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Abstract

Gaussian Mixture Models (GMMs) are powerful tools for representing arbitrary distributions
or data sets, especially in complex non-linear systems. They are often used as approximators
due to their flexibility. However, in many cases, such as for dynamical systems, these must
be propagated through non-linear functions. How we can do this is still an open problem.

In this work, we propose a scalable method for quantizing GMMs with formal bounds on the
approximation error using the Wasserstein distance. This ensures the method is suitable for
safety-critical applications such as autonomous vehicles and UAVs, where formal guarantees
are essential. Our approach, called the multi-grids method, constructs local grids at locations
of high density, which are identified using clustering techniques. Around each cluster, a hyper-
rectangular grid is formed, and the locations are placed ensuring minimal error in terms of
the Wasserstein distance. This design allows the method to scale efficiently to GMMs of large
sizes in terms of both the dimension and the number of components, a known limitation of
existing methods.

We validate our method against the state of the art, across various settings, demonstrat-
ing significantly lower approximation errors in terms of the Wasserstein distance. Even at
higher dimensions of 60 it can still find efficient quantizations with little computational costs.
Additionally, we apply the multi-grids method to the uncertainty propagation problem in dy-
namical systems, including the benchmark Dubins Car, highlighting its practical effectiveness
in real-time systems.
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Chapter 1

Introduction

The increasing deployment of autonomous systems, such as self driving cars [17] and Un-
manned Aerial Vehicles (UAVs) [9], demand control strategies capable of handling complex,
non-linear dynamics under uncertainty. To design realistic models, the disturbances or un-
certainty these systems are subjected to must be accounted for in system modelling. This
uncertainty may arise from noise in the dynamics, sensor measurements, or incomplete knowl-
edge of the system. For autonomous driving, it may be the interaction with other cars or
pedestrians, while UAVs could suffer from unexpected weather conditions. Therefore, in
practice, new control strategies are being used to account for such uncertainty, for example
stochastic model predictive control (MPC) [20] or deep aware reinforcement learning [18].

A system is described by a set of states, which are variables that fully capture the systems
behaviour at a given time, given its inputs. The system model is typically a function that
maps current states and inputs to future states, allowing us to simulate system behaviour
over time. In deterministic settings, these states are represented as fixed values. However, in
stochastic or uncertain environments, such as for UAVs, it is more appropriate to represent
the states as probability distributions rather than point values, to incorporate uncertainty. A
common assumption is that the states are Gaussian, which is an analytically convenient way
to capture this uncertainty.

Modelling states as distributions allows us to quantify uncertainty explicitly. As the system
evolves over time, it becomes important to understand how this uncertainty changes, a process
known as uncertainty propagation. For non-linear dynamics there is no general solution for
uncertainty propagation [12]. Additionally, propagating distributions such as a Gaussian
through non-linear dynamics, results in an output that is no longer Gaussian and often
intractable to propagate further.

With the use of Gaussian Mixture Models (GMMs) we can approximate these distributions,
using methods like the Expectation-Maximization algorithm [25]. Uncertainty propagation
with the use of mixture models has already been studied in various literature, [13], [33],
[30]. However, in most cases, there are no closed-form solutions for propagating the entire
GMM through the system dynamics [16]. Therefore additional approximation schemes are
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2 Introduction

required to make the computations tractable. That is why it is important to develop scalable
approximation schemes for GMMs, as we’ll do in this paper.

Approximating these models will introduce additional uncertainty. This added error from
the approximation step must be accounted for. It is critical in applications like autonomous
driving, as unaccounted error can compromise system safety and performance. Therefore,
beyond designing a scalable approximation scheme, it is essential to establish formal bounds
on the approximation error.

The work of [2], introduces the ‘signature operator’, which directly solves the problem pre-
sented above. It finds a discrete approximation of a GMM with formal guarantees. However,
for similar performance, the method suffers from scalability limitations. It will become com-
putationally expensive when the dimension or the number of mixture components increases.
This paper presents a new method that ensures scalability while maintaining accuracy.

Our approach, which we call the ‘multi-grids method’, constructs a discrete approximation
of a GMM with formal guarantees. This method combines clustering techniques with the
Wasserstein distance to efficiently place the discrete locations. The foundation of the method
is to identify high-density regions within the GMM, so the majority of locations are placed
there, capturing the most significant information.

The method is as follows, we first apply a density-based clustering algorithm on a sampled
version of the GMM. These clusters serve as a foundation for constructing a discrete approx-
imation using a grid-based representation. Around each cluster a hyper-rectangular box is
built, which represents the boundary of the grid, within these grids the discrete locations are
placed.

For the quantization of a Gaussian, we can actually find the most optimal locations in terms of
the Wasserstein distance using the work of [2]. As we have found clusters which represent the
dense areas of a GMM, we can approximate these clusters by Gaussians. In doing so, we can
apply the work of [2] to place the locations within these hyper-rectangular boxes. Any remain
mass outside of the boxes is assigned to an “outer location”, denoted by z. This ensures the
complete mass of the original GMM is conserved within the discrete approximation.

We use a grid-based representation such that we can leverage fast computations of the Wasser-
stein distance. The Wasserstein distance is particularly suitable for this quantization task due
to its favourable properties: it is a true metric and is well-defined between distributions with
different supports [26]. This overall strategy balances computational efficiency with formal
guarantees. In summary, our main contributions are:

o the development of a new quantization operator that scales efficiently to high dimen-
sional settings and large scale GMMs,

o benchmarking our method against the previous state-of-the-art operator of [2], compar-
ing both approximation error, in terms of the Wasserstein distance, and runtime.

e an application of the proposed operator to dynamic systems, including high dimensional
examples and the Dubins Car benchmark [4].

The paper is structured as follows, Chapter 2 introduces the necessary preliminaries and
theoretical foundations, Chapter 3 formally defines the problem setting, Chapter 4 presents
our approach, and, finally, Chapter 5 showcases the performance of our new operator through
empirical experiments.
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Chapter 2

Preliminaries

To approximate GMMSs, the theory of quantization is used, with the quantization error for-
mally bounded by the Wasserstein distance. To provide context for how this problem is
addressed, we begin by discussing GMMs and their properties. This is followed by an ex-
planation of quantization theory and the role of the Wasserstein distance in measuring this
approximation error. Finally, we review related work, including relevant clustering techniques.

2-1 Notation

A probability distribution gives the probability of a certain outcome. It is a mathe-
matical representation of a random phenomenon, defined by its sample space and the
probabilities assigned to events. In this report we will be using Gaussian distributions
modeled by the function N (i, ) where p is the mean and X the covariance.

The expectation operator E is defined as E[X]| = [*_xzf(z)dx for a random variable
X with a probability density functions f(x). If X has an infinite countable set, then it
is defined as E[X] = >"7°; x; p;, with x; possible outcomes and p; probabilities.

The push-forward operator Py maps the probability distribution v to its marginal
distribution « in the set X, defined by Px#~vy = «.

P(R?) is the set of probability distributions on R?.

Pp(]R{d) is the Wasserstein space, which is the space of probability distributions of finite
moment order of p, defined by Pp(X) := {n € P(X) | [x d(xo,x)? p(dr) < 400} [32].

Pp(Rd x R?) is the product space for all joint probability distributions with marginals
in the space of P,(R?).

The Dirac Delta function is described by 6., at locations c;.

Dx(R9) is the set of discrete probability distributions on R? with N locations, in the
set of P(RY).

Master of Science Thesis Elize Alwash



4 Preliminaries

o sup(PP) describes the support of distribution P.
« The Euclidean norm for a vector 2 € R? is given by |z|| and defined on R

 The weights 7(*) are used as weights for the Gaussian components in the GMMs. They
are defined by 7 € TI where IT = {7() ¢ R]ZVO ) =11,

« Discrete distributions are defined by d € Dy(R%) = {>N,7®s..| Vi € 1,...,N}.
Where the set of points C' = {¢;}¥; C R? are the locations of probability mass for the
discrete distribution with index ¢. The Dirac Delta’s are weighted by their respective
probability mass 7(®.

1, ifzeX

~ for vector x € R? and region
0, otherwise

o The indicator function is defined as 1y := {

X c R?

2-2 Gaussian Mixture Models

GMDMs are a combination of multiple weighted Gaussian distributions. Often Gaussians are
used as an approximation of a distribution, such as the noise or uncertainty in a system. Using
this assumption can save a lot of computations due to the model’s tractability. However, for
a more accurate representation of complex or multimodal distributions, GMMs are better
suited. Yet, this improved accuracy comes at the cost of increased complexity.

Definition 1. GMMs are defined by a sum of weighted Gaussian distributions:

GMMy(N) = > 7N (i, %),

M=

@
Il
—

where T(;) are the weights for each component and constraint by: 7 e II. The GMM is of
dimension d with M components.

2-2-1 GMMs as Approximators

GMDMs are so powerful as they are able to model any probability distribution of finite moments
arbitrary well with a set error of ¢ [8]. It is a linear combination of M Gaussian components,
parametric in the mean, variance and weight of the separate Gaussian components. This
property is highly useful when it comes to data clustering and unsupervised learning tasks
[7]. GMMs are widely used in different fields to model big and complex data due to their
computationally favourable representations. Areas such as marketing, medicine or astronomy
use GMMs as models for statistical analysis of complex data sets [19].

In the use case of clustering, each cluster within the data is represented by a different Gaussian
component in the mixture. The components can be weighted differently, representing their
dominance in the data set. This way of representing data is interpretable and gives us a good
indication of how the data is exactly distributed. Figure 2-1 shows a visual representation
of such a situation. More examples of the wide use of GMMs include weight sharing in a
neural network, [23], solving inverse image problems [37], classification problems [39] and the
expectation maximization algorithm [19].

Elize Alwash Master of Science Thesis
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Figure 2-1: The clusters represent the data, each cluster represents a Gaussian component.
Approximating the full distribution using these clusters leads to a GMM, which is represented by
the level lines in the plot, approximating the data set.

2-2-2 GMMs in Quantization

To approximate a GMM by a discrete distribution, it is most advantageous to place the
discrete locations at regions of maximum density. For a GMM this means concentrating the
points around the modes. A GMM is a multi-modal function, where each mode corresponds
to a local maximum of the probability density function [38]. However there is no general
closed-form solution for identifying these modes [6]. Multiple algorithms for example, the
Expectation-Maximisation (EM) algorithm [22]. The EM algorithm is an iterative method
for finding maximum likelihood estimates of the parameters within the GMM based on the
training data.

Another way is to use clustering methods. EM is naturally adapted to represent clusters of
data as Gaussian components [25], however our focus is on finding modes within an already
constructed GMM. Clustering methods such as DBSCAN use density constraints to find high
density regions.

After dense regions are found within the GMM, an additional step to consider is calculating
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6 Preliminaries

the mass of the discrete distribution, 7(?). To do so we need the marginals of the GMM over
regions of mass [12].

2-3 Quantization

Quantization originates from the theory of signal processing [15]. However, for probability
distributions it comes down to approximating a d-dimensional distribution by at most n
locations. The works of [3], [2], [12], extend quantization further by computing formal bounds
on the Wasserstein distance between the original distribution and its approximation.

2-3-1 The Quantization Operator

The quantization operator is defined by a partitioning R := {R;}; and a set of locations
C = {c;}¥; C R The operator is defined as

N
Arc(z) = Zci]lﬁi (z), (2-1)
i=1

where any point inside region R; is brought to location ¢; [12]. For a probability distribution
P € P(R?), the push-forward operator is defined as,

N
Arc#P =Y P(R;)é, € Dn(RY). (2-2)
i=1

To calculate P(R;) we take the product of the marginals of each dimension, resulting in the
total mass over the partitioning R;,

d
P(R) = [[P(RY)

J
To apply this rule, the regions must be axis-aligned with the distributions and hyper-rectangular.
Axis-aligned means that the partition boundaries must align with the coordinate axes of the
distribution. Additionally, when computing the product of marginal distributions, any depen-
dency between dimensions introduces cross terms, which breaks the separability assumption.
Therefore, a second requirement is that the distribution’s dimensions must be independent,
ensuring that the joint distribution can be described by the product of its univariate marginals.

When P is a GMM, the problem in Equation 2-2 becomes intractable, as calculating the
probability mass P(R;) is infeasible. However, Gaussian distributions do exhibit independent
dimensions, therefore the quantization operator can be applied per Gaussian component and
the probability mass can be summed due to the additivity property of GMMs,

M d
P(R) =Y 7 [ Pi(RY),
i J

where IP; represents each Gaussian component with respective weight 7@,

Elize Alwash Master of Science Thesis



2-4 Wasserstein Distance 7

2-3-2 Approximations

As solving the quantization of a GMM for any arbitrary partitioning R and set of locations
C may be intractable, approximations of the quantization operator are made, by constraining
both R and C.

