
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Known To Unknown:
Predicting
Unpredictable Forces
Towards Teleoperation With Predictive Force
Feedback That Copes With Unknowns

Quinten Van Opstal

Known To Unknown:
Predicting

Unpredictable Forces
Towards Teleoperation With Predictive Force

Feedback That Copes With Unknowns

by

Quinten Van Opstal

to obtain the degree of Master of Science
at the Delft Universityof Technology,

to be defended publicly on the
Thursday February 5, 2026 at 1:30 PM.

Student number: 5316030
Thesis committee Dr. H.J.C. Kroep, TU Delft, Daily Supervisor

Dr. G. Lan, TU Delft, Committee Member
Dr. R.R. Venkatesha Prasad, TU Delft, Thesis Advisor

Project Duration: April, 2025 - January, 2026
Research Group: Networked Systems Group Faculty: Faculty of Electrical Engineering,

Mathematics and Computer Science, Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Abstract

Long distance Haptic Bilateral Teleoperation (HBT) is used in applications such as surgery, training,
remote operation, and disaster relief. One of the main challenges in these systems is communication
delay. When force feedback relies directly on sensors in the remote environment, increasing delay
quickly makes the system unstable and hard to control. To overcome this, previous approaches gener-
ated force feedback using a local simulation of the remote environment, while providing visual feedback
through live video [20]. This reduces timing constraints, but only works when the simulation accurately
represents reality. When the robot encounters objects that are not modeled and not visible to the
operator, unpredictable forces occur and the system no longer behaves correctly.

This thesis investigates how such unpredictable forces can be handled in delayed HBT. We introduce
a method that keeps predictive force feedback through simulation, while correcting the simulation us-
ing sensor data from the robot. A small 3D printed attachment was developed to detect unexpected
contact events. These measurements are sent back to the operator side and used to update the virtual
environment, allowing force feedback to be generated even for unknown objects. The approach was
evaluated in a user study with 13 participants under varying delays and visibility conditions. The results
show that when visibility is limited, reaction based feedback can be used instead of prediction based
feedback. The findings indicate that combining simulation based prediction with remote sensing offers
a practical solution for dealing with unpredictable forces in long distance HBT.

Quinten Van Opstal
Delft, January 2026

i

Acknowledgments

I would like to thank dr. Kroep for being the daily supervisor of this master thesis, even while he got
a son, and got his PhD. While this happened he still made time for our weekly meetings. His insight
into the subject and knowledge of the technology greatly helped. I also want to thank dr. Ranga Rao
Venkatesha Prasad better know as dr. VP as my thesis advisor, the fact that I could show up to his
office unannounced or make a phone call to talk with him created a great environment where you could
ask anything. I also want to thank dr. Guohao Lan for being part of the thesis committee. Next I want
to thank my family for supporting me while doing the thesis, and proofreading it. Lastly, I want to thank
the participant in the user study for their time, and the reader for reading this thesis.

ii

Contents

Abstract i

Acknowledgments ii

Abbreviations v

1 Introduction 1
1.1 Technical issues . 2
1.2 Current solutions . 2
1.3 Our approach . 3

2 Related work 4
2.1 Haptic Bilateral Teleoperation (HBT) . 4
2.2 ”No delay” teleoperation . 4
2.3 High Latency Teleoperation and Full Simulation . 5
2.4 Predictive force feedback . 6
2.5 Comparison . 7

3 The system 8
3.1 Haptic Bilateral Teleoperation (HBT) . 8

3.1.1 Timing restrictions . 9
3.2 Live footage, and predictive force feedback . 10
3.3 Unpredictable forces . 11

4 Theoretical basis 13
4.1 Adaptive offset . 13
4.2 Adaptive offset with applied force . 15

5 Implementation 18
5.1 Communication . 18
5.2 Live low latency video . 19
5.3 Physical prototypes . 21

5.3.1 Version 1: initial . 21
5.3.2 Version 2: linear encoder . 22
5.3.3 Version 3: 2 encoders . 23
5.3.4 Version 4: more efficient . 24
5.3.5 Version 5: smaller . 25

6 Experimentation 29
6.1 Hardware setup . 29
6.2 Scenarios . 30
6.3 Evaluation . 32

7 Results 34
7.1 Objective results . 34
7.2 Subjective results . 35
7.3 Discussion . 39

8 Conclusion 41
8.1 Conclusion . 41
8.2 Future work . 41

References 43

iii

Contents iv

A Explanation user study 46

B table user study 47

Abbreviations

HBT Haptic Bilateral Teleoperation. i, iii, 1–4, 8–11, 13, 39, 41
HTS Haptic training simulators. 5

K2U Known To Unknown. 3, 6

m2f Motion to force. 10, 11
m2p Motion to pixel. 10, 11, 35
m2r Motion to robot. 9, 10, 35
MPC Model Predictive Control. 6

r2p Robot to pixel. 9, 10, 20, 21, 35

v

1
Introduction

Between 1999 and 2006, 307 US first responders lost their lives providing aid during and after natural
disaster. The main causes of their deaths are exposure to fire, toxic gases, or accidents occurring
during cleanup and reconstruction efforts [12]. This data highlights the need for technology that can
reduce the risk to humans in dangerous situations like disaster response.

Imagine a coordinated network of specialists located anywhere in the world, able to provide aid to
disaster sites without ever being physically present. It could improve the quality of the aid provided,
while also reducing the response time. These experts could deliver faster, more efficient, and safer
disaster relief, in case of a tornado, a flood, or even a wildfire. This could all be achieved from the
safety of a remote control center. This eliminates the need for the experts to expose themselves to
direct danger. One way to try and achieve this is to use robots on the disaster site. These robots could
not only execute tasks human first responders would do, but they could also be capable of performing
tasks beyond human physical limits, such as lifting debris, navigating hazardous terrain, or handling
dangerous materials, but how do you control their actions?

Traditionally, robots are controlled by operators who remain in proximity to the machine. This is done
to get accurate control and minimal communication delay. The accuracy and minimal communication
delay is essential in providing effective and efficient relief. The operators must be able to quickly re-
spond to changes in the environment, either caused by themselves, or something else. This defeats
the purpose of having a centralized team, if they still need to be in the vicinity of the disaster site to
operate the robots. Some recent developments in communication networks and control systems have
made it possible to operate robots across distances, this is known as teleoperation.

Teleoperation allows the operator to control the robot, it doesn’t allow them to feel the environment. For
the operator to effectively interact with the remote environment, they should be able to sense what the
robot encounters. This allows them to provide more accurate instructions based on the physical objects
around the robot, and how the robot interacts with them. To do this, the robot must have sensors to
sense its environment, and send the data back to the operator, so that they can react. Sending this data
requires very fast communication between the robot and the operator to ensure the operating experi-
ence remains realistic. One of the most established frameworks for achieving effective teleoperation is
Haptic Bilateral Teleoperation (HBT). In a HBT system, the operator controls a remote robot, through
an interface that mirrors the robot’s movements and provides tactile or force feedback. This bidirec-
tional exchange of motion and force data enables the operator to “feel” interactions between the robot
and its environment in real time, this enhances the situational awareness and control accuracy of the
operator. Achieving this sense of presence requires two feedback channels: real time visual feedback
from the robot’s environment and haptic feedback that replicates the tactile sensations experienced by
the robot.

Transmitting haptic data over long distances introduces latency. Even small delays like a couple of
milliseconds in feedback can have detrimental impacts on the quality of the interaction and reduce the
operator’s ability to feel the remote environment. You can try to mitigate this obstacle by employing

1

1.1. Technical issues 2

predictive models that estimate the expected force feedback on the operator’s side. This allows the
system to maintain responsiveness and, even when visual feedback experiences minor delays [20].

Predictive feedback and video streaming can provide sufficient feedback for the operator to success-
fully execute a task under normal conditions, it becomes more difficult when the robot encounters an
unexpected object or forces that are applied to the robot that are not included in the predictive model.
The operator does not immediately perceive the robot’s contact with the unmodeled obstacles, thus
disrupting the illusion of presence and degrading control accuracy. These unpredictable forces are
prevalent in unstructured or disaster stricken environments, where debris, unstable materials, and ir-
regular terrain frequently can produce unforeseen interactions.

1.1. Technical issues
The main problem with long distance HBT is the communication delay. When the delay becomes too
large, the operator no longer feels in sync with the robot, which makes precise control difficult. This is
a big problem for generating force feedback, since even small delays can make the system confusing
to use. One solution is to simulate the remote environment on the operator’s side and generate force
feedback based on the simulation. This virtually removes the delay for haptic feedback and makes the
system feel more responsive. However, this only works when the simulation correctly represents the
real world.

In real environments, the robot can encounter objects that are not part of the simulation, or they are in
the wrong place. Whenever this happens, unpredictable forces occur. The operator does not feel that
they encountered the unexpected object. This breaks the interaction and can reduce safety. To mitigate
this, a sensor on the robot can be used to send feedback to the operator to update the simulation. One
issue with this is that updating the simulation based on sensor data introduces extra delay, which
can cause the virtual and real environments to be misaligned. This creates position offsets that are
noticeable to the user. Visual feedback also adds delay, and achieving low enough latency for live
video is difficult with standard hardware. All these issues make it difficult to provide real-time force
feedback and visual feedback.

1.2. Current solutions
Most current solutions for long-distance HBT focus on handling delay. One group of approaches
changes the control signals, which helps to keep the system stable. For example, using passivity-
based control or adding damping [2, 16]. This approach can reduce instability that occurs with large
delays. However, it often makes the system feel slower and less natural to the operator.

Another approach that is widely used is to rely on a predictive model of the remote environment. In
this setup, the environment is simulated locally on the operator side, and force feedback is generated
based on this simulation instead of sensor data from the robot [28, 35]. Because everything happens
locally, the operator almost instantly experiences force feedback, independent of the network delay.
Some approaches also use the simulation to predict future robot motion and interactions, in order to
further improve responsiveness [28].

This predictive force feedback is usually combined with visual feedback, either by showing live video
of the remote environment or by rendering a simulated view of the robot and its workspace. Previous
research has shown that with prediction, systems can still feel usable even when τm2p reaches around
150 ms [20]. However, for these approaches to work, they need an accurate simulation. When the
robot encounters something that is not in the simulation, the force feedback the operator experiences is
different from the one the robot experiences, which can lead to unsafe situations or break the immersion.

Some work has tried to correct the simulation using sensor data from the robot [19]. While this helps to
bring the virtual environment closer to the remote environment, it also introduces extra delay. This can
often cause the virtual contact point to appear at the wrong location at first, creating positionmismatches
between the real and simulated environments. These mismatches are especially noticeable during
contact with objects and can disturb the operator.

Overall, current solutions work best in structured environments where all objects are known beforehand.
In more realistic environments with unpredictable forces or unknown obstacles, these methods start to

1.3. Our approach 3

break down.

This thesis investigates how HBT systems can handle unpredictable forces while maintaining a respon-
sive user experience. Specifically, this thesis aims to answer the following research question: ”How
can a long distance Haptic Bilateral Teleoperation operator handle unpredictable forces?”. We answer
this question by answering these 3 sub questions:

• ”What are the effects of having no direct line of sight on the area of operation?”
• ”Can reaction based force feedback be used when prediction is not possible?”
• ”How does the movement speed of the operator effect the performance of a HBT system”

1.3. Our approach
In this thesis, we introduces Known To Unknown (K2U), which combines predictive force feedback with
sensing in the remote environment to handle unpredictable forces in long-distance HBT. A local simula-
tion on the operator’s side generates fast force feedback, while sensors on the robot detect unexpected
contact with objects. As long as the simulation matches the real world, the operator receives immedi-
ate and natural force feedback. When the robot encounters an object that is not in the simulation, the
sensors detect the contact and send this information back to the operator’s side. The simulation is then
updated by adding a virtual object so that force feedback can be generated based on the virtual object.

Because this update arrives later than the real collision, a mismatch appears between the real and
virtual contact location. To reduce this effect, an adaptive offset is used that slowly aligns the virtual
contact with the real one while the operator moves away. This keeps the interaction smooth and us-
able. This approach aims to keep the system responsive while still allowing the operator to handle
unpredictable forces.

To evaluate the approach, a user study was conducted where participants controlled the robot under
different added delays, visibility conditions, and simulation accuracy. Participants rated their experience
and confidence in using the system. The results were used to analyze how well the approach performs
when unpredictable forces occur and how delay influences the user experience.

The main contributions of this thesis are:

• A teleoperation setup that combines local simulation-based predictive force feedback with sensing
in the remote environment to handle unpredictable forces.

• A custom 3D-printed sensor attachment for a robotic arm. It can detect unexpected contact with
objects in the remote environment, and it sends this information back to the operator’s side.

• An adaptive offset method that reduces the mismatch between real and virtual contact locations
caused by communication delay.

• A way for an operator to apply force to an object after they made contact with it, using haptic
feedback.

• A user study evaluating the system under different delays, visibility conditions, and simulation
approaches to understand how these factors influence the user experience.

