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Contact-Aware Safety in Soft Robots Using
High-Order Control Barrier and Lyapunov Functions

Kiwan Wongm, Maximilian Stolzle}23, Wei Xiao*2, Cosimo Della Santina®, Daniela Rus*2, Gioele Zardini*'*

Abstract—Robots operating alongside people, particularly in
sensitive scenarios such as aiding the elderly with daily tasks or
collaborating with workers in manufacturing, must guarantee
safety and cultivate user trust. Continuum soft manipulators
promise safety through material compliance, but as designs evolve
for greater precision, payload capacity, and speed, and increas-
ingly incorporate rigid elements, their injury risk resurfaces. In
this letter, we introduce a comprehensive High-Order Control
Barrier Function (HOCBF) + High-Order Control Lyapunov
Function (HOCLF) framework that enforces strict contact force
limits across the entire soft-robot body during environmental
interactions. Our approach combines a differentiable Piecewise
Cosserat-Segment (PCS) dynamics model with a convex-polygon
distance approximation metric, named Differentiable Conserva-
tive Separating Axis Theorem (DCSAT), based on the soft robot
geometry to enable real-time, whole-body collision detection, res-
olution, and enforcement of the safety constraints. By embedding
HOCBFs into our optimization routine, we guarantee safety,
allowing, for instance, safe navigation in operational space under
HOCLF-driven motion objectives. Extensive planar simulations
demonstrate that our method maintains safety-bounded contacts
while achieving precise shape and task-space regulation. This
work thus lays a foundation for the deployment of soft robots
in human-centric environments with provable safety and perfor-
mance.

Index Terms—Modeling and Control for Soft Robots, Robot
Safety, Soft Robot Applications

I. INTRODUCTION

EPLOYING robots in human-centered environments,
such as assisting workers in manufacturing or supporting
older adults in everyday activities [1], demands not only
demonstrable safety but also user confidence in the robot’s
behavior. Traditional rigid collaborative manipulators address

this need through increasingly sophisticated algorithms for
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Safe & Gentle Interaction

Robots can move
closer—safely—by controlling
how hard they touch their
environment.

Contact is no longer avoided but controlled.
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Fig. 1: Contact Safety-Aware Control of Soft Robots with High-
Order CBFs (HOCBFs) and High-Order CLFs (HOCLFs). Illus-
tration of compliant contact control with safety bounds guaranteed
by HOCBFs. By respecting contact force limits, the robot can
intentionally engage with its surroundings without sacrificing safety.
Task goals are shaped through HOCLFs, while constraint satisfaction
is upheld by HOCBFs. This approach enables the secure use of soft
robots in demanding settings—from search-and-rescue missions to
delicate medical procedures.

collision detection [2], impedance control [3], Model Predic-
tive Control (MPC) [4], and, more recently, Control Barrier
Functions (CBFs) [5], [6], and the successful integration
of Lyapunov-based methods with reinforcement learning to
ensure robotic safety [7]. Yet, perception errors or model
inaccuracies can still expose users to hazardous impacts.

Continuum soft manipulators offer a fundamentally different
path to safety: instead of relying solely on software, they seek
to embed safety directly through compliance [8]. However,
material softness is not a panacea [9], [10]. As the field
advances toward greater precision and functionality, emerging
designs are expected to incorporate increased stiffness, exert
larger forces and velocities [11], and adopt hybrid rigid-
soft architectures [12]. Such developments reintroduce risks
traditionally associated with rigid systems. Thus, mechanical
compliance must be augmented with algorithmic guarantees
that ensure real-time safety and foster user trust.

Our approach embraces, rather than avoids, physical con-
tact! [10], [13], [14], deviating from the predominant paradigm
in rigid robotics [2], [15]. Instead of treating contact as a fail-
ure, we exploit the soft robot’s embodied intelligence [16]—its
intrinsic physical coupling with the environment—to enhance
robustness, stabilize deformation and motion, and adapt to
external constraints, all while ensuring that every interaction

IPlease note that we use “contact” and “collision” interchangeably.
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respects safety standards such as the injury severity thresholds
set out in ISO/TS 15066:2016 [15].

To date, no method explicitly enforces upper bounds on
the contact force or pressure applied across the entire surface
of a soft robot, while accounting for the system’s inertia.
Classical impedance and force control schemes cannot impose
strict bounds [17], and CBF-based methods [12] address only
self-contact avoidance. A recently published paper [10] adapts
CBFs as a safety filter to constrain end-effector forces, but it
neglects distributed body interactions and relies on a simplified
template model that approximates the continuum bending
behavior with an articulated chain of masses connected by
prismatic joints [17] while neglecting important strains such
as shear or elongation. Instead, Xu er al. [14] measures
contact forces between the soft robot body and obstacles in the
environment, but defines a kinematics-aware CBF instead of a
dynamics-aware HOCBF; therefore, it neglects the dynamics
of the system, which can, in turn, cause safety issues.