In the work of [2] the locations C are optimized with respect to the minimal Wasserstein error
of the quantization of a Gaussian distribution. These locations are found per dimension and
the Cartesian product is taken resulting in a grid of locations. The partitioning R is set as
the Voronoi partitioning of the locations. As the dimensions of a Gaussian are independent,
the grid will result in hyper-rectangular Voronoi partitioning, ensuring we can calculate the
mass of P(R;). The Voronoi partitioning is be defined by,

Ri={zeR: |z—cll <|lz—ll, Vi € {1,..., N}, j #i}. (2-3)

To approximate the quantization of a GMM, the operator is applied on each Gaussian com-
ponent individually, then the union is taken of the resulting quantizations d = 3" ; P(R;)de,.
This operator will be named as the ‘per-component’ method from now on.

Another approach to approximating the quantization operator is to apply a shared partition-
ing and set of locations across all components, rather than computing a separate quantization
for each component individually. The work of [12] presents this method. However, to ensure
computations are tractable, as in the per-component method, the partitioning R must be a
set of axis-aligned hyper-rectangles. We refer to this strategy as the ‘one-grid’ approach.

2-4 Wasserstein Distance

The Wasserstein-p distance, is as a metric that represents the solution to the optimal transport
problem, typically using the lo-norm as the cost function. It is the minimum cost to transfer
one distributions’ mass to another, defined as a metric on the space P,(R%) [26].

Definition 2. Forp > 1, the Wasserstein (p-squared) distance between arbitrary distributions
is defined by (2-4), where the cost function is the p-squared Euclidean norm between values x
and y sampled from the distributions « and [ respectively. The distributions o and 5 live in
the space Pp(RY).

1/p 1/p
= inf E —y|? = inf —y|?
W(a, B) <’y€%‘1(1a,5) ()~ 17 =9l ) (ﬁ;r(laﬁ) /Rded[llw yli h(dw,dy)>
(2-4)

[(a, B) is defined as the set of joint probability distributions v in the space Pp(R? x RY), with
marginal distributions o and 3.

2-4-1 Properties of the Wasserstein distance

A very advantageous property of the Wasserstein-p distance is that there is an explicit for-
mulation when « and § are Gaussians and p is set to 2, defined by:

1/2
Wha8) =l — B+ or (203 —2 (57mem)) ). (25

Master of Science Thesis Elize Alwash



8 Preliminaries

where the Gaussians are given by N (g, Xx) and N (u, X)) respectively [8]. We often write
the solution in terms of the Wasserstein-squared distance instead of the Wasserstein distance,
since it is simpler to express. Given this property, all subsequent references to the Wasserstein
distance will specifically refer to the Wasserstein-2 distance from here onwards.

The Wasserstein distance is a true metric, meaning that it satisfies symmetry, the triangle
inequality and non-degeneracy [26]. The Wasserstein distance is defined between distributions
of different supports, which is very important for quantization, while metrics such as TV
cannot. Another unique and powerful feature of the Wasserstein distance is that closeness in
the Wasserstein distance implies closeness in moments. This is formalized in Lemma 2 of [2].

There are only a few well known cases where there are closed form solutions available to
compute the Wasserstein distance. This includes problems with one-dimensional distributions,
which have a tractable cumulative distribution function (CDF), and for Gaussian distributions
of all dimensions, as shown in Equation 2-5. However, more importantly, the problem at hand
is computing the true Wasserstein distance between GMMs, which is intractable. Closed form
solutions of the Wasserstein distance, for example between Gaussians, are often leveraged in
approximations. An example of this is the M W2 distance from [8]. It splits up the GMM in
its respective Gaussian components and approximates the true Wasserstein distance by the
pairwise Wasserstein distances between the Gaussian components.

2-4-2 Semi-Discrete Optimal Transport

The quantization of a distribution can be interpreted as the semi-discrete optimal transport
problem defined between a distribution P and its approximate discrete distribution d. The
Wasserstein distance between a distribution and its quantization becomes the the measure of
error for the quantization step, defined by

N
W2 d,]P) = lnf .]EZ/N S| Z‘,Z/ , 9.6
2(F) C(Z’IZ)EZ[d,PjZIBJ c()2) le(25,2)] (2-6)

where the locations of mass in P are defined by 2’ and the locations in d are defined by 27 [3].
The cost function is defined by ¢(z;, 2"), which in our case is the l>-norm. The set Z[gy, p| is
the set of conditional distributions that fulfil the marginalization constraint:

N

Zlan,p) = (CE'12) | 22 BiC(# |2) = p(2') ¢ - (2-7)

i=1

This marginalization constraint signifies that the weights 3; must be assigned to the mass of
the distribution P at location 2/, by the transport plan {(2'|z) [3].

The quantization of a Gaussian for the minimal Wasserstein error has already been solved
by [2]. However no optimal quantization has been found for a GMM yet. Current methods
include the per-component method, where the Wasserstein distance is expressed as

M M M
W3 [ > mN(ms, $6), > mle, #N (i, ) | <D 7Ws (N (ma, i), Ac, #N (mi, 55)) -
i=1 i=1 =1
(2-8)
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2-4 Wasserstein Distance 9

Which is upper-bounded by the weighted sum of the Wasserstein errors per Gaussian quan-
tization separately [2].

Instead of taking separate locations and partitioning per-component, you can also apply
the same partitioning R and locations C to each component in the GMM. In this case, the
Wasserstein distance can be expressed as,

N
W2(P, A c#P) < 3 / |z — x| 2dP(x). (2-9)
=17 Rk

The work of [12] presents an analytically tractable solution for the constrained 2nd-moment in
Equation 2-9, for a specific group of distributions, if R is a set of axis-aligned hyper-rectangles.

If R is chosen to be the Voronoi partitioning w.r.t C, then Equation 2-9 holds with equality
[12]. Additionally, it will ensure the lowest transport cost [2]. To maintain a hyper-rectangular
Voronoi partition aligned with the distribution’s dimensions, the locations ¢; are constrained
to a grid formed by placing points along each axis and taking their Cartesian product.

Definition 3. Let the vectors {VI(N) | i =1,---n} represent the aves of the dimensions of
the distribution P € RY, with an arbitrary number of points N per azes. The (azes-aligned)
grid’s locations are defined by

Cyria = {VI(N) x VE(N) x --- x V™(N)}. (2-10)

which contains all viable locations. The total grid is defined by its locations C, and the parti-
tioning R, which is set to Voronoi partitioning for the lowest transport cost.

The eigen-basis of a covariance matrix defines the axes of the dimension of its corresponding
Gaussian. For a single Gaussian component, the dimensions are independent, so Equation 2-
9 has a closed-form solution. As mentioned earlier, for a GMM there will be dependencies
across the dimensions. To get around this, the quantization is performed individually for each
Gaussian component wihin the GMM. To ensure that the quantization grid aligns consistently
across all components, it is easiest to constrain all components within the GMM to have the
same eigen-basis.

If we apply the same grid to all components, the Wasserstein distance of this quantization
method of the GMM can be calculated using Equation 2-11,

M
W3 (Ag c#P,P) = > 7W5(Ag c#P;, P;), (2-11)
i=1
where W3 (Ag c#P;,P;), is calculated by the constrained 2nd-moment in Equation 2-9. The

proof is as follows: for a mixture of probability distribution P = Zf\il 7P, € R and a finite
set of points C C R%, and R C R? the Voronoi partition of R? w.r.t. C, according to [12], we
have that,
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10 Preliminaries

@
W3 (B, Ac#P) = Z/ o — cx|2dP(z) (2-12)
@
-/, S° il — cull B (2) (2-13)
Ry j=1
M IC|

= m Y [ - aldpe) (2-14)
=1
b4
ZfrW2( i Ac#P;) (2-15)
=1

The constraints we will use for the quantization of a GMM are summarized by Lemma 1
below.

Lemma 1. Assuming that all components in the GMM share a common eigen-basis that is
aligned with the partitioning R and that the locations C are defined on a grid aligned with
the distribution’s axes (as per Definition 3), we can apply the same grid to each component.
This allows us to compute the Wasserstein distance using Equation 2-11. As it is solved
per-component, the integral in Equation 2-9 can be solved using closed form expressions for
Gaussians defined in the work of [12].

2-5 Clustering Algorithms

As mentioned in the properties of GMMSs, finding the modes is an intractable problem, how-
ever methods such as the EM algorithm or clustering methods can be used to find them. The
focus will lie on clustering methods to find these modes.

There have several notable works, reviewing all known clustering algorithms. The survey [35]
discusses clustering algorithms specific for statistics, computer science and machine learning,
and applied them on a few benchmark datasets. The survey [34] focuses on the basic oper-
ations clustering algorithms use and compares traditional clustering methods with modern
ones. The more recent work [11] discusses an up-to-date comparison of clustering techniques.
Finally, [36] gives a rapid overview, using all these surveys mentioned above, with the goal of
helping users select the best clustering algorithm for their application. Table 2-1 summarizes
the works mentioned and presents all clustering options suited for our problem.

Table 2-1: Chosen clustering algorithms based off [35], [34], [11], [36].

Category Algorithm Complexity
Partition based K-means O(NKT)
Hierarchy based BIRCH O(N)
Density based DBSCAN O(NlogN)
Fuzzy based Fuzzy c-means O(NKT)
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2-5 Clustering Algorithms 11

Partition based methods such as K-means and Fuzzy c-means require the number of clusters
to be given as an input. Since the modes of the GMM are not known in advance, it is difficult
to determine the appropriate number of clusters beforehand. Hierarchy methods such as
BIRCH cluster the data based off distances. Density based methods find clusters based off
distances and density requirements, therefore most suitable for our use case. Additionally,
DBSCAN scales well and can be extended to large data sets and/or larger dimensions [10].
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Chapter 3

Problem definition

The goal is to find a computationally efficient quantization of a GMM with formal guarantees.
The problem is defined as follows.

Problem 1. For a given threshold error € > 0 and support size M,

find d € Dyr(RY) (3-1)
s.t. Wa(d,IP) < e

To solve Problem 1, we are required to compute the Wasserstein distance between GMMs.
This is known to be an intractable problem as there is no closed-form solution, and empirical
methods are computationally expensive and scale poorly [26]. Moreover, to ensure mass con-
servation in the approximation, the discrete representation must preserve the total probability
mass of the original GMM. This requires computing masses over regions, which is infeasible
in closed form for a GMM due to the mixture’s structure as mentioned in Section 2-3-1.

3-1 Approach

This work focuses on the quantization of GMMs, as they offer a more expressive representation
of complex distributions compared to single Gaussians. While the quantization problem in
Equation 3-1 can be solved analytically for Gaussians by the method introduced by [2], no
such optimal solution exists for GMMs. Prior efforts to address this gap include the methods
proposed in [2] and [12], but these suffer from scalability limitations.

In contrast to other works, our approach leverages a sample-based method. This is such that
we can identify high-density areas within a GMM. Around each cluster, a hyper-rectangular
box is built and the locations are strategically placed within. This strategy allows our method
to scale effectively while maintaining strong approximation performance.

To calculate the Wasserstein distance for the quantization of a GMM we need to solve the
constrained 2nd-moment in Equation 2-9. As described in the Preliminaries chapter, GMMs
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3-2 Related Works 13

have dependent dimensions, therefore we cannot calculate the product of marginals or mo-
ments over a region. In the case of Gaussian distributions, a closed-form solution exists,
making the computation especially efficient.

To extend this to GMMs, the quantization operator is applied per Gaussian component.
Additionally, we use a grid-based representation for the quantization, where the locations are
constrained to a grid structure as according to Definition 3. This will ensure we have regions
that are axes-aligned with the dimensions of the distributions such that we can leverage fast,
closed-form evaluations of the Wasserstein distance.

3-2 Related Works

The previous state-of-the-art is the quantization operator introduced by [2], which we refer to
as the per-component method. To the best of our knowledge, no other dedicated quantization
operators for GMMSs have been proposed in the literature. As described in the preliminaries,
this operator is applied to each Gaussian component separately, finding quantizations per
component and taking the union as the approximate quantization of the GMM. This leads to
sub-optimal results as it does not take into account the geometry of the whole distribution
but just its consecutive parts. Figure 3-1a visualizes the use of the per-component method on
a 2D GMM. This way we can also visualize the sub-optimality, as for overlapping components
within a GMM, a lot of redundant discrete locations are placed. Other works, such as [12],

-2

Component 0
Component 1
Component 2

o . Componont 3 " . o
Component 4
p B 5 3 " o s : ; 7
(a) Per-component method with 100 (b) One-grid method using an uniform
locations per component, total of 400 lo- grid with 400 locations over space (-5,5)
cations. in each dimension.

