h and ħ were misinterpreted.
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is a factor of 100 higher than is typical in experiments, to make the distortion of the mi-
crowave field more visible in the current. For detector voltages V < 2∆ ∼ 425µV the IV
trace is dominated by photon absorption (enhancing the current), while for V > 2∆ ∼
425µV it is photon emission (lowering the current). The behaviour of the current for
V < 2∆ ∼ 425µV, is described by eq. 3.101. The full IV trace for all detector voltages is
covered by eq. 3.9 in ref. [36].

The black IV trace which we have called IQP,0 is the current through an SIS junction
without irradiation. It has a sharp onset of current at Vdet = 425µeV, which is 2∆. At
zero temperature and without any (background) radiation, this current onset should be
a step. In the experiment we do not have access to the real IV trace of the SIS junction
due to quasiparticle heating for large currents (see Chapter 7 and 8). For this reason we
constructed a smoothed IV trace for IQP,0 and investigated IPAT.

Before, we only focused on photon absorption in the SIS junction, but for complete-
ness we also plot the emission spectrum in Figure 3.29. The full equation was obtained
from ref. [36].

In Figure 3.29a and b, we investigate a noise source of 23µV with a FWHM of 3µV
in a voltage-biased SIS junction. We clearly see current within the superconducting gap
eV < 2∆ for the IV curve with irradiation. The current is a step of size ħω. This makes
(the steepest point of) the onset of the current 2∆−ħω, which is then a measure of the
frequency. Above eV > 2∆ we see a reduction of the current due to emission of quasi-
particles. This emission will be neglected from now on. The detector SIS junction is a
SQUID which is set up such that there is no Josephson coupling. This SIS junction is not
a source of Josephson radiation, or is at least a negligible one.

In Figure 3.29c and d we show the radiation and PAT detection of a spectrum with two
single frequencies with finite FWHM. This radiation source could be a nanowire junc-
tion, which can have multiple frequencies in the CPR according to eq. 3.56. The detected
current through the SIS junction also has two steps, corresponding to the two frequen-
cies. The higher-frequency PAT reaches a lower subgap voltage in the SIS junction. The
higher frequency also has a lower current, as expected due to the ω−2-dependence of the
PAT current in eqs. 3.100 and 3.101.

We also consider the example of the noise emitted due to a current flowing through
a conductor. In the limit of eVbias ≫ħω,kBT , this noise is given by [36, 53]

Ssn.(ω) = 2eI

∑
i Ti (1−Ti)∑

i Ti
= 2eI F, (3.102)

where F is the Fano factor.
The shot noise has no frequency dependence, making it a white-noise radiation source,

as shown in Figure 3.29e and f. The white noise radiation rounds off IQP,0. When SIS and
SNS junctions are used as a noise source, white noise is emitted when the voltage bias is
larger than 2∆. This is an unwanted background signal in the experiments of Chapters 7
and 8. This white noise radiation is measured in a similar setup in ref. [36].
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It shouldn’t do that.

Giorgio Frossati

This chapter describes the basic methods needed to conduct the experiments in this thesis.

As true experimentalists, we learn by practice and not by the book, but it is still impor-

tant to have a basic understanding of cryogenics since refrigerators are increasingly used

as a general tool. The same goes for electronics, as we work with current and voltage bias

modules. These modules are almost ideal, but proper understanding is needed to know

their limitations. We show that particular measurement techniques can sometimes hide

interesting features. Low-noise modules for electronic control and measurement are de-

veloped. With the addition of three stages of electronic filters, we achieve electron temper-

atures down to 25mK. Finally, we briefly discuss (and highlight important references for)

cleanroom fabrication, including deterministic nanowire deposition.
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4.1. INTRODUCTION

This chapter provides a brief overview of the methods used in the experiments in this
thesis. In Section 4.2, we discuss two different cryogenic techniques that were used to
cool down the samples. This is followed, in Section 4.3, by a discussion of the electronic
measurement setup, with particular emphasis on the bias setup in Sections 4.3.1 and
4.3.2. We explain how filtering was used to obtain a high signal-to-noise ratio in the
current and voltage measurements in Section 4.4, and show that we were able to achieve
low electron temperatures in Section 4.5.

Finally, we briefly discuss cleanroom fabrication and highlight relevant references in
Section 4.6.

4.2. CRYOGENICS

Cryogenics is an essential ingredient of the experiments reported in this thesis. Most ex-
periments involving quantum effects are cooled down to a temperature close to absolute
zero. Although each experiment has its own requirements, in general the temperature
must be lowered to a point where the thermal energy1 is not the dominant energy scale,
as otherwise it can wash out or hide the physics of interest.

The temperature also needs to be low enough to reduce thermal population, which
can smear features via the Fermi-Dirac distribution, as we saw in eq. 3.13. Another im-
portant example is quasiparticle number, which depends exponentially on the temper-
ature, see eq. 6.6.

4.2.1. 4K DIPSTICKS

The 4K dipstick is an insertable probe for helium storage dewars. Its advantages are the
simplicity of the setup, low cost and throughput time of sample exchange. Dewars have
a double wall between the outside and the helium reservoir with a vacuum in-between,
called the outer vacuum chamber (OVC), providing almost ideal isolation. A drawing of
the inside of a dewar and a picture of the outside is shown in Figure 4.1a-b.

The helium dewar can be opened from the top to load the dipstick, depicted in Figure
4.1c. The dipstick has a flange (indicated by the yellow arrow) to mount it on top of the
helium dewar. The flange can slide along the dipstick to slowly lower the probe until
it reaches the liquid helium. The sample is mounted at the lowest point of the probe
on a copper block known as a cold finger, see Figure 4.1d. The sample is mounted in
the inner vacuum chamber (IVC) of the probe, which is created by enclosing the sample
space with the brass vacuum can, also shown in Figure 4.1d. The red arrow in Figure 4.1d
points to the 1-K pot of the dipstick. This can be slowly filled with liquid helium from the
dewar. At room temperature, a pump can be connected to the 1-K pot to pump the liquid
helium and the vapour. The vapour particles carry more heat and are removed from the
1-K pot by the pump, making the pot cooler. Due to the pump capacity and the sizes of
the 1-K pot and 1-K pot inlet, high cooling powers and temperatures down to 1.5K can
be obtained.

1kBT , where kB is Boltzmann’s constant and T is the temperature in Kelvin.
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a b c d

Figure 4.1: a Drawing of the helium dewar (Cryofab CMSH 100) used for the 4K insertable probe. Sizes are
denoted in inches. Drawing obtained from www.cryofab.com. b Picture of the same helium dewar, used for
storage of liquid helium. The white scale bar denotes 30cm. c 4 Kelvin insertable probe from Desert Cryogen-
ics. On the top there are connections to access the measurement lines, the 1-K pot and the IVC. The sample
can be mounted at the bottom of the probe. The white scale bar denotes 10cm. d The lowest copper block of
the probe (indicated by the green arrow) is used for mounting the sample. On the left, the vacuum can used to
enclose the sample space to form the IVC is shown. The white scale bar denotes 5cm.

4.2.2. DILUTION REFRIGERATORS

A dilution refrigerator (dilfridge) is used in all the experiments, except the one reported
in Chapter 5. The great advantage of a dilfridge is that it gives continuous access to low
temperatures (∼10mK). The operating costs are higher and running the dilfridge is more
involved, but the ability to reach much lower temperatures enables more interesting ex-
perimental physics.

Currently, there are two different types of dilfridge on the market, wet and dry. Wet
ones are very similar to 4K dipsticks, except that the probe is much wider and contains
more elements. The probe of a wet dilfridge also hangs in liquid helium and has a 1-K
pot, which is used for condensing 3He in the condenser. A calibrated impedance regu-
lates the flow to the mixing chamber, where at sufficiently low temperatures (< 0.8K) two
phases are present, 3He- and 4He-rich. Since 3He is lighter, it lies on top of the 4He-rich
phase. The 3He-rich phase is practically pure, but the 4He-rich phase includes 6.5% 3He.
Due to the design, the 4He-rich phase is sucked into the still (which is at ∼ 700mK), and
there some of the 3He evaporates. This leaves the 4He-rich phase with a lower dilution
of 3He. The 3He in the 3He-rich phase then expands into the 4He-rich phase, trying to
restore the 6.5% 3He equilibrium. This expansion of the 3He extracts heat from the envi-
ronment, including the sample to be measured. The 3He vapour is sucked out by a pump
from the still (typical still pressure 5·10−2mbar), compressed to 100mbar and returned
to the condenser. The 3He thus circulates in a closed loop.

Dry dilfridges do not need a helium bath, because a closed loop of compressed he-
lium cools the condenser to 3.5 K. The 3He cannot directly condense in the condenser,
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Figure 4.2: a Schematic view showing the means by which a (wet) dilfridge achieves cooling. b Picture of a
(wet) dilfridge, indicating the most important elements. The fridge is from Leiden Cryogenics.

but a compressor is used to make the mixture condense at this higher temperature. The
biggest advantage of dry dilfridges, compared to wet ones, is that operation is less in-
volved because there is no need to fill it with liquid helium (bi-)daily.

4.3. ELECTRONIC MEASUREMENT SETUP
All the experiments in this thesis are relatively easy current-voltage (IV) measurements.
We apply a bias current or voltage and measure the response of the sample/device. How-
ever, performing good IV measurements is rather difficult in the presence of a strong
non-linear element such as a superconductor-insulator-superconductor (SIS) or superconductor-
normal metal-superconductor (SNS) junction. In this section, we will discuss the impor-
tant differences between ideal voltage and current biases and the actual biases involved
in our measurements. This is followed by a discussion of the low-noise electronics and
filtering used in our measurement setup. We show that this setup can achieve low noise
and low electron temperature.

4.3.1. VOLTAGE AND CURRENT BIAS

A perfect voltage source can deliver a constant voltage, regardless of the resistance of the
sample/device to which it is connected. It has an internal resistance r =0Ω, so there is no
voltage drop within the source itself. The electrical symbol for a voltage source is shown
in Figure 4.3a.
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A perfect current source can deliver a constant current, regardless of the resistance
of the sample/device to which it is connected. The electrical symbol for a current source
is shown in Figure 4.3b. A battery is a simple example of a voltage source that can deliver
(say) 1.5V, but there is no such example of a current source. A current source, in the
simplest case, consists of a voltage source and a large internal resistance in series, as
illustrated by Figure 4.3c (r is large compared to the resistance of the sample). If we take,
for example, a bias current of 1µA and an internal resistance of 100GΩ, the voltage source
would need to deliver 100kV, which is unrealistic for a battery. For this reason, current
sources often consist of operational amplifiers with feedback, as this is more realistic
than a battery-based setup[96]. A non-ideal current source, shown in figure 4.3d, can be
modelled with a parallel internal resistance.

r

r

c da b

Figure 4.3: Electrical circuit diagram of a an ideal voltage source and b an ideal current source. c Realistic
representation of a voltage source with internal resistance r , which is ideally low compared to the sample
resistance R. d Realistic representation of a current source with internal resistance r , which is ideally high
compared to the sample resistance R.

We assume for the purposes of further discussion that the internal resistances are
ideal for our current and voltage sources. This changes when the voltage source is actu-
ally connected to the sample. Due to line resistances and RC filters, not all the applied
voltage drops over the device. Typically this series resistance is 2-15kΩ. If this resis-
tance is negligible compared to the device resistance, an almost ideal voltage bias can be
achieved.

The devices we consider are often comparable to a series resistance, and we will ex-
amine this case by drawing the ideal curve of an SIS junction. First, Figure 4.4b shows
the case of perfect voltage bias (r = 0Ω), where we can completely map out the solid line
of the ideal IV curve. This is because all points on the IV curve can be reached by go-
ing perpendicular to the voltage bias axis. In the current-bias case (Figure 4.4c), there
are two clear switches to and from the supercurrent. The current source cannot apply
a finite voltage and zero current, so we ‘miss’ the the subgap regime of the SIS junction
completely. In most of our experiments we use a voltage source with series resistance
comparable to that of the sample. In this case we do not have access to the IV curve of
the device perpendicular to the I or V axis. Instead, we have access to the datapoints on a
slope across the ideal IV curve. This slope is determined by the resistance ratio between
r and R, as shown by the arrow in Figure 4.4d. We can compare this with the measured
IV curve (Figure 4.4e) of a device used in Chapter 8. Here, we see that it is impossible to
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apply a small current in the voltage region −170. . .370µV. At the switching point (+40nA)
the voltage applied to the circuit drops completely over the series resistance r . At that
point, the sample is superconducting and thus has resistance R = 0Ω, which is the worst
possible scenario for the voltage bias.
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Figure 4.4: a Setup for voltage-biasing a sample with resistance R, including a line or internal resistance r . b
IV trace of an SIS junction from a voltage bias perspective. Datapoints from the IV trace can only be taken
perpendicular to the x-axis, the voltage axis. c IV trace of an SIS junction from a current bias perspective.
Datapoints from the IV trace can only be taken perpendicular to the y-axis. Due to the supercurrent (finite
current, zero voltage) the subgap is not accessible via this technique. d When a sample is voltage-biased but
the line resistance r is of the same order as the sample resistance R, only datapoints along an angle in the IV
plane can be reached. In this case the supercurrent is partially ‘shadowing’ the subgap of the SIS junction.
e The subgap of a voltage-biased SIS junction with finite line resistance, showing partial shadowing of the
subgap.

We have seen that supercurrent switches can hide features in the IV trace. Another
effect of imperfect voltage bias is that the voltage points are not equidistant. Supercur-
rent switches are an extreme example, but this is also noticeable when measuring peaks
in the current of the SIS detector in Chapter 8. In Figure 4.5, we show, for two settings
of r , the measured voltage and current through the sample as a function of applied bias
voltage. All the data was taken using the same device settings, only the line resistance be-
ing changed (at room temperature) from r =13kΩ (the left side of Figure 4.5) to r =2.5kΩ
(right side). When we take a look at Figure 4.5b, we see that there is a supercurrent and
a few bumps/peaks in the subgap current. With a high r , not all the current bumps are
fully visible. With a lower r , we see three bumps in current but we miss any that are still
hidden by the supercurrent switch.
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Figure 4.5: Comparison of highly non-linear IV traces with different line resistances r . For all the plots on
the left side of this figure, r =13kΩ, and for the right side, r =2.5kΩ. a-b Bias voltage vs measured current. c-d
Bias voltage vs measured voltage. e-f Measured voltage vs measured current. The datapoints are clearly not
equidistant.

Figure 4.5c-d shows measured voltage as a function of the applied bias. Because the
IV trace is highly non-linear, the voltage jumps at several points. These extra jumps are
often interpreted differently or not understood at all. Another side-effect of non-ideal
voltage biasing is that the datapoints are not equidistant, as we can clearly see in Figure
4.5e-f from the bump at ∼ 50µV2. For high line resistance r the bumps are only half-
displayed, and for low r there are more datapoints on one side compared to the other.

2Within the group, Ruben van Gulik developed direct data plotting software which allowed mea-
sured voltage and measured current to be plotted against each other. The software is available at
github.com/Rubenknex/qtplot
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4.3.2. TWO- AND FOUR-POINT MEASUREMENTS

In Chapters 7 and 8, an SIS junction is used for high frequency detection. The frequency
emitted by the nanowire junction can be directly measured from the voltage at which
the PAT current arises. In Chapter 9, an SIS junction is used as a spectrometer, where
the measured voltage indicates the frequency. In all these experiments, it is important to
know the exact voltage over the sample. In a two-point voltage bias geometry, depicted in
Figure 4.6a, the voltage across R can be calculated when the resistance r and the current
is known. A large part of r is determined by the on-chip resistors, fabricated from thin
Pt strips. This resistance is typically 0.8–1.2kΩ/µm. Due to large inaccuracies and our
desire to measure the voltage and thus the frequency directly, we instead use a four-point
voltage bias geometry. The sample has four leads on-chip, and four measurement lines
also leave the fridge. A voltage is applied across two of them, and we measure the current
that flows. In these lines, resistances develop due to the current. A voltage measurement
is performed on the other two lines (depicted on the right side of the sample in Figure
4.6c). The voltmeter has a very high internal resistance, at least much larger than r , so
no current flows through it, meaning no voltage develops across the line resistors used
in this part of the circuit and only the voltage over R is measured.

The SIS junction can also carry a supercurrent, a finite current that develops no volt-
age. Because we have access to the actual voltage over the sample we can also measure
this zero-voltage state, see Figure 4.5c-f.

In Chapter 6, we measure the maximum allowed current though the sample. We do
this using a four-point current bias geometry. Here again, four leads are created as close
as possible to the sample, leaving the dilfridge via four measurement lines. At room tem-
perature, two of the four lines are used for current bias and two for voltage measurement.
Again, no current flows through the line resistances of the voltmeter and only the voltage
over the sample is measured.

4.4. LOW-NOISE ELECTRONICS AND FILTERING

In the institute where this research was performed, a group led by Raymond Schouten[96]
develops low-noise equipment. The low-noise equipment can be placed in a rack, con-
trolled by a computer via an optical fibre. The measurement equipment is in the same
rack and is connected, after amplification, to commercial electronics which are read out
using a GPIB connection. The low-noise equipment is visible in Figure 4.7a and the com-
mercial electronics are shown in Figure 4.7b.

The measurement lines typically have three stages of filtering (unlike the 4K dip-
stick). At the back of the central rack, in Figure 4.7a, there are π filters3. The π fil-
ters cover the ‘middle’ part of the spectrum, see Figure 4.7c. This part of the spec-
trum needs to be ’covered’ because the RC filters which are used as low-pass filters are
limited to a certain working frequency. Ideally, a low-pass RC filter should attenuate
completely at high frequencies, but due to stray inductances of (electronic) elements,
LC resonances with high transfer can also arise. These resonances typically arise at
100MHz–1GHz[96], the range where the π filters are effective. The RC filters are two-

35dB att. at 10MHz, 45dB att. at 100MHz and 70dB att. at 1–10GHz
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Figure 4.6: Possible ways of connecting a two-terminal sample. The region indicated by the dashed box is
within the cryogenics setup. a Two-point voltage bias geometry. The line resistance, r , is in series with the
sample resistance, R. b Two-point current bias geometry. The voltage is measured at room temperature, and is
not the same as the voltage over the sample since there is also a voltage drop over r . c Four-point voltage bias
geometry. The two-terminal sample is split at the device to have four leads, two for the voltage bias and current
measurements and two for measuring the voltage across the device. d Four-point current bias geometry. The
two-terminal sample is split at the device to have four leads.

pole (R1 = 470Ω,C1 = 10nF,R1 = 2kΩ4,C1 = 470pF) and were used in all the experiments
except for the 4K experiments in Chapter 5. The RC filters are visible at the bottom of
Figure 4.2b. Similarly to the RC filters, copper powder filters are mounted at the mixing
chamber stage. The copper powder filters start to attenuate above 100MHz–1GHz[96],
where the π filters start to leak due to stray capacitances and inductances. The copper
powder filters are important in achieving low electron temperatures[97] because high-
frequency electrons have a large thermal energy (1GHz≈ 4µ(e)V).

Figure 4.7d shows the current noise (δI ) within the subgap of an SIS junction (used
in Chapter 8). Figure 4.7e shows the noise (δV ) in the voltages measured over a nanowire
SNS junction (used in chapter 8). In both cases, a digital multimeter integration time of
20ms is used to avoid 50Hz interference.

4Except for device 2 in Chapter 9, where it is 100Ω
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Figure 4.7: a Three racks, with the upper and lower ones containing low-noise bias and low-noise measurement
modules. The middle rack is connected at the back to the measurement wires. From the front the low-noise
modules can be connected to the measurement wires. At the back of the middle rack, π filters are present. b
Commercial electronics to read out the modules of the low-noise rack. At the top of the picture two lock-ins
(SR830) can be seen, while in the middle there are four digital multimeters (Keithely 2000) and at the bottom
there is another lock-in. c Schematic view of the transfer of the filter stages used in the experiment. d Mea-
surements of the subgap current in the SIS detector used in Chapter 8 (corrected for offset, only showing δI ). e
Measurements of the voltage over the nanowire junction used in Chapter 8 (corrected for offset, only showing
δV ).
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4.5. LOW ELECTRON TEMPERATURE
At the start of this PhD, the cryogenic setup (Leiden Cryogenics CF-1200) was new and
equipped with all the filters described in the previous section. For characterization, elec-
tron temperatures were measured with a many-electron nanowire quantum dot. In the
weak coupling regime, tunneling to the lead Γ is smaller than kBT , and the Coulomb
peak’s width is determined by temperature[98]. We used this to see what the electron
temperature was in the device. The results are plotted against the temperature of the
RuOx thermometer in Figure 4.8a. We see that the electron temperature follows that of
the thermometer, but starts to deviate around ∼ 50mK. We concluded from these mea-
surements that the electron temperature was roughly 35− 50mK. We also changed the
location of the thermometer to be closer to the sample, which perhaps explains the dis-
crepancy around 100mK. With this adjustment, we made the measurements described
in Chapter 6, resulting in particular in the data plotted in Figure 6.2e. With the extra
improvements made in Chapter 6, we performed new electron temperature measure-
ments with an NIS thermometer[99]. These results are shown Figure 4.8b and indicate
that the improvements worked, since now the electron temperature follows that of the
thermometer down to 25mK5.
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Figure 4.8: a Measurements of the electron temperature in a nanowire quantum dot in the many-electron
regime. b Measurements of the electron temperature in an NIS junction, fabricated by the group led by Jukka
Pekola and measured by Attila Geresdi. After the improvements discussed in the text the electron thermaliza-
tion is much improved.

Electron temperatures in a nanowire Josephson junction were also measured. The
switching current (eq. 3.40) and the phase diffusion (eq. 3.41) are both temperature-
dependent. A more careful analysis is currently being performed[100].

5We were not able to go below 23mK on the RuOx thermometer with this particular cooldown. Normally, 10–
14mK can be achieved.
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4.6. CLEANROOM FABRICATION
All the cleanroom fabrication was performed in the cleanroom of the Kalvi Institute of
Nanoscience, except for the nanowire growth. The rest of the fabrication is standard:
electron beam patterning, (angle) evaporation, (reactive) sputter, (reactive) rf-etching
and milling. A detailed description of sample fabrication for MZM research is given in
refs. [33, 76].

For the nanowires, we collaborated with the Bakkers group at the Technical Uni-
versity of Eindhoven (InSb) and Jasper Nygård and Peter Krogstrup at the University of
Copenhagen (InAs with an epitaxial aluminium shell). For the experiments in Chapters
5 and 7, InSb nanowires were used. InSb is interesting due to its high g -factor and ear-
lier reports of MZM[9] using these nanowires. The growth of these wires is extensively
described in the thesis of Diana Car[101].

The nanowires from Copenhagen are unique in the sense that an aluminium shell is
grown in situ[20]. The in situ growth of the aluminium shell leaves the interface clean
and good induced superconductivity has been observed[21]. These nanowires were avail-
able at a later stage and were used in Chapters 8 and 9.

For proper nanowire gating, the nanowire has to be deposited straight onto a local
fine gate structure. The nanowire is then also aligned with the magnet axis of the cryo-
genic setup. For this purpose we installed a nanowire deposition setup similar to the one
used in ref. [102], see Figure 4.9.

Heater

Plate

ManipulatorObjectives

Needle

Stage

Optical Microscope

Figure 4.9: Nanowire deposition tool with an optical microscope. A sharp tip (radius ∼ 50−200nm) is made
using liquid indium and nanowires are deposited via a sub-micrometre XYZ manipulator. The setup was de-
signed according to ref. [102] and operated as described in ref. [76].

The operation of a (reactive) sputter machine is relatively easy, but the precise pro-
cess and using it to deliver good (reproducible) superconducting films is more com-
plex. For this reason two bachelor’s students under my supervision performed multiple
characterizations[103, 104]. These film characterizations are extensively used within the
group.
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We study the low-temperature electron mobility of InSb nanowires. We extract the mobility

at 4.2 Kelvin by means of field effect transport measurements using a model consisting of

a nanowire-transistor with contact resistances. This model enables an accurate extraction

of device parameters, thereby allowing for a systematic study of the nanowire mobility. We

identify factors affecting the mobility, and after optimization obtain a field effect mobility

of ∼ 2.5×104 cm2/Vs. We further demonstrate the reproducibility of these mobility values

which are among the highest reported for nanowires. Our investigations indicate that the

mobility is currently limited by adsorption of molecules to the nanowire surface and/or the

substrate.
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In the first section 5.2 the nanowire setup for FET measurement is introduced. Fol-
lowed by the new model for extracting the mobility which is introduced in section 5.3
and is also compared with the old extraction model in section 5.4. For this model we
assume gate independent interface resistance which we show is valid for our measure-
ments in section 5.5. The core of this chapter is in section 5.6 and 5.7 where we in-
vestigate the cleaning of the nanowire surface before nanowire deposition and after full
device fabrication respectively. A relation between nanowire channel length and the
mobility is found, and being reported in section 5.8, which could indicated that the
FET method is not a proper extraction method of the nanowire mobility because the
nanowires are not diffusive over µm scale. Finally, in section 5.9 reproducibly of the
used fabrication method is shown and a conclusion is discussed in section 5.10. Supple-
mentary Information can be found in section 5.11.

5.1. INTRODUCTION
Advances in nanowire growth have led to development of novel quantum devices, such
as Cooper-pair splitters [105], hybrid semiconductor-superconductor devices [106] and
spin-orbit qubits [107]. Nanowire devices thus allow exploration of mesoscopic trans-
port in a highly confined system and show potential as a quantum computation plat-
form. Outstanding nanowire transport properties, such as a high level of tunability of
device conductance and low disorder, have been essential to the realization of these ex-
periments.

Recently, hybrid superconductor-semiconducting nanowire devices have been iden-
tified [7, 8] as a suitable platform to study Majorana end modes [3], zero-energy bound
states that exhibit topological properties. Among various systems, InSb nanowires emerged
as a very promising candidate due to their large spin-orbit interaction and large g factor.
Reports on signatures of Majorana bound states in InSb nanowire-based systems fol-
lowed quickly after their theoretical prediction [9, 10, 108]. To further develop this topo-
logical system, a reduction of the disorder in the nanowire is essential [109, 110]. Dis-
order reduces or even closes the topological gap that gives Majoranas their robustness,
thereby impairing their use as topological qubits. Disorder is quantified by measure-
ments of carrier mobility, which relates directly to the time between scattering events.
Evaluation of carrier mobility in nanowires therefore indicates their potential for trans-
port experiments and is thus crucial to further development of nanowire-based quan-
tum devices.

According to the Matthiessen rule, various scattering mechanisms altogether deter-
mine the net mobility through [111]

1

µ
= 1

µ1
+ 1

µ2
+ . . . (5.1)

Here µ represents the net mobility which results from distinct scattering mechanisms
each giving rise to a separate mobility µn . In other words, the most dominant scatter-
ing contribution limits and hence determines the net mobility. Therefore the mobility
can be improved by identifying the limiting mechanism and subsequently reducing or
eliminating it.
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Apart from the recently introduced Hall effect measurements on nanowires [112,
113], field effect transport measurements are the most common and experimentally
most feasible method to extract charge carrier mobility in these systems. Here, one mea-
sures the current flowing through the nanowire channel contacted by two electrodes as
a function of the gate voltage with fixed voltage bias. The conductance of the channel
is described by the linear region of the accumulation regime of a field effect transistor
(FET) [114]. In this case the conductance of the channel is

G(Vg ) = µC

L2

(
Vg −Vth

)
, (5.2)

with gate voltage, Vg , mobility, µ, capacitance, C , channel length, L, and threshold volt-
age, Vth . If the capacitance and the channel length are known, the field effect mobility
can be determined from the transconductance, gm = dG/dVg . In most cases, to extract
the mobility, the maximum (peak) transconductance is used. One should note that both
the mobility and the field effect transport is described using the Drude model where
charge carrier transport is classical and diffusive.

Previous studies showed that low-temperature field effect mobility for nominally un-
doped III-V nanowires is mainly limited by crystal defects such as stacking faults [115–
119], and surface effects such as surface roughness [120, 121]. Point defects are also
thought to have an effect on the mobility [122]. However, as they are difficult to detect
so far no direct connection between impurities and mobility has been reported. Highest
reported low-temperature field effect mobilities are 1.6 – 2.5×104 cm2/Vs. Such mobili-
ties are observed in InAs nanowires [115, 123], InAs/InP core-shell nanowires [124, 125]
and GaN/AlN/AlGaN core-shell nanowires after correction for contact resistances [126].
However, in most of these studies either data on a single device is reported, or the aver-
age mobility of several devices is significantly lower than the reported maximum [125].
Systematic studies of such high-mobility nanowire FETs are thus largely lacking.

