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1. The creation of the Internet is one step further for humankind to reach the speed
of light.

2. The choice between circuit-switching and packet-switching boils down to
which is “bandwidth-wise” economically worth it: using more or wasting more.

3. The advantage of packet-switching, over circuit-switching, is statistical
multiplexing. It is also the source of all its challenges.

4. Optimal switching performance cannot be obtained through distributed
scheduling algorithms only; some sort of centralized knowledge is required.

5. The answer to: “I want a packet-switch that is scalable, has low latency and
achieves high throughput” is: “Choose two”.

6. If someone is considering to have telesurgery over the Internet, he is strongly
advised to look elsewhere.

7. It is not because things are difficult that we do not dare, it is because we do not
dare that they are difficult.

8. Knowledge is one of few resources on earth that multiplies when shared.
9. Vision without action is a daydream; action without vision is a nightmare.
10. Only a fool expects to be happy all the time; happiness, per se, does not exist,

there are moments of happiness instead.k

These propositions are considered defendable and opposable and as such have
been approved by Prof. dr. K. Goossens.

1. Met het creéren van het Internet is de mensheid één stap dichter bij het bereiken
van de lichtsnelheid.

2. De keuze tussen circuit-switching en packet-switching komt neer op welke qua
bandbreedte economisch waardevoller is: meer gebruiken of meer verbruiken.

3. Het voordeel van packet-switching ten opzichte, van circuit-switching, is
statistisch multiplexen. Dit is tevens de bron van alle uitdagingen.

4. Optimale switching prestaties kunnen niet worden behaald met enkel
gedistribueerde algoritmen; een bepaalde vorm van centrale kennis is altijd
vereist.

5. Het antwoord op: "Ik wil een packet-switch die schaalbaar is, weinig vertraging
heeft en een hoge doorvoersnelheid kan halen™ is: "Kies twee".

6. Als iemand overweegt een operatie op afstand over het Internet te ondergaan,
wordt diegene ten strengste geadviseerd elders te kijken.

7. Het is niet omdat dingen moeilijk zijn dat we er bang voor zijn, maar omdat we
er bang voor zijn lijken dingen moeilijk.

8. Kennis is een van de weinige bronnen op aarde die vermenigvuldigt als ze
gedeeld wordt.

9. Visie zonder actie is als een dagdroom; actie zonder visie is een nachtmerrie.
10. Enkel een dwaas verwacht altijd blij te zijn; blijheid, per se, bestaat niet; er

zijn echter momenten van blijheid.

Deze stellingen worden verdedigbaar en opponeerbaar geacht en zijn zodanig
goedgekeurd door Prof. dr. K. Goossens
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Abstract

formance packet switches (high speed IP routers and ATMcheds)

have been investigated and implemented by both academiadumst
try. These architectures can be classified based on varitisites such as
gueueing schemes, scheduling algorithms and/or switeicfedpology. Most
high performance switches and Internet routers built todssy a bufferless
crossbar fabric topology. Designing crossbar-based moukeat are scalable
and provide performance guarantees is challenging witrenttechnology.
This is attributed to the high computational complexityted tentralized cross-
bar scheduler and to the nature of the crossbar-based swijtatchitecture.

N umerousproposals for identifying suitable architectures for hjgh-

This dissertation studies the scheduling problem in befferossbar switches,
i.e. crossbars with a small amount of internal buffering geisspoint. The

independent scheduling of unicast and multicast traffic $lew well as their

integration is considered. A set of distributed and paraitdeduling algo-

rithms, along with appropriate switching architecturesdéscribed. These
algorithms are designed to be practical and scalable wittergort count and
line rate.

A class of unicast scheduling algorithms, where the ativingorocess is fully
based on the internal buffers information, is describedwhching architec-
ture is proposed, where the schedulers are all embeddeah i buffered
crossbar fabric chip, resulting in scalable switching affidient scheduling.
The proposed architecture is further shown to provide perdmce guarantees.
With a speedup of two, the proposed architecture is capdldenalating an
ideal output queued switch.

The problem of scheduling multicast traffic flows is also #&dd A buffered
crossbar switching architecture based on input multicisOFqueues along
with appropriate scheduling is proposed and shown to ofatperexisting ar-
chitectures. The multicast switching architecture isHeartimproved by using



a small number of multicast queues per input port of the $witd multi-
cast cell assignment algorithm that maps incoming traffimput queues is
devised. The proposed algorithm is shown to assign trafficeredficiently,
fairly and quickly than existing algorithms. The study slsoan interesting
trade off between the number of input multicast queues amditte of inter-
nal buffers. This provides enhanced switching performascerell as reduced
scheduling complexity, resulting in faster and more sdalatwitching.

Next, the scheduling of more realistic traffic flows is stadlithe combination
of unicast and multicast traffic. A buffered crossbar baseitthing architec-
ture, along with appropriate scheduling that efficientlpmarts both unicast
and multicast traffic flows, is described. The proposed sdeedwvhile based
on a fanout splitting policy, tends not to overload the déimks between the
line cards and the fabric core when servicing multicasfitrafThe proposed
architecture is shown to outperform existing architecture

Finally, a variation to the buffered crossbar switchingh#tecture is studied.
A partially buffered crossbar switching architecture isgased. It is designed
to be a good compromise between the two extreme cases offerdalitross-
bars and fully buffered crossbars. The proposed partiaiffebed crossbar is
based on few internal buffers per fabric output, making dst@omparable
to unbuffered crossbars. It also overcomes the centratiressbar schedul-
ing bottleneck by means of distributed and pipelined scleeduas in fully

buffered crossbars, making it a practical and low cost &echire for such
ultra high capacity networks.
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Chapter 1

Introduction

presented in this dissertation. The motivation and ohjestof the dis-
sertation are discussed. Finally, the chapter overviessrthin contri-
butions and outlines the remaining content of the dissertat

This introductory chapter provides a minimal background of thekwv

1.1 Background

The concept of computing has progressively shifted fronkidgsto distributed
systems in recent years. The Internet is perhaps the madsatygxample of
a distributed system. While telephone, TV and radio devigege multiplied
the power of communication methods, their limited reach loiowed with their
requirements of synchronization in both space and time éfidriuch to be
done. The glory of ubiquitous Internet today gives the irspi@n that there are
no longer any restrictions on communication. The Intermatwell established
worldwide communications medium for the entire spectrurboshmunication
modes (data, voice and video) both real-time and non-nea, taffecting every
aspect of our lives, economically, politically and cultilyaA critical mass of
individuals have access to computers and these computeidalk to each
other whether as a global World-Wide-Web (WWW) or peer-¢eipsystems.
As a consequence, users critically depend on the relialoifithe underlying
communication network.

Since its conception in the early 1960s, the Internet hasgdwmuch. Start-
ing as a research and university network, providing baswises such as e-
mail and file transfer, the Internet has grown to be a comraksciccess with
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Figure 1.1: Growth trends for Internet traffic and computers

billions of dollars of annual investment. The Internet,apdconsists of thou-
sands of networks. What used to be the “Backbone” in the 18808ew the
interconnection of multiple backbone networks, belongiodarge telecom-
munications providers. Numerous studies have shown thetniet traffic is
growing by a factor of 30% per year [1] [2]. According to [3het number of
computers (hosts) on the Internet has exceeded 433 millichébeginning
of 2007. Figure 1.1 gives an overview on the growth trendeelnternet over
the last two decades.

The Internet is a packet-switched network based on theisstatl multiplex-
ing” paradigm, which means that resources are shared ansang tather than
dedicated. It is comprised of a mesh of end-hosts, links antkrs. Nodes on
the Internet, both end hosts and routers, communicate tissnfnternet Pro-
tocol (IP). IP packets travel over links from one router te tiext on their way
towards their final destinations. A router consists of sgvgrocessing stages
each of which performs a specific task. Amongst others, &rqdrforms two
main tasksrouting andswitching During the routing stage, the router checks
the packet header and decides where the packet should baeséntin the
switching stage, the router transfers the packet from rigiag input port to
the destination output port in preparation to depart. Thisattation focusses
on the switching stage of the router.
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1.2 Motivation

The explosive growth in number of users and traffic per usetheninter-
net is coupled with the same growth in transmission linksacdyp due to the
advances in fiber optic bandwidth. The deployment of waygtedivision
multiplexing (WDM) and dense WDM (DWDM) transmission tectwogy has
resulted in an abundance of raw bandwidth, already reachmgulti-terabit
per second (Tbps) range. Consequently, the total data fatsingle fiber is
increasing at a faster rate than the switching and routingpetent that termi-
nates and switches traffic at a carrier’s central office ontpafipresence (PoP).
As a result, switches and routers are becoming the truechettk of the net-
work. To exacerbate this, the emergence of new applicatonthe Internet
today, such as packetized voice (voice over IP), Internkevion (IPTV) and
video multicast streams, require a minimum level of qualitgervice such as
latency and jitter. This results in increased data swigghime and can only
further widen the gap between transmission links and swi¢clsapacities.
Therefore, in order to keep up with the Internet growth, lhacke, metro and
local area networks are facing major engineering challemfscale, capacity
and speed, which will in turn drive their respective netwarkhitecture and
node design.

Although several switching architectures for high-perfance routers have
been investigated and implemented, the most prominent aminercially
available architecture today is the crossbar-based swiitthinput queues.
The performance of a crossbar-based router critically niépen a centralized
and complexschedulerwhich determines when packets are to cross the switch
fabric. Due to the scheduler bottleneck, it is difficult talwa crossbar-based
router that meets the aforementioned engineering chatenging current
technology. A slight variant of the crossbar switching #estture, a buffered
crossbar fabric switch, has recently been shown to overdbmacheduling
bottleneck and to have a scalability potential. Howeves,lihffered crossbar
architecture has, so far, used a simple mapping of early@righms initially
proposed for the unbuffered architecture. These algosthra distributed over
the inputs and the outputs of the switch and require an ekpefisw control
mechanism, which limits the scalability of the system. Aiddially, little has
been done to address the increasing number of new applisagicch as mul-
ticast.

The objective of this dissertation is to study the singbgetbuffered crossbar
switching architecture and solve problems associated with
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» The design of scalable buffered crossbar switches, ugipgpariate and
simple scheduling.

 Providing performance guarantees using scalable bdffen@ssbars and
simple unicast scheduling.

» The scheduling of multicast traffic in buffered crossbard e integra-
tion of multicast and unicast flows.

» The design of “partially” buffered crossbars that benetitt the best of
both the unbuffered crossbar and the fully buffered crasshdgtching
architectures.

1.3 Dissertation Contributions and Organization

The contributions of the dissertation are organized in tdrap Before present-
ing the contributions, Chapter 2 first provides the necgdsackground of the
work in this dissertation. It surveys packet switching dasand scheduling
with a focus on single-stage crossbar switches by desgrithieir advantages
and limitations. Finally, it summarizes the shortcomingthe buffered cross-
bar switching architecture to be addressed in subsequapteris.

Chapter 3 presents our first contribution, the design andeim@ntation of

a set of embedded schedulers within the buffered crossbac fehip. This

stems from the observation that the switching fabric chifQspin count con-

strained, implying the existence of extra area on the chimbé&dding the
schedulers inside the crossbar results in optimized flowtrab(in terms of

pin count) between the crossbar fabric chip and the inpetderds. This has
the benefit of speeding up the scheduling time while usilmiéged number of

control signals, resulting in more scalable crossbar sw@ic It also improves
the performance of the scheduling algorithms, since therenany algorithms
that base their decisions on the internal buffers and, ifexidbd within the
crossbar chip, would have faster decisions and cheapessatogesources.
Although our devised embedded schedulers were shown tadertigh per-

formance under a wide range of unicast traffic patterns, tieepot provide

performance guarantees. We, then, propose a set of sangdigiorithms, for
a buffered crossbar fabric running twice as fast as the mxitdine rate, that
can mimic an ideal output queued switch. Our results applthéoclass of
output queued switches that use a First-In-First-Out (Flé@put scheduling
discipline. We divert the output queueing emulation worldfipendix A.
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We study the problem of multicast traffic flows scheduling ima@ter 4. We
describe the multicast problem and review prior and relatetk. We pro-
pose an internally buffered multicast switching architeetbased on input
FIFO queues along with appropriate scheduling. We showoilnadrchitecture
performs better than existing architectures. We furthgrowe our multicast
switching architecture by adding a small number of inputusseper port of the
switch. We devise a multicast cell assignment algorithm &g mcoming traf-
fic to input queues. Our algorithm is shown to assign trafficevefficiently,
fairly and quickly than existing algorithms. Our study shsoan interesting
trade off between the number of input multicast queues aaditte of internal
buffers. This results in enhanced switching performanceelsas reduced
scheduling complexity, providing faster and more scalahlgching.

In Chapter 5, we proceed to scheduling more realistic tréffigs: the combi-
nation of unicast and multicast traffic. We propose a buffemessbar based
switching architecture, along with appropriate schedylthat efficiently sup-
ports both unicast and multicast traffic flows. We proposentegrated sched-
uler capable of servicing unicast and multicast flows siemébusly. Our pro-
posed scheduler, while based on a fanout splitting pol@yis$ to not exhaust
the serial links between the line cards and the fabric corervgervicing mul-
ticast traffic. The proposed architecture is shown to ofper existing archi-
tectures.

Chapter 6 describes a novel variation to the buffered cewsswitching ar-
chitecture. We propose @artially buffered crossbar switching architecture
that is designed to be a good compromise between the twonextoases
of unbuffered crossbars and fully buffered crossbars. Tbhpgsed partially
buffered crossbar is based on few internal buffers perdafriput, making its
cost comparable to unbuffered crossbars. It overcomesethigatized cross-
bar scheduling bottleneck by using distributed and pigelischedulers as in
fully buffered crossbars, making it a practical and low casthitecture for
such ultra high capacity networks.

Finally, Chapter 7 provides concluding remarks on the wadsented. The
chapter summarizes the dissertation, outlines its cantobs and proposes
future research directions.






Chapter 2

High Performance Packet
Switches

The design of routers has evolved over the last two decadislin

ferent packet-switch architectures have been studiednapkémented.
These architectures can be classified based on variousitgsisuch as queue-
ing schemes, scheduling algorithms and the switch corddgpoThis chap-
ter begins with explaining the reasons for using packetehes rather than
circuit-switches. Then, it describes the architecturahponents of routers.
It provides an overview of existing packet-switch archibees and discusses
the advantages and drawbacks of each of them. Finally, ireanmes the
shortcomings of the buffered crossbar switching architecto be addressed
in subsequent chapters.

Routers constitute the basic, and main, building blocks of the mt&r

2.1 Why Packet Switching?

Communication networks fall into two broad categories:ke#switching and
circuit-switching. Within the circuit-switching paradiy deployed in tele-
phone and telegraph networks more than a century ago, statdigh a dedi-
cated connection (also called circuit or channel) with adizenount of band-
width between the source and the destination for the duratitheir commu-
nication. The channel remains open for the entire duratidheocall, irrespec-
tive of whether the channel is actually used or not. This eggh is efficient
for traffic such as telephone voice calls which transmit @dta constant bit
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Core Router

Figure 2.1: Packet Switches in the Internet.

rate wherein connection duration is longer than the amoitirne required to
establish the connection.

Data and computer communication networks are, howeveigmss to han-
dle a variety of different types of applications, includiagplications with
time-varying data rates. Early studies have shown that camtation be-
tween computers could be achieved with packets instead@fits and that
the circuit-switched telephone system was totally inad#gjifor computer
communications [4] [5]. The paradigm of packet-switchirgworks has first
been studied in [6]. In these networks information is carbg packets. Each
packet is switched and transmitted through the networketsing one or more
routers, based on the information contained in the packatdre Figure 2.1
depicts packet switches in the Internet and shows how paeketsent from
source to destination. Upon reaching their final destinatgackets are re-
assembled to reconstruct the original information. Unkkeuit-switching

where no one can use an open channel if its endpoints do ndt,uséh

packet switching, active sources can use any excess capaate available
by the inactive sources.
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2.1.1 Statistical Multiplexing

The most important advantage of packet-switching ovemghswitching is
its ability to exploit statistical multiplexing To make most efficient use of
network bandwidth, connections are statistically mudtqeld (shared), to take
advantage of their rate variations. In data network envirents, carrying traf-
fic such as bursty, sharing network resources can signifjcamtrease the
effective capacity of the network. Recent studies have shawatio between
the peak and average rates as high as 15:1 for data traffid fig] bandwidth
gain by statistical multiplexing comes, however, at theemge of a serious
problem, namely networkontention Contention arises when more than one
packet contend for the same link at the same time. Since oypacket can be
transmitted at a time, the remaining packets need to waitetbre introducing
the requirement fogqueues As we shall explain later, the queueing discipline
employed in a packet-switch is key to its performance. Ltarg: contention
leads to networlcongestioh. Network congestion management is important
and has been studied since the early days of packet switEHifig] [9]. By
contrast, because circuit-switching uses resource raseng and dedicated
connections for data transfer, there is no requirement deuging. This is a
key difference between the two concepts. The absence okigein circuit-
switched networks have led a belief to, possibly, enableatical switches.
Recent studies show that optical transmission links wilhrs reach a satura-
tion point and therefore packet-switches will remain ecoiwally cheaper [2].
For the above reasons, the focus in this dissertation witibelectronic packet
switching architectures.

2.1.2 Packet Switching Technologies

The two widely known and used packet switching architestiuaee Asyn-
chronous Transfer Mode (ATM) [10] [11] and Internet Proto@P) [12] [5].

ATM is a packet switching technology that uses fixed-sizekgtsc (called
cells) as the basic transmission unit. Small fixed-sizesadlbw fast switch-
ing and easy, yet efficient, hardware implementation. ATM wasigned to
be a unifying technology, transporting voice, data, anceidnd providing
sophisticated services such as bandwidth and delay geasantThe ATM
is a connection-oriented technology, based on virtual eotion identifiers
(VCls), making the lookup phase simple and fast. HoweveMA&DNnnections
require an overhead of circuit setup and teardown as initiseitching, ren-

1Also called network saturation, overload or oversubsiipt
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dering them less appealing. IP, in contrast, is a connetdiss packet switch-
ing paradigm. It uses variable-size packets, and suppatysame basic ser-
vice: best effort packet delivery, which does not providg imeliness or
reliability guarantees. Despite the advantages of ATM im&of quality of
service, IP has recently emerged as the dominant archiéeatd the bearer
service for the global information infrastructure. Thisnisinly due to ad-
vances in routing andcheduling algorithmgor variable-length packets and
to the dominance of IP at the endpoints [13]. For more de#dilsut circuit-
and packet-switching, the reader is referred to books ssdi4 [10] and
references such as [4] [5] [15].

This dissertation focusses on the switching stage in paskigthing architec-
tures in general, irrespective of whether the underlyirgptelogy is ATM,
IP or proprietary. When the switching architecture is inmpdmted in hard-
ware at very high speed, it is usually tailored towards datts wf fixed sizes.
Throughout this dissertation, unless otherwise statedise¢he terms cell and
packet to refer to the same entity, namely fixed-size data Mariable length
packets are segmented, into fixed-size units, on their eattlye router and
reassembled back to their original lengths at the outputsddeing sent out
to the outgoing links.

2.2 The Architecture of Internet Routers

Router architectures have evolved over time and in perfooma Over the
years, several architectures have been used for routeeschidice of a partic-
ular architecture is based on several factors such as nushperts, required
performance and currently available technology.

2.2.1 Categories of Routers

Routers belong to three broad categories [13], hamely acwegers, edge
routers and core routers. Figure 2.1 shows core and edgersdatthe net-
work. Access routers connect end-users from home and tloe affilnternet
Service Providers (ISPs). Owing to the advances in broatllagoness tech-
nologies such as Digital Subscriber Line (DSL), cable moderd gigabit
Ethernet, transmission speeds are growing and so is thetyari applica-
tions. As a result, the main design factors for access reater the number of
ports and flexibility, to connect more users and to be ablelippart different
protocols. Edge routers (also referred to as enterpriseerguconnect end-



2.2. THE ARCHITECTURE OFINTERNET ROUTERS 11

points or segments of endpoints, such as Local Area NetwbrkiNs) or a set
of access routers. Edge routers have higher speeds thasaoogers, usually
with high numbers of ports. The main design issues for edgeers include
packet classification and filtering for quality of serviceo&) requirements and
security reasons. Some of the routers of this category dezicdow-aware”
routers [16].

The last category is the core routers (also called backbouins). As the
name suggests, core routers are used in the Internet cosy. cbnnect net-
works, such as Wide Area Networks (WANS). In the Internetkbace, the
traffic is aggregated from low speed links. Hence, backbongers are built
to connect few links at very high speed, like OC-192 (10 Glaps) up to OC-
768 (40 Ghps). As the link speed increases, the per-packeégsing time (at
least table lookup and switching) decreases, making itieingihg to design
such routers. That is why the datapath of these routersas ofiplemented in
hardware. The main issues in their design are their reliplzihd their speed.
The speed of this category is limited by many obstacles, aschuting, mem-
ory bandwidth and switching.

» The routing operation performs a table lookup to match greeder of an
arriving packet to one of the router output ports. It is oftdallenging
to implement table lookup operation at the line speed.

» The second speed limiting factor is the memory bandwidtickBts
are transmitted over optical links, however they are quanetectronic
buffers inside the routers. The wide gap between the optiaakmis-
sion speed and the electronic memories speed makes it Hitbauain-
tain high routing speeds. Solutions to address this prolilave been
proposed, such as the combination of Static Random Accessokies
(SRAMSs) with Dynamic RAMs (DRAMS) [17].

» The third and most severe bottleneck is$iatching fabric and schedul-
ing algorithm This component is of utmost importance for the design
of a high speed router, as it has significant impact on itsadlvperfor-
mance. Since the focus of this dissertation is on the switchtage of
high performance routers, Section 2.3 will discuss thecwig archi-
tectures and scheduling in much more detalils.
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Figure 2.2: Basic architectural components of a router.

2.2.2 Basic Architectural Components

All routers, irrespective of their performance and capapibfile, possess a
number of common attributes and perform a set of common tdsgsire 2.2
illustrates a generic router architecture [18]. The task$gomed by a router
can be divided into two types, namely the control path andi#iepath.

The control path functionalities are performed and impletae by routing and
signaling protocols. They are performed relatively infregtly and are often
implemented in software. These functions include routalge construction,
maintenance and update as well as system configuration amabement. The
control path consists of all functions and operations perém by the network
to set up and maintain the state required by the data path.

The datapath functions represent the set of operationsrpestl by routers
on a per-packet basis. Because of their critical role, tHapddh functions
are most often implemented in hardware, and include foringrdecision,
backplane and output link scheduler. Therefore, scaliegprformance of
a router implies improving its datapath. The operation @rgblock of the
datapath is as follows:

» The Forwarding Decision: It is commonly located in interface cards,
which consist of adapters that perform inbound and outb@ac#et for-
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warding. On the arrival of a packet, its destination IP adslis parsed
and looked up. The result of this operation could imply a asicde-
livery or a multicast delivery. The packet lifetime is caiked by this
component by adjusting the time-to-live field (TTL). This DT Tield is

used to avoid any indefinite routing (loop) of the same padkdvanced
routers today perform additional tasks, such as packesitizgion and
filtering.

» The Backplane: The router backplane (switch fabric) is responsible for
transferring packets between the input ports and the owipis. De-
pending on the backplanesahedulemay be required to make the con-
figuration, or matching, between the input and output iatsfcards.
While waiting its turn to be served across the backplane,cagianay
need to be queued. Forwarding a packet through the backplaae
router might seem to be a relatively simple process. Butsecltmok at
this task, performed for each packet, reveals quite a lotdvag done.
As we shall see later, thgueueing and schedulingtrategies have an
important impact on the performance of the router and omifgdemen-
tation feasibility. The main focus of this dissertation is on the design and
performance of the backplane of high performance routers.

» The Output Link Scheduler: Once a packet reaches the output port, it
is again queued before it can be transmitted to the outpkit limmost
routers today, a single FIFO gqueue is maintained at eachubpgpt and
packets are transmitted in the same order of their arrivedlewever,
advanced routers use different queues to distinguishreiffeflows, or
priority classes and schedule the departure time of eadtepacorder
to meet a set of specific QoS guarantees.

2.3 Packet Switching Architectures

A packet-switcR (or simply a switch fabric) is a multi-input, multi-outpued
vice that connects the input ports of a router to its outpuitspoTl he task of
the switch fabric is to transfer as many packets as possibha the inputs
to the appropriate outputs. The important considerationshie switch fabric
design are: throughput, packet loss, packet delay and thplegity of the im-
plementation. Switch fabrics come in different flavors arahgnarchitectures
have existed over the past. They can be categorized basdfievant factors,

2/ packet switch is also called backplane, switch fabric st fabric for short
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such lossless vs. lossy, single-stage vs. multi-stage Setiostantial research
work has been directed at switching architectures [11] [20] [21] [22].

2.3.1 Fabric Losslessness and Number of Stages

Due to the adverse effects of packet loss, the vast majdréwibch fabrics are
lossles3. In order to avoid packet loss, a packet-switch must corstaine sort
of queueing. Simultaneous arrival of packets, to diffeiaptts, destined to
the same output gives rise to a phenomenon caligdut contentiorfassum-
ing that the output reception capacity is one packet, at,;abattime). When a
packet loses contention, it has to be queued. Therefordgditien toswitching
packets from inputs to outputs, a packet-switch also persaueueing The
placement of the queueing function, with respect to thechiig function, in
a packet-switch is extremely important (see Section 2.3T2)is placement,
not only determines the architecture class of a packethwhut also has a
significant impact on its performance, hardware cost andémentation fea-
sibility.

Switch fabrics can be implemented in a single-stage or in Bidstage fash-
ion. Single-stage fabrics exhibit strong performance attaristics over multi-
stage fabrics. They are non-blocking and connect a set afsrip a set of out-
puts through a fast and single path (crosspoint). Singlgesfabrics are easy
to build, easy to comprehend and analyze. However, singbesswitches are
not scalable, compared to their multi-stage counterpadgheir cost grows
guadratically with their input-output port count. Multiagje fabrics, on the
other hand, are built out of a set of single-stage fabricgifl§trong advantage
over their single-stage counterparts is their scalabitityarge port numbers.
Examples of multi-stage fabric switches include [24] [2B6] [27]. A multi-
stage fabric is a cascade of single-stage fabrics operatitgndem and in
parallel. Therefore, designing a multi-stage fabric reduo designing single-
stagé fabrics. We conjecture that the results presented in thssediation,
for single-stage fabrics, will also be useful in the desi@ihigh performance
multi-stage fabricsFor the reasons above, this dissertation focusses only on
single-stage fabrics

3Although lossy architectures have been proposed, such3is This architecture suffers
severe packets loss as high as 37% under uniform traffiaésriv

“Normally the transition from single-stage to multi-stageaéls many issues. According
to [21], these issues can be summarized in network topofmyjormance, fabric-internal rout-
ing, flow control and multicast support.

From now on, we will be using the term fabric to refer to singlage fabrics
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Figure 2.3: A bufferless crossbar fabric switch.

2.3.2 Typical Switch Fabrics

The most common switch fabric architectures in use todaybassbased,
shared memory, and crossbar. In this section we preserg #rehitectures
in turn.

» Bus: The simplest switch fabric is the bus. Bus-based routerteim@nt
a monolithic fabric comprising a single medium over whichiader-
module traffic must flow. The bus architecture is strictly #mdocking,
but it allows at most one packet to be transferred at the saneg hence
it requires a coordination among the ports. A bus is limiteadapac-
ity by its capacitance and by the arbitration overhead farisly this
critical resource. The challenge is that it is almost impgeso build
a bus arbitration scheme fast enough to provide non-blgckerfor-
mance at MultiGigabit speeds. An example of this architects the
ATOM switch developed by NEC [28].

» Shared Memory: The switch fabric can be implemented as shared
memory. Incoming packets share a common “shared” buffer angm
Sharing a common buffer pool has the advantage of minimitieg
amounts of buffers required to achieve a specified packstriis. The
idea is that a central buffer is most capable of taking acggabf sta-
tistical sharing. If the rate of traffic to one output port igth it can
draw upon more buffer space until the common buffer pool itigdy,
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or completely, filled. However, this may lead to buffer hoggiprob-
lems, where a flow of packets monopolizes the shared buffetee-
vents other packets from accessing it. The major disadganté this
architecture is the high-speed at which the memory mustbgelf the
router port number i&V and the link speed iS, then a single port shared
memory must run as fast @V S. Moreover, as the access time of ran-
dom access memories is physically limited, this speedugifditnits
the ability of this approach to scale up to large sizes and $jgpeds and
thus become its bottleneck. The Prelude switch [29] is am@ia of
this architecture.

» Crossbar: A crossbar fabric switch consists of a two-dimensional ar-
ray of crosspoint switches, one for each input-output paigepicted in
Figure 2.3. It is one of the most popular interconnectiomoeits used
for building input buffered switches because of its low ¢gsiod scala-
bility and non-blocking properties. For anh x N switch, there are up to
N? crosspoints. The connection between injand outpuy is made by
closing the(i, j)** crosspoint in the two-dimensional array. Many com-
mercial routers use crossbar switch fabrics, such as Cigsei@as [30]
and Lucent Technology [31].

The crossbar-based fabric architecture is the dominarititacture for to-
day’s high-performance packet-switches (IP routers, Alitches, Ethernet
switches) for at least three reasons. First, the crossbammare scalable than
their direct competitors, shared bus and shared memors.igdue to the lim-
itation in bus transfer bandwidth and/or the limitation e tmemory access
bandwidth. Second, they provide simple point-to-pointremrtions, allowing
them to operate at very high speed (up to 10 Ghps). Third, theysupport
multiple input/output (1/O) transactions simultaneousliis can increase the
aggregate bandwidth of the system, which can be in the hdadrieGbps.