Figure 3-1: Discretization of an arbitrary 2D GMM with 5 components using methods from
previous works, [2] and [12].

apply the same grid to each component, resulting in one quantization over all components.

An example is shown in Figure 3-1b. However as this uses a single grid over the entire space,
it will automatically place unnecessary locations in areas of empty space.
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Chapter 4

The Multi-Grid Method

The aim is to find a discrete approximation of a GMM with minimal locations with formal
guarantees using the Wasserstein distance. We can rewrite the problem statement from
Chapter 3 using the quantization operator from Equation 2-1:

find {R,C} for Agc#P (4-1)
s.t. Wa(Agc#P,P) <e (4-2)

where the objective is to find a grid, defined by the partitioning R, and locations C, such that
the Wasserstein distance of the quantization is bounded by e. The problem still resembles the
problem of the previous chapter, because, by defining the quantization using R and C, the
resulting signature can still represent any discrete distribution d. As mentioned in Chapter
2, the operator will be applied component-wise on the GMM. Additionally, as the regions R
are required to align with the GMM, we use the following constraint, defined in Remark 1.

Remark 1. To define a common grid aligned with all Gaussian components in the GMM, we
assume that all components share the same eigen-basis for their covariance matrices. This is
not a restrictive assumption, as any distribution can still be approximated by a GMM with
azis-aligned covariance matrices, as illustrated in Equation 4-5.

Lastly, to ensure minimal transport cost over the regions, the Voronoi partitioning is chosen.
With this setup we can benefit from closed form solutions for the Wasserstein distance, as
shown in Lemma 1 in the preliminaries.

The motivation for the proposed multi-grid method arises from limitations in previous ap-
proaches, such as the per-component method. As illustrated in Figure 4-1, in per-component
method, each component is treated independently, which can lead to an excessive number of
signature locations, many of which may be redundant in densely packed GMMs. Moreover,
these methods often fail to distribute mass effectively across signature locations, since they
ignore the global structure. Conversely, applying a single uniform grid across the entire space
can also be suboptimal, particularly when components are far apart, as it may waste loca-
tions in low-density or empty regions, see Figure 4-1. The multi-grid method addresses both
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« Grid points - Component 0 «  Grid points
o Outerloc (2) - Component 1
- Component 2

Component 3

;

(a) Multi-grid (b) Per-component (c) One-grid

Figure 4-1: Quantizations of a 2D GMM using the toolbox from [8]. The multi-grid method
uses 201 locations in total, over 2 grids, whereas the per-component method uses 400 locations,
100 locations per grid and the one-grid method uses a uniform grid with 400 locations over the
space of (-15,10) in each dimension.

issues by adapting to the GMMSs geometry: it places grids strategically at the modes of the
distribution, ensuring better coverage and efficiency.

The idea is to apply local grids at the modes of the GMM. Each grid will be defined on a
bounded space, instead of on the whole R?, such that it captures just the most important
part(s) of the GMM. To find these modes, we benefit from density-based clustering methods
that can identify these regions while keeping a low computational cost. Assuming that most
mass is within these grids, the mass outside of the grid(s) will be placed at one arbitrary
location, named by the outer location z. Once the high density regions and the outer location
have been identified, the local grids can be built, defining both R and C for the quantization
operator, A ¢. The complete multi-grid method is defined by Algorithm 1.

Algorithm 1 Multi-Grids method

Input: P = Zf\il i P;, where P; = N (4, %)

Output: d = 37, P(R}.)d., and WZ(P, d)
1: Find partitioning R and locations C by Algorithm 2.
2: Apply quantization operator Ag ¢ on P and calculate W3 (P, d) by Algorithm 4.
3: return d = Y0 P(R},)d., and W3(P, d)

Ck

The first step of Algorithm 1 is to find the grids, defined by the partitioning R and locations
C. This will be done by Algorithm 2, described in the next section below. Thereafter, the
quantization is found, along with the Wasserstein distance, which is presented in Section 4-2
by Algorithm 4.
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16 The Multi-Grid Method

4-1 Finding Local Grids

The following section outlines the method for selecting appropriate grids. Figure 4-2 repre-
sents the problem for an arbitrary 2D GMM, where the quantization locations are constrained
by the grid structure defined in Definition 3, resulting in a hyper-rectangular partitioning of
the space.

Definition 4. The boundary of the grid is defined as the ‘shell’ of a grid.

15
o  Grid points
e Outerloc (z)

10 1

> g

—-10 1

-15 T T T T T
=15 -10 -5 0 5 10 15

Figure 4-2: Visualization of the 'shell’ problem.

There is no closed-form solution to find the optimal shell(s). Therefore an alternative heuristic
method has been developed to choose the number of shells, their size, and location, for any
arbitrary distribution. The requirement for the shells is that they must be hyper-rectangular
in shape and disjoint.

The power of this method is that no prior information about the distribution is required.
Instead, to get information about the GMMs structure, a sample-based approach is applied.
The clustering method that is most suitable for our use is Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), with an application to large spatial databases [10]. It
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4-1 Finding Local Grids 17

does not require a set amount of clusters to be found, and no optimization of the centroids
is done as in K-means [35]. It will find an arbitrary amount of clusters based on its hyper-
parameters, which define the density constraints for a cluster to be formed [10]. The focus
lies on finding dense areas within a database, therefore making it the most suitable clustering
algorithm for our method. Algorithm 2 outlines the method.

Algorithm 2 Grid Creation via clustering

Input: P = Zl 1 TiP;, where P; = N (g, )
Output: {(Ry,Cr)}i,
: Draw N samples from the distribution: {x]} ~ P
Cluster data set using the DBSCAN algomthm
for ¢ =1 to C clusters do
Find best Gaussian fit of cluster ~ N (puc, 2¢).
Project Y. onto basis of shared eigen-basis of grid.
Set shells as tightest hyper-rectangle around each cluster.
Expand shells’ size by maximum gap between shells in each dimension.
end for
Check overlap of shells, if they do, merge shells together.
for £ =1 to K remaining shells do
Generate W2-optimal locations Cy for N (¢, Xf) using [2] for a set number of locations.
Define the partitioning Ry as the Voronoi partitioning w.r.t C; within the shell k.
Generate bounded spatial grid (R, Cy) using shell and locations C
: end for
. Compute outer location as z = 32K | .
: Add z to the set of locations Cy.
return {(Ry,Cr) },

e e e T e T e O e
ISR U T

The first step is to sample from the GMM. Once the samples have been clustered, the next
step is to build shells around each separate cluster. First the tightest shell is built around each
cluster. The distances between these shells are then assessed by measuring the gaps along
each dimension. To maximize coverage without causing overlap, each shell is subsequently
expanded by the largest available gap in its respective dimensions.

Next, the clusters are approximated by Gaussians based on their centres and spreads. Using
[2] we can find the optimal locations, C, for each cluster-approximated-Gaussian. Using the
locations C, we define the partitioning R as the Voronoi partitioning w.r.t C inside the shell.
Using R and C we can create the local grids. The algorithm is visualized by Figure 4-3.
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18 The Multi-Grid Method
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Figure 4-3: Visualization of Algorithm 2.
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4-1 Finding Local Grids 19

4-1-1 Complexity & Memory analysis

For the quantization step, we leverage fast closed-form computations of the Wasserstein dis-
tance and probability masses. Yet, the addition of Algorithm 2 does add additional complex-
ity. The complexity and memory of Algorithm 2 are analyzed in Table 4-1. The complexity is
primarily dependent on the number of samples IV, therefore it should be limited. In the Ap-
pendix, Figure A-1 shows the effect of the number of samples used in clustering on the overall
Wasserstein distance. The samples are kept quite relatively low, at 100 x M for M compo-
nents in the GMM, still ensuring performance. Therefore the algorithm is easily scalable to
big GMMSs, in terms of both dimension and mixture size.

Step Time Complexity | Memory
Sampling from GMM O(Nd) O(Nd)
Clustering using DBSCAN O(NlogN)~ O(N) to O(N?)
Find closest Gaussian O(Nd) O(Kd)

Find tightest shell per cluster | O(K?d) O(Kd)

Overlap detection and merging | O(K?2d) O(Kd)
Compute outer loc z O(Kd) O(d)

Total O(Nlog N + K?d) | O(Nd)

Table 4-1: Computational Complexity and Memory Usage of Algorithm 2 for
N samples, d dimensions, M components and K clusters.

*Worst-case DBSCAN complexity is O(N?), eg in higher dimensions (d > 5)
when KD-tree is not suitable [5]

4-1-2 Hyper-parameter tuning

Within DBSCAN you have two hyper-parameters; ¢ and min_ samples. The parameter
sets the maximum distance of points to be apart from each other to be considered to be in
the same cluster. The parameter min_ samples defines the minimum number of points to
be in e distance from a point to be defined as a core point. The first step in DBSCAN is
identifying core points. The clusters are generated around core points. Points that are not
reachable from any core point are labelled as noise. The definition of core points and noise
can be visualized by Figure 4-4. The next question is how to set these hyper-parameters
correctly for our use case.

MinPts = 5 thii
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Figure 4-4: Visualization of core, border and noise points in DBSCAN [28].
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20 The Multi-Grid Method

DBSCAN density parameters
The search for the optimal ¢ has been extensively researched in literature [21], [1], [27].
However it comes down to the same method that was first introduced in 1996 alongside the
DBSCAN algorithm itself by [10].

The distances to each points k nearest neighbors (k-NNs) are computed and sorted to generate
a k-distance plot, as shown in Figure 4-5. The parameter k is set equal to min_ samples.
The “elbow” or “knee” of the curve corresponds to the point where the slope begins to flatten
significantly, indicating a transition from dense to sparse regions. Setting e at this point
ensures that only samples in dense regions are grouped into clusters, while outliers and noise
are excluded. A practical way to estimate the knee is by taking the 95th percentile of the
k-distances. This approach ignores the top 5% of the most sparsely located points (left end
of the curve) and emphasizes the denser regions (right end of curve). It also scales with
dimension, as in higher dimensions the Euclidean distance grows, leading to higher epsilon
values as well. The addition of this step adds a complexity of O(NlogN) due to the k-NNs
search, however DBSCAN already has a minimum complexity of O(NlogN) so it won’t greatly
affect the total complexity. The method is summarized in Algorithm 3.

--- £=1.3701

2.25 A

2.00 A

1.75 4

1.50 A

1.25 A

k-distance

1.00 A

0.75 A

0.50 A

0.25 A

0 50 100 150 200 250 300
Sorted index

Figure 4-5: k-NN distances in ascending order for samples of an arbitrary 2D GMM

Algorithm 3 e Selection

Input: Samples {xj}éy:l ~ M RN (i, B), min__samples = 0.1N

1: Compute k-NN distances for samples z using k = min__samples

2: Sort distances in ascending order

3: Use 95th percentile or locate Knee in curve using KneeLocator to find ¢
Output: ¢
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4-1 Finding Local Grids 21

Unlike the search for the optimal ¢, the parameter min__samples has been overlooked [21].
Generally the rule of thumb is to use twice the amount of features in the data, most often
being the dimension (2 x D) [10]. The value of min_ samples has been tuned manually, and
set at 10% of the total number of samples.

GMM samples N

Setting the number of samples for the clustering algorithm is a trade-off between computation
time and accuracy. With less samples the shells are a less accurate representation of the
distribution leading to higher Wasserstein distances of the resulting quantization. As a quick
assessment on the affect of the samples on the Wasserstein distance, 10 arbitrary GMMs
are generated and quantized for different sample sizes, see Figure A-1 in the Appendix. The
number of samples is set at 100 per component to ensure performance but limit computational
complexity.

4-1-3 Validation of Algorithm 2

To verify the performance of the heuristic method to find the optimal shells, we compare the
sizes of the shells from Algorithm 2 with an optimization based method.

The optimization chosen is a 1D optimization method, called the Golden-section method [24].
It is an iterative optimization algorithm where at each step a search direction is chosen and
then a line search is done to find the optimum. The optimization variable is the shell size,
defined by a radius w, see Figure 4-6. The optimization is done to find the lowest Wasserstein
distance of the quantization step using this shell size for the grids.

Figure 4-6: Shell defined by w

The comparison of methods is based on both the probability mass contained within the
shells and the corresponding Wasserstein distances. As the primary evaluation metric, the
normalized Wasserstein distance is used in place of the Wasserstein distance, its definition
and justification are provided in Chapter 5.