Concerning field effect mobility, the InSb nanowires we investigate differ in several
respects from their oft-studied InAs counterparts: the InSb nanowires we use have a
larger diameter of approximately 100 nm, reducing their surface-to-volume ratio com-
pared to the thinner InAs nanowires, and are likely to have no surface accumulation
layer. Instead, upward band bending leading to surface carrier depletion has been re-
ported for both clean [127] and oxygen-covered InSb surfaces with (110) orientation, the
orientation of our InSb nanowire facets. As the InSb facets are atomically flat no sur-
face roughness is expected. Finally, the nanowires are purely zinc-blende and are free
of stacking faults and dislocations. The growth of InSb nanowires we study is described
in [128] and [129]. Given the differences between InSb nanowires and other nanowire
materials it is an open question what determines the low-temperature mobility in InSb
nanowires. We note that while in [128] field effect mobilities of these InSb wires are re-
ported, no systematic investigation of the nanowire mobility was performed. The mo-
bility extraction method presented here allows such a thorough investigation, thereby
revealing new insights on nanowire mobility.

To identify the factors affecting the mobility of InSb nanowires, we characterized the
low-temperature mobility of nanowire FETs fabricated using different experimental pa-
rameters. We tailored the extraction of field effect mobility for the nanowires we study
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to accurately determine the essential transistor parameters of nanowire FETs. By sys-
tematic studies we developed a recipe that results in reproducible average mobilities of
∼ 2.5× 104 cm2/Vs. While this value represents an average over many devices, the ex-
tracted mobility from a single measurement may exceed 3.5×104 cm2/Vs. After optimiz-
ing the fabrication, we also find that adhesion of molecules to the nanowire and/or the
substrate currently limits the extracted mobility. Although such adsorption effects are
known to modify the nanowire conductance [116, 130] and also the room-temperature
mobility [131–133] (note that ref. [132] reports an increase of mobility upon adsorption,
whereas ref. [133] a reduction), our identification of surface adsorption being the limit-
ing factor to low-temperature field effect mobility is new. The amount of adsorbates is
reduced by evacuating the sample space for longer time prior to cool down and sugges-
tions for further reduction of the adsorbates as well as to minimize their contribution to
the field effect transport are made.

5.2. EXPERIMENTAL SETUP
InSb nanowire FETs are fabricated on a heavily doped (p++) Si substrate (used as a global
back-gate) terminated with a 285-nm-thick dry thermal SiO2 (Fig. 5.1b). The substrate
is patterned with alignment markers prior to nanowire deposition. Nanowires are po-
sitioned on the substrate using a micro-manipulator [102]. Two terminal contacts are
realized by electron beam lithography, metal evaporation (Ti/Au 5/145 nm) and lift-off.
Argon plasma etching is employed prior to contact deposition. The samples are mea-
sured in a two-point geometry (see section 4.3.2) in a 4K-dipstick which was discussed in
section 4.2.1. Further details about the fabrication process can be found in section 5.11.1
and further details about measurements can be found in sections 5.11.4 and 5.11.3.

5.3. EXTRACTING MOBILITY
Due to the absence of a surface accumulation layer in InSb nanowires, an interface re-
sistance of a few kilo ohms cannot be eliminated upon contacting the nanowire [134].
Such interface resistances are known to reduce the transconductance, resulting in an
underestimation of the intrinsic mobility [135, 136]. Moreover, at a temperature of 4 K
universal conductance fluctuations complicate the extraction of mobility from transcon-
ductance. We therefore tailor the extraction of field effect mobility to our InSb nanowire
FETs [137]. We model the interface resistances by a resistor Rs with a fixed value (no
gate voltage dependence, see section 5.5), connected in series to the nanowire channel,
schematiclly depicted in Fig. 5.1a. A substantial part of the device resistance at high gate
voltage stems from the interface resistances, strongly affecting the gate voltage depen-
dent conductance. This complicates accounting for a possible change of mobility with
gate voltage. We therefore assume a mobility independent of gate voltage. The device
conductance is then given by

G(Vg ) =
(

Rs +
L2

µC
(
Vg −Vth

)
)−1

(5.3)

This equation allows for extraction of field effect mobility using a fit to the measured
G(Vg ). Here, the mobility µ, the interface resistances Rs , and the threshold voltage Vth



5.3. EXTRACTING MOBILITY

5

77

are the free fit parameters. We restrict the fitting range to G−1(Vg ) ≤ 100 kΩ. We in-
dependently calculate the capacitance from a finite element model of the device (see
Fig. 5.1c inset), where we take into account that quantum confinement in our nanowires
reduces the classical capacitance by ∼ 20% [138, 139]. Neglecting quantum effects in
our capacitance calculation would lower the extracted mobility values by ∼ 20%. We
compared the mobility values extracted by a fit using eq. 5.3 with the mobility values ob-
tained from peak transconductance in the next paragraph. For a representative fabrica-
tion run, mean forward mobility of 11 devices is found to be 2.9×104 cm2/Vs using our
fit method, whereas peak-transconductance method yields 2.7 (1.9) ×104 cm2/Vs with
(without) taking into account the interface resistances. Our fit method, however, differs
from peak transconductance method where the mobility is extracted from the maximum
value of the transconductance using a small gate voltage range. Because we consider the
transconductance in a wide gate voltage range by fitting a large section of G(Vg ), the ex-
tracted mobility is insensitive to small conductance fluctuations. This is contrary to the
peak transconductance where conductance fluctuations greatly affect the extracted mo-
bility. We show in section 5.5 that our simple model with gate voltage-independent in-
terface resistances is a valid approximation for our measurements. However, despite our
thorough analysis a general drawback of field effect mobility remains: the uncertainty in
the calculated capacitance value affects the extracted mobility directly. Nanowires suffer
from this drawback as their small dimensions do not allow a straightforward experimen-
tal extraction of capacitance.
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Figure 5.1: a) Electrical diagram of the InSb nanowire FET. The FET is modelled as a nanowire channel with a
resistance controlled by a nearby backgate with voltage Vg , RNW (Vg ) =G−1

NW
(Vg ), in series with fixed interface

resistances, Rs . b) Electron microscope image of an InSb nanowire FET. Nanowire diameter is ∼ 100 nm. The
nanowire is deposited onto a Si substrate covered with 285 nm dry thermal SiO2. Ti/Au (5/145 nm) contacts
have spacing of 1, 1.5, 2 or 2.5µm. Scale bar is 1µm. c) Conductance G , as a function of back gate voltage Vg

(black curve). Source-drain bias is set to 10 mV throughout the study. Field effect mobility is extracted from
a fit to the conductance (red curve) using eq. 5.3. All measurements are performed at a temperature of 4.2 K.
Inset: Gate-nanowire capacitance C , as a function of source-drain contact spacing L. Capacitance is extracted
from a finite element model of the device geometry. Contacts are included in the simulated device geometry
and lead to a non-linear C (L) at small contact spacing.



5

78 5. TOWARDS HIGH MOBILITY INSB NANOWIRE DEVICES

To determine what limits the mobility in our devices, we systematically studied the
effect of various experimental parameters by measuring ∼ 10 devices simultaneously
fabricated on the same substrate. We then change one parameter at a time for each
fabrication run to deduce its effect on the field effect mobility.

5.4. COMPARISON OF FIELD EFFECT MOBILITY EXTRACTION

METHODS

We extract mobility values by fitting the conductance curves G(Vg ) in a large gate volt-
age range. However, in the literature mobility is commonly extracted from a small gate
voltage range where the transconductance has its maximum value (peak transconduc-
tance). This gate voltage range is typically close to the threshold voltage where the mo-
bility is expected to be the highest. Here, we compare the field effect mobility obtained
using our method – fitting the conductance curves G(Vg ) – to the field effect mobility
obtained from peak transconductance, the standard method for extracting mobility in
nanowires. We denote the mobility obtained using the latter as peak-mobility. We de-
scribe the extraction of peak-mobility in the following: By numerically differentiating the
measured G(Vg ) shown in Fig. 5.2a, one obtains the transconductance gm = dG/dVg .
This transconductance is shown in Fig. 5.2b (black curve). After taking the numerical
derivative, an averaging is performed to remove the fluctuations in transconductance
(red curve in Fig. 5.2b). The peak-mobility is then obtained from the maximum value of
transconductance using µ = gmL2/C (see eq. 25.2). Peak-mobility depends strongly on
the chosen averaging range. This dependence is shown in Fig. 5.2c. Here, mean forward
peak-mobility of 11 devices from a single fabrication run is plotted against the averaging
range. We choose the averaging range to be 1.8 V, the value at which the rapid decrease
of peak-mobility with respect to averaging range diminishes.

Next interface resistances are taken into account since they affect the extracted peak-
mobility. This is done by subtracting the contribution of a gate-independent series re-
sistance R from the measured conductance curve G(Vg ). Fig. 5.2f shows an example
of such a conductance curve corrected for interface resistances. From such a curve we
determine the transconductance, and from the maximum value of transconductance
peak-mobility is extracted. The peak-mobility depends on the subtracted R, shown in
Fig. 5.2d. Here, as mentioned above, mean forward peak-mobility of 11 devices from a
single fabrication run is plotted. (The peak-mobility for R = 0 is the one indicated with
a green arrow in Fig. 5.2c.) For zero subtracted resistance (R = 0), the transconductance
has a global maximum near pinch-off (Fig. 5.2b, red curve). Upon increasing the value
of R subtracted from G(Vg ), the transconductance values increase for all gate voltages,
with the amount of increase being larger for higher gate voltages. When R exceeds the
value of interface resistances Rs , the transconductance no longer has a global maximum
near pinch-off. When R is increased even further, transconductance starts to increase
with gate voltage, a case we regard to be unrealistic. Rs for individual devices varies be-
tween 1.5 kΩ and 4 kΩ, with an average Rs of ∼ 3 kΩ. After the subtraction of Rs , the
mean peak-mobility of 11 devices obtained using forward sweep direction is (27.1 ± 4.2)
× 103 cm2/Vs (see Fig. 5.2d) compared to (28.7 ± 4.8)× 103 cm2/Vs obtained from fits to
the conductance curves. Both values are within error margin the same. Comparing mo-
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a) 

e) f) 

c) d) 

b) 

Figure 5.2: a) Conductance G , as a function of gate voltage Vg . Inset: Zoom-in of the conductance near pinch-
off. The arrows point at universal conductance fluctuations resulting in fluctuations in transconductance. b)
Transconductance dG/dVg without (black) and with (red) averaging over 1.8 V gate voltage range. Averaging is
applied to remove the fluctuations that lead to peaks and dips in the transconductance. c) Field effect mobility
µ f obtained from peak transconductance as a function of gate voltage averaging range. Plotted values of peak-
mobility is the average of 11 devices on the same chip (long evacuation time experiment, Fig. 5.4). The green
arrow denotes the averaging range of 1.8 V used for the averaged curve in panel b. This averaging window is
used in further analysis to obtain peak-mobility. d) Peak-mobility as a function of series resistance subtracted
from G(Vg ). Peak-mobility is the average of 11 devices on the same chip. e) Comparison between field ef-
fect mobility µ f obtained for individual devices using the fit according to eq. 5.3(red points) and the mobility
obtained from peak transconductance (black points). f ) Conductance as a function of gate voltage after the
correction for interface resistances. For this device an interface resistance Rs = 4 kΩ is assumed. Conductance
curve without the correction for Rs is shown in panel a.



5

80 5. TOWARDS HIGH MOBILITY INSB NANOWIRE DEVICES

bilities of individual devices obtained using both methods (Fig. 5.2e), we conclude that
both methods give similar values. The small difference is due to slightly larger interface
resistances obtained from the fitting method, giving an average Rs of 3.7 kΩ.

5.5. SIMPLIFICATION OF GATE VOLTAGE-INDEPENDENT INTER-
FACE RESISTANCES

Here we check our simplification of modelling the interface resistances Rs to be gate
voltage independent. We fit the measured device conductance G(Vg ) using eq. 5.3 to
determine Rs , the mobility µ, and the threshold voltage Vth . The measured device con-
ductance after the subtraction of Rs is denoted by Gch(Vg ). In our model Gch(Vg ) has the
form GL(Vg ) = (Vg −Vth)µC /L2, which corresponds to a conductance linear in gate volt-
age with the transport properties extracted from the fit mentioned above. In Fig. 5.3 we
plot representative curves of Gch(Vg ) (black) and compare them with GL(Vg ) (red). We
find that GL(Vg ) matches well with Gch(Vg ), demonstrating that our simple model with
gate voltage-independent interface resistances is a valid approximation for our measure-
ments.
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Figure 5.3: Panels show the measured device conductance after subtracting the interface resistance, Gch(Vg )
(black), together with GL(Vg ) (red), which is the conductance linear in gate voltage with the transport proper-
ties extracted from the fit. Gch(Vg ) shown in upper row (lower row) are from the data set presented in Fig. 5.2
and Fig. 5.4.

5.6. NANOWIRE SURFACE AND ADSORPTION
Nanowire conductivity at room temperature is known to increase after evacuation of the
sample space following mounting of devices [116, 140]. We find that evacuation also
strongly affects G(Vg ) at low temperature (4 K). Comparing the G(Vg ) measured for short
and long sample space evacuation time prior to cool down, we observe a steeper increase
of conductance with gate voltage after long-time evacuation (Fig. 5.4a). Considering a
number of devices on the same measurement chip, we find almost a doubling of the mo-
bility values after long-time sample evacuation (Fig. 5.4b). The re-exposure of samples
to air after long-time evacuation results in a reduction of mobility (Fig. 5.4c) with values
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very similar to those obtained from the initial measurements with a short-time sample
space evacuation. The transconductance is larger when the gate is swept from low to-
wards high voltages (forward sweep direction) leading to higher mobility compared to
the case of sweeping from high gate voltages to low (reverse sweep direction) (Fig. 5.4c).
Moreover, after long-time evacuation a shift of the threshold voltage towards more neg-
ative values is observed (Fig. 5.4d) together with a reduced hysteresis (Fig. 5.4e). Both
the threshold voltage and the hysteresis regain their initial values obtained from short-
time evacuation once the sample is re-exposed to air, similar to the extracted mobility:
exposing the devices to air has a reversible effect on the field effect transport parameters
we extract from the fits. All extracted fit parameters can be found in Table 5.1.

A hysteresis in transconductance dependent on ambient conditions has been stud-
ied before by Kim et al [141] and Wang et al [142], and was attributed to the adsorption of
water onto the nanostructure and onto the SiO2 substrate. Evacuation of the sample en-
vironment leads to desorption of water, thereby reducing the hysteresis. However sam-
ple evacuation alone is insufficient to fully remove the adsorbed water. The similarities
between our observations and those reported by Wang et al and Kim et al, considering
both the influence of gate voltage sweep direction on the shift of the threshold voltage, as
well as the reduction of hysteresis with evacuation time and the reversibility of the effect
when reexposing samples to air, strongly suggest that the field effect transport is affected
by molecules adsorbed to the nanowire and/or the SiO2 substrate. Water is highly likely
to be the main adsorbate because reexposing the device to ambient atmosphere follow-
ing long evacuation time of sample space yields values of mobility, threshold voltage
and hysteresis similar to those obtained from the measurements with short evacuation
time. InSb nanowires have however also shown decreased conductance in response to
isopropanol and acetone [130].

It is an open question how adsorbates affect device conductance at low temperature.
The alignment of polar molecules by gate electric field may result in an additional gat-
ing [142]. However, the mechanism through which such alignment causes hysteresis is
not clear. Another scenario is charge trapping by adsorbed molecules [141]. Such trap-
ping could possibly lead to an asymmetry between forward and reverse sweep direction,
yielding the observed hysteresis and sweep direction dependent mobility. The observed
trapping mechanism is likely to have a long response time, as our measurements are
taken at relatively low gate voltage sweep rates (120 mV/s). Unlike refs. [131, 141, 142],
we find no dependence on sweep rate for rates between 3 – 600 mV/s. Nonetheless, re-
peated measurements yield the same G(Vg ), implying that between scans the traps are
emptied.
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Figure 5.4: a) Conductance G(Vg ) of samples measured after evacuation of the sample space for a short or long
period of time prior to cool down. Samples are evacuated for ∼ 15 minutes (∼ 65 hours), giving the green and
pink (black and blue) conductance curves for forward and reverse sweep direction respectively. Arrows indi-
cate sweep direction. The same chip with nanowire devices is first evacuated only shortly (yielding the data
denoted with ’short evacuation’), then evacuated for longer-time (’long evacuation’ data), reexposed to air for
∼ 90 hours and evacuated shortly (∼ 15 minutes) again (’re-exposure’ data), see panel c. The substrate was
cleaned prior to nanowire deposition. Hysteresis of both pairs of conductance curves is indicated with arrows
and vertical lines. Although the hysteresis is indicated at non-zero G , the hysteresis reported in panel c is ex-
tracted from the difference in threshold voltage between conductance curves with forward and reverse sweep
direction. b) Mobility obtained with forward sweep direction, µ f , of individual devices after short (black) or
long (red) device evacuation time. c) Mobility after short-time evacuation, long-time evacuation, and reexpo-
sure to air. µavg is the average of the mobility obtained with forward sweep direction, µ f , and with reverse
sweep direction, µr . d) Threshold voltage extracted from forward sweep direction, Vth after short-time evac-
uation (S), long-time evacuation (L) and reexposure to air (R). e) Hysteresis Vhyst, after short-time evacuation
(S), long-time evacuation (L) and reexposure to air (R). The hysteresis is given by the difference in threshold
voltage between forward and reverse sweep direction. All values in panels c, d and e are an average, obtained
from fits to the conductance curve of each device on the measurement chip. Error bars in panels c, d and e
indicate the standard deviation.

5.7. SUBSTRATE CLEANING
We further find that cleaning of Si/SiO2 substrates by remote oxygen plasma prior to
nanowire deposition results in an enhanced gate dependence of low-temperature con-
ductivity. Fig. 5.5a shows G(Vg ) curves of individual devices, while Fig. 5.5b shows an
average over extracted mobilities obtained from measurements of ∼ 10 FETs with and
without substrate cleaning. All other fabrication and measurement steps are the same
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for both sets of devices. The remote oxygen plasma most probably removes hydrocar-
bons that remain on the substrates after fabrication of alignment markers or during
storage of samples in a polymer-containing environment. We verified that the oxygen
plasma cleaning does not decrease the thickness of the SiO2 gate dielectric within the
measurable range < 1 nm.
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Figure 5.5: a) Conductance curves G(Vg ) obtained from samples without and with substrate cleaning. Forward
and reverse sweep direction are indicated with arrows. Samples have been evacuated for ∼ 60 hours before
cool down. b) Forward, reverse and average mobility with and without substrate cleaning. Values are averages
obtained from fits to conductance curves of individual devices. Error bars indicate standard deviation.

5.8. CONTACT SPACING
A correlation between FET source-drain contact spacing and extracted field effect mo-
bility is found (Fig. 5.6). Although the spread in mobility at a given contact spacing is
substantial, an overall increase of extracted mobility is observed with increasing contact
spacing. To determine whether the dependence of the field effect mobility on contact
spacing originates from the length of the used nanowire, FETs with short (1µm) contact
spacing were realized both on short wires, and on long wires using three contact elec-
trodes resulting in two FETs in series. Devices made from both long and short wires with
1µm contact spacing give similar mobility (see Fig. 5.6). The contact spacing depen-
dence is thus a device property rather than a nanowire property.

A reduced mobility for short contact spacing is expected when transport is (quasi-)
ballistic rather than diffusive [143, 144]. We have observed ballistic transport in our
wires [134] with a device geometry and measurement conditions different from those
here. Here we expect quasi-ballistic transport in our devices with a mean free path com-
parable to nanowire diameter le ∼ 0.1µm. While devices with L/le ≫ 1 are preferable,
our InSb nanowires can currently not be grown longer than ∼ 3.5µm. However, while for
channel length of 1µm (quasi-)ballistic effects may play a role, mobility values obtained
from our devices with longer contact spacing yield a better estimate of field effect mo-
bility. Moreover, effects related to the metal contacts are expected to play a larger role in
devices with short contact spacing and can possibly contribute to the observed decrease
of µ(L) in short channel devices. Possible explanations are that (1) the contacts reduce
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Figure 5.6: Mobility obtained by sweeping the gate voltage in forward direction, µ f , as a function of source-
drain contact spacing L. Data from 5 different measurement chips (see section 5.11.3). Red lines indicate
mobility values obtained from long nanowires on which three contact electrodes were placed, resulting in
two FETs in series, while black lines correspond to the mobility of single FET devices. Mean forward mobility
for each contact spacing is µ f ,m (L = 1µm) = 2.4×104 cm2/Vs, µ f ,m (L = 1.5µm) = 2.8×104 cm2/Vs, µ f ,m (L =
2µm) = 3.1×104 cm2/Vs and µ f ,m (L = 2.5µm) = 2.9×104 cm2/Vs.

the capacitance of short devices more than expected from the Laplace simulations (in
which the nanowire is assumed to be metallic) or (2) electrons are injected from and ab-
sorbed over a finite length underneath the contacts, leading to an effective L larger than
the contact spacing.

5.9. REPRODUCIBILITY
Altogether, cleaning the SiO2 substrate before wire deposition and applying a long sam-
ple evacuation time yields µav g ≈ 2.5× 104 cm2/Vs for devices with a contact spacing
L = 2µm. This mobility is the average value of µ f = 3.1×104 cm2/Vs (see Fig. 5.6) and
µr = 1.9×104 cm2/Vs. These high mobilities result from measurements of ∼ 15 devices
fabricated in different fabrication runs (see section 5.11.3 for details) using the same
fabrication recipe. Fig. 5.7 demonstrates the reproducibility of our results: mobility ob-
tained from three different fabrication runs are very similar. The optimized nanofabri-
cation recipe as well as an overview of all the parameters extracted from the fits to the
conductance vs. gate voltage curves that yield Fig. 5.7 are given in section 5.11.1 and
table 5.1, respectively.

5.10. CONCLUSION
Low-temperature field effect mobility of InSb nanowires is extracted by measuring the
conductance as a function of gate voltage. Taking surface adsorption and substrate
cleaning into consideration, an optimized nanofabrication recipe has been obtained
yielding average field effect mobilities of ∼ 2.5×104 cm2/Vs. It is demonstrated that the
obtained mobility values are highly reproducible.
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Figure 5.7: Average mobilities obtained with forward (µ f ) and reverse (µr ) sweep direction. First group of data
(batch A) corresponds to the fabrication run presented in Fig. 5.4 (long-time evacuation), batch B is presented
in Fig. 5.5b (with substrate cleaning), whereas batch C is a separate batch to demonstrate the reproducibility
of our results. Average mobility µavg is the average of forward and reverse mobility. All results are obtained by
improved cleaning of the substrate and long evacuation time of the sample space. Error bars indicate standard
deviation.

As we show that surface adsorption has a large impact on field effect mobility, fur-
ther studies should be directed towards minimizing the adsorbates and analysis of sur-
face properties. An improved design of the measurement setup allowing for heating and
better evacuation of the sample space is likely to facilitate a further desorption of adsor-
bates. Exposing the devices to UV-light during evacuation, which may assist desorption,
can also be investigated [130]. Further, passivating the nanowire surface by removing the
native oxide followed by application of a high quality dielectric likely reduces surface ad-
sorption. Possible methods are atomic hydrogen cleaning [145] or chemical etching fol-
lowed by dielectric deposition [146]. Alternatively, by suspending the nanowires above
a metallic gate using vacuum as a dielectric, one can minimize the effects of the sub-
strate adsorption, leaving the wire adsorption as the predominant constituent affecting
the field effect mobility. In the case of adsorbates creating a fluctuating potential profile
along the wire resulting in charge scattering, a core-shell structure is expected to yield a
higher field effect mobility because the potential fluctuations due to adsorbates are spa-
tially separated from the channel owing to the shell. Finally, to study the surface com-
position of the nanowire and the substrate, x-ray photoelectron spectroscopy or Auger
electron spectroscopy could be used [147].
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5.11. SUPPLEMENTARY INFORMATION

5.11.1. OPTIMIZED FABRICATION RECIPE

• Substrate cleaning: 10 minutes remote oxygen plasma cleaning (Tepla 300 Plasma
Asher) of the p++-Si substrate covered with 285 nm dry thermal SiO2 with pre-
defined Au alignment markers (oxygen pressure 1 mbar, plasma power 600 W). All
substrates were from the same wafer.

• Wire deposition: deterministic positioning of wires using a setup similar to that
described in ref. [35]. Wires were always taken from the same section on the same
growth chip.

• SEM imaging of the nanowires with surrounding alignment markers. Images are
used for the subsequent design of the contacts.

• Spin resist: PMMA 950A4 at 4 krpm, baking > 15 minutes at a temperature of
175 ◦C.

• Electron beam writing of the contact design.

• Development: MIBK:IPA 1:3 60 s, IPA 60 s.

• Ar etching (AJA International sputtering system) using rf-plasma: pressure 3 mTorr,
Ar flow 50 sccm, power 100 W, duration 300 s, no rotation of the sample holder. A
voltage of 300 V is applied to the sample holder.

• Contact deposition: e-beam evaporation of Ti/Au 5/145 nm with deposition rate
0.5 Å/s and 2 Å/s respectively.

• Lift-off in acetone: the sample with acetone is heated for several hours and left in
acetone for ≥ 12 h.

• Samples were stored in an Ar glove box between fabrication and mounting.

5.11.2. MEASUREMENTS DETAILS

• Sample space (IVC) evacuated for ∼ 60 hours after mounting (insert type: Desert
Cryogenics).

• For thermalisation, He of ∼10 mbar is added to sample space at room temperature
before cooling down the devices. During low-temperature measurements samples
are kept in a vacuum environment.

• G(Vg ) measured using 10 mV bias, gate voltage range from−6 V to +30 V with sweep
rate 6 mV/50 ms. Measured in forward and reverse sweep direction.

• To check a possible sweep rate dependence of G(Vg ), gate voltage steps of 0.15,
0.3, 0.6, 1.5, 3, 6, 15, 30 [mV/(50 ms)] is used both in forward and reverse sweep
direction. No dependence on sweep rate was found.
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5.11.3. OVERVIEW OF MEASURED DEVICES
• Evacuation time experiment (fabricated according to our optimized recipe de-

scribed above). Mobility was extracted from measurements of 11 devices with con-
tact spacing between 1 and 2µm. Average contact spacing 1.41µm. Data reported
in Fig. 5.4. Long evacuation time data is also included in Fig. 5.2, 5.3, 5.6 and 5.7
(Batch A).

• FETs without substrate cleaning and with long-time evacuation. Fabricated ac-
cording to our optimized recipe, with the exception that we used different settings
for Ar etching. Here we used 400 V on the sample holder and etched for 150 s while
keeping all the other settings the same. This yields the same amount of etching of
InSb nanowire (∼ 70 nm) as etching at 300 V for 300 s. 11 devices, contact spacing
of all devices is 2µm. Data reported in Fig. 5.5.

• FETs with substrate cleaning and with long-time evacuation. Fabricated accord-
ing to our optimized recipe, with the exception that we used different settings for
Ar etching. Here we used 400 V on the sample holder and etched for 150 s while
keeping all the other settings the same. This yields the same amount of etching of
InSb nanowire (∼ 70 nm) as etching at 300 V for 300 s. 11 devices, contact spacing
between 1 and 2µm. Average length 1.42µm. Data reported in Fig. 5.5, Fig. 5.6,
and Fig. 5.7 (Batch B).

• FETs fabricated according to our optimized recipe. 13 devices, contact spacing
between 1 and 2.5µm. Average contact spacing 1.73µm. Data reported in Fig. 5.6
and Fig. 5.7 (Batch C).

• FETs fabricated according to the recipe, with the addition of a thin layer of per-
fluorodecyltrichlorosilane (FDTS) deposited onto the devices after fabrication. No
improvement of mobility was observed with respect to devices without FDTS. 11
devices, contact spacing between 1 and 2.5µm. Average contact spacing 1.64µm.
Data reported in Fig. 5.6.

• FETs fabricated according to our optimized recipe, but with substrate oxygen plasma
cleaning of 60 s instead of 10 minutes. After oxygen plasma cleaning a thin layer
of FDTS was deposited onto the substrate, after which fabrication proceeded ac-
cording to the recipe. No improvement of mobility was observed with respect to
devices without FDTS and with the usual 10 minutes cleaning. 10 devices, contact
spacing between 1 and 2.5µm. Average contact spacing 1.85µm. Data reported in
Fig. 5.6.
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5.11.4. AVERAGE DEVICE CHARACTERISTICS OBTAINED FROM SEVERAL MEA-
SUREMENT AND FABRICATION RUNS

Short evacuation Long evacuation Reexposed to air

µ f (103 cm2/Vs) 14.6 ± 3.0 28.7 ± 4.6 17.3 ± 2.8
µr (103 cm2/Vs) 10.7 ± 2.1 18.6 ± 3.0 12.1 ± 1.9
µavg (103 cm2/Vs) 12.7 ± 2.7 23.7 ± 3.6 14.7 ± 2.2
Vth (V) 1.70 ± 0.29 -0.20 ± 0.36 1.96 ± 0.43
Vhyst (V) 2.75 ± 0.47 1.31 ± 0.30 2.40 ± 0.36
Rs (kΩ) 3.7 ± 0.7 3.7 ± 1.0 4.1 ± 1.2

Table 5.1: Mobility, threshold voltages Vth , hysteresis, Vhyst and series resistances, Rs , extracted from fits to
conductance curves G(Vg ) of the evacuation time experiment. Mobility is obtained with forward sweep di-
rection, µ f and reverse sweep direction, µr . The average mobility of these two sweep directions, µavg, is also
reported. Vth is the threshold voltage obtained from fits to G(Vg ) taken with forward sweep direction. Mobility,
threshold voltage and hysteresis are also shown in Fig. 2c, d and e, respectively.