The remainder of this thesis is as follows: chapter 2 reviews related work relevant to feeling the en-
vironment and haptic bilateral teleoperation. Chapter 3 introduces the systems used in this research.
Chapter 4 introduces the theoretical background required to understand the concepts used in this re-
search. Chapter 5 describes what we did to get an experimental setup, followed by chapter 6, which
shows the implementation of the developed system, and how we evaluate it. Chapter 7 contains the
results of the user study and discusses them, and it has a discussion section. Chapter 8 provides an
overall conclusion of this thesis, and it has a future work section that outlines potential improvements
and directions for future work.

2
Related work

In this section, we discuss previous work related to long-distance Haptic Bilateral Teleoperation (HBT)
and how researchers have dealt with delay in teleoperation systems. First, we look at traditional ap-
proaches that focus on stability and low-latency communication. Then, we go over solutions that use
simulations and predictive force feedback to reduce the effect of delay. Finally, we discuss work that
tries to update simulations using sensor data and the problems that arise when the real world does not
match the virtual environment. This gives an overview of the current state of the field and shows where
the limitations of existing solutions are.

2.1. Haptic Bilateral Teleoperation (HBT)
HBT allows an operator to control a remote robot while receiving real time force and motion feedback,
this creates a sense of physical presence in a remote environment [14, 31]. The first telemanipula-
tors used in the mid-20th century have come a long way, with advances in sensing, actuation, and
control. Early research focused on achieving stability and transparency. Even when communication
delays are present, trying to ensure that force feedback remains accurate and safe despite delays or
in communication channels [9, 22, 24].

Recent research looks into immersive and intelligent teleoperation. These systems often use sensors,
lightweight actuators, and wearable interfaces to improve tactile feedback, thus improving user comfort
and precision [32]. Digital Twin driven Mixed Reality (DTMR) system, combines real time modeling with
haptic rendering to improve immersion and the ability of an operator to execute a task [11].

One challenging application of HBT is humanoid robot teleoperation due to high degrees of freedom,
stability, responsiveness, and corresponding force feedback becomes more complex[8]. Most current
research aims to merge robust control with immersive human–robot interaction, pushing HBT closer to
achieving immersive and reliable spatial awareness.

2.2. "No delay" teleoperation
Currently, one of the biggest challenges in teleoperation is minimizing latency. Even small communica-
tion delays of a couple of ms can significantly reduce task performance, stability, and user experience.
Studies have shown that delays greater than 150 ms can significantly reduce precision, and raise op-
erator workload [34]. In medical and industrial applications where precision and safety are essential,
achieving near real time or “no delay” teleoperation is vital. Research has explored multiple latency
mitigation strategies, including predictive control, and adaptive feedback. Collectively, they aim to pre-
serve the operator’s perception of immediate responsiveness [34].

Recent developments in communication systems have made sub 10 ms latency possible under optimal
network conditions. For example, Black et al. [4] achieved end-to-end latencies of approximately 1 ms
over Ethernet and 40 ms over 5G. They used a WebRTC based mixed reality teleoperation framework.
The results indicated that human response times are now the limiting factor. Typically, the human

4

2.3. High Latency Teleoperation and Full Simulation 5

Figure 2.1: Example of a ”no delay” teleoperation robot, the Da Vinci surgery robot picture from cghmc

response time is between 150 and 500 ms, which is larger than the network delay.

Low latency teleoperation has been successfully used in robotic surgery, here real time haptic feedback
is directly tied to performance and safety. True force feedback can reduce applied intra corporeal forces
by nearly half compared to visual only feedback [15, 23]. Systems using bilateral haptic control and
direct force reflection show improved task precision and reduced tissue damage [6, 26]. An example
of ”No delay” teleoperation can be seen in figure 2.1.

2.3. High Latency Teleoperation and Full Simulation
Increased delays in the communications network can make it harder to control things in real time. A
complete virtual simulation can be used to better engage operators and make sure they can quickly
receive force feedback. When the delays are too large, executing a task with a machine from a distance
can become unreliable. The signals sent and received will not match up properly, so the operator
can’t rely on force or visual feedback. Simulations of the remote environment can be used to allow an
operator to receive force or visual feedback with a much smaller delay, eliminating most of the problems
introduced by a large delay. This allows the operator to better execute a task, and can make sure the
robot doesn’t execute any unwanted action based on a delay in feedback. Building simulations, with
accurate physical modeling and digital twin representations, can provide realistic training and control
rehearsal. Even if the environments doesn’t allow real time feedback [11]. The simulation enables
users to maintain spatial awareness, thus making them able to perform complex tasks under several
seconds of communication delay.

Haptic simulation improves spatial awareness by including tactile and kinesthetic feedback into virtual
training systems. Haptic training simulators (HTS) replicate physical interactions and provides force
feedback that improve user’s experience with contact and material resistance [21]. Surgical Simulation
systems, with haptic feedback enabled, significantly improve user skill acquisition compared to purely
visual or joystick, based simulations [8]. This is especially relevant in the contexts of surgical training
or hazardous teleoperation, because real world training would be unsafe or impossible. High computa-
tional resources are often required to achieve such a simulation, and thus remain limited in accessibility
due to hardware costs and calibration complexity [4].

Integrating AI driven assessment and predictive modeling can enhance full simulation teleoperation.
Teleoperation based learning frameworks allow the robots to learn tasks from human demonstration
within virtual environments, this allows for simulation to come closer real world performance [21]. Sim-
ulation is a crucial tool for sustaining surgical training during periods of restricted physical access [13].
These works demonstrate that by combining virtual environments, haptic feedback, and full simulation
teleoperation allow for an effective alternative for training under high latency or unreliable communica-

2.4. Predictive force feedback 6

tion conditions.

2.4. Predictive force feedback
Latency is an issue in teleoperation, it occurs when an operator controls a robot over large distances.
Delayed force feedback can disrupt the spatial awareness of the operator. Predictive force feedback
addresses this. It estimates the forces the operator should feel before actual sensor data is available.
In telesurgical applications, predictive force feedback frameworks have been shown to improve user
experience in haptic feedback even under less than ideal network conditions. A predictive model that
uses 5G for communication, meant for needle insertion, demonstrated that an estimation of resistance
can produce more reliable haptic cues, mitigating the negative effects of communication delay [5].

The robot’s behavior during small time frames can be predicted with Model Predictive Control (MPC).
The operator then sends modified actions to compensate for delays and uncertainties. When used
with online force estimation, a controller can maintain stability, while the operator receives accurate
predictive force feedback [17, 18]. Predictive force feedback has been used in collaborative haptic
interaction, where predicting contact forces improves coordination between human and robot partners.
This method reduces the cognitive load of the operator by aligning the predicted force feedback with the
operator’s intended movement [33]. There also exist machine learning based approaches to force pre-
diction. They use Deep learning models trained with audio–tactile signals to generate highly accurate
estimations of force feedback, this can be used when direct force sensing is impractical [25].

Machine-learning-based prediction has been used to be able to improve the realism of force feedback
in mixed-reality environments. Here, estimating future interactions with the environment allows hap-
tic devices to generate force feedback [29]. In human–robot collaborative object transport, predictive
estimation of force feedback has demonstrated to improve task accuracy, and user emersion [10]. To-
gether, these contributions show that predictive force feedback is a key piece in the next-generation
of teleoperation systems. They enable stable, and intuitive interactions with the remote environment
despite network latency or incomplete sensory information.

latency haptic
feedback

visual
feedback

Teleoperation
Batty [3] low simulation live video

Boabang [5] low simulation live video
Chioson [6] low sensor live video

Fan [11] medium sensor simulation
Gonzalez [15] medium simulation simulation

Patel [26] low sensor live video
salvato [29] medium simulation simulation

Training
Feizi [13]

Lelevé [21]
Rangarajan [27]

Al-Saud [30]

n/a simulation simulation

Prediction
Dominguez [10] n/a sensor-based n/a

Jordana [17] n/a prediction n/a
Kleff [18] n/a prediction n/a

Miederhauser [25] n/a sensor-based n/a
Watanabe [33] n/a simulation n/a

Our paper

Known To Unknown (K2U) medium simulation &
sensor live video

Table 2.1: Comparison between the contents of different related works.

2.5. Comparison 7

2.5. Comparison
Various other works were discussed throughout this chapter, a systematic comparison can be seen in
table 2.1. We devided the literature into three categories. The first category is teleoperation, it includes
papers that look into remote robot control and the challenge of maintaining accurate force feedback
with larger delays. The second category is training, includes works that employ simulation or haptic
rendering to allow for training, with themain objective of improving user performance in procedural tasks.
And the final category is prediction, contains studies whose main contribution lies in the development
of predictive models for force feedback prediction.

Several characteristics were used to create a comparison between the related works. These charac-
teristics are all present in a subset of the related work. The first characteristic is in what latency each
tested system operates, there are 2 options: low latency meaning that the operator is really close, and
moderate latency when there is a significant delay between the operator preforming actions, and the
robot executing them. Another important characteristic is how haptic force feedback is generated. The
forces rendered have 3 possible sources, they are rendered through physical sensing, via simulation
based models, or using machine learning based predictions.

For works that utilize a visual feedback, we additionally classify the type of visual feedback used, such
as live video streaming, or purely simulated feedback. Using the characteristics, we compared the
reviewed literature approaches to mitigating the problem of latency. Their approaches are to do it by
visual or force simulation, have the operator really close, or don’t use a remote robot.

3
The system

This chapter explains the overall system that was built for this thesis. First, we give a high level overview
of Haptic Bilateral Teleoperation (HBT) and how the different parts of the system work together. Then,
we describe the operator side, the remote side, and the communication between them. We also explain
how the simulation is used to generate predictive force feedback and how sensor data from the robots
side can be used to handle unexpected contacts.

3.1. Haptic Bilateral Teleoperation (HBT)

Robot

Camera

Sensors

Environment

Remote domain

Monitor

Haptic
device

Haptic
device

Operator

Operator domain

Network

Figure 3.1: Inner workings of HBT. The operator performs actions with the haptic device, it sends the actions over the network
to the robot, who executes them. This affects the environment, which is monitored by the sensors. They send their data back to

the haptic device over the network. It lets the operator experience force feedback. Changes in the environment also get
monitored by a camera. Who sends a video stream to a monitor over the network, The operator can observe these changes on

the monitor.

The main goal of Teleoperation is to enable an operator to execute complex tasks in a remote environ-
ment by controlling a robot. The operator doesn’t need to be present in the remote domain. In Haptic
teleoperation, the operator controls the robot through motion and applied forces, which are measured
by a haptic device. Haptic Bilateral Teleoperation (HBT) extends this, by transmitting not only the op-
erator’s actions to the robot but also the robot sends visual and force feedback back to the operator.
This two-way communication allows the operator to feel the remote environment in real time, creating

8

3.1. Haptic Bilateral Teleoperation (HBT) 9

spatial awareness despite the distance between the robot and the operator. A basic HBT system can
be understood as consisting of three components: the operator domain, the remote domain, and the
communications network. As illustrated in figure 3.1, the operator and robot reside in different physical
spaces, the operator domain, and the remote domain. The network serves as the medium through
which information flows between the two other components.

The operator domain consists of the human operator and a haptic device with which they can interact.
The operator manipulates the haptic device, which records its position and forces applied to it. These
are translated into control commands for the robot. These commands are transmitted over the network
to the remote domain. Meanwhile, the haptic device generates force feedback based on data from
sensors in the remote environment. The operator experiences these forces, so they can feel when the
robot has a collision. The operator also receives visual feedback in the form of a live view of the robot’s
surroundings. The combination of both visual and force feedback allows the operator to build a spatial
awareness and thus act as though they were physically present with the robot.

The communications network sends data between the operator and the robot and the other way around.
Its specific implementation, whether wireless, wired, local, or long-range, is not important to the working
of HBT. What matters is that information sent from one domain to the other actually reaches it. The
information that is sent, can be control commands, force feedback signals, and a live video stream. All
actions performed by the operator must be sent to the robot, and every measurable force exerted on
the robot in the remote domain must be sent back to the operator. The quality of this communication
plays a central role in the user’s experience: delays, packet loss, or jitter directly influence the user’s
experience and spatial awareness of the controller when controlling a remote robot.

The remote domain contains the robot, a camera, and force sensors. The camera and sensors are
used to gather both force and visual feedback. The robot receives and executes commands sent from
the operator domain, and the consequences of these actions are sensed by sensors. These sensors
measure properties such as contact forces, motion constraints, and movement in the environment.
These measurements are transmitted back to the operator domain to be rendered as force feedback.
A camera system records the robot and its surroundings, providing a live video stream used by the
operator to monitor the remote environment. The actions of the operator are executed in the remote
domain by the robot, the effect of these actions are measured and recorded by sensors and cameras.
This measured data gets sent back to the operator in the form of force feedback, or a live video stream.