From the results in Table 4-2 we can take away that the heuristic can find close to optimal
values for the shells, resulting in similar Wasserstein distances and coverage of the distribution.
The full results are recorded in the Appendix in Table A-2.
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22 The Multi-Grid Method

Method Ws-error P(R)

Grid search  0.234 + 0.089 0.998 £ 0.007
Algorithm 2 0.239 £ 0.091  1.00 £ 0.000

Table 4-2: Comparison of the normalized Wasserstein distance and shell probability mass for
Algorithm 2 versus optimized shell sizes using the Golden-section method [24]. The experiment
is run for 100 GMMs with different sizes M and dimensions d ranging from [2,100] and [2, 60]
respectively. The average values are recorded with their standard deviation. The full results are
in Table A-2.

4-2 Quantization

Assuming the grids are pre-determined (generated by Algorithm 2), we can make an approx-
imation of the quantization of a GMM using the method we will now call the ‘multi-grid’
method.

When using these local grids, the space can be split up into two main regions, the region inside
the grid R; and the region outside the grid Ro, as seen in Figure 4-7. The goal is to use
the Voronoi partitioning inside these grids, as previously mentioned, for minimal Wasserstein
distance. For the outside region, all mass will be placed at location z.

R2

R4

(a) Partitioning (b) Locations

Figure 4-7: Local grids visualization. (a) Partitioning of regions R. (b) Corresponding locations
C in partitioned regions.

4-2-1 Wasserstein Bound Computation

By using the rule of integration over the union of disjoint sets, the Wasserstein distance can
be calculated per region of space. Using the grid structure shown in Figure 4-7, we define the
grids by,

{Ra C} = {{Rh R2}7 {Clv C2}}7

where R is the inner region and Ry = R?/R; is the outer region. The locations inside the
grid, C; are defined as the locations found by step 11 in Algorithm 2, whereas location Cs is
defined as the outer location, z.
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4-2 Quantization 23

Using the partitions R = {R1, R2} we can split the 2nd-moment in Equation 2-9 into two
parts,

N N
Wi Arc#B) < 3 [ o - alPdB@) + 3 [ o - ().
k=17T1 k=1"R2

For Rq, the internal region of the grid is split into Rg-Voronoi partitions using locations Cj.
For region R, the respective locations Co are defined as a single point cx—1 = z,

N
> [ Nl = el PdB(z) = [ o 2| ap@).

Since the region Rs is not hyper-rectangular, it does not satisfy Definition 3, and the closed-
form solution for the second moment in Equation 2-9 from [12] cannot be applied.

To address this, we apply the rule of integration over the union of disjoint sets, allowing the
formulation to be rewritten [29]. For any measurable sets A, B with B C A, we can write

/f ) dP(z /f ) dP(z /deP’

We can split the integral over Ry (B) over the space of Ry = R?/R5 and R? (A). Re-arranging
results in the Wasserstein distance defined by;

N

W3 (P, Ag c#P) gkzzjl (/Rl Hx—ck||2dIP’(:c)+/R Hx—ckHZd]P’(m))
= [ llo= =) dBa) (Z J. w—culPap@) - [ ux—znzdm:z)).

(4-3)

Where the first and third integral account for the mass of moving region Rs to location z,
by taking the difference between the cost of moving all the mass in R? to z and of moving all
the mass inside region R to z. The second accounts for the distribution of mass within the
grid R1 with locations C;. By using the equality in Equation 2-11 we can apply this to the
whole GMM.

For multiple disjoint grids, we define the partitions and locations of the grids as:

{R, C} = {{Rgrid, Router}y {Cv Z}}

where each inner grid is defined by:
{Rgridac} = {R]VCj}jG:l'

Let Rgria = {R; | j = 1,...,G} be a collection of disjoint regions, and let C = {C; | j =
1,...,G} denote the associated sets of locations within each region. For the outer region we
have the space defined by Router With location z.

This construction results in a multi-grid, rather than a complete grid as defined previously
in Definition 3. The integrals are then combined through additive and subtractive terms as
follows.
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24 The Multi-Grid Method

Theorem 1. The Wasserstein distance of the multi-grids quantization operator is defined by:

G
W3 (P, Ar c#P) < W3 (P, Aga ,#P) + > W3 (P, Ag, o, #P) — W5 (P, Ag, .#P) (4-4)
j=1
G

N
= —2'2 €T Tr —C 2 xTr) — .T—ZQ €T
= [ le==I dP()+jzl<k_1 fo o= eulP B = [ e = 2| d >>

J

Remark 2. An important factor to account for is that if the regions were to overlap, it would
result in an underestimate of the bound. Therefore, the regions must be disjoint, otherwise
there is no guarantee that Equation 4-4 will upper bound the true Wasserstein distance.

Additionally, in the case where the GMM does not have components with an equal eigen-basis
for their covariance matrix, we can apply the approximation in Remark 3.

Remark 3. If a GMM has a component G with a non-diagonal covariance matriz, we can
approzimate this component by a GMM, Pg = >, miN (wi, 3i), that uses only diagonal covari-
ances ;:

Hg = mem
7

g = (i + (i — 1) (i — pg) ") (4-5)

(2

(4-6)

The additional Wasserstein distance incurred by this approximation can be bounded by the
‘discrete method’ from [8]:

Wa(G,Pg) < MW5(G,Pg). (4-7)
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4-2 Quantization 25

4-2-2 Quantization Step

As the calculation is linearly dependent on the number of grids, number of partitions per grid,
and quadratic in the dimensions (due to product of marginals), O(NGd?), the computations
are relatively fast. The main complexity lies with the computation of the grids, as discussed
in the previous section. The complete quantization of the GMM and the calculation of the
Wasserstein distance is presented in Algorithm 4.

Algorithm 4 Multi-grid Quantization of GMMs

Input: P= Zl 1 m;P;, where P; = N(Mz‘, i), {R,C}
Output: d = > P(Ry)d., and W3 (P, Ag c#P)
. Define grid for space R? and with outer location z
Compute W3 (P, Aga ,#P) using Equation 2-11.
for j € G do
Compute W2 (P, AR, c;#P) using Equation 2-11.
Evaluate P(R;) = M, 7 P;(R;)
Define grid for shell of R; with outer location z.
Compute W (P, AR, .#P) using Equation 2-11.
end for
Compute residual mass and location of z:
Zmass < 1 — Z]‘G:I P(R])
: Compute total Wasserstein distance using Equation 4-4
: Stack grid partitions and locations:
{R.C} {{P( j), #mass } {Cjaz} |j € G}
. return d = Y, P(Rk)éck and W3 (P, Ag c#P)

e el e =

The first step of Algorithm 4 involves defining an initial grid over the full space R = R? with
locations C = z. The corresponding Wasserstein distance is then computed.

Next, inner grids are defined for each shell, using the partitioning R = R; and locations
C = C;. In parallel, a grid is defined over each R; using the outer location z as the locations
C. Wasserstein distances are again computed for these configurations.

The probability masses associated with the inner grids are then accumulated, allowing us to
compute the mass at the outer location z. Finally, the total Wasserstein distance is calculated,
and the quantization operator from Equation 2-1 is applied to the distribution P.
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Chapter 5

Experiments

In the following chapter, we present a series of experiments comparing the performance of our
proposed multi-grids method to the current state of the art, referred to as the per-component
method. Finally, we demonstrate the application of the multi-grids method within a dynamic
system setting. All code is available at github.

5-1 Baseline Comparison on Low-Dimensional GMMs

We begin by comparing three quantization methods on two representative 2D GMMs: a
tightly clustered configuration P; and a widely spaced configuration Ps, visualized in the
plots below in Figure 5-1.

The one-grid method will be using an uniform grid over the space of the GMM. The per-
component method refers to the work of [2] as previously discussed. As the per-component
method generates a separate grid per-component, the grids’ locations are coloured differently
in Figure 5-1 to signify that it is not applied to the entire distribution. The numerical results
are presented in Table 5-1, comparing the Wasserstein distances for the equivalent size of the
quantization.

GMM Method Ws-error Nr of locations
Multi-grid 0.3549 101

Py Per-component  0.6672 100
One-grid 0.4579 100
Multi-grid 0.3849 199

Py Per-component  0.4392 199
One-grid 0.7482 200

Table 5-1: Comparison of Wasserstein distance and support size for three quantization methods
across two GMM configurations: Py (tightly packed) and Py (widely spaced).
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Figure 5-1: Visual representations of the quantizations of GMMs Py (tightly packed) and P,
(widely spaced). Each row compares three methods: multi-grid, one-grid, and the per-component
quantization method. For the one-grid approach, in setting Py, the grid is defined over (-5,5) in
each dimension for 100 locations. In setting Po the grid is defined over (-10,10) in each dimension
for 200 locations.

The results below clearly demonstrate the advantage of the multi-grid quantization method
over the per-component approach. Given the same number of locations, the multi-grid
achieves a lower Wasserstein distance by placing locations based on the overall shape of
the GMM, rather than treating each component independently. For the case of components
spread out throughout space, the comparison is made between multi-grid and one-grid. In-
stead of using a grid to cover the entire space, multi-grid can place separate local grids,
ensuring much lower Wasserstein distances for the same amount of locations.

5-2 Benchmark Tests

In this section we evaluate the performance of our proposed method in comparison to the
current state of the art, known as the per-component method from [2].

Setup
To evaluate performance in more general settings, we consider GMMs with densely located
components, an important case that motivates our method. The core idea is that when many

Master of Science Thesis Elize Alwash



28 Experiments

components are tightly clustered, it is more efficient to discretize the distribution using a
shared grid rather than allocating a separate grid to each component and taking the union
of these grids. This strategy allows the representation to better capture the overall shape of
the distribution.

We generate synthetic GMMs with dimensions up to d = 60 and number of components
M e [2,100]. The means are initialized so that any two components are separated by at
most 0.5/+/d units, simulating densely packed components within the GMM. To ensure that
all dimensions contribute meaningfully to the distribution, the component variances are also
bounded below by a minimum value of 0.1. Without this lower bound, very low variance in
some dimensions could lead to an unrepresentative or degenerate GMM structure, especially
in high dimensions. We define our GMMs as:

P= Zﬂ'z Mlv z )

where the component means are sampled as

1
i ~ U(—=0.5,0.5)% Nz
and the covariance matrices 3J; are diagonal, defined as

Y= d1ag( Tilyee- 702'2d)7

with

2 ~2
o;; = max(0.1 UU) a;; ~U(0,1).

To ensure a fair comparison, both methods are restricted to a total of 100 quantization
locations, M < M., = 100. In the per-component method, this is divided evenly across
components, i.e., each component is allocated approximately 100/M locations. While the
multi-grid method uses the full 100 locations for its local grid(s). It is important to note that
the multi-grid method will always have M + 1 total locations due to the placement of the
outer location, z, outside of the grids.

Metrics

The metric used to compare quantizations is Wa, taken from the paper [2], which is relative
to the 2nd-moment of the distribution,

Ws(P, A cP)

T (P, Aw P —
Wa(P, Ag cP) | p]|2 + trace(X)’

where p is the mean of the GMM and ¥ its covariance matrix. This way we can compare the
Wasserstein distances across different scenarios.

5-2-1 GMM Size
To compare the methods based on their ability to distribute the quantization locations well,

we compare 2D GMMs with a varying number of components. For each GMM size the
experiment is run 10 times and the average values are recorded.

P= Zﬂ'z ,U/u z _27
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Table 5-2 shows a subset of the results for a varying number of components within the GMM.
The full results are available in the Appendix, Tables A-4 and A-5.

M Wo-multi Wz—pc M-multi M-pc

2 0.157 + 0.007 0.189 4+ 0.005 99.900 £ 0.539  98.300 4+ 1.187
4 0.163 £0.015 0.283 +0.013 100.1004£0.539  79.000 £ 1.000
6 0.166 4+ 0.006 0.395 + 0.016 100.60040.490 57.700 £ 1.005
12 0.168 4+ 0.005 0.554 +0.019 100.6004+0.490 53.700 £ 1.847
22 0.172 £ 0.004 0.960 4+ 0.006 100.70040.458  22.600 £ 1.200
42 0.172 £0.005 0.960 £+ 0.004 100.8004+0.400 42.000 £ 0.000
62 0.171 4+ 0.003 0.962 4+ 0.003 101.00040.000  62.000 £ 0.000
72 0.170 £ 0.003 0.961 4+ 0.002 101.0004£0.000  72.000 £ 0.000
82 0.172 +0.003 0.961 4+ 0.003 101.00040.000  82.000 £ 0.000
99 0.172 £0.003 0.961 £ 0.002 101.0004£0.000  99.000 £ 0.000

Table 5-2: Subset of results from the quantization of 2D GMMs for selected GMM sizes M using
the multi-gird (multi) and per-component (pc) methods. The methods are both constraint to 100
total quantization locations for their grids. For each chosen GMM size the experiment is run 10
times for different GMMs and the average values are recorded along with their standard-deviation.

