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Abstract

The depletion of shallow ore deposits is pushing the mining industry toward deeper underground operations, where
efficient rock breakage remains a critical challenge. This thesis develops a mainly geotechnical, data-driven blast
design framework for sublevel stoping in Boliden’s Kankberg mine in northern Sweden. By combining established
empirical methods with innovative computational approaches such as fuzzy logic, which handles uncertainty and
variability much better and is ideal for subjective variables such as rock mass properties. This study enhances Lilly’s
Blastability Index and integrates Measurement While Drilling (MWD) data as a real-time proxy for in situ rock
behaviour to complement and indirectly validate traditional blastability assessments. Site-specific geological and
geotechnical data, together with laboratory tests, inform the development and calibration of this blasting framework.
The results demonstrate the potential of the proposed Fuzzy Blastability Index (FBI) and the MWD rock factor to
guide theoretical opening slot adjustments, with the intention of optimising slot raise design and reducing overall
drilling costs. The methodology proposes a robust feedback loop between design and operations, contributing to a
more scientific approach to underground drilling and blasting. Ultimately, this research offers a transferable approach
for a next-generation blast design support tool in underground stope blasting. Although large-scale field validation is
still required, the framework establishes a foundation for smarter, real-time design practices for the Kankberg mine.
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Glossary

Blastability The susceptibility of a rock mass to fragmenta-
tion by blasting..

Blastability Index (BI) An empirical index to quantify blastability, de-
veloped by Lilly (1986)..

Blasthole A drilled hole filled with explosives..
Booster An explosive booster is a sensitive explosive

charge that acts as a bridge between a (rela-
tively weak) conventional detonator and a low-
sensitivity (but typically high-energy) explo-
sive..

Burden The shortest distance between a blasthole and a
free face or adjacent distance between rows of
blastholes that are orthogonal to the free face; a
critical factor in blast design..

Crushed Zone The zone around a blasthole where the rock is
pulverized by intense detonation pressure..

Defuzzification The process of converting fuzzy output into a
crisp, single value in fuzzy logic systems..

Density Influence Index (RDI) A parameter in Lilly’s BI accounting for the rock
density..

Discontinuity A fracture or weakness in the rock mass such as
a joint, fault, or fissure..

Drill and Blast (D&B) A rock excavation method using drilling and
explosives, common in mining..

Free Face An exposed rock surface towards which the
explosive charge can break out..

Fuzzy Blastability Index (FBI) An enhanced version of the Blastability Index
that uses fuzzy logic for improved precision..

Fuzzy Inference System (FIS) A framework that uses fuzzy logic rules to pro-
duce outputs from imprecise inputs..

Fuzzy Logic A system of mathematical reasoning that allows
for partial membership in categories, handling
uncertainty better..

Joint Plane Orientation (JPO) The angle between rock joints and the free face;
a parameter in Lilly’s BI..

Joint Plane Spacing (JPS) The average distance between joints; a parameter
in Lilly’s BI..

Measure While Drilling (MWD) Real-time data collection system during drilling
operations, capturing parameters like penetra-
tion rate and pressure..

Membership Function (MF) A mathematical formulation that assigns a mem-
bership value (often between 0 and 1) to each
element in an input space, indicating the degree
to which that element belongs to a fuzzy set..

Overbreak Rock broken outside the planned excavation
boundaries..

vi



Glossary vii

Penetration Rate The speed at which a drill bit advances into rock,
used to infer strength and structure..

Powder Factor A ratio that expresses the amount of explosive
used in a blast to the amount of rock to be
broken..

Raise/Winze A vertical or inclined underground excavation
used for access, ventilation, or blasting..

Reamer hole An unloaded blast hole that has been reamed
(widened) to serve as a free face..

Rock Factor An index derived from MWD data, combining
strength and structural indicators of the rock
mass..

Rock Mass Description (RMD) A qualitative classification of rock mass condi-
tion; a parameter in Lilly’s BI..

Rock Quality Designation (RQD) A measure of rock mass integrity based on the
percentage of intact core pieces..

Spalling Breakage of rock slabs parallel to the free face
due to tensile wave reflection..

Stope Large underground cavity excavated for ore
extraction..

Strength Factor A component of the Rock Factor indicating rock
resistance, based on MWD torque and pressure
data..

Structural Factor A component of the Rock Factor representing
the degree of fracturing in the rock, based on
MWD signal variation..

Sublevel Stoping A mining method involving large-scale blasting
between sublevels to extract ore efficiently..

Unconfined Compressive Strength (UCS) The maximum uniaxial stress a rock can with-
stand before failing; a proxy for hardness..

Underbreak Incomplete rock breakage within the planned
excavation area..

Virgin Stress The stress state of a rock mass before any human-
induced disturbance, such as excavation..



1
Introduction

The continuous depletion of easily accessible shallow ore deposits has resulted in a significant shift from opencast
to underground (UG) mining methods. To keep up with the increasing demand for raw materials worldwide, the
mining industry must maintain target production. Traditionally, open-pit mining favours high production rates.
Large-scale blasting is therefore an efficient method for UG operations to perpetuate. Scientists, engineers, and
practitioners alike have been busy dealing with the challenges that come with the increasing scale of UG mining.
Statistical, empirical and numerical methods continue to advance to better predict the response of rock masses and
allow efficient and fast-paced production (Kumar Himanshu et al., 2023).

1.1. Kankberg Mine
The Kankberg UG gold-tellurium mine, located in northern Sweden and owned and operated by Boliden Mineral
AB, has recently switched to a more productive and larger-scale mining method. The mine has started developing
sublevel stopes at depths between -550 m and -650 m. However, the extremely hard and brittle rock conditions prove
challenging for drilling and blasting (D&B). For example, the rock conditions result in low drilling rates, which are a
costly undertaking due to the frequent need for drill bit changes and extensive man-hours. Poor fragmentation, in
turn, results in losses throughout the entire mine-to-mill production chain.

The current D&B design procedure assumes homogeneity within the rock mass, which is hypothesised to be at
least partially responsible for the poor blast performance currently observed. The D&B design of the slot raise
(winze) in particular has proven problematic. The lack of a free face for the accumulation of broken rock makes it the
hardest blast within every stope. These raises are the initial connection between production levels and are therefore
crucial to commence production blasting within the stopes. In large-scale operations, raises are developed using
raise borer machines (RBM). However, the scale of operations at Kankberg did not yet justify the high capital cost
of such equipment. So, D&B remains the preferred method for the development of the slot raise. The problems
are believed to be partially due to the lack of site-specific adaptation and the absence of proper post-blast reconciliation.

Research tells us that, to reduce these problems, precise D&B design is essential (Z. Zhou et al., 2024). In addition, to
arrive at the right design, understanding the response of the rock mass to blasting is fundamental. Geological blasting
related indices are key to modern underground blasting improvements (Sellers & Jackson, 2018). Blastability indices
combine multiple influencing variables, making assessment of the failure response semi-quantitative. Thorough
blastability evaluation is crucial for proper blast design (Latham et al., 2006). Classifying the Kankberg stopes in terms
of blastability will support production by enabling engineers to make informed decisions and allocate resources more
effectively, distinguishing between harder and easier blast areas. This will allow for a more efficient use of resources.
Given the geological complexity and the current lack of feedback mechanisms in Kankberg its D&B process, this site
provides an ideal setting for developing and applying a methodology that links rock properties with blast design.

1.2. Research Goal
The purpose of this research is to develop a rock parameter-based blast design tool to enable more efficient and
responsive D&B operations in the Kankberg sublevel stopes. By integrating geology and geotechnical parameters
obtained from existing site data and laboratory tests in the TU Delft Rock Mechanics Laboratory, the work uses and
calibrates an empirical blastability index (BI), enhances it using the introduction of fuzzy logic (FBI), and explores the
application of measurement while drilling (MWD) data in a similar system. The thesis is conceptualised from the
inexistence of post-blast information, but offers site engineers practical tools for potential usage. The blastability and
results of the MWD model are utilised to guide theoretical pattern and charging adjustments aimed at reducing excess
drill meterage and better fragmentation under favourable blast conditions. Finally, the research offers a theoretical
reconciliation framework to improve post-blast evaluation and to allow solid feedback mechanism development. The

1
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structure outlined in this thesis is intended to support Kankberg-specific data-driven decision making and constitutes
a first step toward next-generation, cost-saved D&B operations in a complex stoping environment.

1.3. Research Questions
The thesis will focus on the integration of rock type and geotechnical properties into D&B design, and how site-specific
design can benefit from this, based on grounded theorems and widely accepted techniques. To structure the research
and guide it methodologically, the following research questions will be used:

• How can site-specific data be used to classify stopes based on their expected blast performance to inform D&B design?
• To what extent does MWD data support the blastability index as a predictor of rock behaviour during blasting?
• How can theory, blastability index results and MWD data guide theoretical improvements in opening slot design?

Together, these research questions synthesise the main research question of this thesis.

• How can rock mass data be used for an actionable drill and blast methodology to improve operational efficiency in the
sublevel stoping area of Kankberg?

1.4. Originality and Contribution
Although blastability indices have been widely discussed in the literature, their practical application remains limited.
This thesis contributes by implementing a blastability-informed approach in a site where constraints are clear:
unconventional stope geometries, quartz-rich ultra-hard rock, and no clear established system for evaluating blast
performance. Rather than developing a theoretical model from scratch, this work reuses existing theorems, site
data, and supplements it with targeted laboratory tests to build a relevant blastability index. The index is then
supplemented by MWD signals with the purpose of raising confidence in the models and subsequently linked to
decision making to show its practical use. This is where the true originality lies. This thesis combines empirical
indices, fuzzy logic, and real-time MWD data in an integrated blastability framework, which is a novel approach for
UG operations with limited data, linking site-specific conditions with real-world drill and blast decisions in a way
that is repeatable, low-cost, and tailored to operational needs. In doing so, it proposes a method for D&B optimisation
in not only Kankberg, but also many similar UG operations.

1.5. Scope
The thesis will attempt to create a holistic framework that guides the reader from the fundamentals of rock breakage
to a proposition for theoretical opening slot design within the stopes based on theory and data. The theory is
intentionally more detailed than required for the immediate implementation of the blastability framework. This
was done with the intent to inform the academic reader and practising engineers, who may benefit from a broader
understanding of the blasting topic, beyond the index-driven approach later in the thesis. However, the thesis will not
cover all the intricacies that concern the difficult and specialist field of D&B. Topics that are out of the scope are found
below.

• Large-scale field testing or operational validation of the proposed designs
• Explosives engineering, selection and the physics behind it
• Drill bit wear and rig performance
• Cost analysis

1.6. Thesis Structure
Overall, the structure of this thesis more or less follows how the work developed in practice. It starts by laying out the
theory needed to ground the research in something scientifically rigorous, from the fundamentals of rock breakage to
how blastability works, why an index is useful, and how fuzzy logic and MWD data can be applied. After that, the
focus shifts to the study area; The Kankberg stopes themselves. Providing a detailed look at the geological setting, the
mining method, and current drill and blast practices for context. The methodology chapter then explains how site
and laboratory data were used, how the empirical blastability index was built and improved with fuzzy logic, and
how MWD data were used to add to this framework. The results chapter shows what came out of the data processing,
how sensitive the models are to different inputs, and how they compare with MWD trends. Based on that, the design
implications are explored, including some theoretical adjustments and worked examples for a stope. These design
ideas are not tested yet, but are based on what theory and site conditions suggest is realistic. The final chapters tie
everything together with a discussion of the main limitations, assumptions, and data gaps, and the conclusion sums
up the key takeaways and recommendations for how this framework could move towards a real feedback-based
design process in future work.



2
Theoretical Background

This chapter provides all the theoretical foundation for the methods and models that will be encountered later in the
thesis, and slightly more. To improve D&B design in the Kankberg mine, a thorough understanding of the physical
mechanisms at play, their influence on blastability, and the tools available to quantify them are needed. Together,
these concepts will ground the data-driven classification methodology and support the D&B strategies proposed
later on. The reader should take note that D&B is incredibly complex. Despite the attempt to provide a detailed
overview of mainly the geotechnical aspects of D&B design, one could write similar chapters on explosives theory,
mine-logistics, or economics.

2.1. Mechanisms of Rock Breakage
Understanding how rocks respond to the release of energy during blasting is fundamental to optimising D&B design.
Although the energy released in a typical blast is immense, only a small fraction (20–40%) is actually used to break the
adjacent rock mass (Ouchterlony et al., 2004). The rest is lost in the form of heat, ground vibrations, air overpressure,
etc. This low energy efficiency stresses the importance of understanding the complex breakage mechanisms in order
to maximise energy use and minimise losses. Proper D&B design starts with intense collaboration between the D&B
engineer and the geotechnical engineer, since understanding how the rock behaves lies at the root of the design (Thin,
2019).

2.1.1. Characteristics of Rocks
When dealing with rock break mechanisms, it is vital to recognise the fundamental characteristics of rocks that
can directly influence how they fracture. Rocks are typically made up of a combination of minerals, each of which
has different physical and mechanical properties. For this reason, rocks are inherently heterogeneous. In other
words, they behave unevenly and uniquely when stressed as a result of varying grain size, mineral arrangement,
and grain-force interaction. The boundaries between these grains can vary from strongly bonded to weakly bonded
and filled with secondary fillings such as clay or air pockets. These boundaries have a major impact on the overall
strength of the rock (Dessureault, 2004). Even more important are discontinuities, which include cracks, joints, faults,
fissures, and bedding planes, all existing on different scales and orientations. These features can be the dominant
control variable, as joints and faults can steer cracks or prevent them from spreading (Zhang, 2016). One of the main
contributors of rock breakage are the (nearly) invisible microcracks formed by stress imposed on the rock, such as
tectonic or temperature stresses. The goal in a blast is to extend these microcracks so that they link and result in fine
fragmentation. These microcracks will connect much easier when a rock is experiencing tensile loading. On average,
rocks are 5 to 10 times weaker in tension than compression, so in blasting most rock is broken during tensile loading
(Persson et al., 1994). Porosity, which can be defined as small cavities in the rock, reduces its crushing strength,
allowing for easier breakage. Rocks containing a lot of quartz tend to be harder and more abrasive. This also impacts
production, for example, by making tool wear much more prominent (SECOROC, 2004).

The nature of most rocks is brittle. Under stressed conditions, fracturing is more likely than other forms of deformation.
However, at greater depths, where rocks are subjected to higher pressures and temperatures, their behaviour becomes
more ductile, as illustrated by the textures of many metamorphic rocks (Dessureault, 2004). In addition, the rate
of loading has a significant effect on the way rocks break. Dynamic rock strengths tend to be greater than under
quasi-static loading conditions, as rapid loading increases not only compressive and tensile strength but also fracture
toughness. This is caused by crack branching, higher energy absorption, and greater kinetic energy in the fragments,
all of which become more pronounced at higher loading rates. As stated in the introduction of this chapter, only a
portion of the input energy is used directly for fracturing, much of it is lost to friction, wave reflections, and other
forms of energy. Consequently, energy efficiency decreases with increasing load rate, suggesting that slower loading
can be more effective from an energy utilisation perspective (Zhang, 2016).

3
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2.1.2. Waves
Wave theory is another foundational basis for an engineer to improve the safety, quality, and efficiency of D&B.
Solids deal with two types of stress waves: body- and surface-waves. In blasting, the main concern lies with body
waves, since these are the only ones that actually travel through solid rock. Body waves can be divided into P-waves
(compressional) and S-waves (shear), and their velocities can be calculated using the density and elastic moduli of the
rock mass as demonstrated by equations 2.1 and 2.2.

𝐶𝑝 =

√
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈) (2.1)

𝐶𝑠 =

√
𝐸

2𝜌(1 + 𝜈) (2.2)

Here, 𝐶𝑝 and 𝐶𝑠 are the velocities of the P- and S-wave [m/s], 𝐸 is the Young’s modulus (level of stiffness), 𝜈 is the
Poisson’s ratio (level of deformation perpendicular to loading), and 𝜌 is the density of the solid. A key attribute
of S-waves is that they cannot travel through fluids. This is crucial when dealing with fractured or saturated rock.
Discontinuities, especially if they are orthogonal to the wave direction, tend to absorb or scatter a large portion of the
energy of the S-wave over a distance (Zhang, 2016). In blasting, it is important to consider the interaction between
different P- and S-waves. When two stress waves of the same type meet, their displacements and stresses transmitted
to the rock will either beneficially superposition and sum or, if out of phase, destructively interfere and cancel each
other. P-S wave interactions work differently because they act in different directions. Here, no reinforcing or cancelling
occurs, but they co-exist and their stress can be derived from the vector sum. P- and S-waves are linear elastic waves,
which means that they travel through the rock without permanently altering the structure of the material, provided
that the stresses remain below the yield point. However, if the stress exceeds the elastic limit, the rock deforms
plastically, giving rise to plastic waves. At even higher stress levels, such as those near the detonation front, shock
waves form. Unlike P- and S-waves, shock waves are non-linear, can involve plastic deformation, and do not travel at
constant velocity dictated by the medium. Their speed depends on pressure and particle velocity, as described by the
Rankine-Hugenoit equations (Anderson, 2003).

When a wave hits an interface-boundary in the rock, part of it is reflected, and part is refracted. The incoming wave
will split into new P- and S-waves, depending on the interface geometry and impedance of the two media. Impedance
is defined as the product of the density of a medium (𝜌) and the velocity of acoustic waves passing through it (𝑐).
When a stress wave passes from one medium to another, the ratio of their impedance is given by:

𝜇 =
𝜌𝑎𝑐𝑎

𝜌𝑏𝑐𝑏
(2.3)

If 𝜇 = 1, no reflection occurs. When 𝜇 > 1, the reflected wave typically manifests as an S-wave, while if 𝜇 < 1, it tends
to reflect as a P-wave (Persson et al., 1994).

Attenuation describes the drop in wave amplitude over distance. It is mainly caused by geometry, internal friction,
material damage, and the many small-scale discontinuities in the rock mass. Dispersion refers to how the wave pulse
stretches as it travels. This is mainly due to differences in wave velocities (such as between P and S), internal friction,
and wave interactions at interfaces. Since natural rock is full of irregularities and complexity, attenuation tends to be
quite significant in practice (Zhang, 2016).

2.1.3. Breakage by Blasting
Fracture Mechanics
Fracture mechanics provides the basis for understanding how rocks fail during blasting. It relies on the assumption
that the microcracks concentrate the stresses in the crack tips. When stress at a crack tip exceeds the crack toughness
of the material, the crack will spread. Based on linear elastic fracture mechanics, the stress will theoretically be
infinite at the tip of the crack and will dissipate quickly in an inverted square root fashion (Persson et al., 1994). Crack
propagation occurs primarily in the three basic modes: Mode I (opening), Mode II (sliding), and Mode III (tearing).
Most rocks break in Mode I, due to their tensile weakness, as stated in Section 2.1.1. Blasting takes advantage of this
by generating high strain rates that push cracks past their strength limits, causing them to grow and link up.

Breakage Mechanisms
Where fracture mechanics explains the initiation and growth of cracks, the actual fragmentation process involves
several distinct, yet overlapping, phenomena (Figure 1). The first response to detonation is the formation of a crushed
zone directly around the blasthole, where the stress transmitted by the shock wave exceeds the compressive strength
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of the rock and pulverises the material. Beyond this zone, one reaches the fracture zone. Here, radial cracking occurs
because the shock wave induces tensile stress in the tangential planes, leading to fractures radiating outward from the
blasthole. These are usually followed by tangential cracks, due to the build-up of tensile stress perpendicular to the
radial cracks. Together, these two define the primary geometry of the rock fragments. Beyond the fractured zone, the
seismic zone can be found. In the seismic zone, no fracturing tends to occur.

Once the energy of the initial shock wave passes, the explosion gas rapidly expands into newly formed cracks. Due to
extreme pressures, the gases force them wider and drive them deeper. This goes on until the pressure eventually
drops, usually due to plug failure or full penetration up to the free face. Additionally, pressure differences working
on the rock near the gas-filled blasthole can induce a flexion-type breakage, similarly to a flexing beam anchored at
one end. Spalling is another desired method of failure when blasting. When the P-wave generated by the explosive
hits the free face and the reflected S-wave is stronger than the tensile strength threshold of the rock, they can initiate
failure parallel to the free surface, causing thin layers or slabs of rock to detach. This process is most prominent in
hard and brittle rocks and can significantly influence fragmentation near bench faces or tunnel walls. Thus, the charge
is required to be close to the free face to minimise attenuation losses. Unlike radial or tangential cracking, spalling
does not originate at the blasthole but rather at some distance away, where tensile reflection is maximised. Lastly, the
final moment of fragmentation occurs once the rock is ejected and forcefully collides with neighbouring fragments.
All of these types of breakage contribute to effective blasting and the resulting particle size distribution (Persson et al.,
1994; Zhang, 2016).

(a) Blasting stages of a charged hole, ABC represent different zones
(b) Blasting stages of a charged hole, highlighting the relative speeds of different

breakage phenomena

(c) Schematic of different blasthole zones

Figure 1: Schematic overview of a single blasthole fracture mechanisms (Online Mining Exam, 2015).

2.2. Blastability
With theoretical knowledge on how rocks tend to fragment, scholars started looking for ways to implement this in
actionable metrics, including the blastability metric. The terminology of blastability refers to the susceptibility of
the rock mass to blasting. Similarly to rock mass classifications (RMC), which have been primarily developed for
geotechnical studies, blastability indices use similar input variables and sometimes RMCs itself. Blastability defines
the expected response of the rock to a certain blast design (Dey & Sen, 2003), or to the rock mass within which it lies
(Lilly, 1986). In recent decades, many have attempted, suggested, and developed new blastability indices. There have
been several different approaches to estimating blastability. Some researchers have focused on linking it to laboratory
and field data from rock property testing. Another common method is to estimate the blastability based on drilling
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rates or observed blast performance in the field. The early versions follow mainly an empirical approach, while the
newest versions tend to use computer-aided solutions, such as fuzzy models, due to their ability to interpret the
qualitative values that are common with these index input variables (Azimi et al., 2010). Modern blasting design,
with improved efficiency and safety, requires accurate blastability estimates of a rock mass. Although a universal
methodology is believed to be possible (Dey & Sen, 2003), it has yet to be achieved (Z. Zhou et al., 2024). This section
covers the selection of the right index for a job, commonly used indices, and highlights critical input parameters
that influence blasting. Z. Zhou et al. (2024) provides a comprehensive review of blastability and its critical input
parameters. Many of the key topics discussed in this section are explored in greater detail in their work.

2.2.1. Index Classes
The methodologies behind blastability indices are evolving rapidly and have undergone significant changes in their
approach. Z. Zhou et al. (2024) classifies the blastability methodologies into four distinct categories as listed in
Table 2. Apart from the single-index empirical class, which defines blastability using only one variable and clearly
oversimplifies the blasting process, the other classes each have their own advantages and limitations. One should
weigh fast and rough against slow and detailed based on the on-site specifics like data availability and production
pace.

Table 2: Overview of Blastability Index Classes.

Class Description Evaluation Methods

Single Index Empirical Uses a specific input variable to describe blastability. Straight-
forward and simple, but outdated.

BC (Hino, 1959); 𝑊 ′
𝑖

(Bond
& Whitney, 1959)

Multiple Index Aggregation Multiple input variables, aggregated by summing or multi-
plication. Reminiscent of geotechnical classification schemes,
still in wide use today.

GBI (Ghose, 1988); BI (Lilly,
1992)

Comprehensive Evaluation Structured, multi-input approach using weighted variables
and synthesis methods to evaluate blastability

Fuzzy Sets (Azimi et al.,
2010); Entropy/UMT (J.
Zhou & Li, 2012; J. Zhou
et al., 2022)

Machine Learning Self-learning algorithms that reduce subjectivity but require
large datasets, limiting current application

ANN (Han et al., 2000); RS-
SVM (Jiang et al., 2017)

2.2.2. Index Selection
Using the right index for a specific blasting problem is a must. Some indices are specifically designed and tested for
open pit blasting, and some for UG operations (Dey & Sen, 2003). One should also consider which parameters are
readily available in order to minimise assumptions and reduce the risk of misclassifications due to data inaccuracies.
Z. Zhou et al. (2024) studied 42 different blastability indices and the frequency of their respective input parameters
(Figure 2). One can observe a great dependence on the rock properties and to a lesser extent the external factors
or blasting parameters. Problems may arise if the selected variables are too strongly correlated, which is often the
case with rock properties. Using such parameters can lead to redundancy and an unnecessary long computation
time (Latham & Lu, 1999). Potentially, the most important criterion for the selection of the right index is its ease
of use. Since it is generally applied in a high-pace production environment, it is unpractical to dedicate excessive
resources and time to the acquisition of hard-to-obtain variables. Once selected, one should always consider how well
developed and robust a blastability index is. The robustness of an index is typically dependent on the level of testing,
in various case studies, with different geologies (Latham & Lu, 1999).

2.2.3. Variables Affecting Blasting
The complexity of rock breakage is mainly due to the large number of factors that influence the process. Organising all
these influencing variables Z. Zhou et al. (2024) has divided them into four distinct classes. Characteristic parameters,
structural parameters, blasting parameters and external factors (Figure 2). Much research has been conducted since
the 1950s to describe the relevance of these individual variables. Characteristic parameters, such as UCS, density and
seismic velocity, often form the backbone of blastability indices due to their availability from relatively straightforward
tests and their importance to rock breakage as outlined in Section 2.1. Structural parameters, including joint spacing
and fracture frequency, are powerful but more variable in quality and harder to quantify reliably. Blasting parameters,
such as the powder factor, and external conditions, such as virgin stresses, undoubtedly influence the results, but
tend to act as modifying factors rather than primary drivers. In other words, theoretically all parameters that describe



2.2. Blastability 7

Figure 2: Frequency percentage of variables for 42 studied blastability indices (Z. Zhou et al., 2024).

a rock mass will have some influence on the rock mass’s response to blasting. However, for practical engineering
purposes Lilly (1986) describes that parameters with significant influence are few. That is, the structural nature of the
rock mass, the spacing and orientation of the weakness planes, the specific gravity of the rock mass, and its hardness.
Moreover, in practice, the selection of variables comes down to a balance between what is influential and what is
available. For this reason, the variables used in this thesis are drawn not from theoretical completeness but from what
can realistically be measured or inferred at Kankberg. This approach aims to limit assumptions, avoid parameter
overlap, and keep the blastability assessment grounded and applicable.