Batch A B C

µ f (103 cm2/Vs) 28.7 ± 4.6 28.9 ± 4.4 26.0 ± 4.7
µr (103 cm2/Vs) 18.6 ± 3.0 19.4 ± 3.9 16.4 ± 3.0
µavg (103 cm2/Vs) 23.7 ± 3.6 24.2 ± 3.9 21.2 ± 3.8
Vth (V) -0.20 ± 0.36 -0.51 ± 0.45 -0.37 ± 0.39
Vhyst (V) 1.31 ± 0.30 1.14 ± 0.22 1.41 ± 0.28
Rs (kΩ) 3.7 ± 1.0 3.0 ± 0.8 4.8 ± 1.8

Table 5.2: Mobility, threshold voltage, Vth , hysteresis, Vhy st , and series resistance, Rs , obtained from fits to the
conductance curves G(Vg ) of three batches of high-mobility devices. Mobility is obtained with forward sweep
direction, µ f and reverse sweep direction, µr . The average mobility of these two sweep directions, µav g , is
also reported. Vth is the threshold voltage obtained from fits to G(Vg ) taken using forward sweep direction.
Mobilities and series resistances are also shown in Fig. 5.
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ONE MINUTE PARITY LIFETIME OF A

NBTIN COOPER-PAIR TRANSISTOR

D. J. van Woerkom, A. Geresdi, L. P. Kouwenhoven

Vaak moet er iets gebeuren voordat er iets gebeurt.

Johan Cruijff

In a small superconducting island, hosting an even number of electrons, all charge car-

riers form Cooper pairs, defining the ground state of the Cooper-pair transistor (CPT).

An additional, unpaired electron can only occupy a higher energy level, determined by

the superconducting order parameter. This even-odd (parity) energy difference makes the

CPT a very sensitive charge detector as well as a prototype superconducting qubit, whose

coherence relies on the conservation of the parity of the island. Here we report parity con-

servation in a niobium-based superconductor, NbTiN, for the first time. NbTiN is a pop-

ular superconductor since it can sustain high parallel and perpendicular magnetic fields

which is often a requirement for hybrid devices. The parity conversation resulted in the

first 2e-periodicity measurements in a non-Aluminium CPT. The highest reported parity

lifetime ever, which was longer than one minute, was measured. The parity lifetime did

not saturate down to a base temperature of 12mK, showing state-of-the-art device shield-

ing of thermal photons. We show that our CPT is magnetic field compatible, opening new

possibilities for coupling spin degrees of freedom to superconducting circuits and qubits

and for topological superconductivity, enabling qubits based on MZM.

This chapter has been published in Nature Physics 11, 547-550 (2015).
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The experimental setup is discussed in section 6.2 followed by the measurement
technique, in section 6.3, which was found decisive in the success of the experiment.
Characterization is performed to find the range of Josephson coupling and charging en-
ergy ratio in section 6.4. The main results of the measurements are in section 6.5 were
also the comparison between standard and extra electromagnetic shielding is shown.
The long parity lifetime is also extracted with an additional method which confirm the
lifetime to be in the order of 1 minute. This additional method is also used to show a
direct 2e-effect, both of these measurement are described in section 6.6. In the last sec-
tion 6.7 the magnetic field compatibility of the parity lifetime is investigated. The final
conclusion is reported in section 6.8. Supplementary information is given in section 6.9

6.1. INTRODUCTION
The parity modulation of the ground state of a superconducting island is a direct con-
sequence of the presence of the Cooper pair condensate preferring an even number of
charge carriers [24, 148]. The addition energy of an odd, unpaired quasiparticle equals
to the superconducting gap, ∆, suppressing single electron hopping in the low temper-
ature limit, kB T ≪ ∆. Controlling the quasiparticle occupation is of fundamental im-
portance for superconducting qubits as single electron tunneling results in decoherence
[149, 150]. In particular, topological quantum computation relies on the parity control
and readout of Majorana bound states [151, 152]. Here we present parity modulation
for the first time of a niobium titanite nitride (NbTiN) Cooper-pair transistor coupled to
aluminium (Al) leads. We show that this circuit is compatible with the magnetic field re-
quirement B ∼ 100mT of inducing topological superconductivity in spin-orbit coupled
nanowires [7–9]. Our observed parity lifetime exceeding 1 minute is several orders of
magnitude higher than the required gate time of flux-controlled braiding of MZM [17].

Experimentally, the parity modulation of a superconducting island can be observed
via the ground state charge [24], the even-odd modulation of the charge stability diagram
[153, 154], or the parity dependence of the switching current, Isw [25, 155]. The interplay
of the charging energy Ec = e2/2C and the Josephson coupling E J = Icħ/2e makes the
Cooper-pair transistor (CPT) a single, gate-modulated Josephson junction [25, 156] with
a 2e charge periodicity in the absence of parity switches.

Recent, direct measurements of τp [150, 157] yielded values up to the millisecond
regime for aluminium devices. Despite considerable efforts, however, no 2e periodicity
has been reported for non-aluminium superconductors [158, 159], such as niobium or
vanadium. Comparative studies of aluminium and niobium CPTs suggested that the
elusiveness of parity effects is related to the material properties [159], in particular the
formation of a surface oxide layer under ambient conditions. While aluminium tends
to form a few nanometer thick insulating oxide layer [160], noibium is prone to oxidize
through the bulk material [161] mostly forming metallic NbOx compounds. This process
then leads to localized metallic states in the island, which prevents parity control.

In contrast, nitridized niobium compounds, such as niobium titanite nitride (NbTiN),
have been shown to be less prone to form oxides [161] and hence are good candidates
for parity-conserving superconducting circuits. Furthermore, NbTiN forms transparent
contacts with spin-orbit coupled semiconductor nanowires [9], and has become a pre-
ferred superconductor to investigate Majorana bound states.
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Figure 6.1: Device layout and parity-dependent switching current. (a) Scanning electron microscope image
and schematic cross-section of a typical Al/NbTiN/Al hybrid Cooper-pair transistor (CPT). The NbTiN island
dimensions are 250nm×450nm. Scale bar denotes 200nm. The AlOx oxide barriers are indicated by thick
red lines. (b) Energy level diagram as a function of the gate charge, ng , in the presence of low energy subgap
states restoring 1e periodicity. The maximum even-odd energy difference is denoted by δE . Gray lines repre-
sent energy levels in the absence of Josephson coupling, i.e. E J = 0. Red and blue lines show energy levels for
even and odd charge parity respectively, both for E J = Ec . Parity switches occur on the timescale of τp due to
quasiparticle tunneling. Measured switching current histogram (c) and calculated Ic (ng ) (d) in the low tem-
perature limit. Note that in (d) the two possible Ic (ng ) values corresponding to the even and odd charge states
are denoted by blue and red lines respectively. In the measured data (c) the two branches are superimposed,
see text.

6.2. EXPERIMENTAL SETUP

The measurements were performed in a Leiden Cryogenics CF-1200 dry dilution refrig-
erator with a base temperature of 12mK equipped with Cu/Ni shielded twisted pair ca-
bles thermally anchored at all stages of the refrigerator.

The current bias and gate voltage were applied through battery operated and opti-
cally isolated sources in order to reduce line interference. Similarly, the first stage of the
Vsd amplifier was isolated from the commercial readout electronics. Filtering of the mea-
surement lines was achieved by room temperature LC π filters with a cutoff frequency of
∼ 100MHz followed by a sequence of a high frequency copper powder filter [97] and a
two-pole RC filter with a nominal f−3dB = 50kHz, both thermally anchored to the 12mK
stage.

Special care was taken to avoid stray microwave radiation by using an outer and an
inner copper shield enclosing the device. The inner surface of both shields was treated
with commercially available Aeroglaze Z306 paint absorbing far infrared stray radiation
[162]. We note that the inner shield was not present for device N.
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Figure 6.2: Characterization and temperature dependence of the parity lifetime. (a) Linecut histogram at in-
teger ng of Fig. 6.1c showing a bimodal distribution. We attribute the two peaks to the two parity states of the
CPT (colored red and blue, respectively). (b) For a fast current ramp (upper panel), the histograms of the two
parity states are independently probed showing the characteristics of data in panel (a). In the slow limit (lower
panel in (b)), parity switches occur during the current ramp, leading to an exponential tail of the distribution
(shown in green), quantifying τp . The Ibias(t ) current ramp is represented by a dark gray line. (c) Experimental
dataset in the slow limit. Note the change in the current- and timescale compared to panel (a). We show the
exponential cutoff in green, and extract τp = 49s (solid black line). The dash black lines are guide to the eye
envelopes for the peaks in panels (a) and (c). (d) Experimental data at different temperatures show the temper-
ature dependence of τp . (e) τp as a function of temperature for non-shielded device N, and shielded devices
S1, S2. All CPTs exhibit an activated behavior with ∆≈ 170. . .210µV in the high temperature limit correspond-
ing to the gap of the aluminium leads. Saturation of device N without shielding and no quasiparticle traps is
observed below T ≈ 100mK. Shielded devices S1 and S2 exhibit a minigap-activated behavior ∆

⋆ ≈ 20µV in
the low temperature limit. Star symbol shows τp = 15s at T = 12mK extracted from parity distilled data for
device S2 (see Fig. 6.3d).
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6.3. MEASUREMENT TECHNIQUE
The switching current histograms were acquired using a Rigol DG4062 arbitrary wave-
form generator controlling the isolated current bias source with a triangle wave signal
resulting in a d I /d t current ramp. A finite voltage response above the preset Vref ∼ 10µV
triggers the recording of Isw (Fig. 6.7c). We note that the delay of the low pass filters were
accounted for on the basis of circuit simulations. Subsequent Isw measurements were
taken with setting zero Ibias for approximately 100ms in between to avoid overheating
effects. We did not observe a difference in the switching current histograms taken with
waiting times in the range of 20ms and 10s.

The schematics of the measurement and typical waveforms are shown in Fig. 6.7.

6.4. CHARACTERIZATION VALUES
Our device features a NbTiN island sputtered onto Al leads (Fig. 6.1a). The tunnel barri-
ers between the island and the leads are created by means of controlled in-situ surface
oxidization of Al, resulting in amorphous AlOx barriers [160].

We extract a charging energy Ec ≈ 50µeV and E J ≈ 30. . .50µeV for different devices. A
detailed list of parameters and characterization methods are presented in section 6.9.1.
Our devices are in the intermediate coupling regime with E J ∼ Ec , where the energy di-
agram (Fig. 6.1b) and the critical current (Fig. 6.1d) are sensitive to the charge parity. It
is important to note that our CPTs are in the optimal regime to establish flux-controlled
braiding of MZM with E J ∼ Ec ≫ kB T [17] and hence a useful platform to establish the
parity lifetime for Majorana circuits [163].

6.5. TEMPERATURE DEPENDENCE OF τp

We model the CPT as a two level system which can exist in either parity state (red and
blue bands in Fig. 6.1, respectively), and switches state on the timescale of τp [164] due
to quasiparticle tunneling. We collect the switching current histograms by repetitively
sweeping the bias current from zero (non-dissipative state) to beyond the switching cur-
rent. Here, in the resistive state, quasiparticle tunneling causes a random reinitialization
of the parity state of the CPT for the next measurement. This results in the apparent 1e

periodicity in Fig. 6.1c. Nevertheless, as long as the parity remains constant during each
sweep, we expect to find the two branches as a bimodal histogram, as we indeed observe
in Fig. 6.2a. In these measurements, the current ramp time is much shorter than the
parity lifetime, τp (fast measurement limit).

6.5.1. STANDARD SHIELDING

We quantify τp in the slow measurement limit. In this regime parity switches occur
during the current ramp (Fig. 6.2b lower panels) such that reaching the upper branch
(depicted as blue in Fig. 6.2a and 6.2b) becomes exponentially suppressed (Fig. 6.2c).
The exponential tail represents parity switches during the current bias ramp, resulting
in an observable decay of the upper branch (depicted as green in Fig. 6.2b and 6.2c),
pu(t ) = pu(0)exp(−t/τp ). Thus, from the decay of the histogram (black solid line in
Fig. 6.2c), we can directly obtain τp .
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The observed τp is a result of single electron tunneling events through the junctions
of the CPT. In the zero voltage state, we can link τp to the subgap density of states on
the island and the quasiparticle density in the leads (for details see the supplementary
material):

τ−1
p =

2nqp

e2RNρAl

ρsubgap

ρNbTiN
, (6.1)

where RN is the normal state resistance of the CPT. It is instructive to note that equation
6.1 is similar to the tunneling rate derived in [165] for a device with a normal metallic
island, which stems from our assumption of a finite subgap density of states in the island.
In our case, the parity lifetime is determined by the quasiparticle density in the leads
[163] and the phenomenological Dynes parameter [166] of the island material. Assuming
a thermal quasiparticle density

nqp(T ) = ρAl

√
2πkB T∆Ale

− ∆Al
kB T (6.2)

in the leads, we find ∆Al = 170. . .210µeV (Fig. 6.2e) for temperatures exceeding 120mK,
in good agreement with the superconducting gap of the aluminium leads extracted from
the charge stability diagram. Furthermore, by inserting eq. 6.2 into eq. 6.1, we get an
estimate of the Dynes parameter to be ∼ 10−2. This is in good agreement with ∼ 10−3

that we get based on our measurements of a single NbTiN/AlOx /Al junction shown in
the supplementary material. We can therefore attribute the observed parity lifetime for
T > 120mK to the thermal quasiparticle population in the leads.

For device N, however, we find a saturated τp = 9.5ms in the low temperature limit,
a common observation in superconducting qubits [150] and hybrid single electron tran-
sistors [165] signifying the presence of non-thermal quasiparticle excitations

6.5.2. EXTRA SHIELDING
A common strategy to drain non-thermal quasiparticles is to introduce traps, i.e. normal
metal junctions attached to the leads. We note that the trapping efficiency of a quasi-
particle trap is influenced by its distance from the CPT with respect to the quasiparticle
diffusion length on the timescale of the recombination time [167]. Our choice of a nom-
inal 5µm separation is much shorter than the typical diffusion length of & 100µm even
at the highest temperature of T = 150mK. However, since this distance is much longer
than the estimated coherence length of ξAl ≈ 100nm, the inverse proximity effect does
not influence the transport at the junction of the CPT [168].

By introducing quasiparticle traps and microwave-tight shielding coated with in-
frared absorber painting for devices S1 and S2, we find a non-saturated behaviour of τp

(Fig. 6.2e). We observe a minigap activated temperature dependence with ∆
⋆ ≈ 20µeV

for both devices which we attribute to a minimum excitation energy on the island. This
activation energy is consistent with the maximum even-odd energy difference of δE ≈
20. . .30µeV (Fig. 6.1b) which promotes τp ∼ exp(δE/kB T ) [169].

It is to be stressed that the lack of saturation signals that the effective quasiparticle
temperature of the CPT follows the bath temperature down to the 10mK regime which is
in clear contrast to the saturated behaviour of device N. We find τp = 49s at T = 12mK for
device S2. To put this number into context, we note that the Josephson frequency f J =
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Figure 6.3: Parity state distillation. (a) Schematic current bias and gate voltage waveforms applied to the de-
vice. First, current bias pulse with an amplitude between the two branches is applied (1). At the same time the
measured voltage Vsd(t ) is recorded to initialize the parity state. Then the gate voltage is ramped (2) and finally,
the switching current is recorded (3). (b) The schematic representation of the applied waveforms overlayed on
the parity-dependent critical current. (c) Parity distilled switching current histogram exhibiting 2e periodicity
with twait = 100ms. Linecut histograms are shown in panel (d) for an even (blue) and odd (red) ng denoted
by arrows in panel (c). (e) Raw histogram without parity distillation exhibiting 1e periodicity. Slight shifts in
panels (c) and (e) are caused by gate charge switches which occur on the timescale of several 10 minutes. (f )
Parity distillation fidelity as a function of twait, see text. Solid red line denotes the fit ∼ exp(−twait/τp ) with
τp = 15s. All data was recorded on device S2.

E J /h ≈ 10GHz and thus a single quasiparticle event occurs only once for every τp f J ∼
1011 Cooper pairs tunneling through the junctions. This signifies the low probability
of parity switches for an open device with E J ≈ Ec required for flux-tunable Majorana
braiding schemes.

6.6. PARITY STATE DISTILLATION
Thus far, we started each switching current measurement from an unknown parity state
because of the random reinitialization in the dissipative state of the CPT for Ibias > Isw.
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In order to reproducibly select the same parity state, we employ a parity distillation pro-
tocol (Fig. 6.3) where, by selecting a single parity state without switching to the resistive
state, we ensure that the parity remains well defined for the subsequent measurement.
This protocol indeed results in a 2e periodic switching current pattern (Fig. 6.3c) which
is observed for the first time for a non-aluminium CPT.

We quantify the effectiveness of the parity distillation by defining the fidelity as:

Fp =
pu, f −pu,i

1−pu,i
, (6.3)

where pu, f is the conditional probability of the upper branch in the final step (3), and
pu,i is the initial probability. We note that the above expression is valid for an arbitrary
0 < pu,i < 1 value set by the average quasiparticle occupation of the CPT. For device S2
we find Fp = 0.88±0.05 for twait = 100ms demonstrating the high degree of parity dis-
tillation (Fig. 6.3d). By changing twait between the parity initialization (1) and measure-
ment (3), we acquire an independent measurement τp = 15s for device S2 at T = 12mK
(Fig. 6.3f).

Finally, we investigate the evolution of τp (B) in different magnetic field directions. In
parallel magnetic field, we observe a gradual decrease of τp . The onset of the steep decay
at B∥ = 110mT (yellow arrow in Fig. 6.4a) is in agreement with the condition for vortex
penetration through a mesoscopic superconducting island [170] with Φ ≈ 1.1Φ0 & Φ0,
whereΦ0 = h/2e is the magnetic flux quantum. We note that the measurement geometry
shown in the inset of Fig. 6.4a may give rise to a Fraunhofer-like interference on the same
magnetic field scale, however the upper critical magnetic field of 320mT of the Al leads
did not allow for evaluating τp over a larger magnetic field range, i.e. several flux quanta.

These results underline the significance of the sample geometry of the CPTs for main-
taining parity control in a finite magnetic field. However, our device exhibits τp > 10ms
in B∥ > 100mT, required to induce MZM [7–9].

6.7. MAGNETIC FIELD DEPENDENCE OF τp

By applying a perpendicular field first results in an increase of τp reaching a maximum
value τp = 94s at B⊥ ≈ 10mT, before dropping at higher magnetic fields (Fig. 6.4b). No-
tably, the typical switching current values, shown in the supplementary material, do not
follow the same trend. Making use of the relation between the lower critical field and the
stripe width, Bc1,⊥(w) ∼Φ0/w2 [171] we attribute the initial increase to vortex formation
and hence more effective quasiparticle trapping in the wide lead sections (w ≈ 2µm) of
the device (see the yellow sections in Fig. 6.4b). Upon reaching B⊥ ≈ 10mT, the vortex
phase becomes stable in the close vicinity of the CPT (w ≈ 250nm) causing a gradual
decrease of τp . We note that due to ξAl ≈ 100nm ∼ w for our devices, we cannot make
a quantitative comparison between our measurement data and theoretical expressions
of critical magnetic field of thin stripes. We however conclude that vortices induced by
a perpendicular magnetic field can increase the efficiency of quasiparticle traps, but the
formation of a vortex phase in the near vicinity of the CPT enhances quasiparticle trans-
port in agreement with earlier observations [171, 172].
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Figure 6.4: Influence of the magnetic field on the CPT. The parity lifetime as a function of in-plane field, B∥
(a) and perpendicular field, B⊥ (b), respectively. In panel (a), the shaded region depicts the condition for
inducing MZM in spin-orbit coupled semiconductor wires [7–9] and the yellow arrow shows the onset of the
steeper decay at B∥ ≈ 110mT. The inset depicts the relative orientation of the CPT with respect to the magnetic
field. In panel (b), the inset shows the false colour electron microscope image of the device with the white scale
bar denoting 5µm. In both panels, the dash lines serve as a guide to the eye.

6.8. CONCLUSIONS

Cooper-pair transistors were fabricated with Aluminium leads and NbTiN islands with
E J /Ec ratio of ∼1. Switching current measurements were performed as function gate
voltage to investigate the gate periodicity. A clear 1e-periodicity is found and is explained
by trapping of strong localized quasi-particles after a switching current event. In the dis-
sipationless state the parity lifetime is investigated and was measured up to 1 minute
with extensive shielding and in the presence of quasiparticle traps. With parity distilla-



6

98 6. ONE MINUTE PARITY LIFETIME OF A NBTIN COOPER-PAIR TRANSISTOR

tion a clear 2e-periodicity in gate is observed for the first time in a Niobium-based super-
conductor. Finally, minor reduction of parity lifetime was observed moderate magnetic
field in the limited were experiments are claiming the existence of MZM.

6.9. SUPPLEMENTARY INFORMATION

6.9.1. DEVICE FABRICATION
The Cooper-pair transistors (CPTs) were fabricated using electron beam lithography and
thin film deposition starting with a p++ doped silicon wafer with a 285nm thick ther-
mally grown SiO2 surface layer. First, aluminium leads were defined and evaporated
in a high-vacuum chamber (pbase ∼ 10−7 Torr) at a rate of 0.2nm/s with a thickness of
30. . .35nm. Subsequently, the mask for the NbTiN island was defined in a second lithog-
raphy step. The sample was loaded into an ultra high vacuum AJA International ATC
1800 sputtering system (pbase ∼ 10−9 Torr), where first a ∼ 5nm Al layer was removed by
means of argon plasma etching at p = 3mTorr. This step was followed by in-situ oxi-
dization to create AlOx tunnel barriers. Without breaking vacuum, the NbTiN island was
then sputtered with a layer thickness of 70. . .100nm.

We used a Nb0.7Ti0.3 target with a diameter of 3′′. Reactive sputtering resulting in
nitridized NbTiN films was performed in an Ar/N process gas with a typical 10 at% ni-
trogen content at a pressure of 3mTorr using a DC magnetron source. During deposition,
a −45V bias was applied to the sample with respect to the target. The critical tempera-
ture of the superconducting transition temperature of thin films with a layer thickness
of 100nm was measured to be 14.1K in zero magnetic field.

For the shielded samples S1 and S2, quasiparticle traps were fabricated by first clean-
ing the Al surface by means of argon plasma milling at p = 0.2mTorr and in-situ evapo-
ration of 25nm Ti and 100nm Au films at a base pressure of ∼ 10−7 Torr.

Care was taken to remove resist mask residues after each electron beam writing step
using a remote oxygen plasma etch with a pressure of 1mbar.

We show the scanning electron microscope images of the devices investigated in
Fig. 6.5 and define the fabrication parameters in Table 6.1.

device island size junction size NbTiN traps oxygen RN

thickness exposure
(nm×nm) (nm×nm) (nm) (Torr×s) (kΩ)

N 500 × 500 200 × 200 70 no 7400 58
S1 450 × 200 200 × 200 100 yes 150 125
S2 450 × 250 200 × 250 100 yes 150 66

Table 6.1: Device fabrication parameters of the CPTs discussed in this chapter.

BASIC CHARACTERIZATION OF THE CPT
We estimate the charging energy, Ec = e2/2C , based on the periodicity of characteristic
resonances visible for eVsd = ∆Al . . .2∆Al. We attribute these lines to resonant Andreev
tunneling through single levels of the CPT [173]. The resonances occur with a vertical
periodicity of eVsd = 2Ec and the onset defines eVsd =∆Al as well.
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a b

c d

Figure 6.5: Scanning electron microscope images of the CPTs. (a) Non-shielded device N without quasi-
particle traps. (b), (c), (d) Shielded device S2 featuring quasiparticle traps. Colour legend: dark red: Si/SiO2
substrate; light blue: NbTiN island, green: aluminium leads and yellow: normal metal (Ti/Au) gate and quasi-
particle traps. Scale bars denote 500nm (a), 1000nm (b), 5µm (c) and 200nm (d), respectively.

The onset of quasiparticle transport is defined by eVsd = 2(∆NbTiN +∆Al), which then
defines∆NbTiN. Typical I (V ) and d I /dV (V ) traces are shown in Fig. 6.6 and the recovered
parameters are tabulated in Table 6.2.

We evaluate the Josephson coupling for a single tunnel junction [174]:

E J =
ħ

2e2

∆Al

RN /2
K



√

1−
(

∆Al

∆NbTiN

)2

 (6.4)

with K (x) being the complete elliptic integral of the first kind. This expression is valid
in the zero temperature limit, assuming symmetric tunnel junctions of the resistance of
RN /2.

Alternatively, we can estimate the E J /Ec ratio based on the modulation of Isw as a
function of the gate charge, ng (last column of Table 6.2) [175]. We find a good agreement
between the E J /Ec values acquired by the two independent methods. Finally, we provide
δE(Ec ,E J ) based on [176].
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Figure 6.6: Basic characterization of the CPT. (a) Stability diagram: log |I | as a function of Vsd and Vg of device
S1. We estimate Ec based on the resonant Andreev processes (see text). b Linecut I −V traces at Vg values
depicted by arrows in (a). Characteristic resonant tunneling processes occur in the bias voltage range of eVsd =
∆Al . . .2∆Al. (c) I−V (black) and d I /dV (red) line traces of device S2. Quasiparticle transport is enhanced above
a bias voltage of eVsd = 2(∆NbTiN +∆Al).

device ∆Al ∆NbTiN RN E J Ec E J /Ec E J /Ec

(µeV) (µeV) (kΩ) (µeV) (µeV) calc. Isw

N 210 1390 58 54 50 1.08 1.25
S1 218 810 125 17 62 0.28 0.32
S2 220 1300 66 48 49 0.98 1.16

Table 6.2: Device transport parameters.

6.9.2. MEASUREMENT SETUP

A typical DC V − I trace of device S2 at 12mK temperature is presented in Fig. 6.7b
exhibiting a sharp transition between the dissipationless and the resistive state at the
switching current, Isw.

It is important to note that we find a finite subgap conductance at eVsd < 2∆NbTiN

which is consistent with the presence of the subgap quasiparticle states justifying the
analysis leading to equation 6.1. Furthermore, we observe reduced ∆NbTiN < 1.4meV val-
ues compared to that of bulk films (∆> 2meV) [179], which we attribute to the chemical
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Figure 6.7: Measurement electronic setup and typical waveforms. (a) Schematics of the measurement. (b)
Typical experimental V − I trace exhibiting a well-defined switching current, Isw. We observe a retrapping
current Ir ≪ Isw characteristic to unshunted Josephson junctions in the low temperature limit [177]. The
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interaction between the AlOx tunnel barrier and the NbTiN film. Indeed, it was shown
earlier that the critical temperature of Nb films is particularly very sensitive to contami-
nation with oxygen [180, 181]. However, the nitridized NbTiN compound is presumably
less prone to oxidization [161].

6.9.3. EVALUATION OF THE PARITY LIFETIME

We checked the robustness of the extracted parity lifetime against changing the current
ramp rate. Typical datasets are shown in Fig. 6.8, giving τp = 1.2ms and τp = 0.98ms for
d I /d t = 100nA/s (red) and d I /d t = 400nA/s (black), respectively. We estimate the typi-
cal uncertainty to be 25%, concluding that τp does not depend on d I /d t which validates
the analysis. However, we do not discuss here the intrinsic peak shapes of the bimodal
switching current histogram. Since fast gate charge noise influences the measured distri-
bution [88], we cannot distinguish between thermally activated [182] and macroscopic
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Figure 6.8: Measured switching current histograms at different d I /d t ramp rates. Colour legend: red:
d I /d t = 100nA/s, black: d I /d t = 400nA/s. The data was acquired on a CPT similar to device N.

quantum tunneling behaviour [149, 177].
We now turn to the temperature dependence of τp . In order to get equation 6.1, we

assume the following:

1. The superconducting gap of the island (∆NbTiN & 1.3meV) is much higher than
the effective thermal energy describing the quasiparticle population and the gap
of the leads (∆Al ≈ 200µeV).

2. The density of states in the leads is BCS-type: ρlead(E) = ρAl × |E |/
√

E 2 −∆
2
Al for

|E | >∆Al and zero otherwise.

3. There is a constant, finite subgap density of statesρsubgap for energies below∆NbTiN

in the island.

4. the energy dependence of the single electron tunnel probability is negligible over
the energy range of ∼∆NbTiN, meaning that the tunnel barrier is much higher than
∆NbTiN.