To fill this research gap, we present an integrated control
framework that imposes contact-force limits along the entire
body of a soft manipulator based on differentiable dynamic
strain models. Building on the well-established CBF+Control
Lyapunov Function (CLF) framework [5]—specifically its
high-order extension [18]—our method optimizes for a control
objective encoded in an HOCLF while keeping the system’s
trajectory inside a certified safe set as specified by HOCBF
constraints by solving a constrained Quadratic Program (QP)
online. The proposed HOCBF+HOCLF control scheme rests
on two pillars: (i) a fully differentiable implementation of
the Piecewise Constant Strain (PCS) [19], [20], and (ii) a
fast, differentiable collision detection & resolution routine that
represents the soft manipulator with convex-polygon approxi-
mations.

In support of pillar (ii), we propose a new convex-polygon
distance measure—Differentiable Conservative SAT (DC-
SAT)—that serves as a conservative, differentiable proxy
for the standard Separating Axis Theorem (SAT) metric.
Compared with recent differentiable SAT surrogates such as
Smooth SAT (SSAT) [21], our approach (1) systematically un-
derestimates the separation distance, yielding the conservative
buffer required for formal safety guarantees, and (2) achieves
an increase of roughly 1.5-3% in computational efficiency, en-
abling real-time, full-body collision checks. We then validate
the proposed framework through extensive simulations in a
planar setting.

In summary, this letter (i) develops a principled HOCBF-
based method to enforce global contact force constraints on
soft robots, (ii) adapts the HOCBF+HOCLF framework for op-
erational space regulation supporting navigation tasks, and (iii)
presents DCSAT, a new, fast, and conservative differentiable
collision-detection method for arbitrary convex geometries,
improving the feasibility of real-time use for full-body safety
guarantees. A video attachment is available on YouTube? and
the code is open-sourced on GitHub?.

Zhttps://youtu.be/ahUhVXiRDPE
3https://edu.nl/yekue

II. BACKGROUND

This section introduces the background necessary for intro-
ducing the methodology and, later, the baseline methods. For
clarity and simplicity, we focus on the planar case throughout
this letter, though the framework naturally generalizes to 3D
scenarios.

A. Soft Robotic Kinematics and Dynamics

We model the soft robot kinematics using the PCS formu-
lation [19], which approximates the continuous backbone by
discretizing it into N segments, where each segment exhibits
the spatially constant strain £, € R3. The robot configuration
q is then defined as the deviation of these strains from their
equilibrium values, yielding a generalized coordinate vector
g € R3N. Based on this kinematic model, the forward
kinematics map y = FK(g,s) : R*N x (0,L] — SE(2)
returns the Cartesian position y = [9 Px py] at a given
arc-length position s along the backbone, where 0 € [—rx, )
is the planar orientation, py,p, are the x- and y-positions,
and L € R is the total arc length of the robot’s centerline.
Differentiating FK(q,s) with respect to the configuration
results in the Jacobian J (g, s) = ZER(@:2) ¢ R3x3N,

The corresponding dynamics can q{)e derived leveraging
established multibody modeling procedures [22], resulting in

the following equations of motion:
M(q)§+C(a,4)d +G(a)+ Ka+Dq =A(Qu+ .
—— —— =

Act. Model

(&)
Multibody dynamics Elast. and Diss. Forces Contact

where M (q),C(q,q) € R3*V>*3N are the mass and Coriolis
matrices, respectively, G(q) captures gravitational effects,
and K, D € R3V*3N are the linear stiffness and damping
matrices, respectively. The actuation matrix A(q) € R3Vxm
maps the actuation/control input u € U C R"" into generalized
torques and 7. € R3M accounts for forces and torques
generated by contact with the environment.

Furthermore, J.1/(q) € R¥*V*° is the dynamically con-
sistent pseudo-inverse of the Jacobian J, that maps into the
operational space o € R° [3], [17], [23], [24].