3.1.1. Timing restrictions
A primary challenge in HBT is that communication occurs over a network. When data is sent long
distances, it introduces significant delays. This can significantly degrade the user experience of the
operator, when the delay gets to large the operator can’t effectively control the robot [1]. Consider an
operator who wants the robot to place an object on a table. When an operator does this in their own
domain, the operator would feel resistance the moment the object makes contact with the table, and
the downwards motion stops. They also get visual confirmation that the object is now on the table.
HBT uses the same principle, when the robot makes contact with an object, it is detected, and the
haptic device receives this information and restricts the operator’s movement accordingly, allowing the
operator to feel the contact with the object.

This works well over short distances with negligible latency. However, when a network is introduced, it
inherently adds a delay, we denote this delay by τnetwork. As illustrated in figure 3.1, the robot at time
t executes commands that were sent at time t − τnetwork. The monitor displays images recorded at
t− τnetwork, and the same applies to the force feedback derived from the sensor measurements.

Thus, when the operator performs an action on the haptic device, the total delay before the robot moves
is denoted by Motion to robot (m2r). We can represent it with,

τm2r = τnetwork + τhaptic + τrobot,

where τhaptic is the delay between preforming an action on the haptic device and sending it to the remote
domain, τrobot is the processing and actuation delay of the robot. The delay measured from the robot
moving, to it being visible on the monitor is called Robot to pixel (r2p), and can be represented by

τr2p = τnetwork + τcamera + τmonitor,

3.2. Live footage, and predictive force feedback 10

where τcamera is the camera capture and transmission delay, and τmonitor is the monitor’s display delay.
Combining m2r and r2p gives us Motion to pixel (m2p), where

τm2p = 2τnetwork + τhaptic + τrobot + τcamera + τmonitor,

this is the delay between the operator preforming an action, and it being visible on the monitor. Lastly,
we call Motion to force (m2f) the time required before the force feedback corresponding to an action is
rendered.

τm2f = 2τnetwork + τhaptic + τrobot + τsensor + τforce,

where τsensor is the sensor measurements delay and force is the delay for receiving sensor data and
generating force feedback. For the operator to control the robot accurately and perform complex tasks,
the total delay must be very small, otherwise the system becomes difficult to control or unstable [2].
In practice, this requires τ to be in the order of 10 ms. No widely deployed commercial network can
currently meet this requirement [16].

3.2. Live footage, and predictive force feedback

Robot

Camera

Environment

Remote domain

Monitor

Haptic
device

Simulation

Operator

Operator domain

Network

Haptic
device

Figure 3.2: Inner workings of HBT with a simulation. The operator performs actions with the haptic device, it sends the actions
over the network to the robot, who executes them. The remote environment is simulated on the operator side, it also gets the

actions. This simulation generates force feedback, that the operator can experience. Changes in the actual remote
environment get monitored by a camera. Who sends a video stream to a monitor over the network, the operator can observe

these changes on the monitor.

To reduce the harsh timing requirements imposed on the communication network, the remote environ-
ment can be simulated locally on the operator side. This substantially decreases the time required
for the operator to receive haptic feedback. The simulated environment must reproduce all relevant
elements with which the remote robot interacts in order to generate meaningful haptic responses [28].
This architecture is illustrated in figure 3.2. In this setup, sensors in the remote domain are no longer
required for force feedback generation, as all force responses originate from a local simulation. The op-
erator controls a haptic device. It sends the coordinates of the device to the simulation, which contains
a virtual model of the remote workspace. Within the simulation, a proxy object moves according to the
movement of the haptic device, based on its position in the simulation, force feedback is computed.

To generate natural and convincing haptic feedback, the system must represent force magnitude, force
direction, and contact position [7]. Most physics engines only track object positions and detect colli-
sions; they generally do not natively support haptic rendering. However, they can be extended through
spring-based interaction models to compute force feedback [35]. In this approach, the proxy object
acts as a point constrained by the virtual environment. When it collides with an object, its motion is
restricted to the collision point. The proxy can move away from the surface or along its tangent plane,
but cannot penetrate the object. This constraint prevents the objects from further colliding, while still
allowing free tangential motion.

3.3. Unpredictable forces 11

The operator’s physical motion via the haptic device is not directly constrained; instead, a force feed-
back signal is produced. The haptic force at time t is computed as

ffeedback(t) = kobject
(
pproxy(t)− phaptic(t)

)
,

where pproxy(t) is the proxy’s position, phaptic(t) is the haptic device position, and kobject is the spring
constant representing the stiffness of the contacted surface. This formulation ensures that the deeper
the haptic device moves into the virtual object, the larger the resulting feedback force experienced by
the operator. Because all computations occur in the operator domain, this process eliminates both
network and remote sensor delays. The resulting m2f can now be expressed as

τm2f = τhaptic + τsimulation + τforce,

where τforce denotes the time required for the simulation to process an input, and compute the cor-
responding output force. Due to the nearly instant simulated force feedback, the operator can rely
primarily on haptic feedback, while the visual feedback may tolerate higher latency. Prior work shows
that m2p can be significantly larger, up to approximately 150 ms without severely impairing task perfor-
mance[20].

3.3. Unpredictable forces

Robot

Camera

Sensors

Environment

Remote domain

Monitor

Haptic
device

Simulation

Operator

Operator domain

Network

Haptic
device

Figure 3.3: Inner workings of HBT with a simulation. The operator performs actions with the haptic device, it sends the actions
over the network to the robot, who executes them. The remote environment is simulated on the operator side, it also gets the
actions. This simulation generates force feedback, that the operator can experience. The remote environment contains some
sensors to detect unexpected object, when it encounters them the data gets sent to the simulation so that it can be updated.
Visual changes in the remote environment get monitored by a camera. Who sends a video stream to a monitor over the

network, the operator can observe these changes on the monitor.

The simulation-based approach assumes that the virtual environment contains a virtual version of all
objects with which the robot may interact. However, this assumption fails when the robot encounters
an object that is not visible to the operator and not represented in the simulation. For example, when
searching for loose change under a couch, a person knows that the loose change is present but not
the precise location of the loose change. Similarly, the robot may make contact with an unseen object
whose position is unknown to both the operator due to no direct line of sight, and the simulation model.
When the robot moves into an unexpected object, the robot will experience a force from this object.
The operator receives no corresponding haptic feedback, because the simulation doesn’t have a virtual
representation of the object. We refer to such contact as unpredictable forces: forces resulting from
contacts that neither the operator nor the simulation anticipates. To address this, this thesis investigates
an approach in which the remote environment is still simulated locally, but the robot is equipped with
sensors capable of detecting unexpected contacts. When these sensors detect such an object, they

3.3. Unpredictable forces 12

immediately halt robot motion along the direction of contact to prevent damage. At the same time, the
sensor data are transmitted to the simulation, which updates the virtual environment and generates the
appropriate force feedback. The updated architecture is illustrated in figure 3.3.

The time required for the robot to stop after encountering an unexpected obstacle is given by

τstop = τrobot + τsensor

τm2f remains the same as when the force feedback is only based on the simulation. When the sensors
detect the robot encountering an unexpected object, the information is sent to the simulation. The
simulation creates a new virtual object corresponding to the unexpected object, and generates force
feedback based on it. Thus, the time from the operator moving, the robot encountering something, and
the operator experiencing this is:

τreaction = 2τnetwork + τhaptic + τrobot + τsensor + τsimulation + τforce.

This delay is longer than when only using the simulation, because the system must wait for: two-
way network transmission, physical robot interaction dynamics, sensor detection and processing, and
simulation updates using the data sent by the robot when it encountered the unexpected object. These
additional steps introduce delays that cannot be avoided when handling unpredictable forces. The
approach ensures that safety is preserved, and the simulation is dynamically corrected to reflect the
actual environment, enabling the operator to receive force feedback even when the environment is
only partially known. The delay means that the simulation will receive the update later than the actual
collision happening, this can be represented by

τcollision = τnetwork + τsensor + τsimulation,

With this delay, the simulation will place the object at another location if the haptic device kept moving.
We hypothesize that this wrong representation is still sufficient, because the operator doesn’t know the
exact location of the object.

4
Theoretical basis

This chapter explains the theoretical background needed to understand the rest of this thesis. First, we
explain how our system handles unpredictable forces with an adaptive offset. Then we look at how we
can apply additional force after encountering an unexpected object.

4.1. Adaptive offset

 d
b
o
x

d
of

fs
et

d
m

ov
em

en
t

Figure 4.1: Illustration of how the operator and robot interact when the robot encounters an unexpected object. When the
sensors on the robot detect the object, they sent a signal to the operator. Due to network delay, there is an offset. This offset is

slowly reduced.

When there is a delay in Haptic Bilateral Teleoperation (HBT), the robot inevitably lags behind the
operator’s motion, as illustrated in figure 4.1. It shows how the operator and robot interact when the
robot encounters an unexpected object. The black doted (—) line represents a plane in the simulation,
the operator can’t move past this plane. Force feedback is generated based on this plane. First, the
proxy object in the simulation and the robot are at the same height, when the operator moves down
the robot follows with some delay. When the robot encounters an object, it sends its current location
to the operator domain, and stops moving. Meanwhile, the operator is still going lower because they
haven’t received the that the robot encountered an object yet. When the simulation receives that the
robot has encountered a box, it moves the plane to the current position of the haptic device, denoted
by the brown doted (—) line. This represents the contact plane with a virtual object, the operator can’t
move past this plane. The simulation also keeps track of the real location of the object indicated by
the blue doted (—) line, based on the position of the robot when it encountered the box. Every time
the operator moves away from the contact plane, the virtual contact plane also moves a little until the

13

4.1. Adaptive offset 14

virtual contact plane is at the same location as the real contact plane.

The robot’s position at time t is based on the operator’s position at an earlier time:

probot(t) = poperator(t− τm2r).

where poperator(t) is the position of the operator at time t. The delay τm2r creates an offset between the
operator’s current position and the robot’s current position. Consider a scenario in which the operator
attempts to perform a task but doesn’t have a direct line of sight of where the task is performed. While
they are executing the task, they encounter an object that they cannot see. The operator keeps on
moving, because they are unaware of the obstruction, meanwhile the robot immediately stops when it
encountered the object:

pz,robot(t) = dbox,
where pz,robot(t) is the height of the robot, and dbox is the height of the unknown item. The network
delay causes the operator to not receive this contact until τreaction later. By the time the signal arrives,
the operator and, by extension, its proxy in the simulation have already moved beyond the point where
the robot actually made contact. This creates an offset between the real and virtual environments. This
corresponds to what Kroep et al [19] called delay-induced position error, which can cause significant
disturbance when predicted contact forces are involved, these disturbances persist. To reduce and
eventually eliminate this offset, the simulation must determine how far the proxy has moved beyond the
true contact point. When the virtual simulation creates a box of its current position when it receives that
the real robot encountered an object, the positions of the virtual box, and the real one are misaligned.
The spatial offset is therefore:

doffset(t) = |pproxy(t)− pproxy(t− τm2r + τhaptic)|,

The offset is based on both the network delay and the speed at which the operator moves the haptic
device, which is consistent with Kroep et al. [19], they show that delay-induced errors scale with in-
teraction velocity and become strongly perceivable during contact events. Another approximation that
relies on fewer external measurements, such as the network delay and the velocity of the haptic device,
uses the robot’s recorded contact position:

doffset(t) = |pproxy(t) + convert((probot(t− τnetwork))|,

where convert(·)maps robot coordinates into the simulation coordinates. The network delay is present
due to the nature of the communication that travels over the network. To preserve the ability of the
operator to control the robot, the offset is added to the position sent to the robot:

pto robot(t) = pproxy(t) + doffset(t),

where pto robot is the location sent to the robot. This ensures that when the operator moves in the
opposite direction of the contact plane, the movement is still transmitted correctly, and this makes the
real robot move away from the object.

The offset is reduced over time to make sure the virtual environment eventually aligns with the real
environment. This is like the principle behind the Adaptive Offset Framework (AOF) proposed by Kroep
et al. [19], which compensates for delay in errors with position by adjusting an offset while keeping the
haptic perception smooth and stable. When the operator moves away from the virtual object, the virtual
object itself can also be moved in that direction until it aligns with the real world. We define a directional
projection:

direction(p, q) =
(

p · q
||q||2

)
·q,

which extracts the movement of vector p along vector q. Using this, we compute how much the virtual
box has to move.

dmovement(t) =
direction

(
|(pproxy(t)− pproxy(t− 1)|, doffset

)
2

,

This shifts the virtual box by half of the operator’s movement in the offset direction. The offset is then
updated as:

doffset(t) = doffset(t− 1) + dmovement(t).
This gradual update behaves analogously to the decay functions in AOF.

4.2. Adaptive offset with applied force 15

4.2. Adaptive offset with applied force

Figure 4.2: Illustration on the effect of delay on the vertical position of the robot and haptic device in relation to each other. In
this figure we only consider τm2f, and none of the other delay.

To enable the operator to deliberately apply force to an encountered object, it is essential that the robot
first comes to a controlled stop upon contact. Once this contact is detected and communicated back to
the operator, the operator should be able to modulate the force exerted on the object in a predictable
and intuitive manner. In practice, this means that after the initial stop, further interaction with the object
should be governed by the force applied by the operator to the virtual representation of the environment,
rather than by unrestricted motion commands.