5. The tunnel barriers are identical, each characterized by half the normal state re-
sistance of the full device, RN .

Considering only single electron tunneling and zero voltage bias across the tunnel
barriers, following [165], we get the quasiparticle tunnel rate:

τ−1
p = 2

e2(RN /2)ρAl

ρsubgap

ρNbTiN

∫∞

0
ρlead(E) f (T,E)dE =

2nqp

e2RNρAl

ρsubgap

ρNbTiN.
(6.5)

Assigning an effective temperature to the quasiparticle population in the leads, we find:

nqp(T ) = 2

∫∞

0
ρlead(E) f (T,E)dE = ρAl

√
2πkB T∆Ale

− ∆Al
kB T (6.6)
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in the limit of kB T ≪∆Al. For temperatures exceeding 100mK, we assume that the quasi-
particle population is in thermal equilibrium, and therefore the lattice temperature is
equivalent to the effective quasiparticle temperature: τ−1

p (T ) ∝
p

T exp(−∆Al/kB T ).
We verify this picture by fitting the observed parity lifetimes with ∆Al as a free param-

eter, and find values ranging 170. . .210µeV for different devices in good correspondence
with the gap determined by voltage bias spectroscopy (∆Al in Table 6.2).

Notably, the ratio ρsubgap/ρNbTiN is the Dynes parameter [166] of the island material,
characterized to be . 10−3 based on measurements of highly resistive single junctions
(Fig. 6.9). With this value and using ρAl = 1.45×1047 J−1m−3 [165], we get nqp ∼ 3µm−3

for device N based on the observed parity lifetime of 9.5ms in the low temperature limit.
We now comment on the observed ∆

⋆ ≈ 20µeV activation energy observed for devices
S1 and S2. We estimate the maximal even-odd energy difference to be δE ≈ 20. . .30µeV
based on E J ≈ Ec ≈ 50µeV [176] which is in range of the experimentally observed ∆

⋆.
Similar, activated behaviour of the parity lifetime scaling as ∼ exp(δE/kBT ) was reported
earlier [169].

Providing another possible explanation, we note that a grain size of ≈ 50nm can lead
to a level spacing of the order of 10µeV which can influence single electron transport
and hence τp if the grains are weakly coupled, i. e. for disordered superconducting films
[183]. Disorder-induced fluctuations may also explain the broadening of the coherence
peaks (Fig. 6.6c and Fig. 6.9) [184, 185].
In recent theoretical studies also disorder in the form of common nonmagnetic scatter-
ers and pairing-potential impurities was used for the explanation of sub gap DOS and
the existence of the mini gap behaviour [87, 186].

6.9.4. MEASUREMENT OF THE DYNES PARAMETER OF THE NBTIN ISLAND
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Figure 6.9: d I /dV characteristics of a single NbTiN/AlOx /Al tunnel junction with a normal state resistance of
RN = 2.4MΩ on the linear (a) and on the logarithmic scale (b), respectively. The measurement was performed
at T = 300mK. The inset in (b) shows the scanning electron microscope image of the device. The scale bar
denotes 500nm.

We estimate the Dynes parameter in equation 6.1 by evaluating the subgap conduc-
tance of a single NbTiN/AlOx /Al tunnel junction, where higher order tunneling, i.e. An-
dreev reflection is strongly suppressed. Based on the measurement data in Fig. 6.9, we
estimate the Dynes parameter to be . 10−3.
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We can get an independent estimate of the Dynes parameter by combining eq. 6.5
and eq. 6.6:

τ−1
p =

2
√

2πkB T∆Al

e2RN

ρsubgap

ρNbTiN
e
− ∆Al

kB T . (6.7)

We fit the high temperature part of τp (T ) shown in Fig. 6.2e with the functional form

of τp (T ) = Ap
T

e
∆Al
kB T where the prefactor A contains the Dynes parameter in addition to

known parameters of the device. However, the uncertainty of the fitting makes an order
of magnitude estimate possible, and we conclude

ρsubgap

ρNbTiN
∼ 10−2 for all devices which is

consistent with the previous estimate.

6.9.5. SUPERCONDUCTING THIN FILM CHARACTERIZATION AND MAGNETIC

FIELD DEPENDENCE
Next, we consider the properties of superconducting stripes with layer thickness d , and a
width w to find the London penetration depth λL and the coherence length ξ. We char-
acterize the upper critical field in the parallel (Bc∥) and perpendicular geometry (Bc⊥)
based on the d I /dV traces of the tunnel junctions of the CPT. In addition, we measure
the normal state resistivity of the films that gives an estimate for the mean free path, lm

[187].
First, we establish the length scales of the island material, NbTiN. We find films su-

perconducting at B⊥ = 9T which leads to an upper limit of ξNbTiN < 6nm following [39]:

Bc⊥ = Φ0

2πξ2
. (6.8)

The penetration depth can be estimated using the normal state resistivity ofρ = 98µΩcm
and the critical temperature of T = 14.1K using the following semi-empirical formula
[179]:

λNbTiN =
√

ρ[µΩcm]

Tc [K ]
×105nm ≈ 280nm. (6.9)

Next we estimate length scales of the Al leads based on the electronic transport through
the CPT. Typical thin Al films are type-II superconductors in the dirty limit (lm < ξ0) with
a reduced coherence length of ξ ≈ 0.85

√
ξ0lm and with a London penetration depth of

λ ≈ λ0

√
ξ0/lm , where ξ0 ≈ 1500nm and λ0 ≈ 16nm are the bulk values [39]. For our

films, we estimate lm ≈ 8.5nm based on the resistivity of ρ = 4.3µΩcm [187]. From the
stability diagram of the devices, we extract upper critical fields of Bc2,⊥ = 36.4± 4mT
(Fig. 6.10e) and Bc2,∥ = 320±10mT (Fig. 6.10) leading to a coherence length of ξAl = 96nm
and λAl = 230nm which enables vortex formation in the aluminium leads in perpendic-
ular magnetic field.

It is important to observe that ξNbTiN ≪ d ≈ 100nm enables vortex formation for an
in-plane geometry in the NbTiN island. We find a characteristic suppression of τp at
B∥ = 70mT for device S2 (orange dots in Fig. 6.10a) and at B∥ = 110mT for device S1
(cyan dots in Fig. 6.9a). Considering the effective cross-sectional areas (see Table 6.1 for
dimensions), we find Φ ≈ 1.5Φ0 and Φ ≈ 1.1Φ0 for S2 and S1, respectively, which is in
qualitative agreement with the threshold of a single vortex formation in a mesoscopic
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Figure 6.10: Supplementary data on magnetic field dependence of the CPT. (a), (b) Measured parity lifetime
and superconducting gap of the leads as a function of in-plane magnetic field. The inset of panel (a) shows the
relative orientation of the field for the two devices. (c) The expectation value of the switching current of the
lower and upper branch, respectively in the fast limit as a function of the magnetic field for device S1. (d), (e)
The parity lifetime and the superconducting gap as a function of the perpendicular magnetic field. The inset of
panel (d) shows the electron microscopy image of the device. The scale bar denotes 5µm. (f ) The expectation
value of the switching current of the lower and upper branch, respectively in the fast limit as a function of the
magnetic field for device S2. All measurements were performed at T = 12mK. Colour legend for panels (a), (b),
(d) and (e): cyan: device S1; orange: device S2. Colour legend for panels (c) and (f): blue: upper branch, red:
lower branch.

island [170, 188, 189]. We also note that Bc2,∥ of the leads (Fig. 6.10b) does not depend on
the direction of B∥, therefore the different evolution of τp can only be explained by the
different alignment of B∥ with respect to the NbTiN islands.

We also note the decrease of switching currents of the upper branch on the same
magnetic field scale (Fig. 6.10c). This is consistent with a Fraunhofer-like interference
arising from the current path through the junctions being perpendicular to the applied
magnetic field. A clear evaluation of the parity lifetime is possible as long as 〈Isw,u〉 >
〈Isw,l〉, which in our geometry leads to the same magnetic field range as that of the vortex
formation discussed above. However, we did not recover subsequent lobes in higher B∥
which is characteristic for Fraunhofer interference.

In a perpendicular geometry, the vortex phase is stable in a thin stripe above the
magnetic field

Bc1,⊥(w) =α
Φ0

w2
, (6.10)

where α is a model-dependent prefactor [171, 190, 191] of the order of unity. We re-
producibly find the same non-monotonic behaviour of τp for devices S1 and S2 with
the maximum at B⊥ ≈ 10. . .13mT (Fig. 6.10d), which is in range of Bc1,⊥(w) for w =
200. . .250nm, the width of the Al leads near the island. However, both the supercon-
ducting gap of the leads (Fig. 6.10e) and the switching current values (Fig. 6.10f) decrease
monotonously.
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JOSEPHSON RADIATION AND SHOT

NOISE OF A SEMICONDUCTOR

NANOWIRE JUNCTION
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T. Kriváchy, D. Car, S. R. Plissard, E. P. A. M. Bakkers,

L. P. Kouwenhoven, A. Geresdi

We measured the Josephson radiation emitted by an InSb semiconductor nanowire junc-

tion utilizing photon assisted quasiparticle tunneling in an AC-coupled superconducting

tunnel junction. We quantify the action of the local microwave environment by evalu-

ating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire

junction and find the zero frequency impedance Z (0) = 492Ω with a cutoff frequency of

f0 = 33.1GHz. We extract a circuit coupling efficiency of η ≈ 0.1 and a detector quan-

tum efficiency approaching unity in the high frequency limit. In addition to the Josephson

radiation, we identify a shot noise contribution with a Fano factor of F = 0.88 which is

consistent with the presence of single electron states in the nanowire channel.

This chapter has been published as arXiv:1702.02804
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7. JOSEPHSON RADIATION AND SHOT NOISE OF A SEMICONDUCTOR

NANOWIRE JUNCTION

7.1. INTRODUCTION
The tunneling of Cooper pairs through a junction between two superconducting con-
densates gives rise to a dissipationless current [52] with a maximum amplitude of the
critical current, Ic [174]. Upon applying a finite voltage bias V , the junction becomes an
oscillating current source

Is (t ) = Ic sin(2π f t ), (7.1)

with a frequency set by h f = 2eV where h is the Planck constant and e is the electron
charge.

The Josephson radiation, defined by Eq. 7.1 has mostly been investigated for super-
conducting tunnel junctions [192–194], metallic Cooper-pair transistors [91] and in cir-
cuit QED geometries [195]. Recently, it has also been proposed as a probe for topological
superconductivity [68, 82, 86], which requires gateable semiconductor Josephson junc-
tions [106].

In contrast to superconductor-insulator-superconductor (SIS) junctions, Josephson
junctions with a semiconductor channel feature conductive modes of finite transmis-
sion probabilities [64, 196], leading to deviations from a sinusoidal current-phase rela-
tionship [197] and the universal ratio of the critical current and the normal state con-
ductance [174]. Furthermore, soft-gap effects [198] have been shown to result in excess
quasiparticle current for subgap bias voltages, limiting prospective applications such as
topological circuits [9] and gate-controlled transmon qubits [199].

Here we investigate the high frequency radiation signatures of a voltage-biased semi-
conductor Josephson junction [106] by directly measuring the frequency-resolved spec-
tral density for the first time. As a frequency-sensitive detector, we utilize a SIS junction,
where the photon-assisted tunneling current [194] is determined by the spectral density
of the coupled microwave radiation [92]. In addition to the detection of the monochro-
matic Josephson radiation, we demonstrate the presence of a broadband contribution,
attributed to the shot noise of the nanowire junction [200].

7.2. DEVICE FABRICATION AND LAYOUT
Our setup follows the geometry of earlier experiments utilizing SIS junctions [194]. In
contrast, our microwave radiation source is an InSb nanowire [128] Josephson junction
(Fig. 7.1d) with a channel length of 100nm. The junction leads (in brown in Fig. 7.1d) are
created by removing the surface oxides by Ar ion milling and then in-situ sputtering of
NbTiN superconducting alloy. Owing to the highly transparent contacts, this procedure
enables induced superconductivity in the semiconductor channel [9, 199]. A predefined
gate structure (purple regions in Fig. 7.1d) provides electrostatic control of the semicon-
ductor channel and is covered by sputtering a 20nm thick SiNx dielectric layer.

The I (V ) characteristics of the two junctions are measured in a standard four point
probe geometry via highly resistive Pt feedlines effectively decoupling the on-chip ele-
ments (Fig. 7.1) thermally anchored at 20mK from the measurement setup. In order to
gain access to a wider VNW range, we use R1 = 1kΩ in the nanowire biasing lines and
R2 = 12kΩ in the voltage measurement leads (see Fig. 7.1b).

The detector SIS split junction is shown in Fig. 7.1f and is fabricated using standard
shadow evaporation techniques [201]. The typical normal state resistance was measured
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Figure 7.1: (a) Photon emission due to the inelastic Cooper-pair tunneling between condensate levels shifted
by the bias voltage, VNW. (b) The microwave equivalent circuit of the measurement setup, where R and C in
the blue dashed box represent the microwave losses and stray capacitance, yielding a 2π f0 = (RC )−1 upper
cutoff frequency. The Cc ≫C coupling capacitors have a negligible effect above a frequency of 2π fc = (RCc )−1

with fc ≪ f0, but allow for the application of independent DC bias voltages VNW and Vdet. The INW(VNW) and
Idet(Vdet) characteristics are measured through the Pt feedline resistors, depicted by R1 and R2. (c) Photon-
assisted quasiparticle tunneling for a detector voltage bias Vdet and an incoming photon energy of h f . (d)
False colored scanning electron micrograph of the nanowire Josephson junction contacted with NbTiN after
being placed on three electrostatic gates. (e) Bright field optical image of the coupling circuitry before the
NbTiN deposition step with the nanowire junction (green box) and the detector junction (red box). (f) False
colored micrograph of the detector split junction with an applied magnetic flux Φ. The scale bars depict 1µm
(d), 20µm (e) and 0.5µm (f), respectively.

to be 20kΩ for a nominal junction area of 100×100nm2. The bottom and top Al layer
thicknesses are 9 and 11nm, respectively. The split junction geometry enables the flux
control of the total Josephson coupling of the detector. To measure the quasiparticle
tunneling response, we set Φ = Φ0/2, with Φ0 = h/2e the flux quantum, to minimize
the Josephson coupling. Finally, we utilize two parallel plate capacitors of Cc ≈ 400fF
with sputtered SiNx dielectric which couple the nanowire junction to the detector in the
frequencies of interest (Fig. 7.1e), yet enable independent voltage biasing and current
measurements in the DC domain.

7.3. THEORY

The mesoscopic noise source under consideration is characterized by its current noise
density, S I ( f ) [200], which results in the voltage noise density SV ( f ) = S I ( f )|Z ( f )|2,
where Z ( f ) is the complex frequency-dependent impedance of the coupling circuit. In
Fig. 7.1b, we depict a parallel RC network resulting in Z ( f ) = R(1− j f / f0)/(1+ f 2/ f 2

0 )
with 2π f0 = (RC )−1 in the limit of negligible detector admittance, r−1

det = d Idet/dVdet ≪
R−1.

We deduce the voltage noise density SV ( f ) starting from the equation for the photon-
assisted current in the SIS detector [93, 194]:
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radiation is absent. Note that the applied flux Φ = Φ0/2 through the split junction results in a suppressed
supercurrent branch. The arrow depicts 2∆/e = 480µV, the onset of the quasiparticle current.

IPAT(Vdet) =
∫∞

0
SV ( f )

(
e

h f

)2

IQP,0

(
Vdet +

h f

e

)
d f , (7.2)

which describes the DC current contribution at an applied voltage Vdet < 2∆. Crucially,
this equation holds if the quasiparticle current in the absence of radiation has a well-
defined onset, IQP,0(Vdet < 2∆) = 0, typically referred to as the quantum limit of the
detector [93] and in the limit of weak coupling, where multiphoton processes do not
contribute [92]. Note that Eq. 7.2 can be handled as a convolution of SV ( f )/(h f )2 and
IQP,0(Vdet).

In the presence of a monochromatic radiation, where SV ( f ) ∼ δ( f −F ), Eq. 7.2 de-
scribes the shift of the initial IQP,0(Vdet) quasiparticle current by δVdet = hF/e. This is

the case of the Josephson radiation [194] with S I ( f ) = I 2
c

4 δ( f −F ), where hF = 2eVNW

with VNW the applied voltage bias on the emitter junction with a critical current Ic . On
the other hand, quasiparticle shot noise is characterized by a frequency-independent
contribution of S I = 2eI F with I being the applied current and F the Fano factor which
is characteristic to the mesoscopic details of the junction [200].

The impedance Z ( f ) of the environment results in a finite power dissipation
I 2

c Re(Z ( f ))/2 which gives rise to a DC current due to inelastic Cooper-pair tunneling
(ICPT) processes in the NW Josephson junction (see Fig. 7.1a) [193]. This effect has
been first addressed to calculate the shape of the supercurrent branch in overdamped
SIS junctions and purely resistive environments [60]. Later, the theory was adapted for
high channel transmissions [202]. It also has been shown that for an arbitrary Z ( f ) ≪
h/4e2 ≈ 6.5kΩ, the ICPT contribution can be evaluated as [193]

IICPT =
I 2

c Re(Z ( f ))

2VNW
, (7.3)

with the critical current Ic and an applied voltage VNW. Here, the junction effectively
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probes the impedance Z ( f ) at a frequency f = 2eVNW/h.
Importantly, the two independently measured current values IPAT(Vdet) and IICPT(VNW)

depend on the same microwave environment, characterized by Z ( f ). Thus, by evaluat-
ing both, we find Z ( f ) and the Josephson coupling of the nanowire junction at the same
time.
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Figure 7.3: (a) The measured δV ( f ) = Ic |Z ( f )| voltage fluctuation on the detector junction. The solid line de-
picts the fitted cutoff with 2π f0 = (RC )−1 = 33.1GHz. Right vertical axis shows the impedance |Z ( f )|, see text.
(b) Experimental IICPT(VNW) trace of the nanowire junction exhibiting a current peak due to the supercurrent
branch. The linear contribution with a resistance RNW = 14.03kΩ (green solid line, see inset for raw INW(VNW)
trace) is subtracted. The blue solid line depicts the fitted curve with Ic = 9.38nA critical current and a noise
temperature T = 132mK. (c) Variation of the nanowire junction current ∆IICPT as a function of the detector
voltage Vdet. The extracted circuit efficiency η (d) and the detector quantum efficiency Q (e) as a function of
VNW, see text.

7.4. DISCUSSION
We demonstrate the detection of the Josephson radiation in Fig. 7.2. In panel (a) we
plot the PAT current contribution as a function of the DC bias voltages Vdet and VNW. In
Fig. 7.2b, we show line traces IPAT(Vdet) exhibiting well-defined onset values correspond-
ing to a monochromatic Josephson radiation tuned by VNW. Thus, we can deconvolute
Eq. 7.2 to find the radiation frequency shown as green dots in Fig. 7.2a. We note however,
that the measured Idet,0 plotted in the inset of Fig. 7.2b is distorted due to self-heating
effects in the SIS detector. Thus, we used a monotonous IQP,0(Vdet) centered around the
same quasiparticle onset. For the details of the deconvolution algorithm, and raw data
files, see [203].

By evaluating the relation between VNW and the radiation frequency (black line in
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Fig. 7.2a), we find a ratio of 475±4.2 M H z
µV

which is in reasonable agreement with 2e
h

∼
484 M H z

µV
expected for the case of Cooper-pair tunneling [204]. The intersect for f = 0 is

set by the quasiparticle current onset to be 2∆/e = 480µV (see inset of Fig. 7.2b).

It is important to notice that the PAT current decreases with increasing frequency
(Fig. 7.2b). By correcting for the ∼ f −2 dependence in Eq. 7.2, we find that the fluctua-
tion amplitude δV = Ic |Z ( f )| ∼

p
SV exhibits a characteristic cutoff frequency (Fig. 7.3a),

even though the current oscillation amplitude of the Josephson junction is constant, see
Eq. 7.1. Thus, we can attribute this cutoff to the coupling circuit impedance, Z ( f ). We
find a good agreement between the experimental data and the impedance of a single-
pole RC network (solid blue line in Fig. 7.3a) yielding to a cutoff frequency f0 = (2πRC )−1 =
33.1GHz.

Next, we turn to the measured I (V ) trace of the nanowire Josephson junction. The
inset of Fig. 7.3b shows the raw curve, which exhibits a supercurrent peak around zero
VNW and a linear branch. The latter fits to a linear slope of RNW = 14.03kΩ (solid green
line). We then extract the IICPT(VNW) component by removing this slope (black dots in
Fig. 7.3b). In order to find the critical current and the noise temperature of the junc-
tion, we use the finite temperature solution of Ivanchenko and Zil’bermann [60] with
substituting |Z ( f )| as the impedance of the environment [203]. With this addition, we
find an excellent agreement with the experimental data (blue solid line in Fig. 7.3b), with
Ic = 9.38nA critical current. Notably, with the now determined value of Ic , we can extract
R = 492Ω and C = 9.8fF fully characterizing the microwave environment of the junc-
tions. In addition, we find Ic RNW = 132µV, which is close to the induced gap values mea-
sured in similar devices [9]. We also extract an effective noise temperature T = 132mK,
which is higher than the substrate temperature of 20mK, similarly to earlier experiments
[202].

Thus far, we evaluated IICPT(VNW) at Vdet ≈ 50µV≪ 2∆/e = 480µV, where IPAT ≈ 0,
thus the detector load is negligible. However, depending on VNW, we find a negative
∆IICPT(Vdet), i.e. a reduction of the emitter current, when the detector threshold is on
resonance with the emitted frequency (Fig. 7.3c). We can understand this effect by the
reduction of Z ( f ) in Eq. 7.3 in the presence of a finite rdet in parallel with R. In first order,
we find ∆IICPT/IICPT =−Re(Z ( f ))/rdet ≈−R/rdet. By using the measured DC current val-
ues, we evaluate the efficiency of the coupling circuit to be the ratio of the absorbed and
emitted power η = Pdet/Pemi = 2IPAT/IICPT (Fig. 7.3d). We find typical values spanning
0.1−0.2, an order of magnitude improvement over earlier reported values [91, 194]. The
decrease of η with increasing f is consistent with the low-pass nature of the coupling cir-
cuit. We also calculate the detector quantum efficiency Q = Pdet/∆Pemi = 2IPAT/∆IICPT

(Fig. 7.3e) and find values scattering around unity. This value directly measures the ratio
of electron and photon rate passing the detector junction, thus confirms that it is in the
quantum limit [93].

We now turn to the shot noise contribution to IPAT. We evaluate the measured data by
including both S I ∼ δ( f −F ) of the Josephson radiation, and SI = 2eI F of the shot noise
with F being the Fano factor [200] in order to calculate IPAT from Eq. 7.2. With setting
F = 0, i.e. in the absence of shot noise, we find that the blue curves in Fig. 7.4 can fit the
steps in IPAT, however fail to describe the smooth background of the dataset. A much
better agreement is reached by using a single global fit parameter F = 0.88± 0.11 (red
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Figure 7.4: Detector IPAT(Vdet) line traces at various VNW bias voltage values. The experimental data is shown
by black lines. The blue lines depict the contribution of the Josephson radiation using the circuit parameters
defined earlier. The red lines include the shot noise contribution with the sole global fit parameter F = 0.88±
0.11, see text.

curves in Fig. 7.4. We note that the channel length of 100nm is similar to the mean free
path found earlier in the same nanowires [205]. Thus the extracted Fano factor, yielding
to sub-Poissonian shot noise, is consistent with the presence of several transport modes
of low transmission τ, where F = 1− τ assuming identical quasiballistic channels. In
contrast, F = 1/3 characteristic of diffusive normal transport [206] does not fit our data.

Furthermore, the extracted Fano factor does not agree with the shot noise signature
of multiple Andreev reflections, where F > 1 values are anticipated due to the transport
of multiple charge quanta both in the ballistic [207] and in the diffusive [208] limit. Our
experiment thus provides insight to the nature of the charge transport at finite voltage
bias in the nanowire Josephson junction and concludes that the finite subgap current
can be attributed to single electron states inside the induced superconducting gap.

7.5. CONCLUSIONS
In conclusion, we built and characterized an on-chip microwave coupling circuit to mea-
sure the microwave radiation spectrum of an InSb nanowire junction with NbTiN bulk
superconducting leads. Our results clearly demonstrate the possibility of measuring the
frequency of the Josephson radiation in a wide frequency range, opening new avenues
in investigating the 4π-periodic Josephson effect [7] in the context of topological super-
conductivity [8]. Based on the Fano factor, the shot noise contribution to the measured
signal demonstrates the presence of subgap quasiparticle states and excludes multiple
Andreev reflection as the source of subgap current of the nanowire Josephson junction.
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FRACTIONAL JOSEPHSON

RADIATION AT FINITE MAGNETIC

FIELD

D. J. van Woerkom

The presence of Majorana zero modes (MZM) in Josephson junctions changes the proper-

ties of the junction radically. Due to the presence of MZM, Majorana bound states (MBS)

are formed, which have a doubled phase periodicity (4π) compared to trivial Andreev

bound states (ABS), which are 2π-periodic. Measuring a 4π signal in the MZM limit (semi-

conducting nanowire with strong spin-orbit coupling, in the proximity of a superconduc-

tor at finite magnetic field), is a strong signature of the presence of MZM. In this chapter, we

measure radiation emitted from an InAs nanowire with an epitaxially grown aluminum

shell with an on-chip detection circuit. The detected radiation shows a signature of 4π

periodicity, namely emission at half of the Josephson frequency. We investigate this radi-

ation as a function of external applied magnetic field and local electrostatic gates. The

half-Josephson frequency is observed in a magnetic field range of ∼ 100−300mT, indepen-

dent of the gate voltages, indicating that the measured signature is robust. This signature

in our nanowire Josephson junction hints at the presence of MZM.

This work is being performed together with D. Laroche, D. Bouman, A. Proutski, R. J. J. van Gulik, M. P. Nowak,
D. I. Pikulin, P. Krogstrup, J. Nygård, C. M. Marcus, L. P. Kouwenhoven, A. Geresdi
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In this chapter, we report the status of a project that was not finished at the time of
writing. As of now1, we are still measuring a third device which shows similar effects to
the first and second devices. Only data from the first device is used in this chapter. We are
trying to make improvements in the analysis, meaning that this is also a work in progress.
The improved analysis which we (are trying to) develop is not expected to change the
observations shown in this chapter, and would only be a better way of presenting the
data. A possible improved depiction of the data is shown in Figure F.5.

We start by explaining our motivation and giving an brief introduction in Section 8.1.
Although the circuit we use in this chapter is very similar to the one used in the pre-
vious chapter, we discuss it briefly in Section 8.2, and the improvements made to it in
Section 8.3. We start the experiment by showing (in Section 8.4) that at zero magnetic
field we measure the Josephson radiation we expect for a trivial Josephson junction. By
applying a sufficiently large magnetic field along the nanowire, we observe instead ra-
diation at half the Josephson frequency, as reported in Section 8.5. We use electrostatic
gates underneath the nanowire (weak link) and underneath the superconducting banks
to further investigate this effect in Section 8.6. In Section 8.7, we comment on, and dis-
cuss the evolution of, the detected radiation as a function of phase velocity. Finally, we
present preliminary conclusions and discussion in Section 8.8.

8.1. INTRODUCTION
As was explained in Chapters 2 and 3, MZM come with three distinct signatures: a zero
bias conductance peak; non-abelian exchange statistics; and a 4π-periodic current (en-
ergy) phase relation in a Josephson junction. This last signature is a strong indication
of the presence MZM when other effects, like Landau-Zener (LZ) tunneling, can be ex-
cluded. Demonstrating non-abelian exchange statistics is challenging because it re-
quires precise control of multiple (more than 4) MZM[17, 35, 209].

Measuring the 4π-periodic current (energy) phase relation relies on the overlap of
two MZM to form an MBS. Detection is expected to be challenging because the 4π sig-
nature is only visible at specific experimental timescales, as discussed in Section 3.4.4.
Ref. [77] uses a similar system, which is expected to have MZM and should show the 4π
signature. However, the signature is not reported because the measurement timescale is
on the order of minutes, which is probably too slow to measure the 4π-periodic current
phase relation.

In this chapter, we use a similar experimental setup to the one in Chapter 7, on which
we have made improvements to make the experiment more compatible with magnetic
field. These improvements are discussed more extensively in the next two sections.

8.2. MEASUREMENT TECHNIQUE
We use an on-chip detection technique, with an SIS Josephson junction as the detector.
The junction has a normal-state resistance of 34kΩ. Under irradiation from a microwave
radiation source, the current-voltage characterization of the SIS detector is distorted by
an extra current for Vdet < 2∆. This extra current is called the photon-assisted-tunneling
(PAT) current, as derived in Section 3.6.

