

 Stellingen behorende bij het proefschrift

Scheduling in High Performance Buffered
Crossbar Switches

van

Lotfi Mhamdi

Delft, 19 October 2007

1. The creation of the Internet is one step further for humankind to reach the speed
of light.

2. The choice between circuit-switching and packet-switching boils down to
which is “bandwidth-wise” economically worth it: using more or wasting more.

3. The advantage of packet-switching, over circuit-switching, is statistical
multiplexing. It is also the source of all its challenges.

4. Optimal switching performance cannot be obtained through distributed
scheduling algorithms only; some sort of centralized knowledge is required.

5. The answer to: “I want a packet-switch that is scalable, has low latency and
achieves high throughput” is: “Choose two”.

6. If someone is considering to have telesurgery over the Internet, he is strongly
advised to look elsewhere.

7. It is not because things are difficult that we do not dare, it is because we do not
dare that they are difficult.

8. Knowledge is one of few resources on earth that multiplies when shared.

9. Vision without action is a daydream; action without vision is a nightmare.

10. Only a fool expects to be happy all the time; happiness, per se, does not exist,
there are moments of happiness instead.k

These propositions are considered defendable and opposable and as such have
been approved by Prof. dr. K. Goossens.

1. Met het creëren van het Internet is de mensheid één stap dichter bij het bereiken
van de lichtsnelheid.

2. De keuze tussen circuit-switching en packet-switching komt neer op welke qua
bandbreedte economisch waardevoller is: meer gebruiken of meer verbruiken.

3. Het voordeel van packet-switching ten opzichte, van circuit-switching, is
statistisch multiplexen. Dit is tevens de bron van alle uitdagingen.

4. Optimale switching prestaties kunnen niet worden behaald met enkel
gedistribueerde algoritmen; een bepaalde vorm van centrale kennis is altijd
vereist.

5. Het antwoord op: "Ik wil een packet-switch die schaalbaar is, weinig vertraging
heeft en een hoge doorvoersnelheid kan halen" is: "Kies twee".

6. Als iemand overweegt een operatie op afstand over het Internet te ondergaan,
wordt diegene ten strengste geadviseerd elders te kijken.

7. Het is niet omdat dingen moeilijk zijn dat we er bang voor zijn, maar omdat we
er bang voor zijn lijken dingen moeilijk.

8. Kennis is een van de weinige bronnen op aarde die vermenigvuldigt als ze
gedeeld wordt.

9. Visie zonder actie is als een dagdroom; actie zonder visie is een nachtmerrie.

10. Enkel een dwaas verwacht altijd blij te zijn; blijheid, per se, bestaat niet; er
zijn echter momenten van blijheid.

Deze stellingen worden verdedigbaar en opponeerbaar geacht en zijn zodanig
goedgekeurd door Prof. dr. K. Goossens

Scheduling in High Performance

Buffered Crossbar Switches

Scheduling in High Performance

Buffered Crossbar Switches

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op vrijdag 19 oktober 2007 om 12:30 uur

door

Lotfi MHAMDI

Master of Philosophy
The Hong Kong University of Science and Technology

geboren te Sidi Bouzid, Tunesı̈e

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. S. Vassiliadis

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft, The Netherlands
Prof. dr. S. Vassiliadis, promotor Technische Universiteit Delft, The Netherlands
Prof. dr. K. Goossens Technische Universiteit Delft, The Netherlands
Prof. dr. M. Katevenis The University of Crete and FORTH, Greece
Prof. dr. M. Hamdi The Hong Kong Univ. of Sci. & Tech., Hong Kong
Prof. dr. N. Ansari New Jersey Institute of Technology, USA
Dr. K. Bertels Technische Universiteit Delft,The Netherlands
Dr. C. Minkenberg IBM Zurich Research Laboratory, Switzerland
Prof. dr. C.Witteveen, reservelid Technische Universiteit Delft, The Netherlands

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Lotfi Mhamdi

Scheduling in High Performance Buffered Crossbar Switches
Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica - III
Thesis Technische Universiteit Delft. – With ref. –
Met samenvatting in het Nederlands.

ISBN 978-90-807957-2-3

Subject headings: high performance switching, buffered crossbar fab-
rics, scheduling, multicast, design, performance.

Copyright © 2007 Lotfi MHAMDI
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.

Printed in The Netherlands

In memory of Prof. dr. Stamatis Vassiliadis

Scheduling in High Performance
Buffered Crossbar Switches

Lotfi Mhamdi

Abstract

Numerousproposals for identifying suitable architectures for highper-
formance packet switches (high speed IP routers and ATM switches)
have been investigated and implemented by both academia andindus-

try. These architectures can be classified based on various attributes such as
queueing schemes, scheduling algorithms and/or switch fabric topology. Most
high performance switches and Internet routers built todayuse a bufferless
crossbar fabric topology. Designing crossbar-based routers that are scalable
and provide performance guarantees is challenging with current technology.
This is attributed to the high computational complexity of the centralized cross-
bar scheduler and to the nature of the crossbar-based switching architecture.

This dissertation studies the scheduling problem in buffered crossbar switches,
i.e. crossbars with a small amount of internal buffering percrosspoint. The
independent scheduling of unicast and multicast traffic flows as well as their
integration is considered. A set of distributed and parallel scheduling algo-
rithms, along with appropriate switching architectures, is described. These
algorithms are designed to be practical and scalable with router port count and
line rate.

A class of unicast scheduling algorithms, where the arbitration process is fully
based on the internal buffers information, is described. A switching architec-
ture is proposed, where the schedulers are all embedded within the buffered
crossbar fabric chip, resulting in scalable switching and efficient scheduling.
The proposed architecture is further shown to provide performance guarantees.
With a speedup of two, the proposed architecture is capable of emulating an
ideal output queued switch.

The problem of scheduling multicast traffic flows is also studied. A buffered
crossbar switching architecture based on input multicast FIFO queues along
with appropriate scheduling is proposed and shown to outperform existing ar-
chitectures. The multicast switching architecture is further improved by using

i

a small number of multicast queues per input port of the switch. A multi-
cast cell assignment algorithm that maps incoming traffic toinput queues is
devised. The proposed algorithm is shown to assign traffic more efficiently,
fairly and quickly than existing algorithms. The study shows an interesting
trade off between the number of input multicast queues and the size of inter-
nal buffers. This provides enhanced switching performanceas well as reduced
scheduling complexity, resulting in faster and more scalable switching.

Next, the scheduling of more realistic traffic flows is studied: the combination
of unicast and multicast traffic. A buffered crossbar based switching architec-
ture, along with appropriate scheduling that efficiently supports both unicast
and multicast traffic flows, is described. The proposed scheduler, while based
on a fanout splitting policy, tends not to overload the serial links between the
line cards and the fabric core when servicing multicast traffic. The proposed
architecture is shown to outperform existing architectures.

Finally, a variation to the buffered crossbar switching architecture is studied.
A partially buffered crossbar switching architecture is proposed. It is designed
to be a good compromise between the two extreme cases of unbuffered cross-
bars and fully buffered crossbars. The proposed partially buffered crossbar is
based on few internal buffers per fabric output, making its cost comparable
to unbuffered crossbars. It also overcomes the centralizedcrossbar schedul-
ing bottleneck by means of distributed and pipelined schedulers, as in fully
buffered crossbars, making it a practical and low cost architecture for such
ultra high capacity networks.

ii

Acknowledgements

This dissertation would not have been possible without the help, guidance and
encouragement of many people that made my PhD years a joyful journey. First
and foremost, I would like to thank my supervisor Prof. Stamatis Vassiliadis.
For me, Stamatis was not just a promoter, but also a father, a brother and a dear
friend, ultimately a beautiful person. He had a significant influence on me, not
just as a student but in my personal life as well. Throughout my technical
interactions with him, he continuously surprised me with his ability to quickly
change my uncertainty to confidence and vision that made difficult problems
easier to solve. It was always a pleasure to work and interactwith him, not
least for his unique sense of both focus and fun. For his care,love and parental
responsibility, I always felt welcome, protected and safe in his presence. I feel
privileged to have known him and honored to have carried out my PhD under
his guidance. For what seems like an all too brief period, before Prof. Stamatis
passed away. I shall remember him always.

Dr. Koen Bertels and dr. Georgi Gaydajiev have worked hard and done a
sterling job maintaining the momentum in the CE group beforeand after the
passing of Stamatis. I would like to sincerely thank them fortheir help, support
and encouragement. Prof. dr. Kees Goossens helped me a greatdeal during
the last mile of my PhD work and offered all the guidance I needed. I am sin-
cerely grateful for his many detailed and valuable commentsthat significantly
helped me to shape the thesis into its final form. Prof. MounirHamdi was
the first to introduce me to the world of research during my Master studies in
the Hong Kong University of Science and Technology (HKUST).I would like
to deeply thank him for his valuable support and encouragement. During the
hardest days of my PhD, Prof. Manolis Katevenis kindly invited me to visit his
research group at FORTH, Crete. I would like to thank him for the valuable
time he dedicated to me during my visit and for his help and support. I would
also like to thank Dr. Cyriel Minkenberg (IBM) for his valuable comments on
my thesis draft that enhanced its quality.

iii

My PhD years would not have been joyful without the right workand social
environment. I would like to thank my friends and colleagues: Carlo, Christos,
Dado, Daniele, Pepijn, Said, Sebastian, Yannis and the rest. Thanks to Carlo
for his hospitality and the many delicious Italian dinners we had in his place. I
will always remember the special dinners, especially thoseprepared by Stama-
tis and followed by various discussions spanning all natureof subjects. Thanks
to Daniele for helping with the thesis cover and for his top class amatriciana.
Thanks to Pepijn for his support in numerous ways, includingthe Dutch trans-
lation and the thesis cover. My thanks also go to Bert for his technical support
and to Lidwina for her administrative assistance throughout my years at TU
Delft.