A common way to apply force with a robot is to command it to move slightly into an object. When the
robot’s end effector is modeled as being connected to the environment through a virtual spring, the
magnitude of the applied force becomes proportional to the depth. By moving the robot further into the
object, a larger force is exerted, while moving it away reduces the applied force. This behavior provides
a natural and physically intuitive mechanism for force control.

The force that the operator experiences through the haptic device, denoted by ffeedback(t), can therefore
be used directly to determine how much additional displacement should be commanded to the robot in
order to apply the desired force. This displacement is given by

pforce(t) =
ffeedback(t)

kspring
,

where kspring represents the stiffness of the virtual spring attached to the robot’s end effector. This term
converts the desired force into a corresponding positional offset. By incorporating this displacement
into the command sent to the robot, the total target position becomes

pto robot(t) = pproxy(t) + doffset(t) + pforce(t).

With this formulation, the operator is able to actively apply force to the object by increasing the force
they exert on the virtual object, and the robot responds by moving further into the physical object.
Conversely, reducing the applied force causes the robot to retreat, decreasing the interaction force
accordingly. In this way, the applied force at the robot is directly proportional to the force feedback
perceived by the operator.

In the remote domain, object contact is detected once the robot’s sensors register that a predefined
distance threshold has been exceeded. At this point, the robot halts further motion in the direction of

4.2. Adaptive offset with applied force 16

contact to prevent damage. Because the robot is modeled as interacting through a virtual spring, this
stopping behavior results in an applied force on the object equal to

fobject = kspring ∗ dthreshold.

where dthreshold is the distance at which contact is detected. This force represents the baseline force
exerted on the object when the robot initially comes to rest.

To ensure that the operator is aware that the robot is applying force to the object, the operator must
also experience a corresponding force feedback. This is achieved by slightly shifting the virtual object
away from the robot’s contact position in the direction opposite to the collision. Doing so introduces
a virtual collision that produces force feedback on the haptic device, allowing the operator to feel the
interaction. Incorporating this effect modifies the offset term as

doffset(t) =

∣∣∣∣∣pproxy(t) + convert(probot(t− τnetwork)) +
fobject(t)

kobject

∣∣∣∣∣.
This adjustment ensures that the operator experiences the same force that the robot applies to the
object, despite the presence of communication delay. A simplified representation of the effect of τm2f
on this interaction is illustrated in figure 4.2. Here we only look at vertical movement, and only consider
τm2f, but the same principle applies for all the axis, and when the other delays are also considered.
When there is no delay, the operator and robot both follow the dotted blue line (- -). Since there is no
delay, the robot perfectly mimics the movements of the operator. First the operator moves down, the
robot follows this motion until it encounters an object. The robot sends this to the operator. Now both
the robot and the operator are at dbox−dthreshold, the operator experiences force feedback corresponding
to dthreshold. They move up until they no longer feel the feedback, now both the robot and operator are
at dbox.

How τm2f effects the movement of the haptic device is shown by the doted orange line (- -). First, the
operator still moves down, but they don’t immediately receive that the robot encountered an object.
So they keep moving down for τm2f. When the message arrives, the operator receives force feedback
corresponding to dthreshold, and moves back up. The operator thinks that they are now at the location of
the box, but they are lower, this corresponds to their movement speed between the robot encountering
an object, and the operator receiving this. The doted green line - -) shows the corresponding movement
of the robot. Here the robot goes downward, like when there is no delay, until they encounter an
object. They send this information to the operator, andmeanwhile they stop moving. When the operator
receives this info and moves up, the robot also moves up. This means that the robot remained in place
for τm2f at dbox − dthreshold. While the operator is lower than the actual box, the robot is precisely at the
location of the box.

A similar effect can be observed when the operator chooses to actively apply force to the object, as
illustrated in figure 4.3. We again use the simplified view, but everything also applies when there is more
delay and more axis of movement. Here, the blue doted line (- -) again represents both the operator
and the robot when there is no delay. The operator and robot both simultaneous move downwards
until the robot encounters an object at dbox − dthreshold when the operator feels this force feedback,
they decide to move down further to exert more force. The robot mimics this motion, after a while
the operator moves back up again until they no longer feel force feedback, now both the robot and
operator are at dbox. The doted orange line (- -) shows what happens to the vertical position of the
operator when τm2f is present. The operator again moves downward, until they receive from the robot
that the robot has encountered an object. This is τm2f later than when there is no delay. After receiving
the corresponding force feedback, the operator decides to move further downwards, after a while they
move back up again. The operator thinks that they are on top of the box, but they are not. They
are a bit lower, this corresponds to their movement speed between the robot encountering an object,
and the operator receiving this. The doted green line (- -) shows how the robot moves when τm2f is
present. They also move downwards with the operator, until they encounter the object. They hang at
this position dbox − dthreshold for τm2f. When the operator receives that the robot encountered an object
and moves downward, the robot also moves downwards, but they move as if the haptic device was at
the same position as the robot, so the offset is mitigated. When the haptic device moves back up, the
robot follows, until the robot reaches dbox.

4.2. Adaptive offset with applied force 17

Figure 4.3: Illustration on the effect of delay on the vertical position of the robot and haptic device in relation to each other. In
this figure we only consider τm2f, and none of the other delay.

5
Implementation

In this chapter, we explain how the system was built. First, we examine how communication between
the operator side and the robot side was established using Tailscale. This was done to facilitate easier
connectivity between the different parts of the system, even when they are on different networks. After
that, we describe our attempts to implement live video feedback from the remote environment, and the
problems we encountered in reducing the delay. Lastly, we discuss the physical prototypes that were
made to detect unexpected contact, and how the design evolved over multiple iterations.

5.1. Communication

1

Operator Domain Remote Domain

Network

Tailscale
server

1

2

Figure 5.1: Explanation of our use of tailscale, (1) both the operator and the remote domain connect to the tailscale server.
They are now under the same tailnet, (2) this allows them to communicate with each other without the tailscale serve

Firstly, we tried to improve the setup of the project, by making it easier for the different components
to communicate with each other. This to reduce some of the hassle during the setup of the telepor-
tation system. The operator domain and the remote domain need to constantly communicate with
each other, they send coordinates, sensor readings, and video streams. Establishing direct and stable
communication channels between geographically distributed machines is not trivial. Many real-world
networks impose restrictions such as dynamic IP addressing, NAT traversal, or firewalls that block in-
bound connections. This makes the deployment of the system more difficult, since we want the system
to be able to work with the operator located in any part of the world, and the robot in any part of the

18

5.2. Live low latency video 19

world. The main thing we want to eliminate are the unpredictable IP addresses and opening ports for
communication for incoming connections. To do this we use Tailscale, a mesh VPN technology, as a
component of our network layer. Tailscale provides all device connected to it with a unique and stable
virtual IP address, independent of the underlying physical network. All components that must commu-
nicate whether running on separate physical machines or co-located on a single workstation join the
same Tailscale network. Once connected, they appear to exist on a unified private subnet, enabling
seamless communication even across restrictive or heterogeneous network environments. Tailscale
can be configured to allow communication between certain ports of devices connected to it.

When a device connects to the Tailscale coordination server, it is assigned a Tailscale IP address that
other devices connected to the server can use to communicate with the device. After this initial dis-
covery, Tailscale tries to establish a direct connection between the participating devices so that they
don’t need the server. As illustrated in figure 5.1. This makes sure that the coordination server is
used only for setup, and state updates. The server is not used to relay application data under nor-
mal circumstances. This means that the system does not incur additional latency from the VPN layer,
which is important for our applications, because in teleoperation we want minimal communication delay
between the components to ensure the quality of the interaction and the confidence of the end user.
Tailscale also has a MagicDNS feature, it assigns a human-readable hostname to every connected ser-
vice. This means that these names can be used instead of IP addresses, further reducing the technical
knowledge required to setup the project. Not relying on fixed IP addresses has other benefits, since
the IP addresses can change during development. This eliminates the need for manual reconfiguration
when components are moved or replaced.

We wanted the architecture to be flexibile, all services should be able to run on multiple distributed
machines, all concurrently on a single machine, or a mix of these 2. To achieve this, each service
is deployed as one or multiple Docker containers. This containerization ensures different hardware
is not really a factor in the deployment. And it makes sure that each service behaves consistently
regardless of its host machine. To use these Docker containers in the Tailscale network, we introduce
an additional container that communicates with the Tailscale server for each device we want to connect
to the network. The other containers on the device route their traffic through this node. This allows
the containers to join the Tailscale network without needing a full Tailscale installation, and they don’t
need to be modified, so they can still run independent. Running all services on a single machine
introduces additional challenges with respect to networking. Docker containers on the same host can
fail to communicate correctly if placed on conflicting or overlapping network interfaces. We therefore
configure each container to use a different network interface, ensuring clear separation and that traffic
routing functions correctly in both local and distributed deployments. This allows us to test the setup
on a single machine while preserving compatibility with the remote deployment scenario.

To further refine the testing environment, we deploy a Headscale server. That is the self-hosted vari-
ant of the Tailscale server. It took longer than expected to run the headscale server and all the other
containers on the same machine. Headscale enables us to manage connection keys, and routing poli-
cies without depending on the external infrastructure. This is great for research, where reproducibility
and independence from proprietary cloud services are desirable. By connecting both local and remote
containers to the same Headscale server, we ensure that minimal configuration changes are required
when transitioning from multi-machine setups to single-machine simulations or to a mix of the two.
Headscale does not enable UDP communication by default, but our teleoperation setup requires UDP
for low-latency data exchange. This functionality needs to be explicitly enabled. For this to work, all
connections to the Headscale server itself need to be authenticated over HTTPS. With the containeriza-
tion, limited setup, and the ability to self-host, we created a setup that is flexible, repeatable, and easily
testable even on a single device. This setup allows the system to function reliably across diverse net-
work conditions while providing developers with a controlled and reproducible environment for testing
and experimentation.

5.2. Live low latency video
After simplifying the setup needed for communication between the operator domain and the remote do-
main, we decided to focus to enabling live video feedback from the remote environment to the operator.
The live video is necessary to get visual feedback from the remote environment. This visual feedback

5.2. Live low latency video 20

Camera

FFMEPG RTMP FFPLAY

Monitor

Figure 5.2: First attempt of low latency video streaming, here a FFMEPG container sends the video signal from the camera to
a RTMP server running in a different container, a container running FFPLAY streams this data to the monitor

is essential for teleoperation. We tried to create a setup that allows the operator to receive live video
with minimal Robot to pixel (r2p) delay.

The first implementation used a three-container setup. One container ran FFMPEG, a command-line
tool used to capture and transmit video from the camera. The captured stream was sent to an RTMP
server running in a second container. The third container ran FFPLAY, which subscribed to the RTMP
stream and displayed the video on the operator’s monitor. We chose to use docker containers for the
same reasons as stated in the previous section, and because it allowed for easy integration with the
tailscale setup. An overview of this architecture is shown in figure 5.2.

The FFMPEG container was geared to for ultra–low-latency video transmission. The pipeline used the
bare minimum of processing and buffering, to minimize delay. To further reduce delay, all unnecessary
encoding steps were avoided. The resolution of the transmitted video was deliberately kept low this to
reduce the number of packets required per frame. This in then reduced serialization and transmission
delays. These choices aimed to reduce the time between an event occurring in the remote environment,
the camera capturing that event, and the resulting video frame being transmitted to the RTMP server.

The RTMP server acted as a middle man between the video producer and the consumer. Its role
was to gather the incoming video stream from the FFMPEG container, and distribute it to one or more
FFPLAY containers. The RTMP server allowed the video capture and video display components to
start independently. It also enabled multiple FFPLAY containers to subscribe to the same live stream
simultaneously.

On the operator side, FFPLAY was geared to minimize the delay in displaying the stream. Internal
buffers were disabled to prevent additional inherent delay. Despite all the added optimizations, the
τm2p remained substantial. The results of the latency measurements for this setup are shown and
analyzed in section 7.1.

This setup failed to achieve a mean τm2p below 150 ms, causing us to explore an alternative approach.
For the purposes of executing the user study, it was feasible to capture video and display it on a single
computer. This allowed us to remove both the FFMPEG container and the RTMP server from the
pipeline, further reducing delay. FFPLAY was used directly to capture video from the camera and
display it on the monitor By eliminating intermediate components, this configuration reduced overhead,
and thus reduces τr2p.

The resulting delay was still higher than desired, even with the simplified approach. Measurements

5.3. Physical prototypes 21

showed a Robot to pixel (r2p) delay τr2p of about 80 ms, which is too large. The system can thus not
be considered usable for low-latency teleportation. The remaining delay can be attributed to several
unavoidable factors. The camera operated at 30 fps, it also performed internal image processing using
two to three frames before outputting a usable image. The refresh rate of the display also added a
delay before a captured frame became visible on the monitor.