Based on the aforementioned advantages, from here forwargill assume
a single-stage, non-blocking fabric switch such as thestrars Since a cross-
bar switch is lossless, queueing is needed in addition téckinp (refer to
Section 2.2.2). Fabric switch architectures are classhissbd on the place-
ment of theswitchingand thequeueingfunctions. A crossbar switch belongs
to the class of Input Queued (IQ) switches if the queueingdgiace before
the switching, at the input of the switch. If the queueing esfprmed after
the switching, or at the outputs, the switch is termed Oufueued (OQ). A
Combined Input and Output Queued (CIOQ) switch is one whergtieueing
is performed before and after the switching, in the inputs@sas the outputs



2.3. FACKET SWITCHING ARCHITECTURES 17

of the switch. The last architecture, which is the focus & thssertation, is
the buffered crossbar switch. A buffered crossbar switemik) switch where
there is a small amount of limited buffering in each crosspdiVhen there is
buffering at the inputs, a buffered crossbar switch is alsoan as the Com-
bined Input and Crosspoint Queued (CICQ) switch or the Caetbinput and
Crossbar Queued (CICQ) switch [32]. In what follows, we ypilesent each
of these architectures and discuss their advantages aiations.

2.3.3 Output Queued Switches

The output queued (OQ) switch is the ideal switching architee due to its
optimal performance. When a packet arrives at an OQ switchimmediately
placed in a queue dedicated to its outgoing link. Becausehstacle can
prevent an output queue from keeping the outgoing link busgnever it has
a packet, an OQ is known to lyeork conserving A work conserving switch,
such as OQ, has the highest throughput of all switches. Bestand routers
have, traditionally, been most often designed with outpuéuging strategy.
It has advantages in that guaranteed QoS can be providdd asuallocating
bandwidth to different flows of packets and controlling thaglays [33] [34].

Since an OQ switch has no queues at the inputs, all arriviflg srist be
immediately delivered to their outputs. A major disadvgetis that simulta-
neous delivery of all arriving cells to the outputs requites much internal
interconnection bandwidth and memory bandwidth. Figufed2picts an OQ
switch with NV input ports. There can be up 16 cells, one from each input,
arriving for the same output simultaneously. In this caseheoutput mem-
ory must perform/N write operations (to queue th€ packets) and one read
operation (to send one packet out). If each external link atra rateR, then
the memory must run at a speed(éf + 1) R. This requirement is known as
the internal speedup of a switch [35]. Nowadays, the demanblandwidth is
growing rapidly and with switch sizes continuing to increasiemory band-
width will be insufficient for output queueing to be practicAs a result the
OQ switching architecture is often used as a theoreticalteete architecture
to assess the performance of alternative, practical, bastc

2.3.4 Input Queued Switches

Figure 2.5 illustrates an input queued (IQ) switching aedture. The IQ has
the crossbar running at the same speed as the line RateQueues at the
inputs need not receive or send more than one packet sirealtaly because



18 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

Switching Queueing

Figure 2.4: Output Queued Switching.

no more than one packet can arrive at or depart from each imoute packet-
time®. Therefore the memory needs only to operate twice as fasteatine
rate, a speed dfR to write-in and read-out a packet. This helps build high-
bandwidth IQ switches at low cost and with high scalabilggtures, making
them highly appealing. Unfortunately, an 1Q switch adoptifiFO queueing
at each input has low performance due to the so called heldeofHoL)
blocking problem [36], described next.

The HoL Blocking Problem

In a FIFO IQ switch, all the cells waiting in an input port arainmtained in

the same queue. In every time-slot, the HoL cell of each F-Gbnsidered
for scheduling. Since each input cannot receive or send thareone cell in
a cell-time, therefore at most only one cell can leave theOFdF each input.
Consider the example in Figure 2.5. The HoL cells of inputd iaput N have

the same output port, 1, for which they contend. This imphes only one cell
will win the contention for output 1 and will be selected b tscheduler. Let

®A packet-time is the time duration it takes a packet to goughothe switch (back-to-back),
which is equal to the time between the arrivals of two conseeyackets to the switch. This,
equality, is required in order for the switch to run at the eapeed as the external lines. A
packet-time is also called time-slot or cell-time. RefeBgrtion B.1 for more details.
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Figure 2.5: Input Queued Switching.

us assume that the scheduler selects the HoL cell of inpubaum. In this
case, the HoL cell of input 1 will remain in the queue and witidk the cell
behind it (the cell destined to output 4) resulting in outgutemaining idle
despite the existence of cell destined to it. The cell dedtito output 4 is
prevented from being transferred due the HoL blocking phesteon, in this
case caused by cell 1. It was shown in [36] that under unifoemnB8ulli traffic,
the HoL blocking problem reduces the achievable throughpainly 58.6%.
Worst performance is achieved when the arrival traffic patie bursty [37].
Considerable research work has been done to overcome therdblem, and
different solutions have been proposed, such as the usepekagp [37] [38].
The HoL problem can, fortunately, be completely eliminabgdthe use of a
simple queueing structure called virtual output queue\f@Q) [39] [40] [41].
We will discuss the VOQ architecture in Section 2.4.

2.3.5 CIOQ Switches

One of the proposed solutions to overcome the HoL problerhdsuse of
speedup (denote$l, see Figure 2.6) —defined as the ratio at which the internal
fabric must operate in comparison to the external links. 3If] jand [38], it
has been shown that a crossbar switch with a single FIFO ainphé can
achieve nearly 99% throughput under certain assumptiortkeomput traffic
statistics for speedup range between four and five. Whemtamal speedup

is higher than one, buffering is required at both the inpats@utputs. Thus, a
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Figure 2.6: Combined Input and Output Queued (CIOQ) Switch.

combination of an input buffered and an output bufferedawis required, i.e.,
Combined Input and Output Queued (CIOQ) switch as depictédgure 2.6.

Some of the designs and the research work carried out on Cl@Qauwned
at finding the minimum speedup required to emulate an outpetied (OQ)
switch. It has been shown in [42] and [43] that a CIOQ is worksayving.
In [44], it was proven that a speedup of four is sufficient f@I®Q to exactly
emulate an OQ switch using the Most Urgent Cell First (MUSIgpathm.
An improved result was proposed by [35], with a speedup dftjus, a CIOQ
can behave identically to an OQ and a speedu;m% is sufficient to mimic
a FIFO-0OQ switch. This means that the departure time of eatthiscex-
actly as if an OQ is used and therefore QoS can be guarantdezlcokt of
this important result was the use of a more complex scheglplalicy called
Critical Cell First (CCF). This algorithm requires a pushgueueing structure
(PIFO) along with an insertion policy called Last In High&stority (LIHP).
An attempt to reduce the complexity of this algorithm waseolen Delay
Till Critical (DTC) strategy, to reduce the number of itéoais fromN? to N,
along with an algorithm called Group-By-Virtual-Output €ue (GBVOQ), to
reduce the information complexity. Unfortunately, thes® solutions con-
not be combined, since they are mutually exclusive. Theeefihese results
remained of theoretical nature.
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Figure 2.7: Virtual Output Queueing (VOQ) Switch.

2.4 The VOQ Switching Architecture

Instead of maintaining one FIFO for each input, the Virtuakiiit Queueing
(VOQ) structure is employed. Rather than maintaining alsiffgFO queue
for all cells, each input maintains a separate queue for eatijut as shown
in Figure 2.7. Thus there are a total & input queues. Each separate queue
is called a VOQ and operates according to the FIFO disciplline scheduler
selects among the HoL cells of each VOQ and transmits theml. bHwck-
ing is eliminated because no cell can be held up by a cell abtddhat is
destined to a different output. When virtual output quegememployed, the
performance of the switch critically depends on the schedulgorithm used.
The scheduling algorithm decides which cells should bestratted during a
cell time under the condition that only one cell can depantfieach input and
only one cell can arrive at each output.

The scheduler maintains the state of all VOQs in the systentlegicted in
Figure 2.7. It does this by keepiny? bits, called the state of the VOQs. In
every time slot, each input notifies the scheduler whethaobit has cell(s) to
be transmitted to the output(s). The input performs thigapmn by sending
arequestto the scheduler. The request contains the index of the VOgM|
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Figure 2.8: Bipartite graph matching.

bits) and one additional bit to indicate it state (transitioom empty to non
empty or vise-versa). Depending on the scheduling polieguthe scheduler
may express its willingness to accept the cell. It may doliiisending grant
back to the requesting input. The grant contains the indekeoflestination
output, logV bits. Simultaneously, the scheduler seddog/N bits to the
crossbar fabric to configure the input-output matrix. Witlitable scheduling
algorithms, an input queued switch using virtual outputumileg can increase
the throughput from 58.6% [36] to 100% for both uniform andh+umiform
traffic [40] [45] [46].

2.4.1 Scheduling in VOQ Switches

The task of the scheduling algorithm is to connect (match)stit of inputs to
the set of outputs of a VOQ switch. The matching of input-atipairs must
be conflict-free, since each input can send at most one celkanh output
can receive at most one cell in every time-slot. Ideally,stigeduler finds the
largest possible matching within each cycle to make the eftettive possible
use of the crossbar. The problem to be solved by the crossbadsler is an
instance of the bipartite graph matching, as depicted inrgig.8 (a).
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The scheduling problem can take a matrix representatiogur€i2.8 (b) de-
picts the equivalent matrix representation f& a 3 switch (considering only
the first 3 input-output pairs of the graph in Figure 2.8 (&))equest matrix,
R, can be used to represent the graph containing the VOQsgtsqlach row,
1, of the matrix represents an input and each entrin the row represents an
output. R = [r; ;], wherer; ; equals to 1 if there are cells in inputlestined to
outputj, 0 otherwise. Finding a one-to-one matching is equivalefintling a
service matrixS = [s; ;|. S is a permutation matrix, wherg ; = 1 indicates
that input: is connected to outpyt, resulting in a cell being transmitted from
input to outputy.

Unlike the service matrix, where the entries can take orgywiddues 0 and 1,
the entries of the request matrix can take eitfi@d} values or other values.
Depending on the scheduling algorithm used, it is also pteséor r; ; to take
values such as the number of cells in inpdestined to output, namely the re-
quest weight and denoted ;. Different classes of scheduling algorithms have
been proposed and can broadly be categorized into weighteoheweighted
algorithms [40] [45] [47]. The next section discusses thaseilies of algo-
rithms.

2.4.2 Maximum Matching Algorithms

This class of algorithms use weights for the arbitrationcpes. The weight is
defined in two different ways, the maximum weight matchinghermaximum
size matching.

A Maximum Weight Matching (MWM) scheduling algorithm assgweights
to requests. The weighty; ;, of a request from inputto outputj, can be, for
instance, the number of cells queuediiWQ; ;, the age of the HoL cell of
VOQ; ; or any other quantity. A MWM algorithm is one that finds the max
mum weight matching. In other words, finding the mat¥, that maximizes
the total weight, where:

S§* =arg mgx(z 5§ Wi ;)

1,J

The class of MWM scheduling algorithms includes algorithsagh as the
Longest Queue First (LQF), the Oldest Cell First (OCF) [40d ahe longest
port first (LPF) [45]. These scheduling algorithms achie@8% throughput
and are stable under any admissible traffic pattern. Howé#wemajor prob-
lem of these algorithms lies in their high computational ptexity. They
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requireO(N3logN ) time complexity, making them too complex and too slow
for high bandwidth switches.

The Maximum Size Matching (MSM) in a bipartite graph is onattmax-
imizes the number of edges. When the weight of a request t@kgsthe
value of either 0 or 1 (indicating the state of a VOQ), findingnaximum
size matching is equal to finding the largest size matchirgydsen inputs and
outputs. This matching maximizes the number of connectinade in each
time slot, hence maximizing thastantaneoushroughput of the switch. The
MSM for bipartite graph can be found by solving an equivalestivork flow
problem [48]. Many MSM algorithms exist and the most effitiene known
currently has @ (N?°) time complexity [49]. In addition to its high compu-
tational complexity, the MSM algorithm is undesirable dgads to instability
and unfairness under non-uniform traffic arrivals [40]. Agsult, practical al-
gorithms that approximate the above complex algorithme leen proposed
and implemented, such as the class of maximal size matchjogtams.

2.4.3 Practical Maximal Size Matching Algorithms

Although the performance of MWM and MSM algorithms is veryodotheir
high computational complexity prohibits them from beingtaioie for high
bandwidth switches. The alternative was to design algostthat approximate
the optimal solution. These algorithms belong to the cldssmaximalsize
matching. The difference betweemmaximunmsize matching and maximal
size matching is that, while the former finds the maximum tmaty, the latter
is not guaranteed to do so because once an edge is added tatdtsing it
cannot be removed, even if it does not belong to the maximutatimey.

A plethora of maximal size matching algorithms have beempg@sed over the
last two decades [39] [50] [51] [52] [53] [54]. These algbriis iterate over
the set of inputs, in parallel, in order to match them to thie@geutputs. They
perform their matching in a three step process, known afk#wiest-Grant-
Accept{RGA) handshaking protocol. The first proposed RGA-basgordahm
is the Parallel Iterative Matching (PIM) [39] and was deysld by DEC Sys-
tems Research Center fol@& x 16 switch. The most well known algorithm is
1SLIP [53], used by Cisco routers. Although all of these atbans run a sim-
ilar RGA protocol, each performs a different set of scheuybriteria. Below
we highlight their differences in each step of the RGA protoc

» Step 1 Request): Each unmatched input sends a request to every out-
put for which it has a queued cell. Algorithms that approxinthe
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MWM have weighted requests equivalent to the associatedegeagth
(iLQF [45]) or waiting time of HoL cell {OCF [45]). Approximation
algorithms for MSM, such as PIM [39]SLIP [53] and FIRM [51] have
requests of weight equal to 1 if the associated queue is nptyem

» Step 2 Grant): Each output grants one of the requests received. The
granting mechanism depends on the algorithm used. Algositinat ap-
proximate MWM grant to the request with the heaviest weiglihér the
longest queue or the oldest cell). Grants for MSM approxionat are
based on a rotating priority scheme, known as highest pripointer.
The pointer movement has a significant consequence on tfegrpance
of the algorithm. PIM grants requesting inputs randonfBLIP updates
its highest priority in a round robin fashion. However, tharg pointer
does not move (slips) unless the grant is accepted in thet $tep. This
is very important since it reduces pointers synchronizdtid-IRM up-
dates its pointer as WBLIP, except that the pointer moves to the granted
input if the grant is dropped in step 3. SRR [54] uses a fullgyte
chronized round robin updating scheme, which totally cwsres the
synchronization effect.

» Step 3 @Accept): Each input accepts a grant amongst the received ones.
Similar to the grant step, the input accepts a grant baséredn
weights or on a pointer updating scheme.

All the above algorithms have a time complexity@fN?) and can be readily
implemented in hardware by means of priority encoders. Trg complex
algorithm amongst them is PIM due to the randomness it usdditidnally,
PIM has low throughput (63%) with one iteration and unifomaffic [53].
To improve the performance of these algorithms, multipbeaitions are usu-
ally performed. In every iteration, the three RGA steps aeraeted and the
matched input-output pairs are excluded from further itens. Almost all the
above algorithms converge to a MSM match(iflogN). However, in prac-
tice, they usually achieve close to 100% throughput aftemaiferations. The
implemented algorithms often use speedup between 1.5 amcéhteve ac-
ceptable performance. The main drawback of these algasithitheir inability
to perform well under real traffic patterns, such as noneunit

Modified versions of some of these algorithms were deviseddear to support

"The pointer synchronization occurs when the pointers mewesynchronized way, there-
fore granting always to the same input(s) while only one gvah be accepted. This leads to
poor performance, as low as 50% throughput [40]



26 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

multicast traffic flows and the combination of unicast andtioast schedul-
ing [18]. Multicast traffic scheduling as well as the combioa of unicast and
multicast are studied in Chapters 4 and 5, respectively.

In summary, MWM algorithms are optimal, however they are plaxto run at
high speeds. Practical algorithms are readily implementedever they have
low performance. This is mainly due to the centralized reatifithe bufferless
crossbar switching architecture. As a result, alternaivitching architectures
have been studied to overcome the scheduling problem. Aipimgralterna-
tive is the combined input and crosspoint queued (CICQ)cbwatrchitecture,
described next.

2.5 Buffered Crossbar (CICQ) Switches

The buffered crossbar fabric is simply a crossbar, wherddomnbuffers ex-
ist in each crosspoint. Buffered crossbar switches have bemlied for over
two decades. The first pure buffered crossbar appeared hid9f5], where
buffering exists only inside the crossbar fabric. This @&eztiure is depicted in
Figure 2.9 (a) and was implemented by Fujitsu [56]. At thatetj it was not
possible to embed enough and sufficient buffering on chiptlaisdearly archi-
tecture was therefore unable to comply with the requiredass rate. In order
to overcome the on-chip memory high requirement, bufferedsbar switches
with input queues were proposed [9] [57] [58]. This arcltiiee is based on in-
put queueing and small buffers at the crosspoints, as @ehict-igure 2.9 (b),
and is called the combined input crosspoint queued (CICQ@EBWA recent
research result showed that a CICQ employing FIFO queuditigeanputs
can achieve 100% throughput under uniform traffic arrivalg].] Addition-
ally, this result showed that the throughput of CICQ swikchereases with
the switch size. This is in sharp contrast to 1Q switches,re/litee throughput
decreases with the switch siz¥,

2.5.1 CICQ Switch Architecture

The most widely used CICQ architecture is based on input Vb@tsvas first
proposed by [60]. In the remainder of this dissertation, vilebe using the
terms buffered crossbar switch and CICQ switch to refer toffebed crossbar
switch using input VOQs. The CICQ has attracted a lot of ggein recent
years and different designs have been proposed [61] [62] [BRjure 2.10
depicts anNV x N CICQ switch. There aréV input line cards, each con-
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Figure 2.9: Early Buffered Crossbar Switches.

sisting of N logically separated VOQs (one per output) and an arbitgugin
scheduler). The input scheduler selects a cell to be traresimext from the
input card to the buffered crossbar fabric. Before perfagriis arbitration,
every input scheduler must first check the availability cdiapinside the in-
ternal buffers. This is accomplished by means dfos control mechanism.
The buffered crossbar sends upXobit signals (flow control) to each input
scheduler (one per internal buffer in a row belonging to tipait scheduler), a
total of N2 flow control signals. The buffered crossbar fabric conthiners

at each crosspoint, a total 8f2 internal crosspoint buffers (denoted as XP).
There arelV arbiters (output schedulers) insfd#e buffered crossbar, one per
output.

The presence of internal buffers significantly improvesaverall performance
of the switch due to the advantages it offers. The adoptiantefnal buffers
makes the scheduling totally distributed, hence redudwegarbitration com-
plexity and makes it linear. Consequently, there is no lorgy requirement
for synchronized decision among the inputs and the outpuitsthe case with
IQ bufferless switches. This is particularly importantvariable length packet
scheduling [61]. Moreover, the internal buffers reducedwnid) the output
contention by allowing the inputs to send cells to an outpugspective of
simultaneous cell transfer to the same output.

8Some researchers assume that the output arbiters are matsde the buffered cross-
bar [60] [64] [65]. Refer to Section 3.2.2 for more details.
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Figure 2.10: CICQ Switch architecture.

2.5.2 Scheduling in CICQ Switches

The appeal of the CICQ architecture is due to its simple arstrillited
scheduling process. A scheduling cycle consists of threallphand inde-
pendent phases as follows:

1. Input Scheduling: Every input scheduler selects, independently and in
a parallel, one cell from the HoL of an eligiSl&’OQ and transmits it to
the buffered crossbar.

2. Output Scheduling: Every output scheduler selects, independently and
in a parallel, one cell from all the internally buffered satbrresponding
to its output and delivers it to the output port.

3. Flow Control: Following every output scheduling phase, a flow control
is carried from the crossbar to every input to notify the inpctheduler
about the state of its corresponding internal buffers.

Several scheduling algorithms have recently been propfusatie CICQ ar-
chitecture. These algorithms can be classified into wdiglsed schemes [60]

°A VOQ is eligible if it is not empty and its corresponding imal buffer, XP, is available.
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[66] and Round Robin (RR) based schemes [67] [68]. In [60¢heme based
on OCF policy at the input as well as the output scheduling praposed.
While this scheme achieves high throughput under uniformm@&alli arrivals,
the same benefits were not achieved for the non-uniform cd@sscheme
based on the Longest Queue First (LQF) selection in the iapdta Round
Robin (RR) arbitration at the output was presented in [66le TQFRR (in-
putoutput) scheduling algorithm was proven, through a fluid etotb be
stable under uniform input traffic. A set of round robin alons were pro-
posed [67] [68] [69] and were shown, through simulation, ¢thiave high
performance under uniform arrivals. These schemes areabsibecause of
their simplicity in hardware and fairness, however theyegignce the same
problem as in [60] and have low performance under non-umifoaffic pat-
terns. Recent work in [70] has shown that RR based algorittemsprovide
100% under uniform traffic inputs.

Alongside the work on scheduling, important research weak been devoted
to OQ emulation by a CICQ switch. In [71], it has been proveat tnCICQ
employing a speedup of two can emulate an OQ switch. Thidtragplies to
a wide range of OQ switches policies such as FIFO, strictipyiand Early
Deadline First (EDF). A more recent and extended result §fidwed that a
CICQ switch with two to three times speedup can provide 1008uighput,
rate and delay guarantees. Other recent proposals have sfesame results,
as above, for variable-length packets as well [73] [74].

The advantages of the CICQ, however, do not come for free CTG€) switch-
ing architecture has the following drawbacks:

« A costly and complex crossbar with? internal buffers is required,
where N is the switch valency. These buffers are required to be large
enough to match the cell transmission round-trip delay® dumdratic
growth of the internal buffers can limit the scalability aingplementa-
tion feasibility of the switch.

» The CICQ switch requires a large number of flow control siginh&p
to N2 control signals are required to carry the flow control infation,
from the buffered crossbar core to the input line cards, oargppcket
basis. These signals can double if we consider a CICQ switithowt-
put schedulers implemented in the output cards, such agg8p[65].
In this case2N? flow control signals are required. This is undesirable
as it severely limits the scalability of the CICQ architeetuSolutions to
address this problem have been proposed, such using adimiraber
(IV [62] and NlogN [61]) of I/O pins over multiple time slots. How-
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ever, this results in longer time for flow control updatinglaXan cause
performance degradation.

» At the scheduling level, very little has been done to adtrasliticast
traffic scheduling. Moreover, the integration of unicastl anulticast
flows in CICQs is still a largely untapped area.

The goal of this dissertation is to address all the above CE®@Qching archi-
tecture shortcomings and provide solutions to each of them.

2.6 Summary

The design of scalable high performance routers requirpsaving their data-

paths. The underlying packet switching architecture ibatieart of the router
datapath. The current chapter gives an overview of exigtamket switching

architectures and highlights their advantages and liraitat The single-stage
IQ bufferless crossbar switch is the prominent architectior today’s high

performance routers. This is due to its low hardware costsaathbility. The

crossbar requires a centralized scheduler to transfex feth the input ports
to their destination output ports. Unfortunately, the higimputational com-
plexity of the optimal MWM algorithms and the low performanaf the prac-

tical RGA scheduling algorithms makes it difficult for theossbar to deliver
switching at such high bandwidth.

With 1Q crossbar switches reaching their practical liniitas due to higher
port numbers and data rates, buffered crossbar (CICQ) lssgitare gaining
increased interest due to their great potential in solviveydcomplexity and
scalability issues faced by their bufferless predeces€fSQ switches, how-
ever, use expensive and complex buffered crossbar fabriditidnally, the
design and placement of the proposed algorithms over the @pd output
line cards has resulted in excessive use of the bufferedlzao€hip pins, lim-
iting its scalability. Additionally, the CICQ has thus faedn studied only in
the context of unicast traffic scheduling.

This dissertation undertakes a comprehensive study of lG®Gwitch archi-
tecture, proposes solutions to its scalability and stuiiggerformance under
all types of traffic flows. The next chapter addresses thabii#y of CICQ
switches by optimizing the number of control pins of the brgd crossbar
fabric chip.



Chapter 3

The Embedded CICQ
Scheduling Architecture

tecture where the input and output distributed schedulersmbedded

inside the crossbar fabric chip. As opposed to previougydesiwhere
these schedulers are spread across the input and outpualie our design:
(i) allows the schedulers to have cheap and fast access to ¢neahbuffers;
(ii) optimizes the flow control mechanism; afiid) provides scalability to the
CICQ switching architecture. We propose a novel class oédaling algo-
rithms, where the arbitration process is based only on inébion about the
internal buffers. We refer to this class of algorithms asMiust Critical Buffer
First (MCBF). MCBF is shown to outperform all existing algbms under
various traffic settings. In order to validate our proposad,implemented, in
reconfigurable hardware, a CICQ switch core running the M@Bferithm,
with the maximum port count that we could fit on a single chife Experi-
ments prove that 84 x 24 CICQ switch running a 10 Ghps port speed and a
clock cycle time of 6.4 ns can be implemented.

This chapter proposes a novel buffered crossbar (CICQ) swigchichi-

3.1 Introduction

With input queued (IQ) crossbar switches reaching theictpral limitations

due to higher port numbers and data rates, buffered cro§Sb@an) switches
are gaining a lot of interest due to their great potentiabiwiag the complex-
ity and scalability issues faced by their bufferless predsors [72]. Contrary

31
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to traditional 1Q switching, where a centralized and comp@eheduler is re-
quired [40], for anN x N CICQ switch, there aréV input schedulers and
N output schedulers. These schedulers are decoupled andockrnaepen-

dently in parallel [75]. Figure 3.1 depicts the CICQ switdiarchitecture. A
scheduling cycle consists of three independent phasest sgheduling, out-
put scheduling and flow control mechanism. The flow contralrims the input

(output) schedulers about the status, or occupancy, ohtbenal buffers. It is

the only communication means throughout which the scheslatemmunicate
in order to perform their arbitrations and prevent intetmafers overflow.

A plethora of scheduling algorithms has been proposed &EICQ switching
architecture [69] [67] [60]. The vast majority of these aifums have been
designed under the assumption that the input schedulelecated in the input
line cards -one per each card- and the output schedulertaaediat the output
ports of the switch [60] [64] [65]. This implies that, in eydime slot, the flow
control mechanism has to communicate to every input (ouguiteduler the
occupancy of its corresponding internal buffers. This carctnsidered not
only costly, in terms of latency and I/O pins, but also a duéitg limiting
factor.

In this chapter, we propose a novel design for the CICQ switchrchitecture
where the input and output schedulers are all embeddednwittiei crossbar
fabric chip. We propose a novel class of scheduling algmrdthihat we call
MCBF. The MCBF arbitration is fully based on the internal feu$ informa-
tion, unlike previous algorithms that base their arbitnatprocess on the in-
put VOQs. The MCBF input scheduling phase gives priorityh® YOQ for
which the corresponding internal crosspoint buffer befotaythe least occu-
pied column of internal buffers. Whereas the MCBF outputesiciing favors
the crosspoint buffer belonging to the most occupied rowntarinal buffers.

Embedding the schedulers inside the buffered crossbdc felip stems from
the fact that the crossbar fabric switch is bound by pin cantt not by the
amount of memory inside the chip. VLSI density increase$ fé2ke it possi-

ble to include enough memory inside the crossbar fabric. chige fabric I/O

pin count constraint implies that there must be unused aséa@d the chip that
can be used. The benefits of our proposed design are:

» Optimizing the flow control mechanism between the cros&aic chip
and the schedulers. This has the benefit of speeding up tledwdoiy
time while using a limited number of 1/O pins resulting in ragcalable
CICQ switches. For 82 x 32 switching system, our CICQ embedded
switching architecture achieves up to 70% saving of chip ddbtrol
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pins when compared to existing CICQ switch architectures.

* Improving the performance of the scheduling algorithnssttrere are
many algorithms that base their decisions on the internfiefsuand
when embedded within the crossbar chip would have fastesidas
and cheaper access to resources.

» More effective use of the crossbar chip area and savingaréae input
(output) line cards that could be used for additional tasks.

Our implementation results showed the feasibility of sudlesign for &4 x 24
CICQ switch core with embedded schedulers running a 10 Gbpsspeed.
The target technology was the Xilinx Virtex-4FX [76]. Oursiign can be
extended to implement broader classes of scheduling #igwisuch as the
Longest Queue First-Round Robin (LQF-RR) algorithm [66hatextra cost.
To the best of our knowledge, there has been no other studyirsipohe fea-
sibility of such embedded design. When embedding the séfedithin the
crossbar fabric, the flow control mechanism is optimizediltegy in the fea-
sibility of implementing scalable switches both in termsoft numbers and
speed per port. From a performance viewpoint, our propos€®Msched-
uler was shown to outperform all alternative algorithmsemalwide range of
traffic patterns.

The remainder of this chapter is structured as follows: i8ec3.2 reviews
conventional CICQ switch design and scheduling and dissUi$s limitations.
Section 3.3 introduces the embedded CICQ scheduling actare, discusses
its components and explains its dynamics. We describe ajpoged MCBF
algorithm and illustrate its properties. In Section 3.4, pvepose a possible
reconfigurable hardware based implementation of the MCBBrithm. We
devise two variations of our design and discuss the impl¢atien as well as
the performance of each of them. Section 3.5 presents thernnemtation re-
sults and performance evaluation. Finally, Section 3.6reanzes the chapter.

3.2 Conventional CICQ Architecture

To keep pace with the Internet’'s exponential growth, bogdiouters with large
port numbers and higher interface speed is becoming a mwester@lly, the
interconnect runs faster than the line speed to amortizriieespent on some
additional requirements such as QoS related processingngetfect output
contention resolution. If we consider transferring pasKer ATM cells), of
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Figure 3.1: The CICQ Switching architecture.

size 53 Bytes each, through a 40 Gbps switch port with a sppeaf 2, the

scheduler has approximately 5.3 ns to decide which packietrteard. This

short time constraint requires the scheduler to make itration as fast as
it possibly can. Moreover, current CICQ schedulers rely dioa control

mechanism that requires a non negligible proportion of tbegbar chip pins.
As a result, it is difficult to achieve the above goals withreat architectures
and algorithms. We address each of these issues below.

