
Achieving Perceptual Consistency of Contrast in Physical Images Viewed at
Different Distances

Francisco Ayala Le Brun
Supervisor(s): Baran Usta, Michael Weinmann, Elmar Eisemann

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

27 june 2022



Achieving Perceptual Consistency of Contrast in Physical Images Viewed
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1 ABSTRACT
According to the Contrast Sensitivity Function, the contrast of differ-
ent spatial frequency elements of an image will be seen differently
depending on distance. We propose a method for compensating for
these differences by acting on an image’s frequency representation
and manipulating the magnitudes of the individual wave functions
composing the image. We provide an open source implementation
of the algorithm which can be used to process videos and images in
real time.

2 INTRODUCTION
The Contrast Sensitivity Function (CSF) has important applications
on our perception of media. This function, when given a perceived
contrast, maps spatial density to a true contrast [Nadenau et al.
2003]. Critically, experimental results have found human’s contrast
discrimination capacity to be generally inversely proportional to
spatial density. However, very low spatial densities also have been
found to have an adverse effect on contrast discrimination [Whittle
1986] [Carney et al. 2000].

The CSF is an important part for describing the Human Visual
System, with various applications in computer graphics and image
processing. By using it to calculate contrast discrimination for image
segments, it has been applied to image compression [Nadenau et al.
2003]. Applications have also been found in contrast enhancement
by means of deriving invariants from its general shape [Majumder
and Irani 2006].
An important factor in determining the effect of the CSF is dis-

tance. This is because an individual’s total visual angle devoted to a
physical surface, and thus spatial density as measured for the CSF,
decreases linearly with distance. Thus distance, often changing in
contexts such as cinema or where the viewer is moving, can have
unintended consequences on the perception of a visual medium.
In this work, a new technique is proposed for maintaining a

uniform contrast perception of an image presented in a physical
screen by exploiting the properties of the Human Visual System.
The algorithm uses the effect distance has on the CSF in order to
dynamically adjust contrast according to the current position of the
viewer. Calculations are done fragment-by-fragment in such a way
that all of its processes are easily parallelizable. The algorithm runs
in real time, thus opening the door for the use on dynamic content
and situations when viewer position changes often.
Several examples are presented, where unmodified images are

compared to modified images. Furthermore, a metric is used to
visually quantify the differences between the modified image and
the original image viewed at the target distance.
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Eisemann.

3 RELATED WORK
In the past, the CSF has proved useful for several image processing
techniques. One approach utilizes the properties of the CSF in order
to change the apparent contents of an image depending on distance,
by applying filters on two images’ frequencies and combining them
to create one hybrid image[Oliva et al. 2006].

Closely related to compensating for changes in contrast sensitiv-
ity related to distance, is detecting how changes are perceived by
the Human Visual System. To this end, an approach was previously
proposed in order to spatially filter images according to the CSF, in
order to better quality of perception in a viewing distance-dependent
manner [Zhang and Wandell 1997].

A more recent approach known as HDR VDP uses several effects
from the Human Visual System such as non-linear response to
luminance, contrast sensitivity and visual masking. This approach
allows for both an absolute metric comparing two images and a
fine-grained visibility map indicating which changes between two
images are most visible [Mantiuk et al. 2005].

Another approach proposes a CNN-based metric, where a CNN is
trained from a dataset of manually marked images with differences.
In this case, the Human Visual System is emulated by the CNN
[Wolski et al. 2018].
The method we propose, similarly to the first two works men-

tioned in this section, also utilizes the CSF directly to produce its
output. However this method is used in order to replicate perception,
instead of detecting differences in perception. Additionally, other
works have not directly made use of the Fourier domain and its
relationship with the CSF.

Compared to the previous techniques, our technique is only pro-
posed for luminance images. The technique could be applied to
the chrominance channels. However, the chrominance channels
have a different CSF [Samu et al. 2002] and existing tools focus on
measuring the luminance CSF [Canare 2021]. Thus modification of
chrominance channels was decided to be out of the scope of this
paper.

4 BACKGROUND

4.1 Contrast Sensitivity Function
The Contrast Sensitivity Function (CSF) models how the human
visual system perceives contrast as a function of visual spatial den-
sity. Normally, the CSF is experimentally measured with the use
of horizontally-varying Gabor patches. Gabor patches consist of
a sinusoidal function modulated by a Gaussian function [Whittle
1986].