Due to these limitations and the time constraints on the project, it was not possible to further reduce
the τm2p to a usable level. Because of this, the user study was conducted without live video feedback.
Instead, participants were able to directly observe the robot with their own eyes. This decision ensured
that the study focused on haptic interaction and control behavior without introducing confounding effects
from excessive visual delay.

5.3. Physical prototypes
Next, we designed an attachment that can be mounted on a robot arm. The goal of the attachment is to
detect when the robot arm encounters an object without breaking the arm or the attachment. We used
a hollow cylindrical structure, which can be attached to the robotic arm. Inside the cylinder is another
cylinder that can move up and down. Inside the outer cylinder, there is a spring, which ensures that the
location of the inner cylinder remains the same when no forces are applied to it. The inner cylinder’s
movement is limited to one degree of freedom, relative to the outer shell.

The inner cylinder compresses the spring when the robotic arm encounters an obstacle. When the
robotic arm moves away, the spring ensures that the inner cylinder returns to its original position. The
displacement is measured, which allows us to deduce where the encountered object is. The outer
cylinder serves as the housing, while the inner cylinder is a moving element. Wemademultiple versions
of a prototype, and they all used 3D printing. This allowed for rapid iterations at a low cost. Using 3D
printing also allowed us to easily customize the designs in a CAD software.

5.3.1. Version 1: initial

(a) (b)

Figure 5.3: Attachment Version 1: (a) front view and (b) side view.

The goal of the first design was to make ourselves more familiar with computer-aided design (CAD)
software. We wanted to create something that could easily be mounted onto the robotic arm. And it

5.3. Physical prototypes 22

(a) (b)

Figure 5.4: Mechanism to connect the inner cylinder. All the separate parts (a), and the parts assembled (b)

should have some moving parts, such that there is a component as part of the attachment that can
move freely in only one degree of freedom without breaking the attachment.

The first prototype satisfied these requirements, the attachment could be attached to the robot arm. Its
geometry allowed it to be produced using 3D printing techniques. The attachment has an inner cylinder
that can freely move around vertically, without it breaking or falling out. There is a way to incorporate
a spring into the design. This demonstrated to us that the idea of the attachment is possible, and
the design can be used as a base to develop further iterations. However, there is no way to actually
measure if the arm encountered an object, so the design is still limited.

However, the prototype also exhibited several limitations. Most notably, it lacked a mechanism for
measuring the forces acting on the moving cylinder, which was essential for the intended functionality.
Furthermore, the overall design was relatively long, making it less compact and potentially less practical
for integration with different robotic configurations. To address this issue, the next iteration should have
some kind of sensing mechanism that can detect when the robot encounters an object.

The initial prototype design is shown in figure 5.3. The front view can be found in figure 5.3a and the
side view in figure 5.3b. There are 2 vertical slots along the side of the attachment, as can be seen
in figure 5.3b. This allows the inner cylinder to attach to the outer cylinder with some pins, which can
be seen in figure 5.4a. The figure also shows where the pins attach to the inner cylinder. The slots
allow for vertical movement, but limit all other kinds of movement. Everything together can be seen in
figure 5.4b. We use this attachment mechanism in all further iterations.

5.3.2. Version 2: linear encoder
The second design iteration focused on actually measuring when the inner cylinder moves. Several
sensors were considered, including linear potentiometers, optical encoders, and magnetic encoders.
After comparing the different options, we selected an optical encoder as the most suitable solution. It
is a cost-effective alternative to magnetic encoders and, unlike a linear potentiometer, it is not limited
by a small measurement range. The front view of the design is shown in figure 5.5a, and the side view
in figure 5.5b.

5.3. Physical prototypes 23

(a) (b)

Figure 5.5: Attachment Version 2: (a) front view and (b) side view.

This iteration was also designed to be more compact, while still leaving enough space to integrate
the encoder into the attachment. However, there were still some problems. First, the transparent
plastic used in the 3D-printed prototype caused issues with the optical encoder, making the light-based
measurements unreliable. Additionally, the setup did not have a way to detect the direction the inner
cylinder was moving. This meant that we could detect a change, but not if we where close to an object,
or moving away from it.

With these issues in mind, we decided on two main improvements for the next iterations. First, the
attachment should be fabricated using opaque material to avoid interference with the optical measure-
ments. Second, a direction detection mechanism should be added, so that both the displacement and
the direction of motion can be measured reliably.

5.3.3. Version 3: 2 encoders
For the third iteration, we decided to focus on detecting the direction in which the inner cylinder moves.
For this, we used two optical encoders and the A-B phase principle. Here, the idea is that both sensors
measure the movement of the inner cylinder based on engraved slots. However, these slots are placed
at an offset of a quarter of the slot size. With this offset, the encoders measure the same movement at
different intervals, based on which encoder measured the change first, we can determine the direction
of the movement, either upwards or downwards.

To obtain better encoder readings, we decided to add slits in front of the encoders. We measured
multiple sizes of slits by moving the encoder over the inner cylinder in a dark environment, with the
encoder looking through the slit being tested. The results of this can be seen in figure 5.7. The moving
speed was not consistent between measurements, which is why the measurements don’t seem to be
in phase. We looked for the smallest slit size that had an acceptable difference between the measured
highs and lows. The smallest slit size allowed for the smallest resolution, and we decided to use slits
with a size of 1 mm. The final configuration is shown in figure 5.6b.

With this change, the attachment could measure the direction of the movement, and how for the inner
cylinder moved. There are still some improvements that can be made. This 3D structure used the

5.3. Physical prototypes 24

(a) (b)

Figure 5.6: Attachment Version 3: (a) front view and (b) side view.

same amount of unnecessary filament, reducing this would reduce the print time of the attachment. In
this design, the encoders were mounted at an offset, this meant that it could only be used with one
size of slits. Because we wanted more possibilities, we decide to make inner cylinders slots have an
offset instead. The front and back views of the inner cylinder can be seen in figure 5.8a and figure 5.8b,
respectively.

5.3.4. Version 4: more efficient
The fourth design iteration focused on using less material during 3D printing, and also making the
encoder placement more flexible. In the previous design, the encoders were physically offset, which
meant that the cylinder slot spacing was basically fixed. In this iteration, both encoders are placed at
the same height. This removes that constraint, so the attachment can now work with cylinders that have
different indent sizes. That makes the designmoremodular, and it is easier to change themeasurement
resolution by just swapping the cylinder. The front of this design is shown in figure 5.9a, and the back
in figure 5.9b.

To still make the two-encoder setup work, the indents on the back side of the cylinder were designed to
be staggered by one quarter of the slot pitch. This way, we still get the required phase shift between the
two encoder signals, and we can keep reliable direction detection. The CAD model of the staggered
cylinder with 4 mm gaps is shown in figure 5.10a and figure 5.10b. Another improvement is that the
encoders can now be mounted on the sides of the attachment using screws, which makes it easier to
adjust or replace them.

To increase the contrast between a gap and no gap, painter’s tape was placed on the cylinders, as
shown in figure 5.11. We also made cylinders with different step sizes. The version with 4 mm gaps is
shown in figure 5.11a, the 3 mm version in figure 5.11b, and the 2 mm version in figure 5.11c.

Overall, this iteration reduced unnecessary filament use andmade sure different kinds of inner cylinders
could be used. One limitation is that the prototype is still larger than it needs to be compared to the
size of the springs inside. A more compact version would print faster and use less filament.

5.3. Physical prototypes 25

0 1000 2000 3000 4000 5000 6000 7000
Time

500

1000

1500

2000

2500

3000

3500

4000
re

co
rd

ed
 v

al
ue

Compairing different slit sizes
Encoder

1mm
2mm
3mm
4mm
5mm
6mm

Figure 5.7: Comparing the effectiveness of different kinds of slits, by running them over a cylinder with 4 mm gaps, and
painters tape for extra contrast. The ticks are an indication on the amount of time past on the micro controller, and not how fast

a difference is measured.

5.3.5. Version 5: smaller
The fifth design iteration focused on making the attachment more compact, to better match the size of
the internal spring. This was done to reduce print time and to ensure that the spring fits better. The
updated attachment is shorter than the previous version and includes a recess for the spring, in both
the attachment housing and the inner cylinder. This recess allows for better alignment of the spring and
reduced unwanted movement. The front view can be found in figure 5.12a, the side view in figure 5.12b.
The rest of the cylinder is the same as the previous design.

5.3. Physical prototypes 26

(a) (b)

Figure 5.8: Inner cylinder not staggered cad was used for clarity, (a) front, (b) back

(a) (b)

Figure 5.9: Attachment Version 4: (a) front view and (b) side view

5.3. Physical prototypes 27

(a) (b)

Figure 5.10: Inner cylinder staggered: (a) front view and (b) side view

(a) (b) (c)

Figure 5.11: Inner cylinders for version 4, with different sizes of slots and painters tape.(a) 4 mm, (b) 3 mm, (c) 2 mm

5.3. Physical prototypes 28

(a) (b)

Figure 5.12: Attachment Version 4: (a) front view and (b) side view

6
Experimentation

This chapter describes how the experiments and the user study were carried out. First, we explain how
delays were added to the system and how we verified that these delays were measured correctly. We
also explain the different scenarios that were tested and how the scores were collected. After that, we
describe how the objective latency measurements were performed. Lastly, we go over the setup used
for the user study and how participants interacted with the system.

6.1. Hardware setup
We used a Novint Falcon as the haptic device. The Novint Falcon is a low-cost commercial haptic
device that allows for precise measurement of its position. It can also generate force feedback in
three cardinal directions. The device communicates with a computer over USB. We chose the Novint
Falcon because it is easy to use, available for this project, and there is an already working code base.
With some minor modifications, other haptic devices could also be used. They do need to report their
position in Cartesian coordinates and be able to render force feedback.

The robotic arm we used in this work is a UFACTORY Lite 6. It can easily be mounted on a table.
The robot is controlled via commands sent over Ethernet. It also has an easy mounting system so
we can easily attach different kinds of end-effectors. We needed this to mount our custom sensor we
developed for this research. The existing code base combines the Lite 6 with the Novint Falcon. This
reduced development time and allowed us to focus on other aspects of the project.

The custom attachment uses an ESP32-C3 Super Mini microcontroller. We chose this microcontroller
because it is inexpensive and fast enough to process sensor data in real time. It also includes built-in
analog-to-digital conversion. This makes it possible to use analog sensors without additional hardware,
the encoders required this. Communication between the microcontroller and the controlling device is
done over USB through a serial interface. To detect when the encoder makes contact with objects, we
used an optical A-B encoder. It uses two Otronic TCRT5000 sensor modules. They are used because
they are cheap, and easy to obtain. They also provide analog outputs, which lets us use the attachment
in different lightning conditions.

The haptic device, the microcontroller, and the robotic arm were all connected to a single laptop running
Ubuntu 24.04.3 LTS. The laptop has an Intel i7 processor and 16 GB of RAM. The system is split into
three components: the operator domain, the remote domain, and the network. Each domain runs in
its own Docker container. Since everything runs on the same machine, communication between the
domains goes through localhost, which acts as the network. We used this setup because it makes
it easy to inject an extra delay into the communication. The containers also simplify deployment and
make the setup easier to reproduce on other machines. An overview of the setup is shown in figure 6.1.

The operator domain reads the position of the Novint Falcon and generates force feedback. It runs a
Bullet physics simulation at 1000 Hz, so force feedback is updated with a maximum delay of about 1ms.
The operator domain communicates with the remote domain over localhost. Messages from operator

29

6.2. Scenarios 30

Novit
falcon

U FACTORY
LITE 6

ESP32 C3

Ubuntu Laptop

Operator
container

Remote
container

Figure 6.1: This illustration shows the containerized setup, both the operator domain and the remote domain run on the same
Ubuntu laptop, but in different docker containers. The haptic device communicates with the operator container, and the ESP32

C3 and the robot communicate with the remote container. Both containers communicate over local host.

to remote mainly contain the target coordinates for the robot, and a flag indicating if the operator has
acknowledged that the robot hit an object. When the operator domain receives a message from the
remote side that an object was detected, it creates a virtual box at the current position of the haptic
device. The acknowledgement flag is then set, so the remote side knows the operator received the
collision information. Since the user study only used one object type, the height of the virtual object
was hardcoded, instead of converting it from the measured robot contact location.

The remote domain contains the robot controller. It communicates with the UFACTORY Lite 6 over
Ethernet, and it communicates with the ESP32 microcontroller over USB. Robot motion commands
are calculated at 250 Hz, based on the target coordinates received from the operator domain. When
the optical sensors reach the detection threshold, the microcontroller reports that contact occurred.
From that moment on, all downward motion of the robot is stopped until the operator side confirms that
the collision has been acknowledged. The remote side also sends the robot’s current position and the
sensor data back to the operator domain, where it is processed for the simulation and force feedback.

Even though everything was executed on one laptop during the experiments, the Docker setup still
allows the system to run across multiple machines. To support this, an optional Tailscale container can
be launched to connect the domains over different devices. Due to time and resource constraints, live
video feedback that satisfies the required τm2p latency was not implemented in this work.