2.2.4. Lilly’s Blastability Index
The blastability index (BI) proposed by Lilly (1986) is among the most widely used and recognised empirical methods
for evaluating the ease with which a rock mass can be fragmented by blasting, in both surface and underground
applications. To this day, it remains one of the most cited and implemented indices in both academia and operational
mine design. Many case studies and planning tools either incorporate or benchmark against Lilly’s BI (Navarro et al.,
2021; Segaetsho & Zvarivadza, 2019; Z. Zhou et al., 2024). Originally developed for surface mining applications, Lilly’s
BI has since been adapted and successfully applied in various underground mining contexts due to its simplicity and
practical utility (Lilly, 1992). Lilly’s method belongs to the multiple index aggregation class of blastability models,
as described in Table 2. The key advantage of this model is its balance between complexity and usability, enabling
meaningful blastability predictions without requiring excessive computational resources or hard-to-obtain inputs.
Lilly’s BI is closely related to the powder factor by a site-specific equation (Azimi et al., 2010). The BI is calculated as
the average of five dimensionless rating factors, which correspond to the critical rock mass parameters that influence
blast performance:

𝐵𝐼 = 0.5 · (𝑅𝑀𝐷 + 𝐽𝑃𝑆 + 𝐽𝑃𝑂 + 𝑅𝐷𝐼 + 𝐻) (2.4)

Where:

• RMD (Rock Mass Description): Describes the general condition of the rock mass.
• JPS (Joint Plane Spacing): Account for the overall size of the block.
• JPO (Joint Plane Orientation): Reflects structural complexity with respect to the free face.
• RDI (Density Influence Index): Represents the density of the material.
• H (Hardness): Indicates the compressive strength of the rock.
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Each factor is assessed based on field observations or test results, using a standardised rating system. For example,
rocks with widely spaced planar joints might receive a high JPS rating, while highly fractured zones would score
lower. Similarly, UCS values are used to infer the hardness component (H), with harder rocks receiving higher BI
ratings due to their resistance to blasting. The original BI value ranged between 20 and 100, due to the fact that the
initial test locations (Australian open-pit iron mines) tended to vary between these values. However, the BI value
ultimately depends on the input parameters, with lower values indicating more favourable conditions for blasting.
The method proposed by Lilly has found popularity due to its straightforward interpretation, as shown in Table 3.

Table 3: Lilly’s Blastability Interpretation (Lilly, 1992).

BI Value Blastability Class Description
High Poor Highly competent rock, difficult to blast

Medium Moderate Average blast performance expected
Low Good Easily fragmented, well-jointed rock

The original scoring ranges can be found in Table 4, these ranges function as weighting factors. From these weighting
factors, it is clear that the BI is heavily dependent on the nature and orientation of pre-existing planes of weakness,
described by RMD, JPS and JPO. However, the density and hardness of the rock mass play a relatively minor role.
Table 4 includes the RQD scores; these are not original and were added by the author to describe the friable, blocky
and competent rock masses.

Table 4: Original scoring ranges for Lilly’s BI input parameters.

Parameter Description / Classification Score
RMD RQD < 25% (friable) 10

RQD 25% - 50% (blocky) 20
RQD > 50% (competent) 50

JPS Very close spacing < 0.1 m 10
Moderate spacing 0.1–1.0 m 20
Wide spacing > 1.0 m 50

JPO Joints sub-horizontal / parallel to face 10
Joints dipping out of face 20
Joints striking normal to face 30
Joints dipping into face 40

RDI Calculated from density (𝜌) as 𝑅𝐷𝐼 = 25 · 𝜌 − 50 —
H Calculated from UCS as 𝐻 = 0.05 ·𝑈𝐶𝑆 —

Although Lilly’s BI was initially intended for surface operations, the conceptual framework remains applicable
underground, particularly in development headings or stopes where rock fragmentation and muckability are key
concerns (Alipour et al., 2018). However, due to differences in face dimensions, burden, and confinement, underground
adaptations may involve recalibrating the input parameter weightings or using the BI as a qualitative indicator
rather than a precise powder factor predictor. For the purposes of this thesis, the Lilly index serves as the empirical
baseline method for the classification of blastability at the Kankberg site. It provides a fast and intuitive way to
relate geological observations to expected blast performance, supporting both operational planning and comparative
evaluation alongside more advanced computational models. Despite the widespread applications in practice, the BI
tends to have deficiencies which can result in uncertainties in their usability. Sharp transitions between classification
classes and subjective input parameters inevitably require a more nuanced approach.

Fuzzy Set Enhanced Blastability Index
Fuzzy set theory offers a solution to tackle the inherently problematic crisp transition between variables. This
mathematical framework allows variables to have degrees of membership between 0 and 1, instead of a fully binary
classification (Figure 3). This allows for a more nuanced approach to uncertainty and vagueness. Scholars such as
Azimi et al. (2010) and Alipour et al. (2018) have evaluated the performance of the fuzzy set theorem on blastability
indices and discovered that fuzzy models operated more consistently, with lower uncertainty and greater precision.

Fuzzy models are represented by Fuzzy Inference Systems (FIS), which have three main components: a rule base, a
database, and an inference mechanism. The rule base is a set of if-then rules designed to mimic human expertise and
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Figure 3: Fuzzy sets compared to crisp sets (Azimi et al., 2010).

judgment. If-then rules are commonly referred to as fuzzy rules. The database represents the shape of membership
functions, which are functions that specify the degree to which inputs belong to a set. Inference mechanisms are the
drivers that weigh the imposed fuzzy rules on the input data to deliver the output. In the blastability domain, the
Mamdani FIS has found particular popularity due to its easy interpretability and visual transparency (Alipour et al.,
2018), and will therefore be used in this thesis.

To construct a fuzzy BI model, each of Lilly’s BI inputs will have to be translated into a fuzzy set with suitable
membership functions. These membership functions typically follow triangular or trapezoidal formulations. For
example, the parameter ’hardness’ might have fuzzy sets labelled ’low’, ’medium’, and ’high’, each with overlapping
membership functions that allow smooth transitions between categories. These fuzzy inputs are processed through a
rule base, where each rule might take a form such as:

IF X is high AND Y is low THEN Z is high.

The output of each rule is aggregated and subjected to a defuzzification step. Often using the Centroid of Area
(COA) method, to define a crisp blastability value. This process mitigates abrupt changes between blastability classes
that can arise from small variations in input parameters in traditional models. This will make the BI less sensitive
to small changes coming from the qualitative database, making the index behave more consistently. An intuitive
visualisation of the Mamdani FIS method is shown in Figure 4. The illustration here has two input variables and two
rules. Illustrating both the handling of fuzzy and crisp input variables. The output variable is obtained by taking the
geometric centre of the output distribution, in other words, COA is applied.

Unsurprisingly, fuzzy models also have pitfalls. The major issue with the methodology is the accurate definition
of fuzzy rules. Models are highly dependent on the quality and coverage of fuzzy rules. Selecting defuzzification
strategies also requires additional careful calibration. Despite clear challenges, the more flexible and context-sensitive
fuzzy Mamdani model will be applied to the Kankberg site, offering a comparative analysis alongside Lilly’s BI.

2.3. Measurement While Drilling as a Blastability Proxy
MWD is a feature that collects real-time information while drilling. This acquired data contains signals of many
drilling variables, which include penetration rate, percussive pressure, feed pressure, rotational pressure, flush
pressure, and damp pressure. These drilling parameters will respond dynamically to changes in rock mass (Isheysky
et al., 2021; Van Eldert, 2019). However, in addition to these desired geological factors, there are more influences that
can affect MWD signals, including operational factors, such as drilling settings, bit wear, and operator variability
(Heydari et al., 2024; Isheysky et al., 2021). The likely interdependence of these variables can make the extraction
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(a) Crisp input handling (b) Fuzzy input handling

Figure 4: Mamdani FIS visualization (Knapp, 2004).

of reliable geotechnical insights rather difficult unless adequate filtering, outlier removal, and other processing
techniques are applied beforehand. For example, variations in penetration rate could indicate changes in rock strength,
but can also be altered by drilling system adjustments, idle rotation of the drill bit, or borehole deviation (Fernández
et al., 2024). Studies indicated that in highly fractured rock formations, torque values could potentially increase due
to drilling tool jamming, which may then result in misinterpreting the data as variations in rock hardness rather
than an operational issue (Schunnesson, 1996). Despite these challenges, research has focused on the development of
MWD-derived indices, such as the Hardness Index for drillability assessment, the Fracture Index for quantifying rock
heterogeneity and the Water Index for detecting water-bearing structures based on flush pressure (Schunnesson, 1996;
Van Eldert, 2019). However, the applicability of these indices remains site-specific, which requires on-site research
and development of methods to interpret MWD data. At this moment in time, a complete standardisation of MWD
data handling is still out of reach due to extreme complexity and uniqueness of the Earth’s rocks. However, advances
in computer-aided solutions could prove to be the initial step toward this goal (Fernández et al., 2024).

Nevertheless, MWD has been growing in popularity within the industry to acquire rock mass parameters, as can be
seen by efforts to create MWD-based indices. The underlying assumption is that the interaction between the drill bit
and the rock serves as an indirect indicator of the rock’s strength, condition, and anomaly detection. Recent research
by Navarro et al. (2021) showed the possibility of deriving a Rock Factor index from MWD data, which can be roughly
interpreted as an index for blastability (Z. Zhou et al., 2024). Navarro et al. (2021) achieved this by deriving two key
factors from the raw MWD data.

1. Structural factor: A proxy for the degree of fracturing, based on the variability of drilling signals.
2. Strength factor: A proxy for the rock’s strength, based on required pressure and rotation assuming that strong

rocks resist more.

Together, these two factors formed the rock factor. Since this factor is only built up by the MWD data, it can
theoretically serve as a real-time in situ rock response validation tool for the BI. Even with MWD its setbacks that
have been discussed earlier, it provides a method to check the derived BI’s to real-time measurements. Of course, it
may appear problematic to validate one derived quantity (BI) using another (MWD-based index), especially if neither
can be independently validated in their current stage. Yet, this approach holds value if both show similar trends
despite having different data sources. Their alignment could suggest internal consistency, increasing confidence in
their reliability and usefulness for operational decision making.

2.4. Drill and Blast in Sublevel Stoping
2.4.1. Sublevel Stoping
Sublevel stoping is a medium to large scale UG mining method. The mining method knows both up- and down-sides.
Key advantages include the high productivity of the method, relatively low exposure to unsafe conditions, and the
possibility of simultaneous unit operation. Disadvantages include slow and complex development and safety risks
accompanied by large-scale blasting, such as excessive ground vibrations (Harraz, 2014). Due to the opening of large
stopes, it is crucial that both the ore and host rocks are competent in nature to allow stable excavations. Total ore
recovery is possible if primary stopes are back-filled to allow excavation of the initial pillars. For this thesis, it is
important to highlight the three critical development steps of this mining method, which will create an understanding
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of the different types of blast that are necessary for general production and why slot development was particularly
selected.

Step 1: Access Development
In order to get access to the planned stopes, one first needs to create the infrastructure to get there. This includes
cutting drifts at different levels. In the simplest representation of the mining method, these levels will either be used
to drill the blastholes from, or create a haulage level and drawpoint for the muckpile. Since the drifting methodology
is not different from any other infrastructure development present in a mine, this development step will not be
discussed further. Figure 6 gives a schematic overview of the general evolution of a sublevel stope. Depending on
site-specific factors such as the geometry of the ore body and the geotechnical characteristics of the rock mass, the
shape and size of a stope can vary significantly.

Step 2: Slot Development
Within stope development, creating the initial opening is generally considered the trickiest part. One needs to open a
large enough slot raise to allow material movement in the subsequent production shots. It is a tedious process to
connect the production levels effectively by drilling and blasting. The longer the slot raise, the more confined the rock
will be and the harder it will be to remove the material, especially since adequate tools such as RBMs are not always
available. Therefore, D&B remains the most common method, but as mentioned before, constrained conditions make
it challenging to mitigate problems such as face jamming and boulder generation. Little literature is available on
D&B design for slot raises, the few available specify the analogy with burn-cut face patterns (Figure 5) used in drift
excavations (Kumar Himanshu et al., 2023). The only difference being the direction of material movement (Liu et al.,
2018). The usual slot excavation involves reamer holes to create additional relief for the rock mass to move. An
uncharged reamer hole requires a diameter larger than a charged blasthole (115–165 mm vs. 75–115 mm). These
reamer holes facilitate breakage by facilitating tensile stress conditions within the rock mass. For charging and
initiation of the blastholes, it is crucial to adjust the explosive density, as slot development requires stronger explosives
in the central blastholes and weaker explosives in the cut holes along the outer rim to prevent unwanted overbreak.
Therefore, emulsion or slurry explosives are preferred, especially site-mixed types, because of their flexibility to
adjust the desired energy density. Initiation points must be strategically chosen; numerical studies have concluded
that detonators should be placed between 20-30% of the blasthole length from the bottom plug. Enhanced breakage
efficiency and uniform rock fragmentation can be achieved with this approach. Delay sequencing typically ranges
from 100 to 500 ms between blastholes (Kumar Himanshu et al., 2023). An advanced and promising method is the
incorporation of guided slot drilling, known as the Swedish slot method (Figure 5), developed and tested in LKAB’s
Malmberget mine. This method creates a linear slot of reamer holes that are physically interconnected. The first
reamer hole is traditionally drilled, whereas consecutive holes utilise a guided hammer installed on a drill to maintain
parallel alignment. A study comparing simulations of traditional drilling patterns with the guided slot drilling pattern
concluded the superiority of the Swedish slot method, indicating improved fragmentation uniformity and reduced
risk of drillhole deviation. Logically, even if the first reamer hole experiences deviation, the adjacent reamer holes
will follow its path, stabilising the overall deviation. In contrast, it requires an accurate drilling of the initial reamer
hole to prevent misalignment of the entire set. The analysis also suggested potential for optimisation, indicating a
reduction in the drill meterage without compromising the quality of fragmentation (Kumar Himanshu et al., 2023).

Figure 5: Schematic of discussed drill patterns, blue represents reamer holes, reds are blastholes.
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Step 3: Production Blasting
For the production blasts of a stope, the most common method is ring blasting. Here, blastholes are drilled in a
systematic fan-shape. Generally, this method allows for efficient extraction of large volumes when blasting toward
a free face, which is created by the slot raise. Ring configuration designs converge toward the centre of the stope,
optimising energy distribution by keeping the highest energy density in the central part of the volume. Optimal
performance in these production blasts is dictated by careful selection of blasting parameters, such as the diameter,
burden, spacing, and explosive charge distribution of the blastholes. These parameters require tailoring for the
site-specific geotechnical conditions (Onederra & Chitombo, 2007). To manage the accuracy of drilling long holes,
since drillhole deviations can significantly jeopardise blast operations (Persson et al., 1994), larger blastholes that are
less susceptible to such inaccuracies are preferred. This comes with the disadvantage that larger blastholes can result
in excessive ground vibrations and higher drill bit costs. Despite the efficiency of ring blasting, it presents challenges
such as ground vibration control, suboptimal fragmentation, and ore dilution. To address these issues, modern
blasting techniques employ methods like multi-deck firing, where charges within a single blasthole are separated by
inert material to improve energy distribution. In addition, electronic delay detonators allow for precise control of
timing sequences and explosive placement, further enhancing blast performance (Kumar Himanshu et al., 2023).

Figure 6: Sublevel Stoping Schematic: 1) Development of access to planned stope 2) Opening of stope initiated by slot raise 3) Production of stope
by means of ring blasting (adjusted from Harraz (2014)).

2.4.2. Pattern Design in Practice
To understand how BIs can be applied effectively, it is important to first consider how pattern design is typically
performed. As this thesis focusses primarily on the slot raise, the design of this feature will be the main focus of the
section. As mentioned in the previous section, the slot raise is critical for a successful blasting campaign of a stope,
since the quality of the slot its geometry dictates the effectiveness of the entire blast. The three necessary elements for
the design are (Kay, 2002):

1. Availability of a free face; to enable tensile cracking
2. Sufficient void; to accommodate swelling
3. Adequate relief time; to prevent jamming

Void creation, in particular, is usually the first parameter considered to improve performance. It is represented by
the void ratio, which can be defined in multiple ways, but the most commonly used is Lovitt and Collins (2013)’s
definition:

𝑉𝑟 =
𝐴𝑟

𝐴𝑐 − 𝐴𝑠
(2.5)
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where 𝑉𝑟 is the void ratio, 𝐴𝑟 is the area of the reamer holes, 𝐴𝑐 is the cut area for the first blasthole and 𝐴𝑠 is the
blasthole area. Smaller voids also require longer relief times than larger voids to function effectively, increasing the
need for proper timing. An example of the importance of the void ratio is illustrated in Tshabalala and Pretorius
(2021). They increased their void ratio by increasing the size of their reamed holes from 152 to 204 mm without
changing the slot pattern. This increased slot compliance from 56% to 73% in a year. Further support is illustrated in
Chandrakar et al. (2021). They studied the influence of the void ratio on blast pull, which is the level of advancement
achieved in a shot of (mainly horizontal) development headings through test blasts. It showed that a higher void ratio
is strongly correlated with an improved advancement factor, that is, the percentage of pull with respect to the total
length of the blastholes. Their experiments showed that void ratios as low as 20% could still yield over 90% pull. In
contrast, in more confined headings, larger void ratios were crucial to achieve a higher level of pull. Confinement is
defined by the confinement factor:

𝐶 𝑓 =
𝑙

𝑤 · ℎ (2.6)

where 𝑙 is the depth of the drillhole, 𝑤 is the width of the face and ℎ is the height of the face. Furthermore, Chandrakar
et al. (2021)’s study investigated how strata factors, specifically rock type, mineralisation, and Q-value, impacted
performance. Observations showed that, on the basis of the strata, different void ratios were necessary for optimal
blasting. Although their study derived a linear relationship for the void ratio and the confinement factor, it does
not transfer to other rock mass conditions. This illustrates the inherent heterogeneity that makes a standardised
approach difficult. A later study by the same author focused specifically on long-hole (single-shot) raising, which is
the preferred method for vertical raising up to 40 m (Tatiya, 2005). Here Chandrakar et al. (2023) studied the void
ratio again and successfully shot multiple 25 m raises in a single blast using a box cut pattern in four different UG
mines. As in the development drive study, empirical linear models were derived. Here, linear relationships were
found between the void ratio and the blasthole length as such (Chandrakar et al., 2023):

𝑉𝑟 = 3.582 + 1.091 · 𝑙 for 𝑄 = 4–10 (2.7)

𝑉𝑟 = 6.539 + 1.118 · 𝑙 for 𝑄 = 10–40 (2.8)

where one can observe that a higher void ratio is required for a better quality rock mass (higher Q). One should be
wary that, while a higher Q indicates better structural quality, it does not necessarily imply better blastability. The
study also found a relationship for the optimal delay timing, roughly 22 ms per metre of blasthole. This value was
determined from the kinematic equation of the downward motion of the falling rock mass.

𝑙 = 𝑉𝑏 · 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 1
2 · 𝑔 · 𝑡2

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (2.9)

where 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 represents the minimum delay time between adjacent blastholes, 𝑔 the gravitational acceleration, and
𝑉𝑏 the range of burden velocity that can be obtained from various pieces of literature that estimate burden velocities
based on blasthole diameter (Olsson et al., 2009; Wimmer et al., 2013; Zhang, 2016). Key takeaways from this critical
study include the finding that low void ratios and short delay times are the primary drivers of failed raise excavations.
Effective blasting was achieved using fully coupled charges, with double boosters for holes longer than 12 m, and a top
and bottom stemming of about 2 m to retain energy. Lastly, precise drilling proved essential. Therefore, blasthole de-
viations should remain within 1–2% to avoid misfires and poor fragmentation. Otherwise, re-drilling is recommended.

More rules of thumb exist for slot design. Kumar Himanshu et al. (2023) found by means of numerical rock deformation
simulations that the ratio between reamed holes and blastholes should be greater than one for optimal breakage and
that both square and offset hole arrangements are effective for blasting. Furthermore, it was concluded that an offset
hole arrangement results in better deformation control but lowered drilling productivity. Kumar Himanshu et al.
(2023) mentions that delay sequences depend not only on the length of the blasthole, but also on rock conditions. For
example, Indian conditions tend to favour 100 - 500 ms delay between holes, whereas in Sweden’s Björkdal mine
successful slot raises were blasted with inter-hole delay times of over 1 s.

These findings show that understanding the properties of the rock mass is vital for optimised blasting results.
However, in practice, it is extremely common to use the same D&B designs continuously, irrespective of the rock mass
and its properties, even between different mines. These decisions tend to be motivated by the high production rate that
does not allow for detailed or experimental studies. However, substantial gains could be achieved by implementing
rapid rock property assessment methods, such as a classification system tailored for blastability, and allowing for
multiple D&B designs tailored to the distinct BI associated with different strata within a mine.
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2.4.3. Reconciliation in Blasting Operations
Post-blast reconciliation is the only way to systematically optimise blasting outcomes. Although many mining
operations around the world recognise the value of reconciliation and have implemented some level of assessment,
these practices often remain basic or inconsistent (Thin, 2019). This section will explore the reconciliation approaches
currently in place and discuss possible improvements that can enhance the accuracy, consistency, and, most importantly,
utility of these assays.

Status Quo of Reconciliation Practices
The most widely used form of reconciliation is visual inspection of the degree of achieved fragmentation, with
particular eye to degree of boulder formation. This is an immediate and intuitive indicator whether a blast performed
as expected, but is inherently subjective and limits any quantifiable feedback loops in future design (Persson et al.,
1994; Zhang, 2016). Another common and more advanced assaying method is LiDAR scanning. Here the focus is
to map out over- and underbreak zones within the stope. Although quantifiable and valuable, it will not suffice
for successful feedback loops on its own (McFadyen et al., 2020). There are many factors that can affect walls, such
as rock mass, precision of drilling, misfires, or poor execution of charging crews. Therefore, operations that value
reconciliation additionally measure drillhole deviations by means of blasthole probing. Vibration monitoring is also
common. It is used to determine whether the shots fire as designed and whether the vibrations remain within safety
limits to not harm the surrounding infrastructure (Persson et al., 1994).

The latter four techniques are currently in place at the Boliden Kankberg mine to some extent. However, other KPI’s
are also occasionally used as indirect proxies. For example, muck cycle times can be used as a proxy for fragmentation
uniformity, assuming that finer and more consistent fragmentation enables faster mucking. Another indirect method
is to assess crusher throughput or monitor mill performance. While insightful, these methods are dependent on
the correct attribution of processed material to a specific stope. In practice, muck from multiple blast rounds or
even different faces is often mixed during transport or in stockpiles, making attribution difficult. This challenge is
worsened in multi-mine operations such as the Boliden area, where shared processing facilities introduce further
ambiguity despite batch processing and separate processing lines within the mill. This is due to potential residual
material in the processing lines from previous processing campaigns. These can blur the analysis and reduce the
clarity of mill-derived reconciliation data.

Next-Generation Reconciliation
Recent advances in sensor technologies, data analytics, and machine learning offer more sophisticated methods and
software that can provide greater accuracy and potentially more actionable insights. As mentioned in the previous
section, there are many strategies that can be employed for reconciliation. However, to the author’s knowledge, two
methods have seen remarkable advancements in recent years, which will now be discussed.

Cavity Measurement Systems
Cavity measurement systems (CMS), which is the overarching term for scanning and measuring underground
environments (including LiDAR-based systems), have rapidly increased in importance. Typical metrics used are
Equivalent Linear Overbreak Slough (ELOS) and Equivalent Linear Lost Ore (ELLO).

𝐸𝐿𝑂𝑆 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑜𝑣𝑒𝑟𝑏𝑟𝑒𝑎𝑘
𝐴𝑟𝑒𝑎𝑠𝑡𝑜𝑝𝑒 𝑓 𝑎𝑐𝑒

(2.10)

𝐸𝐿𝐿𝑂 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑢𝑛𝑑𝑒𝑟𝑏𝑟𝑒𝑎𝑘
𝐴𝑟𝑒𝑎𝑠𝑡𝑜𝑝𝑒 𝑓 𝑎𝑐𝑒

(2.11)

These metrics allow for performance comparisons across stopes and convert complex shapes and volumes into simple,
interpretable metrics. They are central to performance analysis in targeted blast design improvements. CMS over-
and underbreak reconciliation is usually done across an entire stope, where higher resolution is achieved by looking
at different faces within the stope. However, if the rock type varies greatly in a stope, it is unacceptable to compare
the performance of the stope to geotechnical parameters using this method (McFadyen et al., 2020). Therefore, a
recent octree-based stope reconciliation technique represents the next generation of performance analysis. The
technique divides faces into octrees, submetre blocks, which significantly enhance resolution. This allows for a
much better isolation of local geotechnical influences. In a study of 192 stopes conducted by McFadyen et al. (2020)
using this technique, it was revealed that the hanging walls were the dominant source of overbreak, driven by low
RQD, high effective radius factors (geometric proxy of local stress condition), and small blasthole stand-off distances
(blasthole distance from the designed wall). However, the underbreak was mainly concentrated at floors and sidewalls,
often in stope regions with poor blasthole coverage. Additionally, the study revealed that deeper stopes exhibited
systematically greater overbreak, despite similar design parameters. This indicated depth-amplified stress responses.
In general, the study highlighted that high-resolution analysis is worthwhile. For this reason, commercial products
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such as the mXrap software platform offer these advanced diagnostics in a practical and scalable way for engineers to
improve their reconciliation practices.

Fragmentation Analysis
Fragmentation modelling is a key part of blast design. The most widely used is the Kuz-Ram model, which is an
empirical method that combines Kuznetsov’s equation to estimate the mean fragment size with the Rosin-Rammler
distribution to generate a full particle size distribution (PSD) curve (Cunningham, 1983, 2005). It is a crucial metric that
enables performance analysis, where a narrow PSD around a desired mean value is sought. The method combines
rock, explosive, and design parameters to predict the mean size of fragmentation. One of the inputs is, for example,
the powder factor, which is closely correlated to Lilly’s BI (Lilly, 1986). A key flaw in this promising method is the
need for a thorough local calibration. In other words, an advanced system to measure actual fragmentation to close
the feedback loop is vital. Dated 2D image analysis methods that use photography do not provide enough resolution,
and many problems persist. These include suboptimal lighting conditions, accuracy in capturing complex shapes, and
handling rock fragment overlap (Faramarzi.H & Esmaeili, 2025; Ikeda et al., 2023). Therefore, modern 3D techniques
are combined with deep learning models. Ikeda et al. (2023) introduced a photogrammetry-based method that
assesses PSD. They managed to achieve over 96% accuracy in predicting their fragmentation size. Faramarzi.H and
Esmaeili (2025) used a LiDAR-based method that achieved 77% accuracy. Since PSD analysis provides a qualitative
metric and is a direct indicator of pattern design, it is extremely valuable for blast reconciliation. So much, so that it
has seen several highly advanced commercial implementations. For example, FRAGTrackTM by Orica is a stereoscopic
tool and deep learning model that allows real-time PSD analysis (Orica, 2023). High resolution cameras equipped on
board of loaders and shovels allow for continuous monitoring and make detailed PSD measurement possible whilst
accounting for the inherent sorting of fragmentation in the muckpile.

2.5. Theory Synthesis
The concepts and models discussed within this chapter constitute the overall theoretical foundation for the thesis’s
methodology and analysis. Among them is the realisation that performance in stope raises is governed by a multiscale
interaction between rock mass properties, stress wave dynamics, and the geometry of the blast itself. The mechanics
of rock breakage, and in particular the preference for tensile failure and the significance of wave behaviour, directly
prescribe why certain variables are always emphasised in measuring blastability. They are not ambiguous measures,
but formulations of the governing physics that control how and why rock fails under explosive loading.