I would like to express my appreciation to Prof. Ghidaoui (HKUST) for his
friendship, help and support over the years. Thanks Moe for being always
there. I would also like to express my deep thanks and gratitude to Sheena for
her friendship throughout these years. Thank you for your unconditional help
and support.

Finally, I would like to express my deepest love and gratitude to my parents.
My PhD, and this thesis, is a tribute to them for affording me the gift of life
and the riches of their love.

Lotfi Delft, The Netherlands, 2007

iv

Contents

Abstract i

Acknowledgments iii

List of Tables xi

List of Figures xiii

List of Acronyms xix

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Dissertation Contributions and Organization 4

2 High Performance Packet Switches 7

2.1 Why Packet Switching? . 7

2.1.1 Statistical Multiplexing 9

2.1.2 Packet Switching Technologies 9

2.2 The Architecture of Internet Routers 10

2.2.1 Categories of Routers 10

2.2.2 Basic Architectural Components 12

2.3 Packet Switching Architectures 13

2.3.1 Fabric Losslessness and Number of Stages 14

v

2.3.2 Typical Switch Fabrics 15

2.3.3 Output Queued Switches 17

2.3.4 Input Queued Switches 17

2.3.5 CIOQ Switches . 19

2.4 The VOQ Switching Architecture 21

2.4.1 Scheduling in VOQ Switches 22

2.4.2 Maximum Matching Algorithms 23

2.4.3 Practical Maximal Size Matching Algorithms 24

2.5 Buffered Crossbar (CICQ) Switches 26

2.5.1 CICQ Switch Architecture 26

2.5.2 Scheduling in CICQ Switches 28

2.6 Summary . 30

3 The Embedded CICQ Scheduling Architecture 31

3.1 Introduction . 31

3.2 Conventional CICQ Architecture 33

3.2.1 Scheduling in Conventional CICQ Switches 34

3.2.2 Flow Control in Conventional CICQ Switches 35

3.3 Embedded Scheduling Architecture 36

3.3.1 Reference Architecture 36

3.3.2 The Dynamics of The Switch 37

3.3.3 The Most Critical Buffer First Algorithm (MCBF) . . 39

3.3.4 MCBF Properties . 40

3.4 The MCBF Implementation 41

3.4.1 First Approximation:α-MCBF 41

3.4.2 Second Approximation:β-MCBF 45

3.4.3 Extension to Wider Range of Algorithms 49

3.5 Implementation and Performance Results 49

3.5.1 Implementation Results 49

3.5.2 Performance Results 51

3.6 Summary . 61

vi

4 Scheduling Multicast Traffic 63

4.1 Introduction . 63

4.2 The Multicasting Problem 65

4.2.1 The Multicast FIFO Architecture 67

4.2.2 Algorithms For The Multicast FIFO Architecture . . . 68

4.2.3 The Multicast k FIFO Queues Architecture 69

4.2.4 Algorithms For The Multicast k FIFO Queues Archi-
tecture . 70

4.3 The Multicast CICQ Switching Architecture 71

4.3.1 Switch Model . 72

4.3.2 The Multicast Crosspoint Round Robin Algorithm:
MXRR . 73

4.4 The MulticastK FIFOs CICQ Switch Architecture 74

4.4.1 Multicast Cell Assignment 75

4.4.2 The Modulo Cell Assignment Algorithm 77

4.4.3 The Multicastk FIFOs Algorithm: MXRRk 79

4.5 Performance Results . 80

4.5.1 Performance of the Multicast FIFO Architecture . . . 81

4.5.2 Performance of the Multicastk FIFOs Architecture . . 83

4.6 Summary . 87

5 Integrated Unicast and Multicast Scheduling 88

5.1 Introduction . 88

5.2 Background . 90

5.3 The Integrated CICQ Switching Architecture 92

5.3.1 Integrated Scheduling 93

5.4 Performance Results . 96

5.4.1 MURSmix vs. Eslip 98

5.4.2 The Effect of MQs Number,k 100

5.4.3 The Number of MQs vs. The XP Size 102

5.5 Hardware Implementation 104

vii

5.6 Summary . 106

6 Partially Buffered Crossbar Switches 109

6.1 Introduction . 109

6.2 The Partially Buffered Crossbar Architecture (PBC) 112

6.2.1 Switch Model . 112

6.2.2 Scheduling Process 113

6.3 Scheduling in PBC Switches 116

6.3.1 The Distributed Round Robin (DRR) Algorithm . . . 116

6.3.2 The Credit Release Delay 118

6.3.3 The DROP Algorithm 119

6.3.4 The Prioritized DROP Algorithm 120

6.4 Performance Results . 122

6.4.1 Uniform Traffic . 123

6.4.2 Unbalanced Traffic 127

6.5 Summary . 128

7 Conclusions 129

7.1 Summary . 130

7.2 Contributions . 131

7.3 Future Research Directions 133

A Output Queued Switch Emulation 135

A.1 Switch Model and Definitions 136

A.2 FIFO Output Queueing Emulation 139

B Performance Simulation Environment 147

B.1 Simulation Environment . 147

B.2 Traffic Scenarios . 149

B.2.1 Uniform Traffic . 149

B.2.2 Non-Uniform Traffic 150

B.3 Performance Indices . 151

viii

Bibliography 153

List of Publications 163

Samenvatting 165

Curriculum Vitae 167

ix

List of Tables

3.1 Encoding of the number of ‘1’s. 43

3.2 α-MCBF area results. 50

3.3 β-MCBF area results. 51

3.4 Percentage of resource allocation. 51

4.1 The Modulo scheme implementation results for differentk. . . 78

5.1 Hardware implementation results. 106

xi

List of Figures

1.1 Growth trends for Internet traffic and computers. 2

2.1 Packet Switches in the Internet. 8

2.2 Basic architectural components of a router. 12

2.3 A bufferless crossbar fabric switch. 15

2.4 Output Queued Switching. 18

2.5 Input Queued Switching. 19

2.6 Combined Input and Output Queued (CIOQ) Switch. 20

2.7 Virtual Output Queueing (VOQ) Switch. 21

2.8 Bipartite graph matching. 22

2.9 Early Buffered Crossbar Switches. 27

2.10 CICQ Switch architecture. 28

3.1 The CICQ Switching architecture. 34

3.2 The CICQ Switching architecture with embedded schedulers. . 37

3.3 Flow control signals usage for different switch sizes. 38

3.4 The buffers occupancy table controller.42

3.5 α-MCBF input arbiter micro-architecture. 43

3.6 α-MCBF output arbiter micro-architecture. 45

3.7 β-MCBF input arbiter micro-architecture. 47

3.8 The minimum index function. 48

3.9 β-MCBF output arbiter micro-architecture. 48

3.10 Packets flow. 50

xiii

3.11 Average delay comparison between using a speedup of 2 and
internal buffer size per cross point of 36 cells, under diagonal
traffic. 52

3.12 Average delay comparison between using a speedup of 2 and
internal buffer size per cross point of 36 cells, under non-
uniform unbalanced traffic,ω = 0.5. 53

3.13 Delay performance comparison between the MCBF andα-
MCBF schedulers with different internal buffer sizes underDi-
agonal traffic. 54

3.14 Delay performance comparison between the MCBF andβ-
MCBF schedulers with different internal buffer sizes underDi-
agonal traffic. 55

3.15 Delay performance comparison between the MCBF andα-
MCBF schedulers with different internal buffer sizes under
Unbalanced traffic. 55

3.16 Delay performance comparison between the MCBF andβ-
MCBF schedulers with different internal buffer sizes under
Unbalanced traffic. 56