The full results are recorded in Table A-4.

—— Multi-Grid
—— Per Component

Figure 5-2: Results of quantization of 2D GMMs with varying number of components M. W,
is the normalized Wasserstein-2 distance and M is the number of quantization locations for each
method. The methods are multi-grid (multi) and per-component (pc). The total number of
quantization locations is constraint to 100 for each method. For each chosen GMM size the
experiment is run 10 times for different GMMs and the average values are recorded along with

p )
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(a) Average W5
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| — Multi-Grid
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(b) Runtime T (in seconds)

their standard-deviation. Full numerical results are presented in Table A-4

100

As the per-component method splits the number of locations over the M components, espe-
cially for higher M, the Wasserstein distances increase significantly. Figure 5-2a visualizes
the relationship. It is clear to see that the multi-grid method can spread its locations over the
space of the entire GMM, leading to lower Wasserstein distances, while the per-component
method is more restricted in its placement. For example, in the case of 82 or 99 mixture
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components, the multi-grid method can still spread its locations to favour the GMM’s shape,
while the per-component method is limited to placing a single location per component in the
GMM, leading to significantly higher Wasserstein distances. Matching performance with the
multi-grid method would demand more quantization points, which comes at the cost of higher
complexity when applying it in real-time settings.

It is clear from Table 4-1 that increasing the sample size raises the computational complexity
for the multi-grid method, whereas the per-component method is less affected. This trend is
further illustrated in Figure 5-2b.
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5-2-2 GMM Dimension

Next, the methods are tested for higher dimensional GMMs ranging from dimensions 10 to
60. The size of the GMM is set at 20 components. For each dimension, 10 different GMMs
are taken and their averaged Wy and times are taken. The full results are available in the
Appendix, Table A-7.

M=20

P= Y 7N, )%

i=1
In higher dimensions, the probability mass of a Gaussian distribution does not concentrate
near the mean, but rather forms a region of mass at a distance that scales with v/d from
the centre [31]. The implication of this is that the components in a GMM become even
more dispersed. Implying that for the same amount of quantization locations, a less accurate
representation is made, and thus leading to an increase in Wasserstein distance.

For the per-component method the implication is even bigger as it must spread its locations
over all components over a bigger space. While the multi-grid method can adapt more easily
to the full geometry of the GMM. It is clear to see how well multi-grid can adapt to higher
dimensions in Figure 5-3a.

For higher dimensions, the computational complexity of Algorithm 2 increases to order O(N?)
(see Table 4-1) leading to slightly greater computational times in the multi-grid method.
However, the computation time remains on the order of seconds, as in Figure 5-2b. To further
reduce runtime, one could decrease the number of samples N. Nonetheless, this comes at the
cost of increased Wasserstein distances, as illustrated in Figure A-1.

—— Multi-Grid
0.95 147 —— Per Component
Py
0.90 8 12
~
© 1.0
0.85 g
= 500
080 e ®
____________ 506
_________ a
~ £
075 Goa
070 —— Multi-Grid 02
’ —— Per Component
lb 2‘0 Eb 4b Sb éO 1‘0 2‘0 Eb 4‘0 5‘0 éO
Dimensions d Dimensions d
(a) Average W» (b) Runtime T (in seconds)

Figure 5-3: Quantization results of densely packed GMMs in increasing dimensions (d = 10 to
60), comparing the multi-grid (multi) and per-component (pc) methods in terms of Wasserstein
distance and runtime. For each dimension case, 10 arbitrary GMMs are taken and the average
values are recorded with their standard deviations for both W5 and time T'. Each method is
limited to 100 total quantization locations.
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5-2-3 GMM'’s Variance

The last experiment will focus on the affect of the variance of a GMM on the quantization
methods. We take an arbitrary GMM, with set means and variance, however we scale the
variance by ij = 0.1 + Iterations * 0.1 at every iteration.

M=15
P= Y &N, %)=,

i=1

Figure 5-4 highlights the advantage of the multi-grid method over the per-component ap-
proach. The full results are in Table A-9 in the Appendix. The per-component method
must place its locations equally across all components, which limits its ability to adapt to the
spread of the overall distribution. While the multi-grid method can place locations across one
or more shared grids, enabling it to more effectively capture the global structure and shape
of the distribution, even as the variance increases.

—— Multi-Grid
Per Component
0.8 —
0.7
£ 06
0.5 A
0.4

Variance

Figure 5-4: Results of quantization of a 15D-GMM with 10 components, where the variance is
scaled for 100 runs, such that it increases by 0.1 + Iterations * 0.1 in each dimension. The
W, metric is plotted for the multi-grid and per-component method over the variance. The total
number of quantization locations is constraint to 100 for each method.
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5-3 Uncertainty Propagation

As mentioned in the motivation, in model-based decision making, distributions can be used
to model parts of the dynamics. When these distributions are propagated through model
functions, approximations must be made. In the next section we will apply the multi-grid
quantization method during uncertainty propagation of two different models.

5-3-1 System Evaulation

Say we have a dynamical system with additive noise;

Try1 = f(zg, ug) + €, (5-1)
U = g(:vk) (5—2

where € ~ N (pe, Xe) and xg ~ N (g, Xo). The states are described by distributions,
P(zg+1) = f#P(zx) = P(e), (5-3)

where P(x¢) = N (10, 20). However as it is intractable to solve Equation 5-3, the distributions
are approximated such that we can propagate the dynamics,

P(zt1) = fH#(Arc#P(ar)) = P(e), (5-4)

where P(z9) = P(z0). As we take the convolution of the quantization of P(x;) with the noise,
described by a normal distribution, the output results in a GMM, va TN (i + fie, Be ), Where
the mean is the addition of the previous locations of the quantization with the mean of the
noise, while the covariance is just dependent on the noise, see Remark 4.

Remark 4. Taking the locations ¢; from AR,C#]?’(xk) = va e, 7, and applying the push
forward from the dynamics on the quantization, it results in Zév d¢;m*. Then taking the
convolution with the noise distribution P(€), it results in;

N N N
(Z 5o, ) ¥ N (e, ) = Zﬂ'i(éci kN (e, Xe)) i= Zwi/\/'(ci + fie, Xe).

As the covariance matrix of all components in the GMM is the same, we have an equal
eigenbasis, the perfect setting to apply our new quantization method.

5-3-2 2D Linear System

We will propagate the distributions through the model functions of a simple 2D linear system.

L - e 0.8 {0.0001 0
The system is given by f(z) = Az, with initial state 2o ~ N <l0'8] ) [ 0 0.0001])

_ |cos(§) —sin(0)
—f sin(f)  cos(6)

oo 1)
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Figure 5-5 shows the evolution of the distribution P(zj) over 10 time steps under linear
dynamics f(r) = Ax with additive Gaussian noise. We compare the propagated distribution
using the multi-grid quantization operator (left), represented by ]f”(a:k), with the empirical
estimate of the true distribution (right), P(xy).

(a) Multi-grid quantization (b) Empirical estimate
Figure 5-5: Propagation of P(x;,) using linear dynamics with additive noise ~ N'(0,10731) over

10 time steps. For both the quantization and empirical approximation 100 locations/samples are
used.

Time Step t | Wa(P(z1), Agc#P(xr))  Wa(P(pt1), P(2s1))

0 0.0021 0.0165
1 0.0070 0.0207
2 0.0087 0.0200
3 0.0096 0.0287
4 0.0101 0.0217
b} 0.0104 0.0301
6 0.0106 0.0248
7 0.0108 0.0299
8 0.0108 0.0235
9 0.0109 0.0252

Table 5-3: W, distances per time step for linear dynamics. The first column is the quantization
error and the second is the Wasserstein distance between the quantization and the true distribution
for the next state. This value indicates how close our multi-grid method is to the ‘true’ distribution.
For both the quantization and empirical approximation 100 locations/samples are used.

Table 5-3 provides the Wasserstein distances per time step for the quantization step, Wo (INP’(xk),
AR c#P(zr)). The second Wasserstein distance is between the quantization and the true dis-

tribution, using an empirical estimate, Wa(P(xg41), P(xg+1)). To calculate Wo(P(xg41), P(xg+1))
we use discrete optimal transport, which equates to a linear programming problem [14]. The
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multi-grid method consistently maintains a low Wasserstein distance for both its quantization
step as the comparison with the empirical distribution.

The quantization error stabilizes after just a few time steps (after step 4), suggesting that
the discrete locations and grid structure remain well-aligned with the evolving distribution.
Additionally, from these results we can also conclude that 100 discrete locations is enough to
capture all fine-scale features of the distributions.

The Wasserstein distance between the quantization and the empirical distribution also stays
quite low and consistent over time, which confirms that our method provides reliable approx-
imations.

5-3-3 3D Dubins Car

The next model is the 3D Dubins car model from [4]. We set the velocity at a constant value

0.8 100
of v = 1.5, with constant input # = 0.2, and initial state zg ~ N | {0.8],0.0001 [0 1 0
0.0 0 0 1
0 1 00
The additive noise is defined by e ~ A | [0],0.001- |0 1 0
0 0 0 1

Figure 5-6 compares the multi-grid propagated distribution with the empirical result across 10
time steps. Again the left plot is the propagated distribution using the multi-grid quantization
operator, represented by P(x) (left), and the right plot is the empirical estimate of the true
distribution, P(xy).

(a) Multi-grid quantization (b) Empirical estimate

Figure 5-6: Propagation of P(x) under Dubins Car dynamics with control input § = 0.2,
At = 0.1, and noise ~ N'(0,10731) for 10 time steps. For both the quantization and empirical
approximation 100 locations/samples are used.

Table 5-4 presents the Wasserstein distances for this system. The Wasserstein distances
are slightly higher in comparison to the linear dynamics. Unlike the linear case, the state
distribution deforms in more complex ways, making accurate approximation more challenging.
This is especially clear in the last few time steps in Figure 5-6.

The quantization error, grows gradually but remains bounded. However, the Wasserstein
distance between the quantized and empirical distributions increases more sharply over time.
This suggests that a fixed number of quantization locations may not be sufficient to fully
capture the evolving complexity of the distribution, and that additional locations may be
necessary for improved accuracy.
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Time Step t | Wa(P(z1), Agc#P(z))  Wa(P(zpi1), P(2ri1))

0.0053
0.0174
0.0229
0.0268
0.0300
0.0327
0.0353
0.0386
0.0397
0.0413

© 00 ~J O U i W N~ O

0.0264
0.0368
0.0429
0.0528
0.0541
0.0604
0.0565
0.0627
0.0720
0.0751

Table 5-4: W, distances per time step for Dubins Car dynamics. The
quantization error and the second is the Wasserstein distance between the quantization and the
true distribution for the next state. This value indicates how close our multi-grid method is to the
‘true’ distribution. For both the quantization and empirical approximation 100 locations/samples

are used.
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Chapter 6

Conclusion

We introduced a new quantization operator for GMMs, named the multi-grid method, with
formal error bounds defined by the Wasserstein distance. Our approach leverages clustering
algorithms to identify the modes of a GMM. The method is compared against the previous
state-of-the-art - the per-component method from [2] - in various different settings. In terms
of the Wasserstein distance, in all experiments, the error bound for the multi-grid method is
significantly lower than of the previous method. The key advantage of our approach lies in its
scalability to higher-dimensional spaces and larger sized GMMs, as demonstrated empirically.

Matching the performance of the multi-grid method would require the per-component ap-
proach to use a substantially larger number of quantization locations, which becomes imprac-
tical in real-time applications. This further highlights the efficiency and scalability of the
multi-grid method.

Finally the operator is applied during uncertainty propagation of two different models, a
simple 2D linear system and Dubins car [4], further illustrating its practical effectiveness.