The use of BI’s, and Lilly’s BI in particular, is a continuous effort to make such data useful for mining practice. Despite
being empirical, Lilly’s BI has a basis in the mechanics of breakage. Each of its parameters represents a measurable
proxy for one or more of the significant physical behaviours described previously. However, empirical models are
notorious for their limitations. The abrupt input classifications and the reliance on subjective judgment make them
susceptible to input uncertainty and to not being able to describe the full spectrum of the inherent heterogeneous rock
behaviour. Fuzzy set theory offers a natural step forward in translating this input into continuous functions more
reflective to the vagueness and gradational character of geotechnical data. This improves not only the stability of
outputs but also the robustness and interpretability of the index in practice.

Drilling data, such as that provided by MWD tools, introduce a dynamic component. Because it captures both the drill
bit’s interaction with rock in real time, MWD data can serve as an in situ, high-resolution marker of changing rock
conditions. Although obviously plagued by a lot of operational noise and equipment inconsistency, it represents an
opportunity to cross-validate the BI in an indicative manner and could raise confidence in local blastability predictions.
Here, the connection to drilling is vital, because it closes the loop between theoretical expectation and observed
response, and allows all theory to be refined with operational data.

Finally, placed in the context of opening slots in sublevel stoping, this theoretical framework provided a direction for
improvement. As some literature suggests, problems encountered in slot raise design and stope production are not
simply the result of poor execution, but are instead the result of a lack of correspondence between generalised design
decisions and highly localised rock conditions. By making D&B decisions based upon the mechanics of breakage,
supported by the use of quantitative indices and indicative verification with MWD data, it is possible to better design
for rock conditions. Together, this will enable one to intentionally shift from a reactive approach to a proactive design
stance, with theory serving as the guide and the performance metrics as the gauge.



3
Study Area – Kankberg Stopes

This chapter introduces the study area of this thesis: the Kankberg UG mine. It provides a general overview of the
geology, the mine, with a particular focus on the stopes and available data.

3.1. Geological Setting
3.1.1. Regional
The Kankberg mine (64◦55′20′′N, 20◦16′00′′E) is located within the Fennoscandian Shield, a geologically ancient
region that covers most of Scandinavia. It is primarily composed of Archean and Proterozoic crystalline rocks.
The Fennoscandian shield can be subdivided into smaller regions, Sweden falling mostly under the Svecofennian
domain, whose amalgamation dates back to about 2 - 1.8 Ga. This orogeny set the stage for most of the current-
day mineralisation. Glaciation in the Quaternary eroded much of the sedimentary cover, exposing these ancient
metamorphic and igneous rocks at the surface (Allen et al., 1996). Within the Svecofennian domain lies the Skellefte
mining field, a magmatic province hosting over 85 pyritic massive sulphide deposits, gold vein deposits and porphyry
deposits. The district is thought to be a remnant of a volcanic marine arc that accreted to the northern continental
margin, the Arvidsjaur Group (Weihed, 2001). Many of these VMS deposits are spatially associated with felsic
submarine volcanic domes, which acted as localised centres of mineralisation during periods of extensional volcanism
(Allen et al., 1996). Over time, the district has experienced multiple deformation events that have greatly influenced
the geometry and distribution of its deposits (Bauer et al., 2014). Bauer et al. (2014) states that the metamorphism
has both overprinted initial hydrothermal alteration zones and reconcentrated metals of interest within current-day
deposits.

3.1.2. Local
The Kankberg mine taps into the Åkulla deposit, which is a unique ore deposit in the Skellefte mining field. The ore
body strikes 298◦, dips 80◦, and lies within an E–W principal stress regime (Rĳsenbrĳ, 2024). Its key characteristic is
the high levels of topaz-quartz alteration and the low levels of sulphur near the main ore concentration (Nordfeldt
et al., 2019). Felsic volcanic rocks of dacitic to rhyolitic composition, occurring as quartz-feldspar porphyries, are
the primary host of the ore body. Mafic dykes of post-genetic origin cut through the altered felsic host rocks and
are associated with late-stage brittle deformation. The general trend of the ore body is vertical due to extensive
deformation. Mineralised zones are found mainly within quartz-feldspar porphyry, volcaniclastics, and breccias.
Epigenetic hydrothermal alteration has resulted in a highly competent and highly altered ore body (Voigt & Falshaw,
2024).

3.1.3. Stopes
In Figures 7 and 8 one can see the stopes intersecting geological units. The geology is complex, with a large variety of
different units and structures. The andesite dykes are notable structures that cross the stopes at various locations as
thin sheets. These dykes are also associated with high levels of alterations in the surrounding rock. Adjacent to the
andesite dykes fuchsite sheets are commonly observed. Table 5 presents the volumes and percentage distribution of
rock types within the stope limits. The primary rock types, shaded grey in Table 5, are porphyry, sericite quartzite,
volcaniclastic, breccia, andalusite quartzite, and andesite. Together, they make up over 95% of the total volume. A
small difference between stope volume and actual volume is observed because of either the presence of small amounts
of other rock types not considered in the analysis or processing losses due to polyfaces not properly closing into solids.
These six distinct rock types will be the focus for the remainder of this study.

The geologies depicted in Figure 8 show the geologies as recorded by the geological model. In Figure 7 only a selection
that truly intersects with the stopes is visualised and the names are simplified, hence the difference. The model in
question represents a simplified interpretation of the actual conditions of the subsurface. The geological block model
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at Kankberg, constructed through interpolation of diamond drilling exploration logs, employs one of the smallest
block sizes within Boliden (10m), reflecting the recognised complexity of the deposit’s geology. Despite the aim of
high-resolution modelling, the resulting model remains a smoothed approximation of reality.

Figure 7: 3D visual of intersecting geologic units within the stope bounds.

Figure 8: Plan view of stope geology (z=-600m).
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Table 5: Volume and Percentage Distribution by Rock Type.

Rock Type Volume [𝑚3] Percentage

Designed Stopes 806259 100.00%

Porphyry 360263 44.68%
Sericite Quartzite 162986 20.22%
Volcaniclastic 113863 14.12%
Breccia 74534 9.24%
Andalusite Quartzite 49399 6.13%
Andesite 22321 2.77%
Topaz Fragment 17508 2.17%
Chlorite Quartzite 2115 0.26%
Sericite Schist 1556 0.19%
Talc Schist 782 0.10%
Dacite 654 0.08%
Clastic Sediment 243 0.03%
Siltstone 35 0.00%

Rock Types
The classification of rock types within Kankberg is done in an operational context and should not be confused with
the more formal petrographic sense of the word. The classes are used in the mine for exploration, logging, and mining
operations. A total of 57 rock types have been distinguished (Voigt & Falshaw, 2024), of which 14 occur in the stoping
area. Within some of these rock types, a subdivision is additionally used on the basis of their levels of andalusite
and topaz alteration. The following section briefly introduces these rock types. A more detailed description of these
can be found in Jönsson et al. (1999) and Rĳsenbrĳ (2024). No systematic study has previously been conducted on
the blasting performance of these units. Therefore, some of the following descriptions are based on the observed
rock characteristics and reasonable assumptions about their likely influence on fragmentation and stability. These
interpretations are revisited in later chapters of this thesis.

Porphyry
(Quartz-Feldspar) Porphyry is the most common rock type in the stopes and is a fine to medium-grained, coherent
unit. The rock is massive and generally homogeneous with minimal internal variation. It is commonly strongly
silicified, but structural features, such as foliation, are poorly developed. Due to its homogeneity, porphyry is expected
to fragment relatively consistently under blast loading. However, its stiffness may contribute to stored elastic energy,
which could increase the potential for overbreak or localised bursting if the charge distribution is not well controlled.

Sericite Quartzite
Sericite quartzite is a fine-grained, altered rock with variable foliation. The structure ranges from massive to weakly
schistose depending on the intensity of the alteration. This anisotropy may influence stress redistribution and cause
uneven breakage during blasting. Despite the tendency of the rock to break up well, thin foliation planes or weak
zones may result in undesired breakage, oversized fragmentation, or slabbing. In other words, the anisotropic nature
of the rock will likely favour certain blast directions.

Volcaniclastic
Volcaniclastic rock is characterised as an inhomogeneous unit comprising various grain sizes and clastic textures.
The class is used as an overcoupling term that comprises various subtypes that have not been individually classified.
It is relatively common within the stope volume and is moderately to strongly altered locally. Inevitable internal
variability can result in unpredictable blasting with mixed fragmentation and irregular break profiles as a consequence.

Breccia
Breccia is characterised by angular clasts in a finer matrix, often highly silicified. The rock is heterogeneous and spatially
variable, with changes in clast size, orientation, and degree of cementation occurring over short distances. Its brittle
nature may promote spontaneous fracturing, particularly near open faces or unsupported areas. Blasting in breccia may
result in excessive overbreak and, in some cases, localised rock bursts due to its stiffness and potential for energy release.
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Andalusite Quartzite
Andalusite quartzite is a fine- to medium-grained, dense rock that often contains visible aluminium silicate minerals.
The rock mass is usually massive and homogeneous with low deformability. High strength and hardness reduce
drillability and may hinder fragmentation efficiency. Occasional joint fills, such as muscovite or talc, may locally
reduce stability and add anisotropy to the rock mass, both of which can contribute to poor blasting.

Andesite
Andesite occurs as a fine-grained, visibly darker rock and intersects the other rock as dykes. These dykes are generally
thin sheets less than a metre in width. It has moderate strength, but it may show local variability depending on the
intensity of the alteration. In more altered areas, the presence of chlorite or fuchsite can reduce joint friction. From a
blasting perspective, andesite may behave consistently. However, the key concern are their sheet like structures that
create large interface boundaries within the extent of the stope. These large boundaries may introduce unwanted
energy losses that make blasting behaviour less predictable.

3.2. Rock Mass Data
Concerning the stopes of Kankberg, large amounts of data are available. All of these data sets can be viewed and
altered in various software, including Deswik and Leapfrog. However, Python enables free, user-friendly and efficient
data processing, visualisation, and infinite analysis possibilities and is therefore the primary used software.

3.2.1. Geotechnical Properties
In total, 165 cores have been geotechnically logged, of which 141 intersect fully or partially with the stoping area
(Figure 9). Data currently recorded during logging are rock type, core discing, joint spacing, degree of joint roughness,
joint fill, and BRQD (Section 4.1.1). Data availability can vary significantly per core sample, some samples include
extensive logging whereas others only have one logged parameter. Because the equipment does not allow for
orientation readings, no data is available on the joint orientation. In Figure 9, it can be seen that the available core data
is limited to a specific region within the stoping area. However, this region corresponds to the first area scheduled for
development according to the mine plan. Furthermore, a point-load test (PLT) has previously been performed to
analyse the strength of some rock types that are present within the stopes. The 76 PLT tested samples have a mean
distance of 76 m to the nearest stope, with a maximum of 228 m. The compressive strength values range from 64 MPa
to 751 MPa for the different types of rock, and no trend of increasing strength over depth is observed. The reliability
of the PLT has been questioned, especially for very soft or hard rocks where tip penetration/deformation of the
loading head can falsify readings (Akbay & Altindağ, 2020).

Figure 9: Visual of the geotechnically logged diamond drillholes in the stoping area.
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3.2.2. Face Mapping
In addition to drill core data and the geological model, face mapping exists for the access drifts of the stopes. Such
observations provide direct outcrop exposure to lithological contacts, vein intensity, and structure at the free face.
They are a useful marker against which to compare the modelled geology and can help to catch local variations such
as unmodelled units and anomalous alteration patterns. Figure 10 shows an example of one of the face maps taken
into account in this study, the transparent section shows the outline of the mined out stope solid.

Figure 10: Facemap of bottom access drift for S0 (z=-647m).

3.2.3. Water
The Kankberg mine generally operates under dry conditions, although certain levels within the mine have some
clear signs of water influences. An example is the cut-and-fill level 310, where water tends to fall from the roof
in large quantities. Deeper parts of the mine, including the current sublevel stoping levels tend to not experience
similar problems. No extensive hydrogeological surveys have been conducted for this level and, therefore, data are
unavailable. For this reason, water conditions will be largely neglected, and overall rock conditions are assumed to be
dry.

3.3. Layout & Mining Method
The Kankberg mine is an underground gold and tellurium mine, owned and operated by Boliden Mineral AB. The
main mineralisation zone lies between 300 and 650 m below the surface (Figure 11), accessed via a ramp from the
historic open pit, the Old Kankberg Mine. Mining began in 2012 and has continued uninterrupted, with total mine
life production reaching approximately 5.26 Mt of ore. In 2024 alone, the mine produced 455 kt of ore with average
grades of 3.63 g/t Au, 9.6 g/t Ag, and 164 g/t Te (Voigt & Falshaw, 2024). The mine has relied on cut and fill mining
since the beginning. However, in 2025, deeper sections of the mine (red and white zones in Figure 11) are being
developed using a long-hole sublevel stoping method to improve productivity and reduce costs. A total of 180 stopes
are planned, typically 30 m high and 15 m wide, with lengths ranging from 4.5 m up to several tens of metres, which
makes stope volume primarily dictated by length. Stopes are extracted in a primary–secondary sequence, allowing
systematic backfilling and geotechnical control. The new mining method yields a significant improvement in mining
costs.

• Cut and fill: 620 SEK/t
• Sublevel stoping: 520 SEK/t

3.4. Current D&B Practices
At the time of writing, only two stopes have been blasted thus far, using a similar pattern, with minor changes in the
amount of holes and the burden. The current pattern was recommended by Forcit Explosives. Figure 12 provides
an overview of the current progress within the stoping area. Table 6 gives an overview of the stope average CMS
performance. This section will go over the current stope notes available for the blasted stopes, and briefly discuss the
blasted uphole slots. The overview is a combination of the team’s effort and the author’s own reconciliation analysis.
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Figure 11: Mine overview: Excavated sections (yellow), Planned stopes (red & white)

Figure 12: Overview of mined out solids in the stoping area (early June 2025).

Table 6: Overbreak and Underbreak Summary.

Stope Planned Volume (m3) Overbreak (m3) Overbreak (%) Underbreak (m3) Underbreak (%)
S0 8629 538 6.2 594 6.9
S7 2733 808 29.6 224 8.2

3.4.1. Stope Note
A stope note is currently in place that captures valuable information of pre- and post-blast results. The documen-
tation contains 7 headers, respectively, Planning, Vent/Media/Backfill/Safety, Geology, Rock Mechanics, D&B,
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Reconciliation, and Evaluation. The following checklist will briefly go over the most crucial data that are currently
recorded.

1. Planning: working level, slashes (Yes/No), tonnage, grade and NSR
2. Vent/Media/Backfill/Safety: ventilation power, backfill recipe and method, distance to rescue chamber
3. Geology: rocktype, drill rates for development drifts, face mapping
4. Rock Mechanics: Geotechnical parameters from nearby drillhole data, various RMCs, ELOS prediction from

stability graph, stress modelling
5. D&B: Uphole/Longhole, number of blasts, planned drilling meters, sub drilling (Yes/No)
6. Reconciliation: Over-/Underbreak per face within stope including volume, tonnes and grade
7. Evaluation: Comments on process in Swedish

The first stope that was blasted (S0 642) was thoroughly documented, serving as a strong reference. However, from
the second stope onwards, documentation has become inconsistent or, in some cases, has not been maintained. This
highlights a challenge. That is, collecting detailed information is valuable only when it is integrated into a feedback
loop that informs and improves future designs. Ensuring that stope notes are consistently completed and actively
used in design reviews will strengthen operational performance.

3.4.2. Stope 642 S0 / 1388C75
Figure 13a provides a plan view of the drill pattern used for the S0 stope. Figures 13b and 13c show the design
of the planned stope. The contractor that conducts the charging and blasting made a report to assess the blast of
S0. The vibration report noted the loss of blastholes 300, 600, 2100 and 4000 and suggested sympathetic detonation
with blasthole 0. The reason for this poor result probably stemmed from high drilling deviations, as the probing
measurements indicated severe deviations. For the same reason, blastholes 1800 and 2700 were destroyed. The
opening had to be shot again. After the opening was created, the rest of the stope was successfully blasted according
to plan. The key takeaways from Forcit Explosives were the significant drilling deviations, which should be addressed
by adjusting drilling parameters such as slower drilling of larger holes or the purchase of an RBM. In addition, it was
suggested to construct a clear structure for what documentation is needed at what stage. Specifically, analysis of
measurements prior to charging, so that last-minute tweaking can be performed.

(a) S0 opening slot blast pattern (plan view),
numbers indicate detonation delays in

milliseconds

(b) Stope front
profile of the
opening slot

(viewing North)
(c) Stope side view (viewing

West)

Figure 13: Stope 642 S0 blast pattern and D&B geometry from multiple views.

Figures 14a and 14b show the scanned contours of the blasted stope compared to the planned shape. It displays the
effective radius factor (ERF), which is the distance from the planned stope outline to the actual LiDAR-scanned outline.
Distances were computed from each triangle face centroid on the actual mesh to the planned stope shell. Since the
original data files were constructed by coarse triangles, the distance values were smoothed using a Gaussian filter for
enhanced visuals. The subsequently smoothed values were assigned per vertex for the creation of the heatmap. Red
zones mark excessive overbreak, and blue zones mark underbreak.

One can observe bellying at the stope side walls where the blastholes were located, resulting in significant underbreak.
This suggests that the blast energy did not reach the middle sections between the outer toes of the blastholes, creating
the need for either sub-drilling of the toes or closer toe spacing. In addition, a major overbreak is observed at both
hanging walls of the trapezoid. One can also see that the stope was blasted in two rounds, where the first shot had
more underbreak on the side walls, whereas the second shot had significantly higher levels of overbreak in the walls.
This can be an indicator that blast-induced damage to the surrounding rock mass is visibly contributing to the blast
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results. This is an interesting observation that can be crucial in D&B design, particularly for the secondary stopes
where one may assume that the rock has been subjected to substantial blast-induced damage. However, another
possibility that explains these observations is the direction of blasting. Here, the initial shot was directed inward
(towards the slot raise), while the second shot was directed along the length of the stope. Intuitively, a combination
of the two arguments seems most plausible. The transparent colouration (gold/breccia, purple/porphyry, and
cyan/sericite quartzite) does not show patterns of significantly different overbreak and underbreak. During inspection
of the facemaps drawn by the mine geologist, it was concluded that the upper level (617) was largely in agreement
with the geologic model used here. However, the lower level also showed the presence of sericite schist, which was not
included in the model. This mismatch implies the need for continuous updating of the geologic model, or decisions
should not solely rely on the model.

(a) Viewing South-East (b) Viewing North-West

Figure 14: Mapped stope face of 642 S0 ERF from two opposing perspectives.

3.4.3. Stope 642 S7a / 1388C76
The most recent stope, S7a at floor level 642, followed a similar D&B pattern. Subsequent reports on this blast’s
performance were not made. The blast result was poor, with boulders (Figure 15a) in the upper section of the stope,
making mucking from the lower drift hazardous. Acceptable levels of cratering were observed in the top section
of the stope. However, brow damage at the bottom access drift and high levels of overbreak are undesirable. The
variation in blast performance between the foot and the hanging wall of the stope as seen in Figures 16a and 16b
is striking. The geological face map indicated that four geological contacts were observed at the end of the bottom
access drift. These geological contacts might have been potential weakness planes that caused severe overbreak.
Furthermore, severe bellying can be observed similar to the first stope, with additional sidewalls where it appears
that the drilled blastholes did not detonate at all. Differentiating between blast performance is difficult between the
rock types (orange/andalusite quartzite, purple/porphyry, cyan/sericite quartzite, and gold/volcaniclastic), but
Figures 16a and 16b do potentially show a more severe level of bellying at the blasthole toes in the sericite quartzite
wall than in the porphyry wall.

Figures 17, 18 and 19 show the drillhole deviations of stope 642 S7a. It contains three data sets: blue represents the
designed holes, green represents the anticipated heading of the Jumbo drilling rig, and red represents the handheld
deviation measurements. The Jumbo drilling rig records the start and end points of each drilled hole, providing basic
trajectory information. It was assumed (but not confirmed) that the Epiroc SIMBA E70 Jumbo drill rig does not use
built-in gyroscopes to determine the end point but calculates the end point as a function of the collar, programmed
direction vector, and the total drill length. Blast hole deviation measurements were performed using a handheld
probe with a magnetometer, which captures the 3D path of the hole at 2 m intervals. Figure 18 illustrates serious
deviations and a strong correlation with respect to the length of the drillhole. Another observation is that all the
measured holes have an offset to the left with respect to both the designed and the Jumbo’s anticipated holes. This
can originate from multiple theories, and a leading possibility is a problem in the observed offset originating not from
the true deviation of the drillhole, but from systematic azimuth errors inherent to magnetometer-based surveying,
which can exceed 2◦ without proper calibration or correction (Twining & Lindsey, 2016). So, a hole length of 24 m can
result in lateral offsets of nearly 1 m, consistent with the deviations observed in Figure 18. In future cases this can be
solved by aligning breakthrough holes with LiDAR scans from the upper and lower drifts and correcting for the error,
or by using more precise tools such as a gyroscope based system. If the deviations are not attributed to the error of
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(a) Boulder at 642 S7
(b) Stope front profile

(viewing North) (c) Stope side view (viewing East)

Figure 15: Stope 642 S7a muckpile and development geometry from multiple perspectives.

(a) Viewing South-East (b) Viewing North-West

Figure 16: Mapped stope face of 642 S7a ERF from opposing directions.

the measurement device, another plausible cause is a misalignment of the fixed point of the Jumbo rig. Despite the
machine thinking it was in a certain position and drilling at a specific angle, instead it did the same from a wrong
origin point. Another, less likely theory, the presence of magnetic ore nearby. According to geological understanding,
Kankberg has no magnetites or similar minerals. However, other mines in the area, such as Kristineberg, face serious
distortions for this reason. All in all, it is clear that these deviations make blasting an opening slot extremely difficult
and that a design that accounts for these measurement inconsistencies and/or difficult drilling conditions would be
beneficial.

As illustrated above, 642 S7a is by far the most complete data set available in this thesis and will be highlighted in later
parts of the thesis as well. Both MWD and blasthole deviation data were obtained for this stope, making it particularly
rich in data availability. The first stope (S0) did have deviation measurements as mentioned in the Forcit Explosives
report, but on further inspection it was missing most of the opening slot holes. Furthermore, Forcit’s conclusions
were very much linked to the deviation measurements, yet no comment on correction was present. This suggests that
poor performance could have been mislabeled as the result of deviations. Additionally, no MWD data was collected
for S0, making it less suitable for deep analysis.
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Figure 17: 3D visual of s7a 642 drillhole profiles. Figure 18: Drillhole deviations and correlation with depth in S7a 642.

Figure 19: Opening slot plan views, collar and toe level.
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3.4.4. Future Stopes
The next two stopes, 612 S0 and 642 S7b (Figure 12), are being drilled in two parts. First, up-hole drilling and blasting
of the opening slot is performed from the lower drift, and secondly, down-hole drilling of the upper slot and the
production blastholes is performed. This reduces the necessary pull by 50%, and is expected to result in a better
blasting outcome. From the scans made of the initial uphole opening slots moderate results were observed. The S0
612 uphole slot showed a clean slot wall, but did not fully reach the desired pull of 12 m. The S7b 642 uphole slot
showed poor performance because it did not reach the desired level of pull and had severe brow damage. In the
process of writing this thesis, more and more data became available. However, the core analysis will primarily use
S7a 642 as a vocal point.



4
Methodology

This chapter presents the methodological steps taken to construct a blastability classification for Kankberg. The work
includes the processing of relevant datasets, the execution of laboratory tests, and the formulation of Lilly’s BI for
Kankberg as well as an enhanced version developed using fuzzy theorem. Each stage is described in detail to establish
a transparent and reproducible framework for generating the indices, while later chapters focus on comparing these
indices with external proxies and exploring their implications for drill and blast (D&B) design.

4.1. Data Acquisition and Handling
To obtain all parameters for a BI, data that feed into the BI calculations need to be selected and prepared to provide
relevant information. The availability of data is vast, as was described in Chapter 3. Therefore, it is crucial that careful
consideration is taken to properly select the right data.

4.1.1. Geotechnical Drillhole Data
A large part of the data that feed into the BI is geotechnical in nature. As such, much of the data used come from
geotechnically logged diamond drillholes. The drillhole data set is extensive and covers a much greater volume than
the stoping region. Of particular interest when selecting from this data set are the BRQD (Section 4.1.1) and the joint
spacing parameters. Although the data set includes more categories, such as joint roughness and joint fill, which are
interesting to study for model evaluation or future validation, these variables do not directly feed into the BI. The data
were therefore included in the overall drillhole analysis without seeing direct utilisation in the model.

To make sure that the BI reflects conditions specific to the stoping area, only values from drillholes that intersect the
stope volume were selected. This was done by defining a rectangular bounding box around the full stoping extent
and intersecting all drillholes that fall within this box. Statistics were then run on the resulting subset. For BRQD and
RMR, the mean values and standard deviations were calculated. Joint roughness, joint fill, and joint spacing were
categorised by frequency of occurrence per rock type.

Rock Quality Designation
The RQD (Deere, 1964) uses drill core logs to quickly obtain a quantitative estimate of the quality of the rock mass. It
is often the only method used for the determination of jointing density. The procedure can be summarized with the
following equation.

𝑅𝑄𝐷 =

∑
Length of core pieces > 10 cm

Total length core · 100% (4.1)

Samples with a low RQD percentage are classified as poor and vice versa. RQD is considered an assessment of in situ
conditions, therefore, drilling and handling induced fractures should be accounted for. Boliden has developed a
correction for the Kankberg mine as illustrated in Figure 20. While the robustness of this correction can be questioned
due to the limited sample size used for the polynomial fit (N=7), it is considered acceptable for the purposes of this
thesis. From Figure 20, we can observe that the correction factor then becomes:

𝑅𝑄𝐷 = 𝐵𝑅𝑄𝐷 · (−8 · 10−5 · 𝑅𝑄𝐷2 + 0.0006 · 𝑅𝑄𝐷 + 1.2089) (4.2)
This correction factor is non-linear and should be solved numerically. This was done using the Newton-Raphson
method, which is an algorithm that guesses a starting point and iterates until convergence is reached within a tolerance
limit over a set amount of iterations. In this report the initial guess was the input BRQD, the tolerance limit used was
1 · 10−8 and the maximum number of iterations was iter_max = 1000.

It is important to note that RQD is generally debated in the field of rock engineering. Drawbacks are, the dramatic
changes based on borehole orientation due to the method inherently being directionally dependent, and the lack of
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Figure 20: Conversion Factor BRQD to RQD.

consistency in assessment (Figure 21) (Palmström, 2001). Nevertheless, this parameter is still widespread within the
domain of rock engineering.

Figure 21: Example of RQD inconsistency (Deere, 1989).