3.2.1 Scheduling in Conventional CICQ Switches

Recently, there have been many scheduling algorithms peapfor the CICQ
switching architecture. Most of these schemes are basedrtings such as
LQF-RR and OCF-OCF, or a combination of sorting and RountiRdf we

consider the hardware complexity of the input scheduling=LiQr example,
we can see that it takes a relatively long time to make itstratibn. This
is mainly due to the large number of input values (i.e., nundigackets in
a line card or VOQ) and the basic building blocks of the arbijtavhich are
mainly two-integer comparators and two-integer MUXes [34} a similar

implementation (théLQF [45]), it was shown that the arbitration time is more
than 7 ns for 82 x 32 switch with 10 bits representing the input weight. Even
with the fastest implementation, the two-input integer panator still takes
O(logB) time units to complete the comparison [77], whétés the number
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of bits equaling to log . (the maximum number of packets a line card can
hold). The 10 bits representing the weight above correspmadmaximum of
53 KB (1 Kilo ATM cells) as the buffer space at the line card.wéwer, it is
normally required that the buffer size at each line card khbald up to 100
ms worth of packets [78]. Meaning that, at 40 Gbps, the bisfitez can be as
large as 500 MB. Assuming that this buffer space is dividedragst 32 VOQs,
this would result in every VOQ having a size of approximate®) MB and
catering for up to 386 Kilo ATM cells. This requires up to 1%sktio represent
the input weights. Thus, it is clear that employing LQF (orE)@rbitration
will result in a much longer arbitration time and therefordéd most likely be
the bottleneck of the whole switch. As a result, designin@@Ischedulers
with reduced complexity is required. In fact, CICQ switclae interesting
because of their simple and distributed scheduling.

Alongside their complexity, the existing algorithms haesb compared to the
conventional bufferless 1Q crossbar switches. As expedtey were shown
to exhibit better performance. These algorithms, howesear,just a simple
mapping of earlier algorithms proposed for the bufferlesssbar switches
into the new CICQ switching architecture. Moreover, non¢hef algorithms
presented in the literature has addressed the issue of flofnotoptimization
and the interaction between the internal buffers and thetilipe cards.

In fact, as will be illustrated in this chapter (see Sectio®.3, by carefully

considering the interaction between the VOQs and the iatdauffers of the

CICQ architecture, we can design matched pairs of inpyilduarbitration

algorithms that outperform the straightforward algorighiboth in performance
and in hardware cost.

3.2.2 Flow Control in Conventional CICQ Switches

The broad class of proposed algorithms can be classifieddntal robin based
algorithms [67] and weighted algorithms [79] [66] or a comdtion of the
two. Most of the proposed algorithms have been designedtidthssumption
that the input schedulers are taking place at the input lamdscand the out-
put schedulers are placed on the output cards. When the schatiulers are
implemented on the input line cards, the flow control mectrantan be the
bottleneck as the number of ports of the switch or the speed@eincreases.
ForanN x N CICQ switch, every time slot the flow control mechanism has

1This is assuming that the VOQs occupancies are balancechanthe incoming traffic is
uniformly distributed.
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to sendN bits (one for each crosspoint buffer) to each input schedlulerder

for the latter to know which internal buffer to be served néxtotal of up to

N? flow control signals are required for a lossless switch dp@raas shown

in Figure 3.1. If we consider some CICQ designs, where theut@rbiters are
implemented on the output cards [60] [64] [65], then up M bit signals are
required for flow control. Clearly, a¥ increases, the crossbar implementation
becomes infeasible due to I/O pin limitation. The altenesolution to this
problem is to sacrifice time instead of pins by using the samigedd number

of I/O control pins for all input schedulers over many timets) resulting in
longer arbitration times [62].

In order to overcome the buffered crossbar chip I/O limitatin the next sec-
tion, we propose the CICQ switching architecture with endeedscheduling
that reduces the flow control bit signals requirement anthjterthe design of
scalable CICQ switches.

3.3 Embedded Scheduling Architecture

In this section, we describe our proposed CICQ switchingitegcture where
the input and output schedulers are embedded within thslmao$abric. We
explain its dynamics and the interaction between its coraptsa To show
the feasibility of our design, we describe the MCBF class Igbidthms in

Section 3.3.3 and propose two possible hardware impleremsafor our al-

gorithm. For the sake of clarity, we introduce some notatitivat will be used
throughout the remainder of this chapter.

3.3.1 Reference Architecture

The proposed CICQ switching architecture with embeddeédulers is de-
picted in Figure 3.2. Fixed size packets, or cells, are camed. Vari-
able length packets are segmented into cells for interradgssing and re-
assembled before they leave the switch. ThereMfaput cards; each main-
taining N logically separated VOQs. When a packet (cell), destinezlitput
4,1 <j < N,arrivestotheinputcaril 1 <: < N, itis held inVOQm. In
addition to the above, we define the following:

* Eligible VOQ: AVOQ, ; is said to be eligible for being scheduled in the
input scheduling process if it is not empty and the interndido XP; ; is
available to accept at least one cell.
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Figure 3.2: The CICQ Switching architecture with embeddduedulers.

« The internal fabric consists a¥? buffered crosspointsXP), N input
schedulers (IS) and/ output schedulers (OS). A crosspoX®; ; holds
cells coming from inpui and destined to outpyt

» The line of crosspoint buffersXPB is the set of all the internal cross-
point buffers KP; ;) that correspond to the same inputand holding
cells for all outputs.NLB; is the number of cells held ibXPB. IS;
schedules the arrival of cells from input caigdfo LXPB.

» The column of the crosspoint buffe@XPB; is the set of the internal
buffers XP; ;) that correspond to the same outpytand receiving cells
from all inputs.NCB; represents the number of cells queueCKPB,.
OS; arbitrates the departure of cells fradXPB;.

3.3.2 The Dynamics of The Switch

The proposed CICQ switching architecture has the schexliderbedded
within the buffered crossbar core. It works similarly to aneentional CICQ
switch, in that the input schedul&s; controls the transfer of cells from input
i to the row (line) of internal buffere XPB;. The output schedulédS; sched-
ules the departures of cells from the column of internal dnsfCXPB;. The
novelty of our CICQ switching architecture resides mainlyt$ input schedul-
ing and the flow control between the input line cards and tliieked crossbar
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Figure 3.3: Flow control signals usage for different swisites.

core. The architecture is shown in Figure 3.2 forark N switch and oper-
ates as follows. When a new cell, destined to outpwrrives at input, the
index of VOQ, ; is forwarded tolS; using logV flow control bits. IS; keeps
record of the arrivals and departures of cells to and from the VO@@put
i, and updates its record accordingly. Simultaneously vii¢éhforwarding of
a VOQ index,IS; requests a cell for input scheduling (transfer from the inpu
line card to the internal buffer). It does this by sendingNbbits to the line
card indicating the index of the selected VOQ. The cell istloewarded to the
corresponding internal buffer. The output scheduler wakén conventional
CICQ switches, it checks the existence of cells irO¥PBand selects one cell
to be transmitted to the output port.

Embedding the schedulers inside the buffered crossbaicfabre has two
major advantages. First, the number of flow control 1-bihalg are greatly
reduced. Figure 3.3 shows the number of 1-bit signals redtfior the flow
control mechanism of our embedded CICQ switch (as depiciédgure 3.2)
and compares it to the conventional CICQ (as depicted inrEi@ul). We
can see that for any switch size greater than 4 ports, ouitectlre requires
far fewer flow control signals(@(NlogN)) as compared to traditional CICQ
switches Q(N?)). For a32x 32 switch size, our architecture provides a saving
of up to 70% of flow control signaling (I/O pins) as comparedhe conven-
tional CICQ architecture. These pins could be used for U$efodwidth for
additional ports, resulting in more scalable CICQ switches

The second advantage of the embedded CICQ switch is its wiang.dWhen
the schedulers are implemented inside the buffered crosstya, they can

2Depending on the implementation, it could be a table \itlentries, one per VOQ.
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have faster access to the internal buffers, hence fastésialex and access
to more information resulting in better and more efficiettestuling. Using
embedded schedulers, each input scheduler has accesstatéhefall cross-
points, whereas an external input scheduler can only hasado the state
of its own line of internal buffers. In the next section, wepose the MCBF
embedded algorithm and discuss the scheduling in mordsletai

3.3.3 The Most Critical Buffer First Algorithm (MCBF)

The MCBF algorithm is proposed to be a good compromise betyeefor-
mance and hardware cost. It is based on the internal buffegdemation only.
It favors the least occupied internal buffer at the inpuésid/hereas the output
gives priority to the most occupied internal buffer. Meanthat the scheduler
retains the information about the internal buffers onhstéad of the input
queues length in the case of LQF for example. Doingswiill equal log(PS
instead of lod..,,.x, WhereP is the switch port count anfl equals to the inter-
nal buffer size in number of cells. The MCBF has the followsmgcification:

Input Scheduling (IS):
» For each input:

— Starting from the highest priority pointer location, se¢lde first
eligible VOQ corresponding tmin;{NCB; } and send its HoL cell
to the internal crosspoint buffe4p; ;.

— Move the highest priority pointer to the locatign+ 1)(mod V).
Output Scheduling (OS):
» For each outpuj:

— Starting from the highest priority pointer location, seldte first
XP; ; corresponding tanax;{NLB;} and send its HoL cell to the
output.

— Move the highest priority pointer to the locatidh+ 1)(mod V).
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3.3.4 MCBF Properties

The MCBF scheme has three major properties when comparedh&y o
schemes. These properties are related to its efficient imgtgrocess, its
hardware cost and its flow control requirement.

« Efficient Matching: MCBF is designed to be a matched pair of input
and output scheduling. The internal buffer element is ofikgyortance
in finding matched scheduling because of its shared natuoeoutput
is idle as long adNCB;> 1,V0 < j < N — 1. To keep the outputs as
busy as possible, MCBF maintains a load balancing amongtbenil
buffers. The input and output schedulers each perform at rarc-
tion (min;{NCB;} andmax;{NLB;}) designed to maintain load balanc-
ing inside the buffered crossbar matrix. For the input saledthis is
achieved by giving priority of service to the crosspointfbyf XP, be-
longing to the column of crosspoint buffers (CXPB) with thenmmum
workload (packets). In this way, and as long as all the CXPiaia
cells, the load can be distributed (balanced) over all dstgdeanwhile,
each output arbiter gives priority to the XP belonging tolihe of cross-
point buffers (LXPB) with the maximum workload. This enablmore
work to be brought forward by ensuring free space for the tipbiter
(with the least choices of scheduling) to have wider schiagudhoices.

» Hardware Cost: MCBF is simpler in hardware complexity when com-
pared to LQF-RR or OCF-OCF for example. Recall that the MCBF
scheduling decision is based on the number of cells in tieeriat buffers
(NLB;, NCB;). That s, for anV x [N one-cell internally buffered cross-
bar switch, an arbiter’'s encoder consists only ofibhits (P = N and
S = 1). This is much faster than comparing Bdpits, whereB is equal
to logL .y in the case of comparing the queues occupancies [45]. More-
over, the produciP.S remains small irrespective of the internal buffer
size. It grows linearly with the switch size and/or the intdrbuffer
size. This makes the hardware sub-blocks of MCBF easierdigdand
faster to run at high rates.

» Flow Control: MCBF is designed to be a stateless scheme with respect
to the input line cards. It performs its arbitration with fleast interac-
tion with the input VOQs. The only feedback information th&CBF
needs to know during its arbitration process is the stata afput VOQ
(empty or not). This reduced feedback information betwéeninput
line cards and the internal buffers optimizes the flow cdmtrechanism.
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In fact, a recent related work has shown the optimal perfagaaf our pro-
posed MCBF algorithm, particularly its output phase, agadfility to achieve
100% throughput [80]. To achieve fairness, each input (@tarbiter main-
tains a highest priority round robin pointer to break tieoamdifferent inputs
(outputs) in the presence of conflicts. Similar to LQF [40k MCBF algo-
rithm has a drawback of input queues starvation. Underiodrtfic patterns,
MCBF may starve flows. One way to overcome this disadvantage use a
time stamping mechanism for the MCBF output scheduling. rfidne section
describes the hardware implementation of the MCBF algwrith

3.4 The MCBF Implementation

Because the scheduling decision is fully based on the iatdmuffers, XPs,
choosing the internal buffer size is critical to MCBF. In doplementation,
we target an FPGA device (Xilinx Virtex4-FX) and make use lof Block
RAMs (BRAMS) as internal buffers (XPs). If we consider 64tByackets
and 18 Kbits of buffering space per XP (BRAM size), each XP aacom-
modate up to 36 packets (cells). The implementation of an M@But (out-
put) scheduler consists mainly of two sub-blocks, namedyrtterit function
of computingmin,;{NCB;} (max;{NLB;}) and the highest priority pointer to
break ties in presence of conflicts. However, we can optirtizee two sub-
blocks in hardware cost while maintaining the same perfogaaf the MCBF
algorithm. In what follows, we will propose two alternatiimplementations
that both achieve the same performance as MCBF with lowaiwse re-
guirements. In the first implementation, we will approxim#ie merit func-
tion sub-block with a simpler, yet similar, merit functiorhile keeping the
highest priority pointer sub-block unchanged. We refehts implementation
asa-MCBF. In the second implementation, we use the same meratifon as
MCBF, however we omit the highest priority pointer sub-t@nd we show
that it is not indeed required for our specific design. Werr&bethis imple-
mentation ag-MCBF.

3.4.1 First Approximation: a«-MCBF

In this implementation, we approximate the merit functidéreach input (out-
put) scheduler with a simpler merit function that would tegua faster im-
plementation while maintaining similar performance. Rieteat each MCBF
input scheduler attempts to keep as many output line carslg dsi possible.
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Figure 3.4: The buffers occupancy table controller.

It performs this task by servicing the XP belonging to the @PB with the
least number of packets. If, instead, the input schedulersgpriority to the
XP belonging to the CXPB with the least number of full XPsstiieans{()
Servicing the XP belonging to the CXPB with the least numbéuloXPs still
achieves the objective of the input arbiter by keeping asymatput line cards
busy as possible. This merit function approximates theiralgViCBF func-
tion well, especially under heavy input loads (which isicai for the sched-
uler). This is because the likelihood of having many full X®proportional to
the input load. (i) Instead of computingnin; {NCB;} which would require
sorting, we can simply avoid it by encoding the number of K#s per col-
umn as one hot. This results in faster implementation wittelocost. The
same approximation is applied to each output scheduldgeddsf computing
max;{NLB;}, each output scheduler gives priority to the XP belonginthé
LXPB with the maximum number of full XPs.

To efficiently map the input scheduler into hardware theofeihg structure
has been used. Inside the crossbar fabric, there i8r&4-bit double array,
named Column Buffer Occupancy Table_BOT), and each row represents
the number of occupied internal buffers, XP, for each colwhthe crossbar
fabric. Each row is initialized with the first bit asserted ‘dnd all the others
with “0”. The position of the “1” in the row represents the npen of occu-
pied internal buffers in this column. The controller of theBOT is depicted
in Figure 3.4. Each Xilinx Virtex Look-Up-Table consists #finputs and 1
output. Hence4 not-empty signals are used as inputs to the LUTs to encode
the number of ones, as it is shown in Table 3.1. The numbereobticupied
internal buffers (XPs) for a column are added and then detadd forwarded
to the CBOT. For example, in Figure 3.5, the first, the second anddbeh



3.4. THE MCBF IMPLEMENTATION 43

Table 3.1: Encoding of the number of ‘1’s.
| Not-Empty || LUT Output |

0000 000
0001 001
0010 001
0011 010
0100 001
1111 100

columns have occupied internal buffers, while the third and the fifth cohs
have3 occupied internal buffers.

B Masked 50T
0011 1 . i YO

1| - N

1 - .

0 - L

New

packet
IBT

Selected
queue

0111 24
0001 PPE

0000

IBT: Input Buffer Table EXP
IBV: Input Buffer Vector

EXP: Empty Crosspoint Buffers
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PE: Priority Encoder ...0 %7
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PPE: Programmable Priority Encoder

A

Figure 3.5:a-MCBF input arbiter micro-architecture.

The micro-architecture of the input arbiter is shown in FegB.5. When a new
packet arrives to the input card, a signal is asserted gttimid of the VOQ.
The input arbiter first updates the Input Buffer Table (IBThe IBT keeps the
number of waiting cells in the input line card. The number @fitimg cells
is represented usingb bits (up to32 Kilo cells). The input card asserts a
“new packet” for a specific VOQ only when the number of waita@dls in the
corresponding entry in the table is less thafThe input card keeps a record
of the number of new cells and selected cells of a VOQ). Thes|BT is used
mainly to speed up the time consuming process of commuaitdtéetween
the input card and the crossbar switch. The interaction éetvthe input line
cards and the buffered crossbar fabric is as depicted inr&igl2. In our
design, each input card uses 6 signals (5 signals for the@4 MOQs and
1 signal for valid data) to notify the switch fabric card tl@ahew packet has
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arrived to the VOQs (indexed by the 5 bits signal). Once tipaitirscheduler
has decided which input VOQ is selected, a 6 bits signal i Isack to the
input line card containing the selected VOQ index. The eethien forwarded
to the corresponding internal buffer. Cells can be sentqusie SERDES
transceivers [81]. The output card is simpler than the imaud. Cells are,
again, sent using the SERDES transceivers as soon as thet satgeduler
makes a decision. Furthermore, no flow control is needece dime output
scheduler is moved inside the buffered crossbar fabric. chip

The Input Buffer Vector (IBV) is a 24-bit vector that reprasethe state of the
IBT. If the row isO then the bit is also O; otherwise it is 1. IBV can be obtained
as follows:

0 if IBT; =0;

IBV; = { 1 otherwise

The Empty Crosspoint Buffers (EXP) vector represents thptertavailable)
internal crosspoint buffer, XP, belonging to a LXPB. The IBMAND-ed with

the EXP, resulting in a vector that represents the eligibleugs. This vector
is used as a mask for the BOT and a new table (Masked BOT) is created that
represents the number of occupied buffers of the eligibéaiga . Each rowy,

of the Masked BOTNI_BOT;) can be computed as follows:

M_BOT; = C_BOT; A IBV, A EXP;

The elements of each column of this table are OR-ed and anaifded to a
priority encoder to find the eligible queues with the minimoamber of occu-
pied buffers. The priority is given to the first column, frohetleft (in order to
find the minimum), with a non-zero value. If we consider tharaple of the
Masked BOT in Figure 3.5, we can see that CXRBd CXPBs each has two
full XPs which corresponds tmin; {NCB; }. Using this micro-architecture we
can easily locate the VOQ corresponding to the CXPB with thémum num-
ber of full XPs, among all eligible queues. Finally, this tards forwarded to a
Programmable Priority Encoder (PPE) to select the quewsdbasthe highest
round-robin priority pointer. The PPE can be implementedeveral ways as
it is shown in [82]. In this implementation we used the fasteplementation,
segmented i3 clock cycles.

The output arbiter, depicted in Figure 3.6, is similar toere\simpler than,
the input arbiter. A24 x 24-bit array, named Row Buffer Occupancy Table
(R_BQT), is used to store the occupancy of the internal buffereedch row
of the buffered crossbar fabric. The position of the ‘1’ i thntry, 4, in the
array represents the number of queued cells in the line aisprant buffers
LXPB. For example, if the ‘1’ is on the third position it means thXtPB; has
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Figure 3.6:-MCBF output arbiter micro-architecture.

2 queued cells. The Non-Empty Crosspoint buffers (NEXP)24-#it vector
that represents the non-empty internal crosspoint buker, belonging to a
LXPB. NEXP is used as a mask for theBOT to create a masked BOT. Each
row, j, of the Masked BOTNI_LBOT;) can be computed as follows:

RBOT, if NEXP = 1;

M-BOT; = { 0 otherwise

Each24-bit column of the masked BOT is OR-ed and the first column from
the right with a non-zero value is forwarded to the PrioritgycBder (PE).
The priority is given to the first column from the right in ord® find the
maximum value. Then, this vector is forwarded to the PPE tdaewhich
will be the selected crosspoint, XP, based on a the high&sitgrmpointer.

3.4.2 Second Approximation:3-MCBF

In this implementation, we omit the highest priority pomgaib-block while
keeping the original MCBF merit function for each input andput scheduler.
The highest priority pointer is used to break ties in the @nes of conflicts.
If two or more CXPBs (or LXPBs) have the same number of packéEn
the choice of which to favor is based on the highest priordinfer’'s location.
However, by observing that our target design i84ax 24 CICQ with each
XP size of 36 cells, the chance of having two or more CXPBs (§PBSs)
with the same number of packets is very low. The likelihoothafing two or
more CXPBs with equal number of packets, which requires itjedst prior-
ity pointer to decide which one to favor, is less than 0.1%—@9#). There-

36
fore, the possibility of unfairly favoring a XP over othegsvery unlikely. In
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fact, we designed the merit function of each input (outpaobjesluler using a
carry propagation circuit (see Figure 3.8). This affordshesoption to break
ties based on the lowest port number first, which is commosgdiby other
weight based scheduling algorithms [60]. Additionallyorfr a performance
point of view, simulation results showed that the averadiedetay of MCBF
is shorter without using the highest priority poiriteFinally, the elimination
of the highest priority pointer sub-block, which requiregpiementing a PPE
that takes 3 clock cycles, results in a faster implememtatioboth the input
and output schedulers.

The architecture of thg-MCBF scheme is depicted in Figure 3.7. The En-
coder, the Accumulator and the Column Buffer Occupancyd@BIBOT) are
common for all the input arbiters. The accumulator is usde&p the number
of cells stored for each column. Each time a new selectiontdhde made,
the accumulator adds the number of new incoming packettéaspecific col-
umn and subtracts one packet if the output arbiter has sgnTae maximum
number of new packets is the same as the number of input i@ it4). These
signals are encoded using a 25-t0-5 encoder and used bydinaalator. The
maximum number of cells that each column has to store is 86X2buffers,
each with 36 cells), hence the accumulator is 10-bits widee CBOT stores
the data of the accumulator used for each input arbiterelgtlis a waiting cell
at an input queue for which there is space in the correspgndternal buffer,
then the queue is deemed eligible and the row of the correlpg!© BOT is
forwarded to the masked BOT. Otherwise, the row in the maskedBOT
is filled with 1's (indicating it is not the minimum). The roved the masked
C_BOT are used as entries toMin Index Functioncircuit. TheMin Index
Functionoutputs the index of the eligible VOQ with the correspondiegst
occupied CXPB.

The minimum index function is performed using a tree stmectwith com-
parators as it is shown in Figure 3.8. In each stage, the alsnaee compared
in pairs and the minimum (or maximum, in the case of the oufpbiter) is
propagated to the next stage along with its partial indexh@first stage the
output index is 1 bit, in the second 2-bits and so on). Thelldetatructure of
finding the minimum among two elements is also depicted imfei¢g.8. The
M 1IN box performs the following: one of the inputs is inverted andarry-
propagation circuit is used, if the carry is ‘1’ then the irteel input is smaller
than the normal input. The output of tAé /N is used to select the minimum
element and its partial input index through a multiplexed #ve outputs of the

3The better performance comes at the cost of unfairness. Ge®$3.5.2 for more details.
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Figure 3.7:5-MCBF input arbiter micro-architecture.

two multiplexors are forwarded to the next stage. Please thait, for the first
stage, the index multiplexer (upper multiplexer) is notuieed, since there are
no partial input indexes. Also, for the last stage, the lomeitiplexer is dis-
carded since the output of the overall block is only the indiethe minimum
element. Additionally, if the two inputs are equal, we casige the circuit to
choose the input with the lower index to be selettéthis means that ties are
broken based on the lowest port number first (in the preseihcendlicts) and
this conforms to the desired result. The same applies foinignithe maximum
element, for the output arbiter.

The micro-architecture of th8-MCBF output scheduler is depicted in Fig-
ure 3.9. While the dynamics of the output arbiter are oppositthe input
arbiter, most of the components used by each are similaralRibat each
CXPB, used by the input arbiter, can receive up to 24 new packed can
discharge at most one packet every scheduling cycle. Opbo#iie same ap-
plies to the output arbiter, in that each LXPB can receive astnone packet
and can discharge up to 24 packets each scheduling cyclethiBareason
we employed the same encoder and accumulator for the destge output
arbiter. The accumulator keeps track of the number of ce¢lsaah LXPB.
The Row Buffers Occupancy table BOT, similar to the CBOT, is used to
store the number of queued cells per LXPB. Similar to dhBICBF output
scheduler, 24-bit vector named the Non-Empty Crosspoint buffers (NEXP)
is used to represent the non-empty internal crosspoinetsyfixP, belonging

*We can achieve this by always inverting the input with highelex (Min1 in Figure 3.8).
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Figure 3.9:5-MCBF output arbiter micro-architecture.

to a LXPB. NEXP is used as a mask for theB®T to create a masked BOT
(M_BOT). The rows of the MBOT are used as inputs for thdax Index Func-
tion block. The max index function is similar to the one shown igufe 3.8
and the carry-propagation circuitry is used to find the indethe maximum
internal buffer, XP, selected by the output arbiter.
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3.4.3 Extension to Wider Range of Algorithms

Our design can be extended to implement a wider range of athgdlgo-
rithms. For example, we can use our design and embed the tbQueue
First-Round Robin (LQF-RR) algorithm [66] or the Oldest Id&kst (OCF-
OCF) algorithm [60] in a similar manner as MCBF. We expectladise algo-
rithms to be easily mapped inside the buffered crossbarlmgause of their
similar hardware requirements, as weighted schemes. lcatbe of the LQF-
RR algorithm, the input scheduler (LQF) can be embeddedmiitie buffered
crossbar chip by using the IBT table with a slight modificatidhe LQF al-
gorithm gives priority to the input VOQ with the highest nuentof packets
(cells). As mentioned in the previous section, the IBT taldes 15 bits to rep-
resent the occupancy (length) of each input VOQ in numbeelts.cHowever,
in practice, an input line card should hold up to 100 ms wofthazkets [78].
At 10 Gbps, the buffer requirement per line card would be 125. Hor a
24 x 24 CICQ switch and 64 B cells, every VOQ is approximately 5.2 MB
(or 81.25 Kilo cells). This translates to an IBT entry of 1%biwhich can be
easily modified. Besides the IBT modification, LQF would nequire much
of a difference compared to the MCBF scheme. The same madificean be
applied to the OCF algorithm in order to represent the drtixze of cells to
the VOQs instead of queue length.

3.5 Implementation and Performance Results

This section presents the hardware implementation resuteyms of timing

and area of our design. In addition to the implementationltgswe also
conduct a simulation study (Section 3.5.2) to evaluate #r@opmance of our
switching architecture in terms of average cell delay, ugigout and input
buffer requirements. We study the performance of the MCRjerithm for

the specific design presented above (the FPGA implementatithe 24 ports
switch) as well as for more generic switching systems.

3.5.1 Implementation Results

In this section, we present the implementation results imgeof timing and
area. The design is mapped to a Xilinx Virtex4-FX device dmresults are
presented after place and route. The arrival raté4eBytes packets at OC-
192 line rate is one packet every 51.2 ns. The Rocket |10 transceian
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Table 3.2:a-MCBF area results.

| Module | Slices| Instances| Total Slices|
Input Arbiter || 1197 24 28728
Output Arbiter|| 632 24 15168
Column BOT 28 24 672
Row BOT 28 24 672
BRAMS 19 529 10051
| Total Slices || \ 55291
Input Transfer Output Transfer
| Scheduling 1l VOQ -> XP It Scheduling J|XP -> output port |
I I Input Il Transfer | Output | Transfer
| Scheduling || VOQ->XP | Scheduling ||XP -> output port |
[ Il Input I Transfer Il Output | Transfer
| Il Scheduling |
I |l ]

Scheduling 1 VOQ -> XP IXP -> output port |
I |

Figure 3.10: Packets flow.

be configured to de-serialize the input intd64&bit wide bus at 156 MHz
(64x156X.0° ~ 10x10° = 10 Gbps). The clock cycle time is 6.4 ns, hence
each packet can be transferredinycles (6.4x8=51.2 ns). The input arbiter
for botha-MCBF and3-MCBF have been designed to work at the same clock
frequency and each has been divided idtoycles. Hence, while a packet is
being transferred from the input card to the crossbar swichew queue is
selected by the input arbiter, as depicted in Figure 3.1@& dritical path of
the first design is the Priority Encoder used to forward tHecsed vector to
the PPE. This module is made of a 24-to-1 24-bit multiplexleecking24 bits

to decide which vector is selected. For thdMCBF design, the function used
to find the index of the minimum dominates the timing of thewir and was
segmented i clock cycles.

The area results of the implementation into a Virtex4-FXtdféi€he a-MCBF
and the3-MCBF schemes are depicted in Table 3.2 and Table 3.3, riagglgc
We can see that the area, in number of slices, required foBHMEBF is far
less than that of the-MCBF implementation. The allocation of the resources,
of both implementations is shown in Table 3.4. While bothesals use the
same interfaces in terms of Rocket I0s and pin count, thein mifference
lies in the number of slices required for each of them. ®HEICBF imple-
mentation requires87.3% of the available slices on the FPGA device, while
the 3-MCBF implementation requires only approximately half giees of
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Table 3.3:56-MCBF area results.

\ Module | Slices| Instances| Total Slices|
Input Arbiter 676 24 16224
Output Arbiter || 300 24 7200
Column BOT 51 24 1224
Row BOT 51 24 1224
BRAMS 19 529 10051

| Total Slices || \ | 35923 |

Table 3.4: Percentage of resource allocation.

\ Module | Instances Used Available | Percentage]
BRAMs 529 552 95.83
RocketlO 24 24 100 %

Slices a-MCBF 55291 63168 87.3%
6-MCBF 35923 63168 56.8 %
Pins 288 896 32.14 %

the device 16.8%). Please note that the number of crossbar buffers (BRAMSs)
is 23 x 23 =529 and noR4 x 24, since the transmission of cells from the same
input and output indexes is not required to go through thestrar fabric.

3.5.2 Performance Results

This section studies the performance results of the MCB&fsdgorithms and
compares it to alternative algorithms. Because MCBF is gldiased algo-
rithm, itis compared to LQF-RR and OCF-OCF since they alsowsight for
their arbitration process. The performance study is airedtin two parts. The
first part studies the performance of the MCBF and its two en@ntations
for the specific design proposed in Section 3.4. The secoridsents the
MCBF performance for a generdl x N CICQ switching system. The perfor-
mance metrics studied here are the average cell latenoyghput and input
gueues occupancies. Simulations run for 1 million timesséotd statistics are
gathered when fourth of the total simulation length hassddp The analysis
is carried under Bernoulli uniform traffic, Bursty uniformaffic, Unbalanced
traffic and Diagonal traffic. More details about the simaatenvironment and
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24x24 CICQ Switch under diagonal traffic arrivals
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Figure 3.11: Average delay comparison between using a speed2 and
internal buffer size per cross point of 36 cells, under died draffic.

the traffic scenarios used are defined in Appendix B.2.