One potential direction for future research involves relaxing the assumption that all compo-
nents in the GMM share a common eigen-basis for their covariance matrices. This assumption
is currently made to ensure we can use a shared, axis-aligned grid across all components. Inves-
tigating methods that allow for varying eigen-bases, while still ensuring efficient quantizations,
could broaden the applicability of our method. Another potential direction is investigating
other ways of finding and placing the shells. Currently we assume we do not know any infor-
mation about the input distribution, which does make our approach very general. However,
including information from the distribution, being a GMM, could help with the placement of
even more optimal shells, possibly leading to even lower Wasserstein distances. In addition to
improving the search algorithm for the optimal shells, another related direction is the develop-
ment of a more computationally efficient algorithm. Although the current method maintains
runtimes in the order of seconds, this may become a limitation in time-critical applications
such as autonomous driving systems [17].
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Appendix

A-1 Tables

The following tables include the full numerical results from the experiments run in Chapter
4 and 5.

A-1-1 Validation Algorithm 2

Run ID W, Grid Search W, DBSCAN P(Rgrid search) P(RDBSCAN)

1 0.199552 0.199300 0.9999 1.0000
2 0.339783 0.340206 0.9704 1.0000
3 0.293735 0.295457 1.0000 1.0000
4 0.145545 0.145853 1.0000 1.0000
5 0.232156 0.232255 1.0000 1.0000
6 0.316742 0.316877 0.9991 1.0000
7 0.246115 0.245851 1.0000 1.0000
8 0.320529 0.322475 1.0000 1.0000
9 0.277583 0.346630 0.9966 1.0000
10 0.070830 0.070775 1.0000 1.0000
11 0.329692 0.328687 0.9999 1.0000
12 0.070202 0.070394 1.0000 1.0000
13 0.261273 0.261817 1.0000 1.0000
14 0.183417 0.183232 1.0000 1.0000
15 0.284980 0.287673 1.0000 1.0000
16 0.194808 0.193281 1.0000 1.0000
17 0.153758 0.138773 0.9937 1.0000
18 0.344619 0.343804 1.0000 1.0000
19 0.251889 0.251624 0.9993 1.0000
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Run ID Wy Grid Search Wy DBSCAN P(Rgrid search) P(RpBscaN)

20 0.290009 0.288885 0.9974 1.0000
21 0.296745 0.296989 0.9999 1.0000
22 0.264472 0.264485 1.0000 1.0000
23 0.222611 0.224915 1.0000 1.0000
24 0.337109 0.336891 0.9990 1.0000
25 0.133929 0.134288 1.0000 1.0000
26 0.176090 0.196157 1.0000 1.0000
27 0.312282 0.311320 1.0000 1.0000
28 0.143817 0.143756 1.0000 1.0000
29 0.295662 0.300516 0.9997 1.0000
30 0.230004 0.231449 0.9975 1.0000
31 0.058955 0.058202 1.0000 1.0000
32 0.204173 0.349511 0.9810 1.0000
33 0.070253 0.070261 1.0000 1.0000
34 0.141051 0.141246 1.0000 1.0000
35 0.320181 0.329097 1.0000 1.0000
36 0.069243 0.069391 1.0000 1.0000
37 0.223744 0.223531 0.9940 1.0000
38 0.079768 0.079604 1.0000 1.0000
39 0.179273 0.179866 1.0000 1.0000
40 0.264519 0.264836 0.9975 1.0000
41 0.334993 0.332780 0.9997 1.0000
42 0.352297 0.350945 1.0000 1.0000
43 0.223195 0.241696 0.9907 1.0000
44 0.347873 0.347286 0.9985 1.0000
45 0.243716 0.244052 1.0000 1.0000
46 0.252307 0.254596 0.9990 1.0000
47 0.171904 0.171957 0.9905 1.0000
48 0.261009 0.261179 1.0000 1.0000
49 0.142159 0.141374 1.0000 1.0000
50 0.229909 0.230237 1.0000 1.0000
o1 0.119021 0.117810 0.9983 1.0000
52 0.077816 0.078523 1.0000 1.0000
93 0.144878 0.145461 1.0000 1.0000
54 0.299195 0.302096 0.9992 1.0000
95 0.192090 0.191846 1.0000 1.0000
o6 0.177599 0.178036 1.0000 1.0000
o7 0.227608 0.282403 0.9420 1.0000
o8 0.258100 0.258542 1.0000 1.0000
29 0.342675 0.343738 0.9980 1.0000
60 0.348659 0.349576 0.9999 1.0000
61 0.246315 0.247820 1.0000 1.0000
62 0.312095 0.313944 0.9977 1.0000
63 0.281783 0.283641 0.9850 1.0000
64 0.306550 0.307195 1.0000 1.0000
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Run ID Wy Grid Search Wy DBSCAN P(Rgrid search) P(RpBscaN)

65 0.217746 0.217694 1.0000 1.0000
66 0.302441 0.304350 0.9999 1.0000
67 0.322972 0.323384 0.9909 1.0000
68 0.259070 0.256677 1.0000 1.0000
69 0.336525 0.334711 0.9992 1.0000
70 0.334013 0.336275 1.0000 1.0000
71 0.220377 0.220116 1.0000 1.0000
72 0.333583 0.337188 0.9979 1.0000
73 0.077685 0.077846 1.0000 1.0000
74 0.183632 0.183245 1.0000 1.0000
75 0.363674 0.363215 1.0000 1.0000
76 0.360642 0.361447 0.9993 1.0000
77 0.137597 0.137551 1.0000 1.0000
78 0.230468 0.230903 0.9999 1.0000
79 0.310566 0.310231 1.0000 1.0000
80 0.288759 0.288588 0.9999 1.0000
81 0.290437 0.290190 1.0000 1.0000
82 0.135662 0.138965 1.0000 1.0000
83 0.336289 0.336758 1.0000 1.0000
84 0.224124 0.222854 1.0000 1.0000
85 0.322948 0.322746 1.0000 1.0000
86 0.351149 0.349838 0.9979 1.0000
87 0.186491 0.186823 0.9999 1.0000
88 0.185410 0.185532 1.0000 1.0000
89 0.137854 0.137811 1.0000 1.0000
90 0.065469 0.065424 1.0000 1.0000
91 0.201980 0.243525 1.0000 1.0000
92 0.352942 0.353719 0.9990 1.0000
93 0.315168 0.326893 1.0000 1.0000
94 0.071637 0.071718 1.0000 1.0000
95 0.232275 0.231823 1.0000 1.0000
96 0.068365 0.068327 1.0000 1.0000
97 0.265056 0.265189 1.0000 1.0000
98 0.361121 0.361958 1.0000 1.0000
99 0.073641 0.073588 1.0000 1.0000
100 0.252329 0.335007 0.9967 1.0000

Table A-2: Comparison of the normalized Wasserstein-2 errors W, and probability mass within
the grids of Algorithm 2 versus optimized shell sizes for minimal Wasserstein error using the
Golden-section method. Experiment is run for 100 GMMs with different sizes and dimensions.

A-1-2 GMM Size Tests
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M Wo-multi Wa-pc M-multi M-pc

2 0.157 £ 0.007 0.189 £+ 0.005 99.900 + 0.539  98.300 + 1.187
3 0.157 £ 0.010 0.249 £+ 0.004 100.700+£0.640 88.600 + 0.917
4 0.163 £0.015 0.283 £0.013 100.10040.539  79.000 +£ 1.000
) 0.166 £+ 0.012 0.290 £+ 0.007 100.4004+0.663 98.800 + 1.600
6 0.166 £ 0.006 0.395 £0.016 100.6004+0.490 57.700 + 1.005
7 0.168 £+ 0.006 0.389 +£0.017 100.4004+0.663 67.800 + 1.249
8 0.169 + 0.006 0.389 £0.014 100.500£0.500 77.400 4 0.917
9 0.170 £+ 0.007 0.396 +0.014 100.700+0.458 86.400 + 1.281
10 0.170 £ 0.009 0.395 £ 0.012 100.900£0.300 97.000 4 1.095
11 0.166 + 0.004 0.544 +£0.015 100.1004+0.539  49.500 + 2.156
12 0.168 £+ 0.005 0.554 +£0.019 100.600+0.490 53.700 + 1.847
13 0.172 +£0.004 0.545 +0.019 100.7004+0.458  57.900 + 1.300
14 0.169 + 0.005 0.548 £0.016 100.6004+0.490 61.800 + 1.778
15 0.168 £ 0.005 0.556 £0.015 100.80040.400 65.400 + 1.908
16 0.173 +£0.007 0.548 £0.018 101.000£0.000  70.900 + 2.343
17 0.171 £ 0.004 0.545 £0.012 100.80040.400  74.500 + 1.628
18 0.172 £0.005 0.544 +0.010 101.0004+0.000 80.100 + 1.700
19 0.169 £+ 0.003 0.560 + 0.008 101.000£0.000 82.800 4+ 1.778
20 0.172 £0.002 0.547 +£0.013 100.8004+0.400 90.000 + 2.191
21 0.170 £ 0.005 0.959 + 0.006 100.800£0.400 21.600 4 1.200
22 0.172 +£0.004 0.960 + 0.006 100.7004+0.458  22.600 + 1.200
23 0.171 £ 0.005 0.962 £+ 0.004 100.800£0.400 23.000 4 0.000
24 0.170 £ 0.004 0.960 £+ 0.006 100.8004+0.400 25.800 + 1.470
25 0.172 +£0.004 0.959 + 0.006 100.6004+0.490 25.300 + 0.900
26 0.171 £0.005 0.960 £ 0.007 100.60040.490  26.000 +£ 0.000
27 0.170 £0.005 0.959 £+ 0.007 100.7004+0.458  27.000 + 0.000
28 0.171 £ 0.004 0.963 £ 0.004 100.90040.300  28.000 +£ 0.000
29 0.172 +£0.004 0.961 £+ 0.004 100.900£0.300 29.000 4 0.000
30 0.172 £ 0.005 0.961 £ 0.005 100.900£0.300 30.000 4 0.000
31 0.172 +£0.004 0.961 £+ 0.005 100.900£0.300 31.000 4 0.000
32 0.170 £ 0.004 0.964 + 0.007 100.900£0.300 32.000 4 0.000
33 0.169 £+ 0.003 0.964 + 0.004 100.9004+0.300 33.000 + 0.000
34 0.170 £ 0.003 0.962 + 0.005 101.000£0.000 34.000 4 0.000
35 0.170 £0.005 0.961 +0.005 101.00040.000  35.000 + 0.000
36 0.172 +£0.004 0.960 + 0.004 100.900£0.300 36.000 4+ 0.000
37 0.171 £ 0.004 0.961 £ 0.005 101.00040.000  37.000 +£ 0.000
38 0.170 £ 0.004 0.961 £ 0.005 100.900£0.300 38.000 4 0.000
39 0.170 £ 0.004 0.962 £+ 0.006 101.00040.000  39.000 +£ 0.000
40 0.172 £ 0.004 0.959 + 0.006 101.0004+0.000  40.000 + 0.000
41 0.172 £ 0.003 0.964 + 0.004 101.000£0.000 41.000 4 0.000
42 0.172 £0.005 0.960 + 0.004 100.8004+0.400 42.000 + 0.000
43 0.170 £ 0.003 0.959 £ 0.004 101.000£0.000 43.000 4 0.000
44 0.173 £0.005 0.963 + 0.004 101.00040.000  44.000 + 0.000
45 0.174 £+ 0.004 0.961 £ 0.005 101.000£0.000 45.000 4 0.000
46 0.171 £0.003 0.963 £+ 0.004 101.00040.000  46.000 + 0.000
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M Wo-multi Wa-pc M-multi M-pc