4.1.2. Joint Orientation Data
Joint plane orientation data is difficult to assess if the drillholes are not oriented. Underground, especially in early-stage
development like the stoping area, exposure to clean rock faces is slim. No datasets outlining orientation data are
available to infer JPO with any level of confidence. Therefore, a more practical approach was adopted to estimate
JPO values based on the relationship between the principal stress direction and the general stope orientation. The
underlying assumption is that the dominant joint sets align with this stress field, due to joints tending to form
perpendicular to the least principal stress.

This thesis tests this assumption by observations from the S7 blast round. Figure 15c revealed significant overbreak
within a caved section of the hanging wall, which is assumed to have failed along a significant natural joint surface.
The LiDAR scan will be analysed in the GEM4D software package. The software allows retrieving orientations of
surfaces and comparison with the believed principal stress direction. Although this approach offers only a restricted
solution in comparison to oriented core data or detailed face mapping data, it is deemed adequate to proceed with
the creation of a BI.

4.1.3. Laboratory Tests
As previously discussed, it is essential to understand rock mechanical behaviour and therefore also the testing
procedures. The selection of appropriate tests depends heavily on the desired measurable parameters and the
limitations of both the methods and the available equipment. UCS and density measurements will directly feed into
the BI’s, the elastic moduli and acoustic wave velocities form a strong addition to data interpretation beyond the use
in the BI’s.

This research targets the compressive strength specifically, since it is a highly usable rock property and key ingredient
for the BI’s. Laboratory testing requires a similar selection process, considering the specific rock properties and
apparatus constraints. Since only data on inferred UCS values is available, the need to do additional direct UCS tests
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is present. In combination with the UCS. The following sections explain the testing methodology and review the
applicability and accuracy of these methods.

Unconfined Compressive Strength (UCS) Testing
Laboratory tests offer controlled conditions by eliminating the variability and unknowns present in field measurements.
The UCS tests, as described by Goodman (1991), remain a standard method for determining the true compressive
strength of rocks.

As described in Goodman (1991), the stress-strain curves of the UCS have characteristic domains (Figure 22). Initially,
the curve exhibits a concave-up region, which reflects seating effects and closure of pre-existing microcracks. This is
followed by a nearly linear section, the elastic domain, where deformation is recoverable and stress is proportional
to strain. The slope of this linear region defines the Young’s modulus of the material. Beyond the elastic limit, the
curve enters the yielding domain, where plastic deformation begins and microcracks propagate and nucleate. As
stress continues to increase, the material reaches its peak strength (𝜎𝑈𝐶𝑆). Post-peak, stress typically drops as lo-
calised failure zones develop, forming the post-peak domain, which reflects strain-softening behaviour or brittle failure.

Figure 22: Stress-strain curve of an arbitrary sample during UCS test (Goodman, 1991).

The elastic constants of a rock can be determined because of the continuous measurement of the samples. The two
measurable moduli are, respectively, the Youngs Modulus (𝐸) and the Poisson’s Ratio (𝜈). Young’s Modulus is found
by taking the slope of the axial strain curve in the elastic domain, and can be described by the equation:

𝐸 =
𝜎
𝜖

(4.3)

It is not uncommon for rock to have multiple linear elastic domains, with their respective Young’s Modulus. This
special case is usually referred to as the dynamic elastic modulus. The Poissson’s ratio, which describes the materials’
tendency to deform perpendicular to the loading direction, is described by the following equation:

𝜈 = −𝑑𝜖𝑟𝑎𝑑𝑖𝑎𝑙
𝑑𝜖𝑎𝑥𝑖𝑎𝑙

(4.4)

where the Poisson’s ratio is the fraction between the change in radial strain and the axial strain.

Standards and References
The laboratory testing procedures for UCS were conducted in accordance with ASTM International (2017). Where
applicable, the testing methodology was supplemented by the ISRM by Ulusay and Hudson (2007). According to
ASTM International (2017), a sample should maintain a length-to-diameter ratio between 2.0 and 2.5. ASTM also
recommends a minimum diameter of 47 mm. However, mining-related samples often deviate from this as a result of
extraction limitations. Although the standards recommended the length-to-diameter ratio, some samples used in
this study had slightly lower ratios due to sample preparations. This deviation is acknowledged and any potential
influence on the test results is considered in the interpretation and discussion of the data.

Test Setup
UCS tests apply an axial and constantly increasing load on a cylindrical rock specimen until failure. An optional radial
strain chain enables multidirectional strain measurement, used for elastic property analysis. The UCS configurations
used are illustrated in Figure 23. Three different setups were used during the tests. Initially, the setup was intended
to measure the acoustic wave velocities during the UCS test (Setup 0). The axial strain is measured by two LVDTs
that function as displacement gauges, and the radial strain is measured by a sensitive chain in the centre of the
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cylindrical sample. Two iron holders carrying S-wave transducers shoot an acoustic pulse every 10 seconds to
gather acoustic data. The sending transducer shoots a pulse generated by an oscilloscope and amplified by an
amplifier through the rock sample. The receiving transducer sends the signal back to an oscilloscope which is then
translated into a readable signal by a computer. Once the sensors are placed and a shear-wave paste is applied
between the S-wave transducers and the specimen, the samples undergo constant loading by a 500 kN hydraulic
press. This press is set to achieve a continuous strain rate (0.005 mm/s). A computer connected to the strain gauges
records the data at a sampling rate of 1 Hz. Once a sample visibly fails or the stress drops significantly, the test is stopped.

As mentioned, multiple setups were used. During the first test, which exceeded 150 MPa, the iron holders that carry
the acoustic transducers showed signs of deformation. For this reason, the author could not continue using Setup 0
with S-wave transducers, since uniform test conditions could no longer be guaranteed. Setups 1 and 2 do not measure
acoustic velocities simultaneously. In these cases, the acoustic wave velocities were measured prior to loading the
sample into a separate setup. The use of multiple setups does not affect the test results as long as the measured strain
accounts for the strain behaviour of the setup. To ensure this, one needs to calibrate the machine accordingly, which is
explained in the following section.

Figure 23: UCS test setups 0, 1 and 2.

Machine Calibration
The UCS testing setup uses LVDTs to measure the axial displacement of the lower loading piston. This displacement
includes not only deformation of the rock sample, but also elastic deformation of the supporting loading frame and
plates. To isolate the true strain of the sample, a correction must be applied. A calibration test is performed using an
aluminium dummy, which has a known Young’s Modulus of 70 GPa (M.I.T., n.d.). The deformation of the dummy is
measured under load and compared to the theoretical elastic response:

𝜖al,ideal =
𝜎

𝐸aluminium
(4.5)

The difference between the measured strain and the ideal strain is attributed to the machine’s compliance. Assuming
linear elastic deformation of the system, a machine compliance term is defined as:

𝐶system =

(
1
𝐸fit

− 1
𝐸aluminium

)
(4.6)

This compliance is then used to correct all subsequent UCS tests.

𝜖sample = 𝜖measured − 𝐶system · 𝜎 (4.7)
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This approach assumes that the frame behaves linearly throughout the full stress range. Although the aluminium
calibration test is limited to lower stresses to prevent yielding, the extrapolation is justified for a stiff, elastic frame.

Sample Description and Preparation
Before performing the tests, the samples required adequate preparation to make the conditions of testing equal. The
samples were initially cut with a handsaw, but upon inspection of the levelness of the edges the samples were not
deemed fit for testing. Levelness is critical for UCS to spread the load evenly across the samples. Therefore, it was
decided to grind the samples. The rock samples were ground to be perfectly level. This was done by removing 1 mm
on both edges at a 0.015 mm/cut rate. This resulted in some samples falling below the original threshold value of 2:1
for the H:W.

Since the samples were not drilled simultaneously, their exposure to surface conditions was unknown. To remove as
much variation as possible, it was decided to dry all samples at 60◦ Celsius for 24 hours to remove excess moisture.
Therefore, it is assumed that all rock samples were tested under dry conditions.

Before testing, the rock samples were carefully measured, weighed and described by the author. This information can
be found in Table 7 below.

Sample ID H
(m

m)

W
(m

m)

Rati
o

𝝆
(K

g/m
3 )

Alte
rat

ion

Note

AND1353_1354 77.48 38.75 2.00 2977 Competent, mineralized
AND1360_13615 76.71 38.55 1.99 2818 Competent, mineralized
AND1310_13115 77.68 38.68 2.01 2839 Fractures, mineralized; no cross-cut
AND600_6015 77.19 38.69 2.00 3011 Competent
AND1201_1202 78.64 38.73 2.03 2769 Major fractures; full cross-cut
AND6875_689 77.59 38.72 2.00 2965 Fractures; no cross-cut
ANDAQTZ1084_1085 76.38 38.80 1.97 2865 A4, T3 Competent, mineralized
ANDAQTZE13185_1320 74.70 38.57 1.94 2872 A4 1 major fracture, mineralized; no cross-cut
ANDAQTZE1831_1833 77.91 38.73 2.01 3318 A4 Competent, highly textured
ANDAQTZE22195_2221 76.25 38.79 1.97 2825 A5, T3 Competent, highly textured
ANDAQTZE2240_22415 78.57 38.77 2.03 2801 A5, T1 Competent, some texture
BREC2133_21345 78.15 38.90 2.01 3198 T4 Fractures, colour boundaries; no cross-cut
BREC19345_1936 78.99 38.86 2.03 2804 T4 Fractures, mineralized, veins; no cross-cut
BREC1947_19485 76.68 38.98 1.97 2805 T4 Major fractures, textured; full cross-cut
BREC7655_767 74.62 38.91 1.92 3467 T5, A1 Highly textured, fractures; no cross-cut
BREC935_9365 76.72 39.01 1.97 2866 T4, A1 Competent, veins
BREC15705_15715 77.72 38.61 2.01 3111 T4 Competent, colour boundaries
QTZFSPPO1764_17655 77.06 38.79 1.99 2648 A1, T1 Major fractures; full cross-cut
QTZFSPPO1780_17815 77.48 38.80 2.00 2693 A2 Fractures, brecciated; full cross-cut
QTZFSPPO1860_18615 75.94 38.95 1.95 2646 A2 Minor fractures, mineralized; no cross-cut
QTZFSPPO17055_1707 76.44 38.79 1.97 2709 A3, T1 Highly textured
QTZFSPPO9215_923 77.63 38.95 1.99 2641 T2, A1 Fractures at the rims, colour boundaries
SERQ6755_677 76.55 38.73 1.98 2837 Competent, some texture
SERQ610_6115 77.61 38.85 2.00 2728 Major fractures, some texture
SERQ6365_638 76.94 38.89 1.98 2747 Competent, highly textured, mineralized
SERQ6015_6025 77.08 38.87 1.98 2711 Competent, some texture
SERQ6105_612 77.75 38.89 2.00 2713 Fractured, some texture; no cross-cut
VOLCCL9315_933 77.17 39.00 1.98 2799 Minor fractures, mineralized; no cross-cut
VOLCCL1023_10245 77.25 39.02 1.98 2729 Competent, mineralized
VOLCCL1277_12785 77.09 38.60 2.00 2929 A2 Competent, mineralized
VOLCCL7445_746 77.60 38.71 2.00 2767 A3 Competent, mineralized
VOLCCL843_844 76.76 38.74 1.98 2753 A1 Competent, highly textured, mineralized

Table 7: Sample properties prior to testing.

Data Processing
After testing, the data are ready to be processed. Before any interpretation was performed, the raw data were corrected
by machine calibration. Then, using Python scripts, stress-strain plots were created and visually inspected. UCS
values were found by finding the maximum stress within the data file. To derive the Young’s Modulus from the
stress-strain curves, automated linear regression is performed to find the most linear part of the curve, i.e. the elastic
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domain, by means of optimising the fit with the best 𝑅2 possible. From the same linear section, the Poisson ratio is
subsequently calculated. For UCS values, the international standard requires that correction factors be applied for
specimens that do not meet the dimension requirements. The most commonly used correction factor is suggested by
Brown (1981):

𝜎𝑐 = 𝜎𝑚

(
𝐿

𝐷

)0.2

(4.8)

where 𝜎𝑐 is the corrected UCS, 𝜎𝑚 is the measured UCS, and 𝐿/𝐷 is the length-to-diameter ratio of the specimen. The
ISRM by Ulusay and Hudson (2007) uses a stricter correction using a power of 0.3. However, this strict correction
factor is not as commonly used. All reported values in the report will have been processed and corrected accordingly.

Acoustic Velocities
Initially, Setup 0 was designed to measure acoustic P- and S-wave velocities in parallel with UCS testing. The system
was configured to take readings at 10-second intervals throughout loading. The second approach yielded a separate
acoustic test prior to loading of the samples. However, during post-test data processing, it became evident that the
recording microphone had logged the wrong data channel across all samples, and no reliable acoustic velocity data
could be recovered.

As a result, this portion of the setup was discontinued in future sections. A workaround was achieved by indirectly
estimating the acoustic velocities, based on the density and elastic moduli derived from stress–strain data, as described
by Equations 2.1 and 2.2. Despite this workaround, differences persist, the direct measurements were supposed to
allow the acquisition of the P- and S-wave prior to loading, and are now limited to the dynamic elastic moduli.

4.2. Blastability Assessment
This thesis ultimately aims to link rock properties to D&B design through the use of an index which is built up of said
properties. As discussed in the theoretical background, the widely accepted BI outlined by Lilly (1986) will serve as
the basis to bridge this gap between rock properties and practical use in mining applications.

4.2.1. Lilly’s Empirical Model
Lilly’s empirical model is based on the principle that certain geologic and geotechnical properties significantly affect
the blasting behaviour. The complete formulation for the BI is defined in Equation 2.4. Originally, the input variables
do not follow a strict formulation and can change based on site-specific knowledge. This allows for the creation of an
BI with limited data. The BI score is a composite of the five input variables; RMD, JPS, JPO, RDI, and H. Each of these
variables can be assigned a scoring value based on field and laboratory data. The following paragraphs outline how
Lilly’s input variables were obtained.

The RMD reflects the overall condition and structural integrity of the rock mass. At Kankberg, this was evaluated
using RQD values obtained from geotechnical core logging from drill holes within the stoping area. A value of 10 was
assigned to RQD with scores below 25%; 20 to 25%-50% ; 30 to 50-65%; 40 to 65%-80% and 50 to BRQD values above
80%. This scoring uses 5 scoring bins instead of the original 3 scoring bins and is used to enhance the discrimination
of rock quality for the Kankberg data.

JPS was assessed using the spacing data, also from the geotechnical logs. Since the data showed relatively heteroge-
neous degrees of joint spacing, the characteristics of the dominant joint spacing were complemented by the second
most prominent spacing value using a weighted sum approach. The output value is then rounded to the nearest
score. Similarly to the RMD, the JPS scoring adopts a 5-bin system instead of the original 3-bin system, for the same
reason, to provide greater granularity in describing the rock mass.

As detailed in section 4.1.2, the JPO value was estimated based on the principal stress direction relative to the stope orien-
tation. This assumes that the dominant joint set aligns with the regional stress field. Based on this, the scoring followed
the original approach by Lilly where the joints were subhorizontal, a score of 10 was applied; joints that dipped out of
the face received 20; those that struck normal to the face received 30; and those dipping into the face received 40. Due
to the need to initially blast an opening slot, careful consideration should be taken to choose the correct nearest free face.
For example, depending on the location of the blasthole with respect to the opening slot (free face), the JPO will change.

RDI was calculated on the basis of laboratory-determined densities converted into specific gravity values from core
samples. This transformation is typically done to turn the density value unitless for easier interpretation between
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different states of matter. The following transformation was used, consistent with Lilly’s model (Lilly, 1986):

RDI = 25 · D − 50 (4.9)

where D is the density of the rock mass in tonnes per cubic metre.

H was derived directly from the UCS values obtained by laboratory testing. Rather than relying on the qualitative
Mohs scale, which can be subjective and less representative of fragmentation resistance, UCS provides a quantitative
measure of the mechanical strenght of the rock. Based on Lilly’s guidelines, the strength rating is determined as
follows:

𝐻 = 0.05 ·𝑈𝐶𝑆 (4.10)

where UCS is given in megapascals.

After assigning all input variables, the BI was calculated using the formula provided in Section 2.4. Where direct
measurements were unavailable, values were inferred from educated guesses which were supported by either the
literature or proxy data. As hinted at before, it is not unlikely that the proposed rating scores may not adequately
differentiate between the rock types encountered in the Kankberg rock. For example, some of the scoring characteristics
are coarse, which limits the interpretive power. Since the goal is to differentiate between rock types in terms of
blastability, the use of more bins than is portrayed in the scoring methodology as outlined above could be used to suit
site-specific needs. These adaptations aim to preserve the original’s formulation whilst creating more site-relevant
contrast. The site-specific score used (increased bins) can be found in Appendix A. Given the observed variability in
data quality and the limitations of some input scales, further refinement can include adjusting the weights of input
variables based on their reliability, or selectively using inputs, such as UCS, based on the condition of the tested
specimen. These adjustments aim to better capture meaningful contrast while reducing the impact of uncertain or
inconsistent data.

4.2.2. Fuzzy Set Enhanced Model
To overcome the limitations of rigid class boundaries in empirical models such as the BI, an FIS was developed based
on the approach proposed by Azimi et al. (2010) and Alipour et al. (2018). This method should allow for more flexible
and accurate blastability prediction in geologically variable environments by incorporating both expert judgment and
semi-quantitative data, whilst lowering sensitivity to small changes in variables at classification boundaries.

The five input variables; RMD, JPS, JPO, RDI, H, are expressed using five fuzzy linguistic terms (Very Low, Low,
Medium, High, Very High) and modelled using triangular membership functions.

𝜇𝐴(𝑥) =


0 if 𝑥 ≤ 𝑎
𝑥−𝑎
𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐−𝑥
𝑐−𝑏 for 𝑏 < 𝑥 ≤ 𝑐

0 if 𝑥 > 𝑐

(4.11)

where 𝑎, 𝑏, and 𝑐 are, respectively, the lower limit, the peak, and the upper limit of the membership functions. The
crisp input values derived from the data are converted into fuzzy values by determining their degrees of membership
in the associated fuzzy sets using equation 4.11. To better reflect the variability and distribution of site-specific
geotechnical properties, non-uniform membership functions were defined for the lab-tested UCS and RDI. Their
membership functions were designed to follow the statistical behaviour of the measured samples, by means of the
statistic quantiles over all rock types. This approach aims at benefiting the site-specific needs to create contrast
between rock types by only using a range of measured values. Uniform triangular MFs were retained for RMD, JPS,
and JPO, as these variables were not strongly skewed and reflected a more discrete range of values. An example of
both membership functions is found in Figure 24, a table of selected ranges and fuzzy terms can be found in Appendix
A. A set of if-then rules was then developed to mimic human-like decision making. Each rule relates specific fuzzy
conditions of the input variables to a fuzzy classification of blastability, an example of a fuzzy rule will look as follows:

IF RMD is High AND JPS is Wide AND H is Soft THEN BI is Moderate

Since five linguistic terms are given to each input variable, a total number of possible combinations is 55 = 3125. The
rule base was designed to cover all meaningful combinations of the five input variables, which means that physically
highly implausible combinations were filtered from this rule base. The set of filtered combinations can be found
in Appendix C. A total of 4 constraints were implemented and 480/3125 combinations were removed. Instead of
manually defining each rule, a scoring scheme was applied: Each fuzzy term was assigned a numerical score (0–4),
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and the rule consequence was generated based on the weighted average of the input term scores. The weights can be
changed and adjusted based on the domain knowledge of the influence of each input on blastability. For example, a
trial favours the UCS and RDI weights by increasing them to 3 instead of 1, due to higher confidence levels based
on the testing method. Conversely, JPO is assigned a lower weight, 0 instead of 1, due to lower confidence. The
aggregated score was then assigned to one of five fuzzy output terms that represent the FBI.

(a) RMD membership function, triangular and uniform.

(b) H membership function, triangular and data-driven.

Figure 24: Illustration of the two types of member function utilized in the FIS.

The Mamdani-type inference approach was used for this problem. The degree of activation for every rule was
calculated using the minimum operator (AND).

𝜇out(𝑧) = min
[
𝜇𝐴1(𝑥1), 𝜇𝐴2(𝑥2), . . . , 𝜇𝐴𝑛 (𝑥𝑛)

]
(4.12)

where 𝜇𝐴𝑖 (𝑥𝑖) represents the degree of membership of the input 𝑥𝑖 in the fuzzy set 𝐴𝑖 . The outputs of all fired rules
are aggregated using the maximum operator:

𝜇agg(𝑧) = max
𝑗

[
𝜇out, 𝑗(𝑧)

]
(4.13)

The aggregated fuzzy output is then defuzzified to a crisp FBI value using a discrete centroid approximation, where
the outputs were assigned to a crisp value. This method is favoured over a true centroid of area method due to
simplicity and speed. Since the resulting BI will be used categorically, a discrete method is preferred over a continuous
one. The final FBI was calculated as the weighted average of said crisp values:

FBI =
∑

𝑖 𝜇𝑖 · 𝑧𝑖∑
𝑖 𝜇𝑖

(4.14)

The initial development and testing of the fuzzy model was performed using the Scikit-Fuzzy Python library, which
provides a streamlined implementation of FIS. However, due to performance limitations and breakdowns when
working with large rule bases (> 1000 rules), the final model was implemented in a custom Python environment.
This custom model allowed for much better performance and full control over membership function design, rule
evaluation, and defuzzification logic.

4.2.3. BI and FBI Sensitivity Analysis and Model Comparison
Although the mathematical structure of both the empirical and fuzzy BI models is relatively straightforward, a
sensitivity check was included to verify the influence of each input parameter. Given the linear nature of the empirical
model, each variable contributes equally to the final BI score. In the fuzzy model, the influence of each input depends
more on the shape of the membership functions and their overlap. If the model is implemented correctly, it is expected
that variables with broader data ranges or more sharply defined membership transitions show the largest impact on
the final BI classification. These results should confirm the intuitive weighting observed during model development.
Furthermore, a comparison between the BI and FBI will highlight the added value of using a more complex method
and will serve as an assessment of whether the fuzzy enhancement is worthwhile.
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4.3. Measure-While-Drilling Rock Factor for S7a Opening Slot
4.3.1. Data Acquisition and Inspection
Raw MWD files were delivered by the drill rig in .xml format and contained time-stamped sensor data sampled every
30 cm of drill advance. Rig data being recorded are the following: penetration rate (PR), rotational pressure (RP),
percussion pressure (PP), feed pressure (FP), damp pressure (DP) and flushing pressure (FLP). The initial visual
screening revealed three recurrent quality issues from these data sets:

1. Duplicate logs; New drill runs were occasionally written to new files with the same hole identifier (possibly
reaming).

2. Interrupted logs; several files end abruptly below the design length (Table 8).
3. Concatenated logs; In some cases, drilling resumes in the same file from random depths after reaching the

desired drill depth, indicating that multiple drill holes were likely appended.

The 26 files were manually assigned to their correct deviation drill paths based on their collar coordinates. Five holes
contained incomplete depth coverage, but were retained because the valid portion still contributed to subsequent
analyses. Files with concatenated data were filtered to include only the first portion up to reaching the desired drill
depth.

Figure 25: Overview of S7 opening drill holes.

Hole Max Deviation Path Length (m) Max MWD Depth Tag (m)
O4_H10 24.00 16.87
O6_H10 24.00 16.70
O6_H12 24.00 9.50
O6_H13 24.00 5.96
O8_H9 24.00 14.47

Table 8: Holes (Figure 25) where the recorded DepthTag from MWD data does not reach the end-of-hole distance.
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4.3.2. Filtering and Pre-processing
The data processing workflow follows Navarro et al. (2021), with two extensions required to accommodate the
Kankberg data set. Firstly, data entries showing drilling pauses exceeding 180 s were removed. These pauses were
interpreted as full operational stops, such as drill bit exchanges or coffee breaks. Any value below this threshold was
considered a potential rod addition event and was retained for filtering at a later stage. Secondly, the normalisation of
the depth trend, originally applied only to the rotation pressure (RP) by Navarro et al. (2021), was extended in this
study to multiple data types, including penetration rate (PR), percussive pressure (PP), and flush pressure (FLP), in
order to better adapt the processing to the characteristics of the Kankberg data set.

Pause Removal
Pauses were identified using the time difference between consecutive rows within each drill hole. Rows following a
pause could have been removed with a one-row buffer to eliminate transients introduced by slowdowns or restarts.
However, because of the limited size and coarse resolution of the data set, this additional buffer was deemed
unnecessary.

Outlier Removal
To remove implausible sensor spikes and recording errors, a two-sided percentile filter was applied individually to
each MWD data channel. Following the approach in Navarro et al. (2021), which used a 99 % confidence interval on a
larger data set, a slightly narrower 98 % window was used here due to the smaller sample size (26 holes instead of
302 holes). This threshold retained the main signal while suppressing the tails of the cumulative distribution functions.

Rod Addition Removal
Rod additions occur every 1.83 m and result in a temporary drilling stop. These events are consistently characterised
by a penetration rate of 0 m min−1. All rows where PR = 0 were therefore removed. This approach mirrors the rod
filtering strategy used by Navarro et al. (2021), however, here the entire row of data is discarded since it was not
confirmed whether the recording of the other data was automatically stopped.

Depth-Trend Normalisation
Typically, systematic depth trends are caused by mechanical energy losses along the drill string, reduced flushing
efficiency, bit wear, or friction from the blasthole walls (Navarro et al., 2021; Schunnesson, 1998). Navarro et al. (2021)
applied this correction only to RP, as their other data did not show strong depth trends. However, inspection of the
Kankberg dataset revealed depth-trend effects in several other sensors (PP, FLP, and PR). To correct for these biases,
a second-order polynomial was fit to the average sensor signal per depth bin. A third-degree polynomial would
have improved 𝑅2 by a mere <0.5 % and was not adopted due to the disproportional risk of overfitting. The nor-
malised value was computed by subtracting the depth-dependent trend and re-centering at the surface value as follows:

𝐷𝑎𝑡𝑎norm(𝑧) = 𝐷𝑎𝑡𝑎raw(𝑧) − 𝐷𝑎𝑡𝑎fit(𝑧) + 𝐷𝑎𝑡𝑎fit(0) (4.15)

The feed pressure (FP) and damping pressure (DP) channels did not show a consistent trend with depth and were
therefore left uncorrected. Figure 26 shows the trends of an arbitrary hole to visualise the decision for selective
correction.