6.2. Scenarios
To evaluate our approach, we conducted a user study. In this user study, participants controlled a re-
mote robot via a haptic device and provided subjective ratings of their experience. The goal of this study
was to test whether the system functioned correctly under different delays and visibility conditions, and
how these factors influenced the operator’s perception of spatial awareness and control. Teleoperation
performance is defined by the human user’s experience, which is subjective, so we used subjective
assessments for this evaluation and not objective measures.

During the user study, participants were asked to control the robot for multiple trials, each with different
conditions. During each trial, the participant was instructed to operate the haptic device, and thus the
robot. This to explore the remote environment. They were also asked to rate their experience in making
contact with a target object. After each trial, the participant was asked to rate how the interaction felt.
To ensure the ordering of the trials had no effect on the recorded user experience, a base case was

6.2. Scenarios 31

inserted between each trial, with no added delay.

The influence of changes in τm2r were tested throughout the user study. This delay varied across trials
and was unknown to the participants. The approach was chosen to observe how human perception
of teleoperation quality changes, specifically when the responsiveness gets worse. The tested delay
values were kept within a range that allowed participants to continue controlling the robot, and high
enough that differences were expected to be noticeable.

The participants were served four different cases, alongside the different additional delays. These
cases reflect all combinations of two factors: whether the participant could clearly see the robot and
the object in the environment, and whether the object existed in the simulation used for computing
force feedback. This covers a large amount of real-world situations, including the base case where
the operator can see everything and the simulation contains all relevant objects in the remote domain,
when the simulation doesn’t line up with the real world, how the operator interacts with an environment
when their line of sight is obstructed, and when there are unexpected forces.

In the first scenario, participants had a clear line of sight of both the robot and the object, and the
object was also inside the simulation. This scenario served as the baseline condition, because both
the visual and haptic feedback aligned with each other. We expected that users would experience the
interaction as natural and predictable when the delay was minimal. As the delay increased, differences
between user motion and how the robot responded would gradually become noticeable. When this
delay reaches a certain threshold, these differences would become too big to ignore, so the system
becomes unusable.

In the second scenario, the simulation included the object, and the participant’s line of sight was
partially obstructed. The participant could still see the general movement of the robot, but could not
clearly observe the detailed interaction with the object. In this case, we expected that the lack of visual
feedback would force participants to rely more heavily on haptic feedback, because the simulation still
contained the correct object, the feedback remained consistent, and participants were likely to interpret
the behavior of the robot as normal even if some delay was present. For this reason, we expected
that increasing the delay would more gradually make the user experience worse than in the baseline
scenario.

The third scenario inverted the previous case, by having an imperfect simulation, but the participant
had a clear line of sight. This would confuse the operator because, based on the visual feedback, they
expected haptic feedback, but this was not immediately present because of the imperfect simulation.
Increasing the delay caused the robot to move later, so it also encountered the object later, which made
it so the operator experienced this feedback later. We expect that with little or no delay, the interaction
would feel like there was nothing wrong with the simulation. However, once the delay increases, the
inconsistency would growmuchmore pronounced. The participant might see the robot reach the object,
but the force feedback would arrive noticeably later. We expected this scenario to feel unnatural more
quickly than any other condition, and that even moderate delays would be experienced as jarring or
confusing.

For the fourth and final scenario we combined limited visibility with an incomplete simulation. The
participant has no clear line of sight, and the object was not present in the simulation. Because the
participant did not have visual feedback for the expected interaction, we hypothesized that the absence
of the object in the simulation would be less noticeable. As in the second scenario, participants would
rely more on the haptic feedback that arrived when the robot eventually made contact with the object.
For this reason, we expected the perceived degradation due to delay resembling that of the second
scenario rather than the first or third scenarios. Small to moderate delays might not strongly affect
the user experience, since the participant would not anticipate precise timing of the contact in the first
place.

Together, the four scenarios allowed us to investigate how users perceive teleoperation under mis-
matched visual and haptic feedback, and how this user experience shifts as delay increases. By com-
paring ratings across scenarios, we aimed to identify whether it is possible to use this approach when
there are unpredictable forces present. This by seeing if it preforms better or worse that the other cases.
We also aim to find out how much delay is too much delay to still provide a decent user experience.

6.3. Evaluation 32

6.3. Evaluation
Before conducting the user study, we first verified that any added delay via software is measured cor-
rectly. The additional delay was added to all UDP communication from the operator domain to the
remote domain. This is to only introduce the delay once and not in both directions. The measurements
can be seen in section 7.1. The measured delay matched the configured delay closely, which confirms
that setting the delay acts as expected. The user study was done with 13 participants, they are all
students or ex-students at the TU-Delft. The group contained participants from multiple faculties.

Figure 6.2: Picture of the setup of the user study, with the Novit Flacon, the UFACTORY Lite 6, and the box.

Before the user study started, participants were asked to read the explanation in appendix A. Their
answers to questions asked during the user study were recorded using the table in appendix B. During
the study, participants were seated at a desk with the full setup in front of them. The setup consisted of
the robot arm, a physical box, and the Novint Falcon haptic device. It can be seen in figure 6.2. First,
the participants were asked to get familiar with the system. They could freely move the robot around
while they got familiar with the setup. The box was present in both the real world and in the simulation
while the users got familiar with the system. They were encouraged to interact with the box and see
how the force feedback felt.

Once the participant felt comfortable, the evaluation phase started. Participants were asked to rate
their experience on a scale from 1 to 10, with 1 being the worst and 10 the best. Each time we asked
them for a score, we also asked how confident they would feel using this setup in a critical application.
The evaluation started with a general score for controlling the robot. After that, the participant was
asked to interact with the box. First they approached the box slowly and rated the experience. Then
they approached it faster and rated it again. Both slow and fast approaches could be repeated multiple
times, so the participant could give a score they were confident about. This part tested the first scenario,
where the box is visible and also present in the simulation.

After that, the participant could ask removed the box from the simulation. The physical box stayed in
place, but now the simulation no longer contained it. The participant repeated the same steps again:
approach the box slowly, rate it, then approach faster and rate it. This part tested the third scenario,

6.3. Evaluation 33

where the object exists in the real world but not in the simulation.

During these trials, an extra delay was added in the background. For each set of interactions, a delay
was randomly chosen between 0 ms and 140 ms, using steps of 20 ms. This gives eight possible delay
values. The delay was added to the communication between the operator domain and the remote
domain, and the participant did not know which delay was active. After finishing and scoring a delay
condition, the participant was given a baseline trial with no added delay. This was done to reset their
frame of reference. After that, a new random delay was chosen. This continued until the participant
completed all eight delay values.

When all conditions with full visibility were done, a screen was placed in front of the participant to restrict
their line of sight. In this configuration the participant could still see the top part of the robot, but they
could not see the box or the end effector anymore. The participant again gave a general score for
controlling the robot, after which they approached the box slowly and scored the experience. Then
they approached it faster and scored again. This tested the second scenario, where the box is in the
simulation but not visible to the participant.

Finally, the fourth scenario was tested by removing the box from the simulation while keeping the
screen in place. The participant again did slow and fast approaches and rated the experience. The
same randomized delay procedure was used as before, including a baseline trial between each delay
value. This was repeated until all delay conditions were tested once.

We included both slow and fast approaches because we expect moving faster makes the effects of
delay worse. It increases the offset between the operator side and the robot side, and this is especially
noticeable when contact happens. By comparing scores across these conditions, we could see how
delay, line of sight, and simulation accuracy influence how the teleoperation system feels for the user.

7
Results

This chapter presents the results of the experiments and the user study. First, we show the objective
latency measurements of the system. After that, we go over the results from the user study and how
the participants rated their experience under different delays and scenarios. Finally, we summarize the
main observations that can be taken from these results.

7.1. Objective results

0 50 100 150 200 250

Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
P

ro
b

ab
il
it

y

Cumulative Distribution of latencies

τm2r

τr2p

τm2p

Figure 7.1: This graph contains the cumulative distribution of measured delay from a sample size of 50 measurements. The
blue line (—) shows the measured τm2r this has a mean of 62.95 ms, the orange line (—) shows the measured τr2p with a mean

of 131.29 ms, and lastly the green line (—) shows the measured τm2p with a mean of 194.24 ms.

First we measured τm2r, τr2p, and τm2p. To do this, we recorded the setup using a high-speed camera
operating at 240 fps. This gives a timing resolution of 4.17 ms. The camera filmed the haptic device,
the robot, and the monitor at the same time. We then hit the haptic device and counted the number of

34

7.2. Subjective results 35

frames until the robot started moving. After that, we counted how many frames it took until the robot
movement was visible on the monitor. We repeated this 50 times. The results are shown in figure 7.1.

The blue curve (—) shows the cumulative distribution of the measured Motion to robot (m2r) delay τm2r
over 50 samples, with a mean value of 62.95 ms. The orange curve (—) corresponds to the Robot to
pixel (r2p) delay τr2p, with a mean of 131.29 ms. Finally, the green curve (—) shows the full Motion to
pixel (m2p) delay τm2p, with a mean of 194.24 ms.

The measured τm2r was higher than we expected. This might be caused by some underlying issue in
the code, the setup, or the devices we used. The τr2p was also higher than expected. Since both delays
were larger, their sum τm2p became too large as well. It even crosses the usability boundary suggested
in [20]. Because of this, the setup was not usable for our user study. We therefore decided to not use
a camera feed displayed on a monitor, and instead let participants directly observe the robot with their
own eyes.

0 20 40 60 80 100 120
Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Cumulative Distribution of m2r
0 ms delay
40 ms delay

Figure 7.2: We measured τm2r, to confirm that the additional delay added via software is also measured

We also checked if adding additional delay to the communication between the haptic device and the
robot, corresponds to the same additional delay in the measurements, the results of this can be seen
in figure 7.2. These results were gathered from 20 samples each, they used the same 240 fps high
speed camera, and the same method of generating motion. This measured delay is in line with the set
delay, it is not exactly the same due to the small sample size.

7.2. Subjective results
In this section, we cover the results obtained from our user study. We asked the participants how
comfortable they were with using the technology for a critical application under the current conditions,
and rate this from one to ten. One being the worst, and ten the best. The results can be seen in
figure 7.3. Here, the blue line (—) represents the score given to the first scenario. The doted blue line
(- -) represents the second scenario. The orange line (—) represents the third scenario, and the doted
orange line (- -) represents the score given to the fourth scenario.

7.2. Subjective results 36

60 80 100 120 140 160 180 200

τm2p

1

2

3

4

5

6

7

8

9

10

S
co

re
(1

-1
0)

Results user study, use critical application

LoS prediction

No LoS predication

LoS reaction

No LoS reaction

Figure 7.3: Testing how comfortable a participant is to use the technology in a critical task, to test this random delays were
added from a range between 0 ms and 140 ms in increments of 20 ms. The delay is added from the operator domain to the

remote domain, in one direction. The operator was tasked with making contact with a box, and apply force to it, both when they
have a clear line of sight represented by the full lines, and the dotted lines represent when they did not have a direct line of sight

From this we can see that participants felt more comfortable when they had a direct line of sight. There
is also a large difference in the given confidence level when the participants had a clear line of sight,
based on if the force feedback was based on prediction or reaction. When there is no direct line of
sight, this difference is smaller.

We also asked the participants to grade the general effectiveness of the provided visual feedback
based on how the robot moves around in relation to what the operator does, the results can be seen in
figure 7.4. Here, the blue line (—) represents the participant’s general assessment of the effectiveness
of the visual feedback when they have a clear line of sight. The doted blue line (- -) shows the score
when they don’t have a direct line of sight with the object.

Overall, the general performance of the visual feedback degrades as the additional delay increases.
The participants graded the visual feedback a bit worse when they couldn’t see the whole robot. This
is in line with the previous results, where the participants indicate that they are felt less confidant when
there was no direct line of sight.

In another part of the user study, the participants were tasked with making contact with a box, and
applying force onto this box while having a clear line of sight, they were asked to rate the quality of the
force feedback. The results of this can be seen in figure 7.5. Here, the blue line (—) represents the
score given to the force feedback when the participant approached the box slowly, and the box was
present in the simulation. The orange line (—) represents the same interaction, but the user moves
faster. Together they encapsulate the first scenario, where the operator has a clear line of sight, and the
object encountered is in the simulation. The scores for slow and fast approaches remain approximately
the same.

In the same graph figure 7.5, the doted blue line (- -) represents the score given to the force feedback
when the participant had a clear line of sight, and they approached the object slowly, but the object
was not in the simulation. The doted orange line (- -) represents the same, but with a faster approach.

7.2. Subjective results 37

60 80 100 120 140 160 180 200

τm2p

1

2

3

4

5

6

7

8

9

10

S
co

re
(1

-1
0)

Results user study, visual feedback

Visual feedback LoS

Visual feedback no LoS

Figure 7.4: Testing the effectiveness of visual feedback, to test this random delays were added from a range between 0 ms
and 140 ms in increments of 20 ms. The delay is added from the operator domain to the remote domain, in one direction.