47 0.173 £ 0.005 0.960 +£ 0.004 101.000+0.000  47.000 £ 0.000
48 0.173 £ 0.004 0.961 £ 0.003 100.9004+0.300  48.000 % 0.000
49 0.171 4+ 0.002 0.962 +£ 0.005 101.000+0.000  49.000 £ 0.000
50 0.173 £ 0.003 0.960 £ 0.003 101.0004+0.000  50.000 % 0.000
51 0.171 + 0.004 0.963 £ 0.004 101.000+£0.000  51.000 £ 0.000
52 0.172 £ 0.003 0.959 £ 0.004 100.9004+0.300  52.000 £ 0.000
53 0.173 £ 0.005 0.962 + 0.003 101.000+0.000  53.000 % 0.000
54 0.171 4+ 0.002 0.962 £ 0.005 101.0004+0.000  54.000 £ 0.000
55 0.171 £ 0.004 0.959 £ 0.004 101.0004+0.000  55.000 % 0.000
56 0.171 £ 0.004 0.961 + 0.002 100.900+0.300  56.000 % 0.000
57 0.173 £ 0.002 0.959 £ 0.005 101.000+0.000  57.000 % 0.000
58 0.172 £ 0.003 0.958 £ 0.004 101.000+0.000  58.000 £ 0.000
59 0.172 £ 0.004 0.962 £ 0.004 101.0004+0.000  59.000 % 0.000
60 0.172 £ 0.003 0.958 £ 0.005 101.000+0.000  60.000 £ 0.000
61 0.170 £ 0.002 0.961 £ 0.003 100.9004+0.300  61.000 % 0.000
62 0.171 £ 0.003 0.962 £ 0.003 101.000+0.000  62.000 £ 0.000
63 0.171 £ 0.002 0.961 £ 0.004 100.9004+0.300  63.000 % 0.000
64 0.171 + 0.004 0.963 £ 0.002 101.000+0.000  64.000 % 0.000
65 0.172 £ 0.003 0.961 +£ 0.005 101.0004+0.000  65.000 % 0.000
66 0.172 £ 0.003 0.961 £ 0.003 101.000+0.000  66.000 % 0.000
67 0.172 £ 0.003 0.963 £ 0.003 101.000+0.000  67.000 £ 0.000
68 0.171 £ 0.003 0.962 £ 0.003 101.000+0.000  68.000 % 0.000
69 0.172 £ 0.003 0.960 +£ 0.005 101.000+0.000  69.000 £ 0.000
70 0.172 £ 0.003 0.964 £ 0.004 101.0004+0.000  70.000 % 0.000
71 0.172 4+ 0.002 0.960 £ 0.004 101.000+£0.000  71.000 £ 0.000
72 0.170 £ 0.003 0.961 £ 0.002 101.0004+0.000  72.000 % 0.000
73 0.171 £ 0.003 0.962 + 0.002 101.000+£0.000  73.000 £ 0.000
74 0.171 4+ 0.002 0.961 £ 0.003 101.0004+0.000  74.000 £ 0.000
75 0.172 £ 0.003 0.961 £ 0.003 101.000+0.000  75.000 % 0.000
76 0.173 £ 0.003 0.961 £ 0.004 101.0004+0.000  76.000 £ 0.000
7 0.171 £ 0.002 0.960 £ 0.003 101.000+0.000  77.000 % 0.000
78 0.171 £ 0.003 0.962 + 0.003 101.000+0.000  78.000 £ 0.000
79 0.171 £ 0.002 0.960 £ 0.003 101.0004+0.000  79.000 % 0.000
80 0.170 £ 0.002 0.963 £ 0.002 101.000+0.000  80.000 £ 0.000
81 0.171 4+ 0.002 0.961 £ 0.003 101.000+0.000  81.000 % 0.000
82 0.172 £ 0.003 0.961 £ 0.003 101.000+£0.000  82.000 £ 0.000
83 0.172 £ 0.003 0.961 £ 0.004 101.0004+0.000  83.000 % 0.000
84 0.171 £ 0.003 0.960 £ 0.003 100.900+0.300  84.000 £ 0.000
85 0.172 £ 0.003 0.961 £ 0.002 101.0004+0.000  85.000 % 0.000
86 0.172 £ 0.004 0.961 £ 0.002 101.000+0.000  86.000 % 0.000
87 0.172 £ 0.002 0.960 +£ 0.003 101.000+0.000  87.000 % 0.000
88 0.171 £ 0.001 0.963 £ 0.002 101.0004+0.000  88.000 % 0.000
89 0.172 £ 0.002 0.961 + 0.002 101.000+0.000  89.000 £ 0.000
90 0.171 £ 0.003 0.961 £ 0.003 101.0004+0.000  90.000 % 0.000
91 0.172 4+ 0.002 0.962 + 0.003 101.000+£0.000  91.000 £ 0.000
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M Wo-multi Wa-pc M-multi M-pc
92 0.171 £0.002 0.962 £+ 0.003 101.0004£0.000  92.000 £ 0.000
93 0.171 £ 0.001 0.961 £+ 0.003 101.000£0.000 93.000 £ 0.000
94 0.172 £0.003 0.961 £ 0.003 101.0004£0.000  94.000 £ 0.000
95 0.173 £0.003 0.961 £ 0.002 101.000£0.000  95.000 £ 0.000
96 0.172 £0.003 0.961 £ 0.004 101.0004+0.000 96.000 £ 0.000
97 0.171 +£0.001 0.962 + 0.002 101.0004£0.000  97.000 £ 0.000
98 0.172 £ 0.002 0.960 + 0.004 101.00040.000  98.000 +£ 0.000
99 0.172 £0.003 0.961 + 0.002 101.000£0.000 99.000 £ 0.000
Table A-4: Results of quantization of 2D GMMs with varying number of components M. W is
the normalized Wasserstein-2 distance and M is the number of support locations for each method.
The methods are multi-grid (multi) and per component (pc). The total number of quantization
locations is constraint to 100 for each method. For each chosen GMM size the experiment is
run 10 times for different GMMs and the average values are recorded along with their standard-
deviation.
M T-multi (s) T-pc (s)
2 0.0122 £+ 0.0079 0.0031 £ 0.0000
3 0.0148 £ 0.0009 0.0050 £ 0.0004
4 0.0189 + 0.0007 0.0063 £ 0.0002
) 0.0236 £ 0.0006 0.0076 £ 0.0001
6 0.0297 £ 0.0028 0.0095 £ 0.0005
7 0.0342 + 0.0006 0.0107 4+ 0.0002
8 0.0406 + 0.0022 0.0125 4 0.0006
9 0.0498 £ 0.0059 0.0152 4+ 0.0019
10 0.0578 £ 0.0095 0.0190 +£ 0.0088
11 0.0751 £ 0.0164 0.0209 £+ 0.0038
12 0.0816 + 0.0104 0.0221 4+ 0.0028
13 0.0756 £ 0.0018 0.0204 +£ 0.0007
14 0.0848 + 0.0090 0.0217 £ 0.0007
15 0.0903 £+ 0.0014 0.0232 4 0.0008
16 0.1033 £ 0.0111 0.0249 + 0.0012
17 0.1377 £+ 0.0281 0.0373 + 0.0131
18 0.1265 + 0.0257 0.0279 4+ 0.0012
19 0.1321 + 0.0045 0.0300 £ 0.0017
20 0.1503 + 0.0218 0.0377 £ 0.0089
21 0.1530 £+ 0.0167 0.0332 £ 0.0045
22 0.1605 + 0.0056 0.0351 + 0.0033
23 0.1706 £ 0.0069 0.0371 £ 0.0025
24 0.1951 £+ 0.0377 0.0446 + 0.0249
25 0.1956 + 0.0101 0.0369 +£ 0.0020
26 0.2012 4+ 0.0051 0.0388 + 0.0023
27 0.2145 + 0.0056 0.0399 + 0.0024
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T-multi (s)

T-pc (s)

0.2557 £ 0.0354
0.2558 £ 0.0121
0.2535 £+ 0.0064
0.2706 £+ 0.0099
0.2883 + 0.0187
0.2918 £+ 0.0034
0.3039 £ 0.0102
0.3144 £ 0.0115
0.3438 £ 0.0265
0.3444 £+ 0.0093
0.3606 £ 0.0091
0.3705 £ 0.0051
0.3945 + 0.0058
0.4046 £ 0.0114
0.4282 £ 0.0174
0.4364 £ 0.0089
0.4627 £ 0.0178
0.4737 £ 0.0053
0.4886 + 0.0051
0.5103 £ 0.0098
0.5305 £ 0.0137
0.5559 £ 0.0191
0.5781 £ 0.0149
0.5940 + 0.0187
0.6253 = 0.0206
0.6449 + 0.0189
0.6578 +0.0149
0.6782 £ 0.0185
0.7003 £ 0.0106
0.7309 £ 0.0152
0.7638 = 0.0180
0.7695 £ 0.0194
0.7921 £ 0.0146
0.8191 £ 0.0189
0.8423 £ 0.0128
0.9010 £ 0.0285
0.9684 £ 0.0774
0.9602 £ 0.0520
0.9551 £ 0.0361
0.9954 £ 0.0514
1.0532 +0.1229
1.1766 4+ 0.1948
1.0881 + 0.0624
1.0842 + 0.0383
1.1688 £ 0.0738

0.0484 £ 0.0164
0.0474 £ 0.0076
0.0436 £ 0.0007
0.0459 £ 0.0007
0.0469 £ 0.0009
0.0487 £+ 0.0009
0.0492 £ 0.0006
0.0517 £ 0.0031
0.0542 £+ 0.0041
0.0565 £ 0.0040
0.0554 £ 0.0011
0.0563 £ 0.0010
0.0582 £ 0.0013
0.0595 £ 0.0016
0.0609 £ 0.0027
0.0623 £ 0.0014
0.0640 £ 0.0025
0.0657 £ 0.0018
0.0661 £ 0.0004
0.0678 £ 0.0012
0.0687 £ 0.0004
0.0707 £ 0.0011
0.0730 £ 0.0022
0.0736 £ 0.0018
0.0748 £ 0.0011
0.0754 £ 0.0013
0.0765 £ 0.0009
0.0791 £ 0.0016
0.0802 £ 0.0023
0.0809 £ 0.0006
0.0833 £ 0.0022
0.0838 £ 0.0008
0.0854 £ 0.0010
0.0864 £ 0.0007
0.0887 £ 0.0011
0.0901 £ 0.0030
0.1207 £ 0.0660
0.0931 £ 0.0021
0.0961 £ 0.0053
0.1004 £ 0.0129
0.0985 £ 0.0021
0.1053 £ 0.0093
0.0999 £ 0.0008
0.1035 £ 0.0035
0.1099 £ 0.0120
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M T-multi (s) T-pc (s)
73 1.2672 £+ 0.0680 0.1070 #+ 0.0029
74 1.2239 + 0.0520 0.1072 + 0.0021
75 1.2327 £0.0477 0.1076 + 0.0023
76 1.2502 £+ 0.0415 0.1086 4+ 0.0012
7 1.3159 £+ 0.0655 0.1266 £ 0.0474
78 1.3454 + 0.0656 0.1207 + 0.0282
79 1.3574 + 0.0483 0.1148 4+ 0.0032
80 1.4722 +0.1050 0.1156 4+ 0.0023
81 1.6065 £+ 0.1839 0.1405 % 0.0606
82 1.6306 £+ 0.1923 0.1207 + 0.0027
83 1.6355 £ 0.0854 0.1248 + 0.0047
84 1.4985 £+ 0.0513 0.1210 + 0.0031
85 1.5492 £+ 0.0633 0.1310 + 0.0267
86 1.5933 £+ 0.0545 0.1249 + 0.0066
87 1.6612 £ 0.0957 0.1263 4+ 0.0016
88 1.8259 £+ 0.3095 0.1299 + 0.0052
89 1.8072 4 0.0985 0.1357 £ 0.0069
90 1.8522 +0.1279 0.1340 4+ 0.0025
91 1.9945 + 0.3600 0.1566 £ 0.0670
92 1.8406 + 0.0281 0.1319 4+ 0.0016
93 1.9077 £ 0.1465 0.1366 £ 0.0077
94 1.8975 £+ 0.0528 0.1363 + 0.0033
95 2.2178 + 0.1667 0.1454 4+ 0.0088
96 1.9593 £ 0.0901 0.1403 4+ 0.0013
97 2.3015 + 0.3617 0.1616 + 0.0304
98 2.3184 + 0.2112 0.1461 + 0.0033
99 2.3593 + 0.1159 0.1590 + 0.0179
Table A-5: Results of quantization of 2D GMMs with varying number of components M. M is
the number of support locations for each method and T is the computation time. The methods
are multi-grid (multi) and per component (pc). The total number of quantization locations is
constraint to 100 for each method. For each chosen GMM size the experiment is run 10 times
for different GMMs and the average values are recorded along with their standard-deviation.
A-1-3 GMM Dimension Tests
d Wa-multi Wa-pc T-multi (s) T-pc (s)
10 0.689 £ 0.006 0.879 4+ 0.006 0.520 £+ 0.063 0.108 + 0.011
11 0.701 £0.013 0.885 £ 0.007 0.602 £0.120 0.123 £ 0.026
12 0.710 £0.018 0.889 £ 0.008 0.603 +£0.112 0.127 £ 0.031
13 0.719 £ 0.022 0.893 £ 0.010 0.619 £ 0.105 0.131 +0.028
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d Wo-multi Wa-pe T-multi (s) T-pc (s)
14 0.728 £ 0.026 0.897 £ 0.012 0.627 £ 0.095 0.135 £ 0.029
15 0.736 £ 0.030 0.900 £ 0.013 0.636 = 0.090 0.138 £0.028
16 0.743 £ 0.033 0.903 £ 0.015 0.631 + 0.094 0.142 £ 0.027
17 0.750 £ 0.036 0.906 £ 0.016 0.627 + 0.088 0.146 + 0.028
18 0.757 £ 0.039 0.909 £ 0.017 0.626 + 0.084 0.150 £ 0.029
19 0.763 £ 0.042 0.911 £ 0.018 0.624 + 0.080 0.154 +0.030
20 0.769 + 0.044 0.914 £ 0.018 0.631 £+ 0.084 0.159 £ 0.033
21 0.774 £ 0.046 0.916 £ 0.019 0.638 = 0.083 0.163 = 0.036
22 0.780 £ 0.048 0.918 £ 0.020 0.645 £ 0.083 0.167 £ 0.037
23 0.785 £ 0.049 0.920 + 0.020 0.654 + 0.088 0.171 £ 0.039
24 0.789 £ 0.051 0.922 £ 0.021 0.664 £+ 0.094 0.175 4+ 0.040
25 0.794 £ 0.052 0.924 £ 0.021 0.676 £+ 0.102 0.179 £ 0.043
26 0.798 £ 0.053 0.925 £ 0.021 0.690 £0.115 0.185 +0.048
27 0.802 £ 0.054 0.927 £ 0.022 0.702 £ 0.123 0.189 + 0.049
28 0.806 £ 0.055 0.928 £ 0.022 0.725 £ 0.161 0.199 +0.073
29 0.810 £ 0.056 0.929 + 0.022 0.748 £ 0.187 0.205 £ 0.077
30 0.813 £ 0.057 0.931 £ 0.022 0.758 £ 0.188 0.209 + 0.077
31 0.816 £+ 0.058 0.932 £ 0.023 0.769 £ 0.190 0.213 £ 0.077
32 0.819 £ 0.058 0.933 £ 0.023 0.779 £ 0.192 0.217 £ 0.077
33 0.823 £ 0.059 0.934 £ 0.023 0.789 £ 0.194 0.221 £0.079
34 0.825 £ 0.059 0.935 + 0.023 0.800 + 0.197 0.226 + 0.080
35 0.828 £+ 0.060 0.936 £+ 0.023 0.812 £ 0.203 0.230 £ 0.082
36 0.831 +£ 0.060 0.937 £ 0.023 0.823 + 0.207 0.235 + 0.085
37 0.834 £ 0.061 0.938 £ 0.024 0.834 £0.211 0.240 + 0.087
38 0.836 £ 0.061 0.939 £ 0.024 0.845 £ 0.215 0.244 + 0.088
39 0.838 = 0.062 0.940 £ 0.024 0.856 £ 0.220 0.249 4+ 0.090
40 0.841 + 0.062 0.941 £ 0.024 0.867 £ 0.225 0.253 £ 0.092
41 0.843 £ 0.062 0.942 +£0.024 0.878 +0.230 0.257 £ 0.093
42 0.845 £ 0.063 0.943 +£0.024 0.889 £ 0.235 0.262 £ 0.095
43 0.847 £ 0.063 0.943 £ 0.024 0.900 + 0.241 0.266 £ 0.098
44 0.849 £ 0.063 0.944 £ 0.024 0.912 £ 0.246 0.271 £0.100
45 0.851 £ 0.063 0.945 £ 0.024 0.924 + 0.254 0.275 + 0.102
46 0.853 £ 0.063 0.946 + 0.024 0.936 £+ 0.260 0.280 £0.104
47 0.855 £ 0.064 0.946 + 0.024 0.948 + 0.267 0.284 + 0.106
48 0.857 £ 0.064 0.947 £ 0.024 0.960 + 0.274 0.289 £ 0.108
49 0.859 £ 0.064 0.948 +£0.024 0.979 + 0.296 0.295 +0.113
50 0.860 £ 0.064 0.948 +0.024 1.000 £ 0.326 0.301 £0.120
o1 0.862 £ 0.064 0.949 £ 0.024 1.013 £0.333 0.306 + 0.122
52 0.864 £ 0.064 0.950 £ 0.024 1.026 £ 0.339 0.310 £ 0.124
53 0.865 + 0.064 0.950 £+ 0.024 1.038 £ 0.345 0.315 £ 0.126
54 0.867 £ 0.064 0.951 £ 0.025 1.051 £0.351 0.319 £0.128
55 0.868 + 0.064 0.951 £ 0.025 1.064 £ 0.358 0.324 £0.130
56 0.870 £ 0.064 0.952 + 0.025 1.076 £ 0.364 0.328 £ 0.133
o7 0.871 £ 0.065 0.952 £ 0.025 1.088 £0.370 0.333 £0.135
o8 0.872 £ 0.065 0.953 + 0.025 1.102 £0.378 0.337 £ 0.137