3.17 Delay performance of the MCBF scheduler with differentin-
ternal buffer sizes under Diagonal traffic. 57

3.18 Average cell delay performance under uniform traffic. 58

3.19 The Input queues occupancies under uniform traffic. 58

3.20 Stability under unbalanced traffic with internal buffer size of 1
cell. 59

3.21 Stability under unbalanced traffic with internal buffer size of 4
cells. 60

3.22 Stability under unbalanced traffic with internal buffer size of 8
cells. 60

3.23 Average cell latency for different internal buffer settings under
unbalanced traffic,ω = 0.5. 61

4.1 Multicast traffic support in core routers.66

4.2 A 2 × 4 FIFO multicast crossbar switch. 67

4.3 N × M multicast CICQ Switch. 71

4.4 A 2 × 4 multicast CICQ Switch. 72

xiv

4.5 AnN × M multicast k FIFO queues CICQ switch. 75

4.6 The Modulo cell placement scheme. 78

4.7 Average cell delay of8 × 8 multicast FIFO switch under
Bernoulli uniform traffic. 81

4.8 Average cell delay of a multicast FIFO switch under Bursty
uniform traffic. 81

4.9 Average cell delay of16 × 16 multicast FIFO switch under
Bernoulli uniform traffic. 82

4.10 Average cell delay of MXRR with different internal buffer set-
tings. 83

4.11 Throughput comparison between Modulo and Majority cell
placement schemes under Bernoulli uniform traffic. 83

4.12 Input queues occupancies of Modulo and Majority under
Bernoulli uniform traffic. 84

4.13 Average cell delay of16 × 16 multicast k FIFO switch with
different numbers of input queues, k = 2, 4. 85

4.14 Average cell delay of MXRRk with different MQ numbers
and XP sizes. 85

4.15 Input queues occupancies with different MQ numbers andXP
sizes. 86

5.1 The integrated CICQ Switching architecture.92

5.2 Average cell delay of MURSmix and Eslip under Bernoulli
uniform unicast traffic (fm = 0). 97

5.3 Average cell delay of MURSmix and Eslip under Bernoulli
uniform mixed traffic, (fm = 0.5). 97

5.4 Average cell delay of MURSmix and Eslip under Bernoulli
uniform multicast traffic (fm = 1). 98

5.5 Throughput performance of MURSmix and Eslip4 under dif-
ferent switch sizes and different multicast fractions. 99

5.6 Average cell delay of an8 × 8 CICQ switch running MURS
with different numbers of MQs per input and mixed input traf-
fic (fm = 0.5). 100

xv

5.7 Average cell delay of a16 × 16 CICQ switch running MURS
with different numbers of MQs,k, per input and mixed input
traffic (fm = 0.5). 101

5.8 Average delay of MURSmix with different switch sizes and
different MQ numbers. 101

5.9 Average cell delay of MURSmix as a function of the numbers
of MQs, the XP sizes and input traffic combinations. 102

5.10 Input queues occupancies of MURSmix as a function of the
numbers of MQs, the XP sizes and input traffic combinations. 103

5.11 The MURSmix input scheduler algorithm. 104

6.1 Crossbar Fabric variants: (a) Unbuffered Crossbar Fabric. (b)
Buffered Crossbar Fabric, withN2 Internal Buffers. 111

6.2 The Partially Buffered Crossbar (PBC) Switching architecture. 113

6.3 The iSLIP scheduling algorithm. 114

6.4 A PBC Scheduling cycle,4 × 4 PBC switch withB = 2. . . . 114

6.5 Grant probability as function of switch size,N , and different
internal buffers settings. 115

6.6 A DRR scheduling phase for a4 × 4 PBC switch withB = 2. 118

6.7 Average cell delay of the PBC algorithms under Bernoulliuni-
form traffic. 122

6.8 Average cell delay of the PBC algorithms under Bursty uni-
form traffic. 123

6.9 PBC Performance under Bernoulli uniform arrivals. 124

6.10 PBC Performance under Bursty uniform arrivals. 125

6.11 Performance under Bernoulli uniform arrivals. 126

6.12 Performance under Bursty uniform arrivals. 126

6.13 Throughput performance under Unbalanced traffic. 127

A.1 CICQ Switching architecture with embedded schedulers and
output queues. 136

A.2 Scheduling phases in an embedded CICQ Switch. 137

A.3 Scheduling phases in embedded CICQ Switch with parallelar-
rival and input scheduling phases. 145

xvi

B.1 The dynamics of a generic switch. 148

xvii

List of Acronyms

ATM Asynchronous Transfer Mode
BOT Buffer Occupancy Table
CCF Critical Cell First
CICQ Combined Input and Crosspoint Queued
CIOQ Combined Input and Output Queued
CQ Credit Queue
CXPB Column of Crosspoint Buffers
DRAM Dynamic Random Access Memory
DRR Distributed Round Robin
DSL Digital Subscriber Line
DTC Delay Till Critical
DWDM Dense Wavelength Division Multiplexing
EDF Early Deadline First
EF Eligible Fanout
FCFS First Come First Serve
FIFO First In First Out
FIRM FIFO In Round robin Matching
FPGA Field Programmable Gate Array
FR Fanout Residue
GBVOQ Group By Virtual Output Queue
GQ Grant Queue
GS Grant Scheduler
HoL Head of Line
I/O Input Output
IBT Input Buffer Table
IBV Input Buffer Vector
IP Internet Protocol
IPL Input Priority List
IPTV IP Television
IQ Input Queued
IS Input Scheduler
ISP Internet Service Provider
IT Input Thread
LAN Local Area Network
LIHP Last In High Priority
LPF Longest Port First
LQF Longest Queue First

xix

LUT Look Up Table
LXPB Line of Crosspoint Buffers
MAN Metropolitan Area Network
MCBF Most Critical Buffer First
MP Multicast Pointer
MPE Masked Priority Encoder
MQ Multicast Queue
MQF Multicast Queue Fanout
MRRM Multicast Round Robin Matching
MSM Maximum Size Matching
MURS Multicast and Unicast Round robin Scheduling
MUSF Most Urgent Cell First
MWM Maximum Weight Matching
MXRR Multicast Round Robin
NEC Nippon Electric Company
OC Output Cushion
OCF Oldest Cell First
OPL Output Priority List
OQ Output Queued
OS Output Scheduler
PBC Partially Buffered Crossbar
PE Priority Encoder
PIFO Push In First Out
PIM Parallel Iterative Matching
PPE Programmable Priority Encoder
PoP Point of Presence
QoS Quality of Service
RGA Request Grant Accept
RR Round Robin
RRM Round Robin Matching
SERDES Serializer/Deserializer
SRAM Static Random Access Memory
SRR Static Round Robin
TTL Time To Leave
UP Unicast Pointer
VLSI Very Large Scale Integration
VOQ Virtual Output Queueing
WAN Wide Area Network
WDM Wavelength Division Multiplexing

xx

WWW World Wide Web
XP Internal Crosspoint Buffer

xxi

Chapter 1

Introduction

This introductory chapter provides a minimal background of the work
presented in this dissertation. The motivation and objectives of the dis-
sertation are discussed. Finally, the chapter overviews the main contri-

butions and outlines the remaining content of the dissertation.

1.1 Background

The concept of computing has progressively shifted from desktop to distributed
systems in recent years. The Internet is perhaps the most typical example of
a distributed system. While telephone, TV and radio deviceshave multiplied
the power of communication methods, their limited reach combined with their
requirements of synchronization in both space and time had left much to be
done. The glory of ubiquitous Internet today gives the impression that there are
no longer any restrictions on communication. The Internet is a well established
worldwide communications medium for the entire spectrum ofcommunication
modes (data, voice and video) both real-time and non-real time, affecting every
aspect of our lives, economically, politically and culturally. A critical mass of
individuals have access to computers and these computers can all talk to each
other whether as a global World-Wide-Web (WWW) or peer-to-peer systems.
As a consequence, users critically depend on the reliability of the underlying
communication network.

Since its conception in the early 1960s, the Internet has changed much. Start-
ing as a research and university network, providing basic services such as e-
mail and file transfer, the Internet has grown to be a commercial success with

1

2 CHAPTER 1. INTRODUCTION

1980 1985 1990 1995 2000 2005
10

0

10
2

10
4

10
6

10
8

10
10

10
12

N
or

m
al

iz
ed

 G
ro

w
th

Year

Internet Growth

Internet Traffic

Number of Computers

Figure 1.1: Growth trends for Internet traffic and computers.

billions of dollars of annual investment. The Internet, today, consists of thou-
sands of networks. What used to be the “Backbone” in the 1980sis now the
interconnection of multiple backbone networks, belongingto large telecom-
munications providers. Numerous studies have shown that Internet traffic is
growing by a factor of 30% per year [1] [2]. According to [3], the number of
computers (hosts) on the Internet has exceeded 433 million by the beginning
of 2007. Figure 1.1 gives an overview on the growth trends of the Internet over
the last two decades.

The Internet is a packet-switched network based on the “statistical multiplex-
ing” paradigm, which means that resources are shared among users rather than
dedicated. It is comprised of a mesh of end-hosts, links and routers. Nodes on
the Internet, both end hosts and routers, communicate usingthe Internet Pro-
tocol (IP). IP packets travel over links from one router to the next on their way
towards their final destinations. A router consists of several processing stages
each of which performs a specific task. Amongst others, a router performs two
main tasks:routing andswitching. During the routing stage, the router checks
the packet header and decides where the packet should be sentnext. In the
switching stage, the router transfers the packet from its arriving input port to
the destination output port in preparation to depart. This dissertation focusses
on the switching stage of the router.