MCBF Performance: The designhe®4 x 24 CICQ Switch

In this section we present the performance of MCBF of our psed archi-
tecture and specific design of2d x 24 CICQ Switch. The 18 Kbit Block
RAMs (BRAMS) of the FPGA device have been used as internaspaint
buffers meaning that every crosspoint buffer can hold ugstoells (64 Bytes
each). We also compared MCBF to the two approximations wéeimgnted
(«-MCBF andg3-MCBF).

As depicted in Figure 3.11 and 3.12, the average delay ofglogithms used in
our design is closely comparable to the average delay of thigerithms when
running on the same switch but with just one cell as internéfeb size and a
speed up of twa Note that MCBF(1)S(2) refers to the CICQ switch running
the MCBF scheduler, using an internal crosspoint buffez sizust 1 cell and
running at a speedup of 2, while MCBF(38]1) refers to the same system but
with an internal crosspoint buffer size of 36 cells and a dppeof just 1. This

5A speedup of two means that the crossbar fabric runs twicasass$ the input/output ports.
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24x24 CICQ Switch under unbalanced traffic arrivals
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Figure 3.12: Average delay comparison between using a speed2 and
internal buffer size per cross point of 36 cells, under noifemm unbalanced
traffic, w = 0.5.

result suggests that we can trade fabric speed for internagpoint memory
size. However, as mentioned before, our FPGA device canthm BRAMS
that can be directly used as internal buffers. Therefore awleeved delay
performance equal to that of a speedup of two. Although iuisegexpected
to have such good performance, since the internal buffer isibig enough
making it similar to OQ switch, the idea here is to assess ffigemcy of
MCBF as compared to other algorithms. We can see that MCBIa Bhsrter
delay than the other two due to its matched pair of inputiausgheduling as
well as its balanced use of the internal buffers.

In the remaining figures, we studied the performance of th&Mand its vari-
ations under different internal buffer sizes. Note that MR (respectively
a-MCBF(7) and3-MCBF(:)) refers to MCBF running on an CICQ switch with
an internal crosspoint buffer size ofcells where{i = 1, 4, 8, 36}. We
compared the-MCBF and3-MCBF variations to the original MCBF scheme
under both the diagonal and unbalanced traffic models. €&igur3 depicts the
average cell delay of the MCBF andMCBF schemes with different internal
buffer size under the diagonal traffic. When the internafdiuize is equal to
one cell per crosspoint, both algorithms have the same geetalay because
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24x24 CICQ switch under diagonal traffic
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Figure 3.13: Delay performance comparison between the M&#le-MCBF
schedulers with different internal buffer sizes under Dizeay traffic.

their merit functions are the same under these settingssdime performance
is achieved when the XP size is 36 cells, and these settimgsspond to our
target system. However, when the internal buffer size iwéeh 1 and 8 cells,
the MCBF delay is better than that @fMCBF. The reason for this is because
the merit function used by-MCBF just approximates the occupancy of the
internal buffers, whereas the original MCBF uses the exactpancy of the
internal buffers.

As for the3-MCBF scheme, Figure 3.14, its average delay under the deago
traffic model is consistently better than the original MCBfheme. This is
because of the different priorities policies used by eacthefschedulersg-
MCBTf breaks ties based on the lowest port first, althoughdhises some sort
of unfairness. However, due to the very unlikely event ofihgstwo or more
cells with thesamehighest priority in our system, the highest priority pointe
can indeed be omitted.

The same results are found with the unbalanced traffic patkégure 3.15 and
Figure 3.16 depict the average delay performance-6fCBF and5-MCBF
compared to the original MCBF scheme. Based on these reaualisthe im-
plementation results, it is clear that theMCBF is the best choice due to its
lower hardware cost as well as its shorter average delapneshce. One
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24x24 CICQ switch under diagonal traffic
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Figure 3.14: Delay performance comparison between the M&RBIZ-MCBF
schedulers with different internal buffer sizes under Dizay traffic.

24x24 CICQ switch under unbalanced traffic, w=0.5
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Figure 3.15: Delay performance comparison between the M&#le-MCBF
schedulers with different internal buffer sizes under Uabeed traffic.
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24x24 CICQ switch under unbalanced traffic, w=0.5
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Figure 3.16: Delay performance comparison between the M&®liz-MCBF
schedulers with different internal buffer sizes under Uabeed traffic.

more interesting result is, we found that by allowing enobgffering for the

internal cross points, the input line card size is no longguired to be as
large. The experimental results (not shown) suggestedotitaCICQ switch

running any of the three algorithms mentioned above andyutircells per

cross point do not require a line card buffer of more than 16 KB

In traditional scheduler design, where the input and ousphtdulers are im-
plemented outside the crossbar fabric chip, it is hard te fak advantage of
the internal buffer information. This is because, as thermdl buffers size
increases, extra control pins are required for flow contvaapture the exact
sate of the internal buffers. Our design, however, oversotinis constraint by
avoiding the requirement for extra pins irrespective ofittternal buffers size.
Because the schedulers are embedded within the bufferssbenofabric, there
are no restrictions on the internal crosspoint buffer sizéha flow control is
performedlocally (on the same chip). This would not have been possible if
the schedulers were taking place outside the crossbacfelip. To show the
benefit of our design as compared to traditional implememtst Figure 3.17
shows how the MCBF delay improves dramatically as the iatiebaffer size
increases. We can see that a small increase in the XP siztsriedar shorter
average cell delay, as in MCBF(1) and MCBF(8) (for XP size akll and 8
cells respectively).
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24x24 CICQ switch under diagonal traffic
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Figure 3.17: Delay performance of the MCBF scheduler witfedint internal
buffer sizes under Diagonal traffic.

MCBF Performance: N x N CICQ Switch

We analyzed the performance of MCBF with LQF-RR and OCF-O&RwWo
switch sizes ofl6 x 16 and32 x 32 and different internal buffers sizes, re-
spectively. The performance analysis is carried undepuariraffic models as
defined in Appendix B.2.

Uniform Traffic

Figure 3.18 depicts the average cell delay performancerumdsty uniform
traffic with burst lengths (b) equal to 1, 10, 50 and 100 retpalyg. Un-
der heavy loads, MCBF exhibits the shortest delay of all tired schemes
presented. Note that when the burst length equals 1, thectimBernoulli
uniform. At 99% load and burst length of 10, MCBF has an avemgggeueing
delay less than 80% of that of LQF-RR.

As for the L? norm vector (see Appendix B.3) representing the occupancie
of the input VOQs, illustrated in Figure 3.19, MCBF has sigipgly the best
performance amongst all despite the fact that it maintainstate information
about the input VOQs, neither does it use their occupanaesdheduling
decisions.
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32x32 CICQ switch under uniform traffic
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Figure 3.18: Average cell delay performance under unifoafiit.
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Figure 3.19: The Input queues occupancies under uniforffictra
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32x32 CICQ switch under unbalanced traffic
A4

0.95

—¥— MCBF
O LQF-RR
—A— OCF-OCF

Throughput

0.9F

0.85 | | | | .
0 0.2 0.4 0.6 0.8 1
Unbalanced Coefficient, w

Figure 3.20: Stability under unbalanced traffic with intrbuffer size of 1
cell.

Non Uniform Traffic

The remainder of the simulation is carried under non uniftnaffic models,
where we wanted to test the stability of MCBF when using maébuffers of
small sizes. Figure 3.20 depicts the stability performanfcRICBF as com-
pared to LQF-RR and OCF respectively. We can see that MCBomgel
exhibits the best performance. This is due to the small sizheinternal
buffers. The MCBF scheduling is based fully on the internaffdrs occu-
pancies, and setting the XP size to be 1 cell appears to bennagk for an
efficient MCBF scheduling decision.

It is natural to ask the question as to what is the minimunrivatebuffer size
for which MCBF would make efficient scheduling choices. Fostwe set the
XP size to be 4 and 8 cells respectively and observed thdistatfi MCBF,

as depicted in Figure 3.21 and Figure 3.22. When XP=4 cakksMCBF per-
formance increases from 87%, for XP=1, to more than 98%. Th&Mhas
a comparable performance to that of LQF-RR. Setting XP=8liesn MCBF

outperforming the other algorithms by having the highesbughput. This
suggests that the optimal internal size for MCBF can be sdmesvbetween
4 and 8 cells per crosspoint. This result is also endorsad fte average
cell delay standpoint. Figure 3.23 depicts the averagededdly of al6 x 16
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32x32 CICQ switch under unbalanced traffic
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Figure 3.21: Stability under unbalanced traffic with intrbuffer size of 4
cells.
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Figure 3.22: Stability under unbalanced traffic with intdrbuffer size of 8
cells.
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16x16 CICQ switch under unbalanced traffic, w=0.5
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Figure 3.23: Average cell latency for different internaffbu settings under
unbalanced traffiay = 0.5.

CICQ running MCBF with unbalanced traffic arrivals and analahced co-
efficientw =50%. As we can see from the figure, the cell latency improves
substantially when using 4 cells per crosspoint insteadsifj cell.

3.6 Summary

This chapter proposes a new trend in designing scheduligpgyitdms. In-
stead of being distributed over the input and output linelgathe new design
embeds all the schedulers within the buffered crossbaicfaibip. Placing
the schedulers inside the crossbar chip has the benefit infinjpty the flow
control mechanism. For 32 x 32 switching system, our embedded CICQ
switching architecture achieves up to 70% saving of chigfllé@ control pins
when compared to existing CICQ switch architectures. Whensthedulers
are embedded within the buffered crossbar fabric chip treae Haster and
cheaper access to resources, with the further benefit aigavea on the in-
put and output line cards. We proposed a new class of schedalljorithms
named the Most Critical Buffer First (MCBF). Unlike altetive algorithms,
the MCBF scheduling decision is fully based on the interndidos.

To show the feasibility of our design, we proposed two im@etations of the
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MCBF scheduling scheme and showed that each can fit withircribesbar
fabric chip. We studied the trade offs between both impleat@ms in terms
of hardware cost and performance. Our design shows tBdt>a24 CICQ

switch with embedded schedulers running a 10 Gbps port speed clock
cycle time of 6.4 ns can be readily implemented within a €rigfPGA chip.

The MCBF algorithm has been shown to exhibit high perforneaanad outper-
form state of the art algorithms. Performance results atdithat an internal
buffer size of less than 8 cells is sufficient for MCBF to aghidigh perfor-
mance. MCBF is, however, not always stable. If the internidfidp size is just
1 cell, MCBF cannot achieve high throughput under non umfbwffic. In or-
der to provide throughput guarantees, we either need motesticated algo-
rithms or we need to use speedup. We derived a theoretichl ahd showed
that our proposed CICQ switch employing appropriate eméedatheduling
and running a speedup of two can emulate an ideal FIFO outguteg switch.
We divert our study to Appendix A.

While it is possible to achieve high performance and evefopmance guar-
antees with distributed and simple algorithms, the traficamvisioned is lim-
ited to unicast. It is desirable to achieve the same, or amtloals for broader
class of traffic such as multicast. In the following chapies, will address the
problem of scheduling multicast traffic flows.



Chapter 4

Scheduling Multicast Traffic

applications has created a vital need for multicast traffigpsrt by

backbone routers and switches. In this chapter, we studyntiig-
cast scheduling problem in buffered crossbar (CICQ) swicWe propose a
novel CICQ switching architecture with one multicast FIF@ge per input
port. We describe a simple scheduling algorithm for thihecture. Our al-
gorithm, named the Multicast Round-Robin (MXRR) schedyli® shown to
outperform alternative algorithms. We extend our study aadtess the CICQ
switching architecture with multiple input multicast FIF§dieues per input.
We devise a cell placement algorithm, named Modulo, thatsmapoming
traffic to the input multicast queues faster and more effityethan existing
algorithms. We also extend the MXRR scheduling algorithradieedule cells
in the presence of multiple multicast queues per input pti@switch. Sim-
ulation results show that we can trade the size of the intduiers for the
number of input multicast queues. Hence, affording a switekigner the
choice between the cost and complexity of the switch coretladcheduler.

The tremendous growth of the Internet coupled with newly enmeygi

4.1 Introduction

Traditionally, network nodes (IP routers, ATM switcheshé&et switches)
were designed for point-to-point communication (unicastpwever, the va-
riety of services on the Internet today has resulted in thergamce of new
applications such as teleconferencing, distance leariifigv/ etc. These new
applications have led to a high demand for high-speed sesfcbuters capable
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of handling point-to-multipoint communication (multicasSeveral architec-
tures for efficient multicast support have been investijated implemented.
These architectures can be classified based on varioussacith as queueing
schemes, scheduling algorithms and switch fabric type. drbssbar-based
architecture [83] is widely considered the most suitablédwng architecture
due to its low cost, scalability and more importantlyiitginsic multicast ca-
pabilities [84].

Unlike unicast traffic, where a packet (cell) at an input g@destined to only
one output port, a multicast cell queued at an input port eam & or more des-
tination output ports known as its fanout set. Althougheddéit architectures
have been proposed for multicast traffic handling [85] whiidhbased on copy
networks, in this chapter we consider the crossbar-basgdsmg architecture
due to its architectural intrinsic multicast capabilitiééhere has been signif-
icant research work on multicast scheduling in the litegtunost of which
is based on a multicast FIFO queue architecture [83]. Homydezause of a
similar HoL blocking problem as for the unicast traffic, thefarmance is low.
Avoiding the HoL problem in this case requires a FIFO queueery fanout
set per input. This implies maintaining up 2 — 1 separate FIFO queues
per input, whereV is the number of ports of the switch. This architecture is
known as the multicast VOQ (MC-VOQ) switching architect{86]. This ar-
chitecture is clearly impractical for even small sized sivis due to the large
number of queues required. As a compromise, researcheespnagosed to
use a small number of queuds(l < k < 2V — 1) per input [87].

This chapter focusses on the multicast scheduling proble@ombined In-
put and Crossbar Queued (CICQ) switches. We describe a satiltitast
scheduling algorithms along with appropriate architeegurln particular, we
propose the following:

» A novel CICQ switching architecture, where there is onetroast FIFO
queue per input port of the CICQ switch. We describe a simghiedul-
ing algorithm for this architecture. Our algorithm, namkd Multicast
Round Robin (MXRR) is based on FIFO scheduling as its inploedal-
ing and a Round Robin scheduling for its output scheduling.

» We studied the multicast problem in CICQ switches with ripldt mul-
ticast FIFO queues per input port. We devise a cell placeadgotithm,
namedModulg, that efficiently maps incoming traffic to the input multi-
cast queues. We also extend the MXRR scheduling algorithentied-
ule cells in the presence of multiple multicast queues peutiport of
the switch. We refer to this algorithm as MXRR
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The experimental results showed the superiority of the Ca@Qitecture com-
pared with its bufferless predecessor and its high capaldisupport multi-
cast traffic. Although simple in hardware, the MXRR was shdwmoutper-
form state of the art alternative algorithms [88]. The saemults apply for
the MXRRk scheduling algorithm. We compared the Modulo cell assigmm
scheme to the Majority scheme [87] and showed that our sclassigns ar-
riving traffic to the input multicast queues more efficierdigd quickly than
Majority, while requiring low hardware cost. Additionallthe experimental
results showed an interesting trade off between the nunfbiepoet multicast
queues and the size of the internal buffers. The reductichamumber of
input queues, at the expense of adding small extra inteufédring, is very
important not only because it results in better performabaé also because
it greatly reduces the complexity of the scheduler in terfrisformation ex-
change, resulting in faster and more scalable switchings dffords a switch
designer the choice between the cost and complexity of tfierbd crossbar
core on one hand, and the complexity and speed of the schgdltjorithm
on the other.

The remainder of this chapter is structured as follows: iSect.2 introduces
the multicast scheduling problem and presents backgroonodliedge and re-
lated work. We review existing multicast switching architees and discuss
their scheduling. In Section 4.3, we describe our proposatticast FIFO
gueue CICQ switching architecture. We describe the MXRRritlgm and
present its properties. Section 4.4 describes the CICQIsing architecture
with multiple input multicast queues. We describe a noveipte and efficient
cell placement algorithm, named Modulo. We also proposextended ver-
sion of the MXRR algorithm, that we have named MXRRIn Section 4.5, we
present and analyze the performance of our devised artthiteand schedul-
ing algorithms and compare them to existing solutions. Ikin&ection 4.6
concludes the chapter.

4.2 The Multicasting Problem

Multicast traffic handling, in its simplest form, is the capday of a router
to transfer the same data (a cell) to multiple output portmigtimum cost
in terms of data processing and time. This is important duhéogrowing
volume of multicast traffic on the Internet (audio, videoTYPetc.). Consider
the example in Figure 4.1, and assume that the 3 hosts cewdnectouter R2
are receiving the same multimedia content from the ser/énelserver sends
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Figure 4.1: Multicast traffic support in core routers.

the same message to hosts H1, H2, and H3, it either sendsniigersassage
3 times (one per destination) or it can send the message nofyaver routers
R1 and R2. Upon reaching R2, the message gets split into 8xomne copy
per destination host. Clearly, the latter case is a betticelsince it optimizes
the network resources and the time taken for the hosts tiveettee data. To
achieve this, routers R1 and R2 must be designed to suppdircast traffic.

The set of destination output ports of a multicast cell isvknas its fanout
set. If we consider atv x M router with multicast capabilities, a multicast
cell arriving at any of theV input ports can have any set of destinations be-
tween 1 andV/. In order to avoid the HoL problem, the router must maintain
up to 2™ — 1 separate FIFO queues per input in order to cover all possible
fanout set configurations (see Section 4.4.1). This armuite is known as
the multicast VOQ (MC-VOQ) [86]. Because of the huge numbegueues
maintained at each input and the need for extensive inféomaixchange in
order to schedule the traffic, this architecture is considiempractical. In-
stead, researchers have implemented just one FIFO queuepper While
using just one queue per input is practical, it has poor perdoce due to the
HoL problem. Another solution was to maintain a small numkeof queues
per input for multicast traffic. This proved a good compraarisachieve good
performance while maintaining affordable hardware rezquignts. Because

is much smaller thag? — 1, cells with different fanout sets may have to be
gueued in the same input queue. This mapping is known as th&ast cell
placement policy and will be discussed in more detail in i®act.4.1.
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Figure 4.2: A2 x 4 FIFO multicast crossbar switch.

421 The Multicast FIFO Architecture

If we consider that router R2 (in Figure 4.1) uses just oné&JHjdeue per input
for multicast traffic, its architecture can be describedegsiated in Figure 4.2.

By considering that the crossbar fabric operates at the speed as the ex-
ternal lines, at each time slot every input can send at masteh and every

output can receive at most one cell. Because of the intrmsiticast capabil-

ities of the crossbar fabric, a cell can be sent to all itsidagbns at the cost of
one by simply closing those crosspoints correspondingea#il destination

output ports provided that these outputs are ready (ave)l&breceive cells.

Subject to output availability and the scheduling alganithsed, a cell may
not reach all its destinations, indicated by its fanout deting one time slot.
There are two known service disciplines used to deal with $hiuation [83].
The first discipline is known amo fanout splittingand the latter is known
asfanout splitting When no fanout splitting discipline is used, a cell must
traverse the crossbar fabric only once. Meaning that a sedhitched to its
output destination ports if and only if all its destinatioatputs are available
at the same time. If one, or more, of the output destinatioadasy, the cell
loses contention and all of its copies remain in the input.pdwe consider
the no fanout splitting discipline in Figure 4.2, then onlyecof the two HoL
cells of queuedMQ; andMQ, will be switched out buhot both The reason
for this is that both cells have output ports 1 and 2 in theiofg sets, and
knowing that an output port can receive at most one cell aachthfanout
splitting discipline does not allow partial cell switchirtgis results in only one
cell of the two being eligible for transfer. The no fanoutitiplg discipline is
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known to be bandwidth efficient and easy to implement, how#echieves
low throughput because it is not work conseringhis can be seen from the
example above as either output 3 or output 4 will receive & loet not both
depending on which MQ has been selected.

When, however, fanout splitting discipline is used, a cafi bepartially sent
to its destination output ports over many time slots. Copiethe cell that
are not switched, due to output contention, during one tilmtecentinue com-
peting for transfer during the following time slot(s). Thexibility of allow-
ing partial cell transfer is achieved through a little irase in implementation
complexity, however it provides higher throughput becatisework conserv-
ing [89]. In this chapter, we consider fanout splitting. ¥wonsider the exam-
ple of Figure 4.2 again and assuming a fanout splitting piise is used, then
both the HoL cells oMQ; andMQ, can send copies to a subset of their output
ports. Output 3 and 4 are receiving one cell each and therdfoth copies
destined to them, in the input queues, are transferred wittontention. Ad-
ditionally, both HoL cells ofMQ; andMQ, have cells destined to outputs 1
and 2. However, we know that each output can receive at mastelhat a
time. Therefore, at the end of the time slot, we will have rigring cells for
output ports 1 and 2. These remaining cells are referred tlzeassidue

Depending on the policy used, the residue can eithesdmeentratedon the
input ports or it can beistributedover the input ports. As defined in [83], the
residue is the set of cells remaining at the HoL of the inpeLeps after losing
contention for the output ports at the end of each time stothé example of
Figure 4.2, the residue igl, 2}. A concentrating policy is one that leaves the
residue on the minimum number of input ports. If we considenracentrating
policy in Figure 4.2, the residue will be left (concentrgted eitherMQ; or
on MQ, but not on both. On the other hand, a distributing policy ie tmat
leaves the residue on the maximum number of input ports.dstistributing
policy in Figure 4.2 would result in the residue being disited oveMQ, and
MQ, but not on one queue only.

4.2.2 Algorithms For The Multicast FIFO Architecture

Several algorithms have been proposed for this archiecalirof which were
designed for the bufferless crossbar fabric switches.

» The Concentrate AlgorithmAs the name indicates, the concentrate al-

1A work conserving policy ensures that an output port is néllerso long as there are cells
destined to it in the input ports
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gorithm [83] always concentrates the residue onto as fewtsas pos-
sible. The purpose of this algorithm is to provide a basissf@luating
the performances of other algorithms, since it achievel tiigpughput
for the FIFO queue structure. However, this algorithm daetsmeet the
fairness requirement due to the starvation problem it eeeafhe Con-
centrate algorithm is not considered a practical algoritHtrrequires
up to M iterations per cell time to complete, which makes it diffictol

implement at high speed.

* The mRRM AlgorithmThe Multicast Round-Robin Matching (MRRM)
was proposed by [88]. A single round-robin pointer is cdlley main-
tained by all of the outputs. Each output selects the nexititipat re-
quests it at, or after, the pointer. At the end of the packe tithe pointer
is moved to one position beyond the first input that is seri@esigned
to be simple to implement in hardware, mRRM tends to conaenthe
selection onto a small number of inputs, yet maintains &ssn

» The TATRA AlgorithmThe general multicast scheduling problem can
be mapped onto a variation of the popular block-packing gaatas.
TATRA is based on the Tetris model and was first introduced#.|
TATRA has the properties of guaranteeing at least one inpoket is
discharged within each packet time, and also concentrhtesesidue.
Designed to approximate the concentrate algorithm with tesnplex-
ity, unfortunately TATRA is a complex algorithm since it cent be par-
allelized. Moreover, TATRA treats all inputs uniformly v is of no
value when the inputs are non-uniformly loaded or when sampeats
request a higher priority.

4.2.3 The Multicast k FIFO Queues Architecture

Due to the impracticality of the MC-VOQ switching architect [86] and to
the low performance of the multicast FIFO architecture, adgrompromise is
to use the multicast k FIFO queues architecture. It is a gogwechitecture
with a small number of input multicast FIFO queues per input (k < 2 —
1). This queueing architecture has been studied in the coofebufferless
crossbar switches [90] [91] as well as CICQ switches [924uFe 4.5 depicts
the multicast k FIFO architecture for aN x M buffered crossbar switch.
Recent work has showed that, similarly to IQ architectuf@€Q switches
with arbitrarily large number of ports may also suffer sfgr@int throughput
degradation for multicast traffic [92].
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Because the number of multicast queues maintained at epahimsignifi-
cantly smaller than the cardinality of the set of all fanceiissincoming cells
must be inserted in appropriate queues, MQs, by followimtasecriteria [87].
This is known as the cell placement strategy and will be dised in Sec-
tion 4.4.1.

4.2.4 Algorithms For The Multicast k FIFO Queues Architecture

The low performance and high complexity of the multicast® i&rchitecture
have stressed the need for the multicast k FIFO queuesectimi¢ and many
scheduling algorithms have been proposed. These alg@itiave been de-
signed for the bufferless as well as for the buffered crasalihitectures.

» Bufferless Crossbar Based AlgorithmAgorithms for this architecture
include the random scheduler (RS), the Greedy Schedulérd@bthe
Greedy Min-Split Scheduler (GMSS) [90]. The first algoriti{RS)
makes decisions randomly among the input and output poreddition
to its costly hardware requirement, this scheme has poéuoipeance as
it leaves idle outputs due to the contention effect. The s&cgo-
rithm, GS, tries to overcome the shortcoming of RS. It assigaights
to the queues such as queue length and then makes its selegsied on
weight ordering. The third algorithm is also a weighted alhon and
tries to combine the advantages of the previous. Because oéguired
sorting process, the implementation of this algorithm istrigial and
prevents it from running at high rates.

» Buffered Crossbar Based Algorithm&:group of scheduling algorithms
has recently been proposed for the multicast k FIFO quewb#tecture
designed for the CICQ switching architecture [93]. Thegp@dihms
were proposed along with a class of cell placement schembs.inF
put arbitration was based on some policies such as givirfgnerce to
HoL cells that would result in the minimum left residue. Anet input
scheduling algorithm was based on selecting the cell wightlximum
number of reachable destinations first. A third policy is ieegpref-
erence to cells with the maximum service ratio, defined astimber
of reachable destination outputs divided by the fanout remoba cell.
The output arbitration was based on Round Robin (RR) and é&sing
Queue First (LQF).
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Figure 4.3:N x M multicast CICQ Switch.

As a summary of the related work, we argue that each of theeapmsented
schemes tries to address some issues but fails to meet dddeeguirements.
So far, none of these algorithms have proven simultaneaiitjent in terms
of high throughput, practical in terms of implementatiormgexity or fair

with respect to the input FIFO queues. In the following settwe propose
our new architecture along with a scheduling scheme thataradkethese re-
quirements.

4.3 The Multicast CICQ Switching Architecture

Our choice of the multicast CICQ crossbar switch architectsi motivated by
the fact that this architecture has key advantages in diyimdi the schedul-
ing process. The presence of internal buffers drasticallyroves the overall
performance of the switch due to the advantages it offerse ddoption of
internal buffers makes the scheduling totally distribyutednce reducing the
arbitration complexity to linear. It is this autonomy an& thbsence of coor-
dination between the input (output) scheduling algoritihet makes CICQ
switches appealing and desirable for multicast traffic suppAdditionally,
these internal buffers reduce (or avoid) the output comentMeaning, they
allow the inputs to send cells to an output irrespective ofutianeous cell
transfer to the same output by other inputs. If an output iseady to receive
a cell from an input, the input can still send it to the intérmaffer, provided
that this internal buffer can accommodate that cell.
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Figure 4.4: A2 x 4 multicast CICQ Switch.

4.3.1 Switch Model

We consider our proposed switching architecture as depictd-igure 4.3.
The switch is assumed to operate on fixed-size packets)(c@llere areN
input cards, each one contains a FIFO multicast queue. Thenal fabric
consists of NM buffered crosspoints (XP). When an arrivietl, ¢o an input
porti, V1 < i < N, has afanout vector containing the output 1 < j < M,
it passes through the crosspoX®; ;, before continuing to the output buffer.

As with unicast scheduling, a multicast scheduling cyclestcsts of the follow-
ing three steps: input scheduling, output scheduling atideshg notification.
During the input scheduling phase, each injuh an independent and paral-
lel way, sends the HoL cell of its multicast FIFO queue to titernal buffer
corresponding to its fanout set. Likewise, each oufpstlects, independently
and in parallel, a non empty crosspoint buff&P; ;, and sends its cell to the
output queue. Then, the flow control is performed betweetntieenal buffers
and the input queues, to inform the inputs about the intéyufiiers status.

As depicted in Figure 4.3, the input scheduler is not embed@deproposed
in Chapter 3. Embedding an input multicast scheduler withi buffered
crossbar chip would requird flow control signals, from the input line card
to the crossbar chip, to carry the fanout set of every new ddiditionally,

N + logk flow control signals are required, from the crossbar chifnéoimput
line card, to carry the scheduler decision, wh&rdenotes the set of reachable
internal buffers that the cell can be sent to and:logpresents the index of the
selected input multicast quetiAs a result, it is better to implement the input

2In the case of Figure 4.3; equals one. Howeve¥; can be greater than one for other
architectures, such as the one presented in Figure 4.5
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scheduler at the input line card since oflyflow control signals are required.

4.3.2 The Multicast Crosspoint Round Robin Algorithm: MXRR

The description of each scheduling phase of the Multicastszpoint Round
Robin algorithm, MXRR, is as follows:

Input Scheduling:
» For each input;, do

— Send the FIFO HoL multicast cell to the set of internal bufer
corresponding to its fanout vector.

— If one or more internal buffers are not free, the cell remainthe
HoL of that input and waits for the next input scheduling Ehts
send to its remaining internal buffers.

Output Scheduling:

* Initialization: All the output pointers are, arbitrarilget to the same
initial position and incremented, in each time slot, by en@l (V).

 For each outputj, do

— Starting from its pointer index, select the first non emptsspoint
buffer, XP, and send its queued cell to the output buffer.

The MXRR algorithm exhibits good properties such as fasnasn starvation,
speed and simplicity in design. The output pointers settilaf key importance
due to their synchronous update mechanism. To better sgectimsider the
2 x 4 multicast CICQ switch depicted in Figure 4.4. Let us assuna the
output pointers are all pointing to input 1 and all the intéfouffers are empty.
During the input scheduling phase, both HoL celldv®, andMQ, will be
completely transferred to the internal buffers. During tlutput scheduling
phase, since the output pointers have index 1 each, evegpytgutvill select
the internal bufferXP; ;, V 1 < j < 4. During the current time slot, the
HoL cell of MQ, is completely served and its copies are all transferred to
their destination output ports. At the beginning of the sectime slotXP, o,
XP, 3, and XP, 4 are occupied. Therefore, the second cellM®, (which
becomes the HoL cell) cannot send its copies to all theirimggin outputs
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{1, 3, 4. It can only send tXP, ; which leaves a residue 4B, 4}. MQ,,
however, can send its HoL cell completely to the internafdysf During the
output scheduling phase, since the output pointers indeneescremented to
2, each outpuj will select the internal buffeXP, ;, V1 < j < 4. This means
that, during this time slot, the HoL cell &fQ, is completely served and the
second cell is also partially served. From this example vagvdhe following
properties and advantages of the MXRR scheduling scheme:

» The MXRR scheme guarantees the total service of at leaspacieet
each time due to the output pointers setting (which pointhto same
internal buffer and advance synchronously). Moreovettithe a packet
waits at the HoL is bounded by number of input pons,

 Fair and starvation free. Since the output pointers motitcsally and
in a synchronous fashion irrespective of the chosen pathetstarva-
tion problem will never occur. The chance of service for amg tells
from two different input ports is exactly the same due to thend robin
pointer movement.