4.3.3. Structural Factor
The structural factor is based on the rolling variability of PR and RP, as these fluctuations have been found to correlate
with fracturing and jointing (Navarro et al., 2021; Schunnesson, 1998). Therefore, the structural factor is constructed
by the depth-normalised variability of the smoothed (rolling) PR and RP. Unlike Navarro et al. (2021), who did not
normalise their PR because no clear trend was visible. For the Kankberg data, a trend was visible in the PR and was
thus corrected for. The reason being that, in contrast to purely vertical holes, the downward angled orientation of the
Kankberg slot reduces gravity-assisted drilling albeit slightly, especially as the inclination increases. The PR and RP
residuals are calculated as follows:

PRvar,𝑖 =

𝑖+𝑁∑
𝑗=𝑖

���PR𝑗 − PR𝑗

��� , with 𝑖 = 1, 2, . . . , 𝐿 − 𝑁 (4.16)

RPvar,𝑖 =

𝑖+𝑁∑
𝑗=𝑖

���RP𝑗 − RP𝑗

��� , with 𝑖 = 1, 2, . . . , 𝐿 − 𝑁 (4.17)
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Here, 𝑁 is the size of the sample window, 𝐿 is the total number of depth rows, PR and RP are the mean of the respective
window. The outputs are the variances of the depth-normalised PR and RP respectively and are sub-sequentially
used to construct the Discontinuity Index as such:

𝐷𝐼𝑖 =

√√√
1
2

(
𝑃𝑅var,𝑖 − PRvar

𝜎𝑃𝑅var

)2

+ 1
2

(
𝑅𝑃var,𝑖 − RPvar

𝜎𝑅𝑃var

)2

𝑖 = 1, 2, . . . , 𝐿 (4.18)

where 𝑃𝑅𝑣𝑎𝑟,𝑖 is the variance of an individual row, 𝑃𝑅𝑣𝑎𝑟 is the global mean variance, and 𝜎𝑃𝑅𝑣𝑎𝑟 is the standard
deviation. RP is handled in a similar way. All variability traces 𝑃𝑅var,𝑧 , 𝑅𝑃var,𝑧 , the 𝐷𝐼, and depth-normalised MWD
factors were subsequently smoothed with a central 3-sample moving average and entered into a principal component
analysis. The first principal component (PC1) is referred to as the Structural Factor (SuF). To reduce the impact of noisy
fluctuations in the SF and produce geologically meaningful and interpretable zones, a change-point segmentation
algorithm was applied to the smoothed SuF signal. This approach, as introduced by Navarro et al. (2021), divides
the factor profile of each drillhole into contiguous segments where the mean value remains relatively stable. This
procedure uses the PELT algorithm (Killick et al., 2012). Here, segmentation minimises a cost function with the intent
of balancing the internal variance within each block against the number of divisions. Each segmented block is then
assigned a structural rock class (massive, fractured, or heavily fractured) based on the average SuF value of the block
relative to fixed thresholds.

Figure 26: Depth-normalization of a random hole (O5_H5) from S7a_642, smoothed for better visual.

4.3.4. Strength Factor
Where the SuF aimed to find a metric from the variability of the MWD signal related to structures, the Strength Factor
(SeF) objective is to quantify the drilling resistance of the rock. It therefore builds the SeF of the MWD signals itself,
instead of its fluctuations. It is again derived using PCA on the smoothed data, this time using the input variables
(where applicable depth-normalised) PR, FP, RP, PP, FLP, and DP. Here, 𝑃𝐶1 was the SeF.

4.3.5. Rock Factor
The Rock Factor (RF), as suggested by (Navarro et al., 2021), provides a unified proxy of the general behaviour of the
rock by integrating the SuF and SeF. To ensure comparability, both factors were normalised by the z-score across
each hole. The normalised factors were then combined using a PCA and, similar to the previous factors, the PC1 was
retained as the RF. As with the previous factors, the RF was also smoothed using a moving average. The resulting
signal offers a holistic view of in situ rock conditions and can be used to segment the drillhole into geomechanically
consistent zones.

4.3.6. Up-hole slot S0_612 cross-check
After finalising the S7 processing, the identical MWD workflow was applied to the available logs from the S0_612
opening slot to assess cross-stope outcomes. This dataset receives a minor role due to greater uncertainty. Firstly, no
deviation measurements were available and the slot was drilled up-hole, and secondly, the raw logs showed a higher
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incidence of concatenated files and other irregularities noted in Section 4.3.1. In general, large data gaps resulted in
less data of likely lower quality than the S7 set. To retain comparability, the same preprocessing was retained as for S7,
without re-tuning parameters for S0_612. Figure 27 shows that the depth-normalised trends of the S0_612 dataset
were similar, except for the damping pressure, which showed a more pronounced depth trend. Furthermore, the PCA
models were fitted separately on the S0_612 data.

Figure 27: Depth-normalization of a random hole (O3_H8) from S0_612, smoothed for better visual.



5
Results

5.1. Index Variables
5.1.1. Geotechnical Logs
Geotechnical data from 73 diamond drillholes are summarised in Table 9, covering the six primary rock types
intersected within the bounding box of the stoping area. BRQD and RMR values are reported as mean ± standard
deviation, while joint surface characteristics and spacing are presented as categorical percentages of occurrence. The
standard deviations for BRQD and RMR are notably high across all units, indicating a high level of internal variability
in rock quality. ANDAQTZE and VOLCCL display the highest average BRQD (82% and 79%) and RMR (both 72),
indicating generally more competent ground conditions. BREC and QTZFSPPO also show high values, though with
greater variability. In contrast, AND and SERQTZE have lower BRQD and RMR values, suggesting lower rock quality.
Joint roughness is predominantly ’slightly rough/discoloured’ across all units, though AND and SERQTZE show
higher proportions of slickened-sided or altered surfaces. Joint fill is minimal in most cases and most fall into the
0-1 mm category. The joint spacing is primarily ’close’ (5-20 cm), but ANDAQTZE, VOLCCL, and QTZFSPPO show
higher proportions of ’wide’ spacing (60-200 cm), while AND has the most frequent occurrence of ’very close’ joints
(< 5 cm). Rock types with lower BRQD, such as AND and SERQTZE, tend to show more joint alteration, higher infill,
and closer spacing, indicating a positive correlation between reduced rock quality and increased structural degradation.

Geotechnical data were also spatially analysed to observe whether significant trends existed in the X, Y, or Z direction.
However, no significant spatial trends were observed in the drillhole logs. The logged data successfully highlighted
the presence of the known fault at the edge of the stoping area by means of decreased BRQD values. For further
analysis, it was assumed that these localised values did not have a significant impact on the overall blastability index.

Table 9: Summary of geotechnical parameters by rock type within the stoping area, where N represents sample size.

Parameter AND ANDAQTZE BREC QTZFSPPO SERQTZE VOLCCL
RQD
BRQD [%] 53 ± 33 82 ± 18 70 ± 27 76 ± 23 65 ± 31 79 ± 20
RQD [%] 61 ± 36 88 ± 17 77 ± 29 83 ± 23 72 ± 33 86 ± 20
N BRQD 68 285 373 649 465 287
RMR
RMR [-] 57 ± 14 72 ± 11 69 ± 11 71 ± 11 62 ± 16 72 ± 12
N RMR 68 285 373 636 443 287
Joint Roughness Occurrence
Rough 5.9% 8.4% 9.4% 8.8% 5.4% 10.5%
Slightly rough/discoloured 42.6% 65.6% 84.5% 76.1% 52.0% 63.8%
Slickensided/biotitic/chloritic/altered 39.7% 18.9% 4.3% 12.2% 28.8% 20.2%
Slickensided/slippery/talcic/altered 11.8% 6.7% 1.9% 2.8% 12.0% 5.2%
Gouge/clay/strongly altered 0.0% 0.4% 0.0% 0.2% 1.7% 0.3%
N JointType 68 285 373 649 465 287
Joint Fill Occurrence
0 mm 5.9% 8.4% 10.2% 8.9% 2.8% 11.1%
0–1 mm 85.3% 89.5% 86.9% 88.4% 87.1% 85.7%
1–5 mm 8.8% 1.8% 1.6% 2.2% 7.8% 2.8%
5–100 mm 0.0% 0.4% 1.1% 0.3% 2.4% 0.3%
>100 mm 0.0% 0.0% 0.3% 0.2% 0.0% 0.0%
N JointFill 68 285 373 649 464 287
Joint Spacing Occurrence
Very Close (< 5 cm) 30.9% 3.5% 12.3% 5.8% 14.9% 4.9%
Close (5–20 cm) 57.4% 49.5% 66.2% 56.4% 57.1% 42.9%
Moderate (20–60 cm) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Wide (60–200 cm) 11.8% 46.7% 21.4% 37.3% 28.0% 50.5%
Very Wide (> 200 cm) 0.0% 0.4% 0.0% 0.5% 0.0% 1.7%
N JointSpacing 68 285 373 636 443 287

39
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5.1.2. Joint Orientation
As noted in Section 4.1.2, limited free faces were available for direct joint orientation analysis. To reinforce the
assumption that the dominant joint alignment aligns with the principal stress direction, a natural break observed
in Stope S7a was evaluated. Figure 30 presents the stope scan, the interpreted discs, and the resulting stereonet.
The discs were generated using GEM4D by fitting planes through three-point selections. The orientations from the
overbreak region on the hanging wall were considered representative of natural jointing, not induced by blasting. A
total of 18 randomly selected discs were analysed, producing a stereonet with a well-defined WSW–ENE striking set,
characterised by steep dips. This trend is consistent with the inferred principal stress orientation reported in regional
studies and supports structural interpretation. The minor dispersion in the pole orientation suggests the presence of a
secondary joint set, which is also visible in the discs and Figure 15c. These joints are much shorter than the dominant
set and roughly oriented perpendicular to the free face, which could mean that these were blast-induced.

Figure 28: S7 stope scan and created
discs

Figure 29: S7a stereonet including poles of
individual discs

Figure 30: Orientation analysis of S7 overbreak

5.1.3. Laboratory Test
Machine Calibration
Corrections for machine compliance were applied as described in Section 4.1.3. The true elastic domain was identified
to begin at approximately 40 MPa, where the stress-strain response becomes linear. Figure 31 shows the Young’s
modulus fitted from the calibration tests, alongside the apparent 𝐸 values. As expected, the results confirm that a
greater amount of support steel between the LVDTs and the rock specimen increases the required correction factor.
For example, Setup 0, where the LVDTs were most separated from the sample by support steel, shows a difference in
measured Young’s modulus of nearly 40 GPa. In contrast, Setup 2, which had the least support interference, shows a
difference of less than 10 GPa compared to the elastic modulus of the pure aluminium reference sample.

Figure 31: Machine calibration test with aluminium sample.
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Unconfined Compressive Strength Test
Here the UCS results are discussed per rock type, this includes the type of failure and the overall behaviour of the
rock type. Photographs of the broken specimen were taken and can be found in Appendix B.

Sericite Quartzite
The sericite quartzite samples (SERQ, Figure 33) demonstrate brittle mechanical behaviour, with UCS ranging from 65
to 129 MPa. Stress-strain responses vary: samples like SERQ6015_6025 and SERQ6755_677 show slightly more strain,
likely due to extended seating before elastic loading. All specimens exhibit a clear peak followed by a rapid drop in
stress, indicative of brittle failure. The samples were noted to be competent with some texture, suggesting moderate
grain interlocking or foliation. The stiffness is relatively consistent and moderate, with low Poisson’s ratios reflecting
limited lateral expansion. Radial strain remains low during loading and increases sharply near failure, which is a
typical brittle signature. Most samples failed by shearing along a single plane, more or less aligned with foliation,
especially in SERQ6365_6380. SERQ6015_6125 was an exception, failing due to a mix of double shearing and axial
splitting and being the only sample that did not break catastrophically. This could suggest that while failure was
generally structurally guided, pre-existing fractures or other local heterogeneities can locally alter the mode of failure.

Andesite
The andesite samples (AND, Figure 34) show a much wider range, with UCS values between 88 and 354 MPa. Elastic
behaviour is much more variable between samples, with moderate to high stiffness. Samples AND1353_1354 and
AND6875_689 reached the highest strengths and failed explosively, reflecting high internal energy storage and brittle
release. Both were mineralised and competent; therefore, one could argue that the failure was structurally driven
along the planes of weakness near the mineralised zones. AND136_13615 and AND1201_1201 failed along single shear
planes, although the latter’s failure mode closely resembled a large spalling event. AND131_13115 showed multi-plane
shear, consistent with its pre-existing fractures. While AND600_6015, fractured in multiple directions but remained
intact, probably due to lower peak stress. Radial strain across samples increases sharply near the peak, aligning
with brittle failure. Despite variable peak strength, the failure modes in all samples were abrupt and structurally
controlled, with mineralisation and existing fractures strongly influencing fracture geometry and severity.

Volcaniclastic
The volcaniclastic samples (VOLCL, Figure 35) show UCS values between 68 and 143 MPa, with variable elastic
moduli and low Poisson’s ratios. All samples are mineralised and competent, with varying degrees of texture
and fracturing. VOLCL843_844 failed cleanly along a single shear plane, while VOLCL9315_933 underwent multiple
severe spalling events prior to a final shear failure, which could be explained by its reported fracturing and miner-
alisation. These events inhibited finding a clear linear elastic domain and, therefore, it is left out of the summary
table. VOLCL1023_10245 and VOLCL1277_12785 failed by axial splitting and some minor spalling during loading.
VOLCL7445_746 failed by a combination of axial splitting and shearing, although the elastic curve appears artificially
steep, best explained by an error arising from the LVDT setup. Differences in failure geometry and post-peak
behaviour indicate that volcaniclastic is hard to predict, which aligns with the expectation of the rock type, since
volcaniclastic is generally seen as a rock type consisting of multiple minor rock types. At first glance, it appears that
textural and structural variations, such as foliation, spalling, and pre-existing defects, are a major control to how
brittle failure manifests in this group.

Andalusite Quartzite
The andalusite quartzite samples (ANQTZ, Figure 36) show varied UCS values between 48 and 369 MPa, with high
elastic moduli and low to moderate Poisson’s ratios, again indicating strong and competent rock. All samples were
mineralised and structurally intact prior to testing, although the failure modes vary. ANQTZ13185_132 broke along a
pre-existing fracture with a clean shear plane, which explains its lower UCS. ANQTZ1831_1833 and ANQTZ22195_2221
experienced axial splitting and end-to-end spalling, typical of quartz-rich rocks under high stress, but with ambiguous
final failure surfaces (Jaeger et al., 2007; Paterson & Wong, 2005). ANQTZ224_22415 showed a similar failure pattern,
though it reached the highest UCS of the group, it remains unclear whether this reflects a true UCS failure or is
affected by progressive end-to-end spalling. ANQTZ1084_1085 developed small, erratic fractures and likely underwent
axial splitting, although no full separation occurred. Post-peak stress drops are present but more gradual in some
samples, particularly those that did not fully fracture, suggesting that energy was dissipated through internal cracking
and spalling. In general, the rock type behaves as strong and brittle rock, but variable failure geometries and in-
complete breaks in some specimens reflect how some failure events, such as spalling, could mask the actual UCS failure.

Breccia
The breccia samples (BREC, Figure 37) exhibit UCS values from 95 to 419 MPa. BREC15705_15715 shows a steep linear
increase in stress followed by a relatively gradual post-peak decline, consistent with axial splitting at a lithologic
boundary and significant spalling, expected behaviour of a layered breccia. In contrast, BREC935_9365 shows a
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near-linear elastic response followed by a sharp, catastrophic stress drop with minimal post-peak strain, aligned
with its explosive failure and highest UCS in the group. BREC7655_767 and BREC2133_21345 both show well-defined
elastic regions and abrupt drops, though the former suggests more energy absorption prior to failure due to the high
number of fractures resulting in double shear/axial split mode. BREC19345_1936 has a relatively muted peak and
continues to deform after partial stress drop, suggesting a more progressive, non-catastrophic failure, likely due
to high internal texture, which can be confirmed by prior observation of the sample. BREC1947_19485 presents a
comparatively low UCS and lower stiffness, this can be explained by the fully cross-cutting fracture present in the
sample suggesting initial slip and failure along the existing shear fracture due to crack propagation. Most samples
show radial dilation near failure and display brittle to quasi-brittle characteristics. Despite heterogeneities resulting
in different UCS values, the degree of seating is relatively constant among the specimens.

Quartz Feldspar Porphyry
The QTZFP samples (Figure 38) show relatively consistent behaviour with UCS values ranging from 84 to 399 MPa
and moderate stiffness. All samples show relatively gradual post-peak failure, indicating quasi-brittle failure. The
failure modes were fairly consistent, QTZFP17055_1707 had a clean double-plane shear failure. QTZFP1764_17655 and
QTZFP178_17815 both exhibit low strength with broader peaks and more gradual post-peak behaviour, reflecting
the notes on pre-existing full cross-cut fractures. The former did not fully break but showed extensive shear and
axial cracking, while the latter failed primarily along the brecciated zones that ran through the core, consistent
with the axial splitting seen in the specimen. QTZFP186_18615 shows axial splitting and severe early spalling, with
major post-peak deformation, matching its limited fracturing. QTZFP9215_923 exhibits the highest UCS and showed
continuous ejection of quartz chips during loading, which can also be seen in the radial strain values. This supports an
interpretation of progressive spalling rather than a clean fracture event. Overall, the porphyry group is characterised
by very strong, quasi-brittle behaviour with a consistent post-peak response depending on the degree of inter-
nal texture, brecciation, and fracture concentration. Similarly to the breccia specimen, initial seating was fairly constant.

Cross-Group Trends and Condition-Based Observations
Despite the limited dataset, a cross-comparison of all rock types reveals consistent trends between pre-failure sample
descriptions and geomechanical performance. Figure 32 presents a hypothetical mechanical index calculated as the
product of UCS and Young’s modulus (E). Samples described as ’competent’ show the highest UCS and stiffness
within 3/5 rock groups, with the exception of the sericite quartzite and andesite group, where a more random
distribution is observed. In contrast, specimens exhibiting pre-existing defects generally score lower on the index.
In addition, a study of the correlations between UCS and stiffness suggests that competent samples show a strong
positive relationship, while fractured or cross-cut specimens show no consistent trend. Due to the small sample
size, the plots supporting the correlation analysis have been omitted. Although indicative patterns were observed,
claiming statistical significance would be misleading. Furthermore, alterations are also shown in Figure 32. These do
not show logical trends, since, for example, the alteration of topaz (T) should theoretically increase the strength of the
rock. Thus, one may conclude that, assuming the alteration was logged correctly, the condition of the sample has a
much greater influence on the rock’s UCS and stiffness than the alteration level.

Figure 32: Specimen conditions and alteration versus geomechanical index (UCS x Stiffness).



5.1. Index Variables 43

Figure 33: UCS stress-strain plot for Sericite Quartzite.

Figure 34: UCS stress-strain plot for Andesite.
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Figure 35: UCS stress-strain plot for Volcaniclastic.

Figure 36: UCS stress-strain plot for Andalusite Quartzite.
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Figure 37: UCS stress-strain plot for Breccia.

Figure 38: UCS stress-strain plot for Quartz Feldspar Porphyry.
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5.2. Blastability Indices
5.2.1. BI and FBI output measures
The calculated index variables were used to generate both the BI and the FBI for the six most common rock types
present within the stope (Table 10). The table shows the ranges and mean values of the calculated BI and FBI with an
additional normalised column for easier comparison and interpretation. For the mean BI, it can be seen that andesite
is generally classified as the rock type that is easiest to blast, followed by breccia, sericite quartzite, volcaniclastic,
porphyry and finally andalusite quartzite, which emerges as the most difficult to blast.

Unlike the BI outcome, the mean FBI returns a slightly varied ranking. Andesite and sericite quartzite rank as the
rock types that are easiest to blast, with breccia, volcaniclastic, porphyry, and andalusite quartzite once again being
the most difficult. This indicates how the FIS, with varying ranges of inputs, groups some of the rock types into
corresponding blastability rankings because of the properties of the MFs and the rule base.

In addition to the base results, Table 10 also includes a ’competent’ version of the two indices (BIcomp and FBIcomp)
calculated from only the UCS values of the most intact and least disturbed samples to calculate the rock hardness input,
H. From Table 32 we can see that not all rock types tested had competent samples, in these cases the highest value was
taken as the most competent sample of the rock type. The use of this competent subset is considered appropriate, as the
RMD already captures the structural aspects of the rock. Therefore, competent samples should be used when calculat-
ing the H. However, the extremely limited sample size requires this method to be a trial instead of the main calculation.
The BI values are unsurprisingly higher, as higher H values are fed into the BI calculation. However, the FBI mean
values are lower or remain unchanged, with the exception of porphyry, where the competent subset showed an increase.

Table 10: Comparison of input variables, BI and FBI outputs, and their normalized scores across rock types.

Input Variables BI Outputs FBI Outputs Normalized (1-10)
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Andesite 20–50 15 25 20–25 4–18 42–67 51 55 30–70 50 50 1 1 1 2
Andalusite Quartzite 40–50 30 25 20–33 2–18 58–78 69 71 45–78 70 70 10 10 10 10
Breccia 20–50 15 25 20–37 5–21 42–74 58 62 30–70 54 54 4 3 5 4
Porphyry 30–50 30 25 16–18 4–20 53–71 65 70 30–67 57 60 8 4 9 6
Sericite Quartzite 20–50 30 25 18–21 3–6 48–66 59 60 30–58 50 47 4 1 3 1
Volcaniclastic 40–50 30 25 18–23 3–7 58–68 64 65 39–70 55 50 8 3 6 2

It can be argued that the competent mean FBI values seem non-sensical, as intuitively it does not make sense for
the value of the index to remain unchanged or even decrease when input variables such as UCS increase. However,
this phenomenon is an immediate result of the way MFs have been defined and used. In the competent case, the
MFs were recalculated solely on the basis of the diminished set of competent UCS samples. This ensures that the
fuzzy system evaluates the blastability in accordance with these more constrained conditions. However, because
fuzzy logic relies on relative membership grades in the provided fuzzy sets, an absolute increase in input values does
not always lead to a proportionally higher FBI score. Rather, the recalibrated membership functions redistribute
the competent UCS values throughout the entire recalibrated range. This advantageously maintains the internal
distinction within the competent range, but tightens the total spread compared to the original wider dataset. The
most dramatic example is the porphyry rock type, where a single competent UCS entry populates the competent
MF. Accordingly, when the input data range is limited to only competent samples, the FIS’s ability to identify
very subtle differences in rock competency can be impaired if MFs overlap too much at the high end of the scale,
like in the porphyry case. Overlapping reduces the strength of related fuzzy rules and can lower defuzzified FBI scores.

However, application of the competent subset still provides useful contrast for certain rock types with clearly more
pronounced intact strength characteristics, such as breccia and porphyry, which show a more distinct contrast in their
index values in the BIcomp and FBIcomp tests. This indicates that the indices can be used flexibly to provide a more
adequate representation of expected in situ rock mass conditions, or increase contrast between rock types. In short,
the results highlight that while the BI responds as expected to increased input values, the FBI must pay sharp focus to
the definition and adjustment of MFs whenever the input data range changes. This is crucial to be able to produce
significant differences between the indices and maintain them as valid.
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On another note, it is observed that the ranges of different input parameters, especially RMD, RDI, and H, are
still relatively wide. This is mainly due to the intrinsic variability of geotechnical parameters, such as the large
standard deviation of BRQD values, the lower number of density and UCS test data and inherent natural rock mass
heterogeneity. Consequently, there is a tendency for the mean input values of some variables to cluster around an
inner value, potentially reducing the degree of contrast that would otherwise be present in the resulting indices. For
example, the range of RMD of andesite is 20 to 50, indicating that high competency and high fracturing andesite were
noted in the geotechnical logs. Although such data may be partially lost when only the mean BI or FBI is used, it is
still visible when observing the ranges of indices.

Lastly, indices must somehow explicitly contribute to facilitate the decision process for the D&B method. It is
therefore essential that they are able to capture and express significant blastability differences without overstatement
of differences created from uncertainty or lack of data. This can be done by being careful with what input variables
are brought into play and by adjusting the relative weights of each input according to the confidence in their accuracy.
For example, as indicated in Section 4.1.2, it is assumed that the JPO value is the same for all types of rock because it
is derived from a single natural fracture orientation and the principal stress directions. Furthermore, in reality, JPO
should include the adopted slot position within the stope, which depends further on practical considerations such as
the accessibility of the jumbo drill, safety, and the shape of the stope. In addition, indices like these do not account
for the influences of localised anomalies such as faults or water-bearing fractures. In spite of these constraints, the
outcomes confirm that judicious selection and weighting of input parameters have the potential to supplement the
ability of both the BI and the FBI to formulate more efficient contrast of blastability conditions in the stopes. The
subsequent sections elaborate further on the practical relevance of these observations and detail how the indices can
be used to improve the usability of the indices.

5.2.2. Sensitivity Analysis and Model Comparison
To assess performance of the BI and FBI it is critical to assess the sensitivity to input changes and how flexible it is
under varying conditions. Additionally, comparing how the BI and FBI models compare when subjected to changing
variables will help to establish an understanding of whether the use of a more mathematically and computationally
complex system is worthwhile in a practical decision-making perspective.

Weight-based
The Lilly BI index has a certain arrangement of weights, which favours the structural condition of the rock mass over
its density and hardness. The FBI, despite building upon Lilly’s BI, does not. Fine-tuning weights to find site-specific
requirements is even encouraged (Azimi et al., 2010). In order to achieve this, a variety of weight-sets was created as
such:

Weight Sets (RMD, JPS, JPO, RDI, H) =



Equal : [1, 1, 1, 1, 1]
H_high : [1, 1, 1, 1, 3]
RDI_high : [1, 1, 1, 3, 1]
Structure_high : [2, 2, 2, 1, 1]
JPO_zero : [1, 1, 0, 1, 1]

resulting in FBI results per rock type that show their sensitivity to weight changes (Figure 39).

Figure 39: Weight-based Sensitivity Tested FBI Results.

All rock types exhibit variability of FBI scores across the different weighting scenarios, confirming context-dependent
blastability. Prioritising hardness generally increases FBI for all rocks except sericite quartzite. Increasing the influence
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of density creates a variable response from the different rock types, which may indicate that some rock type density
data are more stable than others. Removal of the JPO factor has another effect, which tends to increase FBI values in
all lithologies. Stable rock types such as volcaniclastic vary minimally between scenarios and display consistent blast
performance, while other rock types like porphyry and andalusite quartzite are extremely sensitive to weighting
choices. All this variability shows the importance of aligning blastability models with the locally dominant conditions
in each stope. Assigning wrong weights to inputs could lead to over- or underestimation of blast performance,
especially in the more sensitive lithologies. However, stable materials might yield more predictable blast outcomes.

Morris Method
Another method of sensitivity analysis is the Morris method, this statistical screening tool that aids in identifying the
influence of single variables in the system. Each input variable is iterated over its full theoretical range as defined
by the scoring tables or membership functions, while keeping the others stationary. In doing so, metrics on the
importance of the variables (𝜇∗) and their nonlinearity or interactions with other variables (𝜎) can be compared. This
method therefore can therefore give quick insight into the most influential inputs. Analysis was performed on both
models as can be seen in the following. One should be aware that the nature of the method is stochastic. In other
words, numerical differences may appear in 𝜇∗ and 𝜎 on different runs. However, the relative ranking should and
does remain stable.

Table 11: Morris Sensitivity Results for the FBI and BI Models.