1End of October 2016
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The nanowire Josephson junction is used as a single-frequency microwave source
via the AC Josephson effect. The AC Josephson effect gives current oscillations when the
Josephson junction is voltage biased. The relation between the nanowire voltage and
the detected frequency ( f ) is a constant 2e/h and determines the AC quantum voltage
standard[210]. We do not measure this relation directly, because we do not convert the
detected signal to frequency directly as we did in the previous chapter. Instead, we mea-
sure the nanowire and detector voltage bias and determine from the measured lock-in
signal (see next section) the relation between the two voltages. This relation is a dimen-
sionless slope, and is 2 (1) in the presence of 2π (4π) periodic Andreev (Majorana) bound
states in a nanowire Josephson junction. Electrons (single charges) can tunnel in the
presence of the MBS, instead of Cooper pairs (double charges) in the presence of ABS.

As noted, the voltage standard is the relation between the nanowire voltage and the
emitted frequency. In the used detection scheme we are not able to measure this rela-
tion very precisely. This is because limitations of the circuit and noise in the measured
current and voltage limit our accuracy.

8.3. TECHNICAL IMPROVEMENTS
Compared to the experiments described in the previous chapter, three major improve-
ments have been made to improve magnetic field compatibility.

• First, the nanowires of these devices have been replaced by InAs nanowires with
epitaxially-grown Al shells[20]. These nanowires have shown hard induced gap
due to their clean interface with the superconductor[14, 21]. Also, in our mea-
surements we see clear regions of low subgap current, two examples of which are
shown in Figure 8.2c and d. The lack of subgap current in the nanowire, which gen-
erates white noise radiation, previously limited the experimental range to VNW ≤
40µeV.

The nanowire is shown in Figure 8.1d, without the NbTiN contacts which are de-
posited in a later fabrication step. The nanowire is covered over its entire length
with Al on two facets, as described in [20]. A wet-etch2 is used to etch 200nm in
the middle of the nanowire to form a Josephson junction weak link[14, 22, 64]. The
weak link is aligned with the middle gate up to a precision of 20nm.

• The second improvement we have made is to change our measurement technique.
In Chapter 7, the nanowire was voltage biased and the current was measured in the
detector. The density of states (DOS) in the detector is distorted by Josephson ra-
diation emission from the nanowire Josephson junction[92] and an extra current
flow, IPAT, is measured. An expression for IPAT in the SIS detector is derived in Sec-
tion 3.6. The nanowire and the PAT current is shown in Figure 8.3a-b for the device
used in this chapter. To improve the sensitivity, we added a small AC voltage (be-
tween 15–30Hz), as in ref. [91]. The extra AC voltage on the nanowire Josephson
junction modulates the Josephson frequency. This also modulates the onset of
the PAT current, which is detected by lock-in in the SIS detector. The raw data is
directly compared in Figure 8.3a-c, which shows the DC voltage and the lock-in

2Transene D etch at 50oC for 12 seconds
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Figure 8.1: a Schematic view of inelastic Cooper-pair (electron) tunneling, generating photons with an energy
of 2eVNW = ħω (eVNW = ħω). b Circuit equivalent to the device used for the experiment. On the left, the
nanowire junction (green box) is connected to a voltage source to apply a voltage bias. The voltage drop over
the nanowire is VNW. The nanowire junction is coupled with capacitors cc ∼ 400fF to an SIS detector junction
(red box). The SIS detector can be (DC) voltage-biased separately and the resulting current can be measured. c
Schematic view of the PAT detection mechanism in the SIS detector. Photons can be absorbed by a quasiparti-
cle, resulting in a current flowing within the subgap of the SIS detector. d SEM image of a nanowire, deposited
deterministically on top of the gates, which are covered with 30nm sputtered SiNx. The white arrow points to
the weak link, which can be tuned by the gate denoted by Vmid. The other gates are underneath the part of
the nanowire still covered with aluminium. These gates are called the upper and lower side gates. In a later
fabrication step, in the blue region, an argon etch and NbTiN deposition is performed. The scale bar denotes
1µm. e Optical image of the complete device with the nanowire Josephson junction (green box) and SIS detec-
tor (red box) highlighted. The 10–100µm-long Pt resistors are only partly visible. The scale bar denotes 20µm. f
SEM image of the SIS detector, which is a split junction making it possible to flux-tune the Josephson coupling.
The junctions are indicated by the white arrows and are positioned in the middle of thin strips to avoid vortex
creation near the junction at low magnetic fields. The scale bar denotes 1µm.

response. The lock-in signal is maximal at the onset of the PAT current, which is a
measure of the dominant emitter frequency, as explained in Section 3.6. To extract
the slope of the detected signal, we found the maximum of the detected lock-in
signal for each measured nanowire voltage. First, we interpolated the (typically
90–100) data points to create (100) equidistant data points, shown as the black line
in the inset to Figure 8.3f. Then we smoothed the data with a Gaussian filter with a
window of three data points. The effect of the smoothing can be seen in the red line
(inset to Figure 8.3f). We then found the maximum of the lock-in signal and the
full width at half maximum (FWHM) for all the line traces with fixed nanowire volt-
age. For all data shown in this chapter, we overlaid the raw data with the extracted
maximum and FWHM to check if the peakfinder algorithm had been successful;
an example is shown in Figure 8.3e. We fitted a line to the extracted peak positions
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(using the FWHM as error, instrumental fit) and extracted a slope of 1.91±0.033.

• The last noticeable improvement was in the design of the SIS detector, which is
a split junction (SQUID). In Figure 7.1f, an SEM image of the previous design is
shown. This design allows vortex creation (very) close to the Josephson junction,
locally reducing the superconducting gap ∆ to zero energy. This reduction of the
gap changes the local DOS and smooths the gap onset of the quasiparticle current,
and is likely the reason for the low magnetic field compatibility. In the new design,
shown in Figure 8.1f, the junction is connected to the coupling circuit by super-
conducting lines with a width of ∼100nm. These thin lines make it energetically
unfavorable to have vortex creation close to the Josephson junction, as described
in Section 6.9.5 and in ref. [172]. Edge currents (Meissner currents) still decrease
the DOS locally and soften the quasiparticle onset but this effect is less visible in
the quasiparticle current, as shown in Figure 8.2b. Due to the thin strips, the heat-
ing of the quasiparticle onset (Figure 8.2a) is more pronounced, possibly due to
the lack of vortices to evacuate the hot quasiparticles.

8.4. RADIATION AT ZERO MAGNETIC FIELD
We first characterize the device by investigating the radiation emitted at zero magnetic
field. We obtain a slope of 2.0±0.24 with this detection method for at least 8 different
devices (6 nanowire junctions, including the sample from the previous section, and 2
SIS junctions) as the radiation source, at zero magnetic field. More importantly, we
have never seen any sign of (half or double Josephson frequency) radiation, other than
Josephson radiation from the inelastic Cooper-pair tunneling current (ICPT) in the emit-
ter junction.

For the scan explored in Figure 8.3, we applied a gate voltage of 0.87V to the middle
gate. We observed an asymmetric IV trace in the nanowire, shown in the inset to Figure
8.4a. The positive bias has a normal state resistance RN,+ = 38kΩ, and the negative bias
RN,− = 27kΩ. We do not quantitatively understand the exact underlying mechanism be-
hind the asymmetry, but the mesoscopic nature of the sample can give rise to an asym-
metric gate-induced barrier. The barrier asymmetry induces a transmission asymmetry
between transport from left to right and vice versa. For typical measurements we applied
a negative voltage, and as such we used RN,− to calculate the total Landauer transmis-

sion. For the used gate configuration, the Landauer transmission is
∑NCH

i=1 Ti=0.48. Unfor-
tunately, the RN,− was insufficient to determine the number of channels in our nanowire.
In addition, we currently try to use multiple Andreev reflection to determine the num-
ber of channels and their transmission. We also do shot noise detection to determine the
Fano factor, as we did in the previous chapter. The Fano factor in combination with the
normal state resistance can indicate if we are in the single- or many-channel-dominated
regime.

3The slope is 1.97±0.02 when the FWHM is not taken into account. The uncertainties are from the fit. Current
and voltage uncertainties are not considered.

4Our data analysis seems to underestimate the slope by roughly 5%, as can also be seen in the orange data
points in Figure 8.4d.
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Figure 8.2: a Zero magnetic field IV trace of the SIS split Josephson junction. The quasiparticle onset shows
backbending, which we consider to be an indication of excessive quasiparticle heating. The gap edge of this
junction is used for PAT detection. The dashed regions show bias instabilities. b Zoomed-in view of the gap
edge of the SIS split junction used for detection of high-frequency radiation for different applied magnetic
fields. Low measurement gain was used, which is the reason for the large noise. c, d IV traces of the InAs
nanowire Josephson junction with Al shell at two different mid gate voltages. A small supercurrent (ISW ∼
100−500pA) can be seen in both scans at zero voltage. e Pinch-off curve, as a function of the mid gate, when
the nanowire Josephson junction is voltage-biased with 1mV. The voltage was measured over the junction at
the same time, and the result is shown in f. The fluctuations in current (and voltage) are reproducible and
are attributed to mesoscopic conductance fluctuations. Due to the complex design and the importance of the
gate capacitance to the nanowire, it is not possible to reliably extract the nanowire mobility. Note: a side gate
voltage of 2.5V was applied to both side gates in c-f.

LZ tunneling can change the emission frequency of nanowire Josephson junctions
by half, as discussed in Section 3.3.4. This was not observed for any gate configuration
in any of the devices that were measured at zero magnetic field. This is supported by the

low LZ probability, which is on the order of p = e−
(1−T )∆

eV ∼ 0.2 if we assume one channel,
a typical induced gap of 120µeV[64] and a large voltage bias of 40µeV.
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8.5. RADIATION AT FINITE MAGNETIC FIELD

Due to the improved design of the SIS detector, we can now measure the nanowire radi-
ation up to 325mT; Figure 8.4b shows an example taken at 200mT. We can fit a line up to
VNW ∼ 22µV and determine the ratio between the nanowire and detector voltages. The
range of fitting is determined by checking the consistency of the extracted data points
and the raw data, as shown in Figure F.1b in the Appendix. No clear peak is found by the
algorithm after VNW ∼ 22µV, so data points beyond this voltage are not used for fitting.

The nanowire to detector voltage ratio is 1.14±0.08. As with the zero field data, we
do not measure a value that is exactly an integer. Across the field range 170–325mT we
observe a single slope fit close to 1, as shown in Figure 8.4d. Between 110–170mT, we
observe a regime with two different slopes as a function of the voltage drop over the
nanowire. The extracted data for 150mT is shown in Figure 8.4c, and the extracted values
are overlaid with the raw data in Figure F.1a. A fit over all the found peak positions shows
a fitted line with a slope of 1.52±0.05 (red fit in Figure 8.4c). However, such a fit results
in many data points below the fit for the region VNW >−25µeV. We believe that the data
is better described by two separate linear fits. The second line starts at a point, which we
refer as the ’kink’, which shows up around VNW ∼ 20µV in the 150mT case5. The change
in extracted slope is induced by increasing the nanowire voltage, which increases the
phase velocity.

We can also analyze the length of the ∼ 1 slope. The end of this slope is determined
by the start of the ∼ 2 slope (the blue data points in Figure 8.4e, or the example data set in
Figure 8.4c) or the point where the signal is lost (the red data points in Figure 8.4e, or the
example data set in Figure 8.4b). The blue data points represent the position of the ‘kink’,
which seems to vary linearly with the magnetic field in the range 100–200mT. The fit has
a slope of 122±17µeV/T and crosses the y-axis at 3.2±2.8 µeV. We cannot measure in the
grey region in Figure 8.4e due to limitations in the detection range of the SIS detection
junction.

Finally, we can analyse the 2∆ of the detector for different slopes by extrapolating
the fits to zero nanowire voltage. The PAT current onset in the detector is at eVdet =
2∆−ħω, where ħω = aeVNW, with a being the charge of the radiation source tunneling
event and ω the frequency of the emitted signal, as explained in Section 3.6. Ideally, a = 2
for conventional Josephson radiation and a = 1 for fractional Josephson radiation. The
values of 2∆, extracted from the fits for the two different slopes, are not the same, as
can be seen in Figure 8.4f. This is because, experimentally, a smooth transition between
the slopes is observed, clearly visible in the raw data (Figure F.1a). We can compare the
extracted value for 2∆ with the measured ‘2∆’ in direct transport, although extracting
the exact value of 2∆ in direct transport is difficult6 due to heating of the quasiparticle
branch. Even though we cannot accurately extract ‘2∆’, we have still plotted it as we
believe it shows a good approximation of the trend in value with magnetic field. We find
that there is small reduction in 2∆ with magnetic field, see Figure 8.2b and 8.4f.

5We also tried different fits, see Figure F.3, but currently we believe that two lines are the best description of
the data.

6The largest detector voltage which we can reach in Figure 8.2b, indicated by the double-headed arrow for
0mT, is used as the ‘2∆’ in direct transport.
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8.6. DETECTED RADIATION AS A FUNCTION OF GATE VOLTAGE
We also investigate the radiation detected in the SIS detector as a function of the gates
(Vmid,Vsidegates) underneath the nanowire. There are three gates underneath the nanowire
which can be changed independently, see Figure 8.1d. The middle gate (Vmid) is 200nm
wide and is aligned (up to 30nm precision) with the nanowire weak link, namely the re-
gion where the aluminium (Al) has been removed from the nanowire. The other two
gates (Vsidegates) are underneath the nanowire, which is covered by Al on 2 facets. The
potentials of these gates are changed in unison.

The mid(dle) gate is expected to predominantly change the Josephson coupling be-
tween the two superconducting banks by changing the number of channels and their
transmission. The side gates are designed to tune the chemical potential of the nanowire
where it is covered by Al.

The chemical potential needs to be properly tuned to create MZM, see Section 3.4.2.
These gates are important for checking the robustness of the detected signal, which is
expected to be large in the case of a topological junction and weak for other effects[68,
82, 86].

First, we investigate the effect of the mid gate voltage at a magnetic field of 250mT.
A mid gate voltage of 0.5–1.5V results in a conductance in the range 0.5–1.5Go. Over the
entire gate range a slope of ∼ 1 is observed, as can be seen in Figure 8.5a. This is true even

in the case of multiple channels (when the overall conductance is above G0 = 2e2

h
). Figure

F.4 in Appendix F shows the raw data and the peak positions of the detected frequency
as a function of voltage bias for Vmid = 1.375V and RN,− = 8.9kΩ.

As mentioned before, the mid gate predominantly changes the Josephson coupling
by changing the transmission and the number of channels. The exact number of chan-
nels and transmission is unknown but if we assume a ballistic channel[64], the trans-
mission, for the data shown in Figure 8.5b, is T ∼ 0.5−1.0. The expected variation in LZ
probability is expected to be large across this transmission range due to its exponential
dependence, as shown in Figure 3.13g.

We can conclude that we do not observe any strong dependence on the gate voltage
configuration. Even when the maximal transmission is only ∼0.5, we still observe a slope
of ∼ 1. In addition, we do not observe an onset ∼ 1 slope as a function of the nanowire
voltage in our SIS detector range. We further discuss the behaviour of the observed 1 and
2 slope in the next section.

The two side gates, situated underneath the Al-covered parts of the nanowire, were
changed together and the extracted slopes are shown in Figure 8.6. For applied volt-
ages in the range ∼ 1.2− 2.4V, only a slope of ∼ 1 is observed. In the case of a topo-
logical junction in the presence of MZM, the chemical potential is in the helical gap, as
was mentioned in Section 3.4.2. Applying a gate voltage changes the chemical potential
of the nanowire and it is possible to go outside the helical gap, resulting in the loss of
the MZM. The appearance and disappearance of MZM with gate voltage tuning forms
a so-called topological phase diagram and recently experimental evidence of this was
claimed[15] for InSb nanowires in proximity to NbTiN. The absence of this effect in our
experiment might be explained by heavy screening of the gate electrical field by the Al
on the nanowire[139]. Another possible explanation is the strong coupling between the
superconductor and the semiconducting nanowire, discussed in ref. [211]. In this ref-
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data points. The blue data points (associated with the ∼1 slope) show a more consistent value for 2∆.

erence, the authors expect the chemical potential to have a slowly-varying effect on the
topological properties of MBS due to this strong coupling.

8.7. THE 1 AND 2 SLOPES
Observing 1 and 2 slopes in the SIS detector due to nanowire Josephson junction emis-
sion is not unexpected[82, 86]. However, the exact properties of the detected signal as a
function of nanowire voltage, as measured in this experiment, were not predicted.

Before we discuss the data further, we must first distinguish between 1 and 2 slopes
and f and f /2 radiation7. We refer to a 1 or 2 slope because we plot the signals detected
in the SIS detector as VNW against Vdet. The dimensionless relation between these two
voltages is aeVNW = 2∆−eVdet, as was discussed in Section 3.6, where a = 1 or a = 2 with

7Josephson radiation is associated with 2π-periodic trivial Andreev bound states and fractional Josephson ra-
diation is associated with 4π-periodic non-trivial Majorana bound states.
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or without the presence of MZM. The slope between these two voltages can change, as
experimentally observed, by increasing VNW (the phase velocity). The detected signal
can start, for example, with a 1 (2) slope and then evolve at higher phase velocity to a 2
(1) slope, as is depicted with solid lines in Figure 8.7. Since the superconducting gap in
the detector is fixed, the slopes can be extrapolated to zero phase velocity, which should
have the same value of 2∆. When this is the case, the 2 and 1 slopes correspond to single
( f ) and half ( f /2) frequency, respectively.

The experimentally-observed slopes are sketched in Figure 8.7b. First, we observe
a ∼ 1 slope and then, without discontinuity, a ∼ 2 slope. This means that the detected
frequency is now increasing more quickly with applied nanowire voltage. In this case
the 2∆ no longer stays the same when we extrapolate to zero phase velocity, as shown
by the extracted data in Figures 8.4f and 8.5d. Having multiple superconducting gaps
in the detector for a fixed magnetic field is possible[212, 213], but this is not expected to
play a role in our experiment because we see the 2∆ variation as a function of nanowire
voltage. It is possible that there may be a smooth transition region between f and f /2
emission instead of the abrupt change shown by the solid lines in Figure 8.7b. If in-
deed there is a region where the f /2 radiation is turning into f radiation, the detected
frequency would increase more quickly with applied nanowire voltage, as we have pos-
sibly observed. Small deviations from f /2 and f radiation have been simulated several
times[68, 82, 86, 214]8 and even measured[73, 91].

This abrupt slope change, as sketched in Figure 8.7 using the solid lines, is what is
expected when the frequency is abruptly doubled. The simulated noise spectrum of a
topological junction, as calculated in ref. [82], does not necessarily exhibit this, however.
In this reference the frequency ( f ) slowly ‘crawls’ towards the half frequency ( f /2). When
the peak in the noise spectrum is in between f and f /2, the relative magnitude is low and
the FWHM increases (see Figure 3 in ref. [82]). This could explain the relatively quick
disappearance of the signal in Figure F.1 when we deviated from the ∼ 1 slope.

8Dimitry Pikulin, our theory collaborator, also simulated this, trying to understand our system.
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Figure 8.7: Schematic drawing of possible radiation slopes in the SIS detector. a At low phase velocity, there is
a 2 slope, due to ‘normal’ 2π-periodic ABS. At higher phase velocity, due to LZ tunneling, half the Josephson
frequency is measured, which should give a 1 slope. Due to the continuous increase of LZ probability with
phase velocity, the 2 to 1 slope transition is probably not as abrupt as is depicted in this figure. b Schematic
drawing where at low phase velocity a 1 slope is measured, for example because of the presence of MZM, while
at higher phase velocity a 2 slope is restored. The abrupt jump (solid black lines) also shows a doubling in
detected frequency. In the experiment, we measure a 1 slope at low phase velocity and then at the end point
of the 1 slope we measure without discontinuity a 2 slope (grey dashed line). This means that we have not
measured a doubling of the frequency but only a more rapid frequency increase as a function of nanowire
voltage.

The effect responsible for the change of slope could be LZ tunneling, either to other
ABS or the quasiparticle continuum. This latter case is extensively discussed in ref. [68],
but there they find that the FWHM of the half frequency ( f /2) increases at higher phase
velocities (see Figure S1 in ref. [68]). The exact position stays very close to the half fre-
quency ( f /2) and maybe even reduces in frequency (Figure S1 in ref. [68], rightmost
panel), which is also opposite to what we observe experimentally.

8.8. CONCLUSION AND DISCUSSION

The data discussed in this chapter is very preliminary9. We are now measuring a third
sample. The second sample showed similar results to the one presented in this thesis,
but the third sample shows more robustness in magnetic field: we measure a slope of ∼ 1
up to ∼ 700mT.

In summary, we have 8 devices with a similar setup (including the device in Chapter
7) which always show a 2.0±0.2 radiation slope at zero magnetic field. All three of the
devices that can measure above 100mT without strong degradation of detection quality
show a slope close to 1 in this region. This means that applied magnetic field is a neces-
sary ingredient for the observation of a ∼ 1 slope. In addition, we also observe that the
∼1 slope is robust above a typical magnetic field of 100–125mT.

We also observe that the ∼ 1 slope is very robust against changes in gate voltage, as

9This chapter is clearly not finished, either on the measurement side or the analysis and conclusion side. Many
good and valid questions can be asked about this chapter, but we would like to point out that the rest of this
thesis is also interesting to discuss.
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discussed in Section 8.6. For a moderate applied magnetic field of at least 100mT, there
is no gate range where the ∼ 1 slope is absent for a large voltage range. Using nanowires
from the same growth batch, ref. [14] reports that there is no need for (gate voltage) fine
tuning to detect MZM. This could possibly be explained by the theory in ref. [211].
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Josephson analyzed this situation and discovered that a number of strange phenomena
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We investigate Andreev bound states in InAs/Al core-shell nanowire junctions. We designed

and characterized an on-chip microwave circuit coupling the nanowire junction to an

Al/AlOx/Al tunnel junction. The tunnel junction emitted photons at frequencies given by

the AC Josephson relation 2eVbias = h f to excited the Andreev bound states. Our circuit de-

sign allows for voltage, current and phase biasing the nanowire enabling the direct map-

ping of Andreev bound states. We investigate these Andreev bound states as a function of

gate voltage and magnetic field with the ultimate goal of finding Majorana bound states.
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9. MICROWAVE SPECTROSCOPY OF SPINFUL ANDREEV BOUND STATES IN BALLISTIC

SEMICONDUCTOR JOSEPHSON JUNCTIONS

9.1. INTRODUCTION
The superconducting proximity effect in semiconductor nanowires [106] has recently
enabled the study of novel superconducting architectures, such as gate-tunable super-
conducting qubits [199, 215] and multiterminal Josephson junctions [137, 216]. As op-
posed to their metallic counterparts, the electron density in semiconductor nanosys-
tems is tunable by external electrostatic gates providing a highly scalable and in-situ

variation of the device properties [106, 199, 215]. In addition, semiconductors with large
g -factor and spin-orbit coupling have been shown to give rise to exotic phenomena in
superconductivity, such as ϕ0 Josephson junctions [77] and the emergence of Majorana
bound states [9, 151]. Here, we report microwave spectroscopy measurements [217] that
directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor
channels. We show that the measured ABS spectra are the result of transport channels
with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-
tunable Andreev qubits [55, 70] and beneficial for braiding schemes of MZM [35]. For the
first time, we detect excitations of a spin-split pair of ABS [218] and observe symmetry-
broken ABS [75], a direct consequence of the spin-orbit coupling in the semiconductor.

The linear conductance G = 2e2

h

∑
Ti of a nanostructure between two bulk leads [219]

depends on the individual channel transmission probabilities, Ti . Embedding the same
structure between two superconducting banks with a superconducting gap of ∆ gives
rise to Andreev bound states (ABS) [220]. If the junction length is much smaller than the
superconducting coherence length, ξ, i.e. in the short junction limit, then the ABS levels
depend on the phase difference φ between the leads according to [98]:

EABS,i(φ) =±∆
√

1−Ti sin2 φ

2
. (9.1)

These subgap states with |EABS| ≤∆ are localized in the vicinity of the nanostructure and
extend into the banks over a length scale determined by ξ 1. Note that Eq. 9.1 is only valid
in the absence of magnetic field, when each energy level is doubly degenerate.

Direct microwave spectroscopy has recently demonstrated the occupation of the ABS
by exciting a Cooper pair in atomic junctions [217]. Unlike quasiparticle tunneling spec-
troscopy, which has also been used to detect ABS [221, 222], resonant excitation by mi-
crowaves is a charge parity-conserving process [223]. This property enables coherent
control of ABS which is required for novel qubit architectures [55] and makes microwave
spectroscopy a promising tool to detect Majorana bound states [224] in proximitized
semiconductor systems [7, 8].

9.2. DEVICE SETUPS
We investigate ABS excitations in Josephson junctions that consist of indium arsenide
(InAs) nanowires covered by epitaxial aluminium (Al) shells [21]. The junction, where
the superconducting shell is removed, is 100nm (device 1, see the red box in Fig. 9.1a)
and 40nm long (device 2), respectively. The nanowire is then embedded in a hybrid
superconducting quantum interference device (SQUID) whose second arm is a conven-
tional Al/AlOx /Al tunnel junction (in yellow box), enabling the control of the phase drop

1The length scale of the exponential cutoff of the wavefunction is ξ/
√

1−EABS(φ)2/∆2
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Figure 9.1: Device schematics and working principle. (a) Equivalent circuit diagram: Bright field optical im-
age of the hybrid SQUID with one InAs semiconductor nanowire weak link (scanning electron micrograph,
in the red box) and an Al/AlOx /Al tunnel junction (enclosed by the yellow box). The SQUID is capacitively
coupled to the spectrometer Al/AlOx /Al Josephson junction (scanning electron micrograph, in green box) via
Cc . The transmission of the semiconductor channel is tuned by the gate voltage, Vg . Additional gates near the
electrodes are kept at a constant voltage Vs1,2. Circuit elements within the dashed box are located on-chip,
thermally anchored to 12mK. Panels (b) and (c) show the excitations of the hybrid SQUID: the Andreev bound
state atħω= 2EABS (b) and the plasma oscillations atħω=ħωp (c) are excited by a photon energyħω= 2eVspec
set by the DC voltage bias of the spectrometer (d) with a superconducting gap ∆spec. (e) Schematic circuit dia-
gram of the hybrid SQUID. The total phase ϕ=φ+δ is determined by the applied flux Φ. (f) The measured I (V )
trace of the spectrometer junction with the nanowire in full depletion, i.e. in the absence of ABS excitations.
The red solid line shows the fit to the circuit model of a single resonance centered at ħωp , see text. Images and
data were all taken on device 1.

φ by means of the applied magnetic flux Φ through the SQUID loop. In the limit of a neg-
ligible loop inductance and an asymmetric SQUID, where the Josephson coupling of the
nanowire is much smaller than that of the tunnel junction, the applied phase ϕ mostly
drops over the nanowire link: φ≈ϕ= 2πΦ/Φ0, where Φ0 = h/2e is the superconducting
flux quantum. We measure the microwave response [217, 223] of the nanowire junction
utilizing the circuit depicted in Fig. 9.1a, where a second Al/AlOx /Al tunnel junction (in
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Figure 9.2: Gate dependence of Andreev bound states. (a) −d2I /dV 2 of the spectrometer junction as a func-
tion of Vg at ϕ = π, where EABS,i = ∆

√
1−Ti in the short junction limit. Panels (b) and (c): −d2I /dV 2 of the

spectrometer junction as a function of ϕ = 2πΦ/Φ0 for one channel (b) and several channels (c). The qual-
itative agreement of the line shapes with Eq. 9.1 confirms the short junction behaviour. Arrows in panel (a)
indicate Vg for these measurements. Weakly visible vertically shifted replicas of the ABS lines indicate higher
order transitions, see text. (d) Strong hybridization between the ABS excitation and the plasma mode with a
level repulsion of ε= 22µeV at the yellow dash line. (e) EABS(ϕ=π) as a function of the DC linear conductance
G of the nanowire weak link in the gate span denoted by the red bar in panel (a). The solid red line shows the
prediction of the single channel model with ∆= 122µeV±3µeV, see text. All data was taken on device 1. Grey
regions denote lack of data due to bias instability of the circuit.
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green box) is capacitively coupled to the hybrid SQUID and acts as a spectrometer. Fur-
ther details on the fabrication process are given in section 9.9.1.

9.3. PLASMA MODE CHARACTERIZATION
In this circuit, inelastic Cooper-pair tunneling (ICPT, Fig. 9.1d) of the spectrometer junc-
tion is enabled by the dissipative environment and results in a DC current, Ispec [193]:

Ispec =
I 2

c,specRe[Z (ω)]

2Vspec
. (9.2)

Here Ic,spec is the critical current of the spectrometer junction, Vspec is the applied volt-
age bias, and Z (ω) is the circuit impedance at frequency ω= 2eVspec/ħ. Since Z (ω) peaks
at the resonant frequencies of the hybrid SQUID [193, 217], so does the DC current Ispec,
allowing us to measure the ABS excitation energies of the nanowire junction (Fig. 9.1b),
as well as the plasma frequency of the SQUID (Fig. 9.1c).