1.2. MOTIVATION 3

1.2 Motivation

The explosive growth in number of users and traffic per user onthe Inter-
net is coupled with the same growth in transmission links capacity due to the
advances in fiber optic bandwidth. The deployment of wavelength-division
multiplexing (WDM) and dense WDM (DWDM) transmission technology has
resulted in an abundance of raw bandwidth, already reachingthe multi-terabit
per second (Tbps) range. Consequently, the total data rate of a single fiber is
increasing at a faster rate than the switching and routing equipment that termi-
nates and switches traffic at a carrier’s central office or point of presence (PoP).
As a result, switches and routers are becoming the true bottleneck of the net-
work. To exacerbate this, the emergence of new applicationson the Internet
today, such as packetized voice (voice over IP), Internet Television (IPTV) and
video multicast streams, require a minimum level of qualityof service such as
latency and jitter. This results in increased data switching time and can only
further widen the gap between transmission links and switching capacities.
Therefore, in order to keep up with the Internet growth, backbone, metro and
local area networks are facing major engineering challenges of scale, capacity
and speed, which will in turn drive their respective networkarchitecture and
node design.

Although several switching architectures for high-performance routers have
been investigated and implemented, the most prominent and commercially
available architecture today is the crossbar-based switchwith input queues.
The performance of a crossbar-based router critically depends on a centralized
and complexscheduler, which determines when packets are to cross the switch
fabric. Due to the scheduler bottleneck, it is difficult to build a crossbar-based
router that meets the aforementioned engineering challenges using current
technology. A slight variant of the crossbar switching architecture, a buffered
crossbar fabric switch, has recently been shown to overcomethe scheduling
bottleneck and to have a scalability potential. However, the buffered crossbar
architecture has, so far, used a simple mapping of earlier algorithms initially
proposed for the unbuffered architecture. These algorithms are distributed over
the inputs and the outputs of the switch and require an expensive flow control
mechanism, which limits the scalability of the system. Additionally, little has
been done to address the increasing number of new applications such as mul-
ticast.

The objective of this dissertation is to study the single-stage buffered crossbar
switching architecture and solve problems associated with:

4 CHAPTER 1. INTRODUCTION

• The design of scalable buffered crossbar switches, using appropriate and
simple scheduling.

• Providing performance guarantees using scalable buffered crossbars and
simple unicast scheduling.

• The scheduling of multicast traffic in buffered crossbars and the integra-
tion of multicast and unicast flows.

• The design of “partially” buffered crossbars that benefit from the best of
both the unbuffered crossbar and the fully buffered crossbar switching
architectures.

1.3 Dissertation Contributions and Organization

The contributions of the dissertation are organized in chapters. Before present-
ing the contributions, Chapter 2 first provides the necessary background of the
work in this dissertation. It surveys packet switching design and scheduling
with a focus on single-stage crossbar switches by describing their advantages
and limitations. Finally, it summarizes the shortcomings of the buffered cross-
bar switching architecture to be addressed in subsequent chapters.

Chapter 3 presents our first contribution, the design and implementation of
a set of embedded schedulers within the buffered crossbar fabric chip. This
stems from the observation that the switching fabric chip isI/O pin count con-
strained, implying the existence of extra area on the chip. Embedding the
schedulers inside the crossbar results in optimized flow control (in terms of
pin count) between the crossbar fabric chip and the input line cards. This has
the benefit of speeding up the scheduling time while using alimited number of
control signals, resulting in more scalable crossbar switches. It also improves
the performance of the scheduling algorithms, since there are many algorithms
that base their decisions on the internal buffers and, if embedded within the
crossbar chip, would have faster decisions and cheaper access to resources.
Although our devised embedded schedulers were shown to provide high per-
formance under a wide range of unicast traffic patterns, theydo not provide
performance guarantees. We, then, propose a set of scheduling algorithms, for
a buffered crossbar fabric running twice as fast as the external line rate, that
can mimic an ideal output queued switch. Our results apply tothe class of
output queued switches that use a First-In-First-Out (FIFO) output scheduling
discipline. We divert the output queueing emulation work toAppendix A.

1.3. DISSERTATION CONTRIBUTIONS AND ORGANIZATION 5

We study the problem of multicast traffic flows scheduling in Chapter 4. We
describe the multicast problem and review prior and relatedwork. We pro-
pose an internally buffered multicast switching architecture based on input
FIFO queues along with appropriate scheduling. We show thatour architecture
performs better than existing architectures. We further improve our multicast
switching architecture by adding a small number of input queues per port of the
switch. We devise a multicast cell assignment algorithm to map incoming traf-
fic to input queues. Our algorithm is shown to assign traffic more efficiently,
fairly and quickly than existing algorithms. Our study shows an interesting
trade off between the number of input multicast queues and the size of internal
buffers. This results in enhanced switching performance aswell as reduced
scheduling complexity, providing faster and more scalableswitching.

In Chapter 5, we proceed to scheduling more realistic trafficflows: the combi-
nation of unicast and multicast traffic. We propose a buffered crossbar based
switching architecture, along with appropriate scheduling, that efficiently sup-
ports both unicast and multicast traffic flows. We propose an integrated sched-
uler capable of servicing unicast and multicast flows simultaneously. Our pro-
posed scheduler, while based on a fanout splitting policy, tends to not exhaust
the serial links between the line cards and the fabric core when servicing mul-
ticast traffic. The proposed architecture is shown to outperform existing archi-
tectures.

Chapter 6 describes a novel variation to the buffered crossbar switching ar-
chitecture. We propose apartially buffered crossbar switching architecture
that is designed to be a good compromise between the two extreme cases
of unbuffered crossbars and fully buffered crossbars. The proposed partially
buffered crossbar is based on few internal buffers per fabric output, making its
cost comparable to unbuffered crossbars. It overcomes the centralized cross-
bar scheduling bottleneck by using distributed and pipelined schedulers as in
fully buffered crossbars, making it a practical and low costarchitecture for
such ultra high capacity networks.

Finally, Chapter 7 provides concluding remarks on the work presented. The
chapter summarizes the dissertation, outlines its contributions and proposes
future research directions.

Chapter 2

High Performance Packet
Switches

Routers constitute the basic, and main, building blocks of the Internet.
The design of routers has evolved over the last two decades and dif-
ferent packet-switch architectures have been studied and implemented.

These architectures can be classified based on various attributes such as queue-
ing schemes, scheduling algorithms and the switch core topology. This chap-
ter begins with explaining the reasons for using packet-switches rather than
circuit-switches. Then, it describes the architectural components of routers.
It provides an overview of existing packet-switch architectures and discusses
the advantages and drawbacks of each of them. Finally, it summarizes the
shortcomings of the buffered crossbar switching architecture to be addressed
in subsequent chapters.

2.1 Why Packet Switching?

Communication networks fall into two broad categories: packet-switching and
circuit-switching. Within the circuit-switching paradigm, deployed in tele-
phone and telegraph networks more than a century ago, users establish a dedi-
cated connection (also called circuit or channel) with a fixed amount of band-
width between the source and the destination for the duration of their commu-
nication. The channel remains open for the entire duration of the call, irrespec-
tive of whether the channel is actually used or not. This approach is efficient
for traffic such as telephone voice calls which transmit dataat a constant bit