B. Model-Based Operational Space Controller

A model-based setpoint regulator u,(q, q) : RV —¢ R3N
that drives the system towards the desired operational space
reference o? in exponential time can be designed based on the
operational space dynamics [3], [17], [23], [24]

u(q,4) = J,' () f + G(a),

°
f:era+Ki/eUdt+Kdéa+J:M (Kq+ Dgq), @
N———e e

Operational Space PID Cancel. Elastic & Diss. Forces

where f € R° is a Cartesian force that serves as the
control input in operational-space, e,(t) = o4(t) — o(t) is the
regulation error in operational space, and K, K;, K4 € R°*°
are the corresponding PID gain matrices.

C. High Order Control Barrier Functions and High Order
Control Lyapunov Functions

The soft robot dynamics can be expressed in control-affine
form as an ODE:

_ q 03N xm
= | M~(s. - C4- G+ Kq - Dq) ]*[ M~ A(q) }“’ @
f(=) g(=)
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with the locally Lipschitz continuous dynamics functions
f(x) : R - R™ and g : R® — R™ ™, where © =
lq" qT]T € R™ with n = 6N is soft robot state with the
corresponding time derivative £ € R™ In many soft robotic
control tasks, constraints specified in operational space do not
yield an explicit dependence on the input w after a single time
derivative. This motivates the use of high-order extensions of
CLFs and CBFs, where constraints are enforced on higher-
order derivatives that expose the control input explicitly [18].
Given a function b with relative degree r, one can recursively
build an HOCBF and HOCLF as follows [18].

Definition I (High-Order Control Barrier Function [18]): Let
b: R® — R be r-times differentiable with relative degree 7.
Define recursively:

Yo:=0, ¥i=Lysi1+a(Yi-1),
where each «; is class-KC. Let C; = {x | ¢h_1(x)
Then b is a HOCBEF if there exists a,. € K such that:

T

sup [Lyb+ Ly L} 'bu+ O(b) + ar(Yr1)] >0, Vae[)Ci

ueU =1

i=1,...,r—1,
> 0}

Definition 2 (High-Order Control Lyapunov Function): LetV :
R™ — R be a differentiable function of relative degree r, and
define:

po:=V, ¢ :=Lsdi1+fi(¢i—1), i=1....r—1,
with each ; € IC. Then V' is a HOCLF if there exists f, € K
such that:

inf [L3V + Lyl 'V +O(V) + fr(pr-1)] <0, Va #0,.

Here, Ly, L, denote Lie derivatives along f, g respectively,
and O(-) collects all lower-order Lie and time derivatives up
to degree r—1.

The HOCBEF (1), and the HOCLF (2) can be integrated into
a QP convex optimization problem:

min (w3 + p 6%,

st Lpb(x) + Lg Ly~ 'b(@) u + O(b(@)) + ar(Yr-1(x)) > O,

LiV(@) + LeL V(@) u+ O(V (@) + b (¢r—1(2)) < 6. N
(

To keep the QP feasible when several HOCBFs and HOCLFs
contradict each other, we add a non-negative slack § > 0 with
penalty p > 0. This slack relaxes safety constraints when strict
enforcement is impossible due to the nominal input or mutual
conflicts. Typically, HOCLFs capture performance objectives
and HOCBFs safety and other constraints; assigning slack to
lower-priority terms lets the controller trade performance for
safety.

III. HIGH-ORDER CONTROL BARRIER AND LYAPUNOV
FUNCTION FOR ENVIRONMENT-AWARE CONTROL

This section describes how we can design HOCBFs and
HOCLFs for environment-aware soft robot control. Most
importantly, we can ensure contact force limits, and with
this, safety, by deploying HOCBFs while relying on HOCLFs
for defining motion behavior and objectives. To enable this,
we require access to differentiable algorithms that perform
collision detection and resolution between the soft robot body
and convex polygonal environment obstacles. We consider a

planar soft robotic arm operating within a two-dimensional
workspace W C R2, populated by n.ps known convex
obstacles Wops = {01, . .., On,,. }- We also assume the robot
is fully actuated, with m = 3N = g

A. Collision Detection

To facilitate collision detection and spatial reasoning, the
soft robotic arm, though continuously deformable, is approx-
imated as a discrete chain of convex polygonal parts, as
illustrated in Fig. 2. Specifically, the robot is segmented into
Ngrpoly convex polygons R = (P, ..., Pn,,,.,, ), each defined
by its vertices {v;1,...,Vix,, where k; is the number of
vertices of the ith part. These vertices are computed via the
forward kinematics FK(q, s) defined earlier. Each polygon is
represented as:

P, = {X S R2 | X = Zai,jvi,j, @ § > O, Z(Xi,]' = 1}. (5)
j=1 j=1

The entire robot is then R = (P;) 1",

This definition now allows us to detect collisions between
the Ngpoly polygons approximating the robot body and the
environment approximated by N, static convex polygons. In
order to do so, we need to know the configuration-dependent
distance h; j(q) : R3" — R between the ith soft robot’s part
P; and the jth obstacle O;. Here, a positive h; ;(g) indicates
separation, while a negative value indicates penetration. This
distance is provided by a polygon distance metric d(-,-) s.t.
hi,j(q) = d(Pz(q)a Oj)a 1=1,..., Nsrpolya j=1,...,N0bs,
between the ith soft robot’s part P; and the jth obstacle O;.
For notational simplicity, we omit the explicit dependence on
the configuration variable q and write h; ; in the remainder of
this section. In principle, any differentiable distance function
d(-,-) can be used. In Section IV-B, we present DCSAT, which
is a differentiable, computationally efficient, and conservative
version of the SAT algorithm.

B. Collision Resolution

The distance metric h(q) now allows us to resolve the
collision, which means that we project the collision forces
onto the soft robot dynamics and vice versa. In this work,
we specifically, without loss of generality, use a linear spring-
damper model to capture the collision characteristics. Future
work might explore more advanced contact models here. The
collision force F; € R>¢ is given as

. 0, if hjj >0
FCi‘j (hi7j7 hi,j) = .

—kehij — cehig, ifhi; <0
where k. the contact stiffness, and c. the damping coefficient.
To recover differentiability, we approximate the collision dy-
namics using softplus-based smoothing with € € R>q as

Fe, ;(higj, hi;) = keln (1 + e_h1=j/5) +ccln (1 + e_h"*f/f) .
(6)
This contact force can now easily be applied to both the
environment and the soft robot by projecting it along the
contact surface vector. Specifically, for a given surface normal
N, ; € R? pointing from the obstacle to the soft robot body

with |[n., ,[]2 = 1 and a contact position p.,, € R?, the
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generalized contact torque onto the soft robot can be described
by
srpoly Nobs

N,
Te = Z Z Je, (@) Fe, j (hig, hij)me € R¥Y . (7)
i=1 j=1

where J., , € R?*3N s the positional Jacobian of the contact
point on the surface of the soft robot that is:

pe = (Jou +diag(—1,1) (pe,, — FKaw(@,5¢,,)) Jo)d ()

Je; 5 (a)
with s., ;€ (0, L] the point on the backbone of the robot
closest to the contact position pe, ; and Jy(q, sc, ;) € RP*3N
and J, (g, sc, ;) € R**3 the orientation and positional rows
of the forward kinematics Jacobian J(q, s, ; ), respectively.

C. Ensuring Safety via High-Order CBFs

Below, we introduce a set of relative-degree-two HOCBFs
dedicated to maintaining safety. We start with an HOCBFs
that is standard in rigid-robotics applications and ensures
complete avoidance of contact between the robot and its
environment. While effective, these constraints can sharply
curb performance, encourage overly cautious behavior, and
block truly collaborative human-robot interactions.

To overcome such drawbacks, we highlight a HOCBF lim-
iting the contact force to Fi; max € Rq. This approach allows
controlled contact between the soft robot and its surroundings
while guaranteeing that such contact remains safe [10]. Our
formulation is inspired by extensive studies on injury-severity
criteria for rigid collaborative robots [2] and by ISO/TS
15066:2016 [15], which specifies body-part—dependent force
thresholds as proxies for injury risk.

1) Contact Avoidance HOCBF. To ensure safety with
respect to a forbidden region A C W, we define a
HOCBF based on the signed distance between the robot
segment P; and A. Let rg, > 0 be a prescribed safety
margin. Using the previously defined smooth distance
metric h; 4(q) = d(Pi(q),.A), we define

bipA("B) - hi,A(q)z - 7’zafe' ©)
Then b; 4(x) > 0 guarantees that P; maintains a
distance of at least 7y > 0 from A.

2) Contact Force Limit HOCBF. For each obstacle O; €

Wobs, define
bij(x) = Feomax,j — Fe, ; (hij, hi ), (10)
where F¢, . (hqj, hi,j) > 0 is the contact force, for
example, stemming from a linear spring-damper contact
model as defined in (6), and F¢ ,ax,; 1S maximum al-
lowable contact force in static settings as, e.g., defined in

ISO/TS 15066:2016 [15]. This barrier function ensures

that the contact force between the ¢th soft robot part and

the jth obstacle remains below the threshold.