First we characterize the contribution of the plasma mode with the nanowire junc-
tion gated to full depletion, i.e. G = 0. We show the I (V ) curve of the spectrometer junc-
tion of device 1 in Fig. 9.1f, where we find a single peak centered at ħωp /2 = eVspec =
46µeV and a quality factor Q ≈ 1. In the limit of EC ≪ E J , ħωp =

√
2EC E J , where EC is

the charging energy of the circuit and E J is the Josephson coupling of the tunnel junction
(Fig. 9.1e). Estimating E J = 165µeV from the normal state resistance [174], this measure-
ment allows us to determine EC = 25.4µeV. The choice of a low quality factor in combina-
tion with a characteristic impedance Z0 = 551Ω≪ Rq = h/4e2 ensures the suppression
of higher order transitions and parasitic resonances.

9.4. ABS GATE VOLTAGE DEPENDENCE
Next, we investigate the spectrometer response as a function of the gate voltage Vg ap-
plied to the nanowire. Note that the spectrometer response to the ABS transitions is su-
perimposed on the plasma resonance peak. In order to achieve a better visibility of the
ABS lines, we display −d 2Ispec/dV 2

spec(Vspec) rather than Ispec(Vspec) (see section 9.9.4 for
comparison). In the presence of ABS, the spectrum exhibits peaks at frequencies where
ħω = 2EABS,i [223]. In Fig. 9.2a, we monitor the appearance of these peaks for an ap-
plied phase ϕ = π, where the ABS energy of Eq. 9.1 is EABS,i (π) = ∆

p
1−Ti . Notably, for

Vg values close to full depletion (see red bar in Fig. 9.2a), we see a gradual decrease of
EABS(π) with increasing Vg (black dots in Fig. 9.2e). In this regime, we find a good cor-

respondence with Eq. 9.1, assuming single channel transport, G = 2e2

h
T (red solid line

in Fig. 9.2e, see the section 9.9.5 for the details of the measurement of G). However,
the observed ∆ = 122µeV is smaller than the ∆Al ≈ 200µeV of the thin film Al contacts,
in agreement with the presence of induced superconductivity in the nanowire [21]. In-
creasing Vg further, we observe a sequential appearance of peaks, which we attribute to
the opening of multiple transport channels in the weak link and the consequent forma-
tion of multiple ABS [98] as the Fermi level, EF increases. We also find a strong variation
of EABS with Vg similarly to earlier experiments [106, 199, 215]. We attribute this obser-
vation to mesoscopic fluctuations in the presence of weak disorder [98], such that the
mean free path of the charge carriers is comparable to the channel length.
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9.5. ABS FLUX DEPENDENCE
Now we turn to the flux dependence of the observed spectrum, shown in Fig. 9.2b and
9.2c for two distinct gate configurations. We find a qualitative agreement with Eq. 9.1
with one transport channel in Fig. 9.2b and several channels in Fig.9.2c confirming that
our device is in the short junction limit. In addition, we observe the plasma mode at
eVspec < 50µeV. We also find that the plasma mode ħωp oscillates with ϕ when the
nanowire is gated to host open transport channels. This is expected due to the Joseph-
son coupling of the nanowire becoming comparable to E J , which also causes a finite
phase drop, δ, over the tunnel junction. We also note the presence of additional, weakly
visible lines in the spectrum which could be attributed to higher order processes [217].
However, we did not identify the nature of these excitations, and we focus on the main
transitions throughout the current work.

In addition, we observe the occurrence of avoided crossings between the Andreev
and plasma modes, as shown in Fig. 9.2d atϕ=π. These avoided crossings requireħωp ≈
2∆

p
1−T , which translates to a high transmission probability T ≈ 0.8−0.9, and demon-

strates the hybridization between the ABS excitation and the plasma mode. The coupling
between these two degrees of freedom has previously been derived [223, 225], leading to

a perturbative estimate for the energy splitting ε ≈ ∆T
(
EC /2E J

)1/4 ≈ 40− 70µeV, sim-
ilar to the observed value of 22µeV. The discrepancy is fully resolved in the numerical
analysis of the circuit model developed below.

9.6. HYBRID SQUID MODEL
We provide a unified description of the energy spectrum of the circuit as a whole, and
consider the following Hamiltonian for the hybrid SQUID (Fig. 9.1e) [225]:

Ĥ = EC N̂ 2 +E J (1−cos δ̂)+ ĤABS(ϕ− δ̂) . (9.3)

Here δ̂ is the operator of the phase difference across the tunnel junction, conjugate to the
charge operator N̂ , [δ̂, N̂ ] = i . The first two terms in Eq. 9.3 represent the charging energy
of the circuit and the Josephson energy of the tunnel junction (Fig. 9.1e). The last term
describes the quantum dynamics of a single-channel short weak link [70, 71], which de-
pends on ∆ and T . For the analytic form of ĤABS, see section 9.10.2. To fully account for
the coupling between the ABS excitation and the quantum dynamics of the phase across
the SQUID, we numerically solve the eigenvalue problem Ĥ Ψ= E Ψ and determine the
transition frequencies ħω= E −EGS with EGS being the ground state energy.

This procedure allows us to fit the experimental data, and we find a good quantita-
tive agreement as shown in Fig. 9.3a for a dataset taken at Vg = −1410mV with the fit
parameters ∆ = 122µeV and T = 0.57. The previously identified circuit parameters E J

and EC are kept fixed during the fit. We note that the observed ABS transition (orange
solid line) only slightly deviates from Eq. 9.1 (black dashed line). The modulation of the
plasma frequency (green solid line) is then defined by the model Hamiltonian with no
additional fit parameters. We further confirm the nature of the plasma and ABS excita-
tions by evaluating the probability density |Ψ(δ,σ)|2 of the eigenfunctions of Eq. 9.3 at
ϕ = π (Fig. 9.3b). In the ground state of Ĥ (GS) and in the state corresponding to the
plasma excitation (green line in Fig. 9.3a), the probability density is much higher in the
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Figure 9.3: Theoretical description of the transitions. (a) Solid lines denote the transitions identified by the
model described in the text, with ∆ and T being free parameters. The experimental dataset is the same as the
one shown in Fig. 9.2b. The dashed line shows Eq. 9.1 for the fitted ∆ = 122µeV and T = 0.57. (b) The proba-
bility density |Ψ(δ,σ)|2 in the ground state of the hybrid SQUID (GS), and in the two excited states depicted in
panel (a), respectively. The weight in the ABS ground state (σ= g ) and in the ABS excited state (σ= e) distin-
guishes between the plasma mode and the ABS. (c) The measured relative intensity of the ABS transition (black
dots) compared to the theoretical expectation based on Eq. 9.3 (orange solid line) and from [223] (dashed black
line) with no additional fitting parameters.

ground state of the weak link (σ= g , blue line) than in the excited state (σ= e, red line).
In contrast, the next observed transition (orange line in Fig. 9.3a) gives rise to a higher
contribution from σ= e confirming our interpretation of the experimental data in terms
of ABS excitations. Furthermore, the model can also describe measurement data with T

close to 1, where it accurately accounts for the avoided crossings between the ABS and
plasma spectral lines (see the section 9.9.6 for T = 0.9).

In Fig. 9.3c we show the visibility of the ABS transition as a function of the applied
phase ϕ, which is proportional to the absorption rate of the weak link, predicted to be
∝ T 2(1 − T )sin4(ϕ/2) ×∆

2/E 2
ABS(ϕ) [223]. We note that in the experimental data the

maximum of the intensity is slightly shifted from its expected position at ϕ=π. This mi-
nor deviation may stem from the uncertainty of the flux calibration. Nevertheless, using
T = 0.57, obtained from the fit in Fig. 9.3a, we find a good agreement with no adjustable
parameters (black dashed line). A similarly good correspondence is also found with the
full numerical model (orange line) based on Eq. 9.3.
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Figure 9.4: Spectroscopy of spin-split Andreev bound states in a Rashba nanowire. Panel (a) shows the
flux dependence of the Andreev bound states at B = 0, 100 and 300mT, respectively, applied parallel to
the nanowire. The zero-field fit yields so T = 0.56 and ∆ = 152µeV. Dash lines depict the fit of Etot(φ) =
E+

ABS(φ)+E−
ABS(φ) to the model described in the text. (b) Black dots show the measured Etot(π) as a func-

tion of B . The dashed line depicts the fit to the theory with g = 14.7± 0.6 and
√

ESOEF /∆ = 0.32± 0.02, see
text. The Zeeman-split ABS levels E±

ABS(π) and the proximity-induced gap ∆(B) obtained from the model are

shown as visual guides. (c) E±
ABS(φ) computed at B = 100mT are shown as blue and red solid lines, together

with the calculated transition energy Etot(φ) (black dashed line). The experimental data was taken on device 2
at Vg = 140mV. Grey regions denote lack of data due to bias instability of the circuit.

9.7. IN-PLANE MAGNETIC FIELD DEPENDENCE

We now discuss the evolution of the ABS as a function of an in-plane magnetic field B

aligned parallel to the nanowire axis, which is perpendicular to the internal Rashba spin-
orbit field (see the inset in Fig. 9.4b for measurement geometry). The applied field lifts
the Kramers degeneracy of the energy spectrum, splitting each Andreev doublet into a
pair E±

ABS(φ). For small B , the splitting E+
ABS(φ)−E−

ABS(φ) is linear in B , due to the Zee-
man effect. However, the spin-split single particle levels are not accessible by microwave
spectroscopy, which can only induce transitions to a final state with two excited quasi-
particles. Thus we can only measure Etot(φ) = E+

ABS(φ)+E−
ABS(φ) and expect no split of

the measured spectral lines. The experimental data (Fig. 9.4a) shows that Etot decreases
with B , while the lineshape remains qualitatively intact.
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In order to explain the field dependence of Etot, we study the behaviour of ABS in a
simple model consisting of a short Josephson junction in a one-dimensional quantum
wire with proximity-induced superconductivity, Rashba spin-orbit and an applied Zee-
man field parallel to the wire [7, 8, 226]. Within this model, we are able to find E+

ABS and
E−

ABS, and reproduce the observed quadratic decrease of the measured Etot(π) (black dots
in Fig. 9.4b). Initially, as B is increased, the proximity-induced gap ∆(B) is suppressed
(black solid line), while the energy E+

ABS(π) (blue solid line) increases due to the Zee-
man split of the ABS. However, a crossing of the discrete ABS level with the continuum
is avoided due to the presence of spin-orbit coupling, which prevents level crossings in
the energy spectrum by breaking spin-rotation symmetry. The repulsion between the
ABS level and the continuum causes a downward bending of E+

ABS(π), in turn causing a
decrease in Etot(π) (black dashed line).

We perform the calculations in the limit where the Fermi level EF in the wire is well
above the Zeeman energy EZ = 1

2 gµB B and the spin-orbit energy ESO = mα2/2ħ2 with
m the effective mass and α the Rashba spin-orbit coupling constant. In this case and
in the short junction limit, the ratio Etot(π)/∆ is a function of just two dimensionless
parameters: EZ /∆ and

p
ESOEF /∆. First we extract ∆ = 152µeV and T = 0.56 at B = 0

(leftmost panel in Fig. 9.4a). Then, we perform a global fit on Etot(φ) at all B values and
obtain a quantitative agreement with the theory for g = 14.7±0.6, which is in line with
expected g -factor values in InAs nanowires [14, 22, 227] and

p
ESOEF /∆ = 0.32± 0.02.

This model is consistent assuming EF > EZ ≈ 100µeV at 300mT. Thus we attain an upper
bound ESO . 24µeV, equivalent to a Rashba parameter α. 0.12eVÅ in correspondence
with earlier measurements on the same nanowires [14]. However, assuming the opposite
limit, EF ≈ 0, the theory is not in agreement with the experimental data (see figure 9.16
for the comparison).

The theoretical energy spectrum shown in Fig. 9.4b predicts a ground state fermion-
parity switch of the junction at a field Bsw ≈ 400mT, at which the lowest ABS level E−

tot(π) =
0 (red line in Fig. 9.4b). This parity switch inhibts the resonant excitation of the Zeeman-
split ABS levels [74] thus preventing microwave spectroscopy measurements for B > Bsw.
This prediction is in agreement with the vanishing visibility of the ABS line at B ≈ Bsw in
the experiment.

In addition to the interplay of spin-orbit and Zeeman couplings, the orbital effect of
the magnetic field [228] is a second possible cause for the decrease of the ABS transi-
tion energy. Orbital depairing influences the proximity-induced pairing and results in
a quadratic decrease of the induced superconducting gap: ∆(B) = ∆ (1−B 2/B 2

∗), where
B∗ ∼ Φ0/A and A is the cross-section of the nanowire. A simple model which includes
both orbital and Zeeman effect, but no spin-orbit coupling, yields B∗ ≈ 400 mT when
fitted to the experimental data (fig. 9.16c). In this case, the fit is insensitive to the value
of the g -factor. However, the model also predicts the occurrence, at ϕ=π, of a fermion-
parity switch at a field Bsw < B∗ whose value depends on the g -factor. Because agree-
ment with the experimental data imposes the condition that Bsw > 300 mT, in section
9.10.5 we show that this scenario requires g . 5, which is lower than g -factor values
measured earlier in InAs nanowire channels [14, 22, 227]. Hence, we can conclude that
the orbital effect can only play a subleading role in the observed suppression of the ABS
transition energy. Note that in all cases we neglect the effect of B on the Al thin film,
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justified by its in-plane critical magnetic field exceeding 2T [229].
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Figure 9.5: Symmetry-broken ABS in magnetic field. The symmetry axis at ϕ=π at zero magnetic field is de-
noted by dashed yellow line. Note that at B = 40mT the observed spectrum does not obey the mirror symmetry
with respect to the same line. The data was taken on device 1 at Vg =−20mV. Grey regions denote lack of data
due to bias instability of the circuit.

We present the ABS spectrum in the presence of several transport channels in Fig. 9.5.
While at zero magnetic field (left panel) the data is symmetric around ϕ = π, in a fi-
nite magnetic field (right panel) the data exhibits an asymmetric flux dependence (see
the yellow dashed line as a guide to the eye). This should be contrasted with Fig. 9.4a
where the data for a single-channel wire are presented at different values of the mag-
netic field: each of the traces is symmetric around ϕ = π. This behavior agrees with
theoretical calculations in the short-junction limit, which show that this asymmetry can
arise in a Josephson junction with broken time-reversal and spin-rotation symmetries
as well as more than one transport channel [230]. While the data is asymmetric with
respect to ϕ = π, there is no visible shift of the local energy minima away from this
point. This observation is consistent with the absence of an anomalous Josephson cur-
rent [77, 231, 232] for our specific field configuration (magnetic field parallel to the wire),
in agreement with theoretical expectations [233–235].

9.8. CONCLUSION
In conclusion, we have presented microwave spectroscopy of Andreev bound states in
semiconductor channels where the conductive modes are tuned by electrostatic gates
and demonstrated the effect of Zeeman splitting and spin-orbit coupling. The microwave
spectroscopy measurements shown here could provide a new tool for quantitative stud-
ies of Majorana bound states, complementing quasiparticle tunneling experiments. Fur-
thermore, we have provided direct evidence for the symmetry breaking of Andreev bound
states in a multichannel ballistic system. This result paves the way to novel Josephson
circuits, where the critical current depends on the current direction, leading to super-



9.9. SUPPLEMENTARY INFORMATION

9

139

current rectification effects [236, 237] tuned by electrostatic gates.

In conclusion, we have presented microwave spectroscopy of Andreev bound states
in semiconductor channels where the conductive modes are tuned by electrostatic gates
and we have demonstrated the effect of Zeeman splitting and spin-orbit coupling. The
microwave spectroscopy measurements shown here could provide a new tool for quan-
titative studies of Majorana bound states, complementing quasiparticle tunneling ex-
periments [9, 227]. Furthermore, we have provided direct evidence for the time-reversal
symmetry breaking of the Andreev bound state spectrum in a multichannel ballistic sys-
tem. This result paves the way to novel Josephson circuits, where the critical current
depends on the current direction, leading to supercurrent rectification effects [236, 237]
tuned by electrostatic gates.

9.9. SUPPLEMENTARY INFORMATION

9.9.1. DEVICE FABRICATION

The devices are fabricated on commercially available undoped Si wafers with a 285nm
thick thermally grown SiOx layer using positive tone electron beam lithography. First,
the electrostatic gates and the lower plane of the coupling capacitors are defined and
Ti/Au (5nm/15nm) is deposited in a high-vacuum electron-beam evaporation chamber.
Next, the decoupling resistors are created using Cr/Pt (5nm/25nm) with a track width of
100nm, resulting in a characteristic resistance of 100Ω/µm. Then, a 30nm thick SiNx

layer is sputtered and patterned to form the insulation for the coupling capacitors and
the gates. We infer Cc ≈ 400fF based on the surface area of 6.5× 30µm2 and a typical
dielectric constant εr = 7.

In the following step, the tunnel junctions are created using the Dolan bridge tech-
nique by depositing 9 and 11nm thick layers of Al with an intermediate oxidization step
in-situ at 1.4mbar for 8 minutes. Then, the top plane of the coupling capacitors is de-
fined and evaporated (Ti/Au, 20nm/100nm) after an in-situ Ar milling step to enable
metallic contact to the Al layers. Next, the InAs nanowire is deterministically deposited
with a micro-manipulator on the gate pattern [102].

The channel of device 1 is defined by wet chemical etch of the aluminium shell using
Transene D at 54◦C for 12seconds. The channel of device 2 is determined by in-situ

patterning, where an adjacent nanowire casted a shadow during the epitaxial deposition
of aluminium [238]. The superconducting layer thickness was approximately 10nm for
both devices deposited on two facets.

Finally, the nanowire is contacted to the rest of the circuit by performing Ar plasma
milling and subsequent NbTiN sputter deposition to form the loop of the hybrid SQUID.
We show the design parameters of the devices in Table 9.1.

9.9.2. MEASUREMENT SETUP

The measurements were performed in a Leiden Cryogenics CF-1200 dry dilution re-
frigerator with a base temperature of 12mK equipped with Cu/Ni shielded twisted pair
cables thermally anchored at all stages of the refrigerator to facilitate thermalization.
Noise filtering is performed by a set of π-LC filters (∼ 100MHz) at room temperature and
copper-powder filters (∼ 1GHz) in combination with two-pole RC filters (∼ 100kHz) at



9

140
9. MICROWAVE SPECTROSCOPY OF SPINFUL ANDREEV BOUND STATES IN BALLISTIC

SEMICONDUCTOR JOSEPHSON JUNCTIONS

Device 1 Device 2

Channel length (nm) 100 40
Tunnel junction area (nm2) 400×120 200×120

Flux periodicity (µT) 38 120
Spectrometer junction area (nm2) 120×120 120×120

Table 9.1: Geometry of the devices featured in the current study.

base temperature for each measurement line. The schematics of the setup is shown in
Fig. 9.6.

9.9.3. DEVICE CIRCUIT PARAMETERS

We characterise the circuit based on the plasma resonance observed with the semicon-
ductor nanowire gated to zero conductance, i.e. full depletion. In this regime, we infer
the environmental impedance Re[Z (ω)] based on Eq. 9.2 and assume the following form,
which is valid for a parallel LCR circuit:

Re[Z (x)] = Z0Q

1+ Q2

x2 (1−x2)2
, (9.4)

with x = ω/ω0 the dimensionless frequency. The resonance of the circuit is centered

at ω0 = (LC )−1/2 with a quality factor of Q = R
√

C
L

and a characteristic impedance of

Z0 =
p

L/C . Consistently with this single mode circuit, we find one peak in the I (V )
trace of the spectrometer that we fit to Eq. 9.4 (Fig. 9.7). We find a good quantitative
agreement near the resonance peak, however the theoretical curve consistently deviates
at higher voltages, i.e. higher frequencies. We attribute this discrepancy to additional
losses or other resonant modes of the circuit not accounted for by Eq. 9.4.

In addition, we use the superconducting gap and the linear resistance of the junc-
tions to determine the Josephson energy E J and the Josephson inductance L J . With
these, we infer the circuit parameters listed in Table 9.2.

9.9.4. SPECTRUM ANALYSIS

Peaks in the I (V ) trace of the spectrometer correspond to peaks in Re[Z (ω)], i.e. allowed
transitions of the environment coupled to the spectrometer. In order to remove the
smooth background of the plasma mode (see Fig. 9.7), we evaluate −d 2I /dV 2(V ), the
second derivative of the I (V ) to find peaks in Re[Z (ω)] after applying a Gaussian low
pass filter with standard deviation of 1.5µV. We benchmark this method in Fig. 9.9, and
find that the peaks where −d 2I /dV 2(V ) > 0 correspond to the peaks in I (V ) and hence
−d 2I /dV 2(V ) is a good measure of the transitions detected by the spectrometer junc-
tion.

Alternatively, the background can be removed by linewise subtracting the detector
response at ϕ= 0 [217], where the ABS does not contribute to the spectrometer response
[223]. We show the result of this analysis in Fig. 9.10. Notably, the phase dependence
of the plasma mode gives rise to additional features near ϕ = π. Furthermore, datasets
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Figure 9.6: Detailed schematics of the measurement setup. The inset of panel (a) shows a bright field optical
image of device 1. The solid black box denotes the radiation shielded environment thermally anchored to
12mK. (b) On-chip lumped circuit elements attached to the hybrid SQUID (on the left) and the spectrometer
Josephson junction (on the right).
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Figure 9.7: Plasma resonance of the circuit. The measured (black dots) and fitted (solid red line) I (V ) trace of
the spectrometer junction for device 1 (a) and for device 2 (b) respectively, with the nanowire in full depletion.
The fits are based on Eq. 9.4, see text. Note that we omitted the supercurrent branch for clarity. In panel (b),
the inset shows the spectrometer response to an in-plane magnetic field of 300mT.
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Figure 9.8: Large scale I(V) trace of the spectrometer junction. The subgap features are shown in detail in
Fig. 9.7a. The back-bending near eVspec ≈ 2∆spec = 482µeV is attributed to a local overheating of the junction
due to a large quasiparticle current density above the gap edge. The data was taken on device 1.

exhibiting the hybridization between the ABS and plasma mode cannot be evaluated by
this method. However, the line subtraction and the second derivative are in agreement if
there is sufficient spacing between the plasma mode and the ABS line (see Fig. 9.2b and
Fig. 9.10 for comparison).

9.9.5. I( V ) TRACE OF THE HYBRID SQUID
We measure the I (V ) trace of the hybrid SQUID as a function of the gate voltage Vg at
Vspec = 0 (Fig. 9.11) and find that the subgap conductance increases with increasing gate
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Device 1 Device 2

Tunnel junction resistance R J (kΩ) 4.80 10.7
Tunnel junction gap ∆J (µeV) 245 250

Tunnel junction critical current Ic,J = π∆J

2eR J
(nA) 80.2 36.7

E J =
ħIc,J

2e
(µeV) 165 75.5

Tunnel junction inductance L J = Φ0
2πIc,JJ

(nH) 4.10 8.94

Spectrometer resistance Rspec (kΩ) 17.1 18.4
Spectrometer gap ∆spec (µeV) 241 249

Spectrometer critical current Ic,spec =
π∆spec

2eRspec
(nA) 22.2 21.3

Shunt resistance R (Ω) 634 743
Shunt capacitance C (fF) 12.6 11.1

Charging energy Ec = 2e2

C
(µeV) 25.44 29.1

Plasma frequency fp = 1
2π
p

L J C
(GHz) 22.9 16.0

Characteristic impedance Z0 =
√

L J

C
(Ω) 551 897

Quality factor Q = R
√

C
L J

1.15 0.83

Table 9.2: Circuit parameters of the devices featured in the current study.
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Figure 9.9: Spectrum analysis by second derivative. The I (V ) (red line, left axis) and the corresponding
−d2I /dV 2(V ) trace (black line, right axis) of the spectrometer showing the same peaks denoted by dashed
lines. Note that only peaks above −d2I /dV 2(V ) = 0 (grey horizontal line) correspond to actual transitions.
This dataset was taken on device 1, at Vg =−1410mV, phase biased to ϕ=π.

voltage, in qualitative agreement with the contribution of multiple Andreev reflection
(MAR). The zero voltage data corresponds to the supercurrent branch and the dashed
lines denote the bias range where there is no data due to the bias instability of the driving
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axis) and Isub(ϕ=π) (black line, right axis). This dataset was taken on device 1, at Vg =−1410mV.

circuit. In addition, we find a back-bending at the gap edge eVSQUID = 2∆J , attributed to
self-heating effects in the tunnel junction.

We evaluate G in Fig. 9.2e in the bias voltage range −VSQUID = 350. . .430µV > 2∆.
We note that due to the soft superconducting gap in the nanowire junction, we did not
identify MAR features after subtracting the current background of the tunnel junction.
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Figure 9.11: The I (V ) trace of the hybrid SQUID. At Vg = −1.75V, the nanowire is in full depletion, thus the
corresponding I (V ) trace represents the Al/AlOx /Al tunnel junction in the hybrid SQUID. The bias voltage
VSQUID was swept from the left to the right. The data was taken on device 1.
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9.9.6. FIT OF ABS WITH HIGH TRANSMISSION
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Figure 9.12: Experimental data and fit to the theory for ABS with high transmission. In this figure we show
the numerical fit to the model of Eq. 9.3, similarly to Fig. 9.3a, but for a different dataset taken at Vg =−1.525V
on device 1. The figure shows that the model of Eq. 9.3 can accurately predict the avoided crossing originating
in the coupling between the ABS and the plasma mode. Best-fit parameters are∆= 97.5±1.7µeV and T = 0.90±
0.01. Dashed line denotes the undressed Andreev level defined by Eq. 9.1. We note that the extracted value for
∆ is lower than in Fig. 9.3a. This may stem from the fit underestimating the gap, since most of the datapoints
are around ϕ = π, or due to a genuine dependence of ∆ on Vg because of the change in the wavefunction
overlap as a result of the electrostatic gating [239]. In panel (b), we show the probability density for the ground
state (GS) and the two observed excited states denoted by the green and orange lines, respectively in panel (a)
at ϕ=π.
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9.9.7. SYMMETRY-BROKEN ABS IN BIPOLAR MAGNETIC FIELD
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Figure 9.13: Symmetry-broken ABS in a bipolar magnetic field. The full spectrum is symmetric around ϕ=π

at zero magnetic field (center panel) with the mirror axis denoted by the yellow dashed line. Note the asym-
metry of the two lowermost ABS transitions at B = ±40mT. The antisymmetric contribution is most visible at
Vspec ≈ 100µV, which develops an opposite shift for positive and negative magnetic fields, respectively. The
data was taken on device 1 at Vg = −770mV. Grey regions denote lack of data due to bias instability of the
circuit.

9.10. THEORY

9.10.1. ESTIMATE OF THE ABS-PLASMA RESONANCE AVOIDED CROSSING
Before describing the quantum model of the circuit in detail, we discuss the estimate for
the energy splitting at the avoided crossing between the ABS transition and the plasma
frequency shown in Fig. 9.2d.

For simplicity, we model the plasma oscillations as a bosonic mode with a flux-independent
frequency given by ħωp =

√
2E J EC , and the weak link as a two-level system, with en-

ergies ±EABS(ϕ) defined by Eq. 9.1. This system with the two independent degrees of
freedom is described by the Hamiltonian Ĥ0 =ħωp (â†â + 1

2 )+EABS σ̂3. Next, we add the
coupling term corresponding to the excitation of the weak link due to the voltage oscil-
lations induced by the junction in the form

Hg (ϕ) = g (ϕ)
p

z (â† + â) σ̂1. (9.5)

where z =
√

EC /2E J . This term describes a linear coupling between the two-level system
and the phase difference across the junction. g (ϕ) is then given by the current matrix
element between the ground and excited states of the weak link, which was derived in
Ref. [223]:

g (ϕ) =∆T
p

1−T sin2(ϕ/2)
∆

EABS(ϕ)
. (9.6)

The square of this current matrix element gives the microwave absorption rate of the
weak link, plotted in Fig. 9.3c (black dashed line). From the coupling Hamiltonian, we
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immediately obtain that at ϕ=π, the splitting is

ε=∆T
p

z. (9.7)

We note that Eq. 9.7 is the lowest-order estimate of the avoided crossing in the small
parameter

p
z. The relatively high value

p
z ≈ 0.52 of device 1 may explain the discrep-

ancy between this simple estimate and the observed value which will be captured by
the full model, see below. Finally, we note that the expression 9.6 was also derived in
Ref. [225] starting from the full model (see next section). In particular, the quantity Ωx (ϕ)
in Ref. [225] is equal to

p
z g (ϕ).