7

8 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

`

A

B

S

B S

S

B

Edge Router

Core Router

``

```
B

S

Figure 2.1: Packet Switches in the Internet.

rate wherein connection duration is longer than the amount of time required to
establish the connection.

Data and computer communication networks are, however, designed to han-
dle a variety of different types of applications, includingapplications with
time-varying data rates. Early studies have shown that communication be-
tween computers could be achieved with packets instead of circuits and that
the circuit-switched telephone system was totally inadequate for computer
communications [4] [5]. The paradigm of packet-switching networks has first
been studied in [6]. In these networks information is carried by packets. Each
packet is switched and transmitted through the network, traversing one or more
routers, based on the information contained in the packet header. Figure 2.1
depicts packet switches in the Internet and shows how packets are sent from
source to destination. Upon reaching their final destination, packets are re-
assembled to reconstruct the original information. Unlikecircuit-switching
where no one can use an open channel if its endpoints do not useit, with
packet switching, active sources can use any excess capacity made available
by the inactive sources.



2.1. WHY PACKET SWITCHING? 9

2.1.1 Statistical Multiplexing

The most important advantage of packet-switching over circuit-switching is
its ability to exploit statistical multiplexing. To make most efficient use of
network bandwidth, connections are statistically multiplexed (shared), to take
advantage of their rate variations. In data network environments, carrying traf-
fic such as bursty, sharing network resources can significantly increase the
effective capacity of the network. Recent studies have shown a ratio between
the peak and average rates as high as 15:1 for data traffic [2].The bandwidth
gain by statistical multiplexing comes, however, at the expense of a serious
problem, namely networkcontention. Contention arises when more than one
packet contend for the same link at the same time. Since only one packet can be
transmitted at a time, the remaining packets need to wait, therefore introducing
the requirement forqueues. As we shall explain later, the queueing discipline
employed in a packet-switch is key to its performance. Long-term contention
leads to networkcongestion1. Network congestion management is important
and has been studied since the early days of packet switching[7] [8] [9]. By
contrast, because circuit-switching uses resource reservations and dedicated
connections for data transfer, there is no requirement for queueing. This is a
key difference between the two concepts. The absence of queueing in circuit-
switched networks have led a belief to, possibly, enable all-optical switches.
Recent studies show that optical transmission links will, soon, reach a satura-
tion point and therefore packet-switches will remain economically cheaper [2].
For the above reasons, the focus in this dissertation will beon electronic packet
switching architectures.

2.1.2 Packet Switching Technologies

The two widely known and used packet switching architectures are Asyn-
chronous Transfer Mode (ATM) [10] [11] and Internet Protocol (IP) [12] [5].
ATM is a packet switching technology that uses fixed-size packets (called
cells) as the basic transmission unit. Small fixed-size cells allow fast switch-
ing and easy, yet efficient, hardware implementation. ATM was designed to
be a unifying technology, transporting voice, data, and video and providing
sophisticated services such as bandwidth and delay guarantees. The ATM
is a connection-oriented technology, based on virtual connection identifiers
(VCIs), making the lookup phase simple and fast. However, ATM connections
require an overhead of circuit setup and teardown as in circuit-switching, ren-

1Also called network saturation, overload or oversubscription



10 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

dering them less appealing. IP, in contrast, is a connection-less packet switch-
ing paradigm. It uses variable-size packets, and supports only one basic ser-
vice: best effort packet delivery, which does not provide any timeliness or
reliability guarantees. Despite the advantages of ATM in terms of quality of
service, IP has recently emerged as the dominant architecture and the bearer
service for the global information infrastructure. This ismainly due to ad-
vances in routing andscheduling algorithmsfor variable-length packets and
to the dominance of IP at the endpoints [13]. For more detailsabout circuit-
and packet-switching, the reader is referred to books such as [14] [10] and
references such as [4] [5] [15].

This dissertation focusses on the switching stage in packetswitching architec-
tures in general, irrespective of whether the underlying technology is ATM,
IP or proprietary. When the switching architecture is implemented in hard-
ware at very high speed, it is usually tailored towards data units of fixed sizes.
Throughout this dissertation, unless otherwise stated, weuse the terms cell and
packet to refer to the same entity, namely fixed-size data unit. Variable length
packets are segmented, into fixed-size units, on their entryto the router and
reassembled back to their original lengths at the outputs before being sent out
to the outgoing links.

2.2 The Architecture of Internet Routers

Router architectures have evolved over time and in performance. Over the
years, several architectures have been used for routers. The choice of a partic-
ular architecture is based on several factors such as numberof ports, required
performance and currently available technology.

2.2.1 Categories of Routers

Routers belong to three broad categories [13], namely access routers, edge
routers and core routers. Figure 2.1 shows core and edge routers in the net-
work. Access routers connect end-users from home and the office to Internet
Service Providers (ISPs). Owing to the advances in broadband access tech-
nologies such as Digital Subscriber Line (DSL), cable modemand gigabit
Ethernet, transmission speeds are growing and so is the variety of applica-
tions. As a result, the main design factors for access routers are the number of
ports and flexibility, to connect more users and to be able to support different
protocols. Edge routers (also referred to as enterprise routers) connect end-



2.2. THE ARCHITECTURE OFINTERNET ROUTERS 11

points or segments of endpoints, such as Local Area Networks(LANs) or a set
of access routers. Edge routers have higher speeds than access routers, usually
with high numbers of ports. The main design issues for edge routers include
packet classification and filtering for quality of service (QoS) requirements and
security reasons. Some of the routers of this category are called “flow-aware”
routers [16].

The last category is the core routers (also called backbone routers). As the
name suggests, core routers are used in the Internet core. They connect net-
works, such as Wide Area Networks (WANs). In the Internet backbone, the
traffic is aggregated from low speed links. Hence, backbone routers are built
to connect few links at very high speed, like OC-192 (10 Gbps)and up to OC-
768 (40 Gbps). As the link speed increases, the per-packet processing time (at
least table lookup and switching) decreases, making it challenging to design
such routers. That is why the datapath of these routers is often implemented in
hardware. The main issues in their design are their reliability and their speed.
The speed of this category is limited by many obstacles, suchas routing, mem-
ory bandwidth and switching.

• The routing operation performs a table lookup to match the header of an
arriving packet to one of the router output ports. It is oftenchallenging
to implement table lookup operation at the line speed.

• The second speed limiting factor is the memory bandwidth. Packets
are transmitted over optical links, however they are queuedin electronic
buffers inside the routers. The wide gap between the opticaltransmis-
sion speed and the electronic memories speed makes it difficult to main-
tain high routing speeds. Solutions to address this problemhave been
proposed, such as the combination of Static Random Access Memories
(SRAMs) with Dynamic RAMs (DRAMs) [17].

• The third and most severe bottleneck is theswitching fabric and schedul-
ing algorithm. This component is of utmost importance for the design
of a high speed router, as it has significant impact on its overall perfor-
mance. Since the focus of this dissertation is on the switching stage of
high performance routers, Section 2.3 will discuss the switching archi-
tectures and scheduling in much more details.



12 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

 Backplane

In
p
u
ts

O
u

tp
u

ts

 Forwarding 

Decision

 Forwarding 

Decision

Forwarding Table Management,

Network Management, and

System Management

Output Link 

Scheduling

Output Link 

Scheduling

Figure 2.2: Basic architectural components of a router.

2.2.2 Basic Architectural Components

All routers, irrespective of their performance and capacity profile, possess a
number of common attributes and perform a set of common tasks. Figure 2.2
illustrates a generic router architecture [18]. The tasks performed by a router
can be divided into two types, namely the control path and thedatapath.

The control path functionalities are performed and implemented by routing and
signaling protocols. They are performed relatively infrequently and are often
implemented in software. These functions include routing table construction,
maintenance and update as well as system configuration and management. The
control path consists of all functions and operations performed by the network
to set up and maintain the state required by the data path.

The datapath functions represent the set of operations performed by routers
on a per-packet basis. Because of their critical role, the datapath functions
are most often implemented in hardware, and include forwarding decision,
backplane and output link scheduler. Therefore, scaling the performance of
a router implies improving its datapath. The operation of every block of the
datapath is as follows:

• The Forwarding Decision: It is commonly located in interface cards,
which consist of adapters that perform inbound and outboundpacket for-



2.3. PACKET SWITCHING ARCHITECTURES 13

warding. On the arrival of a packet, its destination IP address is parsed
and looked up. The result of this operation could imply a unicast de-
livery or a multicast delivery. The packet lifetime is controlled by this
component by adjusting the time-to-live field (TTL). This TTL field is
used to avoid any indefinite routing (loop) of the same packet. Advanced
routers today perform additional tasks, such as packet classification and
filtering.

• The Backplane:The router backplane (switch fabric) is responsible for
transferring packets between the input ports and the outputports. De-
pending on the backplane, aschedulermay be required to make the con-
figuration, or matching, between the input and output interface cards.
While waiting its turn to be served across the backplane, a packet may