60 80 100 120 140 160 180 200

τm2p

1

2

3

4

5

6

7

8

9

10

S
co

re
(1

-1
0)

Results user study, force feedback line of sight

Slow prediction

Slow reaction

Fast prediction

Fast reaction

Figure 7.5: Testing the effectiveness of the provided force feedback, to test this random delays were added from a range
between 0 ms and 140 ms in increments of 20 ms. The delay is added from the operator domain to the remote domain, in one
direction. The operator was tasked with making contact with a box, and apply force to it, they had a clear line of sight on the box.

7.2. Subjective results 38

These two lines represent the third scenario, where the operator has a clear line of sight, but the object
is not in the simulation. Here, the faster interaction gets a worse score than the slower interaction. We
think this is because the offset is based on the speed of the haptic device. They both score significantly
less than their counterparts based on a simulation. After τm2p 120 ms there is a steep decline in the
scores given to both fast and slow approaches, but the difference between them stays about the same.

60 80 100 120 140 160 180 200

τm2p

1

2

3

4

5

6

7

8

9

10

S
co

re
(1

-1
0)

Results user study, force feedback no line of sight

Slow prediction

Slow reaction

Fast prediction

Fast reaction

Figure 7.6: Testing the effectiveness of the provided force feedback, to test this random delays were added from a range
between 0 ms and 140 ms in increments of 20 ms. The delay is added from the operator domain to the remote domain, in one
direction. The operator was tasked with making contact with a box, and apply force to it, they had no clear line of sight of the

box.

The results from when the participant had no direct line of sight can be seen in figure 7.6, here the
blue line (—) represents the participant slowly making contact with the box, while it is in the simulation,
and they have no clear line of sight. The orange line (—) shows what happens when the operator
approaches the box faster. Together they represent the second scenario, where the operator has no
direct line of sight, and the simulation contains the right object. Here, the scores given to the fast, and
slow interaction are about the same.

In the same graph figure 7.6, the doted blue line (- -) represent the score the participants gave to the
force feedback when they slowly approached an object not in the simulation, while they have no clear
line of sight. The doted orange line (- -) represents the same, but with a faster approach. Both of them
can be used to evaluate the fourth scenario, where the operator has no clear line of sight, and they
approach and make contact with an object that is not in the simulation. Here, the scores given to the
slow and fast interaction also don’t really deviate. But when comparing to the case where the user had
a clear line of sight, their score is significantly better. These scores are also only a bit worse than when
using prediction.

In our user study, we looked at both fast and slow approaches. We expected that the fast approaches
preformed significantly worse than slow approaches when τm2p got higher. This because we believed
that the higher velocities would have a greater impact with higher delays. When looking at the result,
however, we can see that the difference between fast and slow approaches remain constant within each
scenario. The difference is the highest in scenario 3 where the operator has a direct line of sight, and the
force feedback is based on reaction. But across all the scenario’s there is a difference, the difference

7.3. Discussion 39

doesn’t seem to get larger when the τm2p gets larger. This answers sub question three: ”How does
the movement speed of the operator effect the performance of a Haptic Bilateral Teleoperation (HBT)
system”. We believe the deviation between our expectation and the results could be due to the smaller
sample size, or due to a specific way we asked the questions during the user study.

Inference 1: While the fast approach consistently scores a little bit worse than the slow, with direct line
of sight there is a larger difference than no direct line of sight, the difference is not influenced by latency

We also tested how reaction based force feedback preformed when the operator has a direct line of
sight and when they do not. Our expectation was that when there was a direct line of sight, the reaction
based force feedback would preform worse than when there was no direct line of sight. This because
when the force feedback is based on reaction, the real world and virtual offset becomes larger with
larger τm2p. When there is direct line of sight, the operator can see this discrepancy, but when there is
not, the operator cannot see it. We can see from the results that our expectation was correct, reaction
based force feedback preformed better when there was no direct lien of sight, specially when τm2p
increases. There is an addition observation that can be made. when there is direct line of sight the
performance reaction based force feedback quickly drops off after a τm2p of 120 ms. When there is no
direct line of sight, this dropoff doesn’t happen. This answers part of our first sub question: ”What are
the effects of having no direct line of sight on the area of operation?”. We can see from the results
that it negatively influences the confidence level of the operator, but for the perceived quality of force
feedback it has a positive effect.

Inference 2: Reaction based force feedback degrades at a significant rate when there is a direct line
of sight, and a τm2p larger than 120 ms, The same doesn’t happen when there is no direct line of sight,
here the score given is much more stable.

Inference 3: The requirements on τm2p with a direct line of sight for reliable force feedback based on
reaction are harsher than those required for visual feedback.”

As a sort of sanity check, we also tested the performance of prediction based feedback. Here, we
expect the force feedback to get the same score across all the different τm2p tested. We also expect
there to be almost no difference between the fast and slow approaches. We also expect the difference
between reaction based force feedback and prediction based force feedback when there is no direct
line of sight to remain constant between the different τm2p. From the results, we can see that the score
given to prediction based feedback remains relatively stable, but it gets a slightly worse when τm2p gets
higher. We believe this is because of the degrading quality of visual feedback, and not because of the
prediction itself. There is a slight difference between the fast approach and the slow approaches, this
is likely caused by the greater velocity making every interaction a bit worse. The difference between
reaction and prediction remained constant when there was no direct line of sight, leading us to believe
that another reaction implementation that preforms closer to how prediction preforms could replace it.
This answers our second sub question: ”Can reaction based force feedback be used when prediction
is not possible?”, an experienced user can use reaction based force feedback when there is no direct
line of sight.

Inference 4: When direct line of sight is not possible and there is no reliable simulation, then reaction
based force feedback can be used.

Inference 5: The requirements on, τm2p when there is no direct line of sight, are less harsh for reaction
based force feedback than what they are for visual feedback.

Bringing it all together, we expected that an operator could use reaction instead of prediction when
there is no direct line of sight. From these results we can conclude that this is possible, but a better
implementation for reaction based force feedback should be implemented to make it better. This an-
swers our research question: ”How can a long distance Haptic Bilateral Teleoperation operator handle
unpredictable forces?”

7.3. Discussion
To answer our research question, we had a clear technical goal, provide an environment where an
operator can use HBT to control a robotic arm, and receive force feedback based on prediction and

7.3. Discussion 40

reaction. How we achieved this was not linear. We learned several lessons from this project. The
biggest takeaway is that it is easy for infrastructure work to consume a lot of time, especially if it is not
bounded early on. At the start we spent a lot of time getting Tailscale and Headscal to work with our
local Docker setup. While it created an environment that was easier to use, and able to be tested in
multiple environments, but it costed a lot of time. At the time early on the project, our daily supervisor
became a father, this understandably lead to less direct supervision, which caused us to spend longer
on the Tailscale Headscale path than necessary. This taught us that it is important to define when a
solution is good enough to be used, instead of trying to make everything perfect.

Another takeaway is that taking user studies required more time than we anticipated, which in part
lead to the relatively small user sample size. The technical aspect is one part, but once it works, there
are still a lot of things that need to be tweaked before the experiments can be conducted. Also when
gathering the data it is important to ask the right questions, such that the results gathered are usable,
and not contaminated by noise or other factors. This taught us that it is important to think about the
user study beforehand, and make a clear plan of what needs to be done. This all leads to another thing
we learned, that is to keep track on the main goal, and not lose ourselves in the smaller details that in
the end weren’t important to conduct the research.

8
Conclusion

8.1. Conclusion
Long distance teleoperation has a wide range of applications. Long range Haptic Bilateral Teleoperation
(HBT) in particular can be used for surgery, training, remote work, and disaster relief. One of the biggest
challenges in long distance HBT is communication delay. When force feedback is based directly on
sensors in the remote environment, large delays make the system unstable and hard to use. To address
this, previous work has used simulations of the remote environment on the operator side to generate
force feedback locally, while providing live video of the real environment. This allowed systems to
remain usable with a τm2p below 150 ms. Other approaches even used simulation for visual feedback.
However, these methods fail when the robot encounters unpredictable forces, meaning objects that
are not present in the simulation and not visible to the operator. The system then does not know how
to react. This leads to our research question: “How can a long distance Haptic Bilateral Teleoperation
operator handle unpredictable forces?”

In this thesis, we proposed a solution that still uses a local simulation for predictive force feedback, but
also adjusts this simulation using sensors in the remote environment. To test this idea, we designed a
3D printed attachment that can be mounted on a robotic arm to detect when the robot encounters an
object. The sensor data is sent back to the operator side and used to update the simulation, allowing
the operator to feel forces from objects that were not originally modeled. We evaluated this approach
with a user study involving 13 participants. The results showed that operators strongly preferred hav-
ing a direct line of sight and a correct simulation. Predictive force feedback performed best in these
conditions. However, when the line of sight was blocked, reaction based force feedback using sensor
updates still allowed operators to perform tasks with reasonable confidence. The quality of the force
feedback didn’t significantly degrade when τm2p get larger. This means that the requirements on τm2p
for force feedback is less strict than the requirement for visual feedback. When the operator could
clearly see the robot, this reaction based approach quickly became unusable as τm2p went over 120
ms.

Overall, the results suggest that combining predictive force feedback with remote sensing is a viable
way to handle unpredictable forces in long distance HBT. While a perfect simulation remains the ideal
case, sensor-based updates can provide a practical fallback when the environment is only partially
known.

8.2. Future work
To improve this research, specifically looking into handling unpredictable forces in HBT, you should
conduct a larger and more elaborate user study. The current study has some useful insights, but the
amount of participants was limited. Increasing this number would make the results more statistically
reliable. There are also more scenarios that can be tested.

In this thesis, we focused the user study on making contact with a rigid object in a relatively simple

41

8.2. Future work 42

setup. Further research should include objects made of different materials, such as soft materials, or
bouncy materials. The shape of the object could also have more variation, like boxes with different
heights, or spherical object. This would show if the approach is still viable when the expected contact
is different.

We also only tested for unpredictable forces in one known direction, but in the real world they can come
from anywhere. So further research should look into other directions, or maybe even multiple directions
at the same time. This would make the offset and eliminating it more complex.

There is a big scenario we did not explore in our user study, that is when there is an object inside the
simulation, but there is no corresponding object in the real world. This could lead to a weird experience,
especially when the operator has a direct line of sight.

Future work should also include actual visual feedback that satisfies the τm2p < 150 ms requirement. A
larger user study could also deduce specific values for the maximal acceptable τm2p for giving usable
force feedback in each scenario, and see how this lines up with the related work.

References

[1] R.J. Anderson and M.W. Spong. “Bilateral control of teleoperators with time delay”. In: Proceed-
ings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 1. 1988,
pp. 131–138. DOI: 10.1109/ICSMC.1988.754257.

[2] A. Aziminejad et al. “Stability and performance in delayed bilateral teleoperation: Theory and
experiments”. In: Control Engineering Practice 16.11 (2008), pp. 1329–1343. ISSN: 0967-0661.
DOI: https://doi.org/10.1016/j.conengprac.2008.03.005. URL: https://www.sciencedi
rect.com/science/article/pii/S0967066108000397.

[3] Taran Batty et al. “A Transparent Teleoperated Robotic Surgical System with Predictive Haptic
Feedback and Force Modelling”. In: Sensors 22.24 (2022). ISSN: 1424-8220. DOI: 10.3390/
s22249770. URL: https://www.mdpi.com/1424-8220/22/24/9770.

[4] David G. Black, Dragan Andjelic, and Septimiu E. Salcudean. “Evaluation of Communication
and Human Response Latency for (Human) Teleoperation”. In: IEEE Transactions on Medical
Robotics and Bionics 6.1 (2024), pp. 53–63. DOI: 10.1109/TMRB.2024.3349612.

[5] Francis Boabang et al. “A Framework for Predicting Haptic Feedback in Needle Insertion in 5G
Remote Robotic Surgery”. In: 2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC). 2020, pp. 1–6. DOI: 10.1109/CCNC46108.2020.9045432.

[6] Francheska B. Chioson et al. “Implementation of a Bilateral Teleoperation Haptic Feedback Con-
trols to Robotic Minimally Invasive Surgery”. In: 2020 IEEE 12th International Conference on
Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment,
and Management (HNICEM). 2020, pp. 1–5. DOI: 10.1109/HNICEM51456.2020.9400009.

[7] J.E. Colgate and J.M. Brown. “Factors affecting the Z-Width of a haptic display”. In: Proceedings
of the 1994 IEEE International Conference on Robotics and Automation. 1994, 3205–3210 vol.4.
DOI: 10.1109/ROBOT.1994.351077.

[8] Kourosh Darvish et al. “Teleoperation of Humanoid Robots: A Survey”. In: IEEE Transactions on
Robotics 39.3 (2023), pp. 1706–1727. DOI: 10.1109/TRO.2023.3236952.

[9] Yaru Deng et al. “A Review of Bilateral Teleoperation Control Strategies with Soft Environment”.
In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
(2021), pp. 459–464. URL: https://api.semanticscholar.org/CorpusID:237521221.