D. Achieving Effective Motion Behavior via Higher-Order
Control Lyapunov Functions

With the barrier conditions established, the next step is to
define motion objectives that encourage task completion. Al-
though the HOCLF framework affords substantial flexibility in

ANB#0 < Vae A, Proj,(A) NProj,(B) # 0.

Ay = argmax max{d; (a), dx(a)}
acA

Non-Collision (Separation)

[~

/am fsar(4,B)

S W W
IB,amuz
Collision (Overlap)

hSAT(A{B)

R ...

B

A

Fig. 2: Illustration of SAT Polygon Distance Metrics. Visualization
of SAT-based polygon distance metrics used for collision detection
between the soft robot body and convex polygonal obstacles. Specif-
ically, we illustrate the definition of the signed distance hgat (A, B)
between convex polygons A and B. The right panel shows projection
intervals 14, and Ip, along the maximizing axiS amax in both
separation (top) and overlap (bottom) scenarios.

defining task objectives, this letter concentrates on operational-
space regulation; comparable objectives could also be for-
mulated for trajectory tracking, configuration-space regulation
and contact-force control.

Operational Space Regulation HOCLF. Let p;(q) € R?
be the Cartesian pose of the tip of the ith segment and pgoal €
R? the desired target. Then the HOCLF function

Visri(@) = [pi(@) = P13 (11)
encourages convergence of the tip of the ith segment toward
the target position.

IV. DIFFERENTIABLE POLYGON DISTANCE METRIC

For HOCBF constructions requiring an rth-order continu-
ously differentiable distance metric, the classical SAT [25],
despite its efficiency for convex polygons and widespread use
over support mapping methods such as the Gilbert-Johnson-
Keerthi (GJK) algorithm [26], is fundamentally unsuitable
due to its reliance on non-smooth min and max operations.
This lack of differentiability prevents its direct application
in force- or distance-based high-order control formulations.
To address this limitation, prior work has introduced a dif-
ferentiable variant of SAT, named SSAT, that approximates
these non-differentiable operations using multi-level smooth-
ing techniques to achieve C'°° continuity [21]. However, the
SSAT overestimates the polygon separation distance, which
can lead to a violation of the safety constraint in down-
stream applications. Alternatively, methods like DCOL [27]
offer differentiable collision detection for convex primitives,
but they cannot quantify penetration depth and are therefore
unsuitable for collision resolution (e.g., computing the contact
force). Similarly, the randomized smoothing approach [28§]
and the accelerated optimization-based method [29] focus on
differentiable collision checking and computational speed-up,
respectively, but do not return differentiable signed distance or
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penetration depth, which limits their use in differentiable con-
tact dynamics. In this letter, we propose a new differentiable
variant of SAT, coined DCSAT, which replaces the layered
smoothing pipeline of SSAT [21] with a single LogSumExp
(LSE) approximation while providing a conservation metric
for calculating distance between convex polygons. DCSAT
preserves the C'*° differentiability required for high-order
control while significantly simplifying implementation and
reducing computational overhead.

A. Definition of SAT

Before defining our distance metrics, we briefly revisit the
SAT framework, which forms the foundation of convex poly-
gon—distance computations based on orthogonal projections.

Definition 3 (Separating axis): Let A, B C R? be convex sets.
A unit vector a € R? is called a separating axis for A and
B if the projections of the sets onto a are disjoint; that is, if
either

maxa'x < min aTy or maxaTy < mina'z.
xTEA yeB yeB xz€A

Theorem 1 (Separating Axis Theorem [25]): Two convex
sets A and B in R? are disjoint if and only if there exists a
separating axis between them.

Lemma 1 (Sufficiency of Edge Normals in R?): Let A, B C
R? be convex polygons. Then it suffices to test for sepa-
ration along the set of directions orthogonal to the edges
of A and B. Specifically, let S(A) and S(B) denote the
sets of edge directions of A and B, respectively. Define
A = {€+:Le S(A)US(B)}, where £+ denotes the unit
vector orthogonal to edge £. Then A is a complete set of
candidate separating axes.

Proof. By the Separating Axis Theorem (Theorem 1), if A
and B are disjoint, there exists a direction n € S' such that
their projections onto n do not overlap:

maxn'z <minn'y or maxn'y < minn'z.
z€A yebB yeB €A
Since the support function of a convex polygon is piecewise

linear and attains its extrema at vertices, any separating direc-
tion must be orthogonal to some edge of A or B. Therefore,
it suffices to test separation along directions in 4. If no such
direction yields separation, A and B must intersect. O

By combining Theorem 1 and Lemma 1, separation test-
ing—and more specifically, the computation of separating
distances—can be reduced to a finite set of one-dimensional
projections. These observations underlie the projection-based
metrics (SAT, SSAT, DCSAT) used throughout this letter.