need to be queued. Forwarding a packet through the backplaneof a
router might seem to be a relatively simple process. But a closer look at
this task, performed for each packet, reveals quite a lot hasto be done.
As we shall see later, thequeueing and schedulingstrategies have an
important impact on the performance of the router and on its implemen-
tation feasibility.The main focus of this dissertation is on the design and
performance of the backplane of high performance routers.

• The Output Link Scheduler: Once a packet reaches the output port, it
is again queued before it can be transmitted to the output link. In most
routers today, a single FIFO queue is maintained at each output port and
packets are transmitted in the same order of their arrivals.However,
advanced routers use different queues to distinguish different flows, or
priority classes and schedule the departure time of each packet in order
to meet a set of specific QoS guarantees.

2.3 Packet Switching Architectures

A packet-switch2 (or simply a switch fabric) is a multi-input, multi-output de-
vice that connects the input ports of a router to its output ports. The task of
the switch fabric is to transfer as many packets as possible from the inputs
to the appropriate outputs. The important considerations for the switch fabric
design are: throughput, packet loss, packet delay and the complexity of the im-
plementation. Switch fabrics come in different flavors and many architectures
have existed over the past. They can be categorized based on different factors,

2A packet switch is also called backplane, switch fabric or just fabric for short



14 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

such lossless vs. lossy, single-stage vs. multi-stage, etc. Substantial research
work has been directed at switching architectures [11] [19][20] [21] [22].

2.3.1 Fabric Losslessness and Number of Stages

Due to the adverse effects of packet loss, the vast majority of switch fabrics are
lossless3. In order to avoid packet loss, a packet-switch must containsome sort
of queueing. Simultaneous arrival of packets, to differentinputs, destined to
the same output gives rise to a phenomenon calledoutput contention(assum-
ing that the output reception capacity is one packet, at most, at a time). When a
packet loses contention, it has to be queued. Therefore, in addition toswitching
packets from inputs to outputs, a packet-switch also performs queueing. The
placement of the queueing function, with respect to the switching function, in
a packet-switch is extremely important (see Section 2.3.2). This placement,
not only determines the architecture class of a packet-switch, but also has a
significant impact on its performance, hardware cost and implementation fea-
sibility.

Switch fabrics can be implemented in a single-stage or in a multi-stage fash-
ion. Single-stage fabrics exhibit strong performance characteristics over multi-
stage fabrics. They are non-blocking and connect a set of inputs to a set of out-
puts through a fast and single path (crosspoint). Single-stage fabrics are easy
to build, easy to comprehend and analyze. However, single-stage switches are
not scalable, compared to their multi-stage counterparts,as their cost grows
quadratically with their input-output port count. Multi-stage fabrics, on the
other hand, are built out of a set of single-stage fabrics. Their strong advantage
over their single-stage counterparts is their scalabilityto large port numbers.
Examples of multi-stage fabric switches include [24] [25] [26] [27]. A multi-
stage fabric is a cascade of single-stage fabrics operatingin tandem and in
parallel. Therefore, designing a multi-stage fabric reduces to designing single-
stage4 fabrics. We conjecture that the results presented in this dissertation,
for single-stage fabrics, will also be useful in the design of high performance
multi-stage fabrics.For the reasons above, this dissertation focusses only on
single-stage fabrics5.

3Although lossy architectures have been proposed, such as [23]. This architecture suffers
severe packets loss as high as 37% under uniform traffic arrivals.

4Normally the transition from single-stage to multi-stage entails many issues. According
to [21], these issues can be summarized in network topology,performance, fabric-internal rout-
ing, flow control and multicast support.

5From now on, we will be using the term fabric to refer to single-stage fabrics



2.3. PACKET SWITCHING ARCHITECTURES 15

D
a
ta

 I
n

Data OutConfiguration

Figure 2.3: A bufferless crossbar fabric switch.

2.3.2 Typical Switch Fabrics

The most common switch fabric architectures in use today arebus-based,
shared memory, and crossbar. In this section we present these architectures
in turn.

• Bus: The simplest switch fabric is the bus. Bus-based routers implement
a monolithic fabric comprising a single medium over which all inter-
module traffic must flow. The bus architecture is strictly non-blocking,
but it allows at most one packet to be transferred at the same time, hence
it requires a coordination among the ports. A bus is limited in capac-
ity by its capacitance and by the arbitration overhead for sharing this
critical resource. The challenge is that it is almost impossible to build
a bus arbitration scheme fast enough to provide non-blocking perfor-
mance at MultiGigabit speeds. An example of this architecture is the
ATOM switch developed by NEC [28].

• Shared Memory: The switch fabric can be implemented as shared
memory. Incoming packets share a common “shared” buffer memory.
Sharing a common buffer pool has the advantage of minimizingthe
amounts of buffers required to achieve a specified packet loss rate. The
idea is that a central buffer is most capable of taking advantage of sta-
tistical sharing. If the rate of traffic to one output port is high, it can
draw upon more buffer space until the common buffer pool is partially,



16 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

or completely, filled. However, this may lead to buffer hogging prob-
lems, where a flow of packets monopolizes the shared buffers and pre-
vents other packets from accessing it. The major disadvantage of this
architecture is the high-speed at which the memory must operate. If the
router port number isN and the link speed isS, then a single port shared
memory must run as fast as2NS. Moreover, as the access time of ran-
dom access memories is physically limited, this speedup factor limits
the ability of this approach to scale up to large sizes and high speeds and
thus become its bottleneck. The Prelude switch [29] is an example of
this architecture.

• Crossbar: A crossbar fabric switch consists of a two-dimensional ar-
ray of crosspoint switches, one for each input-output pair,as depicted in
Figure 2.3. It is one of the most popular interconnection networks used
for building input buffered switches because of its low cost, good scala-
bility and non-blocking properties. For anN ×N switch, there are up to
N2 crosspoints. The connection between inputi and outputj is made by
closing the(i, j)th crosspoint in the two-dimensional array. Many com-
mercial routers use crossbar switch fabrics, such as Cisco Systems [30]
and Lucent Technology [31].

The crossbar-based fabric architecture is the dominant architecture for to-
day’s high-performance packet-switches (IP routers, ATM switches, Ethernet
switches) for at least three reasons. First, the crossbars are more scalable than
their direct competitors, shared bus and shared memory. This is due to the lim-
itation in bus transfer bandwidth and/or the limitation in the memory access
bandwidth. Second, they provide simple point-to-point connections, allowing
them to operate at very high speed (up to 10 Gbps). Third, theycan support
multiple input/output (I/O) transactions simultaneously. This can increase the
aggregate bandwidth of the system, which can be in the hundreds of Gbps.

Based on the aforementioned advantages, from here forward,we will assume
a single-stage, non-blocking fabric switch such as the crossbar. Since a cross-
bar switch is lossless, queueing is needed in addition to switching (refer to
Section 2.2.2). Fabric switch architectures are classifiedbased on the place-
ment of theswitchingand thequeueingfunctions. A crossbar switch belongs
to the class of Input Queued (IQ) switches if the queueing takes place before
the switching, at the input of the switch. If the queueing is performed after
the switching, or at the outputs, the switch is termed OutputQueued (OQ). A
Combined Input and Output Queued (CIOQ) switch is one where the queueing
is performed before and after the switching, in the inputs aswell as the outputs



2.3. PACKET SWITCHING ARCHITECTURES 17

of the switch. The last architecture, which is the focus of this dissertation, is
the buffered crossbar switch. A buffered crossbar switch isan IQ switch where
there is a small amount of limited buffering in each crosspoint. When there is
buffering at the inputs, a buffered crossbar switch is also known as the Com-
bined Input and Crosspoint Queued (CICQ) switch or the Combined Input and
Crossbar Queued (CICQ) switch [32]. In what follows, we willpresent each
of these architectures and discuss their advantages and limitations.

2.3.3 Output Queued Switches

The output queued (OQ) switch is the ideal switching architecture due to its
optimal performance. When a packet arrives at an OQ switch, it is immediately
placed in a queue dedicated to its outgoing link. Because no obstacle can
prevent an output queue from keeping the outgoing link busy whenever it has
a packet, an OQ is known to bework conserving. A work conserving switch,
such as OQ, has the highest throughput of all switches. Switches and routers
have, traditionally, been most often designed with output queueing strategy.
It has advantages in that guaranteed QoS can be provided, such as allocating
bandwidth to different flows of packets and controlling their delays [33] [34].

Since an OQ switch has no queues at the inputs, all arriving cells must be
immediately delivered to their outputs. A major disadvantage is that simulta-
neous delivery of all arriving cells to the outputs requirestoo much internal
interconnection bandwidth and memory bandwidth. Figure 2.4 depicts an OQ
switch withN input ports. There can be up toN cells, one from each input,
arriving for the same output simultaneously. In this case, each output mem-
ory must performN write operations (to queue theN packets) and one read
operation (to send one packet out). If each external link runs at a rateR, then
the memory must run at a speed of(N + 1)R. This requirement is known as
the internal speedup of a switch [35]. Nowadays, the demand for bandwidth is
growing rapidly and with switch sizes continuing to increase, memory band-
width will be insufficient for output queueing to be practical. As a result the
OQ switching architecture is often used as a theoretical reference architecture
to assess the performance of alternative, practical, switches.

2.3.4 Input Queued Switches

Figure 2.5 illustrates an input queued (IQ) switching architecture. The IQ has
the crossbar running at the same speed as the line rate,R. Queues at the