[10] J. E. Domínguez-Vidal and Alberto Sanfeliu. “Improving Human-Robot Interaction Effectiveness
in Human-Robot Collaborative Object Transportation Using Force Prediction”. In: 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2023, pp. 7839–7845. DOI:
10.1109/IROS55552.2023.10342517.

[11] Wen Fan et al. “Digital Twin-Driven Mixed Reality Framework for Immersive Teleoperation With
Haptic Rendering”. In: IEEE Robotics and Automation Letters 8.12 (2023), pp. 8494–8501. DOI:
10.1109/LRA.2023.3325784.

[12] Gregory M. Fayard. “Fatal Work Injuries Involving Natural Disasters, 1992–2006”. In: Disaster
Medicine and Public Health Preparedness 3.4 (2009), pp. 201–209. DOI: 10.1097/DMP.0b013e
3181b65895.

[13] Navid Feizi et al. “Robotics and AI for Teleoperation, Tele-Assessment, and Tele-Training for
Surgery in the Era of COVID-19: Existing Challenges, and Future Vision”. In: Frontiers in Robotics
and AI 8 (Apr. 2021). DOI: 10.3389/frobt.2021.610677.

[14] William R. Ferrell and Thomas B. Sheridan. “Supervisory control of remote manipulation”. In:
IEEE Spectrum 4.10 (1967), pp. 81–88. DOI: 10.1109/MSPEC.1967.5217126.

43

https://doi.org/10.1109/ICSMC.1988.754257
https://doi.org/https://doi.org/10.1016/j.conengprac.2008.03.005
https://www.sciencedirect.com/science/article/pii/S0967066108000397
https://www.sciencedirect.com/science/article/pii/S0967066108000397
https://doi.org/10.3390/s22249770
https://doi.org/10.3390/s22249770
https://www.mdpi.com/1424-8220/22/24/9770
https://doi.org/10.1109/TMRB.2024.3349612
https://doi.org/10.1109/CCNC46108.2020.9045432
https://doi.org/10.1109/HNICEM51456.2020.9400009
https://doi.org/10.1109/ROBOT.1994.351077
https://doi.org/10.1109/TRO.2023.3236952
https://api.semanticscholar.org/CorpusID:237521221
https://doi.org/10.1109/IROS55552.2023.10342517
https://doi.org/10.1109/LRA.2023.3325784
https://doi.org/10.1097/DMP.0b013e3181b65895
https://doi.org/10.1097/DMP.0b013e3181b65895
https://doi.org/10.3389/frobt.2021.610677
https://doi.org/10.1109/MSPEC.1967.5217126

References 44

[15] Glebys Gonzalez et al. “DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for
Surgery”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021,
pp. 12693–12700. DOI: 10.1109/ICRA48506.2021.9561399.

[16] B. Hannaford and Jee-Hwan Ryu. “Time-domain passivity control of haptic interfaces”. In: IEEE
Transactions on Robotics and Automation 18.1 (2002), pp. 1–10. DOI: 10.1109/70.988969.

[17] Armand Jordana et al. “Force FeedbackModel-Predictive Control via Online Estimation”. In: 2024
IEEE International Conference onRobotics and Automation (ICRA). 2024, pp. 11503–11509. DOI:
10.1109/ICRA57147.2024.10611156.

[18] Sébastien Kleff et al. “Introducing Force Feedback inModel Predictive Control”. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 13379–13385.
DOI: 10.1109/IROS47612.2022.9982003.

[19] H. J. C. Kroep, V. Gokhale, and R. Venkatesha Prasad. “Blind Spots of Objective Measures:
Exploiting Imperceivable Errors for Immersive Tactile Internet”. In: 2022 ACM/IEEE 13th Inter-
national Conference on Cyber-Physical Systems (ICCPS). 2022, pp. 01–10. DOI: 10 . 1109 /
ICCPS54341.2022.00011.

[20] Herman Kroep et al. “Breaking the Latency Barrier: Practical Haptic Bilateral Teleoperation over
5G”. In: Proceedings of the ACM/IEEE 16th International Conference on Cyber-Physical Systems
(with CPS-IoT Week 2025). 2025, pp. 1–11.

[21] Arnaud Lelevé, Troy McDaniel, and Carlos Rossa. “Haptic Training Simulation”. In: Frontiers in
Virtual Reality 1 (2020). DOI: 10.3389/frvir.2020.00003.

[22] S Lichiardopol. “A survey on teleoperation”. In: (2007).
[23] Johanna Miller et al. “Impact of haptic feedback on applied intracorporeal forces using a novel

surgical robotic system—a randomized cross-over study with novices in an experimental setup”.
In: Surgical Endoscopy 35.7 (2020), pp. 3554–3563. DOI: 10.1007/s00464-020-07818-8.

[24] Syeda Nadiah Fatima Nahri, Shengzhi Du, and Barend Jacobus Van Wyk. “A Review on Haptic
Bilateral Teleoperation Systems”. In: Journal of Intelligent & Robotic Systems 104.1 (Dec. 2021),
p. 13. ISSN: 1573-0409. DOI: 10.1007/s10846- 021- 01523- x. URL: https://doi.org/10.
1007/s10846-021-01523-x.

[25] Loïc Niederhauser et al. “A Predictive Model for Tactile Force Estimation Using Audio-Tactile
Data”. In: IEEE Robotics and Automation Letters 9.2 (2024), pp. 1596–1603. DOI: 10.1109/LRA.
2023.3340614.

[26] Rajni V. Patel, S. Farokh Atashzar, and Mahdi Tavakoli. “Haptic Feedback and Force-Based
Teleoperation in Surgical Robotics”. In: Proceedings of the IEEE 110.7 (2022), pp. 1012–1027.
DOI: 10.1109/JPROC.2022.3180052.

[27] Karan Rangarajan, Heather Davis, and Philip H. Pucher. “Systematic Review of Virtual Haptics
in Surgical Simulation: A Valid Educational Tool?” In: Journal of Surgical Education 77.2 (2020),
pp. 337–347. ISSN: 1931-7204. DOI: https://doi.org/10.1016/j.jsurg.2019.09.006. URL:
https://www.sciencedirect.com/science/article/pii/S1931720419306609.

[28] K. Salisbury et al. “Haptic rendering: programming touch interaction with virtual objects”. In: Pro-
ceedings of the 1995 Symposium on Interactive 3D Graphics. I3D ’95. Monterey, California, USA:
Association for Computing Machinery, 1995, pp. 123–130. ISBN: 0897917367. DOI: 10.1145/
199404.199426. URL: https://doi-org.tudelft.idm.oclc.org/10.1145/199404.199426.

[29] M. Salvato et al. “Predicting Hand-Object Interaction for Improved Haptic Feedback in Mixed
Reality”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 3851–3857. DOI: 10.1109/
LRA.2022.3148458.

[30] Loulwa M. Al�Saud. “The utility of haptic simulation in early restorative dental training: A scoping
review”. In: Journal of Dental Education 85.5 (Dec. 2020), pp. 704–721. DOI: 10.1002/jdd.
12518.

[31] Thomas B Sheridan. Telerobotics, automation, and human supervisory control. MIT press, 1992.

https://doi.org/10.1109/ICRA48506.2021.9561399
https://doi.org/10.1109/70.988969
https://doi.org/10.1109/ICRA57147.2024.10611156
https://doi.org/10.1109/IROS47612.2022.9982003
https://doi.org/10.1109/ICCPS54341.2022.00011
https://doi.org/10.1109/ICCPS54341.2022.00011
https://doi.org/10.3389/frvir.2020.00003
https://doi.org/10.1007/s00464-020-07818-8
https://doi.org/10.1007/s10846-021-01523-x
https://doi.org/10.1007/s10846-021-01523-x
https://doi.org/10.1007/s10846-021-01523-x
https://doi.org/10.1109/LRA.2023.3340614
https://doi.org/10.1109/LRA.2023.3340614
https://doi.org/10.1109/JPROC.2022.3180052
https://doi.org/https://doi.org/10.1016/j.jsurg.2019.09.006
https://www.sciencedirect.com/science/article/pii/S1931720419306609
https://doi.org/10.1145/199404.199426
https://doi.org/10.1145/199404.199426
https://doi-org.tudelft.idm.oclc.org/10.1145/199404.199426
https://doi.org/10.1109/LRA.2022.3148458
https://doi.org/10.1109/LRA.2022.3148458
https://doi.org/10.1002/jdd.12518
https://doi.org/10.1002/jdd.12518

References 45

[32] D. Wang, K. Ohnishi, and W. Xu. “Novel Emerging Sensing, Actuation, and Control Techniques
for Haptic Interaction and Teleoperation”. In: IEEE Transactions on Industrial Electronics 67.1
(2020), pp. 624–626. DOI: 10.1109/TIE.2019.2927784.

[33] Hitoshi Watanabe et al. “Toward the optimal control of haptic communication -Introduction of
force prediction to collaborative work-”. In: 2021 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW). 2021, pp. 1–2. DOI: 10.1109/ICCE-TW52618.2021.9602982.

[34] Yang Ye et al. “Brain functional connectivity under teleoperation latency: a fNIRS study”. In: Fron-
tiers in Neuroscience 18 (2024). DOI: 10.3389/fnins.2024.1416719.

[35] C.B. Zilles and J.K. Salisbury. “A constraint-based god-object method for haptic display”. In: Pro-
ceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human
Robot Interaction and Cooperative Robots. Vol. 3. 1995, 146–151 vol.3. DOI: 10.1109/IROS.
1995.525876.

https://doi.org/10.1109/TIE.2019.2927784
https://doi.org/10.1109/ICCE-TW52618.2021.9602982
https://doi.org/10.3389/fnins.2024.1416719
https://doi.org/10.1109/IROS.1995.525876
https://doi.org/10.1109/IROS.1995.525876

A
Explanation user study

The goal of the experiment is to figure out the perceived quality of the feedback provided to the operator,
where we look separately at visual and force feedback. Additionally we are interested in the perceived
quality of the setup if used to perform a delicate task. We are also interested in observing the perceived
effect of visual obstruction on performing a task.

In this study, you will control a robotic arm using a haptic device. A box is positioned beneath the robotic
arm, and you can apply force to this box. In an ideal case, the robot feels like an extension of your
hand, where you have full control over manipulating both the trajectory of the robot, and the amount of
force it applies to its environment.

We are comparing two methods to obtaining force feedback. For every configuration, both methods will
be examined. You will then repeat the same interaction steps (slow and fast) and rate them again also
indicate how confident you would feel using the system in a critical application. Each delay condition is
tested once. After seven trials, all delay conditions will have been completed. A visual screen will then
be placed between you and the system, and you will be asked to repeat the same procedure under this
condition.

Procedure

You will first be given time to familiarize yourself with the robotic system and the haptic device. After
this, the trials will begin. In each trial, a random delay between 0 and 140 milliseconds will be applied,
in steps of 20 milliseconds.

For each trial, you will:

• Observe the visual feedback and rate it on a scale from 1 to 10.
• Interact with the box by first applying force slowly, and then more quickly.
• During this phase, the box is present in the simulation (the prediction condition).
• Rate both interaction speeds separately.
• Indicate how confident you would feel using this system in a critical application, such as surgery.

Next, the box will be removed from the simulation (the reaction condition). You will then repeat the
same interaction steps (slow and fast) and rate them again also indicate how confident you would feel
using the system in a critical application. Each delay condition is tested once. After seven trials, all
delay conditions will have been completed. A visual screen will then be placed between you and the
system, and you will be asked to repeat the same procedure under this condition.

46

B
table user study

Line of sight
Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6 Trail 7 Trail 8

Visual performance
Slow force feedback
prediction
Fast force feedback
prediction
Use in a critical
application prediction
Slow force feedback
reaction
Fast force feedback
reaction
Use in a critical
application reaction
No line of sight

Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6 Trail 7 Trail 8
Visual performance
Slow force feedback
prediction
Fast force feedback
prediction
Use in a critical
application prediction
Slow force feedback
reaction
Fast force feedback
reaction
Use in a critical
application reaction

Table B.1: Table used to gather results from the user study

47

	Abstract
	Acknowledgments
	Abbreviations
	Introduction
	Technical issues
	Current solutions
	Our approach

	Related work
	HBT
	"No delay" teleoperation
	High Latency Teleoperation and Full Simulation
	Predictive force feedback
	Comparison

	The system
	HBT
	Timing restrictions

	Live footage, and predictive force feedback
	Unpredictable forces

	Theoretical basis
	Adaptive offset
	Adaptive offset with applied force

	Implementation
	Communication
	Live low latency video
	Physical prototypes
	Version 1: initial
	Version 2: linear encoder
	Version 3: 2 encoders
	Version 4: more efficient
	Version 5: smaller

	Experimentation
	Hardware setup
	Scenarios
	Evaluation

	Results
	Objective results
	Subjective results
	Discussion

	Conclusion
	Conclusion
	Future work

	References
	Explanation user study
	table user study