Following by the above statements, we could derive the
distance between two polygons A and B.

Projections. Let A;,i € 74,B;,7 € Zp denote the vertices
of convex sets A, B, respectively, where 74 and Zp denote
the index sets of the vertices of A, B respectively. For each
axis a € A, the scalar projections of polygon vertices A; for
i € L4, and B for j € Zp, onto a are defined as 4; , = a'A;
and B, =a'B;.

Per-axis distance. The signed separation (positive if sepa-
rated, negative if overlapping) between the projected intervals
along axis a is given by

gsar(a) = max{di(a), dz2(a)}. (12)
where

di(a) = min Bj, — max A; 4, d2(a) = min A; o — max Bj q,

JEIpB i€L A i€L A JEIB a3

Global metric. The overall SAT-based signed distance

between polygons A and B is then defined as

hsAT(A, B) = r;leaj‘( gSAT(a)~ (14)
This value is positive when the polygons are separated, zero
if they touch, and negative when they overlap.

B. Differentiable Conservative SAT (DCSAT)

To enable safe and differentiable distance evaluation for
use in HOCBF+HOCLF controllers, and resolve the under-
estimation of the polygon extents present in SSAT [21], we
introduce the DCSAT metric, which provides a conservative
estimate of the polygon separation/penetration distance at an
increased computational efficiency compared to SSAT. Unlike
SSAT, which smooths each intermediate geometric operation
and is primarily designed for quadrilateral shapes, DCSAT
operates directly on global signed separation distances. It
applies a single LSE operation to obtain a C>° approximation
of the SAT metric that naturally extends to arbitrary convex
polygons. Furthermore, DCSAT consistently underestimates
the true separation distance, ensuring that safety constraints
enforced via CBFs remain valid even under model uncertainty
or near-contact conditions. This makes it particularly suitable
for collision-aware control of systems with complex geome-
tries.

Definition 4 (Differentiable Conservative SAT (DCSAT)): Let
A, B C R? be convex polygons, and let A denote the set of
separating axes. For each axis a € A, define the separation
terms dj(a) and dz(a) as in (12). Let

D={dn(a)|ac A, me {1,2}}.
Then, the DCSAT distance is defined as

1 o log(2|.A
hpcsar (4, B) = log <Z e ”““‘d> _ log(24]) |)

Omax deD Omax

Lemma 2 (Bounds for DCSAT):
log(2
—M < hpcsar(A, B) — hsar (A4, B) < 0.

Qmax
Proof. Let M = maxD = hgar(A, B), and define e :=
o (T ).

Omax

Lower bound: One term in the sum is ¢%max

M g
E eamaxd > eamaxf\/f =e> M
log(2|.A
= hpesar(A, B) — M > ,M_
max

(04
Upper bound: Since |D| = 2|A|, we have

log(2
S et < g Al M e < M+ og(2|.Al])
amax

= hpcsar(A,B) — M <0.
O

Theorem 2 (Conservative Approximation via DCSAT): Let
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Fig. 3: Qualitative Benchmarking of DCSAT. Comparison of zero-
level contours between smoothed / differentiable polygon distance
metrics and the classical SAT. Specifically, we compare the position
of the square polygon at a zero distance with the 8-sided polygon
according to the respective distance metric. In both cases, we report
the resulting contours for various sharpness parameters «, and the
gray dashed curve represents the true zero-level set of the classical,
but not differentiable SAT (i.e., the ground-truth), where the centroid
of polygon B is in contact with polygon A.

€=

1 Um: 1 24
log (Z e ‘““"‘d> ,hpcsar(A,B) :=e — M'

Omax deD Omax

Then:

(@) hpcsat(4, B) € C*,
(b) hpcsar(A, B) < hgar(A, B) for all A, B,
(¢) If hpcesar(A,B) = 0, then the true SAT distance

satisfies
lo(2A)

Omax

0 < hsat(4,B) < (15)

Proof. (a) Since e is composed of exponential and logarithmic
operations over a finite sum of smooth terms, it follows that
e € C. Subtracting a constant preserves smoothness, hence
hpcsat € C*. (b) Follows directly from Lemma 2. (¢) If

hposat(A, B) = 0, then by definition, e = 524D,
From Lemma 2, it follows that
log(2
0 < hSAT(AvB) < M?

. . Omax
since hpcsat < hsar, with Apcsar = 0.

which confirms the conservative approximation of the real
distance: if the smoothed metric DCSAT hits zero, the true
SAT distance remains non-negative. O

The DCSAT procedure is summarized in Algorithm 1.