The CSF has been experimentally found to resemble the subtrac-
tive combination of an exponential and a Gaussian function [Carney
et al. 2000]. Based on this model, the function increases until ≈ 3.5
cycles per degree, and subsequently approaches zero.
It is important to understand why the CSF implies that contrast

is a function of viewing distance. Through simple trigonometric
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Fig. 1. Main steps of the algorithm proposed in this paper.

properties, it is possible to calculate a horizontal visual angle of a
viewer towards a perpendicular screen of width𝑤 and distance 𝑑
with the formula 𝑣 = 2𝑎𝑟𝑐𝑡𝑎𝑛( 𝑤

𝑑
), where 𝑣 represents the visual

angle.
If an image is a horizontal sinusoidal grating with 𝑛 cycles, then

the cycles per degree will be uniform across the image and exactly 𝑛
𝑣 .

Substituting with the first function, we have 𝑛
𝑣 = 𝑛

2𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑤
𝑑
) . From

this function, it is possible to see that as the distance 𝑑 increases,
cycles per degree increase. Relating this to the CSF, since cycles per
degree increase, contrast discrimination decreases.

5 CONTRAST ADJUSTMENT ALGORITHM
The Contrast Sensitivity Function (CSF) tells us that human vision
will respond differently to contrast depending on visual spatial
density. This results in inconsistencies in how an image’s contrast
is perceived depending on changes in viewer’s distance. Thus in
this paper, we propose an algorithm for compensating for these
inconsistencies in contrast.

The first step of the algorithm is to compute the two-dimensional
Fourier transform of the image [Ukidave et al. 2014]. The second
step is to interpret the frequency bins’ magnitude and cycles per
degree (cpd). Thirdly, the magnitude of the wave function in the
frequency bin is scaled depending on viewing conditions and the
CSF. Finally, the inverse Fourier transform is used in order to obtain
the transformed image. These steps of the algorithm are illustrated
in Figure 1.

5.1 FFT and Inverse FFT
The Fast Fourier Transform (FFT) and inverse FFT are used in order
to transform the image from the spatial domain to the spatial fre-
quency domain and vice versa (See Figure 2). Applying the FFT is
the first step of the algorithm and applying the inverse FFT is the
last.

Fig. 2. Image of jet fighter in spatial domain and its frequency domain
power spectrum.

5.2 2D Fourier Transform Interpretation
In order to act on the output of the Fourier transform, it is impor-
tant to interpret its data points. Each data point represents a wave
function with magnitude, phase, and a defined frequency, where
frequency in this case is defined as cycles per visual degree (cpd).
In this manner, each data point’s frequency may be directly used as
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input to the CSF as a basis for adjustment. We thus first measure
the average amount of pixels per visual angle of the screen related
to the viewer, and then use this to obtain the correct visual spatial
density related to this data point. The same procedure is repeated,
but for a ‘desired’ viewing distance perception.
The first quantity to measure is the amount of pixels per visual

degree relating to the viewer. The viewer’s position is taken to be
at the perpendicular to the screen’s center. The horizontal visual
angle can be derived to equal 2𝑎𝑟𝑐𝑡𝑎𝑛( 𝑤2𝑑 ), where 𝑤 is the screen
width and 𝑑 is the distance to the screen. To obtain the average
amount of pixels per degree, the total amount of pixels is divided
by this equation, 𝑝𝑖𝑥𝑒𝑙𝑠

2𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑤
𝑑
) . Since pixels are square, it is taken

as an assumption that the amount is approximately valid for the
vertical and diagonal directions as well. This is then repeated to
obtain pixels per degree at the ‘desired’ viewing distance.

With pixels per visual angle known, the next step is to translate
this information to concrete cycles per visual degrees (cpd). The
frequency of an FFT data point is defined according to