Parameter FBI BI
𝜇∗ 𝜎 𝜇∗ 𝜎

RMD 20.10 7.85 20.00 0.003
JPS 20.40 7.51 20.00 0.003
JPO 20.40 6.18 15.00 ≈0
RDI 19.20 8.25 10.32 ≈0
H 20.40 6.81 9.28 0.003

Table 11 captures the behaviour of the models. For BI, one can now clearly see that input dominance is fully dictated
via fixed scoring, as expected. This shows that the model its code is performing as designed. The small interactions
and non-linear behaviour seen in the BI results stem from numerical precision limits of the Morris method and should
be interpreted as insignificant noise. In contrast, the FBI shows more equal influence distributions and interactions
through fuzzy rules. The FIS flattens the sharp differences between variables, reflecting the purpose of the model.
This also demonstrates the intended design. It makes a direct one-to-one comparison difficult, yet shows the inherent
purpose of both models. The BI was built to follow Lilly’s reasoning and expertise to follow the relative weight of
variables. However, the FBI aimed at blurring the lines of sharp boundaries and tailoring them to be applicable for
the Kankberg site by allowing higher levels of contrast.

Overall Model Comparison
Finally, one can compare the overall outcome of the two models and scenarios per rock type. Figure 40 shows three
entries in the two radar plots, one being the BI and the other two being the FBI results. The plot on the left shows the
standard UCS handling, and the competent scenario shows the results if only the competent samples are retained.
Looking at the standard scenario, one can observe a shape mismatch between the BI and the FBI with equal weights.
Unsurprising due to weighting differences that the original FBI inherently has compared to the BI. Therefore, an
additional weighted FBI run was performed with roughly the same weighting as Lilly’s BI. Table 11 was used to
derive new weights for the 5 input variables, respectively [2, 2, 1.5, 1, 1]. The similarity in shape of this run with the BI
shows that weighting is the dominant factor between the models’ shape differences. The BI shows relatively worse
blastability scores than the FBI model, because its sharp scoring transitions force it to be more conservative. The FBI,
on the other hand, shows higher levels of smoothing; one extreme value is not enough to push the entire blastability
assessment to be more conservative. This is reflected in their size differences. The other radar plot, the competent
scenario, shows much more erratic values. As discussed previously, this unstable behaviour and lack of harmony
between BIcomp and FBIcomp (Lilly weights) is a result of the changed MFs and the lack of data to build these new ranges.

All in all, one can observe that the equal-weighted or the Lilly-weighted fuzzy index illustrates how expert judgment
about dominant rock mass controls, in this case the relative importance of structural versus mechanical properties,
can significantly influence blastability predictions. This underlines the adaptability of the fuzzy system and highlights
the importance of proper site calibration of both the FIS weights and the addition of expert knowledge in the form of
new fuzzy rules.



5.3. Measure While Drilling Rock Index 49

Figure 40: BI and FBI radar plots (normalised).

5.3. Measure While Drilling Rock Index
5.3.1. Processing Pipeline
The 26 drill holes in the S7_a opening slot were processed using the methodology inspired by Navarro et al. (2021), with
additional adaptation for time-based filtering and additional depth normalisation due to site-specific observations.
This has been thoroughly discussed in the methodology section; however, here some figures will highlight the
processing steps. With the exception of depth normalisation, which was previously shown in Figure 26.

The initial data contained 1993 rows of unique observation points. The initial removal of the pauses longer than three
minutes resulted in the additional removal of 16 rows. Removal of rod additions contained the most severe filtering,
where 358 unique rows were discarded. Figure 41 shows the removal of the rod, leaving a much cleaner and more
realistic data set. Finally, outliers were removed from the set, resulting in the removal of an additional 182 rows due
to the removal of 2% of the most distant data.

Figure 41: Raw and processed penetration rate of an arbitrary hole.

5.3.2. Factor Trends and Cross-hole Consistency
Following the processing pipeline, structural and strength factors could be calculated based on the results of the
PCA analysis. In every hole, one or both factors exhibit expected fluctuations with depth. Although some spatially
adjacent holes are in good agreement with each other, such as the holes shown in Figure 42. In contrast, one can
also observe the contrary, as shown in Figure 43. It must be considered that these figures depict smoothed signals,
where a rolling window of five samples is used to denoise the logs as much as possible for ease of interpretation. In
reality, these factors sometimes interpolate between gaps of a metre wide to account for all the removed data that
were removed whilst filtering. Due to interpretation being extremely difficult for disconnected strength factors, it was
opted to connect them either way. However, this also introduces extra levels of potential error. Additionally, despite
the argument that long-term changes in the SuF, SeF and RF may indicate different geologic units. It can also be a
signal from mechanical grounds. Unaccounted for drill bit deterioration could be the perpetrator if the SeF tends to
creep upward with depth.

Figure 42 shows overall well-structured data that behave relatively stable across different holes. High peaks in the SuF
predicatively coincide with lows in the SeF. Structurally massive rocks often exhibit higher strength values, as observed
in the UCS test results. Based on the holes O7_H3, O7_H4 and O7_H5 one could argue that the MWD is truly capturing
geological features. However, other drill holes suggest the opposite. Figure 43 is an example of how some spatially
adjacent holes showed inconsistent and geologically unconvincing trends. For example, holes O6_H8 and O6_H9
show vastly different behaviours, with comparatively stable rock factors along the extent of the holes. It is unlikely, but
not impossible, that the behaviour of the rock mass will change over such short lateral distances. Another plausible
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explanation is the disturbance of the geologic signal by mechanical noise. Despite a signal being present, it is almost
completely filtered out by a stronger non-geologic signal. Without ground-truth data, there is no method to confirm
or disprove these suspicions. It therefore illustrates the expected and inherent difficulties of handling coarse MWD data.

To study the cross-hole consistency of the data, one had to compare the adjacent drill holes with respect to every hole.
Appendix D containing Figure 54 shows the three derived factors: SuF, SeF and RF for the S7 and S0 openings. One
can observe the drill hole correspondences or disagreements. In order to create these figures and conduct a proper
analysis, the author ensured a valid comparison between the holes. To evaluate spatial consistency in SuF, SeF and RF,
the author computed pairwise comparisons between each drillhole and its five nearest neighbours based on lateral
collar position. For the continuous variables (SuF and SeF), the Pearson correlation coefficients were calculated by
interpolating each pair’s values over their overlapping depth interval. For the categorical RF, the fraction of exact
string matches between nearest-neighbour interpolated profiles along the same depth range were computed.

Figure 42: Three adjacent holes that show similar trends for their structural, strength and rock factors.

Figure 43: Three adjacent holes that show erratic behaviour in their structural, strength and rock factors.

5.3.3. PCA Variance for Factors
Table 12 summarises the variance explained by the first two principal components for both factors in the two analysed
areas. Across datasets, PC1 captures approximately 31–46% of the variance, with PC2 contributing a further 20–27%,
yielding 58–67% in the PC1–PC2 plane. This indicates that a single dominant pattern exists but is not overwhelming;
variance is distributed across multiple dimensions. Compared with Navarro et al. (2021), whose calibration data
exhibited stronger one-dimensionality (SuF: PC1 47%, PC2 18%; SeF: PC1 89%, PC2 6%), the present results are
expected given the smaller number of holes and coarser sampling rate. In addition, cross-hole comparisons in this
study reveal both aligned and divergent factor trends, consistent with genuine short-range geological heterogeneity
that no single component should dominate, while residual mechanical influences likely remain even after processing.
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Table 12: PCA explained variance for SuF and SeF determination.

Dataset Factor PC1 (%) PC2 (%) PC1+PC2 (%)
S7_a_642 SuF 36.98 26.39 63.36
S7_a_642 SeF 46.25 21.06 67.31
S0_612 SuF 40.61 20.12 60.73
S0_612 SeF 30.71 27.46 58.17

Consequently, PC1 should be interpreted as a first-order trend index rather than a complete reconstruction of rock
behaviour. A prime example is the SeF of the S0_612 dataset, where PC2 (27.5%) is close to PC1 (30.7%), suggesting at
the current stage of data availability that a two-component view would be more believable than a PC1-only projection.

5.3.4. Comparison with Geology and BI
Attempts to cross-reference the structural classifications of the MWD with the geological model were inconclusive.
The geological model itself is interpolated at a broader scale and does not significantly reflect the observed variation
in the MWD signals. The geological model identifies two geological units in the S7_a opening drill path. These are a
sericite host rock and a porphyry unit extending like a bubble. Almost all drillholes pass the porphyry unit at some
point, some of them even re-enter the sericite unit. However, no clear indication is observed in the MWD data that
shows a clear border between geologic units. This is unsurprising at best, since the geological model is usually just an
indicator of the location of geologies. However, without confirmation what lithology is drilled at a certain moment
in time makes linking the BI and FBI difficult. At no moment could one be sure that they are corresponding the
right MWD logs with the correct geological unit. In the worst case, unreliable MWD data will cloud the original BI
estimates. Table 13 shows the distributions of the RF in the two geological units for not only S7, but also S0. For
S7, the data show mainly that both geologic units contain a mix of structural conditions, and a trend that stands
out is the Heavily Fractured-Weak class, being the largest contributor for the porphyry rock type and the second
largest contributor in the sericite unit. Massive-Strong is a strong contributor in a similar fashion. This may indicate
that these conditions are not limited to a single lithology and are more widespread. The weighted mean RF allows
comparison between lithologies despite different drill meterage, by assigning scoring to every subclass from 1 to 9.
Here, one can observe that the two porphyry units are in average matched, but not with respect to their classes.

Table 13: Rock Factor distribution by lithology (%), with weighted mean RF score.

Breccia (S0) Porphyry (S0) Porphyry (S7) Sericite (S7)

Drill meterage (m) 238.4 26.9 208.0 334.0

HeavilyFractured–Weak 13.3 14.0 28.4 20.6
HeavilyFractured–Moderate 11.3 18.4 8.0 7.1
HeavilyFractured–Strong 8.2 7.7 0.3 2.5
Fractured–Weak 15.2 2.2 7.9 10.1
Fractured–Moderate 15.2 22.3 18.8 14.3
Fractured–Strong 12.1 6.7 7.7 12.8
Massive–Weak 5.6 9.3 — 1.5
Massive–Moderate 7.4 12.7 9.4 7.6
Massive–Strong 11.7 6.7 19.5 23.6

Weighted mean RF (1–9) 4.74 4.61 4.68 5.14

A qualitative assessment can be made by comparing the BI/FBI input variables with the MWD factors. In Table 13, it
can be seen that the average sericite signal receives the highest RF score. This is striking since this gradation of the RF
values does not align with the BI/FBI ranges presented in Table 10. Overall, RF indicates that porphyry and breccia
may be less competent and more blastable than their high BI/FBI values imply. Whereas the opposite applies for
sericite. Significant sections of heavily fractured material can be seen, yet the BI suggests a more competent rock.
Together, this could be an indication of the value of integrating MWD to capture fine-scale structural weakness. This
is essentially the difference between these data. Input variables tailored for BI/FBI operate at macro-scale, whereas
MWD operates at meso-scale. Where one captures an averaged damage signal at 30 cm and every anomaly influences
the outcome, the other uses more broader structures like BRQD over longer pieces of core designed for large-scale
faces.



6
Design Implications

This chapter first describes how the Kankberg stopes are categorised into zones of expected blast performance using
fuzzy and empirical blastability. Then, describes how these indices can be used in conjunction with real-time MWD
signals, although they are currently limited, to verify or improve local drilling conditions. Instead of presuming
rock mass homogeneity, the framework combines insights to offer a rational foundation for differentiating drill and
blast design parameters, such as burden, spacing, and timing. Since site-specific empirical calibration and post-blast
reconciliation are necessary, precise design values are not recommended here. This would be misleading. Rather,
the scenarios and real-world considerations that are presented are meant to serve as a proof-of-concept to direct the
development of feedback loops and pilot testing in the future. Given its influence on overall stope performance, the
opening slot raise is the main focus for these implications.

6.1. Forecasting with Blastability Indices
Based on the BI/FBI values obtained per stope, one can strategically adjust design parameters. BI/FBI outputs will be
the first tool that a drilling and blasting engineer will look at to assess the condition of the rock mass. Essentially, an
engineer is free to use the tools at his disposal freely. Tools, such as the BI/FBI, can and should be complemented by
expert knowledge.

Hypothetically speaking, an engineer can prefer to save as much money as possible by drilling as little as possible
while maintaining proper blast results. This could be achieved by using two slot designs, respectively, design A and B.
Design A is conservative, requires more drill meterage, and more preparations in terms of positioning the equipment.
On the other hand, design B uses a much more aggressive approach. It is faster, cheaper, but also more risky. The
aggressive slot design will allow for fewer blastholes and reamed holes, subsequently reducing the required drill
meterage, bit replacement, and time spent in a hazardous environment, with the downside of lowering the void ratio.
Designs A and B should not be considered as the best slot option, as extensive testing is required to validate the
design, and a vast amount of variations are possible.

So, the BI/FBI highlight the stopes within the stoping area that can be considered for initial testing of less-conservative
and efficient designs. Therefore, it should be used as a guide for the next steps of optimisation. For the proposed
designs, we split the stoping area into four quartiles (Figure 45). the first quartile of blastability values have relatively
favourable blasting conditions and are suitable for less conservative setups, the second and third quartiles are seen as
a transition zone and should be further analysed, and the fourth quartile is considered to have unfavourable blast
conditions and should be approached with a conservative design to limit losses and/or secondary blasting.

6.1.1. Drill Patterns
Figure 44 shows 4 opening slots. Two of them (a and b) were used in the Kankberg mine. Slots c and d are borrowed
from the literature. The slots all contain different void ratios; in here, the global void ratio represents Chandrakar et al.
(2023)’s method, as introduced in Section 2.4.2. The local void ratio is added, as suggested in Lovitt and Collins (2013).
They argue that the global void ratio is a meaningless variable because it is extremely unlikely that all the reamers in
the area would be connected by the first shot. A valid concern, but certain studies, such as Chandrakar et al. (2023)’s,
indicated the global cut area against blast outcomes. Therefore, the author finds both to be necessary for potential
future comparisons with other research.
Based on the respective void ratios, the suitability of a slot to the more aggressive or conservative role can be
determined. The most costly by far is the Kankberg slot (a), which requires 10 reamed holes, 26 holes in total, and not
even the best void ratios to balance the effort. The second slot, also used in Kankberg, is the Double Burn/Box slot, or
simply referred to as the Double Idiot by mine workers (since even idiots can blast a slot with this pattern). Even
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though the name is humorous, it still has more than double the proportion of voids for the global and slightly less
than double for the local. At the cost of one extra blasthole, but 3 less holes to ream. One potential disadvantage is
tighter hole spacing, which requires more careful drilling. Also, there are 7 lines of holes to be layed out, meaning
more repositioning of drill rigs. However, this thesis is based on the assumption that the cost of additional reamer
drill bits and reaming will exceed the cost of time lost in drilling an additional blasthole and extra positioning. In
addition, because of the extra blasthole, the Double Burn/Box/Idiot slot can fit extra explosives to be put inside the
hole. This, in turn, creates space to expand the powder factor in case it is needed. But measurements taken after a
blast have also shown that the material was too powdery. That would suggest patterns with lower powder factors can
work well. This is where the literature-based Double Burn/Box/Idiot slot (c) comes into the equation. It requires
a wider spacing, thus lowering the void ratio since there are fewer holes and more area. This slot is unique in its
design from the others because it is more protective of the blastholes due to shielding with reamer holes, and thus the
freezing risk is minimal. In addition, the spacing is wider and less sensitive to poor drilling accuracy. The last slot,
the Swedish slot (d), is also unique. If drilling deviations cannot be controlled to be less than 1-2%, this method offers
a good alternative for better drilling outcomes. Its global void ratio is better than the other slots and will guarantee
the creation of a void. However, there are major disadvantages, such as that there is no protection for adjacent holes,
which can result in misfires, and the need for specialised equipment to conduct parallel drilling.

(a) (b)

(c) (d)

Figure 44: Selection of multiple openings slot designs.
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Figure 45: FBI quartiles across stoping area.

Slot Selection Logic
The void ratio, drill effort, reaming costs, and operational risk are all trade-offs for the slot options mentioned in
the previous section. The BI/FBI framework identifies areas where design changes may be warranted rather than
dictating a single "best" slot. At this stage, the variations among stopes might not justify distinct slot designs for every
stope due to the thesis’s comparatively small range of FBI values. However, the index can be used to rank which
stopes should be used by default for conservative designs and which ones are best suited for testing more aggressive,
less expensive slots. MWD signals aid in improving these choices by offering an additional real-time check on local
drillability conditions.

6.1.2. Worked Example: Stope S7a
Stope S7a was classified in the lowest FBI quartile and shows a relatively variable MWD-derived Rock Factor for its
opening slot, indicating generally favourable blast conditions. Data suggest consistent but locally variable drillability,
with signs of fractured zones that could help fragmentation if handled with care. Given these conditions, the frame-
work would recommend considering a more aggressive slot raise pattern in S7a as a pilot test. For example, switching
from the current Kankberg slot, which is reaming intensive and costly, to a Double Burn/Box slot which reduces
drill meterage, bit wear, and rig time by using fewer reamed holes. However, slightly variable Rock Factor trends
highlight that local zones of stronger rock or unexpected structure may still exist. Therefore, the site engineer should
treat MWD signals as a last-moment check: fine-tuning charging and delay timing if variable rock is encountered
during drilling. Considerations such as delay timing should then follow from the literature, as described in Section 2.4.2.

The S7a scenario shows how FBI and MWD together provide a data-informed basis to trial a less conservative design
where risk is acceptable. Post-blast reconciliation of fragmentation, CMS, and actual drill deviation would be critical
to confirm whether the design is benefiting from the framework. Either way, insights from this pilot could then feed
back into adjusting the pattern selection for future stopes with similar conditions.



7
Discussion

This thesis aimed to develop a rock parameter-based framework for blast design, with more efficient and adaptive
practices as the main goal. Through a combination of a literature study, laboratory tests, data processing, and
modelling, this work sought to find insights on how the D&B cycle could take a step up from a pure trial-and-error-
based approach to a more scientific way of working. The document explored why and how rock breakage occurs,
showed that blastability indices and MWD data can offer useful information for better decisions, and tested how well
they work together. On top of that, a full conceptual implementation of this was created to support the feasibility
of this framework. This chapter will bring together the main points and take a critical look at what worked, what
did not, and what it all means. The primary objective here is to keep things honest, outlining where this framework
stands today, what gaps still exist, and what would need fixing before any pilot test is conducted. The chapter will
first review the work before giving follow-up recommendations.

7.1. Limitations of the Framework
The principal benefit of this framework is that it moves Kankberg’s D&B planning beyond a uniform drill pattern
towards a more risk-ranked and flexible approach. Despite its constraints, the framework encourages site engineers
to reconsider assumptions about rock mass homogeneity and to weigh when conservative versus more aggressive
designs may be appropriate. This has clear operational relevance. In more competent rock masses, even modest
reductions in drilled metres can result in significant savings, especially given low penetration rates and high bit wear.
Currently, data-driven design decisions are not yet routine practice in Kankberg. Introducing a blastability index,
supported by fuzzy logic and MWD data, represents a step towards a more informed and potentially semi-automated
planning process. Over time, if MWD measurements correspond well with blastability predictions, confidence in this
approach could increase. A further advantage is that it does not depend on expensive new equipment, but rather
on improved use of existing data, standard laboratory analyses, and routine MWD logging. However, it remains
clear that the framework is in a conceptual stage. The following sections summarise the key methodological and
data-related limitations and highlight areas that would benefit from additional development.

7.1.1. Methodological Limits
The limitations of the framework must be clear before any pilot tests are conducted. First of all, it is important to
recognise that rock type characteristics, which build this framework, are only one part of blast performance. Other
critical factors, such as charging accuracy, timing, groundwater, and wave propagation behaviour, strongly influence
breakage but are not explicitly captured in the framework. Some of these aspects were discussed in the theoretical
background because of their importance in understanding the underlying factors at play, but they remain outside the
scope of the current model and should be acknowledged as areas for future integration.

Blastability Indices
Adopting Lilly’s BI is reasonable given its widespread use in mining and some applications underground (Alipour
et al., 2018; Azimi et al., 2010; Z. Zhou et al., 2024). However, the original scoring system was not specifically
developed for complex underground environments. For instance, the powder factors for underground slot raises are
typically much higher than for surface operations (Dyno Nobel Asia Pacific Pty Limited, 2025), which complicates the
transferability of the outputs between sites. Nevertheless, within this framework, relative differences between stopes
are of greater interest than absolute BI values, which partially mitigates this limitation.

The fuzzy logic-enhanced model offers a clear improvement in managing uncertainty and smoothing abrupt transitions
that can arise with crisp threshold approaches. However, fuzzy systems rely on rule bases that are inherently subjective
and require reliable expert input. In this thesis, the fuzzy MFs and the rule base were defined by the author. Although
this provided workable outputs, the subjectivity of these definitions means that the results may vary between
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practitioners. So, this work demonstrated a simple rule set to illustrate the concept, but application would realistically
require further calibration with experienced blasters and site engineers to ensure that the rules are representative
of local conditions. A poorly defined rule base or poorly calibrated membership functions could undermine the
reliability of the model. Furthermore, from the sensitivity analysis it was evident that small changes in weighting
produced additional variations in the FBI values, again stressing the need for expert judgement and close observation
of the rock mass. The results also showed that the volcaniclastic rock type was relatively insensitive to weighting
choices, whereas porphyry and andalusite quartzite showed much stronger dependence. This means that data from
certain rock types might be more contradictory with respect to blasting, requiring further investigation and calibration.
Although a sensitivity analysis was performed, alternative defuzzification methods were not tested. If different
defuzzification strategies produce divergent outputs, this would indicate the need for further refinement. Despite
these concerns, the fuzzy logic approach represents a practical upgrade, as it allows more realistic transitions between
classification boundaries.

MWD Rock Factor
Incorporating MWD data to reflect local rock variability is a promising aspect of this framework and supports the
validation of the blastability index to some extent, in addition to being complementary information for the D&B
engineer. However, MWD data are known to be affected by several external factors, including rig settings, sensor
calibration, bit wear, and hole depth. Although this thesis accounted for depth-related effects, other influences, such
as bit replacement timing, were beyond the scope of the project. Future work should include improved data collection
practices and, where possible, additional validation methods such as borehole imaging as performed in Navarro
et al. (2021) to cross-check MWD trends. This is stressed by the PCA analysis, where PC1 explained relatively little
variance. In the results section, it was speculated that it is probably due to the small and noisy data set. However, the
PCA results hint at a potential multidimensional factor to describe the rock mass. For follow-up studies, it is therefore
encouraged to explore both, by increasing available MWD data and experimenting with higher dimensionality for the
indices, contrary to Navarro et al. (2021).

Another important consideration is that MWD-based models cannot be transferred directly between rigs or sites
without recalibration. Site-specific lithologies, rig configurations, and operational practices must be considered to
avoid misclassifications. However, just like with the indices, the main concern here is to compare stopes with one
another instead of looking at the absolute values. This reduces the associated problems with this limitation. In general,
MWD data can add significant value to the blastability framework but should be treated as a complementary tool
rather than a standalone predictor. This is illustrated by its potential to give contradictory results to the blastability
indices. Cross-hole comparisons were mixed, with some poor alignment for rock types compared to the BI’s, which
likely highlights that small-scale heterogeneity and operational artefacts both affect RF stability much more than the
BI inputs. This mismatch illustrates the challenge of reconciling meso- versus macro-scale features, yet also showcases
its strength to be able to study the rock at different scales.

7.1.2. Data Limits
In addition to methodological considerations, the success of the framework ultimately depends on the quality and
representativeness of the input data. The geological model, laboratory test results, and MWD signals must be
consistent and closely aligned with the actual conditions in the stoping area. Sparse, biased, or poorly reconciled data
will inevitably affect the reliability of the output. This is not a specific concern for this thesis; models always have to
be mindful of RIRO (Rubbish in, Rubbish out).

The input variables for BI were derived from geotechnical logs, laboratory tests, and some underlying assumptions.
While parameters such as RMD and JPS are standard practice, the data set showed high variability, reflecting the
inherent heterogeneity of the site. The JPO was estimated on the basis of a single natural fracture, which may represent
conditions throughout the entire stoping area. However, this claim is, qualitatively speaking, very uncertain. In
practice, additional face-mapping would be required to refine this input. Similarly, the RDI and H values were based
on a limited number of laboratory samples, many of which contained pre-existing fractures. Ideally, tests would
be performed on fully competent samples to better capture intact rock strength, as recommended by ASTM and
ISRM standards (ASTM International, 2017; Ulusay & Hudson, 2007). A ‘competent only’ version of the BI/FBI
was also developed to illustrate how intact samples affect index scores. However, the small number of competent
samples available means that this scenario still carries its own uncertainties. Additional sampling would be required
to strengthen this input. Point-load tests, which have been conducted previously, could, despite their drawbacks,
complement UCS measurements to increase confidence in these inputs.
The quality of the geological model is equally important. If this is inaccurate or outdated, the resulting blastability
classifications will per definition be unreliable. Although the current data set was sufficient for a proof-of-concept,
broader and more representative sampling would be essential for field application.
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The MWD data set used in this study was relatively consistent, but sometimes noisy. This was reflected in stope
S7a, where inconsistent depth tags and other data inconsistencies do reduce confidence in the RF despite general
geological agreement in examples given in the results section. Furthermore, the sampling interval (one reading
per 30 cm) may not capture fine-scale variability, especially since rod additions every 1.83 m can overlap multiple
data records. Interpolation and smoothing were used here for simplicity, but in practice, over-smoothing should be
avoided to retain meaningful variations. Furthermore, cross-checks with borehole videos or face mapping would
help verify that trends are genuine and not operational artefacts.

7.1.3. The Feedback Loop
Perhaps the most significant limitation (and opportunity) lies in developing a robust feedback loop. This framework
relies on comparing the predicted blastability with the actual blast performance. Although CMS surveys provide
valuable input, their data may by itself prove insufficient to pinpoint all factors that contribute to over- or under-
break, let alone fragmentation. Therefore, additional fragmentation data would be highly beneficial, particularly
since the BI/FBI output can be correlated with powder factors using site-specific equations, as suggested by Lilly (1992).

Establishing this feedback loop would require site engineers to track predicted versus actual results and update the
model over time. Although this is sensible in theory, it requires ongoing discipline and allocation of site resources,
which may not always be available. However, without it, even the best models will drift from practical reality.
Embedding this practice into standard procedures is therefore essential if the framework is to remain useful and
reliable.

7.1.4. Implications on Design
Realistically speaking, some parts of the framework are easier to implement than others. For example, translating
MWD anomalies into immediate charging or timing changes requires experience and clear protocols, which Kankberg
does not yet have.