» Simple in hardware implementation. Each input indepetigerarries
out FIFO arbitration. The outputs, on the other hand, worla ito-
tally distributed and parallel manner. No computation aadhparison
of weights is needed to make an arbitration decision. Eatijubarbiter
just performs simple static round-robin arbitration.

» The MXRR achieves higher throughput and a lower packenh&gtéhan
all existing bufferless multicast FIFO algorithms. We vékamine this
property through performance evaluation in Section 4.5.

4.4 The Multicast K FIFOs CICQ Switch Architecture

Although the Multicast FIFO architecture is simple and ficad, it suffers
poor performance due to the HoL problem. In order to com[yletbminate
the HoL blocking problem, multicast cells having the sanmeofd sets must
be placed in the sanseparatemulticast queue (MQ), which requires as many
MQs as the multicast VOQ (MC-VOQ) architecture would and ikiclearly
infeasible even for a small switching system. An attractlternative is to
use a small numbek;, of MQs per input to accommodate the incoming mul-
ticast cells. This is a good compromise to achieve good padnce while
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Figure 4.5: AnN x M multicast k FIFO queues CICQ switch.

maintaining affordable hardware requirements. This istioeel we adopt, as
depicted in Figure 4.5. Each input maintains a small numbeof multicast
FIFO queues per input, whefé | 1 < k < 2M —1}. Ateach input, multicast
queues are denoted BQ, ; where{(i,7) | 1 < i < N;1 < j < k}. An
input multicast queue, MQ, is considered eligible (dendddQ) if it is not
empty and at least one of its destination output ports cporass to a free XP.
Because: is much smaller thag™ — 1, cells with different fanout sets may
have to be queued in the same input queue. This mapping isrkaswhe
multicast cell assignment policy, which we describe next.

4.4.1 Multicast Cell Assignment

Before going into detail, we first explain why multicast setequire a cell
assignment scheme (policy) in order to place incoming st cells into
specific multicast queues (MQ) while waiting their turn todmheduled. In
general, the cardinality of the fanout sét,of a multicast cell can vary between

| P min| @nd|P.,ax|. Since a multicast cell can have a minimum of 1 destination
output port and a maximum df destination output ports, we can $&t,;,| =

1 and|®.,.x| = N. Therefore, the cardinality of the set of all fanout séts,

can be calculated as follows:

N

N

C<I> - ’@(q))‘ = E <(I)> = 2N - 17 cI)min < (I)i < (I)max (41)
®;=1 '
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In order to completely avoid the HoL blocking problem, medist cells hav-
ing the same fanout sets must be placed in the ssparatemulticast queue
(MQ), which requires as many MQs &% . Maintaining such a big number
of MQs is however impractical. The alternative is to use alsmanber, &,

of MQs per input to accommodate the incoming multicast cdiecause:

is smaller thanCs, cells with different fanout sets have to be queued in the
same MQ and every MQ receives cells with at rrﬁ%ﬂ different fanout sets.
Thus, acell placement schenigrequired to map incoming multicast cells into
the £ multicast queues.

Since, in our model (Figure 4.5), the number of M@smaintained at each
input is much smaller than the number of all fanout configare, C, a cell
assignment policy is required in order to map incoming delihe MQs. This
has a significant effect on the scheduling performance. iGuswork [87]
has outlined some criteria in designing such a poli¢y: The heads of the
MQs should baliversein order to span a large number of the outputs. This
would ensure more scheduling opportunities and work ceasien. (ii) Cells
with the same, or similar, fanout sets should be stored irsémee queue, to
reduce HoL blocking and prevent the out of sequence delprriglem. Many
cell assignment schemes existed, such as Majority [87]ifWim Distance
Queue (MDQ) and Load Balanced Queueing (LBQ) [90]. The MDResue
assigns a representative fanout set per MQ. Each incomaigpis inserted in
the MQ with the representative having the minimum hammirsgadice from
the packet’s fanout set. The LBQ scheme assigns packets td&4€d on
either sorting the packets fanout sets or fanout values. pfédgous two cell
assignment algorithms are inspired by the Majority aldponit

In the majority scheme, each MQ is associated a bit mask tregsponds to
a subset of outputs. The mask is created by forming a balgrartition of the
set of outputs whose cardinality is equal to the number of M&gs example,
if an 8 x 8 switch has 2 MQs per input, the partition will result in evéiQ’s
mask equalling tcg = 4. The drawback of this partition is that the number of
bits set for each mask decreases with increasing number€st Ms a result,
this assignment does not adequately capture the multieasindtion sets of
packets. The solution to the bit mask partition was to allbe bit masks to
overlap. In addition to the original balanced partitione lemaining bits of
every mask are set at random. Because masks overlap, Mdjastto deal
with cases when a packet has the maximum match with more theamask.
Majority resolves this by associating multiple sets of nsafgk each MQ and
resolves ties with multiple levels of comparisons, with flmal comparison
breaking ties statically.
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Unfortunately, in addition to its complex and time consugprocedure, Ma-
jority suffers a major problem by causing MQs to be unbaldringhe number
of packets they cater for, causing part of these MQs to beagrder utilized.
This problem arises from the statical tie breaking mecmamitMajority. Be-

cause ties are broken statically, packets with small nusnsieianout sets will
always be inserted in the same MQ. This results in the same MEsving

more packets than others and severely limits the perforenah®ajority, and
defeats the purpose and advantage of increasing the nurmi&poper input
port (Figure 4.11 and Figure 4.12 illustrates this effect).

4.4.2 The Modulo Cell Assignment Algorithm

Our queueing structure implements a simple and efficiert asdignment
scheme that does not require any sorting. Our cell assignssbeme, named
Modulo, works as follows:

Modulo:

 For each input;, do
« If an incoming multicast cell;, has a fanout seb,.

— Insertcin MQ); ;, wherej = |®.| mod(k).

In addition to its simplicity, especially if the number of Mk, is a power of
two, Modulo meets all previously mentioned criteria for efficient cedsign-
ment. To better understand this, let us consider an exarAgkume we have
an8 x 8 switch and 2 multicast queues per inplat-€ 2). At each input,,
Modulo places cells with even fanout setsMQ; ;, and those cells with odd
fanout sets iIMQ; ;. This way, the heads of the MQs can span large numbers
of destinations (i.e.,the fanout set cardinality of the HoL cell MQ, o = 6
and that of the HoL cell oMQ; ; = 3). Moreover, cells with the same fanout
sets are ensured to be queued in the same MQ, avoiding thd¢ seitj@ence
problem. Additionally, our scheme exhibits one further ortgnt property as
a fair scheme, in the sense that it gives equal opporturiti¢ise cells to ad-
vance to the head of the queues irrespective of their nunfbdestinations.
This is important as there are scheduling algorithms thatls fanout set as

3This is assuming uniform traffic. When the traffic is non-onih or bursty, the HoL fanout
sets may overlap to a large degree.
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the weight for priority scheduling and, unless the cellofarsets per MQ are
diverse, MQ starvation (unfairness) can occur.

b = Least Log; (k)
bits of @,

b

Cell Data 8 | & mQ,

- MO

Figure 4.6: The Modulo cell placement scheme.

Table 4.1: The Modulo scheme implementation results fdedihtk.

Number ) Area Delay
of MQs Slices | Equivalent Gate Count (ns)
k=2 4 248 15
k=3 13 432 1.9
k=4 22 576 1.9
k=8 39 1032 2.4

Finally, the Modulo scheme has simple hardware requirement allowing it to
place cells in the MQ at very high speed. Assuming therekaMQs per
input and that each incoming cell has a fanout set valyé our scheme can
be implemented as DeMux with its input consisting of the dalla, its select
bit(s) consist(s) of the least |04) bits of |®.| and its outputs consist MQ;
where{j | 0 < j < k} as depicted in Figure 4.6. We implemented khedulo
scheme in reconfigurable logic, using the Xilinx Virtex IV@[7as the target
device and the Xilinx ISE platform 7.1 design flow platformheldesign was
simulated for different numbers of MQ% € 2, 3, 4, and 8 respectively) and
the post place and route results in terms of area and timiagl@picted in
Table 4.1. We can see from the table that the delay of the sthemery
small irrespective of the number of MQs used per input. When2, the
Modulo scheme checks the least significant bit of the cell’s fanaiue; if it

is O the cell will be placed iMQ, else it will be placed iMQ,. Whenk =8,
however, we can see that the delay is higher. It is of notevihan setting:

= 3 or 4 results in the same delay. This is because the seteétdre equal to
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2 resulting in a 2-to-4 DeMux whethéris equal to 3 or 4. This results in the
same delay and different area due to the partial use of theuRels a result,

it is better to choose a number of M®, that is a power of 2 as it results not
only in a full DeMux but also in balanced MQs in the number afdat sets
per queue. This is because, generally, the switch sizes jpogver of 2 and
using a small numbeét of MQs per input (that is also a power of 2) will result
in balanced queues in the number of fanout sets that they @amenodate.
Next, we need to devise the appropriate algorithm to scleetthd transfer of
cells from the input MQs to the output ports. The next sectleacribes our
proposed scheduling algorithm.

4.4.3 The Multicastk FIFOs Algorithm: MXRR _k

The MXRRK algorithm is based on a static round robin selection. Tadavo
pointers synchronization, MXRIR uses a fully unsynchronized pointer updat-
ing scheme similar to [54]. The description of each schedufihase of the
Multicast cross-point Round Robin algorithm, MXRRis as follows:

Input Scheduling:
All input pointers are initialized to arbitrarily differémositions.

 For each input;, do

— Starting from the pointer location, select the first eligible queue
EMQ, ; and send its HoL cell copiégo the free internal buffers
(XP;5).

— Move the pointer to positiolj + 1) (mod N).

Output Scheduling:
All the output pointers are, artificially, set to the sameiahiposition and in-
cremented, each time slot, by oned (V).

» For each outputj, do

— Starting from the pointer position, select the first non gngposs
point buffer and send its queued cell to the output buffer.

“Only copies destined te outputs are sent, where € {1,..., N} andXP; . is not full.
Other copies will have to compete in later time slots.
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The MXRRK output scheduling remains the same as that of MXRR because
every cell is treated the same irrespective of whether itoiming from an
input FIFO or an input multicast queue, MQ. Additionally, imtaining the
same output scheduling retains the same property of egsthisncomplete
service of at least one cell per time slot. MXBRliffers from MXRR in its
input scheduling. First, it uses a round robin priority geimin servicing the
input multicast queues, MQ. Second, the delay a cell waitseatHoL under
MXRR Kk is bound byk N time slots, whereV is the number of input ports
of the switch andk is the number of input multicast queues per input. The
queueing delay inside the crossbar fabric is the same a®thdXRR (V
time slots). So, the delay experienced by a HoL cell insidestivitch under
MXRR_k is bound byN (k + 1) time slots. The round robin mechanism of
MXRR Kk allows it to be fair and starvation free while kept simpldnardware.

4.5 Performance Results

This section analyzes the performance of different CICztagieueing and
switching architectures and their multicast schedulimgpathms. The perfor-
mance results presented in this section are obtained fodiff@rent switch
sizes of8 x 8 and16 x 16. The mean fanout size used throughout the simu-
lation is equal to%V, whereN is the number of the output ports of the switch.
Unless otherwise specified, the default internal buffee $&zequal to 1 cell
per crosspoint. We conducted the performance analysis twdenput traffic
scenarios: Bernoulli uniform and Bursty uniform. Pleaderé Appendix B

for finer details about the simulation environment and tafienarios.

The experimental results are structured in three parts.hénfitst part, we
studied the performance of the MXRR algorithm for the makitcFIFO queues
CICQ switching architecture. We compared the TATRA aldormt[88] and a
Multicast SLIP-like (that we denote McaSLIP) for the bufferless crossbar
switch and the MXRR algorithm for the CICQ architecture. \Wese TATRA
because it is considered to be one of the most practicalitigts that achieve
high performance and multicast SLIP because it resembleRRIX he second
part of the experiments targets the multicast k FIFO quel€QGwitching
architecture. We started by assessing the performancer afevised Modulo
cell assignment scheme. We compared Modulo with the Mgjatheme.
Then, we compared the performance of MXRRvith that of the McasiSLIP
algorithm. The latter part studies the tradeoff betweenntmmber of input
multicast queues and the size of the internal crosspoirfiedsuf
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8x8 Switch under Bernoulli uniform traffic
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Figure 4.7: Average cell delay 8fx 8 multicast FIFO switch under Bernoulli
uniform traffic.

Bursty uniform traffic
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Figure 4.8: Average cell delay of a multicast FIFO switch emBursty uni-
form traffic.

45.1 Performance of the Multicast FIFO Architecture

Figure 4.7 depicts the average delay performance of the PAERd
Mcast SLIP for the ar8 x 8 bufferless crossbar switch compared to the MXRR
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16x16 Switch under Bernoulli uniform traffic
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Figure 4.9: Average cell delay of6 x 16 multicast FIFO switch under
Bernoulli uniform traffic.

algorithm for an8 x 8 buffered crossbar switch. As the figure shows, MXRR
has better delay performance than the other two. This resmlhins the same
uniform bursty arrival as well. This confirms the superiorfpemance of the
CICQ, even with simple scheduling, as compared to the |Qiteictare which
employs a sophisticated algorithm, such as TATRA. Figugeilllistrates the
average cell delay under the same settings as above but miftrma bursty
arrivals, with a burst length of 16 cells.

In order to better analyze the behavior of each algorithmtested the algo-
rithms under the same settings as above using a larger sidtmh.s This is
important because, as the switch size increases, the faetsubf the cells also
increase making it harder for the algorithm to schedule tati¢ due to in-
creased contention. To assess this behavior, Figure 4%&hof Figure 4.8)
depicts the average cell delay of each of the three algositttma 16 x 16
switch. Again, the MXRR algorithm keeps the shortest celagleamongst
the three algorithms both under Bernoulli uniform and huestiform arrivals.
Average cell delay is expected to improve if we increase titermal buffer
size. This is confirmed in Figure 4.10, where internal bsffsizes of 2, 4
and 8 cells are used for MXRR. This suggests that biggerriatduffer sizes
can help in absorbing the multicast cell fanout problem drsdiefore giving
scheduling opportunities to more cells in shorter duration
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16x16 CICQ switch under Bernoulli uniform traffic
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Figure 4.10: Average cell delay of MXRR with different intet buffer set-
tings.
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Figure 4.11: Throughput comparison between Modulo and Ngjcell place-
ment schemes under Bernoulli uniform traffic.

4 5.2 Performance of the Multicastk FIFOs Architecture

This section starts by assessing the performance of the llodli assignment
algorithm. We compared the Modulo and Majority cell placemmgchemes
in terms of throughput and input queues occupancies for Wittls sizes of
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Bernoulli uniform traffic

10°*

—E&— Majority (8x8)
—A— Majority (16x16)
—¥k— Modulo (8x8)
—e— Modulo (16x16)

=
o
w
T

=
o
NN
T

Input Queues Occupanices, ||L(106)||

10| ) ) ) . " " N

1 2 3 4 5 6 7 8
Number of Multicast Queues, k, per Input

Figure 4.12: Input queues occupancies of Modulo and Mgjouihder
Bernoulli uniform traffic.

8 x 8 and 16 x 16 both employing the MXREk algorithm under uniform
traffic. We varied the number of MQs per input and observedthgimum
throughput achieved by each of the cell placement algostiive can see from
Figure 4.11 that the throughput of Modulo increases priqaatly with the
number of MQs. However, Majority tends to have even lowenulghput with
increasing number of MQs. This is attributed to the unbaddn®lQs effect
by its assignment policy and its statical tie breaking. Fegd.12 depicts the
MQs occupancies for each algorithm just before saturatb8%% input load).
Again, Modulo outperforms Majority irrespective of the st size or number
of MQs. Since the input traffic is uniform, by applying Litdd_aw [94], we
can directly deduct the average cell delay under each scfremd-igure 4.12.
Since the input load is 95%, therefore the values of Figut@ dre similar to
the average cell delay. This delay does not include theriatdyuffers delay,
which is bound by the number of input po, as discussed in Section 4.4.3

In the previous experiments, we tested all three algoritfonshe multicast
FIFO queueing architecture. In the following simulatiomge compare the
delay performance of the McaSiLIP bufferless algorithm with the MXRR al-
gorithm because of their similarities, as non weighted rdtlgms. Figure 4.13
depicts the average delay performance for each of Msa#? and MXRR for
the multicast k FIFO queues architecture. We used 2 and 4 MQput
for a1l6 x 16 switch under Bernoulli unform traffic arrivals. We can semnir
Figure 4.13 that MXRR outperforms the bufferless Mc8ktP algorithm irre-
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16x16 Switch under Bernoulli uniform traffic
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Figure 4.13: Average cell delay @6 x 16 multicast k FIFO switch with dif-
ferent numbers of input queues, k=2, 4.

spective of the number of MQs used per input. MXRRtill achieves higher
performance while using half the number of MQs that McaktP_4 does.

MXRR_k under Bernoulli uniform traffic
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Figure 4.14: Average cell delay of MXRR with different MQ numbers and
XP sizes.

In the remainder of the simulations, we study the effect ofivg the size of
the internal buffers and the number of multicast quekigper input port of the
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MXRR_k under Bernoulli uniform traffic
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Figure 4.15: Input queues occupancies with different MQ bers and XP
sizes.

switch. Figure 4.14 depicts the average cell delay of MXIR&sing different
numbers of MQs per input, different internal buffers sized different switch
sizes. For exampld,6 x 16-MQ(1)-XP(4) refers to the average cell delay of
MXRR _k when using d6 x 16 CICQ switch, 1 MQ per input port and internal
buffer size, XP, of 4 cells per crosspoint. We can see fromfitdhare that
MXRR k achieves a slightly shorter cell delay with just 1 MQ and d&hstze
of 4 cells than when using 4 MQs per input and just 1 cell periXBddition to
confirming the importance of the internal buffers in imprayithe switching
delay and reducing the HoL blocking, this result has a majgglication on
the design of the MXRE input scheduler. Instead of using MXRRthat
requires a priority encoder for the round robin selectiomagthek MQs per
input port, a switch designer has the option to just use theRRRXalgorithm
(consequently the FIFO CICQ architecture) witlkells per XP.

Figure 4.15 depicts the occupancy of the MQs usingihenorm vector as
defined in Appendix B.3. In the case of multicast CICQ ardiitee, theL?
norm vector, at time slat, is calculated as follows:

n k
L@ = | 33 (MQiy(n))?

i=1 j=1

We can see from the figure that, at 99% input load and with bettcls sizes,
the L? norm of MQ(1)-XP(4) is 1.5 bigger than that of MQ(4)-XP(1) ow-
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ever, the total number of cells per input port is smaller WitQ(1)-XP(4) than
with MQ(4)-XP(1). To see this, lei be theL? norm of MQ(1)-XP(4) and
equals to the.? norm of MQ(4)-XP(1). Then, we have:

Va2 = 1.5V4b2 hence,a = 3b

Meaning, at 99% input load, the total number of cells —usirsgj 1 FIFO queue
per input port and an XP size of 4 cells— is equal to 75% of thed tmumber
of cells when we use 4 FIFO queues per input port and XP sizecefl1This
result is conform to the lower average cell delay (Figurettdf MXRR with
MQ(1)-XP(4) instead of MQ(4)-XP(1).

4.6 Summary

This chapter studies the multicast traffic scheduling pohin CICQ switches.
We began by surveying existing multicast switching architees with their
scheduling algorithms and discussing their shortcominif$¢e proposed a
CICQ switch architecture based on one multicast FIFO peutiport. We
devised a simple round robin algorithm, named MXRR, for #mishitecture
and showed its better performance by comparison to existogyithms.

We further studied the CICQ switching architecture, whaegeé are multiple
multicast queues per input port. We proposed a cell assighaidgorithm
capable of assigning incoming traffic to the input queuesenedficiently than
existing state of the art algorithms. We also extended theRR>Xalgorithm
to schedule cells in the presence of multiple queues pett.inpur devised
algorithm, MXRRK, outperforms alternative algorithms under various taffi
scenarios. The experimental results showed an equivaletaeen using only
one multicast FIFO queue per input or multiple queues paitjrgubject to a
trade off in the size of the internal buffers. Hence, giving dption of choosing
between the complexity and speed of the scheduling algwrgh one hand,
and the cost of the buffered crossbar fabric on the other.

This chapter and the previous chapter each addressesmitiedy unicast traf-
fic scheduling or purely multicast scheduling. However| hegernet traffic is
a mixture of both traffic types. In the next chapter, we studydcheduling of
integrated unicast and multicast traffic flows in one unifié@@ switch.



Chapter 5

Integrated Unicast and
Multicast Scheduling

two chapters, we studied the scheduling problem in eitharra pnicast

context or a pure multicast context. In this chapter, we psepa novel
switching architecture that combines both architectutedied in Chapter 3
and Chapter 4. Our proposed buffered crossbar (CICQ) swgdrchitecture
is capable of supporting both unicast and multicast traffiv$l concurrently.
We propose an integrated Round Robin based scheduler fragmfy ser-
vices both unicast and multicast traffic simultaneouslyr &gorithm, named
Multicast and Unicast Round robin Scheduling (MURS), hasnbghown to
outperform all existing schemes under various traffic pagteWe further pro-
pose a hardware implementation of our algorithm fa6ax 16 CICQ switch.
The implementation suggests that MURS can sustain a 20 Glgpsate and a
clock cycle time of 2.8 ns, reaching an aggregate switchamgividth of 320
Gbps.

I nternet traffic is a mixture of unicast and multicast flows. In the poes

5.1 Introduction

The growing number of newly emerging applications such Exoaferenc-
ing, distance learning, IPTV etc. over the Internet haslredun a growing
proportion of multicast traffic. In addition to point-to4pd (unicast) commu-
nications, a network node (high speed IP routers and ATMche#) is also
required to deal with point-to-multipoint (multicast) camnications and the

88
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combination of the two. In contrast to traditional switchsm where uni-
cast and multicast traffic flows are treated separatelygdig] a switching
architecture and scheduling algorithms capable of supgpfieterogenous,
yet simultaneous, different traffic types is becoming iasiegly important.

To date, little research has been done on the design of ateefyscheduling
algorithms to support both unicast and multicast traffies/pThe previously
proposed scheduling algorithms are in fact a combinatiaradfer unicast and
multicast algorithms unified in one integrated scheduldre hput queueing
structure has also combined a unicast queueing structdrenalticast queue-
ing structure. The widely used unicast queueing structutka virtual output
gueueing (VOQ) [40], since it avoids the head-of-line (Hdldcking prob-
lem [36]. As for multicast traffic, a multicast packet (calhn have more than
one destination, known as itanout set Consequently, a multicast queueing
structure can vary from just one multicast FIFO queue peuting 2V — 1
queues per input, wher® is the number of output ports of the switch. De-
pending on the input queueing structure, integrated sdimgdaigorithms have
been proposed. These algorithms were mainly proposeddanput queued
(IQ) bufferless crossbar fabric switching architectureaaese of its scalabil-
ity, low hardware requirements amokrinsic multicast capabilities Most of
the proposed algorithms were based on input VOQs for unica§ic and one
FIFO queue for multicast traffic [18] [95]. Other algorithif6] used VOQs
for unicast and: queues for multicast traffic, whete< k& < 2V — 1. The
major drawback of these algorithms lies in their inabiliyeither achieve high
performance or run at high speed. This is mainly due to tlegitralized design
and to the nature of the crossbar fabric switching architect

The previous chapters have shown the optimal performancieofCICQ

switching architecture. Instead of one centralized andptexnscheduler, a
CICQ switch maintains one scheduler per input as well as ohedaler per
output. These schedulers are therefore decoupled and c&nnglependently
in parallel, improving the switching performance. Substdrwork has fo-

cussed on designing unicast algorithms for the CICQ switglarchitecture
(see Chapter 2). However, fewer results have appeared fibicas schedul-
ing in CICQ switches [97] [92] [93]. These algorithms, ursitand multicast,
have been shown to have superior performance than all tdgwiproposed
for the IQ bufferless switching architecture.

Despite the CICQ switches potential in solving the schegdutomplexity is-
sues faced by their bufferless predecessors, the problesoheduling inte-
grated (unicast and multicast) traffic in CICQ switches hatdoeen addressed
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so far. In this chapter, we fill this gap and propose the falhgw

» Anintegrated CICQ switching architecture that suppootsctirrent uni-
cast and multicast flows. The proposed architecture, showrig-
ure 5.1, is based on input VOQs for unicast traffic &nfll < k <
2V — 1) FIFO queues per input for multicast traffic.

» A simple round robin scheduling algorithm, termed Mulitand Uni-
cast Round robin Scheduling (MURS), capable of arbitratiot traffic
types simultaneously. Different variations of the MURSaalthm are
also proposed, depending on the scheduling priority of &adfic type.

The proposed MURS algorithm was shown, through simulatiorachieve
high performance and outperform alternative algorithmdearvarious traffic
scenarios and combinations of unicast and multicast &masti Similar to the
previous chapter, simulation results showed that, evameiptesence of mixed
input traffic, we can still trade the size of the internal kuéffor the number of
input multicast queues resulting in better delay perforceaas well as simpler
scheduler design. We further implemented the MURS algoriibr a16 x 16
buffered crossbar switch. It has been segmented into 7 dgcles with a
clock cycle time of 2.8 ns. The hardware implementation lteguggest that
our proposed algorithm can sustain up to 20 Gbps line ral@yialg every
switch line card to forward more than 47 million ATM cells macond.

The remainder of this chapter is organized as follows: $Bch.2 presents
background knowledge and related work. In Section 5.3, weduce the
integrated CICQ switching architecture. We describe tloppsed MURS al-
gorithm, along with two variations: one for unicast prigréicheduling and the
other for multicast priority scheduling. Section 5.4 preasethe performance
study of our algorithms with a comparison to existing schenhe Section 5.5,
we propose a possible hardware implementation of our pempsesheme, for
al6 x 16 CICQ integrated switch. Finally, Section 5.6 provides aswary of
the chapter.

5.2 Background

The problem of packet scheduling has been extensivelyestumlier the past
two decades for IQ bufferless crossbar based switches. dddbe research
work has focused either in a purely unicast or a purely magticontext. Sev-
eral unicast scheduling algorithms have been proposedSeseton 2.4.1).



5.2. BACKGROUND 91

The scheduling of multicast traffic flows in IQ switches hasodbeen exten-
sively studied, as discussed in Chapter 4. The multicastejng structure is
paramount to the performance and the implementation fiéisddf the switch-
ing system, and different solutions have been studied. I&ind the work on
IQ switches, CICQ switches have attracted great interesintyy due to the
advantages they offer in reducing the scheduling compleiid scaling the
switching performance. Considerable research work hasssd on schedul-
ing unicast traffic in CICQ switches, as described in Chapt@nd Chapter 3.
Little attention, however, has been dedicated to scheglutlticast traffic
in CICQ switches. The first work on multicast traffic schedglin CICQ
switches date back to just 3 years ago [97]. Since then, ofédwadditional
results have been proposed [92] [93].

Despite the substantial work advocated to either unicastuticast schedul-
ing, comparatively little has been done on integrating astiand multicast
traffic. Except [98], where the architecture is a shared nmrgnte few other
algorithms have been proposed for the 1Q buffer-less swi¢chrchitecture.
In [95], the problem of integration of unicast and multichas been addressed
and its hardness has been derived. At each input, the queagthitecture
was based on VOQs for unicast and one multicast queue forcastit A prac-
tical algorithm was proposed that consists of schedulingfioast traffic first
and leaving the unicast traffic for idle inputs (or outputdjhile this solution
achieves good performance, it leads to permanent stanvatianicast flows.
A similar architecture to [95] was proposed in [99]. In moeeent work [96],
the input queueing structure used was based on VOQs forsirdoad a small
number,k, of multicast queues for multicast per input. The authooppsed
integrated algorithms based on previous unicast and rasttiecheduling al-
gorithms. The integration was based on some priority netsach as time
and/or multicast service ratio. These algorithms perforamyniterations in
order to achieve good performance, limiting their scaigbih port counts
and/or speed per port.

Although the CICQ switching architecture exhibits higherfprmance than
the 1Q bufferless architecture, the integration of unicasd multicast traffic

in CICQ switches has thus far not been addressed. Motivatélaebabove, in

this chapter we describe a CICQ switch capable of suppolkiriig unicast and
multicast traffic flow simultaneously. The next sectionaxiinces our proposed
architecture.
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Figure 5.1: The integrated CICQ Switching architecture.

5.3 The Integrated CICQ Switching Architecture

The proposed CICQ switch model is depicted in Figure 5.1 afoN x N
switch. This architecture differs from conventional CIC®itshes [60] in

its input queueing structure as well as its input schedulingere are\N in-

put ports, each maintaining two types of queues: unicaffictqueues and
multicast traffic queues. The VOQ structure is adopted facast queues
and there arév VOQs per input, one per output. When a unicast cell, des-
tined to outputj, arrives at input;, it is placed inVOQ, ;. The multicast

k FIFO queueing architecture is used for multicast flows, escrilged in
Section 4.4. At each input, multicast queues are denoteMQy,; where
{(i,7) | 1 <1 < N;1 < j < k}. The Modulo cell assignment scheme (see
Section 4.4.2) is used to place incoming multicast cellg their appropriate
input queues.