Algorithm 1 Differentiable Conservative SAT (DCSAT)

Require: Convex polygons A = {A;}, B = {B;}; sharpness
a>0

1 A+ {£: £ S(A)US(B)}

2: for all a € A do

3: dy minj(aTBj) — max,»(aTAi)
4: dy < min; (aTA,;) — max; (aTBj)
5: Add dq,ds to D

6: end for

7. h Llog> jep €™ — %

8: return h

TABLE I: Average runtime (RT) in milliseconds over 1,000 trials
for a batch of 32 four-sided robot segment—obstacle polygon pairs,
where each obstacle polygon has NV sides. All polygons are aligned
to be just in contact. Speedup is measured relative to SSAT. Distance
errors are computed as the mean of the deviation from the SAT metric
normalized by the obstacle size. Additionally, we report the minimum
and maximum observed across all pairs.

N SSAT RT | DCSAT RT | SAT RT (ours) | Speedup 1 SSAT Err. [min, max] DCSAT Err. [min, max]

4 0046 ms  0.031 ms 0.025 ms 1.51 -12.0% [-37.6%, -0.1%] -2.8% [-3.5%, -1.9%]
8 0064 ms  0.041 ms 0.033 ms 1.56 -1.1% [-21.9%, +1.2%]  -2.6% [-3.2%, -1.8%]
16 0.096 ms  0.053 ms 0.039 ms 1.81 +0.2% [-2.3%, +1.2%]  -2.9% [: %]
32 0129 ms  0.064 ms 0.046 ms 2.00 +0.4% [-2.0%, +1.0%] -2.8 2.1%])
64 0.165 ms  0.076 ms 0.063 ms 2.17 +0.5% [-0.4%, +1.1%]  -2.8% [-3.4%, -2.3%]

TABLE II: Average runtime per segment—polygon pair (ms) with
increasing batch size, the polygons have eight sides. Each value is
averaged over 1000 trials. Speedup is measured relative to SSAT.

Batch Size SSAT (ms) | DCSAT (ours) (ms) | Speedup 1

32 0.0708 0.0463 1.53
64  0.0946 0.0514 1.84
128  0.1330 0.0653 2.04
256  0.2356 0.0985 2.39

C. Benchmarking DCSAT

While the original SSAT formulation [21] was designed
specifically for rectangles or axis-aligned quadrilaterals, its
underlying principle—approximating projection half-extents
using smooth absolute value functions—can be generalized
to arbitrary convex shapes. To enable a fair comparison across
general geometries, we implemented this natural extension and
evaluated it against our proposed DCSAT and the classical
SAT [25].

Fig. 3 visualizes the zero-level contours of both smooth
metrics relative to the classical SAT boundary. Notably, DC-
SAT consistently generates a conservative underestimation of
the true separation distance, as verified by the consistently
negative values in the DCSAT error column of Table I,
ensuring that the smoothed constraint remains valid under
model error or near-contact conditions. In contrast, SSAT [21]
tends to overestimate the true separation at low sharpness
levels, as can be seen in the positive values in the SSAT
error column of Table I, which can compromise safety-critical
guarantees in barrier-based control.

Although both smoothed variants are implemented effi-
ciently in JAX, DCSAT achieves comparable or better compu-
tational performance in large batch collision detections com-
pared to SSAT [21] despite its global formulation. As shown in
Table I, it maintains fast execution across polygon sizes while
preserving full C°° smoothness. To evaluate scalability, we
benchmark the runtime of our method (DCSAT) against SSAT
with increasing batch sizes (Table II). Each batch contains
multiple robot segment—obstacle polygon pairs, where each
obstacle polygon has N = 8. Results show that DCSAT
consistently outperforms SSAT in runtime, and the relative
speedup grows with the batch size, from 1.53x at batch size 32
to 2.39x at batch size 256. Taken together, these results suggest
that DCSAT offers a robust and practical surrogate to classical
SAT for use in applications that require differentiability and a
conservative approximation of the polygon separation distance.
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V. EXPERIMENTS
A. Baseline Methods

a) Safety Unaware HOCLF.: This baseline captures the
typical approach found in current soft-robotic control re-
search [22]: controlling the system without explicitly enforcing
safety constraints. Here, we drop the HOCBF terms from
the QP and retain only the HOCLF component—specifically,
the Operational-Space Regulation HOCLF—within the QP
constraints.