The use of a BI/FBI to forecast blast conditions is an obvious next step to improve performance and achieve more
consistent results. However, since no testing has been done, it is uncertain whether the BI/FBI outcomes, which
were relatively similar in value, justify the use of several opening slot designs. Furthermore, slot raises are extremely
sensitive to drill deviation. An aggressive pattern that works on paper may freeze if the void space is not opened
as intended or if the holes deviate more than anticipated. The risk of a misfire is higher, which means that site
engineers will naturally favour conservative designs unless they trust the classification system. The example of Stope
S7a illustrated this tension. Although FBI values suggested opting for a more aggressive slot pattern, unvalidated
models will make site engineers reluctant to adopt such changes without pilot evidence, especially for stopes that are
too costly too lose due to misfiring slots. So, practical gains must outweigh operational risks. Saving drill metres by
switching to a more aggressive slot pattern only makes sense if the predicted gains hold up under normal drilling
variability. At this stage of development, many uncertainties remain. Some can be addressed fairly easily, while others
require more effort and new equipment.

7.2. Future Work
The results and limitations in the previous section tackle several directions for further research and practical testing.
These steps are key if the framework’s reliability and practical value is to be improved and the framework is to
move beyond a conceptual stage. This section will aim to provide some critical future work directions, with a final
recommendation on prioritisation of points.

7.2.1. Data Improvements
A clear and relatively straightforward path for improving the framework is to strengthen the input variables, though
some improvements are more realistic than others. For example, while it is easy to demand a more accurate geological
model, the reality is that Kankberg’s model already contains more detail than other Boliden mines. What would
make an immediate difference is to add existing PLT-data, despite its drawbacks, to increase confidence in the UCS
results that feed into the blastability index. Another practical improvement is better structural mapping. This is
critical, not only for the D&B engineer aiming for optimal blast performance, but also for the geotechnical engineer
monitoring safety. Although engineers cannot observe the stope before blasting, they do have access to a free face near
the stope. Routine mapping will help refine the JPO values and verify assumptions that currently fill the framework’s
gaps. Lastly, Schmidt-Hammer testing could be used to indirectly estimate UCS values. Although this method is less
accurate than lab tests, its main strength is that it is inexpensive and easy to use. If applied consistently, for example
during mine rounds, it could help build a larger dataset of estimated UCS values over time. With enough data points,
statistical trends guided by laboratory tests as benchmarks can make these estimates more reliable.
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With regard to MWD, the first thing that needs immediate action is the way data are recorded and stored. The
gathering of MWD data is extremely valuable now and is most likely for advanced projects at a later stage. However,
current data storage is unacceptable. MWD data handling will need more refined storage, clear naming, no duplicates,
and no concatenated files, preferably at a higher sampling rate to allow for more aggressive filtering of noise and lower
data losses during processing. If this does not happen, the data will be wrongly recorded, and, without time-intensive
data handling as in this thesis, will essentially compromise the data’s value. In addition, if possible, MWD signals
should be validated with borehole cameras. Although precise alignment between the signal and actual conditions is
less critical when simply reinforcing the BI/FBI, it becomes essential if the MWD data are to be used for last minute
adjustments in the charging plan.

7.2.2. Method enhancements
The methods used in this framework are generally sound. The thesis does not rely on untested concepts but combines
approaches with proven track records. Lilly’s BI, Mamdani FIS, and a modern approach to MWD data have all shown
their practical use in other studies and are merely synthesised to work towards a common goal. These are considered
sophisticated enough to justify moving towards pilot testing. However, enhancements are still recommended. The
rule base and membership functions should be refined with input from site experts, and the weights of the input
variables could be adjusted as more reliable data becomes available. Under the assumption that the input data
adequately reflect actual blast conditions, future work should use real blast outcomes to calibrate the framework. This
would allow the blastability index to be tuned to local conditions and improve its predictive value.

7.2.3. Closing the Feedback Loop
Embedding quantitative reconciliation into the D&B cycle is essential to close the feedback loop and move beyond a
static conceptual framework. This means that every blast should become a learning opportunity. Several options for
obtaining meaningful post-blast data were discussed in this thesis. Of these, routine particle size distributions are the
most practical and are directly related to blast performance. For example, CMS surveys can be complemented by
straightforward fragmentation checks, such as muck pile photo analysis, to test if the predicted blastability aligns
with real breakage results on the ground. In the long term, the D&B cycle should not stop at static classification of
blastability. Once basic post-blast tracking becomes standard, the next step is to add simple fragmentation modelling
alongside the blastability tool. This would create a continuous loop where design, execution, and reconciliation feed
each other, so that design assumptions can be adjusted based on data before problems become costly. Without this
feedback loop, the framework might inevitably drift from reality.

7.2.4. Pilot Testing
Pilot testing is the logical next step, potentially after inclusion of better input data and routine reconciliation are in
place. Some pilot work can already be performed at Kankberg without major new equipment or major workflow
changes. For example, stopes classified in the most favourable FBI quartile can be used to trial a less conservative slot
raise design under controlled conditions. This would test whether the predicted lower blastability actually translates
to practical cost or time savings, such as fewer drilled metres or faster slot development. At this stage, performance
should be carefully measured. Practical metrics, such as metres drilled, void opening success rates, powder factor
used, and basic fragmentation checks, should be recorded for each pilot. Any misfires or unexpected results should
feed back into the blastability index and fuzzy rules, rather than being dismissed as outliers. Routine MWD logging
can also be used during these pilots to compare real-time Rock Factor trends with the predicted FBI zones. Even
if the MWD data are not yet used for live pattern adjustments, it can already show whether the trends match the
conceptual model. Over time, consistent agreement would build trust in the framework; consistent divergence would
highlight the need to revisit the input variables. To manage operational risk, these pilots should be staged. Early
tests should stay low-risk by focussing on stopes with favourable conditions, where a more aggressive pattern has a
lower chance of freezing or misfire. In other words, pilot tests should prove the benefits of the framework step by
step, not by chasing maximum savings in one attempt. Figure 46 shows the desired feedback loop that this thesis
conceptualises. It encompasses the full methodological flow, from the use of the blastability tool in the design phase,
up to quantitative monitoring of post-blast metrics.
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8
Conclusion

This thesis set out to improve blasting in the Kankberg stopes. It aimed to develop a data-driven design framework
that would not only be relevant for site-specific implementation, but also have utility outside of Kankberg. Erratic
blasting performance in the stopes incentivised the need to move away from trial-and-error approaches and move to
more efficient systems. It became apparent that the understanding of blasting within the mine operations was limited.
Therefore, a thorough theoretical background and study area analysis showed why the suggested system matters,
what proper reconcilliation can look like, and how the operation will benefit from a more data-informed system. To
achieve this, the research itself focused on forecasting the blastability of stopes using geotechnical data, since this was
readily available. This was achieved by a combination of fundamental theory, site-specific data, laboratory tests, and
the implementation of a fuzzy logic system to show how, mainly geotechnical properties, can support better design
practices in sublevel stoping.

Through the integration of an industry-recognised BI with fuzzy logic and additional MWD support, the study
demonstrated that it becomes feasible to classify stopes into zone of expected blastability and acknowledged how
design decisions can flow from these tools. One should note that the system is not a novel method, courtesy of the
author, but relies on grounded and accepted methods. The novelty here arises from the synthesis and site-specific
adaptation of these methods. At the same time, the thesis stresses that the predictive power of the framework is
constrained at the conceptual stage. Key limitations include unquantified uncertainties with respect to the effectiveness
of multi-pattern blast strategies, the lack of high-quality reconciliation metrics, and other practical factors. These
include disregard for the influence of groundwater, explosives, and many other factors that are present to some
degree in the D&B landscape. The data that fed the blastability indices, especially laboratory tests, were limited by
the low number of available samples and the additional assumptions that filled the gaps in the blastability input, such
as the JPO. Lastly, the current MWD Rock Factor only covered a single stope, however, to show the true effectiveness
of the Rock Factor one would need to compare the blastability and Rock Factor of at least two stopes. If trends point to
the same direction, this would suggest that the models perform as intended.

Despite these existing gaps, the thesis shows, on a conceptual level, that feeding geotechnical data into a fuzzy-
enhanced blastability index and routine MWD check can help engineers move towards a more risk-assessed and
flexible way of working. It forces the practitioner to critically evaluate their designs, without simply copying designs
from other mines. The biggest strength of the framework is that it initially builds on practical, accessible methods
that are already available in the Kankberg mine and combines them together for greater practical utility. In addition,
suggestions for further development of the framework from a concept stage towards real implementation are layed
out, aiming to make the system as ready as possible for piloting.

In summary, the findings of the thesis address the research questions as follows:

• How can site-specific data be used to classify stopes based on their expected blast performance to inform D&B design?

Through the combination of various geotechnical data streams, such as geotechnical core logging and laboratory
tests, a blastability index can be synthesised. Fuzzy logic effectively enhances the original empirical method.
This results in a final single metric that classifies stopes from a mainly geotechnical perspective. If increased
confidence is desired, the use of more representative sampling, pilot testing, and the inclusion of overlooked
parameters, such as explosive parameters, is required.

• To what extent does MWD data support the blastability index as a valid predictor of rock behaviour during blasting?

MWD Rock Factors trends are theoretically able to support the blastability index. Local drilling signals, which
are not fed into the blastability index, can validate or challenge blastability forecasts, but at the current stage of
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the framework, more validation of rock factor using borehole imagery, trials across multiple stopes are crucial to
truly pinpoint effectiveness.

• How can theory, blastability index results and MWD data guide theoretical improvements in opening slot design?

A worked scenario highlighted that using the FBI classification as a tool for deciding whether a stope is suitable
for more aggressive or conservative slot patterns. However, practical risks, such as drill deviations, which
current data indicate to be severe, mean that any design changes should be pilot tested under strict conditions
(i.e. deviation measurements, meticulous reporting of operational hiccups) before widespread adoption is
advisable.

Together, these subquestions answer the main research question:

• How can rock mass data be used for an actionable drill and blast methodology to improve operational efficiency in the
sublevel stoping area of Kankberg? This thesis shows that by structuring site-specific rock data into a fuzzy
enhanced blastability index and complementing it with real-time MWD trend checks, engineers can make more
informed pattern choices. Although the framework is conceptual, it provides a practical basis for adaptive
design decisions that can reduce unnecessary drilling and manage risk, if paired with routine reconciliation to
maintain alignment with site conditions.

Essentially, the study demonstrates that while the framework is not yet a ready-to-go design tool, it is a practical
first step towards next generation adaptive, non-erratic and lower-cost D&B operations in Kankberg, and potentially
other mines with similar conditions. If the feedback loop is systematically embedded in D&B design cycle, with
better data discipline, routine reconciliation, and proper collaboration between operators and engineering teams, this
approach can evolve from a concept product to a site-customised tool that reduces wasteful drilling and improves
overall blasting results.
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A
BI Scoring Tables

Table 14: Refined scoring ranges for Lilly’s BI input parameters.

Parameter Description / Classification Score

RMD BRQD < 25% (friable) 10
BRQD 25–50% (moderate) 20
BRQD 50–65% (moderately competent) 30
BRQD 65–80% (competent) 40
BRQD > 80% (massive, intact) 50

JPS Very close spacing (< 5 cm) 10
Close spacing (5–20 cm) 15
Moderate spacing (20–60 cm) 30
Wide spacing (60–200 cm) 45
Very wide spacing (> 200 cm) 50

JPO Joints sub-horizontal / parallel to face 10
Joints dipping out of face 20
Joints striking normal to face 30
Joints dipping into face 40

RDI Calculated from density (𝜌) as 𝑅𝐷𝐼 = 25 · 𝜌 − 50 —

H Calculated from UCS as 𝐻 = 0.05 ·𝑈𝐶𝑆 —

Table 15: Fuzzy input variable configuration for the Fuzzy Blastability Index (FBI). Triangular membership functions were used in all cases. SGI
and UCS use site-specific minimum and maximum values from laboratory testing.

Variable Unit Range Fuzzy Terms MF Type
RMD — 10–50 Very Low, Low, Medium, High, Very High Uniform
JPS (Spacing Score) — 10–50 Very Close, Close, Moderate, Wide, Very Wide Uniform
JPO (Orientation) — 10–40 Very Favourable, Favourable, Neutral, Unfavourable,

Very Unfavourable
Uniform

RDI — 16.03–36.67 Very Light, Light, Medium, Dense, Very Dense Data-driven
UCS — 2.4-20.95 Very Soft, Soft, Medium, Hard, Very Hard Data-driven
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B
UCS Test Results

A. Detailed Test Results
Table 16: Summary of UCS test results, dynamic properties, and elastic parameters by sample (corrected UCS values)

Sample Rock Type UCS (MPa) E (GPa) 𝝂 [-] 𝑹2 Density (kg/m3) Vs / Vp (m/s)
SERQ6015_6025 SERQ 129 46 0.037 0.992 2711 2868 / 4136
SERQ6105_6120 SERQ 97 55 0.049 0.992 2713 3100 / 4502
SERQ6365_6380 SERQ 65 34 0.091 0.992 2747 2369 / 3532
SERQ6755_677 SERQ 119 47 0.064 0.997 2837 2781 / 4073

SERQ mean ± std 103 ± 27 46 ± 9
AND131_13115 AND 130 50 0.127 0.992 2839 2807 / 4296
AND1353_1354 AND 354 130 0.139 0.979 2977 4384 / 6769∗
AND136_13615 AND 88 44 0.067 0.993 2818 2703 / 3968
AND60_6015 AND 160 70 0.066 0.995 3011 3309 / 4853
AND6875_689 AND 182 75 0.206 0.917 2965 3232 / 5314

AND mean ± std 183 ± 96 74 ± 34
VOLCL1023_10245 VOLCL 107 48 0.064 0.998 2729 2867 / 4200
VOLCL1277_12785 VOLCL 143 48 0.090 0.994 2929 2739 / 4081
VOLCL7445_746 VOLCL 68 211 0.071 0.956 2767 5964 / 8775∗
VOLCL843_844 VOLCL 87 47 0.098 0.996 2753 2773 / 4154

VOLCL mean ± std 101 ± 33 89 ± 82
ANQTZ1084_1085 ANQTZ 170 73 0.081 0.999 2865 3435 / 5088
ANQTZ13185_132 ANQTZ 48 40 0.067 0.999 2872 2567 / 3767
ANQTZ1831_1833 ANQTZ 208 111 0.119 0.999 3318 3860 / 5870
ANQTZ22195_2221 ANQTZ 341 95 0.110 1.000 2825 3892 / 5879
ANQTZ224_22415 ANQTZ 369 97 0.099 1.000 2801 3976 / 5960

ANQTZ mean ± std 227 ± 121 83 ± 28
BREC15705_15715 BREC 307 100 0.087 0.999 3111 3843 / 5714
BREC19345_1936 BREC 120 69 0.097 1.000 2804 3340 / 5001
BREC1947_19485 BREC 95 47 0.112 0.999 2805 2740 / 4146
BREC2133_21345 BREC 105 103 0.093 1.000 3198 3847 / 5741
BREC7655_767 BREC 175 108 0.084 0.999 3467 3788 / 5620
BREC935_9365 BREC 419 91 0.076 0.999 2866 3838 / 5667

BREC mean ± std 204 ± 109 86 ± 24
QTZFP17055_1707 QTZFP 208 67 0.076 1.000 2709 3399 / 5018
QTZFP1764_17655 QTZFP 89 58 0.145 1.000 2648 3096 / 4805
QTZFP178_17815 QTZFP 84 52 0.092 0.999 2693 2977 / 4442
QTZFP186_18615 QTZFP 198 70 0.055 1.000 2646 3550 / 5173
QTZFP9215_923 QTZFP 399 83 0.050 1.000 2641 3859 / 5608

QTZFP mean ± std 196 ± 114 66 ± 12
∗ Extreme outlier values flagged based on unrealistic high wave velocities or modulus.
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B. Photographs of Broken Specimen
B.1. Sericite Quartzite

(a) SERQ6105_6120 (b) SERQ6015_6025

(c) SERQ6365_6380 (d) SERQ6755_677

B.2. Andesite

(a) AND131_13115 (b) AND1353_1354 (c) AND136_13615

(d) AND600_6015 (e) AND6875_689
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B.3. Volcaniclastic

(a) VOLCL1023_10245 (b) VOLCL1277_12785

(c) VOLCL7445_746 (d) VOLCL843_844

B.4. Andalusite Quartzite

(a) ANQTZ1084_1085 (b) ANQTZ13185_1320 (c) ANQTZ1831_1833

(d) ANQTZ22195_2221 (e) ANQTZ224_22415
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B.5. Breccia

(a) BREC15705_15715 (b) BREC19345_1936 (c) BREC1947_19485

(d) BREC2133_21345 (e) BREC7655_767 (f) BREC935_9365

B.6. Quartzite Feldspar Porphyry

(a) QTZFP17055_1707 (b) QTZFP1764_17655 (c) QTZFP178_17815

(d) QTZFP186_18615 (e) QTZFP9215_923



C
Rule Base Constraints

To ensure geological consistency in the FIS for the FBI, a series of plausibility constraints were applied during
rule generation. These constraints exclude combinations of input parameters deemed structurally or mechanically
contradictory based on standard principles handpicked by the author.

1. RMD = very low and JPS = very wide
A rock mass with a very low RMD score indicates highly fractured or poor-quality rock. Such a condition is
inconsistent with widely spaced joints, which typically occur in more intact rock masses.

2. RMD = very high and JPS = very close
Conversely, a very high RMD score suggests intact, high-quality rock, which is unlikely to exhibit closely spaced
jointing. This combination is geotechnically contradictory.

3. UCS = very soft and RDI = very dense
Very soft rocks are typically weathered, porous, or otherwise structurally degraded. It is unlikely for such
materials to exhibit high density. However, this constraint should be treated with some caution, given that UCS
values may vary depending on sample integrity and testing method.

4. UCS = very hard and RDI = very light
Dense rocks are generally correlated with higher strength. While it’s rare for very lightweight rocks to exhibit
very high UCS, exceptions can occur due to unique mineralogy or internal cohesion. Therefore, this rule was
also applied conservatively.

Of course, rare but possible geological exceptions exist, they may be addressed via expert judgment on a case-by-case
basis, but not considered here.
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D
Cross-hole Consistency

Figure 53: Cross-hole similarity networks for the derived SuF, SeF and RF (S7a_642).
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Figure 54: Cross-hole similarity networks for the derived SuF, SeF and RF(S0_612).



E
Python Code

Note: The code formatted as shown here was cleaned and structured with the help of an AI-assisted formatting to improve the
interpretability for other users. The code was rerun to verify the correct alignment with the original code.

A. BI & FBI

BI Computation
1 import numpy as np
2 import pandas as pd
3

4 def assign_rmd_scaled(brqd_mean):
5 if brqd_mean < 25:
6 return 10
7 elif brqd_mean < 50:
8 return 20
9 elif brqd_mean < 65:

10 return 30
11 elif brqd_mean < 80:
12 return 40
13 else:
14 return 50
15

16 def compute_weighted_jps(spacing_dist):
17 scores = {’Very␣Close’: 10, ’Close’: 15, ’Moderate’: 30, ’Wide’: 45, ’Very␣Wide’: 50}
18 total = sum(spacing_dist.values())
19 if total == 0:
20 return None
21 weighted_avg = sum(scores.get(k, 0) * v for k, v in spacing_dist.items()) / total
22 return min(scores.values(), key=lambda x: abs(x - weighted_avg))
23

24 def calculate_rdi(density):
25 return round((density / 1000) * 25 - 50, 2)
26

27 def assign_h(ucs):
28 return round(0.05 * ucs, 2)
29

30 def calculate_bi(rmd, jps, rdi, h, jpo=25):
31 return 0.5 * round(rmd + jps + rdi + h + jpo, 2)
32

33 def compute_bi(df, spacing_lookup , properties_lookup):
34 df = df.copy()
35 df[’RMD’] = df[’BRQD_mean’].apply(assign_rmd_scaled)
36 df[’JPS’] = df[’RockType’].map(lambda rt: compute_weighted_jps(spacing_lookup.get(rt, {})))
37 df[’UCS’] = df[’RockType’].map(lambda rt: np.mean(properties_lookup.get(rt, {}).get(’UCS’, np.nan)))
38 df[’Density’] = df[’RockType’].map(lambda rt: np.mean(properties_lookup.get(rt, {}).get(’Density’, np

.nan)))
39 df[’RDI’] = df[’Density’].apply(lambda d: calculate_rdi(d) if pd.notnull(d) else None)
40 df[’H’] = df[’UCS’].apply(lambda u: assign_h(u) if pd.notnull(u) else None)
41 df[’BI’] = df.apply(lambda row: calculate_bi(row[’RMD’], row[’JPS’], row[’RDI’], row[’H’]) if pd.

notnull(row[’H’]) else None, axis=1)
42 return df
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FBI Computation
1 import itertools
2 from collections import defaultdict
3

4 def create_triangular_mfs(var_range , labels):
5 min_val, max_val = var_range
6 step = (max_val - min_val) / (len(labels) - 1)
7 mfs = {}
8 for i, label in enumerate(labels):
9 if i == 0:

10 mfs[label] = [min_val, min_val, min_val + step]
11 elif i == len(labels) - 1:
12 mfs[label] = [max_val - step, max_val, max_val]
13 else:
14 center = min_val + i * step
15 mfs[label] = [center - step, center, center + step]
16 return mfs
17

18 def percentiles_to_mfs(p_vals, labels):
19 return {
20 labels[0]: [p_vals[0], p_vals[0], p_vals[1]],
21 labels[1]: [p_vals[0], p_vals[1], p_vals[2]],
22 labels[2]: [p_vals[1], p_vals[2], p_vals[3]],
23 labels[3]: [p_vals[2], p_vals[3], p_vals[4]],
24 labels[4]: [p_vals[3], p_vals[4], p_vals[4]],
25 }
26

27 def fuzzify(value, mf):
28 a, b, c = mf
29 if value < a or value > c:
30 return 0.0
31 elif value <= b:
32 return (value - a) / (b - a) if b != a else 1.0
33 else:
34 return (c - value) / (c - b) if c != b else 1.0
35

36 def is_plausible(combo):
37 rmd, jps, jpo, rdi, ucs = combo[’RMD’], combo[’JPS’], combo[’JPO’], combo[’RDI’], combo[’UCS’]
38 if rmd == ’very_low’ and jps == ’very_wide’:
39 return False
40 if rmd == ’very_high’ and jps == ’very_close’:
41 return False
42 if ucs == ’very_soft’ and rdi == ’very_dense’:
43 return False
44 if ucs == ’very_hard’ and rdi == ’very_light’:
45 return False
46 return True
47

48 def infer_output_term(combo, weights):
49 score_map = {’very_low’: 0, ’low’: 1, ’medium’: 2, ’high’: 3, ’very_high’: 4}
50 numeric = [score_map[t] * w for t, w in zip(combo, weights)]
51 avg = sum(numeric) / sum(weights)
52 if avg <= 0.8: return ’very_low’
53 elif avg <= 1.6: return ’low’
54 elif avg <= 2.4: return ’medium’
55 elif avg <= 3.2: return ’high’
56 else: return ’very_high’
57

58 def evaluate_fbi(inputs, config, debug=False):
59 fuzzified_inputs = {}
60 for var, val in inputs.items():
61 val = val * 0.05 if var == ’UCS’ else val
62 fuzzified_inputs[var] = {label: fuzzify(val, mf) for label, mf in config[’input_mfs’][var].items

()}
63

64 output_activations = defaultdict(float)
65 for rule in config[’rules’]:
66 strength = min(fuzzified_inputs[var].get(term, 0.0) for var, term in rule[’if’].items())
67 output_activations[rule[’then’]] = max(output_activations[rule[’then’]], strength)
68

69 numerator = sum(config[’output_terms’][term] * strength for term, strength in output_activations.
items())

70 denominator = sum(output_activations.values())
71 return round(numerator / denominator , 2) if denominator != 0 else None
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B. MWD Processing Pipeline
1 import numpy as np
2 import pandas as pd
3 from sklearn.decomposition import PCA
4

5 __all__ = ["make_master", "strip_rod_pauses", "depth_normalise",
6 "add_navarro_factors", "build_factors"]
7

8 def make_master(df_raw: pd.DataFrame ,
9 pct_clip: tuple[int, int] = (1, 99),

10 pause_s: int | None = 180,
11 depth_jump_m: float = 5.0,
12 rod_tol: float = 1e-3,
13 verbose: bool = True) -> pd.DataFrame:
14 counts = {}
15 n0 = len(df_raw)
16 df = df_raw.sort_values(["Hole", "DepthTag"]).copy()
17 counts["initial"] = n0
18

19 if "TimeTag" in df.columns and pause_s is not None:
20 dt = df.groupby("Hole")["TimeTag"].diff().dt.total_seconds().fillna(0)
21 df = df.loc[dt.le(pause_s)]
22 counts["pause_removed"] = n0 - len(df); n1 = len(df)
23

24 dz = df.groupby("Hole")["DepthTag"].diff().abs().fillna(0)
25 df = df.loc[dz.le(depth_jump_m)]
26 counts["depth_jump_removed"] = n1 - len(df); n2 = len(df)
27

28 mask = df["PenetrRate"].abs() > rod_tol
29 df = df.loc[mask]
30 counts["rod_removed"] = n2 - len(df)
31

32 phys_cols = ["PenetrRate","PercPressure","FeedPressure","RotPressure","DampPressure","FlushPressure"]
33 for c in phys_cols:
34 vals = df[c].dropna()
35 if len(vals) < 5:
36 continue
37 lo, hi = np.percentile(vals, pct_clip)
38 before = len(df)
39 df = df[df[c].between(lo, hi) | df[c].isna()]
40 counts[f"clip_{c}"] = before - len(df)
41

42 before = len(df)
43 df = (df.drop_duplicates(["Hole","DepthTag"])
44 .sort_values(["Hole","DepthTag"])
45 .reset_index(drop=True))
46 counts["duplicates_removed"] = before - len(df)
47

48 if "Rig" not in df.columns:
49 df["Rig"] = "R1"
50

51 if verbose:
52 print("make_master␣filtering␣summary:")
53 for k, v in counts.items():
54 print(f"␣␣{k:>22}:␣{v}␣rows")
55 return df
56

57 def strip_rod_pauses(df: pd.DataFrame ,
58 v_col: str = "PenetrRate",
59 zero_tol: float = 1e-3,
60 pad: int = 0) -> pd.DataFrame:
61 mask = df[v_col].abs() > zero_tol
62 if pad:
63 bad = (~mask).rolling(pad*2+1, center=True, min_periods=1).max().astype(bool)
64 mask &= ~bad
65 return df.loc[mask]
66

67 def depth_normalise(df_in: pd.DataFrame , degree: int = 2) -> pd.DataFrame:
68 """Subtract per-rig polynomial trend vs depth; add *Norm columns."""
69 df = df_in.copy()
70 rename = {"RotPressure":"RP","PenetrRate":"PR","PercPressure":"PP","FeedPressure":"FP","FlushPressure