In addition to the input queueing structure, each input canmtains arinte-
grated input schedulefThe scheduler, at each input, examines the HoL of the
eligible queues belonging to that input and selects one cell to beridied to
the buffered crossbar fabric chip. An input VOQ is deemegilgk if it is not
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empty and its corresponding XP is available. An input makicqueue (MQ)
is considered eligible if it is not empty and at least one®tligstination output
ports corresponds to an available XP. We denote an eligideig) by EQ ir-
respective of whether it is a VOQ or a MQ. The buffered crosgddaric chip,
along with the output schedulers and the flow control medmaniemains the
same as that described in Section 4.3.1.

5.3.1 Integrated Scheduling

This section introduces the proposed integrated schegalgorithms, Multi-
cast and Unicast Round robin Scheduling (MURS). Becausathe queue-
ing structure consists of two types of queues and two typdsafffc (unicast
and multicast), extra focus has to be placed on the inpudsideat each in-
put. The input scheduler, is not only requiredstedectcells to be transmitted
to the fabric chip, but also needs to decitbento choose a cell anffom
whichset of queues (VOQs or MQ). This is called ih&egrationphase of the
scheduler. The integration phase of the scheduler deteshre priority of
scheduling of each traffic type. The selection policy of cthiesne is based
on round robin because of its fairness and simple hardwapéeimentation.
The selection policy is fixed and independent of the inteégngbhase. Before
discussing the integration policy, we first describe thec@n policy since it
is fixed. The specification of the selection policy is as foko

Selection Phase

SelectQueue (Queugype , Pointertype)
N = number of queues in Queligpe;

i = current input;

- Starting from thePointer_typeindex, select the first eligible que&s), ;
and send its HoL célllto the internal buffeXP; ;.

- Move Pointer typeto the location(j + 1) (mod N).

The integration phase of the scheduler decides the priofithe scheduling
of cells at the queue type level. Each input scheduler miamta priority
pointers: a unicast pointer (UP) and a multicast pointer \MiPthe VOQs

If the cell is multicast, then only copies destined dcoutputs are sent, wherfc|c
€ {1,..., N} andXP; . is availablg. Other copies will have to compete in later time slots.



94 CHAPTERS. INTEGRATED UNICAST AND MULTICAST SCHEDULING

(MQ) set of queues is chosen to select a cell from, the roubith mointer will
be based on UP (MP). Note that we consifmnout splittingwhen serving
multicast flows [100]. The integration phase is respondinl@leciding which
set of queues to choose from. As the traffic can be unicastjaast or a mix
of both, we derived 3 integration policies. The firstis clMURS uf (unicast
first) and always gives priority to unicast traffic. The satoMURS miX, is
designed to be a fair policy and treats both traffic types bguslURS_mix
gives priority to unicast traffic during even time slots, {ghinulticast traffic is
favored during odd time slots. The third integration poliEpamed MURSnf
(multicast first) and always gives priority to multicastfti@ Each integration
policy corresponds to an input scheduling algorithm.

MURS_uf always gives priority to unicast flows over multicast flowlshere-
fore, in the presence of mixed unicast and multicast trafficR_uf will al-
ways favor the VOQ set of queues to receive service and legwaining idle
connections to multicast flows. As a result, this scheme pvilduce more
one-to-one connections than one-to-many connectionss dduises perfor-
mance degradation under heavy loads since when a unichistdebsen to be
sent from an input port containing multicast cells, only ceé (copy) will be
transmitted to the buffered crossbar fabric. The specificaif the MURSuf
algorithm is as follows:

MURS _uf:
/*Always Unicast traffic first (prioritized)*/

» SelectQueue(VOQs , UP);
* If no queue was selected

— SelectQueue(MQs , MP);

If instead of MURSuf we allow preference to multicast flows in the presence
of unicast flows at the same input, this would result in moiks ¢eopieg be-

ing transmitted to the buffered crossbar. As a result, thifopmaance can be
greatly scaled up. This is exactly what MURS algorithm achieves, by fa-
voring multicast flows over unicast flows. Despite the perfance difference,
there are similarities between MURS and MURSmf. They both have the
same performance when the traffic is either purely unicagticely multicast.
Additionally, both schemes amumnfair . Each tries to monopolize the switch
bandwidth to its preferred traffic flows and this is undedeafd he specifica-
tion of the MURSmMf algorithm is as follows:
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MURS_mf:
[*Always Multicast traffic first (prioritized)*/

» SelectQueue(MQs , MP);
* If no queue was selected

— SelectQueue(VOQs , UP);

As a compromise between MURS and MURSmMf, we propose MURSnix.
The scheduling priority of each traffic type is time slot degent. The speci-
fication of the MURSmix algorithm is as follows:

MURS _mix:
[*Equal Priority*/ :

 If current time slot is even  /*Unicast is served first*/

— SelectQueue(VOQs , UP);
— If no queue was selected
* SelectQueue(MQs , MP);

* Else [*Multicast is served first*/

— SelectQueue(MQs , MP);
— If no queue was selected
* SelectQueue(VOQs , UP);

In addition to its fairness in the presence of different ficatypes, the
MURS_mix algorithm exhibits the same performance as the other divo
gorithms when the traffic is all unicast or all multicast. Ti®perties of
MURS_mix makes it a good candidate for being an optimal integratégtme
because(i) Itis fair and starvation free both on the traffic level as vealithe
flow level. In the presence of different traffic types, MUREX provides equal
chances (even and odd time slots) to heterogeneous trgiés tp be served.
At the flow level, the round robin scheduling mechanism essfiairness to
flows belonging to different queues (whether unicast or icast) and sched-
ules them with the same likelihoo¢ii) MURS_mix requires simple hardware
allowing it to run at high speed(ii:) Finally, MURS mix shows enhanced
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performance in terms of high throughput and low cell latebgycomparison
to existing algorithms. This is illustrated in the followrsection.

For all the 3 input schedulers, we used the same output slihgalgorithm

that we described in Section 4.3.2. It is based on a statindgabin se-
lection, wherein all the output arbiters share the samet@oinThe pointer
is initialized to a random position and is incremented by érgvscheduling
cycle. The pointer setting is very important and has a twd-&xvantage.
First, the synchronous move of the output pointer ensurasatleast one
complete multicast cell is discharged every schedulindecgs described in
Section 4.3.2. Second, while our scheme adopts a fanotiirgpldiscipline

resulting in higher throughput, it also closely resemble®@-fanout splitting
discipline which results in optimized use of internal baidtv on the serial
links between the input line cards and the buffered crodsitaic core.

5.4 Performance Results

This section presents the simulation study ofSar 8 and al6 x 16 CICQ
switching systems employing the MURS set of algorithms. @&xgerimental
results are structured in 3 parts. In the first part of the expants, we compare
the performance of MUR$ix to the Eslip algorithm which uses a bufferless
crossbar switch [18]. The second set of experiments stilkdeperformance
of our set of algorithms under different settings of MQs. T section of
the experiments analyzes the effect of varying both the rummbMQs and the
size of the internal buffers. Additionally, we observe thabdlity of the input
gueues under different traffic, input queueing and intelonéfer size settings.

We studied the performance of our set of algorithms undeB#raoulli uni-
form and bursty uniform traffic scenarios described in ApgpeiB.2. Arriving
cells can be either unicast or multicast. Cells arrive witlhite denoted by.
Since the traffic is uniformj is the input load of the switch. The departure
rate is denoted by. Similarly, i is the output load of the switch. We consider
admissible traffic, no input or output is oversubscribedcaese the traffic is a
combination of unicast and multicast flows, the input loadststs of a multi-
cast fraction f,,,) and a unicast fractionf()), where{(fm., fu)lfm =1 — fu}-
The fanout setp, of multicast cells has cardinality (fanout numbgr) which

is uniformly distributed between 1 and 16 and all outputsehegual chances
to be the destination of a multicast cell. Based on the akineetrelationship
between the switch input and output loads is expressed bgtiegqu(5.1).
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16x16 Switch under Bernoulli uniform traffic
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Figure 5.2: Average cell delay of MUR®Ix and Eslip under Bernoulli uni-
form unicast traffic f,,, = 0).
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Figure 5.3: Average cell delay of MUR®Ix and Eslip under Bernoulli uni-
form mixed traffic, (f,, = 0.5).
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16x16 Switch under uniform traffic
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Figure 5.4: Average cell delay of MUR®Ix and Eslip under Bernoulli uni-
form multicast traffic {,,, = 1).

M:A(fu+|q)|fm)' (5-1)

In our simulation, we averaged the cells fanout set t¢dje= 8. Following
our settings and substituting, with f,,, we have:

1= A1+ 7). (5.2)

For example, if we sef,,, to be 0 in Equation (5.2), the traffic is all unicast.
When we set it to 1, the traffic becomes pure multicast. Whsenéave fix

1 to 1 for example (switch fully loaded), we can vafy, and see its effect

on the throughput. Whefi,, = 0.5, the incoming traffic is evenly distributed
between unicast and multicast flows.

5.4.1 MURSmMmixvs. Eslip

Because Eslip is based only on a single multicast queue pet,iwe used
the same settings with MURRIiX by using just one MQK = 1) for fair
comparison. Note that Esliprefers to Eslip with iteration(s). In Figure 5.2,
we compare the average delay performance of MRS and Eslip under
Bernoulli uniform traffic with all cells being unicast. Aspieted in Figure 5.2,
the performance of MUR®iX is always higher than Eslip irrespective of the
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Throughput under Bernoulli uniform traffic
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Figure 5.5: Throughput performance of MURSEx and Eslip4 under differ-
ent switch sizes and different multicast fractions.

number of iterations performed by the latter. Figure 5.3icdepghe average
cell delay of the two algorithms when the input traffic is dyedistributed
between unicast and multicast flowg,( = 0.5). Again, MURSmIx has a
shorter average delay than Eslip. Figure 5.4 depicts theygerformance of
MURS_mix to Eslip when the incoming traffic is all multicast. As warcsee
from the previous 3 figures MURRBIix always achieves a far shorter delay
than Eslip irrespective of the incoming traffic type.

We wanted to compare the performance of MURS and Eslip fderdift
mixed traffic settings. However, checking all possibisitief mixed traffic re-
quires tuningf,, from 0 to 1 and observing the throughput. To this end, we
fixed the output loady, to be 100% (fully loaded system) and recorded the
throughput of each algorithm g%, varies from 0 to 1. Figure 5.5 compares
the maximum achievable throughput of MURSX and Eslip4 under differ-
ent switch sizes(8 x 8 and16 x 16). MURS_mix achieves higher throughout
than Eslip irrespective of the switch size and/the multi¢esction of the in-
coming traffic. Note that, while each of our algorithms havareller delay
than Eslip, we chose MURBSIix because it is more analogous to Eslip in the
sense that is does not prioritize one traffic type over amothe

INote that when the size of the switchdsx 8, the average fanout size becomes 4 and
Equation (5.2) becomegi = A\(1 + 3fm).
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8x8 Switch under Bernoulli uniform traffic
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Figure 5.6: Average cell delay of ax 8 CICQ switch running MURS with
different numbers of MQs per input and mixed input trafffg, (= 0.5).

5.4.2 The Effect of MQs Number,k

The remainder of the simulation is conducted for multicastes set MQ per
input equal to or bigger than onk & 1). We study the average cell delay per-
formance of each of our algorithms fér= 1, 2 and 4 respectively and evenly
distributed traffic over unicast and multicagt,(= 0.5). Figure 5.6 depicts the
average delay for a® x 8 switch and Figure 5.7 shows the average cell delay
for al16 x 16 switch. As expected, the MURMIf scheme has the best delay
irrespective of the arrival traffic and the switch size. Tiki®ecause it gives
priority to multicast flows over unicast flows resulting in maconnections
per scheduling cycle. This result holds independently efrithmber of MQ
used per input. MURSIf, however, has the worst delay because it prioritizes
unicast over multicast, resulting in fewer cells transfdrto each output per
scheduling cycle. MURSnix has a moderate average delay because it treats
both traffic types with the same priority. Overall, MURSX is the best choice
due toits fairness. Figure 5.8 depicts the average celydéllilURS_mix with
varying switch sizes and different numbers of MQs. We cartlsaethe aver-
age cell delay decreases with increasing numbers of MQshismitdue to the
role of the MQs in reducing the effect of the HoL blocking plexh.
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16x16 Switch under Bernoulli uniform traffic

10°F |- —k— - MURS_mf(1) N A
— A — MURS_mix(1)
—}+ - MURS_uf(1)
- MURS_mf(2)

. MURS_mix(2) v/
10°F | —5— MURS_uf(2) oy E
—— MURS_mf(4) 11
MURS_mix(4) ‘1 4/
—F— MURS_uf(4) oy

Average Cell Delay

0.8 0.85 0.9 0.95 1
Normalized Output Load

Figure 5.7: Average cell delay ofl& x 16 CICQ switch running MURS with
different numbers of MQ$;, per input and mixed input trafficff, = 0.5).
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Figure 5.8: Average delay of MURRIix with different switch sizes and dif-
ferent MQ numbers.
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MURS mix under Bernoulll unlform trafflc
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Figure 5.9: Average cell delay of MURR®Iix as a function of the numbers of
MQs, the XP sizes and input traffic combinations.

5.4.3 The Number of MQs vs. The XP Size

Due to the importance of the internal buffers in simplifyihg scheduling, we
tested our algorithms under different internal buffer sizEigure 5.9 depicts
the average delay performance of the MURS algorithm under 3 different
scenarios. Incoming traffic is either all unicagt,(= 0), or a mix (f,, = 0.5)
or all multicast {,,, = 1). We varied the number of input multicast queues per
input as well as the size of the internal buffers (XP) and istlidheir effect
under each traffic scenario. For example, “MQ(1)-XP(ast” corresponds
to the MURSmMIx algorithm with 1 multicast queue per input (MQ=1), 4 sell
per internal buffer (XP=4) and incoming traffic consistirfginicast cells only.
“MQ(4)-XP(1)_Mix” corresponds to MURSNix with 4 MQs (¢ = 4) per
input, 1 cell per XP and a mixed incoming traffic over unicasd anulticast
flows (f,,, = 0.5).

The plots in Figure 5.9 show that the average delay of MURSis shorter
when only one multicast is used per input port (instead of i) an internal
buffer size of 4 cells per XP (instead of 1). It is apparent tha delay of
“MQ(1)-XP(4)_Ucast” should be shorter than that of “MQ(4)-XPgast”.

The reason for this is because incoming traffic is all uniaasttherefore vary-
ing the number of MQs does not affect the delay. Howevergmsing the size
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MURS_mix under Bernoulli uniform traffic
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Figure 5.10: Input queues occupancies of MURE as a function of the
numbers of MQs, the XP sizes and input traffic combinations.

of XP does. When the incoming traffic is mixed ("MQ(1)-XP#)x”") and at
99% input load, the average cell delay of MUR®X is 25% shorter than the
cell delay when using “MQ(4)-XP(1jnix”.

We also studied the stability of the input queues under theessettings as
above. We used th&2 norm vector representing the occupancy of all input
gqueues as defined in Appendix B.3. Because each input pordinerboth
VOQs and MQs, thé.? norm vector in this case is defined as follows:

n n k
1L = | > (3 VOQism)? + > MQin)?)
=1

i=1  j=1

As depicted in Figure 5.10, the input queues occupancy ifermehen we use
only 1 multicast queue per input and an internal buffer sfzeaells compared
with employing 4 multicast queues per input and internafddize of 1 cell.

These results endorse our argument in Chapter 4 regardengjrtiplification
in the design of the input scheduler. Using just 1 MQ per input instead
of 4 MQs at the expense of a little increase in the size of ttermal buffers
results in significant reduction in the hardware complegitythe input inte-
grated scheduler. This is because the scheduler needsritamahe state of
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the fanout sets of the HoL cells of every MQ and using just 1 M@ trans-
late in reduced information exchange and consequently weer scheduling
cycle time.

5.5 Hardware Implementation

This section presents the hardware implementation of thérBlldcheduling
algorithm for al6 x 16 CICQ switch. Figure 5.11 depicts the schematic dia-
gram of the algorithm and the scheduling process. The desigrbe divided
into four main blocks, as follows:

17 bit Register

,_, use
Index of the
18, selected VOQ
T > or
The selected
i

ens | copies of MQ

VOQ: Virtual Output Queue
EXP: Empty Crosspoint (XP)
MQF: Multicast Queue Fanout
EVOQ: Eligible VOQ

EF: Eligible Fanout

FR: Fanout Residue

MPE: Masked Priority Encoder

Figure 5.11: The MURSnix input scheduler algorithm.

» Unicast Block: This block is responsible for handling unicast traffic
and consists of a 16 bit vector called VOQ (Virtual Output Qelethat
contains the state of each VOQ in a line card. A 16 bit vectoneth
the EVOQ (Eligible VOQ) is used for the index of the VOQs dbigi
for scheduling. The EVOQ is obtained by ANDing the VOQ vector
with the EXP (Empty internal Crosspoint, XP). A componeninea
MPE (Masked Priority Encoder) that is responsible for dalgahe next
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index from the EVOQ vector in a round robin fashion. In ourigeswe
used the MPE proposed by [101].

» Multicast Block: This block is responsible for the multicast traffic and
contains the following components. A 16 bit vector, MQF (ktiest
Queue Fanout) that contains the fanout set of the HoL ceth@fif Q).

A 16 bit vector, EF (Eligible Fanout) that contains the suilsseoutput
that the multicast cell can be sent to. The EF is the result loh&
AND of the MQF and the EXP vectors. A vector called FR (Fanout
Residue) that contains the subset of unreachable outpist gfdhe HoL
cell of the MQ. This vector is obtained by ANDing the MQF ane th
logic inverse of the EF vector.

« Traffic Priority Block: This block manages the scheduling priority of
unicast and multicast cells over time. It is designed aste stechine
and works as follows: it takes as input two bits, the first big)(is the
logic OR of the EVOQ vector bits and the second Bbit,) is the logic
OR of the EF vector bits. There is an internal i) that determines
which traffic is prioritized during the current schedulingce?. The
value of P, is inverted every scheduling cyéle There are two output
bits of the traffic priority block denoted, and O, (see Figure 5.11).
The value of each of them is obtained as follows:

Oy = (Pb/\Mb) \/Fb
O, = My Vv Uy.

The upper output bit of the traffic priority block is used as glelect bit of
the 2-to-1 Mux that decides which traffic type cell is chos€he other
output bit,0,, indicates whether or not the outpi is valid. TheO, bit

along with the output of the the MPE (first block) and the cantd the
EF (second block) are used as the select bit and the 2 inpthe &ux.

Finally, the output of the Mux is forwarded, along with thdest bit

to a 17-bit register that contains the scheduling decisidris decision
register is 17 bits wide with the select bit being its mosh#igant bit
(MSB). If the MSB bit is 1, then we know that the content of tbgister
(16 bits) represents the reachable destination ports dfithemulticast
cell. Otherwise, the content of the register representsnithex of the
VOQ containing the selected unicast cell.

2MURS has been segmented into 7 clock cycles, which equalseaisting cycle.
3Inverting P, every scheduling cycle results in MURSIx. SettingP, to always 1 results
in MURS_mf being implemented and when it is set to always 0, it resnldURS_uf.
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Table 5.1: Hardware implementation results.

\ Module | Area (slices)| Delay (ns)|
Input Scheduler (MURSNIX) 232 19.6
Output Scheduler (OS) 107 10.2

It is important to note that as soon as the output of the traffigrity block
is computed, the following update process takes place),lE 1, then we
know that a multicast cell will be scheduled and the contétth® VOQs will
not need to change (VOQ ENB set to 0). Therefore, the contietteoMQF
must be updated (ENB = 1) with a new value and this dependseooahtent
of the FR vector (the lower shaded area of Figure 5.11). Ttsedbithe FR
vector are ORed and if the result is 1 then the input Mux (seeideft side
of Figure 5.11) will forward the content of the FR vector te thiQF vector
as its new content. Otherwise, the result is 0 meaning thdearhalticast cell
was completely scheduled and therefore a new multicastfamsdiut will be
forwarded to the MQF vector. If, howevad, = 0, meaning a unicast cell is
chosen, the VOQ vector will be updated while the MQF remamshanged.

As for the output arbiter, as mentioned previously, it cetssof a round robin
scheduling mechanism based on a priority encoder. In olugmes employed
the MPE design proposed by [101]. It has been segmented icyol8s. We
employed the Xilinx Virtex IV platform and implemented odgarithm. The
target device of our design was the Xilinx Virtex IV FX famigynd the results
are obtained after place and route. Table 5.1 depicts ttee arenumber of
slices, and delay, in nanoseconds, results of our desigminput arbiter has a
clock cycle time of 2.8 ns and was segmented into 7 cycledtiegin a delay
of 19.6 ns. The critical path of the design is the MPE blocke ©htput arbiter
has been segmented into 3 cycles of 3.4 ns each. The arets is282 slices
for the input arbiter and 107 for the output arbiter respetyi

5.6 Summary

Combined Input and Crossbar Queued (CICQ) switches have lemvn to
outperform IQ switches due to the simplicity of their schigdu The problem
of integrating unicast and multicast traffic scheduling, flsasfar, mainly been
studied for 1Q switches. In this chapter, we proposed a nGVEIQ switch-
ing architecture able to efficiently support both trafficegp We presented a
simple set of integrated scheduling algorithms, named MUR& can sched-
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ule concurrent unicast and multicast traffic flows. We stidiee performance
of our algorithms under a wide range of input traffic settindjfferent input
gueueing structures and different CICQ internal buffeesian particular, the
MURS_mix algorithm has been shown to exhibit very good perforneasued
outperform previous algorithms. Simulation results ssgg that a profitable
trade off between the number of input multicast queues amditte of the in-
ternal buffers is possible, allowing for simplified desidritee input scheduler.
We presented a hardware implementation of the MURS algoritit a16 x 16
buffered crossbar switch using the Xilinx reconfigurablgidoplatform. The
implementation results showed that MURSx can sustain a 20 Gbps line
rate, reaching an aggregate switching bandwidth of 320 Gdopsur target
switching system.






Chapter 6

Partially Buffered Crossbar
Switches

mance packet switches due to its low cost and scalabilityerd lare

two main variants of the crossbar fabric: unbuffered anerivlly
buffered. On one hand, unbuffered crossbar fabric switelkbibit the advan-
tage of using no internal buffers. However, they require mgex scheduler
to solve input and output ports contention. Internally btdfl crossbar fabric
switches, on the other hand, overcome the scheduling carplgsing dis-
tributed schedulers. However, they require expensivenatduffers — one
per crosspoint. In this chapter we propose a novel architechamely the Par-
tially Buffered Crossbar (PBC) switching architecture,endha small number
of separateinternal buffers are maintained per output. Our goal is &iglea
PBC switch having the performance of buffered crossbars svitost compa-
rable to unbuffered crossbars. We propose a class of round scheduling
algorithms for the PBC architecture. Simulation resulissthat using as few
as 8 internal buffers per fabric output and irrespectivenefriumber/V, of in-
put ports of the switch, we can achieve even better perfocméman buffered
crossbars that us¥ internal buffers per output.

The crossbar fabric is widely used as the interconnect for higtiop-

6.1 Introduction

Various proposals for identifying suitable architectuoe high-performance
packet switches have been investigated and implementexthralbademia and
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industry [18] [102] [103] [63]. These architectures can kassified based on
numerous factors such as queueing schemes, schedulingttatggy and/or
switch fabric topology. The crossbar-based architectsrthé dominant ar-
chitecture for today’s high-performance packet switchesabise of its low
cost and scalability. As a result, the vast majority of conuiadly used core
switches/routers are based on crossbar fabric with virtwapput queueing
(VOQ) [40]. The crossbar fabric architecture can mainly essified into
two categories: unbuffered or internally buffered crosdahric.

Extensive research work has been dedicated to unbuffeces$tmar switches
for over two decades (see Section 2.3 and Section 2.4). digur (a) de-
picts an Input Queued (IQ) crossbar fabric switch with VO®tha inputs.
The crossbar of an IQ switch runs at the same speed as exitgpudoutput
ports. In order to maintain this low bandwidth requiremear, unbuffered
IQ switch requires a centralized scheduler to resolve twimml@cking prob-
lems, namely input and output contention. Input contentesults from the
constraint that an input can send at most one packet evegysiioh Similarly,
output contention arises from the constraint that an outpotreceive at most
one packet every time slot. These blockings make the taskeo§¢heduler
complex and packets delay unpredictable. As a result, titelsperformance
essentially depends on its scheduling algorithm. Diffemssses of schedul-
ing algorithms have been proposed [53] [51] [54] [104] [4&)nfortunately,
for high-bandwidth 1Q switches, almost all scheduling aiidpons are either
too complex (see Section 2.4.2) to run at high speed or fakkobit satisfac-
tory performance (see Section 2.4.3). This is mainly attéd to the central-
ized design of these schedulers and to the nature of the fenbdifcrossbar
switching architecture.

In order to overcome the scheduling complexity faced by IQufifered cross-
bar switches, buffered crossbar switches have been projese Section 2.5).
Figure 6.1 (b) depicts a buffered crossbar switch, a crosshare a limited
amount of memory is added per crosspoint. The existencet@ial buffers
relaxes the output contention constraint, making the sdiegtask much sim-
pler. Buffered crossbars use distributed and independérdsilers (one per
input/output port) to switch packets from the input to thepot ports of the
switch. A scheduling cycle consists of input schedulingtpati scheduling
and flow control to prevent internal buffer overflow. Efficiescheduling algo-
rithms have been proposed for this architecture [67] [7Op]1 The scheduling
simplification comes at the expense of a costly crossbar. cidesbar has to
maintain N2 internal buffers, wheréV is the number of input/output ports of
the switch. The number of internal buffers grows quadréyicaith respect to
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Figure 6.1: Crossbar Fabric variants: (a) Unbuffered Grass$-abric. (b)
Buffered Crossbar Fabric, witN? Internal Buffers.

the switch size and linearly with round trip delays [63]. §makes buffered
crossbar switches highly expensive and hence less appealin

In this chapter, we propose a novel architecture, refermecst Partially
Buffered Crossbar (PBC) switching. The PBC is designed ta Issvitch-
ing architecture that exhibits the performance of buffeteaksbars but at a
cost comparable to unbuffered crossbars. The PBC switghictée in Fig-
ure 6.2, contains a small number of separate internal lsffer N, per out-
put port. We propose a class of pipelined scheduling alyoistfor the PBC
switch and study their performance under various traffitepas. The exper-
imental study shows that setting the number of internaldsafper output to
B = 8 is sufficient for the PBC to achieve optimal performancesipective
of the switch size,N. Previous work proposed similar switching architec-
ture to the PBC switch [106] [27]. Our work differs from [108]7] both
at the architectural and the scheduling level. While théigecture in [106]
relies on internal shared memory per output port, our PBGitcture uses
separate internal buffers per output, hence avoiding tip@inement of expen-
sive shared buffers. Secondly, the architecture propogd@1) was target-
ing multistage switches whereas our proposed architetangets single stage
switches. On the scheduling level, our proposed algoritbatperform those
proposed by [106] [27].

The remainder of the chapter is organized as follows: Se&id presents the
PBC architecture and its scheduling. In Section 6.3, wedhice our set of
scheduling algorithms. The first algorithm is called Diaited Round Robin
(DRR). It is based on round robin input and credit schedypersfabric input

and output respectively. Because of the credit releasey dsdperienced by
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DRR (see Section 6.3.2), we propose an alternative algortamed DROP
that drops unaccepted grants every time slot and consdgumrimimizes the
credit release delay. We also propose an enhanced versitie @iROP al-
gorithm, named DROP-PR, that selects grants based on quiputy. Sec-
tion 6.4 presents the performance study of our algorithndeumarious set-
tings. Finally, Section 6.5 summarizes the chapter.

6.2 The Partially Buffered Crossbar Architecture
(PBC)

This section introduces the Partially Buffered Crossbatching architectural
organization along with its scheduling.

6.2.1 Switch Model

We consider the Partially Buffered Crossbar switching ieckure (PBC) de-
picted in Figure 6.2. The switch operates on fixed sized gadkells). Vari-
able size packets are segmented into fixed sized cells wisilda the switch
and reassembled back into packets upon their exit. The PB@/haput and

N output ports. When a cell, destined to outguarrives at input, it gets
queued invOQ, ; while waiting its turn to be selected by the input scheduler
(IS;). There areN input schedulers, one per input port that control the trans-
fer of cells from the input line cards to the internal fabrigfers. The input
scheduler decision is coordinated with a grant schedulgrnttanages the in-
ternal buffers availability (and access) for each outpute Thput and grant
schedulers communicate throughout a grant queue (GQ) airadck per input.
There areNV GQs, one per input, and each contaivientries, one per output.
When a grant scheduler (GS), sends a grany, to input,i, GQ; ; is set to
one. Once input,, acceptsy, GQ; ; is reset to zero.

The crossbar fabric contains a small number of internaksiffThese internal
buffers are maintained per fabric port and thereBrex N separate internal
buffers per fabric output. The fabric hd&sinternal buses per output, one per
internal buffer. These buses run at the same bandwidth aexteenal line
rates. These buses are required in order to maintain lowddtid If we use
one bus per output, instead, its bandwidth is required t8 bmes the external
bandwidth in addition to intermediate buffering of cellsiahis costly. Each
fabric output contains an output scheduler (OS) that ateitrcells departures
from the internal buffers to the output queue. Thereldreredit queues (CQ),
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IS: Input Scheduler

GS: Grant Scheduler

OS: Output Scheduler 1 . N
CQ: Credit Queue

GQ: Grant Queue

Figure 6.2: The Partially Buffered Crossbar (PBC) Switgrémchitecture.

one per output. Each CQ contaifisentries andCQ; records the availability
of the internal buffers belonging to outpfit A CQ is decremented whenever
a grant is sent to the input, and incremented during outfhediding.

6.2.2 Scheduling Process

The scheduling process in the PBC switch is a combinatiombiifiered as
well as buffered crossbar scheduling. A scheduling cyclesists of input
scheduling and output scheduling phases as in bufferedlmmos The input
scheduling phase resembles a scheduling cycle in unbdffgssbars, as it
is based on request-grant-accept handshaking protocel.inplut scheduling
phase works as follows: During time slét,each non empty/OQ, ; sends a
request to the grant scheduler (GS) corresponding to optptij. Subject to
internal buffers availability CQ;) and the grant scheduler policy, a grant may
be sent back to the input scheduleand stored in its GQRQ; ; set to 1). At
the same time, input scheduldsy) picks a VOQ Head of Line (HolL) cell to
be transferred to the internal buffers based on its GQ, dxujuthe current
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grants of time slot{. Meaning that the outcome @S at timet is only valid
during time slott + 1 or later. This allows a two-stage pipelined scheduling,
avoiding the need for synchronized coordination betweergtant schedulers
and the input (accept) schedulers on a time slot basis asifib#3 [53] and
PIM [39].