𝑓 =
𝑖 ∗ 𝑆𝑟
𝑁

(1)

where 𝑖 is the index of this data point, 𝑆𝑟 the sampling rate and N
the total number of points. Since our sample points are the pixels
themselves, and we want to measure in terms of cycles per visual
degree (cpd), we can take 𝑆𝑟 to be the number of pixels per visual
degree as measured earlier.
However, the issue of obtaining 𝑖 and 𝑁 still remains. The main

challenge in this case is that the frequency is defined in terms of one-
dimensional quantities but our Fourier space has two dimensions.
To overcome this, the projection-slice theorem may be used. The
projection-slice theorem states that using the Radon transform to
transform a 2D function into a 1D function and taking its Fourier
transform is equivalent to slicing the Fourier transform through its
origin with an equivalent line [Bracewell 1990] (See Figure 3). Thus,
with the image in the Fourier domain and its origin at (0, 0), we can
compute 𝑖 and 𝑁 for any point (𝑥,𝑦).
In order to compute 𝑖 , we simply use the length of the vector,

| (𝑥,𝑦) |. For 𝑁 , we first compute the point of intersection of the ray
with the edge of the image, and the length to this point. Then, this
length doubled is the total extent of this slice, 𝑁 . This is given by

𝑣_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = ( 𝑥ℎ
2𝑦

,
ℎ

2
)

ℎ_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = (𝑤
2
,
𝑦𝑤

2𝑥
)

𝑁 = 2𝑚𝑖𝑛( |𝑣_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 |, |ℎ_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 |) (2)

where𝑤 and ℎ are the width and height of the transformed image.

5.3 Magnitude Adjustment
The next step is to adjust the magnitude of the wave function rep-
resented by each data point. Towards this end, the wave function
is first translated from rectangular form to polar form. Then, a
compensation factor is calculated based on the CSF. Finally, this
compensation factor is applied to the magnitude of the wave func-
tion and the result is stored back in rectangular form.

Fig. 3. Visualized projection-slice theorem [Maier et al. 2018]. A slice is
taken through a 2d Fourier transform, whose power spectrum can be seen
on the right. On the bottom, the frequencies corresponding to each point
are represented as sinusoids with a corresponding frequency, while on the
top they are represented as gratings with a corresponding direction as well
as frequency.

The compensation factor is derived from the wave function and
two uniform inputs, 𝑝

𝑣𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
and 𝑝

𝑣𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑
, where 𝑝 refers to

number of pixels and 𝑣𝑑 the total visual degrees. Each of this is
used in Eq. 1 to obtain 𝑐𝑝𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑐𝑝𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 . These represent
the cycles per visual degree (cpd) formed by each wave function,
with 𝑐𝑝𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 representing the current observation scenario and
𝑐𝑝𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 representing the desired observation scenario. Both of
these are then fed into the CSF to obtain the compensation factor 𝑐 ,
according to

𝑐 =
𝑐𝑠 𝑓 (𝑐𝑝𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 )
𝑐𝑠 𝑓 (𝑐𝑝𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )

(3)

Finally, 𝑐 is used in order to modulate the magnitude of the wave
function, as expressed by 𝑟𝑛𝑒𝑤 = 𝑐𝑟𝑜𝑙𝑑 , where 𝑟 is the magnitude of
the wave function. The magnitude in this case relates directly to the
amplitude of the wave function. Thus, by modulating the magnitude,
the distance between the largest and smallest points produced by
the wave function is being changed, hence the contrast.
After this operation, the next step is to perform the inverse FFT

step before producing the final image.

6 IMPLEMENTATION
The program was implemented in the Rust programming language
with OpenGL compute shaders. The source code is publicly accessi-
ble 1.

1https://github.com/fayalalebrun/CSFContrast
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6.1 Fast Fourier Transform
The Fast Fourier Transform is a family of algorithms for efficiently
computing the Fourier transform [Ukidave et al. 2014]. Due to its
lack of an ordering stage the Stockman variant is especially well-
suited for use in GPUs [Swarztrauber 1984]. In this work, we use
a Stockham radix-2 FFT implementation in order to achieve real-
time performance. Specifically, this work uses an adaptation of the
open-source OpenGLFFT [bane9 2022] implementation.

6.2 Runtime statistics

FFT 14.830 ms
Interpretation and adjustment 0.860 ms

Inverse FFT 10.804 ms
Table 1. Runtime costs.

CPU AMD Ryzen 5950HX
GPU AMD RX 6700M
RAM 16 GB

OpenGL Driver Mesa RadeonSI 22.0.3
Table 2. System specifications.

In Table 1 the runtime costs of the algorithm running in a system
with specifications as detailed in Table 2 is shown. Here it can be
seen that the costs of the interpretation and adjustment phase are
an order of magnitude lower compared to the other stages. Thus,
in general the algorithm may be run in real-time if the FFT and
inverse FFT can be run in real time, which is the case with the tested
specifications.