b) Contact Avoidance Artificial Potential Field.: The
purpose of this baseline is the represent the scenario that
is widespread in the rigid robotics literature (e.g., collision
avoidance [2]) - the aim to fully avoid contact - in this
case via application of a repulsive Artificial Potential Field
(APF) approach [30]. We adopt an integral-free (i.e., K; = 0)
variant of operational-space impedance controller from (2)
to operate on positions of the soft robot segment tips with
o= [p], .,pE]T € R2N. Combined with the repulsive

artificial potential force fi.p, the resulting control law is:
Nsrpf’ly Nobs

T
U =Uuo+ E E Jciyjfrepi_’j,
i=1 j=1

hii ~Taate
.frepi,j _ {krep .’h?,j\( Nc; s
02, if hi_,j > Tsafe
Please note that the proportional term of u, in (2) corresponds
to force stemming from an attractive APF.

c) Contact Avoidance HOCBF+HOCLE.: The purpose
of this baseline is similar to the last one, but instead of
relying on an artificial potential field to avoid contact and a
classic operational space controller for incorporating the task
objective, we rely here on the HOCBF+HOCLF framework by
combining a Contact Avoidance HOCBF with a Operational
Space Regulation HOCLF.

d) Contact Force-Limit HOCBF Filter.: In this baseline,
we replace the HOCLF objectives with a nominal operational-
space controller whose commands are filtered for safety by
solving the QP with Contact Force Limit HOCBF constraints.
Specifically, we employ u,(x) from (2), where the operational-
space is defined as o = [p{,...,py] € R?", representing
the positions of the segment tips.

(16)
if hi,j S T'safe

B. Implementation & Simulation Details

We build on the CBFpy [31] package that offers an
easy-to-use and high-performance implementation of (high-
order) CBF+CLF in JAX while leveraging analytical gradients
obtained via autodifferentiation. Our simulations consider a
planar, two-segment PCS soft robot (N = 2) implemented in
the JSRM package [20]. Each segment is 0.13 m long with a
backbone radius of 0.02 m; the elastic modulus is 2kPa and
the shear modulus is 1kPa. The actuation matrix is set to the
identity, A(q) = Isn. No state or input bounds are enforced.
The closed-loop ODE is integrated with a numerical solver
implementing Tsitouras’ 5/4 method.

For the contact model, we choose k. = 3000N/m, ¢, =0
and set the contact force limit to Fi max,; = 15N and, in
contact-avoidance scenarios, impose a minimum safety clear-
ance of 7ge = 0.005m, and a repulsive artificial potential

field stiffness of kyep, = 3000 N/M. The e value for softplus-
based smoothing force is 2 x 1074,

C. Navigation Results

We implemented multiple scenarios to validate our frame-
work. Among them, the search & rescue task is the most
representative for comparing different baselines and is there-
fore highlighted in this letter (see supplementary materials for
additional scenarios). Specifically, we compare the behavior
of the Contact Force-Limit HOCBF+HOCLF control strategy
against the baselines. We present the results in Fig. 4 and
Fig. 5 as sequences of stills and time evolution plots, respec-
tively. Indeed, the results demonstrate that the safety-unaware
controller (1) generates high contact forces that are potentially
unsafe, (2) the contact-avoidance baselines is not able to com-
plete the task as it exhibits an overly conservative behavior and
the soft robot is not able to exploit its embodied intelligence,
(3) a model-based operational-space regulator with HOCBF-
based safety filter is not able to complete the task as the
control strategy is not able to resolve the conflicts between task
objective and safety constraints, and (4) the proposed contact-
force limit exhibits very good task performance while ensuring
safety by restricting the maximum contact force.

VI. CONCLUSION

This letter introduces a HOCBFs+HOCLFs framework [18]
for the control of soft robots, grounded in a differentiable
PCS model [19], [20] and a novel differentiable and conser-
vative polygon distance metric DCSAT. Our method allows
(1) soft robots to embrace contact with the environment but
ensure safety via contact force-limit HOCBFs evaluated along
the entire soft robot body, (2) the flexible and expressive
specification of control objectives, such as shape and end-
effector regulation or object manipulation, via HOCLFs. The
DCSAT metric offers a C'°° approximation of the classical
SAT, yielding conservative signed distances with reduced com-
putational overhead compared to existing baseline methods
that overestimate the distance, leading to potentially unsafe
behavior. Simulated experiments in navigation scenarios vali-
date the framework’s ability to maintain geometric safety and
guide soft robots toward task objectives. Current limitations of
the work include the focus on planar settings, the simplistic
contact model, and the reliance on accurate proprioception and
exteroception.
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