Request

Grant Accept
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1 11 1 g 1.\:1
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Figure 6.3: The iSLIP scheduling algorithm.

'S

Because the number of internal buffef8, maintained per output is much
smaller than the number of competing inputg, crucial care to consider how
to service cells during output scheduling is important. rternal buffers are
separate and cells from the same VOQ may arrive to differdatnal buffers
during consecutive time slots. In this case, we have to m@inh-sequence
cell delivery. To this end, we employed a First-Come-F8stve (FCFS) out-
put scheduling to ensure in order cell delivery [107]. A cgparture from the
internal buffers at outpuf, cause<CQ; to increments by one. A cell arrival,
from an input, to an internal buffer at outpgitcausesCQ); to decrement by
one. Likewise, the grant queue, at an inpus incremented whenever a grant
scheduler sends a grant to inputand decremented whenever a cell departs
the input porti.

Request Grant
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Figure 6.4: A PBC Scheduling cyclé,x 4 PBC switch withB = 2.

The input scheduling in PBC is similar to the iterative matghperformed by
unbuffered crossbar scheduling. However, maintaining allammber of in-
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Grant Probability per Input

Number of Internal Buffers, B, per Crossbar Output

Figure 6.5: Grant probability as function of switch siZ€é, and different in-
ternal buffers settings.

ternal buffers makes it significantly different. The absen€internal buffers
in an unbuffered crossbhar switch meant that a grant arbgergcant at most
one input, to avoid output contention. Similarly, an inpatept arbiter has
to accept at most one grant, to avoid input contention. Eigu8 depicts the
matching process of iSLIP with one iteration. The PBC schierduwhile
keeping the input contention constraint enforced, reléxe®utput contention
constraint by allowing conflicting cells (up 1) to be admitted to the internal
buffers for the same output. This is equivalent to unbufferessbars sched-
ulers accepting one grant and storing otBer 1 grants instead of discarding
all the rest. Unbuffered crossbar schedulers resort tojpteiiterations to im-
prove the match size.

Figure 6.4 describes a PBC input scheduling cycle. As we eanthe grant
scheduler at output I, sends two grants (to input 1 and 3) because its credit
queue CQ, has two available credits. The same process happengyethd

g4. However,g, sends only one grant because its output buffers have only one
location free CQ; = 1). From the example, we can see the benefit in using
internal buffers, thereby improving the grant opport@stper output. Conse-
guently, the accept phase produces a bigger match sizey bis@iteration for

a random scheduling policy such as PIM [39], the probabiligt an input will



116 (HAPTER 6. PARTIALLY BUFFERED CROSSBARSWITCHES

remain ungranted i@%)N , WhereN is the port count of the switch [53]. As
N increases, this probability tends-]etolfwe use the same random scheduling
policy in the PBC withB internal buffers per output and assuming that pack-
ets are flushed in every time slot (memoryless Markov prdctssprobability
that an input remains ungranted(i%[];—B)N. With increasinglV, this proba-
bility tends toeLB (almost 0 forB > 4). Figure 6.5 illustrates this behavior.
WhenB = 1 the PBC behaves identically to the bufferless PIM algorithm
and the grant probability approaches 63% with increasintchwize. A small
increase inB, just 2, scales up the grant probability to more than 86% lior a
switch sizes. WherB is set to 4 per fabric output, the grant probability is
100%.

6.3 Scheduling in PBC Switches

This section introduces our set of scheduling algorithmmgte PBC switch-
ing architecture. We propose a class of round robin baseadt mgheduling
algorithms. The output scheduling we use here and througihai chapter

is based on FCFS policy, as discussed in the previous sedfiach time the
output scheduler, at outpiit performs its FCFS selection and sends a cell to
the output queue, it incremen®Q; by one. As for the input scheduling, we
propose a set of round robin based schedulers. The firstthigowe propose

is named Distributed Round Robin (DRR) and is described enféiowing
section.

6.3.1 The Distributed Round Robin (DRR) Algorithm

The DRR algorithm is similar to the scheme proposed by [10@] its grant
scheduler’s pointer update is the same as ISLIP [53]. THietause, a grant
sent by a GS to an input scheduler, if not immediately accgsestored and
will eventually get accepted in the short run (less thatime slots later). The
DRR differs in the way it assigns cells to internal buffersemtihey leave the
input VOQs. However this is specific to the PBC architect@ell assignment
to internal buffers can be realized by maintaining a sepdield in each entry
of the GQ. Whenever th&S; grants to input, it sets the entny\GQ; ; = 1
and the field corresponding to the internal buffer to the xnolethe next free
internal bufferB;, ;.

The DRR algorithms performs its arbitration as describe&éation 6.2.2.
Figure 6.6 illustrates a DRR input scheduling phase. Thedipgline stage of
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DRR:
Grant Phase
For each outputj, do

. While there are credits i6Q; do

- Starting from the grant pointey; index, send a grant to the first
input, 7, that requested this output ($8Q; ; = 1).

- DecremenCQj; by one.
- Move the pointel; to location(i + 1) (mod N).

Input Scheduling Phase:
For each inputj, do

. Starting from the input pointet; index, select the first non empty
VOQ, ; for whichGQ; ; = 1 and send its HoL cell to the internal buffer.

. SetGQm =0.

. Move the pointer; to location(a; + 1) (mod N).

the algorithm starts as follows: Based on the VOQs requestgiést phase)
and the credit queues (CQ), each grant scheduler perfosnashitration. As
shown in Figure 6.6S, and GS; can each issue two grants because their
credit queues have available credi®Q; andCQ,). GS receives requests
from inputs: 2, 3 and 4. It grants to input 2 and 3 because itstg@ois at
position 1. After granting input 2 and &S points to output 4, as in iSLIP.
GS, does the same, by granting to input 2 and 4 respectively. Mem€S
andG$S; (not shown in the figure) perform differently in this examplecause

of their credit queuesGS, grants only to input one because its credit queues,
CQ, contains only one credit. The other credit of output 2, islt®t input 4
(second entry o65Q, = 1). Output 3 cannot issue any grant because it has no
credits CQs = 0) and its credits are held by input 1 and 4. The outcome of
the grant scheduler will not be taken into account by thetispheduler until
the next time slot. This is shown in Figure 6.6 by dashed eninGQ; and
GQy (second entry of5Q; and last entry of5Q,). Simultaneously with the
first pipeline phase, the second pipeline phase is execstiel@avs: Based on
the grant queues so far, each input schedilsglects the next non zero entry,
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J» of its GQ; and sends the corresponding HoL celMQ, ; to the internal
buffer. It also updates its GQ, by resetting the entry of & sell (both third
entries of GQ1 and GQ; in accept phase are reset). Then, it increments its
pointer by one Mod ). We can see in this example that output 3 receives 2
cells simultaneously, this is the advantage of the PBC tactire —allowing
conflicting cells to enter the fabric.

First Pipeline Stage | Second Pipeline Stage
| |
I L
Q| Q
: %E'l co [ 1 cq, .m] i
1 1119 ’, E] ] | E] | o] 1
I CQ, Lo} | [0] Lo} 0
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3 338 0 CE(]b : oy 30 03
4 44 . 04 GQs |
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Request Phase ! Grant Phase I Accept Phase

Figure 6.6: A DRR scheduling phase fot a 4 PBC switch withB = 2.

6.3.2 The Credit Release Delay

The DRR scheme experiences the same credit release delah disexnscheme
in [106]. Credit release delay arises when multiple grahedalers grant to
the same input concurrently. Because DRR returns credésba time (input
contention), credits may not return fast enough. This, equently, affects the
rate at which grants are sent back to other inputs, hencgidgléhe trans-

fer of cells from the input line cards. In order to reduce ftiketay, a grant
throttling mechanism was proposed in [106]. It consistsetfirsg a threshold
(TH) for the grant queue and requests from an input are eligiblkg as

the grant queue relative to their input is less tfah While this mechanism
speeds up the credits release, it does not completely @temihor minimize

it. Additionally, it requires some extra signaling to caltthe grant queues
thresholds.

Our solution to credits release delay is different. We dowent to just lower
the credit release delay. Instead, our goal is to completigtyinate it or set
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it to its absolute minimum. First, we need to quantify thisagle A grant has
to wait up toN time slots in each grant queue before its associated ceedit i
released back. Therefore, an input request waits at %%ﬁme slots before it
gets granted. To better explain this, consider the scheglelkample depicted
in Figure 6.6. Input 3 has a request for output 3. Howevempwud has no
credits because they are already held by input 1 and 4 résggctSo, in the
worst case output 3 will grant to input 3 after each crediteleased by all
other inputs (grant queue updated). This can take up to 4diate in each of
the 4 grant queues. However, since we have 2 credits pett creglie, they
are always divided among requesting inputs. Thereforgub® will grant to
input 3 no later tharft‘zE = 8 time slots since input 3 first issues its request.

When B = 1, the performance of DRR is simifato iSLIP (see Figure 6.11
and Figure 6.12). However, d$increases, the credit release delay decreases
(N?f decreases). Thus, the problem of credit release delay isreduced to
solving the grant queueing delay. Minimizing the credieesle delay means
altering the grant mechanism to reduce the grant queueilay.dé/e, there-
fore, modified the way DRR allocates grants per input, henoeva grant
scheduler is proposed. Insteadsbdring the grants, that are not accepted, in
a grant queue while they wait their turn to be accepted, aecttbre causing
credits waiting (delayed) to get released, we singyp them. The new de-
vised scheme never stores grants, instead they are jugattgmd the scheme
is named DROP. Proceeding this way, a request waits no mareNhtime
slots before it gets granted. This is to be compare%gto

6.3.3 The DROP Algorithm

Dropping the not accepted grants implies that the pointdatipg scheme of
the grant scheduler has to change. This is because, otkemgmg the iS-
LIP pointer updating mechanism results in pointer syncizadion similar to
RRM [53]. This convergence of iSLIP to RRM, under our setsingomes
from the two-stage pipeline scheduling relative to the PB&hitecture. Re-
call that DRR stores the unaccepted grants, guaranteedigitiimediate or
soon acceptance, and therefore the grant pointer can $efelpdated. This is
similar to iSLIP, where the grant pointer gets updated onlaccept (which is
in the same time slot or stage). With the DROP scheme, howdsaping the
unaccepted grants during the accept phase (second pig&ige) means that
we have to update the grant pointer (first stage) which isdiréate and out

1The slight difference observed results from the the DRR timpheduler pointer update
mechanism. Unlike iSLIP, DRR input scheduler pointer isy/funsynchronized, as in [54].
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of date. Therefore, using the iSLIP pointer update mecham<DROP means
‘blindly’ updating the grant pointers, which leads to syratization and poor
performance as in RRM [53]. To overcome this problem, we udlg tin-
synchronized grant pointers settings, similar to [54]. ©hent pointers are
initially set to different positions and are always incrense by one irrespec-
tive of the accept/drop outcome. The specification of the PR@orithm is
as below.

DROP:
Grant Phase

All output pointers g;, are initialized to different positions.
For each outputj, do

. SetCQ; equals to the number of non full internal buffers for output
. While there are credits in CQlo

- Starting fromg; index, send a grant to the first input, that re-
quested this output (s&Q; ; = 1).

- DecremenCQj; by one.

. Move the pointey; to location(g; + 1) (mod N).

Input Scheduling Phase:
All input pointers,a;, are initialized to different positions.
For each inputj, do

. Starting froma; index, select the first non empyOQ, ; for which
GQ; ; = 1 and send its HoL cell to the internal buffer.

. Drop the remaining grants (reset GQQ; . = 0).

. Move the pointer; to location(a; + 1) (mod N).

6.3.4 The Prioritized DROP Algorithm

We wanted to further improve the performance of the DROPraehd he need
to enhance DROP stems from two reasons. From one hand, DR@®B &
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two-stage pipeline meaning that it experiences somelidigiay. On the other,
DRORP is designed for the PBC architecture that is assumedv® & limited
small number of internal buffers per outpd, With these observations, we
propose an enhanced version of DROP that services grargsl lsasoutput
priority. We call this version prioritized DROP and referitas DROP-PR.
The specification of the DROP-PR scheme is as follows:

DROP-PR:

Grant Phase

All output pointers g;, are initialized to different positions.
For each outputj, do

. SetCQ; equals to the number of non full internal buffers for output
. Set the priority bit,P, to the logic OR ofCQ; entries.
. While there are credits i6Q; do

- Starting fromg; index, send a grant to the first input, that re-
quested this output (s&Q; ; = 1 and add bit P).

- DecremenCQ); by one.

. Move the pointeg; to location(g; + 1) (mod N).

Input Scheduling Phase:
All input pointers,a;, are initialized to different positions.
For each inputj, do

. Starting froma; index, select the first non empyOQ, ; for which
GQ;,; = 1 and bitP = 1 and send its HoL cell to the internal buffer.

. If no HoL cell is selected, Then

- Starting froma; index, select the first non emp¥OQ, ; for which
GQ;,; = 1 and send its HoL cell to the internal buffer.

. Drop the remaining grants (reset GQQ; . = 0).

. Move the pointer; to location(a; + 1) (mod N).
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When selecting a cell for input scheduling, the DROP-PR mehtakes into
account the occupancy of the internal buffers belonginghtowput. When a
grant scheduler grants an input request, it sends back #m gith an addi-
tional priority bit. The priority bit informs the grantedpnt whether or not the
grant comes from an output with empty internal buffers (gtimed output).

During the input scheduling phase (second pipeline staigejnput scheduler
first gives priority to grants where the priority bit is setlitoThe priority bit is

obtained by logically OR-ing the entries of the Credit QuUED®).

6.4 Performance Results

32x32 Switch under Bernoulli uniform traffic
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Figure 6.7: Average cell delay of the PBC algorithms undeanBelli uniform
traffic.

This section presents the performance study of the PBC lswgcarchitec-
ture. The study is aimed at comparing our proposed archie¢d both the
unbuffered and the buffered crossbar fabric architectasewell as an ideal
Output Queued (OQ) switch. The experiments are carried mdethree in-
put traffic patterns: Bernoulli uniform, Bursty uniform akhbalanced traffic
as defined in Appendix B.2. We tested different PBC switckssizach with
different numbers of internal buffefs In this section, we present the results

2Extensive simulations have been carried out for switchssi#8 x 8, 16 x 16, 32 x 32 and
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of switch sizes ofl6 x 16 and32 x 32 only.

32x32 Switch under Bursty uniform traffic
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Figure 6.8: Average cell delay of the PBC algorithms undersBuuniform
traffic.

6.4.1 Uniform Traffic

Figure 6.7 illustrates the average cell delay performaricgach of our pro-
posed algorithms under Bernoulli uniform traffic. We measuthe delay of
each of the algorithms with different internal buffer segs. When the num-
ber of internal buffers per outpulf = 1, the three algorithms all have the same
delay because there is no credit release delay. For thisimees denote any of
the algorithms by “PBC(1)” in the figure. Increasiijjto as few as 4 internal
buffers per output boosts up the performance by an order ghinale. The
delay improvement is less sharp fBrbetween 4 and 8. This behavior agrees
with our model (refer to Figure 6.5) discussed in SectionZ.2VhenB =

4 or more, the granting likelihood is almost 100% from eadmngischeduler
to each input scheduler. The same behavior is observed Buasty uniform
arrivals, as depicted in Figures 6.8.

Assessing the performance of each of our three proposeditalgs (DRR,

64 x 64. Depending on each PBC switch size, different internaldngizes B, have been used
(1,2,3,4,5,6,8,10,12,16,32) under each scheduling ithgoi(DRR, DROP and DROP-PR).
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Fully loaded switch under Bernoulli uniform traffic
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Figure 6.9: PBC Performance under Bernoulli uniform atsiva

DROP and DROP-PR respectively) requires tuning differemameters such
as switch size, internal buffers sizes and input traffic $pdnce many plots.
However, because we are most interested in switch cell selager heavy
input loads, in the following two figures (Figure 6.9 and Fry6.10) we fixed
the input load to b&9% and varied the switch size as well as the number of
internal buffers per output for each algorithm. Figure 6epidts the perfor-
mance of each of our algorithms under Bernoulli uniformvails for al6 x 16
and32 x 32 respectively. We observed the average cell delay as a eumofi
the number of internal buffers per outpl, We can see that wheBl = 1,
unbuffered crossbar switch, the three algorithms haveaheesielay which is
comparable to iSLIP with one iteration. This is because wBes 1, every
request waits for the same tim&'{ times slots at most) before it gets served.

However, with increasing3, both DROP and DROP-PR have lower cell delays
than DRR because of their fast credits release. Recall tieatredit release
delay (and consequently grant and service delays) of DRl%?is However,
both DROP and DROP-PR have a credit release delay.oAs B increases,
(especially asB approachesV, not shown in the Figures) all the algorithms
have the same delay. However, we are only interested in PBiChas with

B <« N. The same trend is observed also under bursty arrivalsyé-igad0.
The delay of DRR decreases faster under Bernoulli unifosn tmder Bursty
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Fully loaded switch under Bursty uniform traffic
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Figure 6.10: PBC Performance under Bursty uniform arrivals

arrivals because of the burstiness effect. DROP-PR haw#ralblowest delay
because it prioritizes outputs with empty internal buffeesulting in more
balanced internal buffers occupancies and hence lowelateticies.

We compared the average cell latency of the DROP-PR algofitih 32 x 32
PBC switch to that of an unbuffered crossbar switch, a fullffdred cross-
bar switch and an ideal OQ switch. The iSLIP algorithm is ufsedhe un-
buffered crossbar architecture. The fully buffered crasswitch uses input
round robin (RR) scheduling and Oldest Cell First (OCF) atigzheduling.
The comparison is performed under uniform Bernoulli andsBuarrivals.
Figure 6.11 depicts the performance of DROP with differatgrnal buffers,
iSLIP (with 1 and 4 iterations), RROCF and OQ. Irrespective of whether the
input traffic is Bernoulli or Bursty, DROP-PR(1) (1 refers B = 1) has a
similar behavior to 1SLIP, as described earlier (see Se@i8). AsB in-
creases, the delay of DROP-PR significantly decreases.ptbaphes that of
an ideal OQ with just 8 internal buffers per outpi# & 8). Similar perfor-
mance is observed under bursty arrivals (Figure 6.12). 8 hesults suggest
that a PBC switch can replace a buffered crossbar, or evasleah®Q switch
with as few as 8 internal buffers per output. These resulbsatso afford a
switch designer the choice depending on the constraintaeeds. For exam-
ple, if the delay-cost product is the main target, there ésdption to replace
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32x32 Switch under Bernoulli uniform traffic

1SLIP

[J-- DROP-PR(1)
DROP-PR(2)
DROP-PR(4)

—¥— DROP-PR(8)

=
[}
N
T

Average Cell Delay

0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Input Load

Figure 6.11: Performance under Bernoulli uniform arrivals

32x32 Switch under Bursty uniform traffic
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Figure 6.12: Performance under Bursty uniform arrivals.

an unbuffered crossbar switch employing 4SLIP with a PBGcwivith only
4 internal buffers per output (see the delay performancesai@ and DROP-
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PR(4) in Figure 6.11 and Figure 6.12 respectively). Howebgrerformance
is the main criteria with a little flexibility in cost, one cdinen employ a PBC
switch with 8 internal buffers per output since it exhibdeal performance.
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Figure 6.13: Throughput performance under Unbalancefidraf

6.4.2 Unbalanced Traffic

To further endorse our claims with respect to the PBC perfoce, we ana-
lyzed the stability of 82 x 32 PBC switch under unbalanced traffic arrivals
(see Appendix B.2). We employed the unbalanced traffic megadn [67].
We set the switch input load 400% and varied the unbalanced coefficient,
and observed the switch throughput performance. Figui@depicts the per-
formance of the PBC switch with DROP-PR algorithm and déferinternal
buffer settings and compares it to a buffered crossbardRBROCF schedul-
ing). We can see that, witB = 2 internal buffers per output, we can achieve
comparable throughput to a fully buffered crossbar wheruthtealanced co-
efficient,w, is higher than 0.6. This translates to a saving worth of Upo
internal buffers. Setting? = 4, we can achieve higher throughput than a fully
buffered crossbar. The ideal throughput of the PBC is rehelteen using 8
internal buffers per output.
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6.5 Summary

A novel Partially Buffered Crossbar (PBC) switching arebture is proposed
in this chapter. The PBC switch is designed to be the best mmmipe between
unbuffered crossbars and fully buffered crossbars. On and,lit overcomes
the high cost of fully buffered crossbars that ié&internal buffers, by using a
low number of internal buffers per output irrespective\afOn the other hand,
it overcomes the scheduling complexity experienced by fieled crossbars
by means of distributed and pipelined scheduling algorghiVe proposed a
class of distributed and pipelined round robin schedulilggprithms for the
PBC architecture. In particular, the DROP-PR scheme wawsho have
optimal performance under different traffic patterns anddwsizes.

The experimental results showed that a PBC switch with 8niatebuffers per
output exhibits ideal performance, irrespective of thetcwsize, V. We also

showed a design trade off between using the bufferless iSlgétithm with 4

iterations, or using the PBC with 4 internal buffers per i@butput. This trade
off affords a switch designer wider performance and costthahoices. We
believe that the PBC architecture has good potential torhedbe architecture
of choice for next generation routers. The reason for thigisonly because
the PBC achieves the best of both the unbuffered and fullfebed crossbars,
but also because it can provide the opportunity to impleraptitnal bufferless
scheduling algorithms in a pipelined and distributed fashi



Chapter 7

Conclusions

Buffered crossbar (CICQ) switches are considered viabdepaactical archi-
tectures for the design of high performance routers. A Cl@{ch has good
potential in overcoming the scheduling bottleneck expee by alternative
switching architectures. However, the scheduling sinitglicomes at the cost
of an expensive and complex buffered crossbar fabric chiprins of on chip
memory and flow control signaling. Additionally, the CICQihing has so
far been studied only in the context of unicast traffic schiagu

This dissertation studies the CICQ switching architeciame addresses its
scalability and performance issues. To address the shigldiphitations, we
have proposed a CICQ switching architecture where the sidredare all
embedded within the buffered crossbar fabric chip. Thisltesn an opti-
mized flow control mechanism and allows the design of scalatlitching.
We showed that this architecture is able to provide perfogaaguarantees.
We have also studied the problem of multicast as well as tiegtiation of uni-
cast and multicast flows scheduling for the CICQ architectdio reduce the
internal memory limitation, we proposed a partially buéfércrossbar switch-
ing architecture, wherein only a small fixed number of indkbuffers are used
inside the buffered crossbar fabric chip.

This chapter is structured in three sections. Section #ringarizes the work
presented in this dissertation. In Section 7.2, we predenintains contri-
butions of the dissertation. Finally, Section 7.3 lists soiuture directions
and open issues worthy of further research and investigatithe context of
buffered crossbars.

129
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7.1 Summary

The dissertation begins by providing the background of thekwA survey of
existing switching architectures was given in Chapter 2e $trvey focussed
on the 1Q crossbar fabric switching architecture becausigsdimilarity to
the CICQ switch. We have described the CICQ switching agchirre and
outlined its main limitations, motivating the work in thigsdertation.

Chapter 3 describes the design and implementation of a setlaédded sched-
ulers within the buffered crossbar fabric chip. This is aelalass of algo-
rithms, where the arbitration process is fully based on tiermal buffer in-
formation. This was motivated by the observation that thiéebed crossbar
fabric chip is I/O pin count constrained, implying the egiste of unused area
on the chip. When the schedulers are located inside thebawshkip, there is
no longer a requirement for the flow control to carry the alality of every
crosspoint. Instead, the index of a new arriving cell willfoewvarded to the
crossbar chip, resulting in optimized flow control betweles ¢rossbar fabric
chip and the input line cards. For32 x 32 switching system, our embed-
ded CICQ switching architecture achieves up to 70% savinghif I/O flow
control pins when compared to existing CICQ switch architexs. This has
the benefit of speeding up the scheduling time while usitighéied number
of flow control signals, resulting in more scalable crosshaitches. It also
improves the performance of the scheduling algorithmsesthere are many
algorithms that base their decisions on the internal bsifferd when embed-
ded within the crossbar chip would have faster decisionschiedper access
to resources. The experimental results showed that oulf s¢garithms out-
perform existing algorithms under various traffic settind® show the fea-
sibility of the embedded scheduling architecture, we immaated 24 x 24
buffered crossbar core with each port running at 10 Gbpsewiclyg an aggre-
gated switching bandwidth of 240 Gbps.

Although our devised embedded schedulers were shown tadertigh per-

formance under a wide range of unicast traffic patterns, tieepot provide

performance guarantees. In Appendix A, we devised a set bédded sched-
ulers for a buffered crossbar that can mimic an ideal OQ $witte showed
that our proposed fabric, when running twice as fast as ttermel line rate,

can emulate an ideal output queued switch. Our resultseaptiithe class of
OQ switches that use FIFO output scheduling discipline.

Chapter 4 addresses the problem of multicast traffic flowsdding. We pro-
posed a multicast buffered crossbar switching architedtased on input FIFO
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gqueues along with appropriate scheduling. We showed thiatrohitecture ex-
hibits better performance than existing architectures fiftber improved our
multicast switching architecture by using a small numbenptit queues per
port of the switch. We devised a multicast cell assignmegwrdhm to map

incoming multicast traffic to the input queues. Our algantivas shown to as-
sign traffic more efficiently, fairly and faster than existialgorithms. We used
simple round robin for cell scheduling and showed its supiyito alternative

proposals. Our study showed an interesting trade off betwlee number of
input multicast queues and the size of the internal buffEings results not only
in better performance, but also in significantly reducedadadting complexity,

hence faster and more scalable switching.

In Chapter 5, we proceeded to scheduling more realisti¢icrdbws: the
combination of unicast and multicast traffic. We proposeditfebed cross-
bar based architecture, along with the appropriate schedinat efficiently
supports both unicast and multicast flows. Our scheduletievitased on a
fanout splitting policy, tends to not exhaust the serigkditetween the line
cards and the fabric core when servicing multicast traffie. éWiployed plain
round robin scheduling, both at the traffic level as well as gueue level,
and showed higher performance than previous algorithm®rdar to verify
the feasibility of our design, we implemented our integiaseheduler for a
16 x 16 switching system running a 20 Gbps port speed, allowingyessitch
port to forward more than 47 million ATM cells per second.

Chapter 6 describes a novel variation to the CICQ switchiehitecture that
overcomes the buffered crossbar internal memory limmatid/e proposed a
partially buffered crossbar switching architecture that is desigadx a good
compromise between the two extreme cases of unbufferedbasand fully
buffered crossbars. The proposed partially buffered biarsis based on few
internal buffers per fabric output, making its cost compéao unbuffered
crossbars. It overcomes the centralized 1Q crossbar stthgdottleneck by
using distributed and pipelined schedulers, as in fullydreld crossbars, mak-
ing it a practical and low cost architecture for ultra higlpaeity networks.

7.2 Contributions

The main contributions of this dissertation are as follows:

» Unicast Scheduling:We have designed and implemented a novel class

of unicast scheduling algorithms for the CICQ switchinghitecture.
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These algorithms make their scheduling decisions basgdoorthe in-
ternal buffers information. We have proposed an embeddeedsding
architecture, where all the input and output schedulersearbedded
within the buffered crossbar fabric chip. Embedding thessiciters in-
side the crossbar results aptimized flow controbetween the cross-
bar fabric chip and the input line cards. We showed that, fewich
with IV ports, a flow control o2 Nlog/N signals is sufficient for efficient
scheduling as opposed to using flow control signals. For a typical
32 x 32 switching system, our proposed embedded CICQ switching ar-
chitecture achieves up to 70% saving in chip 1/0 flow contiospvhen
compared to existing CICQ switch architectures. This had#mnefit of
speeding up the scheduling time while usingnaited number of flow
control signals, resulting in more scalable buffered drasswitches.

Providing Performance Guarantees:we described a set of embedded
schedulers for a buffered crossbar that can mimic an ideak®ih.
We showed that our proposed buffered fabric, using a speefitypo,
can emulate an ideal FIFO OQ switch.

Multicast Scheduling: We studied the problem of multicast traffic flows
scheduling in CICQ. We proposed a multicast FIFO based trdfe
crossbar switching architecture along with appropriateedaling. We
showed that our architecture outperforms existing archites. We fur-
ther extended our multicast switching architecture and asamall num-
ber of input queues per port of the switch. We devised a nasticell
assignment algorithm to map incoming traffic to input queuear al-
gorithm was shown to assign traffic more efficiently, fairtydequickly
than existing algorithms. The experimental results shaivatithe num-
ber of input multicast queues can be reduced for a littleciase in the
size of the internal buffer memory per crosspoint. This ltesa higher
switching performance in terms of cell delay as well as radyuthe
scheduler complexity, providing faster and more scalabiéching.

Integration of Unicast and Multicast Flows: We studied the problem
of multicast traffic flows scheduling in CICQ switches. We jprsed,
designed and implemented an integrated scheduling digocapable
of scheduling unicast and multicast flows simultaneouslyr @esign
was implemented for &6 x 16 CICQ switch running a 20 Gbps port
speed, resulting in every switch port capable to forwardentban 47
million ATM cells per second.
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« Partially Buffered Crossbar Switches: We proposed a novel variation
to the CICQ switching architecture that overcomes the bedfeross-
bar excessive internal memory requirement. We propospdrially
buffered crossbar switching architecture that is designelde a good
compromise between the two extreme cases of unbufferedbamsand
fully buffered crossbars. The proposed partially buffecedssbar is
based on few internal buffers per fabric output, making dstcompa-
rable to unbuffered crossbars. It overcomes the centthli@ecrossbar
scheduling bottleneck by using distributed and pipeliretedulers as in
fully buffered crossbars making it a practical and low cosh#ecture
for high speed and capacity networks. Experimental resuligested
that using 8 internal buffers per crossbar output is suficie achieve
ideal performance for any switch siz¥,

7.3 Future Research Directions

The increasing need for terabit switches and routers mdstsuture com-

mercial packet switches must be implemented with reduckddsding com-

plexity, low cost and scalability while providing performze guarantees. In
this dissertation, we have proposed several schemes faautfered crossbar
architecture in order to meet next generation routers reménts. We con-
jecture that there are a number of other research directi@misequire more
investigation. These directions include the following:

» Embedded Multicast Scheduling: The work in this dissertation has
focussed on embedding only unicast scheduling algorithmasle the
buffered crossbar chip. It would be interesting to explonglementing
a scheduler capable of supporting all types of traffic flomsl(iding
multicast and/or the integration of both unicast and mattidlows) in-
side the buffered crossbar fabric. This would provide dmbiy of the
buffered crossbar fabric architecture irrespective oftthffic type. Re-
garding the integrated traffic scheduling; although in tésertation we
considered multicast fanout-splitting policy due to itgththroughput,
adopting non fanout-splitting policy is better as it is mdandwidth
efficient. We believe that a carefully designed CICQ switothaec-
ture, owing to the existence of its internal buffers, canpadon fanout-
splitting discipline without throughput degradation. Quay to address
this is by dedicating internal buffers for multicast traffiad crossing
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every multicast packet only once over the serial links betwthe input
line cards and the buffered crossbar core.