7 RESULTS

Fig. 4. Artifacts in the first row of Figure 6. Due to shape of the Contrast
Sensitivity Function, attempting to manipulate an image to make it seem as
though it is much closer to the viewer makes it necessary to greatly increase
the wave amplitude of the higher frequency wave functions. Thus in areas
with high frequency components, particularly edges, contrast values are
clipped.

Fig. 5. Practical application of the algorithm. The second image is manipu-
lated to appear as if it is being viewed from the same distance as the first.
This is assumed to be viewed from a distance of 10 cm in printed form.

Figure 6 shows the results of applying the algorithm to a static
grayscale 1920x1080 image with several parameters. The current
distance represents the actual distance of the viewer to the screen,
while the target distance represents the perception which should be
emulated. We use the HDR-VDP-2 [Narwaria et al. 2015] algorithm
in order to evaluate the results quantitatively. This metric compares
a reference image to an image viewed at a certain distance, and
computes the difference. In this case, each manipulated image is
compared to the reference image being viewed from the desired
distance. In other words, we use our manipulated image as the refer-
ence image in the metric’s terms. Due to our objective of achieving
similar perception to the image at this desired distance, in this case
it is desirable to have the least amount of differences as possible.

When the desired distance is significantly less than the actual dis-
tance, artifacts may arise. This is related to the shape of the Contrast
Sensitivity Function, as in this case generally wave functions have
to compensate by increasing their magnitude, which can result in
values exceeding the image’s maximum value. The artifacts present
in the first row of Figure 6 are showcased in Figure 4.

Figure 7 shows the algorithm being applied to a variety of images
with different parameters.

Figure 5 illustrates the algorithm being used in practice. Real
applications could also be found in theaters, signage screens, or any-
where else where predictable perception of an image is important.

Several works have previously used the Contrast Sensitivity Func-
tion (CSF) for image processing [Nadenau et al. 2003] [Majumder
and Irani 2006]. However, these use properties of the CSF, and do
not use the CSF itself. In contrast, this work utilizes values from a
pre-defined CSF. This means results could potentially be catered to
the viewing characteristics of a single person.
Traditional media is subject to the effects of the CSF. That is to

say, perception of contrast changes depending on distance to the
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Actual viewing distance: 112.53 cm; Desired viewing distance: 28.49 cm

Actual viewing distance: 170.06 cm; Desired viewing distance: 88.19 cm

Actual viewing distance: 24.83 cm; Desired viewing distance: 140.29 cm

Actual viewing distance: 24.83 cm; Desired viewing distance: 424.68 cm

Fig. 6. The algorithm is applied to an image with several different parameters. The images from left to right represent the reference image, the processed
image, and the visible difference using HDR-VDP-2 [Narwaria et al. 2015] set to a viewing distance equal to the desired distance. For the visible difference,
green represents minor differences, and red represents major differences.

medium. This work proposes a real-time algorithm for compensating
for changes in contrast perception due to distance.

8 CONCLUSION AND FUTURE WORK
Changes in contrast perception due to distance can pose an im-
portant challenge for media. In this paper we presented a novel
approach for achieving perceptual consistency of contrast across
distance for a medium. We provide a real-time open-source program
for performing this algorithm on arbitrary images and videos. With

this type of tool, media creators can better ensure their content is
presented as they intend.

In terms of future work, the use of wavelets could be interesting
due to their localized nature. Wavelets are defined in both frequency
and space. This would make it possible to define spatial frequency
depending on the location on-screen, which could create a better
compensation effect depending on the circumstances. Of particular
interest are Gabor wavelets since they resemble the Gabor patches
used to measure the CSF [Whittle 1986]. A variant of the Gabor
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Actual viewing distance: 75.00 cm; Desired viewing distance: 1000.00 cm

Actual viewing distance: 4000.00 cm; Desired viewing distance: 3000.00 cm

Actual viewing distance: 4000.00 cm; Desired viewing distance: 2300.00 cm

Fig. 7. The algorithm is applied to several images. From left to right is the reference image and modified image. Below each pair, the parameters for the
algorithm are listed.

wavelet, the Log-Gabor wavelet, could be better suited for fast de-
composition to its orthogonality [Fischer et al. 2007].

9 RESPONSIBLE RESEARCH
The source code for the proposed algorithm is publicly available 2.
All reference images used can be obtained there and parameters are
provided within the paper.

2https://github.com/fayalalebrun/CSFContrast
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