9.10.2. HAMILTONIAN DESCRIPTION OF THE HYBRID SQUID
We now describe the theoretical model of the hybrid SQUID that was used to fit the ex-
perimental data. Our model is based on Refs. [70] and [71]. The Hamiltonian of the
model is Eq. 9.3, repeated here for convenience:

Ĥ = EC N̂ 2 +E J (1−cos δ̂)+ ĤABS(ϕ− δ̂) , (9.8)

with [δ̂, N̂ ] = i . The Hamiltonian of the weak link is [70]

ĤABS(φ) =∆Û (φ)
[

cos(φ/2) σ̂3 +
p

1−T sin(φ/2) σ̂2

]
Û †(φ) (9.9)

with Û (φ) = exp(−i
p

1−T σ̂1φ/4). Here σ̂2 and σ̂3 are two Pauli matrices which act on
a space formed by the ground state of the weak link and an excited state with a pair of
quasiparticles in the weak link. By expanding the product above, the Hamiltonian can
be put in the form ĤABS(φ) =V2(φ) σ̂2 +V3(φ) σ̂3. The two functions V2 and V3 are:

V2(φ) =∆

p
1−T sin

(
φ/2

)
cos

(p
1−Tφ/2

)
−∆ cos

(
φ/2

)
sin

(p
1−Tφ/2

)
, (9.10)

V3(φ) =∆

p
1−T sin

(
φ/2

)
sin

(p
1−Tφ/2

)
+∆ cos

(
φ/2

)
cos

(p
1−Tφ/2

)
, (9.11)

We introduce the ground (|g 〉) and excited states (|e〉) of the weak link in the presence of
an equilibrium phase difference,

ĤABS(φ) |g 〉 =−EABS(φ)|g 〉 , (9.12a)

ĤABS(φ) |e〉 =+EABS(φ)|e〉 , (9.12b)

where EABS(φ) is given in Eq. 9.1. In the basis |±〉 of eigenstates of σ̂3, σ̂3 |±〉 =±|±〉, they
are given by

|g 〉 = cg+(φ) |+〉+cg−(φ) |−〉 , (9.13a)

|e〉 = ce+(φ) |+〉+ce−(φ) |−〉 , (9.13b)

with coefficients

cg+(φ) = i
E A(φ)−V3(φ)

√
2E A(φ)[E A(φ)−V3(φ)]

, cg−(φ) = V2(φ)
√

2E A(φ)[E A(φ)−V3(φ)]
, (9.14a)

ce+(φ) =−i
E A(φ)+V3(φ)

√
2E A(φ)[E A(φ)−V3(φ)]

, ce−(φ) = V2(φ)
√

2E A(φ)[E A(φ)+V3(φ)]
. (9.14b)
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The coefficients are normalized:

|cg+(φ)|2 +|cg−(φ)|2 = |ce+(φ)|2 +|ce−(φ)|2 = 1. (9.15)

To find the resonant frequencies of the hybrid SQUID, we solve the eigenvalue prob-
lem Ĥ |Ψ〉 = E |Ψ〉 numerically. We adopt the basis |δ,±〉 ≡ |δ〉⊗ |±〉 for the joint eigen-
states of the δ̂ and σ̂3 operators: δ̂ σ̂3 |δ,±〉 = (δ̂ |δ〉)⊗ (σ̂3 |±〉) = ±δ |δ,±〉. For the nu-
merical solution, we use a truncated Hilbert space where the phase interval [−π,π) is
restricted to M discrete points, with lattice spacing 2π/M . A complete basis of the trun-
cated Hilbert space is given by the 2M vectors |δk〉⊗ |±〉 with δk = 2πk/M

(k = 0,±1,±2, . . . ,±(M − 1)/2), and |±〉 the eigenvector of σ̂3. The Hamiltonian is thus
represented as a 2M ×2M matrix in this basis and diagonalized numerically. We choose
the parameter M large enough to guarantee convergence of the eigenvalues.

Once the spectrum is known, we use the transition frequencies from the ground
state, ωn = En −EGS, to do a least-square fit to the experimental data. The details of
the numerical procedure are listed in the Jupyter notebooks available at [240].

Once an eigenstate |Ψ〉 is determined numerically, we represent its two-component
wave function in the basis of the weak link eigenstates {|g 〉, |e〉} from Eq. 9.13, evaluated
at φ=ϕ:

|Ψ〉 =
∑

δ

∑
σ=g ,e

Ψ(δ,σ)|δ,σ〉 , Ψ(δ,σ) = 〈δ,σ|Ψ〉 , (9.16)

where
|δ,σ〉 = |δ〉 ⊗ (cσ+(ϕ) |+〉+cσ−(ϕ) |−〉) . (9.17)

The probability densities |Ψ(δ,σ)|2 plotted in Fig. 9.3b and Fig. 9.12b allow us to eval-
uate at a glance whether the eigenstate |Ψ〉 has a large overlap with the excited state
σ= |e〉 of the (decoupled) weak link.

Finally, in Fig. 9.3c we show the numerical prediction for the visibility of the ABS
transition as a function of the phase bias, φ. The visibility is determined by the absolute
square of current operator matrix element 〈GS| Ĵ (ϕ) |Ψ〉 between the ground state |GS〉
and the excited state |Ψ〉 of Ĥ corresponding to the ABS transition. The current operator
is [71]

Ĵ (ϕ) = E J sin(δ̂)+ ∂HABS(ϕ− δ̂)

∂δ̂
. (9.18)

9.10.3. EQUILIBRIUM PHASE DROP
We have assumed that the equilibrium phase drop across the weak link, φ, is close to the
total applied phase, φ ≈ ϕ. Here, we verify this assumption by calculating the equilib-
rium phase drop of the hybrid SQUID model we presented in the previous section.

Since φ=ϕ−δ, (see Eq. 9.8), it is sufficient to show that the equilibrium phase drop
δ ≡ 〈GS|δ̂|GS〉 across the tunnel junction is small. δ is given by the position where the
ground state Josephson energy of Eq. 9.8 is minimal for EC = 0. From this condition,
after taking a derivative of the Josephson energy, we obtain the following transcendental
equation for δ:

E J sin(δ)+ ∆T

4

sin(δ−ϕ)
√

1−T sin2[(ϕ−δ)/2]
= 0. (9.19)
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Figure 9.14: Equilibrium phase drop δ across the tunnel junction. The black line is given by Eq. 9.20, the red
line by the numerical solution of Eq. 9.19. In both cases, we use the same circuit parameters as in Fig. 9.3a:
∆= 122µeV, T = 0.57, E J = 165µeV.

We note that the above expression defines a zero net current through the hybrid SQUID
with the two arms hosting the same supercurrent. For E J ≫ ∆T /4, a good approximate
solution is given by

δ≈ ∆T

4E J

sin(ϕ)
√

1−T sin2(ϕ/2)
. (9.20)

up to quadratic corrections in (∆T /E J ). In Fig. 9.14 we show that for the parameters
used in Fig. 9.3a, this approximate solution is very close to the exact, numerical one.
Both exhibit a sinusoidal behavior with a maximum δ ≈ 0.12 at ϕ ≈ π/2. This confirms
that the phase drop across the weak link, φ = ϕ−δ, remains very close to the applied
phase ϕ everywhere. In particular, φ is exactly equal to ϕ at ϕ= nπ, where n is integer.

9.10.4. ANDREEV BOUND STATES IN A PROXIMITIZED RASHBA NANOWIRE

IN A PARALLEL MAGNETIC FIELD

In this Section, we introduce the model used to describe the behavior of ABS as a func-
tion of the magnetic field B . We start from the standard Bogoliubov-de Gennes (BdG)
Hamiltonian of a Rashba quantum wire with proximitized s-wave superconductivity and
an external Zeeman field [7, 8]:

HBdG =−
(
∂2

x

2m
−EF

)
τz − i α∂x sz τz +EZ sx +∆e iφθ(x)τz τx +V δ(x)τz . (9.21)

Here, the two sets of Pauli matrices τx,y,z and sx,y,z act in the Nambu and spin spaces,
respectively; m = 0.023me is the effective mass in InAs [241], α is the Rashba spin-orbit
coupling strength which defines ESO = mα2/2. EZ = 1

2 g µB B is the Zeeman energy, ∆
is the proximity induced gap and θ is the Heaviside step function. The Fermi level EF
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is measured from the middle of the Zeeman gap in the normal state band dispersion,
see Fig. 9.16. Note that starting with Eq. 9.21 we set ħ = 1. The superconducting phase
difference between the left lead (x < 0) and the right lead (x > 0) is denoted by φ. The last
term of Eq. 9.21 models a short-range scatterer at x = 0, accounting for the finite channel
transmission.

We seek bound state solutions of the the BdG equations,

HBdGΨ(x) = E Ψ(x) , (9.22)

at energies |E | <∆. We will consider in particular two opposite regimes: (a) EF ≫ ESO,EZ ,∆
and (b) EF = 0, see the two insets in the corresponding panels of Fig. 9.16. In order to find
bound state solutions we proceed as follows:

1. We linearize the BdG equations for the homogeneous system (V = 0,φ= 0) around
E = EF . In this way, we obtain two effective low-energy Hamiltonians, H (a)

eff and

H (b)
eff , which are linear in the spatial derivative. They can be written as:

H (a)
eff =−i v ∂x τz σz − vq0τz ρz +

∆αkF

vq0
τxσz +

∆EZ

vq0
τy ρy , (9.23a)

H (b)
eff =−iα∂x τz σz +∆τx + 1

2 EZ σz (1−ρz ) . (9.23b)

We now have three sets of Pauli matrices: τx,y,z (Nambu space), ρx,y,z (distinguish-
ing the inner/outer propagating modes, and replacing the spin matrices sx,y,z of
Eq. 9.21), and σx,y,z (distinguishing left- and right-moving modes, and not to be
confused with the σ matrices used in the previous Section). For regime (a), we
have also introduced the Fermi momentum kF =

p
2mEF , the Fermi velocity v =

kF /m and the energy difference vq0 =
√
α2k2

F
+E 2

Z
between the two helical bands

at the Fermi momentum. Note that, in the regime (b) where EF = 0, the lineariza-
tion requires ESO ≫ ∆,EZ , so it corresponds to the limit of strong spin-orbit cou-
pling.

2. Using Eq. 9.21, we compute the transfer matrix T of the junction in the normal
state (∆= 0), at energy E = EF . The transfer matrix gives a linear relation between
the plane-wave coefficients of the general solution on the left and right hand sides
of the weak link. In computing T , we neglect all terms ∝ E−1

F in regime (a). In
regime (b), the transfer matrix is computed for EZ = 0, since the effect of magnetic
field on scattering can be neglected to due the small dwelling time in the short
junction. At EZ = 0, the transfer matrix depends on the single real parameter T , the
transmission probability of the junction. The latter is given by T = 4k2

F /(4k2
F +V 2)

in regime (a), and T = 1/(1+V 2/α2) in regime (b).

3. Using the transfer matrix T as the boundary condition at x = 0 for the linearized
BdG equations, we obtain the following bound state equation for E :

det
[

1−G(E)τz σz

(
e−iφτz /2

T −1
)]

= 0, (9.24)
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where G(E) is the integrated Green’s function,

G(E) = v

∫
dq

2πi
e−i q·0 [

Heff(q)−E
]−1

, (9.25)

and Heff(q) is the Fourier transform of either of the linearized Hamiltonians of
Eq. 9.23. [In regime (b), v must be replaced by α in the expression for G(E)]. In
deriving the bound state equation, we have neglected the energy dependence of
the transfer matrix, which is appropriate in the short junction limit. In regime (b),
this also requires that the length of the junction is shorter than α/EZ , so that we
can neglect resonant effects associated with normal-state quasi-bound states in
the Zeeman gap, which would lead to a strong energy dependence of the transmis-
sion [242]. Eq. 9.24 is analogous to the bound state equation for the ABS derived
in Ref. [98], except that it is formulated in terms of the transfer matrix of the weak
link, rather than its scattering matrix. Unlike its counterpart, Eq. 9.24 incorporates
the effect of the magnetic field in the superconducting leads. It is thus appropriate
to study the effect of a magnetic field on the ABS in the limit of uniform penetra-
tion of the field in the superconductor.

4. After performing the integral for G(E), the roots of Eq. 9.24 can be determined
numerically. For the two regimes, this leads to the typical behavior of the ABS
shown in Fig. 9.16 against the experimental data. We find a better agreement with
the experimental data for regime (a).

From G(E), we can also compute the proximity-induced gap of the continuous spec-
trum ∆(B): ∆(B) is the minimum value of E such that the poles of G(E) touch the real
axis in the complex plane [of course, ∆(B) can also be found by minimizing the disper-
sion relation obtained by diagonalizing Eq. 9.23 in momentum space]. In regime (a), the
relevant spectral gap is always at the finite momentum, so the behavior of ∆(B) depends
on the strength of the spin-orbit coupling, as shown in Fig. 9.15. Two features are evident
from the figure.

First, with increasing spin-orbit coupling, the linear behavior∆(0)−∆(B) ∝ B changes
to to a quadratic suppression ∆(0)−∆(B) ∝ B 2 for small B . This is due to the vanish-
ing first-order matrix elements of the Zeeman interaction, due to the removal of the
spin degeneracy of finite-momentum states by the spin-orbit interaction. Secondly, the
proximity-induced gap ∆(B) never closes – as long as the superconductivity in the alu-
minium shell is present – because spin-orbit interaction competes with the Zeeman ef-
fect and prevents the complete spin polarization of the electrons. These two facts explain
the behavior of ∆(B) shown in Fig. 9.4b. In regime (b) with EF = 0, which is extensively
discussed in the literature of Majorana bound states, ∆(0)−∆(B) ∝ B due to the Zeeman-
induced suppression of the gap for states at zero momentum (where spin-orbit is not
effective).

An in-depth theoretical study of Eq. 9.24, including a detailed analysis of its roots at
finite magnetic fields and the code used in the numerical solution, is in preparation. It
will also be interesting to extend the current model beyond the linearization to allow the
calculation of the spectrum at arbitrary values of EF .
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Figure 9.15: The effect of the spin-orbit interaction and Zeeman field on the induced superconducting gap.
The lack of spin-orbit interaction leads to a linear decrease of ∆(B) (black line), which becomes parabolic in
the limit of

√
ESOEF ≪ EZ = 1

2 gµB B (blue and green lines). The green line corresponds to the best fit to the
experimental data.

9.10.5. ORBITAL FIELD

Because a quadratic suppression of ∆(B) and the ABS energies may also be due to the or-
bital effect of the magnetic field, without invoking spin-orbit interaction, it is important
to compare the data with this scenario. In a simple model which includes orbital and
Zeeman effect, the field-dependence of the Andreev bound states may be written down
as follows:

E (orb)
ABS,±(φ,B) =∆(1−B 2/B 2

∗)
√

1−T sin2(φ/2)± (1/2)gµB B . (9.26)

Here, B∗ ∼Φ0/A is the magnetic field scale which governs the suppression of the proximity-
induced gap due to the orbital field, A is the cross-section of the nanowire andΦ0 = h/2e.
In writing Eq. 9.26, we have neglected the effect of the orbital field on the scattering at
the junction. This should be a good approximation as long as the junction is modeled by
a δ(x) potential with no dependence on the radial coordinate of the nanowire. Thus, es-
sentially, the phase dependent part of the Andreev bound state energies can be obtained
by replacing ∆ with ∆(1−B 2/B 2

∗) in Eq. 9.1 . In the absence of spin-orbit coupling, the
Zeeman term enters additively in Eq. 9.26.

Using Eq. 9.26, we can perform a fit to the experimental data to determine the opti-
mal value B∗ = 400±2 mT. Note that the fit is insensitive to the value of g , since g drops
out from the sum E (orb)

ABS,++E (orb)
ABS,−. However, Eq. 9.26 predicts the occurrence of a fermion

parity-switch at a field Bsw < B∗ given by the condition E (orb)
ABS,−(φ,Bsw) = 0. From this con-

dition, and assuming the knowlede of both Bsw and B∗, the g -factor can then be deduced
by inverting Eq. 9.26 at φ=π,

g = ∆
p

1−T

µB Bsw

(
1−B 2

sw/B 2
∗
)

(9.27)

The occurrence of this fermion-parity switch must be accompanied by a drastic disap-
pearance of the ABS transition [74]. In the experiment, such disappearance can be ex-
cluded up to at least 300 mT. Therefore, by requiring that Bsw > 300 mT, we obtain an
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upper bound of g , ∣∣g
∣∣< 5.08 (9.28)

The above estimate motivates the approximation, where we attribute the quadratic sup-
pression to the joint effect of spin-orbit and Zeeman couplings; the orbital effects may
play only a sub-leading role.

9.10.6. FITS TO THE DATA
We have just presented three different scenarios that can be used to interpret the mag-
netic field dependence of the ABS transition energies. We have fitted all three models to
the entire data set available, consisting of a flux bias sweep of the ABS spectra at six dif-
ferent magnetic fields (B = 50,75,100,150,200 and 300 mT). For each flux bias at which
it was visible, we have extracted the position of the ABS transition. For each value of B

we attributed to all the data points an error bar corresponding to the half-width at half-
maximum of the ABS peak at ϕ = π, neglecting for simplicity the flux variation of the
width. The total dataset consisted of more than 300 datapoints. We then performed a
least-square fit to the ABS transition energies predicted by the three different models.
The results are illustrated in Fig. 9.16.
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Figure 9.16: The magnetic field dependence of ABS in high and low Fermi level regimes and for orbital mag-
netic field. The top row shows the evolution of the spin split Andreev bound states E±

ABS(π) (blue and red lines,

respectively), the superconducting gap ∆(B) (black solid line)and Etot(π) = E+
ABS(π)+E−

ABS(π) (dashed line)
with the experimental data (black dots) for the large Fermi level limit (a), for zero Fermi level (b) and for orbital
magnetic field (c). The corresponding ABS dispersion overlain on the measured spectrum as a function of ϕ at
B = 100mT (middle row, panels d, e and f) and at B = 300mT (bottom row, panels g, h and i), respectively. Each
row features the same experimental dataset. The global fit parameters for the left column are g = 14.7± 0.6
and

√
ESOEF /∆= 0.32±0.02. The middle column is evaluated with a single fit parameter g = 11.2±0.1. Note

the lack of dispersion in panel (h), due to the merging of the Andreev bound states with the continuum, which
causes all the lines to fall on top of each other. In the right column we use the best-fit value B∗ = 400±2mT and
g = 5, the latter imposed by the lower bound on the parity switching field Bsw > 300mT, where E−

ABS(π) = 0.
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David J. van Woerkom

Nature shows us only the tail of the lion.

Albert Einstein

Majorana zero energy modes (MZM) are interesting because of their expected non-abelian

properties, which could be used for topological quantum computing. MZM are promising

because they are more robust against local perturbations in the environment. However,

before one can think of braiding experiments, which should reveal their non-abelian ex-

change statistics, more of their properties need to be characterized and discovered.

In this chapter, we discuss how our experiments could be improved in order to pave the

way towards braiding. We also discuss questions that need to be answered before we can

properly design devices capable of braiding MZM. We need to answer these questions ex-

perimentally, and find the coupling strengths in topological (multi-leg) Josephson junc-

tions and the timescales required to perform the braiding.
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10.1. INTRODUCTION
The objective of the institute/research group where the reported PhD research was per-
formed is to build a quantum computer capable of outperforming a classical computer.
The material system in this thesis focuses on the emergence of MZM, which can be used
as topological quantum bits (qubits)[16, 17, 35]. Topological quantum computing is ex-
pected to be more robust against small fluctuations in the environment. At the moment,
topological qubits are still being developed. For this reason, we focus in this outlook
on the experiments necessary to further identify MZM and demonstrate their proper-
ties. This should lead to better control of the MZM, which should in turn lead finally to
braiding and a topological qubit.

10.2. PERSPECTIVES ON MATERIAL IMPROVEMENT
The most important part of the devices used for MZM research is the combination of a
semiconductor nanowire and a superconductor. It is this material combination that can
lead to an inverse superconducting gap, called the topological gap, as was introduced in
Section 3.4.2. It is important that this gap is uniformly induced in the nanowire, as then
it leads to: (1) a hard gap in the nanowire[198] which suppresses the density of states
(DOS) for the quasiparticles within; and (2) no creation of extra MZM.

The hard gap in the nanowire is important, as when there are no available states
within the induced gap, quasiparticles must occupy states above the gap, which are
exponentially suppressed with temperature. We find that the superconductor used in
Chapter 6 has subgap states which reduce the effective gap to 15-25µeV. This reduc-
tion in the effective gap was recently studied theoretically, and a model with disorder in
the form of nonmagnetic scatterers and pairing-potential impurities was used to explain
the subgap states and the reduced superconducting gap [87, 186]. The superconductor
(NbTiN) used in Chapter 6 exhibits these subgap states and is therefore not favorable
for MZM research. We suggest using Al, which has the lowest Dynes parameter ever
reported[165]. The Dynes parameter is a measure of all the possible mechanisms that
can make the measured DOS deviate from the expected textbook DOS, eq. 3.8. Even in
combination with a nanowire, Al has shown parity effects[14, 22, 23].

In a recent study, it was also shown that a disorder superconductor can lead to pair-
breaking in the induced superconductivity in the nanowire[243]. The pair-breaking leads
to gap reduction, or even closure of the induced gap[79]. This pair-breaking is expected
where there is moderate or strong coupling between the nanowire and a superconductor
with disorder[243].

Figure 10.1 shows images of these nanowires in combination with the Al. The in-
terface between the nanowire and the superconductor has been claimed1 to be epi-
taxial [20], but it is at least clean enough to induce a hard superconducting gap in the
nanowire[21]. These nanowires are a great improvement on the material system used in
early MZM experiments[9, 108], but we still wish to suggest the following three improve-
ments.

1Based on questions raised by our material experts, the image shown in Figure 10.1b and published in ref. [20]
is not enough to claim epitaxiality.
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3 nm

InAs Ala b

Figure 10.1: a False-colour SEM image of a nanowire Josephson junction (misaligned with the bottom gate).
The purple indicates the Al on the nanowire (which is shown in brown). The Al thickness is not homogeneous
over the nanowire facets. b Transmission electron microscope image, from ref. [20], showing a sharp and clean
interface between the InAs and the Al.

1. Use a nanowire semiconductor with a higher g -factor. The nanowires in ref.
[20] are InAs, which have a g -factor of 10–15 (see Chapter 9). Assuming a typ-
ical induced superconducting gap of ∼ 200µeV, the lowest magnetic field where
the topological transition can be expected is 0.5–0.7T. At this magnetic field, the
host superconductor is strongly influenced. The quasiparticle DOS of the Al is
spin-split[212]. Also, due to the spin splitting, the Cooper pairs are forced into fi-
nite momentum pairings, leading to modification of the DOS and reduction of the
gap[244]. A magnetic field also leads to Meissner screening currents and vortex
creation, which leads to local reduction of the superconducting gap.

The effects described above are proportional to the applied magnetic field. The
creation of the topological gap requires a sufficiently large Zeeman energy, which
is proportional to the magnetic field via the g -factor. For this reason InSb, which
has a g -factor of 50–70[245], is more favorable because the required magnetic field
for the topological transition is lower.

In general, InSb nanowires are not (or hardly) conductive at zero gate voltage, be-
cause the Fermi level is within the bandgap[12, 205]. When a superconductor is
deposited, as for example was done in ref. [20], the semiconductor close to the
interface cannot be gated due to screening of the superconductor. This lack of gat-
ing and the Fermi level in the bandgap creates an uncontrolled barrier between
the metal/superconductor and the core of the nanowire. The induced supercon-
ducting gap in InAs, reported in refs. [21, 51], is probably so hard because InAs is
known to have a surface accumulation layer [246, 247]. To overcome this problem,
one can dope the surface of InSb in situ2 or grow the InSb with doping to put the

2In a solution of sulphur, as in ref. [12], in (for example) a glove box attached to the nanowire growth machine
before the deposition of a superconducting shell
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Fermi level in the bandgap. In ref. [248], InAsxSb1−x is suggested to optimize spin-
orbit strength, but perhaps Fermi level surface pinning can also be achieved due
to the combination with As.

2. Improve thickness homogeneity to have a constant superconducting gap in the
(host) superconductor. Variation of Al thickness leads to variations in the super-
conducting gap[249]. Because of this variation, local minima in the quasiparticle
DOS can arise[184], which can trap quasiparticles. To reduce this effect, we need
to eliminate the variations in superconductor thickness we currently have, see Fig-
ure 10.1a. In addition, this will also induce a uniform superconducting gap in the
nanowire.

3. Introduce a controlled barrier at the semiconductor/superconductor interface.
If the superconductor has disorder, this can also lead to pair-breaking in the in-
duced superconductivity in the nanowire[243]. This ‘leaking’ of disorder into the
nanowire depends on the coupling between the nanowire and the superconduc-
tor. Currently, this coupling is very strong for the Al and InAs material system,
as can be seen from the TEM images shown in Figure 10.1b. Other signatures of
strong coupling are visible in direct transport data, the hard induced gap and fact
that the value of the induced gap is approximately the same as the superconduct-
ing gap of the host superconductor[21].

If it is possible to create a controlled barrier, for example by the atomic layer depo-
sition of Al2O3 at the superconductor/semiconductor interface, then the disorder
leakage can be reduced [243]. The induced gap in the nanowire can also be en-
gineered to be smaller[250]. A (controlled) smaller induced gap leads to a lower
magnetic field requirement for the topological phase transition.

If the three suggested improvements can be implemented, the topological transition
is expected to occur at ∼40mT (with g -factor ∼ 50 and ∆NW ∼ 60µeV). This lower mag-
netic field value reduces the requirements on the MZM braiding and detection circuit.

Experimentalists often refer to the critical magnetic field of a superconductor, but
superconductors lose their nice properties at a (much) lower magnetic field[12, 22, 64,
90].

10.2.1. GATES AND DIELECTRIC
Previous attempts to use local fine gates to show the non-local behaviour of MZM, shar-
ing the same topological gap, were not successful[33]. The authors argued that local
imperfections in the gates resulted in air voids between nanowire and dielectric, leading
to non-uniform electrostatic gating. This non-uniform gating makes it challenging to
tune the chemical potential in the helical gap, as required for MZM (see Section 3.4.2).

In the scanning electron microscope (SEM) image in Figure 10.2, we highlight a topo-
logical region (red line) in a nanowire with an MZM (green star). The first question that
arises is, can the discontinuity in the gates at (1) keep the chemical potential within the
helical gap and maintain a single topological region? And secondly, can the topological
region be extended by the three fine gates at (2)? At the moment, experimental control of
the MZM in tunnel spectroscopy is limited[15, 33]. To reduce the air voids and improve
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the gating, one could do a 15nm-deep (HF-)etch in the SiO substrate before the 5/10nm
Ti/Au gates are depositied. This technique is quick and easy to implement, and should
increase electrostatic gate control.

1 2

Figure 10.2: SEM image of a nanowire on local fine gates. Air voids are present between the nanowire and
the dielectric, which leads to non-uniform gating[139]. This SEM image is an extreme case since the gold lift-
off for the gates left small bumps, lifting the nanowire from the flat parts of the gates. The red line depicts
the topological region, with the MZM at the end (green star). The question is: can the topological region be
extended over the regions with air voids?

10.3. PERSPECTIVES ON POISONING DYNAMICS

In the experiment reported in Chapter 6, we used switching current measurements to de-
termine the parity of a superconducting island. For islands formed by two SIS junctions
in series, it has been shown that this measurement technique is a reliable way to deter-
mine the parity[155]. The island can also be formed by two nanowire Josephson junc-
tions in series. These kinds of structures are often used in MZM braiding schemes[17, 35,
209, 251]. Figure 10.3a depicts an InAs nanowire with an Al shell, where two regions have
been etched to form an island. We can also make an island by, for example, depositing
NbTiN on an InSb nanowire, as shown in Figure 10.3b.

A challenge with this experiment is to determine the location of the poisoning. The
supercurrent flows through the entire device and the poisoning can happen either in the
Andreev bound states in the junction[54] or the island. By measuring the gate response
it possible to identify if the switching current fluctuation is periodic (island poisoning)
or arbitrary (ABS poisoning).

A more promising direction for parity detection is the use of local measurement tools,
such as for example (RF-)SET or (superconducting) resonators[209, 251].
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a b

Figure 10.3: a Image of an InAs nanowire (grey) with a thin Al shell (cyan), which can form a superconducting
island when two regions of Al are etched. The arrows indicate possible poisoning events by the lead, either to
ABS in the junction or the island directly. Local gates (in green) are used to tune the coupling of the individ-
ual nanowire junctions and the island gate charge. b SEM image of a NbTiN superconducting island formed
in an InSb nanowire with Au leads. The leads can be made from a superconductor to do switching current
measurements.

10.4. PERSPECTIVES ON MAJORANA AND JOSEPHSON RADIA-
TION DETECTION

The emission spectrum of a voltage-biased Josephson junction contains valuable infor-
mation about the junction’s properties. First, the Majorana bound states (MBS) can be
identified. Secondly, the properties of the MBS depend on all the mutual interactions of
the MZM in the topological junction, as explained in Section 3.4.3. Control of individual
MZM and their effect on the MBS is key to achieving MZM braiding.