inputs need not receive or send more than one packet simultaneously because



18 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

. . .

1

R

N

R

RN.R

1

N

. . .

RN.R

Switching Queueing

Figure 2.4: Output Queued Switching.

no more than one packet can arrive at or depart from each inputin one packet-
time6. Therefore the memory needs only to operate twice as fast as the line
rate, a speed of2R to write-in and read-out a packet. This helps build high-
bandwidth IQ switches at low cost and with high scalability features, making
them highly appealing. Unfortunately, an IQ switch adopting FIFO queueing
at each input has low performance due to the so called head-of-line (HoL)
blocking problem [36], described next.

The HoL Blocking Problem

In a FIFO IQ switch, all the cells waiting in an input port are maintained in
the same queue. In every time-slot, the HoL cell of each FIFO is considered
for scheduling. Since each input cannot receive or send morethan one cell in
a cell-time, therefore at most only one cell can leave the FIFO of each input.
Consider the example in Figure 2.5. The HoL cells of input 1 and inputN have
the same output port, 1, for which they contend. This impliesthat only one cell
will win the contention for output 1 and will be selected by the scheduler. Let

6A packet-time is the time duration it takes a packet to go through the switch (back-to-back),
which is equal to the time between the arrivals of two consecutive packets to the switch. This,
equality, is required in order for the switch to run at the same speed as the external lines. A
packet-time is also called time-slot or cell-time. Refer toSection B.1 for more details.



2.3. PACKET SWITCHING ARCHITECTURES 19

. . .

FIFO

1 14

R

FIFO

N 13

R

R R

RR

1

N

. . .

Figure 2.5: Input Queued Switching.

us assume that the scheduler selects the HoL cell of input numberN . In this
case, the HoL cell of input 1 will remain in the queue and will block the cell
behind it (the cell destined to output 4) resulting in output4 remaining idle
despite the existence of cell destined to it. The cell destined to output 4 is
prevented from being transferred due the HoL blocking phenomenon, in this
case caused by cell 1. It was shown in [36] that under uniform Bernoulli traffic,
the HoL blocking problem reduces the achievable throughputto only 58.6%.
Worst performance is achieved when the arrival traffic pattern is bursty [37].
Considerable research work has been done to overcome the HoLproblem, and
different solutions have been proposed, such as the use of a speedup [37] [38].
The HoL problem can, fortunately, be completely eliminatedby the use of a
simple queueing structure called virtual output queueing (VOQ) [39] [40] [41].
We will discuss the VOQ architecture in Section 2.4.

2.3.5 CIOQ Switches

One of the proposed solutions to overcome the HoL problem is the use of
speedup (denotedS, see Figure 2.6) —defined as the ratio at which the internal
fabric must operate in comparison to the external links. In [37] and [38], it
has been shown that a crossbar switch with a single FIFO at theinput can
achieve nearly 99% throughput under certain assumptions onthe input traffic
statistics for speedup range between four and five. When the internal speedup
is higher than one, buffering is required at both the inputs and outputs. Thus, a



20 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

S.R R

1

S.R R

N

. . .

1

N

. . .

R S.R

R S.R

Figure 2.6: Combined Input and Output Queued (CIOQ) Switch.

combination of an input buffered and an output buffered switch is required, i.e.,
Combined Input and Output Queued (CIOQ) switch as depicted in Figure 2.6.

Some of the designs and the research work carried out on CIOQ was aimed
at finding the minimum speedup required to emulate an output queued (OQ)
switch. It has been shown in [42] and [43] that a CIOQ is work conserving.
In [44], it was proven that a speedup of four is sufficient for aCIOQ to exactly
emulate an OQ switch using the Most Urgent Cell First (MUSF) algorithm.
An improved result was proposed by [35], with a speedup of just two, a CIOQ
can behave identically to an OQ and a speedup of2− 1

N is sufficient to mimic
a FIFO-OQ switch. This means that the departure time of each cell is ex-
actly as if an OQ is used and therefore QoS can be guaranteed. The cost of
this important result was the use of a more complex scheduling policy called
Critical Cell First (CCF). This algorithm requires a push-in queueing structure
(PIFO) along with an insertion policy called Last In HighestPriority (LIHP).
An attempt to reduce the complexity of this algorithm was based on Delay
Till Critical (DTC) strategy, to reduce the number of iterations fromN2 to N ,
along with an algorithm called Group-By-Virtual-Output Queue (GBVOQ), to
reduce the information complexity. Unfortunately, these two solutions con-
not be combined, since they are mutually exclusive. Therefore, these results
remained of theoretical nature.



2.4. THE VOQ SWITCHING ARCHITECTURE 21

. . .

1

N

1

N

. . .

VOQ1,1

. . .

VOQ1,N

VOQN,1

. . .

VOQN,N

Scheduling Algorithm

Request Grant
Configuration

1+logN
logN

1+logN

logN

N.logN

. . .

Figure 2.7: Virtual Output Queueing (VOQ) Switch.

2.4 The VOQ Switching Architecture

Instead of maintaining one FIFO for each input, the Virtual Output Queueing
(VOQ) structure is employed. Rather than maintaining a single FIFO queue
for all cells, each input maintains a separate queue for eachoutput as shown
in Figure 2.7. Thus there are a total ofN2 input queues. Each separate queue
is called a VOQ and operates according to the FIFO discipline. The scheduler
selects among the HoL cells of each VOQ and transmits them. HoL block-
ing is eliminated because no cell can be held up by a cell aheadof it that is
destined to a different output. When virtual output queueing is employed, the
performance of the switch critically depends on the scheduling algorithm used.
The scheduling algorithm decides which cells should be transmitted during a
cell time under the condition that only one cell can depart from each input and
only one cell can arrive at each output.

The scheduler maintains the state of all VOQs in the system, as depicted in
Figure 2.7. It does this by keepingN2 bits, called the state of the VOQs. In
every time slot, each input notifies the scheduler whether ornot it has cell(s) to
be transmitted to the output(s). The input performs this operation by sending
a requestto the scheduler. The request contains the index of the VOQ (logN



22 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

. . .

1

2

3

N

. . .

1

2

3

N

. . .

1

2

3

N

. . .

1

2

3

N

Graph G Matching M

Inputs Outputs Inputs Outputs

a) Scheduling as Instance of Bipartite Graph Matching

W1,1

1

1

1

0

1

1 0

1

1 1

0

0

0

0

1 0

1

0

b) Scheduling as a Permutation Matrix

Request Matrix Permutation Matrix

Figure 2.8: Bipartite graph matching.

bits) and one additional bit to indicate it state (transition from empty to non
empty or vise-versa). Depending on the scheduling policy used, the scheduler
may express its willingness to accept the cell. It may do thisby sending agrant
back to the requesting input. The grant contains the index ofthe destination
output, logN bits. Simultaneously, the scheduler sendsN logN bits to the
crossbar fabric to configure the input-output matrix. With suitable scheduling
algorithms, an input queued switch using virtual output queueing can increase
the throughput from 58.6% [36] to 100% for both uniform and non-uniform
traffic [40] [45] [46].

2.4.1 Scheduling in VOQ Switches

The task of the scheduling algorithm is to connect (match) the set of inputs to
the set of outputs of a VOQ switch. The matching of input-output pairs must
be conflict-free, since each input can send at most one cell and each output
can receive at most one cell in every time-slot. Ideally, thescheduler finds the
largest possible matching within each cycle to make the mosteffective possible
use of the crossbar. The problem to be solved by the crossbar scheduler is an
instance of the bipartite graph matching, as depicted in Figure 2.8 (a).



2.4. THE VOQ SWITCHING ARCHITECTURE 23

The scheduling problem can take a matrix representation. Figure 2.8 (b) de-
picts the equivalent matrix representation for a3 × 3 switch (considering only
the first 3 input-output pairs of the graph in Figure 2.8 (a)).A request matrix,
R, can be used to represent the graph containing the VOQs requests. Each row,
i, of the matrix represents an input and each entry,j, in the row represents an
output.R ≡ [ri,j], whereri,j equals to 1 if there are cells in inputi destined to
outputj, 0 otherwise. Finding a one-to-one matching is equivalent to finding a
service matrixS ≡ [si,j]. S is a permutation matrix, wheresi,j = 1 indicates
that inputi is connected to outputj, resulting in a cell being transmitted from
input i to outputj.

Unlike the service matrix, where the entries can take only the values 0 and 1,
the entries of the request matrix can take either{0,1} values or other values.
Depending on the scheduling algorithm used, it is also possible for ri,j to take
values such as the number of cells in inputi destined to outputj, namely the re-
quest weight and denotedwi,j . Different classes of scheduling algorithms have
been proposed and can broadly be categorized into weighted or non-weighted
algorithms [40] [45] [47]. The next section discusses thesefamilies of algo-
rithms.

2.4.2 Maximum Matching Algorithms

This class of algorithms use weights for the arbitration process. The weight is
defined in two different ways, the maximum weight matching orthe maximum
size matching.

A Maximum Weight Matching (MWM) scheduling algorithm assigns weights
to requests. The weight,wi,j, of a request from inputi to outputj, can be, for
instance, the number of cells queued inV OQi,j, the age of the HoL cell of
V OQi,j or any other quantity. A MWM algorithm is one that finds the maxi-
mum weight matching. In other words, finding the matrix,S∗, that maximizes
the total weight, where:

S∗ = arg max
S

(
∑

i,j

si,jwi,j)

The class of MWM scheduling algorithms includes algorithmssuch as the
Longest Queue First (LQF), the Oldest Cell First (OCF) [40] and the longest
port first (LPF) [45]. These scheduling algorithms achieve 100% throughput
and are stable under any admissible traffic pattern. However, the major prob-
lem of these algorithms lies in their high computational complexity. They



24 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

requireO(N3logN) time complexity, making them too complex and too slow
for high bandwidth switches.

The Maximum Size Matching (MSM) in a bipartite graph is one that max-
imizes the number of edges. When the weight of a request takesonly the
value of either 0 or 1 (indicating the state of a VOQ), finding amaximum
size matching is equal to finding the largest size matching between inputs and
outputs. This matching maximizes the number of connectionsmade in each
time slot, hence maximizing theinstantaneousthroughput of the switch. The
MSM for bipartite graph can be found by solving an equivalentnetwork flow
problem [48]. Many MSM algorithms exist and the most efficient one known
currently has aO(N2.5) time complexity [49]. In addition to its high compu-