Providing Performance Guarantees:Current VLSI technology is ca-
pable of allowing one cell per crosspoint when the numbehefiitch
ports is less than one hundred. The size of memory that cam ¢tip is
expected to grow. It would be interesting to investigatepbssibility of
providing performance guarantees (OQ emulation) with 2dpe less
than two, but with internal buffers of bigger sizes.

Partially Buffered Crossbar Switches: The partially buffered crossbar
switching architecture is perhaps the most promising offdie work in
this dissertation has mainly focussed on introducing thecept of the
partially buffered crossbar architecture by testing aralating its per-
formance. We believe that all the future directions outirzdove can
be incorporated in one, practical and optimal architectuwreh as the
partially buffered crossbar. One very important issue igestigate
whether it is possible to map the bufferless MWM optimal skhieg
algorithms to the partially buffered crossbar architegtamd implement
them in a pipelined and distributed fashion. It has so fanbes pos-
sible to achieve this task for fully buffered crossbars dmereason is
mainly attributed to the physically distributed internaffers as well as
their scheduling. We believe that the partially bufferedssbar archi-
tecture with its efficient internal buffers sharing, can ooy practically
run optimal scheduling, but can also provide throughpug aad delay
guarantees as well.



Appendix A

Output Queued Switch
Emulation

mongst all queueing approaches. However, an OQ switct scab
able due to the high memory bandwidth limitation (see Sa@ig.3).
While it has been shown that we can emulate an OQ using a malabse
crossbar switch (i.e., Input-Queued (1Q) switch) and a Espdedup, the al-
gorithms proposed were impractical (see Section 2.3.5yeNvacent work has
shown that a conventional CICQ can practically emulate ansch (see
Section 2.5.2). In this appendix, we show a similar resuthtorelated work
presented in Section 2.5.2, however with different archite and scheduling.
In particular, we propose the following:

Ogtput—Queued (OQ) switches are known to be of optimal performance

* A 1-cell internally buffered CICQ switch with embedded edhlers (as
proposed in Chapter 3) that can exactly emulate a FIFO OQlswithe
embedded CICQ switch core has a speedup of two.

» A set of embedded scheduling algorithms. The input sclimglub
named Most Current Arrival First (MCAF) with an output schkd
ing scheme named Lowest Time to Leave First (LTF). Our allgor]

MCAF_LTF, particularly its output scheduler is simpler than poesly
proposed algorithms.

The remainder of the appendix is structured as follows: i@e®.1 describes

the architecture and illustrates the definitions used #fme Section A.2
presents the MCAETF scheme and provides sufficient proof for OQ emu-
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lation by CICQ switch with a speedup of 2.

A.1 Switch Model and Definitions

Flow Control Internal Crosspoint
Buffer, XP
N
L .
\—’iLF IS: Input Scheduler
IPL: Input Priority List
OS: Output Scheduler
OPL: Output Priority List
4 .
OPL, I_EI:I* OPLy
gﬁ D=y

1 |

1

Figure A.1: CICQ Switching architecture with embedded scifiers and out-
put queues.

The embedded CICQ switching architecture that we proposeissimilar to
the architecture we described in Section 3.3. Howevergsiveuse a speedup
of 2, queueing is now required in the inputs as well as in thpus, as de-
picted in Figure A.1. With a speedup of 2, each time slot isdgie into 4
phases as depicted in Figure A.2. These phases are dedoeiload

* Arrival phase:All arrivals occur during this phase.

First scheduling phase:a scheduling cycle is performed during this
phase.

» Second scheduling phasa:second scheduling cycle is performed dur-
ing this phase.

» Departure phaseAll cell departures occur during this phase. The end
of this phase coincides with the end of a time slot.
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Figure A.2: Scheduling phases in an embedded CICQ Switch.

In the following section, we provide some definitions neaeg$or the deriva-
tion of the OQ emulation. These definitions are similar tosthpresented
in [35]:

1.

Input Priority List (IPL): Each input scheduler maintains an input pri-
ority list, IPL, of all cells queued in its corresponding utport. The
IPL determines the departure order of cells from the inptitéanternal
buffers.

. Shadow OQ Switch: A theoretical OQ switch that determines the de-

parture order and time of each cell from the CICQ to emulat@@n

. Time-to-Leave (TTL): Equals the departure time slot of cell ¢, speci-

fied by the shadow OQ switch. Note that all cells, destinedHfersame
output, must have distinct TTLs.

. Output Priority List (OPL): Each output schedulej, maintains an

output priority list, OPL, of all cells queued at the columutfier CXPB;.
The OPL at an output scheduler is composed a FIFO queue aria Pl
queue. The ordering of cells in the FIFO and PIFO queues mieies
the departure order of cells from the internal buffers todhout queue.
Cells are inserted in the PIFO queues based on their TTL fieldell

¢, destined to a PIFO queue, is inserted ahead of all cellsamifreater
TTL and behind all cells with smaller TTL.

. Input Thread (IT): The input thread of a cell dT(c), is equal to the

number of cells ahead of ¢ in its input priority lidfT(c) is defined for
each cell queued at an input port. Itis influenced by thearawmd input
scheduling phases. A newly arriving cell may caliBg) to increment.
However, an input scheduling phase may cdige) to decrement. If ¢
is transferred to the internal buffers, I§c) becomes zero .



138 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

6. Output Cushion (OC): The output cushion of a cell ¢ is equal to the
number of cells at ¢'s output queue with lower TTL than c. WaliT(c),
OC(c)is influenced by the output scheduling and the departuregghas
respectively. An output scheduling phase may c&Séc)to increment.
Conversely, a departure phase may caDgXc)to decrement.OC(c)
does not change during an input scheduling phase.

7. Slackness (L):Every time slot, the slackness of cellldc), equals the
output cushion of cell ¢ minus its input thread. That is,

L(c) =0C(c) — IT(c)

The slackness is defined for cells queued either at an inptibpat a
crosspoint buffer .

The slackness of a cell c determines the urgency of ¢’s taffisfm its incom-
ing port to its outgoing port [35]. Recall that emulating O@ans that every
cell must reach its output queue on or before its time to lesvepecified by
the shadow OQ. The OQ emulation process is highly influengatidslack-
ness of every cell, c, inside the system. Any increase(a) is translated by
either an increase I@C(c)or a decrease i (c). In both cased.(c) increases
and there is no fear for ¢ of reaching its output on time. Angréase ir_(c),
however, is translated by either a decreas@@(c)or an increase ifir(c). In
both casesl.(c) decreases and ¢ should be urgently transferred to its output
gueue before it misses its time to leave. As a result, in datethe OQ em-
ulation to occur, we have to ensure that the slackness of egdirinside the
switch is positive and non-decreasing.

During each time slot, every cell, ¢, can have one of the faolg statuses:
just arrived, selected for input scheduling, not selectadirfput scheduling
(blocked by a flow control), selected for output schedulingt selected for
output scheduling (blocked by a more urgent cell) or deplatie switch. Note
that we are no longer concerned about any cell that eithehesaits output
queue (i.e., the status: selected for output schedulinggparted the switch.
The OQ emulation takes place if, irrespective of its stedng,cell, c, has a non
negative slackness. In the following section, we proposehaduling scheme
along with its complete proof that a CICQ switch running gbeeslup of 2 can
exactly emulate an OQ switch. In particular, we will showtth@on its arrival,

every cell, c, is inserted with a non-negative slacknesgnTangoing, as long
as the cell ¢ is inside the switch and having one of the statabmterest, its
slackness never decreases.
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A.2 FIFO Output Queueing Emulation

This section provides the specification of our proposed dudivey scheme
along with the sufficient conditions that prove that, withpeedup of two, a
CICQ switch can exactly emulate an OQ switch. The specitinatif each of
scheduling phase is as follows:

Input Schedule: MCAF
Each input, i, maintains its IPL as follows:

If there is a currently arriving celk, to aVOQm-.

Then insert, just behind the last entry &OQ, ; in the IPL.

If VOQ, ; is eligible

. If VOQ, ; contains other cells than

Move the HoL cell ofVOQ, ; to the front of IPL and assiga
a priority flag ‘P’.

. Else, move the HoL cell dﬁ’OQm- to the front of IPL and assign
a priority flag ‘F’.

Serve cells based on IPL order.

Output Schedule: LTF
Each output, j, maintains its OPL as follows:

- If cell ¢ has a priority flag ‘P’

. Then, insert into thePIFO;.
. Else, insert into the tail of FIFO;.

- Move the HoL cell ofPIFO; or FIFO, based on the Lowest TTL to the
front of the OPL.

- Serve cells based on OPL order.
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Lemma A.1. The LTF output scheduling scheme ensures Lowest TTL (LTTL)
scheduling property.

Proof. Every cell, ¢, sent from an inpiOQ, ; to a crosspoint buffeiXPp; ;,
is inserted either at the tail &IFO; or in thePIFO;.

» Case 1: Cell, c, is inserted at the tailfeifFO ;

i) Cell, c, enters the switch at the current time slot.

i) Similar to FIFO OQ, if simultaneous arrivals occur to tkame
FIFO, tie-breaking is used.

iii)y For cell ¢’, ahead of cirFIFO,;, TTL(c") < TTL(c)
iv) Combining (i), (ii) and (iii) implies: cells irfFIFO; are ordered by
their TTL, and the HoL cell oFIFO; has the lowest TTL.
» Case 2: cell, ¢, is inserted RPIFO;
1) By definition 4, inserted cells in thRIFO; are ordered by their
LTTL.

2) The LTF scheme compares th&FO; HoL cell with PIFO; HoL
cell and moves the cell with Lowest TTL to the front of the OPL.

3) The LTF output algorithm serves cells based on the OPLrorde
Combining (iv), (1), (2) and (3) proves the Lemma. O

Theorem A.1. For a CICQ switch employing the MCAETF scheduling
scheme, the slackness of any cell, c, that does not yet resaohtput queue,
increases by at least 1 during each scheduling phase.

Proof. We know that any cell, c, that does not yet reach its outputiguan
only be either at internal buffer or at an input queue. Thereefve have the
two followings cases:

» Case 1: Cell, c, is queued at an internal bufi?; ;
i) By Definition 7,

L(c) =0C(c) — IT(c)
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i) By Definition 5, since cell ¢ is queued at the internal lenffthen
IT(c) = 0.

i) If c ends the scheduling phase at the internal buffer kwew that
cell, ¢, such thaflTTL(c’) < TTL(c) has been selected for output
scheduling (Lemma A.1). Henc®C(c)increases by 1

» Combining (i), (ii) and (iii) yields:L(c) increases by 1. (2)

* Case 2: cell, ¢, is queued at an input QU@ ;

In this case, there are two possibilities: eitM®Q, ; is eligible or it is
backlogged.

* Case aVOQ, ; is eligible
i) During the input scheduling phase either ¢ is chosen otla ce
¢’ ahead of c in the IPL is chosen to be transferred to the in-
ternal buffer.
ii) If cis chosen,IT(c) becomes zero, and therefore decreases at
least by 1.
i) If ¢’ is chosen,IT(c) decreases by 1.
iv) By definition 6, OC(c) remains unchanged during input
scheduling.
» Combining (i), (i), (iii) and (iv) yields:L(c) increases by 1.  (2)
 Case b\VOQ, ; is is backlogged by an internally queued cell ¢’
i) Both c and ¢’ belong to the same FIRGDQ, ;.
Hence, TTL(c’) < TTL(c)
i) During an output scheduling phase, either ¢’ or ¢” suctth

TTL(¢") < TTL(¢) < TTL(c)

is sent to the output. In either cas&;(c)increases by 1.
iii) During an input scheduling phaséT(c) either decreases or
remains unchanged.

» Combining (i), (ii) and (iii) yields:L(c) increases by 1. 3)

» The combination of (1), (2) and (3) yields: the slacknesarof cell, c,
that does not yet reach its output queue, increases at hedstbring
each scheduling phase. Hence, the proof of Theorem A.1 ipleten

O
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Theorem A.2. Consider a CICQ switch with a speedup of 2 that employs
MCAF_LTF scheduling policy. For every time slot and for every ,cellthat
does not yet reach its output queue, the slackness neverates:.

Proof. For the CICQ switch operating at speedup of 2, the time sldivised
into an arrival phase, two scheduling phases and a depttase.

i) During an arrival phasd[T(c) can increase by at most 1 (in case the newly
arriving cell is more urgent than c). The possibility thBfc) increases by
at most 1 causds(c) to decrease by 1.

ii) During a departure phas®C(c)decreases by exactly 1, since a cell in its
output queue left the switch. The decreasé@f(c)by 1 causes(c) to
decrease by exactly 1.

iii) From Theorem A.2, we know that the slackness of any azlthat does
not yet reach its output queue, increases at least by 1 ehedng
phase. Since we have a speedup of 2, every time slot conteorsshedul-
ing phases. Hence, every time slof¢) increases by at least 2.

Summing over (i), (ii) and (iii) results in a non decreasitecknessl.(c). O

Now, as we proved that the slackness never decreases framstonto the
next, we need to ensure that any arriving cell, ¢, must betegénto the IPL
with a non negative slackness.

Lemma A.2. The MCAELTF scheduling scheme satisfies the non-negative
slackness (NNS) insertion property for a CICQ switch rugraha speedup of
2.

Proof. (by induction

Suppose that lemma 2 held up until time glotVe show that lemma 2 holds
at time slott + 1.

At time slott + 1, a new arriving cell, ¢, can arrive to either an empty or a non
empty VOQ, as follows:

* Case a: Cell c arrives to an emptpQ, ;
Based on MCAF scheme, an empty VOQ to which arrival occurs be-
come highest priority and has the following:
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IT(c) =0,0C(c) >0, thus:
L(c) =0C(c) —IT(c) >0 4

» Case b: Cell c arrives to a non empty)Q); ;
We know that the NNS property held up until the end of time glot
Suppose that cell, ¢’, behind which c is inserted had a pessiackness
of Ly(c") attimet. From Theorem A.2, we know that the slackness never
decreases from time slot to the next. This implies:
Liyi(d) = OCa () = ITia ()
> Ly(c) (5)

Cell cis behind c’, that is:

ITyy1(c) = [Ty (c) + 1 (6)

Both, ¢ and c¢’, are destined to the same output &hH(c’) < TTL(c)
implying:
OCH_l(C) > OCH_l(C/) +1 (7)

(5), (6) and (7) imply:

Lit1(c) = OCa(c) = ITisa(c)
> (0C1(d) +1) = (T (d) + 1)
> Lia ()
> Ly(c) (8)

Combining (4) and (8) results in a non-negative slacknessriion policy.
Hence, the proof of Lemma A.2 is done. O

Having showed that a CICQ using MCAHF scheduling scheme and a
speedup of 2 satisfies the non-negative slackness insg@miamy and a non-
decreasing slackness from time slot to the next, we are tegahpve our main
theorem.
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Theorem A.3. A CICQ switch employing the MCAETF scheduling policy
with two times speed up can exactly emulate a FIBQ switch.

Proof. (By induction

Suppose that the CICQ has emulated a FBQ switch up until the departure
phase of time slot. We show that any cell, ¢, such tHETL(c) =t +1 reaches
its output queue on or before the second scheduling phaseestott 4 1 as
follows:

+ Case a: Cell cis queued at an internal bufk®; ;

i) There are no cells left inside the switch wilTL < t+1 .
i) TTL(c)=t+1 and the LTF scheme ensures LTTL scheduling
(Lemma A.1).

« (i) and (ii) result in c being scheduled during the first autpcheduling
phase of time slot + 1. 9)

» Case b: cell, c,is queued at an input quet@Q,

i) Cell ¢ has the lowestTL, henceOC;4(c) = 0.
ii) Cell c was inserted wittNNS(Lemma A.2).

iii) Since ¢ has the lowestTL, all cells with lowerTT L than c are
gone from the system. Thus the internal fabXi; ; must be
available.

e (i) and (ii)imply 1T,y 1(c) = 0, and thus ¢ must be in the front of the IPL.
(10)

* (iii) and (10) result invOQ, ; being eligible and cell ¢ must be trans-
ferred to the internal buffer during the first input schedglphase (11).

* (iii) and (11) result in cell c being chosen by the outputestiier during
the first output scheduling phase.

O

In our embedded CICQ switch, the arrival phase and the fitsedding
phase can be performed simultaneously to reduce the roipndietay of input
scheduling, as in Figure A.3. In this case, the embedded Gidi@mulate
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an OQ with one time slot delay. The proof remains the same|vigya con-
sidering only the cells that reach the switch input queuesssheduling phase
earlier. The reason for this is because the first scheduliageexcludes cur-
rently arriving cells, which are considered starting frdme following input
scheduling phase onwards.

Arrival

Input Output Input Output
Schedule 1 || Schedule 1 || Schedule 2 || Schedule 2

Departure

-, > «——p
Schedule Phase 1 Schedule Phase 2

A
\/

Time Slot

Figure A.3: Scheduling phases in embedded CICQ Switch veithlfel arrival
and input scheduling phases.






Appendix B

Performance Simulation
Environment

performance of the switching systems studied in this diggen. First,

we introduce the software simulation tool, along with a gengwitch-
ing system and provide some definitions for its inputs angutst We, then,
illustrate and describe the traffic models employed to reretkperiments. Fi-
nally, we explain the indices used to evaluate the perfoomari the schedul-
ing algorithms and the switching architectures studiedis dissertation.

This appendix describes the simulation environment used taiatathe

B.1 Simulation Environment

Throughout all the simulation studies in the dissertatiove used the
SIM [108] simulator. SIM is a slotted-time simulator writtén ANSI C and
was designed for simulating fixed-size switching architezs, such as ATM
switches. Instead of discrete-time simulation (eventedj, the simulation in
SIM progresses on a time-slot basis (ATM cell). Every tin-sonsists of
three main stepgi) check the arrival of new cellgii) schedule the transfer of
cells from the inputs of the switch to the output of the switahd (iii) sched-
ule the departure of cells from the outputs of the switch. & Mtructured in
modules and each module performs a specific task, such &s gaherator,
input queues, fabric switch, scheduling algorithm, anghbotiueues.

We have modified SIM in order to incorporate our schedulingoathms,
queueing structures and the different buffered crossbafigigrations. We

147
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Figure B.1: The dynamics of a generic switch.

have included the queueing structure to support the matticanput queues
studied in Chapter 4. We have included two new modules fantisphedul-
ing and output scheduling respectively, used throughogitvthole disserta-
tion. We have also included two new modules to support thieted crossbar
switch fabric used throughout the dissertation as well agptrtially buffered
crossbar switch introduced in Chapter 6.

A generic switch with/V inputs andN outputs is depicted in Figure B.1.
A; j(n) denotes the number of arrivals to inpubf cells destined to output
j at time-slotn, while A;(n) is the aggregate number of arrivals to input
during time-slotn. Every time-slot, at most one cell can arrive at each input.
The arrival rate of4; ;(n) is denoted by\; ;. D; ;(n) denotes the number of
departures from outpuyt of cells arriving from input; while D;(n) is the ag-
gregate number of departures from outpudt time-slotn. Similarly, every
time-slot, at most one cell can depart from each output. dieioto gather per-
formance results and related statistics, we run SIM for oilomtime-slots
and we gather the data when fourth the simulation time hgseth In all the
simulations, we consideadmissiblearrival process and i.i.d Bernoulli traffic
as defined below.

Definition B.1. An arrival process is said to be admissible if no input or aitp
is oversubscribed, i.e, whén ¥, X, ; < 1,500, A < 1,5 > 0.

Definition B.2. Arriving Traffic is said to be independent and identicallg-di
tributed (i.i.d) if and only if:
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1. Every arrival is independent of all other arrivals boththe same input
and at different inputs.

2. All arrivals at each input are identically distributed.

B.2 Traffic Scenarios

A traffic scenario is generally characterized by two randeoatgsses to model
the spatial and temporal characteristics. The temporalgss refers to the
inter-arrival times of successive cell arrivals. This isuctterized by the ar-
rival frequency, or input load. The spatial process of tcaffi characterized
by the distribution of arriving cells over the output deations. Throughout
our simulations, we used both uniform and non-uniform ftcaffiodels as de-
scribed in the next section.

B.2.1 Uniform Traffic

Internet traffic is a mix of all types of traffic. Uniform traffconstitutes a large
part of this traffic. The two widely used uniform traffic patte are Bernoulli
uniform and Bursty uniform. We describe each of them below.

Bernoulli Uniform Traffic

This a common test-bed traffic scenario used for evaluatiagpérformance of
switch performance. In every time-slot, a cell is generat@l probability p
(also known as the normalized switch input load). Sincertéi#id is uniform,
p=A. The output destination is uniformly distributed over all, outputs.

Bursty Uniform Traffic

Bursty traffic is a commonly used traffic model due to its clapproximation
of Internet traffic. Real network traffic is highly correldtrom cell to cell [40]
and so in practice, cells tend to arrive in bursts. When daffid arrives
at the input ports of a router, it is often segmented intos¢celuch as video
and/or audio frames, forming a burst or a set of bursts. Toerestudying
the performance of a switching system under bursty traffieery important.
Bursty traffic can be modeled by a two-state Markov-chairsggiimg of an ON
(busy) and an OFF (idle) state. During the ON state, cellsa(#h the same
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destination) are generated every time-slot. During an Q&te,;sno traffic
is generated. The busy and idle periods contain a geombtritiatributed
number of cells, known as the burst size and denoteld by

B.2.2 Non-Uniform Traffic

Traffic non-uniformity refers to the variation in the disttion of input traffic
over the destination output ports. Internet traffic is, gate non-uniform
and asymmetric. Many Internet traffic examples confirm thoprty, such
as client-server applications, where a humber of clienteroanicate with a
small number of servers. Since it is nearly impossible toutate all such
workloads, there exist some representative and commoel¢ nsn-uniform
traffic models. In our simulations, we used two known norfami models
which we describe next.

Diagonal Traffic

The Diagonal traffic is defined as in the following traffic nmgtrfor 4 x 4
switch:

20 p 0 O
1
A(Diagonal) = 3 8 20/) 2pp 2
p 0 0 2p

This is a very skewed and critical traffic, in the sense thatiin has cells only
for outputi and output: + 1|. A diagonal load has; ; = 2—§, Nijiv1) = § Vi
and); ; = 0 for all otheri and;.

Unbalanced Traffic

The unbalanced traffic is defined by using an unbalanced pildapaw. For
a N x N switch, the traffic load at each input port is defineddyThen, for
each input port and output portl, the traffic loadp; 4, is given by:

+ 152y ifs =d;
a={ P

p 5 otherwise

Note that whenv = 0, the load is uniform over all outputs and when= 1,
the traffic is totally unbalanced (only the diagonal). In experiments, we
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setw to be0.5 because this value corresponds to the pattern with the towes
performance (the hardest to schedule).

B.3 Performance Indices

Three common metrics are, generally, used to evaluate ttierpance of a
switching system: the average cell delay, the switch thinpug and the in-
put queues occupancies (for buffer sizing and cell losg)atiVe used these
metrics to evaluate the studied switching systems. We ibeseach of these
metrics below.

Average Cell Delay

The delay of a cell is the time duration the cell spends ingideswitch queues
until it reaches its output port. Depending on the switcthidecture used (see
Figure B.1), the delay of a cell can refer to the time spendeshe input
VOQs (in the case of IQ bufferless switches) or the time speide the input
VOQs as well as the internal buffers (in the case of CICQ beaffeswitches).
In our study, we consider the average delay over all cellde Nt the average
cell delay can be referred to as the mean cell delay, or the fa@rage) cell
latency. The average cell delay is important as it indicttesefficiency of a
scheduling algorithm (or of a switching architecture).

Switch Throughput

The switch throughput is defined as the ratio between theudltpd and the
input load of the switch. The maximum throughput is definedh@smaxi-
mum input load after which the switch becomes unstable.ahilfty means
that the input load is higher than the throughput of the dwiteence queues
will keep growing indefinitely. The maximum throughput isaknown as the
saturation throughput of the switch and indicates the $wipacity. If the
saturation throughput of a switch with a given schedulirgpathm equals to
one, which is the maximum value due for a speedup of one, themiten
scheduling algorithm is said to achieve 100% throughpwetwo schedul-
ing algorithms both of which can achieve 100% throughpug,dhe with the
shorter average cell delay is preferable. A schedulingréihgo is considered
stable if it provides 100% throughput and it keeps the inpiitel size bound
in number of cells.
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Input Queues Occupancies

The input queues occupancies metric indicates the stabilithe switching
system both with respect to the scheduling algorithm usel¢bathe underly-
ing switching fabric topology. The input queues occupascan also serve
as an indication on the input buffer size needed to prevelhtlass. We
used thel.? norm vector representing the input VOQs occupancies [0
VOQ; ;(n) be the number of cells queued WOQ; ; at time slotn. The L?
norm' vector at time slot is denoted by L(n)| and defined as follows:

I = |33 (VOQi,(n)?

i=1 j=1

As it was shown in [104], the input queues occupancies came germprove the
stability of the scheduling algorithm. That is if, under &esduling algorithm
X, one can show thaE(||L(n)||) < oo, then it can be concluded that is
stable. HereFE(z) refers to the expected value of x.

1Also known as the Euclidean norm.
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Samenvatting

Verscheidene voorstellen om geschikte architecturen Vamye snelheid
packet switche$lP routersen ATM switchef te vinden zijn door academici
en industrie onderzocht en geimplementeerd. De ondexiegdvan deze ar-
chitecturen kan gebeuren op basis van verschillende w#t#ribzoals wachtrij-
methoden, arbitrage algoritmen en/of de interne topoloffie meeste hoge
snelheid switches en Internet routers van vandaag de dagike eercross-
bar fabric zonder buffers op de kruispunten. Het ontwerpen van op loaoss
gebaseerde routers die schaalbaar zijn en gegarandeestatigr leveren, is
moeilijk met de huidige technologie. Dit wordt toegesclerewaan de hoge
complexiteit van berekeningen in de centrale crossbatearbn aan de natuur
van de op crossbars gebaseerde switchingarchitectuur zelf

Dit proefschrift bestudeert het arbitrage probleem in slas switches met
buffers, waar de kruispunten een kleine buffer hebben. [Dhédrage van
unicast enmulticasverkeersstromen en tevens de integratie van beiden wor-
den behandeld. Een aantal gedistribueerde en paralldligagealgoritmen
met bijbehorende architecturen worden beschreven. Dgpeitahen zijn ont-
worpen om praktisch implementeerbaar te zijn en om schaalieazijn met

het aantal poorten van een router en met de lijnsnelheid.

Een klasse van unicastarbitragealgoritmen wordt besehregtie alleen de
status van de interne buffers gebruiken. Een switchingaeathur wordt

voorgesteld, waar alle arbiters in de crossbar chip ggieéed zijn. Verder
wordt beschreven hoe de voorgestelde architectuur gadgeette prestaties
kan leveren. Met een zogenaamde versnelling van een favk® ts de

voorgestelde architectuur in staat een ideale switch mehtnigen op de uit-

gangen te emuleren.

Het probleem van arbitrage van multicastverkeersstromesrdiw ook

bestudeerd. Een gebufferde crossbararchitectuur gedasge ingangs-
multicast eerst-komt-eerst-maalt rijen met de bijbehdeearbitrage wordt
beschreven. Deze architectuur presteert beter dan bdstaachitecturen. De
architectuur voor de multicast switch wordt verder vertzetgoor een klein
aantal buffers per ingang te gebruiken. Er wordt een algeritoor cel plaats-
ing bepaald dat inkomend verkeer aan ingangsbuffers teewdf wordt aange-
toond dat dit algoritme verkeer efficiénter, eerlijker emrlter kan toewijzen
dan bestaande algoritmes. Deze studie laat een interessfimtging zien
tussen het aantal ingangsbuffers voor multicast en de tgrean de interne
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buffers. Dit zorgt zowel voor verdere prestatieverbetgran de switch als
voor een vermindering in de arbitrage complexiteit, megalmlg een snellere
en beter schaalbare switcharchitectuur.

Voorts wordt de arbitrage van meer realistische verke®rssin bestudeerd:

de combinatie van unicast en multicast. De architectuureeamop crossbars
gebaseerde switch wordt beschreven, vergezeld van bijpet® arbitrage die
unicast en multicast efficient ondersteunt. Hoewel de gestelde arbiter op
fanout splittingis gebaseerd, nijgt deze multicast verkeer te kunnen behan-
delen zonder de verbinding tussen de lijnkaarten en de kanrde switch te
overbelasten. Er wordt aangetoond dat deze architectuerebgrestaties lev-

ert dan bestaande architecturen.

Als laatste wordt een variant op de architectuur voor de fietale crossbar
switch bestudeerd. Er wordt een gedeeltelijk gebufferdsstrararchitectuur
voorgesteld. Deze is ontworpen om een goed compromis tetusgen de
twee uitersten van bufferloze crossbars en volledig gebudf crossbars. De
gedeeltelijke gebufferde crossbar is gebaseerd op eerinpeare buffers per
crossbar uitgang, waardoor de kosten vergelijkbaar zijhewe architectuur
zonder buffers. Het knelpunt van de gecentraliseerde lwaossbitrage wordt
verholpen door deze arbitrage gedistribueerdoipelinedte doen zoals ook
wordt gedaan in volledig gebufferde crossbars. Hierdoodwae architectuur
goedkoop en praktisch voor gebruik in netwerken met extrieege capaciteit.
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