This has to be investigated experimentally in a time domain on the order of 10−5 −
10−9s, the expected timescale for braiding[35]. The lowest frequency that we could re-
solve in the experiments reported in Chapters 7 and 8 was 5–7GHz, corresponding to a
timescale of 10−10s. To increase the timescale, we suggest using commercial microwave
electronics to bring the emitted radiation to room temperature and measure the noise
spectrum directly via a spectrum analyzer, as was done in ref. [73].

For PAT detection with an SIS junction, we only suggest technical improvements
to the detection method, since that is currently the limiting factor of the experiment.
The detection range should be increased by improving the lower frequency detection
limit. Currently, it is limited by quasiparticle heating at Vdet = 2∆, as shown in Fig-
ure 8.2a. This heating could be reduced by superconductor-insulator-normal-insulator-
superconductor (SINIS) coolers[252], or controlled vortex creation in the vicinity of the
junction[172].

The full width at half maximum (FWHM) of the detected frequency is large, espe-
cially when a magnetic field is applied. To improve this, a steeper quasiparticle onset
is needed (at finite magnetic field). In Chapter 8, we used a lock-in technique to mea-
sure the radiation, which resulted in line widths of ∼ 5GHz. This could be improved by
decreasing the magnetic field required for the topological transition, or improving the
design of the detector. Ginzburg–Landau simulations could also be used to minimize
vortex creation and Meissner currents close to the SIS detector.
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10.5. PERSPECTIVES ON ANDREEV BOUND STATE SPECTROSCOPY
Most braiding schemes rely on Josephson coupling in semiconductor nanowire Joseph-
son junctions[17, 35, 251]. The underlying mechanisms of Josephson coupling are An-
dreev bound states (ABS)[64]. These ABS can be very exotic due to the presence of the
spin-orbit effect and the need for a magnetic field in these systems. In Chapter 9, we re-
ported direct spectroscopy of ABS in nanowire Josephson junctions, including the Zee-
man and spin-orbit effects in the analysis. To assure reliable and reproducible Josephson
coupling for MZM braiding, further investigation of ABS with spin-orbit effect and finite
magnetic field is needed.

10.5.1. MEASURE OF LONG-JUNCTION ANDREEV BOUND STATES
Andreev bound states were only investigated in short ballistic Josephson junctions, where
the coherence length, ξCOH, is (much) larger than the junction length, d . In the long-
junction limit, ξCOH ≪ d , the ABS contribute to the supercurrent in both directions, lead-
ing to a net supercurrent proportional to the Thouless energy. The clear differences be-
tween short- and long-junction ABS are shown in Figure 3.7. In addition to the Andreev
spectroscopy experiments reported in Chapter 9, we also measured nanowire Joseph-
son junctions with etched Al windows of 200 and 400nm. The ABS in these junctions
showed behaviour in accordance with eqs. 3.20 with ∆ ∼ 100µeV . The estimated3 co-
herence length was ξCOH = ħvF/∆ ∼ 400nm−1µm, which places these longer junctions
in the short/intermediate regime, ξCOH & d .

The typical length of an InAs nanowire with Al shell is 5-10µm. This makes it possible
to be in the long junction limit (ξCOH < d) but not clearly so (ξCOH ≪ d). As this transition
region is where many of the experiments [77, 106, 199, 215] were performed, it is very
interesting to investigate this regime. ABS spectroscopy is the perfect experimental tool
to investigate the underlying mechanism of the supercurrent by direct spectroscopy, in
the short- and long-junction limits and the transition regime.

10.5.2. IMPROVE THE COUPLING CIRCUIT
The coupling circuit could be improved by adding inductive lines, for decoupling from
the outside world on AC, in combination with smaller resistors to increase the quality
factor (the quality factor reported in Chapter 9 being ∼1) and decrease the ABS line
width. If a higher quality factor could be achieved, one would also expect multi-photon
processes at lower powers. In the experiment reported in ref. [217], a quality factor of
∼ 13 was obtained, making it possible to excite the resonator and the ABS. Such an im-
provement could make the following experiments possible.

1. Measurement and analysis of more complex multi-channel ABS spectra with
Zeeman and spin-orbit effects. Figure 9.5b shows an asymmetric multi-channel
ABS spectrum. Due to the larger line width, it is not possible to resolve the individ-
ual spectral lines belonging to the ABS. With a higher quality factor, the lines are
expected to be narrower and this complex spectrum could be analyzed in more de-
tail. The extracted spectrum could then be compared, for example, to the models

3The host superconductor has ∆∼ 200µeV. To estimate the Fermi velocity, vF, we assume a Fermi energy, EF,
of 1–10meV and an effective electron m* of 0.023me, where me is the bare electron mass.
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of ref. [75, 233]. With the addition of magnetic rotation, it would also be possible
to measure the recently-discovered ϕo junction[77] via direct spectroscopy.

2. Measurements of ABS at ‘zero energy’, revealing the Majorana bound state, the
Weyl singularity and perfect transmission ABS. Because of bias instabilities in
the spectrometer due to the supercurrent, it is not possible to do spectroscopy
below Vspec ∼ 15µV. This corresponds to 7–8GHz, which is accessible by commer-
cial microwave excitation[55, 199], which can easily reach 20GHz. The proposed
spectroscopy using the on-chip spectrometer would have a range of up to 230GHz,
which could reveal the entire ABS spectrum.

The range below 7–8GHz is needed to investigate ‘zero energy’ states, such as Ma-
jorana bound states[224], the Weyl singularity[216], fermion switches in multi-
terminal junctions[253] or superconducting devices with almost perfect transmis-
sion [12, 51]. This low range is accessible by a higher quality factor (∼ 10 − 15)
circuit, which can raise the ABS spectrum and the plasma mode frequency due to
higher-order processes[217, 225].

For the Weyl singularity[216] or fermion switches in multi-terminal junctions[253],
nanowires with multiple legs are needed. These X- and T-shaped nanowires have
been grown and are experimentally accessible[129, 137].

10.6. TOWARDS BRAIDING OF MAJORANA ZERO MODES
To successfully braid and demonstrate the non-abelian properties of MZM, we require
precise control of at least four MZM and their mutual coupling[16, 17, 35, 209, 251, 254].
Braiding relies on turning the MZM coupling ‘on’ and ‘off’ by gate or flux control, and
requires that the MZM at both ends of the nanowire share the same topological gap.
These requirements have not been experimentally demonstrated.

The following questions need to be answered before one could think of undertaking
a braiding experiment. We offer brief comments or suggestions for each of the questions.

1. What is the size of the MZM?
This is the coherence length associated with the topological gap. Albrecht et al.[14]
claim to have extracted the coherence length from the MZM overlap energy split-
ting of five different samples, with different lengths and thus MZM overlaps. The
coherence length depends on the Fermi velocity and the topological gap, which
depends on the spin-orbit energy and the Zeeman energy, approximated by eq.
3.81. Based on the magnetic field onset and the behaviour of the MZM oscillations,
we conclude that the details of the samples are different. The coherence length ex-
tracted from the five different oscillation amplitudes is nonetheless claimed to be
one value, ξCOH ∼260nm.

The splitting of MZM due to finite wavefunction overlap can be observed[33] by
direct-tunnel spectroscopy. This splitting can be investigated as a function of mag-
netic field and chemical potential to find the coherence length and thus the size of
the MZM[81].
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2. What is the strength of the MZM coupling?
MZM can coupled by physical overlap to form an MBS, where eq. 3.87 describes
the coupling. They can also coupled by charging energy, as was used to couple and
decouple them in ref. [17]. In this case the strength of the MZM coupling is the
same as the energy which is needed to add an electron to the island. The coupling
then depends on the ratio of the charging and Josephson energies, as explained in
Section 3.5.

In more recent braiding schemes, the MZM are coupled via quantum dots[209,
251]. Understanding this coupling is key to any future plans for braiding.

MBS can be investigated in normal, multi-leg and quantum dot junctions with
ABS spectroscopy. Unfortunately, the excitations to the continuum are not bright
enough and the MBS cannot be mapped exactly. One could think of combining
the microwave irradiation from the spectrometer junction with the switching cur-
rent through the (multi-leg) topological junction to reveal the exact shape of the
MBS. A similar experiment[255] was done with Al atomic junctions, and success-
fully extracted the superconducting gap, ∆.

3. What are the required time scales for braiding? A theoretician would answer4:
‘Faster than the quasiparticle poisoning time but still slowly enough that the sys-
tem stays in the ground state.’ In ref. [256], a 32-page theoretical analysis of one
specific case[35] is performed. This analysis gives an estimate of 100ns–100ps for
certain steps of the braiding, but other steps can be done more slowly. Other
braiding schemes rely on measurement-based or remote charge sensing, so the
timescales for these schemes could be totally different.

The experiments reported in ref. [22, 90] are the first steps in finding experimen-
tally achievable timescales. More experiments are needed to identify the required
timescales for the different braiding schemes.

These questions are directly linked to braiding MZM and showing their non-abelian
properties. Clear signatures of other properties are still lacking, showing that the MZM
system is not completely understood. In this thesis, we have taken the first steps towards
investigating the fractional Josephson effect in topological junctions. Recently, ref. [15]
claimed to have found a topological phase diagram. Much research has also been done
to find non-local effects (correlations) among MZM[33]. These are the experiments that
are needed to understand the requirements for a braiding experiment.

4Really. Try this with a random theoretician.
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I start with introducing the commutation relations and definitions for MZM which are
needed in the derivations used below.

{cn ,c†
m} = δnm

{cn ,cm} = {c†
n ,c†

m} = 0 (A.1)

{γi ,γ j } = {γ†
i
,γ†

j
} = {γ†

i
,γ j } = 2δi j

γγ† = γ†γ = 1 (A.2)

γ2 j−1 = γ†
2 j−1 = (c†

j
+ c j )

γ2 j = γ†
2 j

= i (c†
j
− c j ). (A.3)

c j = 1

2
(γ2 j−1 + iγ2 j )

c†
j

= 1

2
(γ2 j−1 − iγ2 j ). (A.4)

They where also introduced in section 3.4.1 but repeated here for convenience.

A.1. DERIVATION OF THE BRAIDING OPERATOR.
We start with U = e i H which is unitary and can describe any operator if H is Hermitian,
H = H †. H cannot be γ1γ2 since this is not Hermitian. iγ1γ2 is Hermitian and commute
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with the parity operator, [iγ1γ2,P ] = 0, so it conserves parity. But having iγ1γ2 with a
constant β is still fulfilling the requirements so we start with the expression U = eβγ1γ2 =
cos(β)+ sin(β)γ1γ2[32]. We use this expression to find γ1 → γ2, and we start with the
following:

Uγ1U † =
(
cos(β)+ sin(β)γ1γ2

)
γ1

(
cos(β)+ sin(β)γ2γ1

)

= cos2(β)γ1 +2γ1γ2γ1 sin(β)cos(β)+γ1γ2γ1γ2γ1 sin2(β)

=
(
cos2(β)− sin2(β)

)
γ1 −2γ2 sin(β)cos(β)

=
(
cos2(β)− sin2(β)

)
γ1 −γ2 sin(2β) (A.5)

To obtain an operation that give γ1 → γ2, the coefficient of γ1 should be zero which can
be obtained by setting β=±π

4 . So this makes U = 1p
2

(
1±γ1γ2

)
, where + (-) corresponds

to clockwise (anti-clockwise) interchange. So we derive the braiding operator for MZM
and we observe that there is a different in clockwise and anti-clockwise interchanging.

A.2. CHECKING THE NON-ABELIANESS OF MZM
To prove the non-abelianess it is necessary to show that U12U23 6= U23U12 [31]. We de-
rived U12 in the section above and U23 = 1p

2

(
1±γ2γ3

)
can be obtained by replacing the

indices.

U12U23 = 1

2

(
1+γ1γ2

)(
1+γ2γ3

)

= 1+γ1γ2 +γ2γ3 +γ1γ2γ2γ3

= 1+γ1γ2 +γ2γ3 +γ1γ3 (A.6)

and

U23U12 = 1

2

(
1+γ2γ3

)(
1+γ1γ2

)

= 1+γ2γ3 +γ1γ2 +γ2γ3γ1γ2

= 1+γ1γ2 +γ2γ3 −γ1γ3 (A.7)

so indeed U12U23 6=U23U12 hold and MZM are non-abelian particles. The order of chang-
ing them matter and thus non-trivial compared to 3D particles exchange depicted in
figure 2.5.

A.3. USING THE BRAIDING OPERATOR U
To do braiding operators, the MZM operators need to be written as creation (c†) and anti-
halation (c) since these are operating on the wavefunction |n〉 directly. These operations
are as follows:

c†|0〉 = |1〉
c|0〉 = 0

c†|1〉 = 0

c|1〉 = |0〉.
(A.8)
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These relations together with eq. A.1 and A.3 are needed to calculated the result of
the braiding. We starts with:

U12|0〉 = 1
p

2

(
1+γ1γ2

)
|0〉

= 1
p

2

(
1+ i (c† + c)(c† − c)

)
|0〉

= 1
p

2

(
1+ i

[
c†c† + cc† − c†c + cc)

])
|0〉

= 1
p

2
(1+ i )|0〉 (A.9)

and also U23|00〉 we want to investigate. Now |Ψ〉 = |n1,n2〉 where c†
1 ,c1 operates on n1

and c†
2 ,c2 operates on n2. Keeping track on the proper indices is important. Check the

indices of eq. A.3 if you are confused.

U23|00〉 = 1
p

2

(
1+γ2γ3

)
|00〉

= 1
p

2

(
1+ i (c†

1 + c1)(c†
2 − c2)

)
|00〉

= 1
p

2

(
1+ i

[
c†

1c†
2 + c1c†

2 − c†
1c2 − c1c2)

])
|00〉

= 1
p

2

(
|00〉+ i c†

1c†
2|00〉

)

= 1
p

2
(|00〉+ i |11〉) (A.10)
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In the derivation of the uk and vk in section 3.2.1 we took the gap ∆ real and positive.
Actually the gap is better described by ∆e iφ, with φ the phase of the Cooper-pair con-
densate. Making the Bogoliubov-de Gennes Hamiltonian:

HBdG =
(

ξk↑ ∆e iφ

∆e−iφ −ξk↓

)
(B.1)

The quasiparticles excitation are picking also a part up of this phase and needed to
be redefined as:

ũe = e i
φ
2 ue = e i

φ
2 uk (B.2)

ṽe = e−i
φ
2 ve = e−i

φ
2 vk (B.3)

ũh = e i
φ
2 uh =−e i

φ
2 vk (B.4)

ṽh = e−i
φ
2 vh = e−i

φ
2 uk. (B.5)

This redefinition is necessary for describing the dynamics between superconductors.
Actually the phase difference between the superconductor are describing more precise
the dynamics as we will derive.
We want to investigate a SNS Josephson junction depicted in figure 3.6. To know which
wavefunction are needed in all three regions we first described the processes which we
can expected, bases on Andreev reflection. We start with an electron in the N-region
moving to the right to the NS-interface where it got Andreev reflected, assuming first per-
fect transmission,T = 1. On this side an electron-like quasiparticle emerge. The Andreev
reflection creates a hole on the normal part moving to the SN-interface and Andreev
reflect there. Now a hole-like quasiparticle describes the wavefunction in this S-part. Af-
ter the Andreev reflection an electron is created which can be consider as the original
electron which started the explanation of this model. We set the SN-interface, with su-
perconductor defined as S1, at x = −d

2 and superconducting phase φ1 = −δ
2 . The other
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NS-interface, with superconductor defined as S2, is at x = d
2 and this superconductor has

phase φ2 = δ
2 . This makes the phase difference δ between S1 and S2, . The wavefunction

in each region is

ΨS1 (x) = a

(
uhe−i δ

4

vhe i δ
4

)
e−i khx (B.6)

ΨN(x) = b

(
1
0

)
e i kN,ex + c

(
0
1

)
e−i kN,hx (B.7)

ΨS2 (x) = d

(
uee i δ

4

vee−i δ
4

)
e i kex . (B.8)

Now we have to look at the continuity at the two interface and assume all the k’s are
the same, this gives the following equations at x =−d

2 :

auhe−i δ
4 e i k d

2 = be−i k d
2 (B.9)

avhe i δ
4 e i k d

2 = ce i k d
2 . (B.10)

And for x = d
2 :

be i k d
2 = duee i δ

4 e i k d
2 (B.11)

ce−i k d
2 = d vee−i δ

4 e i k d
2 . (B.12)

We can rewrite eqs. B.9 and B.10 as follows:

c

b
= vh

uh
e i δ

2 e−i kd . (B.13)

And we can do the same for the other interface:

c

b
= ve

ue
e−i δ

2 e i kd . (B.14)

Give us an equation without all the coefficients.

ue

ve

vh

uh
= E + i

p
∆2 −E 2

E − i
p
∆2 −E 2

= e2i (kd− δ
2 ) (B.15)

We have used eqs. 3.3 and 3.4 and E± = ±
√
ξ2

k +∆2. Because the wavefunction is

constricted between two SN-interfaces it made sense that there is a constraint on the
allowed values for E . Bound states have discreet energy states [48].
The solutions for the energies of the ABS are:

±E A,±,l =ħvF

d

[
δ

2
+arcsin

(
EA

|∆|

)
−π(

1

2
± l )

]
. (B.16)
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Where we have use that the decaying part of the momentum k is given by E
ħvF

. This
solution can be investigated in two limits. Which is defined by the length d of the junc-
tion with respect to the coherence length ξCOH = ħvF

∆
. Which can be translated to an

energy limit between ∆ and ħ
τ = ħvF

d
where τ is the time that an electron need to propa-

gate from one to the other interface.
The first limit is considered as the short junction limit, d ≪ ξCOH or ħτ

∆
∼ d

ξCOH
≪ 1 the

ABS energy is given by [40]:

EA =±|∆|cos
δ

2
. (B.17)

Which are the Andreev bound states energies, EA, for a short junction and perfect
transmission. In the other limited ħτ

∆
∼ d

ξCOH
≫ 1 the ABS energies are given by:

±E A,±,l ≃ħvF

d

[
δ

2
−π(

1

2
± l )

]
(B.18)

where l = 0,1,2, ..., N . In this limit, ħ vF
d

≪ |∆|, the coefficient of eq. B.16 is small,
making also EA small so we can neglected the arcsin-term. l can be increased till N is
reached, which is the point that EA reach |∆| and the arcsin-term cannot be neglected
anymore.
The last example that I would like to show briefly is the short junctions with finite trans-
mission, 0 < T < 1. We cannot take directly d → 0, and let the transmission change by
a δ-function potential. The reason is that at the NS-interface an electron can reflected
partly as a hole (Andreev reflection) or as an electron (specular reflection). In the direc-
tion of the other SN-interface there is a wavefunction of an electron and a hole moving
in both superconductors. Given the possibility of electron and hole like quasiparticles.
In the case of 0 < T < 1 we have to take in our model both electron and hole like quasi-
particles wavefunction, which is making the derivation more complex. For this model
we take d → 0 and we obtain:

ΨS1 (x) = a1

(
uhe i δ

4

vhe−i δ
4

)
e i khx +a2

(
uee i δ

4

vee−i δ
4

)
e−i kex (B.19)

ΨS2 (x) = d1

(
uee−i δ

4

vee i δ
4

)
e i kex +d2

(
uhe−i δ

4

vhe i δ
4

)
e−i khx . (B.20)

Now we have to look at the continuity of the two wavefunction at x = 0. We assume

ke ≃ kh ≃ kF =
p

2mµ

ħ which gives the following equations:

a1uhe i δ
4 +a2uee i δ

4 = d1uee−i δ
4 +d2uhe−i δ

4 (B.21)

a1vhe−i δ
4 +a2vee−i δ

4 = d1vee i δ
4 +d2vhe i δ

4 . (B.22)

The continuity of the derivative of the wavefunction, does not hold due to the pres-
ence of the δ−function potential at x = 0. In ref. [48] this example is also calculated
but without superconducting phase and pure electron states. We obtain with the same
approach as in Griffiths textbook:
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a1uhe i δ
4 −a2uee i δ

4 −
(
d1uee−i δ

4 −d2uhe−i δ
4

)
=−2i

√
1−T

T

(
a1uhe i δ

4 +a2uee i δ
4

)
(B.23)

a1vhe−i δ
4 −a2vee−i δ

4 −
(
d1vee i δ

4 −d2vhe i δ
4

)
=−2i

√
1−T

T

(
a1vhe i δ

4 +a2vee i δ
4

)
(B.24)

With the combination of the last four equations it is possible1 to calculate the allowed
energy spectrum which is:

EA =±|∆|

√

1−T sin2 δ

2
(B.25)

We refer to ref. [257] for the derivation and the result of a long junction with 0 < T < 1.
In figure 3.7a in the main text we plot the results of this junction.

1I was not able to do the derivation myself, but I trust ref. [40, 43, 257] and take their result
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The spin-orbit is a relativistic correction of an electron that is moving in an electric field.
The electric field is generated the gradient of the potential, V . The change of potential
could come from electrostatic gates or leads attached to the nanowire which is called
Dresselhaus SOI. The internal SOI coming from the potential of the nuclei and is called
Rasba SOI.
The electrical field for a moving charge is effectively a magnetic field. Electron change
there spin-orientation to this magnetic field which is called BSO. The contribution in the
Hamiltonian for SOI in the most general form is [258]:

HSO = ħ
4m2c2

σ ·
(
p ×E

)
. (C.1)

Where m is the effective electron mass, p =
(
px, py, pz

)T
the momentum,

E =
(
Ex,Ey,Ez

)T
the electrical field which come from the gradient of the potential E =

−∇V and c is the speed of light.
Because we have a 1D nanowire the momentum is only in the x-direction which gives for

the direction of the effective magnetic field
(
p ×E

)
=

(
0,−pxEz, pxEy

)T
. Which make the

SOI Hamiltonian for our nanowire:

HSO = ħ
4m2c2

(
−pxEzσy +pxEyσz

)
. (C.2)

Analysing this last Hamiltonian we observe the spins are going to orientate between
the y and z direction depending on the relative strength of the electric field z and y direc-
tion. It is important to notice that this effective magnetic field is always point perpen-
dicular to the nanowire.
As mentioned before the electric field is depending on the details of gating, leads to the
nanowire etc. To simplify the HSO and the final Hamiltonian that is needed for MZS we
only consider an electrical field in the z-direction.

HSO =− Ezħ
4m2c2

pxσy =−α

ħ
pxσy (C.3)
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Where we definedα= Ezħ2

4m2c2 which is the spin-orbit strength. Note: Ez is the electrical
field in the z-direction.
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We show phase dependence of ABS in a hybrid SQUID in figure 3.18. We varied the
nanowire gaps and transmissions and keep the IC,1 constant. This is an extension of
section 3.3.5
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Figure D.1: a-o Examples of the ABS with and without linear phase drop due to applied flux. Numerically
and analytical approximation of phase drop δ2 over the strong junction as function of applied flux. And the
maximum supercurrent of the nanowire SQUID. ∆ varied between 400, 200, 100 µeV and transmission T =0.9,
0.6 and 0.3.
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In section 3.3.3 we discuss briefly the supercurrent and subgap behaviour of a SIS junc-
tion. The proper analysis of the SIS behaviour is covered by the P (E)-theory which is well
written in refs. [259, 260].
P (E) is describing the probability of emitting the energy E in the environment which
leads to an inelastic tunneling event. This could be an electron or a quasiparticle that
tunnels or a Cooper-pair in a voltage bias junction. When a SIS junction is voltage bi-
ased the Cooper-pair condensates have an energy mismatch of 2eVbias. The probability
to emit this energy to the Z (ω)-environment[259, 260]:

P (2eVbias) =
2

eVbias

Re[Z (ω)]

RQ
. (E.1)

Experimentally it has shown to have good agreement for a voltage bias within the
subgap of aluminium SIS junctions[193]. The SIS-junction and the environment is at
sufficient low temperature that the tunnel processes are mainly described by emission.
The probability of tunneling of Cooper-pairs leads to a rate which give a current. This
a flow of Cooper-pairs at finite voltage bias which we call inelastic Cooper-pair current
(ICPT). The current is given by:

I (Vbias) = 2eΓ(Vbias) =
πeE 2

J

ħ
P (2eVbias) =

I 2
C

2Vbias
Re[Z (ω)] . (E.2)

The EJ is expected to be chosen that RN is larger than RQ. In this case the tunneling
Hamiltonian can be expected to be a small perturbation of the quasiparticle states of the
leads, which makes the derivation of ref. [260] valid.
We are now going to investigate multiple environmental impedances ZENV(ω). The junc-
tions has is own resistance R and capacitance C from the RCSJ-model, see section 3.3.3.
The subgap conductance is high and can be neglected. The total impedance is than
given by:
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Z (ω) = 1

iωC + 1
ZENV(ω)

. (E.3)

E.1. LCR-NETWORK ENVIRONMENT

In this thesis the environment can be characterized by an parallel inductance (L) and a
resistor (R), see inset of figure E.1b. This make the total impedance:

Z (ω) = 1

iωC + 1
R
− i

ωL

. (E.4)

We first investigate the ohmic environment by taking L out (L →∞). We set the ca-
pacitance C = 10−14F and vary the resistance. We have a RC network and we use eq. E.4
to calculate the real part of the impedance and eq. E.2 to calculate the ICPT. But this
latter equation breaks down since we are not in the large voltage regime. The deviation
is visible since we use for the calculation of the ICPT, IC = 65nA but the ICPT is much
larger. For a pure ohmic regime the equations of Ivanchenko et al [60] are a better ap-
proximation and these are plotted in figure 3.11.
We consider further the complete LCR-parallel network shown in the inset of figure E.1b.
We set R = 500Ω,C = 10fF and L = 4nH, which are typical values of the used circuit as
can be seen in Chapter 9. The LCR network has a resonance frequency that in Physics
often a plasma frequency is called, it is given by, f = 1

2π
p

LC
. The width of plasma mode

divide by the frequency of the plasma mode is the quality factor, Q = ∆ f
f

= R
√

C
L

. This

resonance peak is not always at the same frequency as the maximum in ICPT current.
We can see this when we vary the parallel resistance in figure E.1c-d. The resonance of
the impedance in the LCR-network is always at 25GHz but it goes to lower frequencies
in the ICPT current when the parallel resistance is lowered. This can be attributed to the
1/V ∼ 1/ f dependence in eq. E.2.
When the inductance is changed, the position of the resonance peak is changed and the
maximum in the real part of the impedance stays the same. In the ICPT current, again
the 1/V ∼ 1/ f dependence as a strong influence and makes signal in the ICPT very dif-
ferent. In the limited of L → 0 it is not possible to develop a voltage and no coupling is
achieved. When L is large at low frequencies a voltage can already be developed and the
ICPT is expected to be high as can be seen in figure E.1f.
The capacitance is at high frequencies a low impedance. This is the "leak" of your signal.
You want to build up a voltage to achieve coupling but the capacitance is preventing this
at high frequencies. In all the plots of the impedance in figure E.1 the decrease in Re(Z )
can be attributed to the "leaking" of the capacitance. This one we want to have as low as
possible.
The above model is a classical model, we did not take multiphoton processes into ac-

count which is valid for Z
(

1
2π

p
LC

)
≪ RQ.
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Figure E.1: Examples of Re(Z ) and ICPT current I as function of different values for L,C and R. Please note
that the peaks of the resonances are not at the same frequencies in Re(Z ) and ICPT current I . a,b L →∞ and
C = 10−14F and varying R. c,d L = 4nH and C = 10−14F and varying R. e,f R = 500Ω and C = 10−14F and
varying L. g,h L = 4nH and R = 500Ω and varying C .

E.2. ABS IN THE ENVIRONMENT

An ABS level is and discrete level in the environment which can also dissipated current
of a coupled SIS-junction. This technique of probing the ABS is performed in Chapter
9 and in ref. [217]. The absorption of microwave photons in the short SNS junction are
studied in ref. [223]. The ABS is excited by breaking a Cooper-pair which will occupy the
ABS. In ref. [223] also excitation to the continuum are consider but are expected to be
much lower than excitation to two ABS. In our experiments these excitations are also not



E

180 E. APPENDIX

measured. The breaking of the Cooper-pair a parity conserving excitation.
The strength of the absorption in the ABS is given by
∝ T 2(1−T )sin4(ϕ/2) ×∆

2/E 2
ABS(ϕ)δ (2eVbias −2EABS). Here δ (x) is the Dirac-delta pulse

(0 everywhere, except at x = 0 where the function is ∞). The current of the ICPT is not
going to ∞, the ABS is a fermionic mode and can only be excited once. The current is
depending on the possibility to empty the state again by the continues drive (Rabi-drive)
which is also discussed in ref. [223].
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This appendix shows extra figures with data as a support of Chapter 8. For more infor-
mation about the figures see Chapter 8 or the caption of the figure of interest.
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V
det
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Figure F.1: Extra data figures in addition to fig. 8.4. a The raw data (normalized in the x-direction) overlayed
with the extracted maximum and the FWHM. The extracted datapoints are shown in fig. 8.4c. b Same as a but
for fig. 8.4b.
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