Elize Alwash

Master of Science Thesis



A-1 Tables 47
d Wo-multi Wa-pe T-multi (s) T-pc (s)
59 0.874 +0.065 0.953 4+ 0.025 1.115+£0.385 0.341 £ 0.139
60 0.875 4+ 0.065 0.954 4+ 0.025 1.127 £ 0.391 0.346 +0.141
Table A-7: Quantization results of GMMs over different dimensions d varying from 10 to 60. The
table shows the mean and standard deviation for the W, distances and runtimes T" (in seconds) for
multi-grid (multi) and per-component (pc) methods. The total number of quantization locations
is constraint to 100 for each method (for 20 components this results in 97 locations for the multi-
grid method and 80 for the per-component method). For each chosen dimension the experiment
is run 10 times for different GMMs and the average values are recorded along with their standard-
deviation.
A-1-4 GMM'’s Variance Tests
Var. Wo-multi Wa-pe T-multi (s) T-pc (s)
0.1 0.345332 0.371729 0.3127 0.0777
0.2 0.438195 0.484801 0.2728 0.0751
0.3 0.497161 0.553788 0.2720 0.0756
0.4 0.536809 0.601526 0.2707 0.0769
0.5 0.566485 0.636866 0.2772 0.0763
0.6 0.589815 0.664208 0.2723 0.0790
0.7 0.607942 0.686045 0.2710 0.0766
0.8 0.623268 0.703914 0.2699 0.0745
0.9 0.635924 0.718821 0.3394 0.0813
1.0 0.646751 0.731453 0.2880 0.0828
1.1 0.656266 0.742299 0.2905 0.0813
1.2 0.666016 0.751715 0.2857 0.0786
1.3 0.670989 0.759969 0.2834 0.0791
14 0.677216 0.767264 0.2769 0.0764
1.5 0.683084 0.773760 0.2784 0.0768
1.6 0.687963 0.779581 0.2720 0.0810
1.7 0.694172 0.784828 0.2715 0.0734
1.8 0.697145 0.789582 0.2687 0.0758
1.9 0.700648 0.793910 0.2693 0.0759
2.0 0.703883 0.797866 0.2702 0.0732
2.1 0.707658 0.801497 0.2660 0.0757
2.2 0.710006 0.804841 0.2687 0.0739
2.3 0.713064 0.807931 0.2677 0.0757
24 0.715708 0.810795 0.2704 0.0778
2.5 0.717784 0.813458 0.3033 0.0770
2.6 0.719201 0.815938 0.3583 0.0988
2.7 0.720431 0.818256 0.2910 0.0775
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Var. Wo-multi Wa-pe T-multi (s) T-pc (s)
2.8 0.722776 0.820425 0.2743 0.0741
2.9 0.724237 0.822461 0.2695 0.0755
3.0 0.726357 0.824375 0.2710 0.0733
3.1 0.728056 0.826177 0.2768 0.0767
3.2 0.730070 0.827877 0.2699 0.0758
3.3 0.732029 0.829484 0.2702 0.0744
3.4 0.731506 0.831006 0.2713 0.0746
3.5 0.733225 0.832447 0.2951 0.0922
3.6 0.735336 0.833816 0.2810 0.0769
3.7 0.736119 0.835117 0.2681 0.0756
3.8 0.736367 0.836355 0.2695 0.0793
3.9 0.737403 0.837535 0.2830 0.0748
4.0 0.739085 0.838660 0.2758 0.0742
4.1 0.740282 0.839735 0.2741 0.0776
4.2 0.740257 0.840762 0.2780 0.0765
4.3 0.742761 0.841745 0.2815 0.0787
4.4 0.742319 0.842687 0.2918 0.0824
4.5 0.743642 0.843589 0.2826 0.0775
4.6 0.743471 0.844455 0.2737 0.0737
4.7 0.744435 0.845287 0.2686 0.0768
4.8 0.744913 0.846087 0.2701 0.0742
4.9 0.745442 0.846856 0.2699 0.0749
5.0 0.747536 0.847596 0.2688 0.0760
5.1 0.746833 0.848309 0.2715 0.0750
5.2 0.746975 0.848996 0.3369 0.0872
5.3 0.748328 0.849659 0.2816 0.0752
5.4 0.749745 0.850299 0.2714 0.0771
5.5 0.749445 0.850917 0.3018 0.0776
5.6 0.749715 0.851514 0.2765 0.0737
5.7 0.750556 0.852092 0.4699 0.0833
5.8 0.751368 0.852650 0.3074 0.1432
5.9 0.750433 0.853191 0.2925 0.0804
6.0 0.752715 0.853715 0.2809 0.0852
6.1 0.751875 0.854222 0.2897 0.0777
6.2 0.752604 0.854714 0.2727 0.0741
6.3 0.752545 0.855191 0.2747 0.0760
6.4 0.753442 0.855654 0.2700 0.0765
6.5 0.753125 0.856103 0.2707 0.0732
6.6 0.753414 0.856540 0.2674 0.0764
6.7 0.754923 0.856964 0.2689 0.0747
6.8 0.753983 0.857376 0.2717 0.0793
6.9 0.755062 0.857777 0.2738 0.0779
7.0 0.754878 0.858167 0.2859 0.0825
7.1 0.755536 0.858546 0.2823 0.0788
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Var. Wo-multi Wa-pe T-multi (s) T-pc (s)
7.2 0.756188 0.858916 0.2715 0.1508
7.3 0.756449 0.859275 0.3150 0.0776
7.4 0.756149 0.859626 0.2771 0.0814
7.5 0.757642 0.859967 0.2836 0.0747
7.6 0.757353 0.860300 0.2890 0.0867
7.7 0.757755 0.860625 0.2821 0.0760
7.8 0.757232 0.860942 0.2753 0.0749
7.9 0.756800 0.861251 0.2699 0.0868
8.0 0.758343 0.861552 0.3985 0.0783
8.1 0.759212 0.861847 0.2919 0.0988
8.2 0.758164 0.862134 0.4566 0.0795
8.3 0.759341 0.862415 0.2743 0.0805
8.4 0.759605 0.862690 0.2741 0.0748
8.5 0.759801 0.862958 0.2720 0.0764
8.6 0.760451 0.863220 0.2715 0.0773
8.7 0.759097 0.863477 0.2743 0.0745
8.8 0.760642 0.863728 0.2726 0.0756
8.9 0.761210 0.863973 0.2710 0.0762
9.0 0.760941 0.864213 0.2704 0.0745
9.1 0.761142 0.864448 0.2735 0.0755
9.2 0.762033 0.864679 0.2707 0.0769
9.3 0.760956 0.864904 0.2712 0.0742
9.4 0.762716 0.865125 0.2740 0.0766
9.5 0.761270 0.865341 0.3562 0.0762
9.6 0.763420 0.865553 0.2731 0.0746
9.7 0.761295 0.865761 0.2750 0.0776
9.8 0.762802 0.865964 0.2760 0.0767
9.9 0.763543 0.866164 0.2719 0.0766
10.0 0.761849 0.866360 0.2711 0.0770

Table A-9: Results of quantization of a 15D-GMM with 10 components, where the variance is
scaled for 100 runs, such that it increases by 0.1+ Iterations*0.1 in each dimension. W is the
normalized Wasserstein-2 distance and 7' is the computation time for each method. The methods
are multi-grid (multi) and per component (pc). The total number of quantization locations is

constraint to 100 for each method.
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50 Appendix

A-2 Figures

Manually tuning the number of samples for Algorithm 2 based on the Wasserstein distance
of the final quantization.

244 -+ &~ Average W2 =+ Std

Hiiﬁ/\'/.

Average W2
o

10! 102 10°
Number of Samples Number of Samples (Iog scale)

(a) Wasserstein distance across 20 GMMs as (b) Average Wasserstein distance vs. sam-
a function of sample count. ples per component during DBSCAN.

Figure A-1: Influence of the number of samples used in Algorithm 2 on the total Wasserstein
distance of the quantization. (a) Per-GMM breakdown over 20 instances. (b) Mean Wasserstein
distance across GMMs as a function of samples per component.
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