":"FLP","DampPressure":"DP"}
71 for col, _ in rename.items():
72 norm_col = f"{col}Norm"
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73 df[norm_col] = np.nan
74 for rig, g in df.groupby("Rig"):
75 g = g[["DepthTag", col]].dropna()
76 if len(g) <= degree: continue
77 poly = np.poly1d(np.polyfit(g["DepthTag"], g[col], degree))
78 m = (df["Rig"]==rig)
79 df.loc[m, norm_col] = df.loc[m, col] - poly(df.loc[m,"DepthTag"]) + poly(0)
80 return df
81

82 def _rolling_variability(values: np.ndarray, depths: np.ndarray, half_m: float) -> np.ndarray:
83 out = np.empty_like(values, dtype=float)
84 for i, z in enumerate(depths):
85 win = (depths >= z-half_m) & (depths <= z+half_m)
86 x = values[win]
87 out[i] = np.abs(x - np.nanmean(x)).sum() if x.size else np.nan
88 return out
89

90 def _zscore(s: pd.Series) -> pd.Series:
91 return (s - s.mean()) / s.std() # pandas ddof=1
92

93 def _run_pca(df: pd.DataFrame , cols: list[str], out_col: str) -> None:
94 X = df[cols].dropna()
95 if X.empty:
96 df[out_col] = np.nan
97 return
98 X_std = (X - X.mean()) / X.std()
99 pca = PCA(n_components=2)

100 pcs = pca.fit_transform(X_std)
101 df.loc[X.index, out_col] = pcs[:, 0]
102

103 def add_navarro_factors(df_norm: pd.DataFrame , win_m: float = 0.6, smooth_n: int = 5) -> pd.DataFrame:
104 df = df_norm.copy()
105 for hole, g in df.groupby("Hole"):
106 idx = g.index; z = g["DepthTag"].to_numpy()
107 df.loc[idx, "PRvar"] = _rolling_variability(g["PenetrRateNorm"].to_numpy(), z, win_m)
108 df.loc[idx, "RPvar"] = _rolling_variability(g["RotPressureNorm"].to_numpy(), z, win_m)
109 df.loc[idx, "FPvar"] = _rolling_variability(g.get("FeedPressureNorm", pd.Series(index=idx)).

to_numpy() if "FeedPressureNorm" in g else np.full(len(idx), np.nan), z, win_m)
110

111 for v in ("PRvar","RPvar","FPvar"):
112 df[f"{v}_z"] = _zscore(df[v])
113 df["DI"] = np.sqrt(0.5*df["PRvar_z"]**2 + 0.5*df["RPvar_z"]**2)
114

115 _run_pca(df, ["PRvar_z","RPvar_z","FeedPressure","DI","PercPressureNorm"], "Structural_raw")
116 _run_pca(df, ["PenetrRateNorm","RotPressureNorm","FeedPressure","PercPressureNorm"], "Strength_raw")
117

118 for col in ("Structural_raw","Strength_raw"):
119 df[f"{col}_smooth"] = (df.sort_values(["Hole","DepthTag"])
120 .groupby("Hole")[col]
121 .transform(lambda s: s.rolling(smooth_n, center=True, min_periods=1).

mean()))
122 return df.rename(columns={"Structural_raw_smooth":"StructuralFactor",
123 "Strength_raw_smooth":"StrengthFactor"})
124

125 # PIPELINE
126 def build_factors(combined_mwd: pd.DataFrame ,
127 pct_clip: tuple[int,int]=(1,99),
128 pause_s: int | None = 180,
129 depth_jump_m: float = 5.0,
130 degree: int = 2,
131 win_m: float = 0.6,
132 smooth_n: int = 3) -> pd.DataFrame:
133 df = make_master(combined_mwd , pct_clip , pause_s, depth_jump_m)
134 df = depth_normalise(df, degree)
135 df = add_navarro_factors(df, win_m, smooth_n)
136 core = ["PenetrRateNorm","RotPressureNorm","FeedPressureNorm","PRvar_z","RPvar_z","FPvar_z"]
137 return df.dropna(subset=core, how="all").reset_index(drop=True)
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1388C59 90.35 4.03 5.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C61 3.55 82.85 0.00 0.00 1.62 0.00 11.93 0.06 0.00 0.00 0.00 0.00 0.00
1388CA2 0.00 43.29 0.00 0.00 0.00 0.00 52.05 0.00 4.66 0.00 0.00 0.00 0.00
1388CA9 4.63 81.04 11.08 0.00 0.00 0.00 0.00 0.84 2.42 0.00 0.00 0.00 0.00
1388C96 0.00 19.95 0.00 74.67 0.00 0.00 5.38 0.00 0.00 0.00 0.00 0.00 0.00
1388CD9 56.02 38.71 0.00 0.00 0.00 0.00 0.00 0.09 5.18 0.00 0.00 0.00 0.00
13D1818 0.00 25.72 0.00 0.00 0.00 0.00 71.37 0.73 2.18 0.00 0.00 0.00 0.00
1388CAE 0.18 31.11 0.00 51.60 0.00 0.00 12.25 3.89 0.97 0.00 0.00 0.00 0.00
1388CE2 0.00 81.24 0.00 0.00 0.00 0.00 0.00 18.76 0.00 0.00 0.00 0.00 0.00
1388C6F 28.31 28.73 15.88 24.26 0.00 0.00 0.06 2.75 0.00 0.00 0.00 0.00 0.00
1388C58 19.82 22.10 0.00 0.00 0.00 0.00 0.00 2.17 55.91 0.00 0.00 0.00 0.00
1388CD2 0.00 16.79 0.00 8.38 0.00 0.00 28.60 4.48 12.62 29.13 0.00 0.00 0.00
1388C51 0.00 7.33 0.00 0.00 0.00 0.00 0.00 92.67 0.00 0.00 0.00 0.00 0.00
1388CA3 0.00 54.43 0.00 0.00 0.00 0.00 35.15 10.42 0.00 0.00 0.00 0.00 0.00
1388CD4 0.00 98.94 0.00 0.00 0.00 0.00 0.13 0.00 0.94 0.00 0.00 0.00 0.00
1388CC3 0.00 58.09 12.61 0.00 0.00 0.00 0.00 29.30 0.00 0.00 0.00 0.00 0.00
1388CDD 0.00 85.63 0.00 0.00 0.00 0.00 14.35 0.02 0.00 0.00 0.00 0.00 0.00
1388C85 9.02 42.45 0.00 24.20 0.00 0.00 2.67 21.66 0.00 0.00 0.00 0.00 0.00
1388C4B 10.52 64.16 25.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388CAF 0.00 0.00 0.00 0.00 0.00 0.00 91.11 0.00 8.89 0.00 0.00 0.00 0.00
1388CC6 0.00 13.24 1.48 0.00 0.00 0.00 7.27 78.00 0.00 0.00 0.00 0.00 0.00
1388CBF 0.00 58.25 7.04 0.00 0.00 0.00 0.01 34.66 0.05 0.00 0.00 0.00 0.00
1388CA5 54.71 13.34 0.35 4.54 0.00 0.00 1.95 25.11 0.00 0.00 0.00 0.00 0.00
1388C9F 0.00 29.14 0.01 0.00 0.08 0.00 57.85 6.77 6.15 0.00 0.00 0.00 0.00
1388C93 0.00 0.00 0.00 0.00 0.00 0.00 25.58 70.44 3.98 0.00 0.00 0.00 0.00
1388CE1 0.00 36.53 0.00 0.00 0.00 0.00 51.83 11.64 0.00 0.00 0.00 0.00 0.00
1388CDF 34.26 29.34 0.00 0.00 0.00 0.00 19.33 17.08 0.00 0.00 0.00 0.00 0.00
1388CE6 0.00 37.01 12.57 0.00 0.00 0.00 0.00 50.42 0.00 0.00 0.00 0.00 0.00
1388CB0 0.00 27.41 0.00 0.00 0.00 0.00 62.51 0.00 10.02 0.06 0.00 0.00 0.00
1388C88 34.42 60.00 0.00 0.00 0.00 0.00 5.58 0.00 0.00 0.00 0.00 0.00 0.00
13D181D 0.00 10.31 0.00 1.36 0.00 0.00 88.33 0.00 0.00 0.00 0.00 0.00 0.00
1388C99 0.00 51.03 4.67 11.54 0.00 0.00 11.42 21.34 0.00 0.00 0.00 0.00 0.00
13D1819 0.00 25.77 0.00 0.00 1.48 0.00 66.69 0.00 6.06 0.00 0.00 0.00 0.00
1388C8C 0.00 34.41 0.00 9.51 0.00 0.00 17.08 38.24 0.76 0.00 0.00 0.00 0.00

Continued on next page
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1388C69 0.00 46.52 0.00 0.00 0.00 0.03 6.98 42.40 4.01 0.00 0.06 0.00 0.00
1388C71 0.78 66.27 0.00 1.48 0.00 0.00 0.15 32.41 0.00 0.00 0.00 0.00 0.00
1388C6C 0.00 81.54 0.00 0.00 0.00 0.00 0.00 18.46 0.00 0.00 0.00 0.00 0.00
1388C90 13.76 65.21 0.00 0.00 0.00 0.00 2.44 15.75 0.00 2.83 0.00 0.00 0.00
1388CB8 0.00 4.12 0.00 0.00 0.00 0.00 94.88 0.00 0.28 0.00 0.00 0.72 0.00
1388C81 1.72 30.09 0.00 0.00 0.00 0.00 0.00 0.00 68.19 0.00 0.00 0.00 0.00
1388CA6 0.00 78.17 15.48 0.00 0.00 0.00 0.00 0.00 6.35 0.00 0.00 0.00 0.00
1388C7F 0.00 83.15 0.00 0.00 0.00 0.00 0.21 16.64 0.00 0.00 0.00 0.00 0.00
1388CA7 0.00 0.00 0.00 2.46 0.66 0.00 89.69 0.00 7.19 0.00 0.00 0.00 0.00
1388CB7 5.58 44.72 0.00 0.00 0.00 0.00 0.00 49.70 0.00 0.00 0.00 0.00 0.00
1388CD7 0.00 62.27 0.84 14.56 0.00 0.00 14.14 6.14 2.05 0.00 0.00 0.00 0.00
1388CD6 0.24 3.61 0.00 1.13 0.00 0.00 74.99 18.35 1.68 0.00 0.00 0.00 0.00
1388CD5 49.70 27.74 0.00 0.00 0.00 0.00 17.33 5.22 0.00 0.00 0.00 0.00 0.00
1388C52 0.00 15.88 0.00 0.00 0.00 0.00 62.73 21.39 0.00 0.00 0.00 0.00 0.00
1388C64 0.00 71.15 0.00 0.00 0.00 0.00 28.85 0.00 0.00 0.00 0.00 0.00 0.00
14EE6F9 0.09 93.93 0.00 0.00 0.00 0.00 0.00 0.00 5.98 0.00 0.00 0.00 0.00
1388CB5 24.23 64.80 7.96 0.08 0.00 0.00 0.00 2.93 0.00 0.00 0.00 0.00 0.00
1388CDE 0.00 2.01 0.00 50.36 0.00 0.00 46.85 0.78 0.00 0.00 0.00 0.00 0.00
13D180D 0.00 94.78 0.00 0.00 0.00 0.00 5.22 0.00 0.00 0.00 0.00 0.00 0.00
1388CE5 0.00 63.27 2.16 0.00 0.00 0.00 24.85 9.71 0.00 0.00 0.00 0.00 0.00
1388C73 0.00 38.16 0.00 0.00 0.00 0.00 0.35 58.72 2.77 0.00 0.00 0.00 0.00
1388C75 64.02 35.63 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00
1388CC8 0.00 80.23 0.00 0.00 0.00 0.00 9.68 0.00 10.09 0.00 0.00 0.00 0.00
1388C5F 0.00 42.04 0.00 0.00 0.00 0.00 0.00 57.96 0.00 0.00 0.00 0.00 0.00
1388C72 0.00 19.28 0.00 0.00 0.00 0.00 3.11 54.09 23.51 0.00 0.00 0.00 0.00
1388C5A 3.30 66.84 16.16 8.23 0.00 0.20 0.61 3.45 1.20 0.00 0.00 0.00 0.00
1388C4F 24.63 25.31 0.25 0.00 0.41 0.00 12.39 23.52 13.50 0.00 0.00 0.00 0.00
1388C98 3.20 36.54 0.00 2.71 3.81 0.00 39.14 14.59 0.00 0.00 0.00 0.00 0.00
1388C67 8.96 91.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388CBC 0.20 1.19 0.00 27.67 0.00 0.00 38.58 32.16 0.18 0.01 0.00 0.00 0.00
1388C9B 42.56 57.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C4C 0.00 0.00 0.00 0.00 0.00 5.99 81.09 7.35 5.57 0.00 0.00 0.00 0.00
1388CCB 0.00 9.01 0.00 11.91 0.00 0.00 38.45 40.64 0.00 0.00 0.00 0.00 0.00
1388C82 0.41 33.62 0.00 0.00 0.00 0.00 0.75 12.12 53.09 0.00 0.00 0.00 0.00
1388C62 0.00 95.54 0.00 0.00 0.00 0.00 0.00 0.00 4.46 0.00 0.00 0.00 0.00
1388C4D 0.00 9.53 0.00 13.34 0.00 0.00 42.36 34.76 0.00 0.00 0.00 0.00 0.00
13D181A 0.00 36.07 0.00 0.00 0.00 0.00 61.09 0.00 2.84 0.00 0.00 0.00 0.00
1388C5B 0.00 86.65 0.00 0.00 0.00 0.00 10.16 3.18 0.00 0.00 0.00 0.00 0.00
1388C94 0.00 47.44 0.00 0.00 0.00 11.85 5.77 34.93 0.00 0.00 0.00 0.00 0.00
1388C5D 3.39 95.27 0.00 0.00 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.00 0.00
1388C66 0.36 4.63 0.00 0.00 0.00 0.00 0.00 58.90 36.11 0.00 0.00 0.00 0.00
1388C9A 0.00 3.68 0.00 30.01 0.00 0.00 66.25 0.00 0.05 0.00 0.00 0.00 0.00
1388C97 0.00 18.08 0.00 0.00 0.00 2.30 63.01 5.15 11.45 0.00 0.00 0.00 0.00
1388C6B 0.00 0.00 0.00 78.10 0.00 0.00 21.90 0.00 0.00 0.00 0.00 0.00 0.00
1388CB4 23.39 39.96 0.00 9.03 0.00 0.00 21.32 5.56 0.00 0.00 0.00 0.00 0.73
1388CB9 0.00 56.29 0.00 0.00 0.00 0.81 0.00 23.52 18.92 0.00 0.40 0.00 0.06
1388CB2 0.00 84.18 0.00 0.00 0.00 0.00 0.00 15.82 0.00 0.00 0.00 0.00 0.00
1388CC7 21.98 59.27 0.00 0.00 0.00 0.00 0.11 18.64 0.00 0.00 0.00 0.00 0.00
1388C65 1.42 94.97 2.26 0.00 0.00 0.00 0.00 1.36 0.00 0.00 0.00 0.00 0.00

Continued on next page
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13D180A 0.00 19.94 22.52 4.63 0.00 0.00 52.91 0.00 0.00 0.00 0.00 0.00 0.00
13D181C 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
1388CA1 0.42 86.12 0.00 0.00 0.00 0.00 0.00 7.17 6.30 0.00 0.00 0.00 0.00
1388CB3 0.00 0.18 0.00 86.76 0.00 0.00 13.07 0.00 0.00 0.00 0.00 0.00 0.00
1388CBE 0.99 40.65 0.00 27.46 0.00 0.00 30.90 0.00 0.00 0.00 0.00 0.00 0.00
1388CCF 0.00 30.70 0.00 0.00 0.00 0.00 12.33 56.97 0.00 0.00 0.00 0.00 0.00
1388CE3 0.00 4.22 0.00 0.00 0.11 0.00 63.99 0.00 6.32 0.00 0.00 25.36 0.00
1388CDA 0.00 86.25 2.39 0.00 0.00 0.00 11.36 0.00 0.00 0.00 0.00 0.00 0.00
1388C6A 0.00 22.88 0.00 0.00 0.00 0.00 0.72 70.27 6.13 0.00 0.00 0.00 0.00
1388C79 0.08 58.93 0.00 21.47 0.00 0.00 18.75 0.77 0.00 0.00 0.00 0.00 0.00
13D1817 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C91 0.00 2.60 0.00 0.00 0.00 0.00 66.60 30.81 0.00 0.00 0.00 0.00 0.00
13D1835 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C54 0.00 65.85 0.00 0.00 0.00 0.00 34.15 0.00 0.00 0.00 0.00 0.00 0.00
1388C9D 8.82 62.31 3.28 0.00 0.00 0.00 0.00 16.53 9.05 0.00 0.00 0.00 0.00
1388C60 0.00 74.13 0.00 0.00 0.00 0.00 25.87 0.00 0.00 0.00 0.00 0.00 0.00
13D180C 3.29 50.94 0.00 0.00 0.00 0.00 45.77 0.00 0.00 0.00 0.00 0.00 0.00
1388C84 9.69 23.97 0.00 4.71 0.00 0.00 31.23 30.40 0.00 0.00 0.00 0.00 0.00
1388CE4 2.11 93.73 0.00 3.39 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00
1388C9C 0.00 72.43 0.00 0.00 4.31 0.00 13.02 10.24 0.00 0.00 0.00 0.00 0.00
1388C5E 7.24 22.18 29.75 40.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C49 30.59 53.79 0.00 0.38 2.04 0.00 13.19 0.00 0.00 0.00 0.00 0.00 0.00
1388C76 0.00 38.63 0.00 1.94 0.00 0.00 58.77 0.66 0.00 0.00 0.00 0.00 0.00
1388CCE 0.57 99.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C74 32.75 58.27 0.00 0.00 0.00 0.00 1.30 7.68 0.00 0.00 0.00 0.00 0.00
1388CAC 0.00 0.00 0.00 0.00 0.00 0.00 56.98 43.01 0.00 0.00 0.00 0.00 0.00
1388C63 1.19 45.95 0.00 0.00 0.00 0.00 0.00 45.94 6.93 0.00 0.00 0.00 0.00
1388C38 2.37 1.66 14.76 80.68 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00
1388C7D 0.00 41.19 0.00 39.19 0.00 0.00 15.04 0.00 4.58 0.00 0.00 0.00 0.00
1388C8A 0.00 1.45 0.00 41.26 0.00 0.00 11.89 42.55 2.84 0.00 0.00 0.00 0.00
1388C8D 0.00 97.49 1.56 0.00 0.00 0.00 0.22 0.00 0.72 0.00 0.00 0.00 0.00
1388C55 0.00 68.12 0.00 0.00 0.00 0.00 0.00 30.42 1.46 0.00 0.00 0.00 0.00
1388C86 20.67 79.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13D180B 0.00 91.90 8.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388CDC 0.00 12.67 0.00 0.00 0.00 0.00 86.98 0.34 0.00 0.00 0.00 0.00 0.00
1388CBA 0.00 87.31 1.26 0.00 0.00 0.00 11.42 0.01 0.00 0.00 0.00 0.00 0.00
13D180F 0.00 55.34 0.00 26.58 0.00 0.00 18.08 0.00 0.00 0.00 0.00 0.00 0.00
1388CCA 0.00 67.43 0.00 3.47 0.00 0.00 28.70 0.00 0.40 0.00 0.00 0.00 0.00
1388C8B 10.90 68.60 20.37 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00
1388CC1 0.00 0.00 0.00 18.76 0.00 0.00 79.65 0.00 0.00 1.59 0.00 0.00 0.00
1388C6E 0.00 63.78 4.40 0.00 0.00 0.00 0.00 21.41 10.41 0.00 0.00 0.00 0.00
1388C70 2.67 19.58 0.00 0.00 10.04 0.00 35.62 7.40 24.69 0.00 0.00 0.00 0.00
1388C42 72.88 23.47 0.49 0.12 0.00 0.00 0.00 0.00 3.05 0.00 0.00 0.00 0.00
1388CBB 0.00 83.03 0.00 16.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388C68 10.27 89.63 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
1388CCC 16.41 74.56 0.00 1.66 0.00 0.00 0.00 7.37 0.00 0.00 0.00 0.00 0.00
1388C3A 0.00 83.32 0.07 0.00 0.00 0.00 16.61 0.00 0.00 0.00 0.00 0.00 0.00
1388C57 0.00 62.01 0.00 28.11 0.00 0.00 10.60 1.48 0.00 0.00 0.00 0.00 0.00
1388C7E 0.00 47.72 22.53 0.00 0.00 0.00 29.75 0.00 0.00 0.00 0.00 0.00 0.00

Continued on next page
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1388CDB 0.00 12.74 0.00 0.00 0.00 0.00 84.84 2.43 0.00 0.00 0.00 0.00 0.00
1388CB6 5.31 58.40 0.00 0.00 0.00 0.00 0.00 36.29 0.00 0.00 0.00 0.00 0.00
1388C50 0.00 17.73 0.00 0.00 0.00 0.00 0.00 82.27 0.00 0.00 0.00 0.00 0.00
1388C95 2.30 75.41 8.73 0.00 0.00 0.00 13.29 0.00 0.28 0.00 0.00 0.00 0.00
1388C53 0.00 28.38 0.00 14.11 0.00 0.00 7.54 49.97 0.00 0.00 0.00 0.00 0.00
1388C5C 2.23 34.02 0.00 0.00 0.00 0.00 0.38 63.38 0.00 0.00 0.00 0.00 0.00
1388C78 41.52 7.75 0.00 0.00 0.00 0.00 9.00 41.73 0.00 0.00 0.00 0.00 0.00
1388CA0 0.00 35.42 3.05 0.00 0.39 0.00 52.69 0.56 7.89 0.00 0.00 0.00 0.00
1388C7A 0.00 8.13 0.00 0.00 0.00 0.00 77.01 14.86 0.00 0.00 0.00 0.00 0.00
1388CD1 0.00 42.20 0.00 0.25 0.00 0.00 27.85 29.70 0.00 0.00 0.00 0.00 0.00
1388C44 2.31 37.38 0.00 8.59 0.00 0.00 51.72 0.00 0.00 0.00 0.00 0.00 0.00
13D181B 0.00 87.02 0.00 0.00 0.00 0.00 0.00 0.00 12.98 0.00 0.00 0.00 0.00
1388CC4 0.77 54.18 17.30 0.00 0.00 0.00 27.75 0.00 0.00 0.00 0.00 0.00 0.00
1388C80 16.81 42.20 0.00 0.00 0.00 0.00 5.14 19.76 16.08 0.00 0.00 0.00 0.00
1388C6D 1.63 70.86 0.00 0.00 0.00 0.00 1.41 22.95 1.19 0.00 0.00 0.00 1.96
1388CA8 0.00 30.84 0.00 0.00 0.01 0.00 56.22 0.00 7.88 5.06 0.00 0.00 0.00
1388C48 0.00 87.10 0.00 0.00 0.00 0.00 0.00 3.34 9.57 0.00 0.00 0.00 0.00
1388CC2 0.00 10.09 0.00 6.00 0.00 0.00 77.88 5.13 0.00 0.90 0.00 0.00 0.00
1388CB1 4.42 75.77 7.47 0.00 0.00 0.00 1.80 8.17 2.36 0.00 0.00 0.00 0.00
1388CC5 0.00 78.71 0.26 0.00 0.00 0.00 10.35 7.49 3.18 0.00 0.00 0.00 0.00
1388CC0 0.61 27.67 0.00 17.52 0.52 0.00 53.68 0.00 0.00 0.00 0.00 0.00 0.00
1388CD3 0.00 8.31 0.00 0.00 0.00 0.00 45.20 46.50 0.00 0.00 0.00 0.00 0.00
1388CAD 0.00 75.86 0.00 0.00 0.00 0.00 2.21 1.84 20.10 0.00 0.00 0.00 0.00
1388C4A 0.00 9.82 0.00 32.23 0.00 0.00 57.95 0.00 0.00 0.00 0.00 0.00 0.00
1388C7C 0.00 33.36 0.00 2.05 0.00 0.00 1.72 62.87 0.00 0.00 0.00 0.00 0.00
1388C89 46.73 33.19 0.00 0.00 0.00 0.00 14.54 1.13 0.00 4.40 0.00 0.00 0.00
1388CAA 0.00 76.91 0.00 0.00 0.00 0.00 4.17 0.02 11.07 7.84 0.00 0.00 0.00
1388CD0 67.74 18.49 0.00 0.00 0.00 0.00 13.77 0.00 0.00 0.00 0.00 0.00 0.00
13D180E 0.00 80.64 0.00 0.00 0.00 0.00 14.03 1.92 3.41 0.00 0.00 0.00 0.00
1388CAB 1.47 55.40 0.00 0.00 0.00 0.00 9.28 33.86 0.00 0.00 0.00 0.00 0.00
1388C47 0.00 97.54 0.00 0.00 0.00 0.00 0.00 2.46 0.00 0.00 0.00 0.00 0.00
1388C87 10.99 49.27 0.00 3.81 1.56 0.00 32.32 2.06 0.00 0.00 0.00 0.00 0.00
80 44.86 48.07 0.00 0.00 0.00 0.00 4.73 2.34 0.00 0.00 0.00 0.00 0.00
1388C4E 4.41 77.93 13.26 3.25 0.00 0.00 0.00 1.15 0.00 0.00 0.00 0.00 0.00
1388CC9 0.00 98.20 0.00 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1388CBD 0.00 0.00 0.00 0.00 0.00 0.00 96.13 0.00 3.84 0.03 0.00 0.00 0.00
1388C8F 0.00 23.80 0.00 0.00 0.00 0.00 76.20 0.00 0.00 0.00 0.00 0.00 0.00
1388C92 0.00 9.46 0.00 0.00 0.00 0.00 0.00 90.54 0.00 0.00 0.00 0.00 0.00
1388CD8 5.61 9.82 0.00 5.99 0.00 0.00 78.58 0.00 0.00 0.00 0.00 0.00 0.00
1388C77 0.00 17.23 0.00 11.59 0.17 0.00 11.81 59.19 0.00 0.00 0.00 0.00 0.00
1388C7B 22.37 57.56 0.00 0.00 0.00 0.00 0.00 20.07 0.00 0.00 0.00 0.00 0.00
1388CA4 0.00 0.00 0.00 0.00 0.00 0.00 34.47 65.51 0.02 0.00 0.00 0.00 0.00
1388C46 0.02 92.71 0.00 0.00 0.00 0.00 3.70 3.56 0.00 0.00 0.00 0.00 0.00
1388C56 0.00 88.49 1.07 0.00 0.00 0.00 0.00 8.51 1.93 0.00 0.00 0.00 0.00
1388C9E 2.96 46.84 0.00 0.00 0.00 0.00 0.00 50.20 0.00 0.00 0.00 0.00 0.00
1388C83 1.89 76.87 0.00 0.00 0.00 0.00 1.04 20.20 0.00 0.00 0.00 0.00 0.00
1388CE0 0.00 0.00 0.00 26.89 0.00 0.00 57.39 15.72 0.00 0.00 0.00 0.00 0.00
1388CCD 0.00 81.07 5.61 0.00 0.00 0.00 0.00 7.53 5.55 0.00 0.00 0.00 0.24
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