tational complexity, the MSM algorithm is undesirable as itleads to instability
and unfairness under non-uniform traffic arrivals [40]. As aresult, practical al-
gorithms that approximate the above complex algorithms have been proposed
and implemented, such as the class of maximal size matching algorithms.

2.4.3 Practical Maximal Size Matching Algorithms

Although the performance of MWM and MSM algorithms is very good, their
high computational complexity prohibits them from being suitable for high
bandwidth switches. The alternative was to design algorithms that approximate
the optimal solution. These algorithms belong to the class of maximalsize
matching. The difference between amaximumsize matching and amaximal
size matching is that, while the former finds the maximum matching, the latter
is not guaranteed to do so because once an edge is added to its matching it
cannot be removed, even if it does not belong to the maximum matching.

A plethora of maximal size matching algorithms have been proposed over the
last two decades [39] [50] [51] [52] [53] [54]. These algorithms iterate over
the set of inputs, in parallel, in order to match them to the set of outputs. They
perform their matching in a three step process, known as theRequest-Grant-
Accept(RGA) handshaking protocol. The first proposed RGA-based algorithm
is the Parallel Iterative Matching (PIM) [39] and was developed by DEC Sys-
tems Research Center for a16× 16 switch. The most well known algorithm is
iSLIP [53], used by Cisco routers. Although all of these algorithms run a sim-
ilar RGA protocol, each performs a different set of scheduling criteria. Below
we highlight their differences in each step of the RGA protocol.

• Step 1 (Request): Each unmatched input sends a request to every out-
put for which it has a queued cell. Algorithms that approximate the



2.4. THE VOQ SWITCHING ARCHITECTURE 25

MWM have weighted requests equivalent to the associated queue length
(iLQF [45]) or waiting time of HoL cell (iOCF [45]). Approximation
algorithms for MSM, such as PIM [39],iSLIP [53] and FIRM [51] have
requests of weight equal to 1 if the associated queue is not empty.

• Step 2 (Grant): Each output grants one of the requests received. The
granting mechanism depends on the algorithm used. Algorithms that ap-
proximate MWM grant to the request with the heaviest weight (either the
longest queue or the oldest cell). Grants for MSM approximations are
based on a rotating priority scheme, known as highest priority pointer.
The pointer movement has a significant consequence on the performance
of the algorithm. PIM grants requesting inputs randomly.iSLIP updates
its highest priority in a round robin fashion. However, the grant pointer
does not move (slips) unless the grant is accepted in the third step. This
is very important since it reduces pointers synchronization7. FIRM up-
dates its pointer as iniSLIP, except that the pointer moves to the granted
input if the grant is dropped in step 3. SRR [54] uses a fully desyn-
chronized round robin updating scheme, which totally overcomes the
synchronization effect.

• Step 3 (Accept): Each input accepts a grant amongst the received ones.
Similar to the grant step, the input accepts a grant based either on
weights or on a pointer updating scheme.

All the above algorithms have a time complexity ofO(N2) and can be readily
implemented in hardware by means of priority encoders. The only complex
algorithm amongst them is PIM due to the randomness it uses. Additionally,
PIM has low throughput (63%) with one iteration and uniform traffic [53].
To improve the performance of these algorithms, multiple iterations are usu-
ally performed. In every iteration, the three RGA steps are executed and the
matched input-output pairs are excluded from further iterations. Almost all the
above algorithms converge to a MSM match inO(logN). However, in prac-
tice, they usually achieve close to 100% throughput after a few iterations. The
implemented algorithms often use speedup between 1.5 and 2 to achieve ac-
ceptable performance. The main drawback of these algorithms is their inability
to perform well under real traffic patterns, such as non-uniform.

Modified versions of some of these algorithms were devised inorder to support

7The pointer synchronization occurs when the pointers move in a synchronized way, there-
fore granting always to the same input(s) while only one grant will be accepted. This leads to
poor performance, as low as 50% throughput [40]



26 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

multicast traffic flows and the combination of unicast and multicast schedul-
ing [18]. Multicast traffic scheduling as well as the combination of unicast and
multicast are studied in Chapters 4 and 5, respectively.

In summary, MWM algorithms are optimal, however they are complex to run at
high speeds. Practical algorithms are readily implemented, however they have
low performance. This is mainly due to the centralized nature of the bufferless
crossbar switching architecture. As a result, alternativeswitching architectures
have been studied to overcome the scheduling problem. A promising alterna-
tive is the combined input and crosspoint queued (CICQ) switch architecture,
described next.

2.5 Buffered Crossbar (CICQ) Switches

The buffered crossbar fabric is simply a crossbar, where limited buffers ex-
ist in each crosspoint. Buffered crossbar switches have been studied for over
two decades. The first pure buffered crossbar appeared in 1982 by [55], where
buffering exists only inside the crossbar fabric. This architecture is depicted in
Figure 2.9 (a) and was implemented by Fujitsu [56]. At that time, it was not
possible to embed enough and sufficient buffering on chip andthis early archi-
tecture was therefore unable to comply with the required cell loss rate. In order
to overcome the on-chip memory high requirement, buffered crossbar switches
with input queues were proposed [9] [57] [58]. This architecture is based on in-
put queueing and small buffers at the crosspoints, as depicted in Figure 2.9 (b),
and is called the combined input crosspoint queued (CICQ) switch. A recent
research result showed that a CICQ employing FIFO queueing at the inputs
can achieve 100% throughput under uniform traffic arrivals [59]. Addition-
ally, this result showed that the throughput of CICQ switches increases with
the switch size. This is in sharp contrast to IQ switches, where the throughput
decreases with the switch size,N .

2.5.1 CICQ Switch Architecture

The most widely used CICQ architecture is based on input VOQsthat was first
proposed by [60]. In the remainder of this dissertation, we will be using the
terms buffered crossbar switch and CICQ switch to refer to a buffered crossbar
switch using input VOQs. The CICQ has attracted a lot of interest in recent
years and different designs have been proposed [61] [62] [63]. Figure 2.10
depicts anN × N CICQ switch. There areN input line cards, each con-



2.5. BUFFEREDCROSSBAR(CICQ) SWITCHES 27

. . .

. . .

1 N

. . .

. . .

. . .

1 N

. . .

1

R

N

R

. . .

RR

. . .

FIFO

1

R

FIFO

N

R

R

R

R R

a) Pure Buffered Crossbar  Switch b) CICQ Switch

Figure 2.9: Early Buffered Crossbar Switches.

sisting ofN logically separated VOQs (one per output) and an arbiter (input
scheduler). The input scheduler selects a cell to be transmitted next from the
input card to the buffered crossbar fabric. Before performing its arbitration,
every input scheduler must first check the availability of space inside the in-
ternal buffers. This is accomplished by means of aflow controlmechanism.
The buffered crossbar sends up toN bit signals (flow control) to each input
scheduler (one per internal buffer in a row belonging to the input scheduler), a
total of N2 flow control signals. The buffered crossbar fabric containsbuffers
at each crosspoint, a total ofN2 internal crosspoint buffers (denoted as XP).
There areN arbiters (output schedulers) inside8 the buffered crossbar, one per
output.

The presence of internal buffers significantly improves theoverall performance
of the switch due to the advantages it offers. The adoption ofinternal buffers
makes the scheduling totally distributed, hence reducing the arbitration com-
plexity and makes it linear. Consequently, there is no longer any requirement
for synchronized decision among the inputs and the outputs as is the case with
IQ bufferless switches. This is particularly important forvariable length packet
scheduling [61]. Moreover, the internal buffers reduce (oravoid) the output
contention by allowing the inputs to send cells to an output irrespective of
simultaneous cell transfer to the same output.

8Some researchers assume that the output arbiters are placedoutside the buffered cross-
bar [60] [64] [65]. Refer to Section 3.2.2 for more details.



28 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

. . .  

. . .  . . .  

1 N

. . .  

N

N

VOQN,1

. . .

VOQN,N

Input

Arbiter

N

1

VOQ1,1

. . .

VOQ1,N

Input

Arbiter

Output

Arbiter

Output

Arbiter

Flow Control
Internal Crosspoint 

Buffer, XP

Figure 2.10: CICQ Switch architecture.

2.5.2 Scheduling in CICQ Switches

The appeal of the CICQ architecture is due to its simple and distributed
scheduling process. A scheduling cycle consists of three parallel and inde-
pendent phases as follows:

1. Input Scheduling: Every input scheduler selects, independently and in
a parallel, one cell from the HoL of an eligible9 VOQ and transmits it to
the buffered crossbar.

2. Output Scheduling: Every output scheduler selects, independently and
in a parallel, one cell from all the internally buffered cells corresponding
to its output and delivers it to the output port.

3. Flow Control : Following every output scheduling phase, a flow control
is carried from the crossbar to every input to notify the input scheduler
about the state of its corresponding internal buffers.

Several scheduling algorithms have recently been proposedfor the CICQ ar-
chitecture. These algorithms can be classified into weight-based schemes [60]

9A VOQ is eligible if it is not empty and its corresponding internal buffer, XP, is available.



2.5. BUFFEREDCROSSBAR(CICQ) SWITCHES 29

[66] and Round Robin (RR) based schemes [67] [68]. In [60], a scheme based
on OCF policy at the input as well as the output scheduling wasproposed.
While this scheme achieves high throughput under uniform Bernoulli arrivals,
the same benefits were not achieved for the non-uniform case.A scheme
based on the Longest Queue First (LQF) selection in the inputand a Round
Robin (RR) arbitration at the output was presented in [66]. The LQFRR (in-
put output) scheduling algorithm was proven, through a fluid model, to be
stable under uniform input traffic. A set of round robin algorithms were pro-
posed [67] [68] [69] and were shown, through simulation, to achieve high
performance under uniform arrivals. These schemes are desirable because of
their simplicity in hardware and fairness, however they experience the same
problem as in [60] and have low performance under non-uniform traffic pat-
terns. Recent work in [70] has shown that RR based algorithmscan provide
100% under uniform traffic inputs.

Alongside the work on scheduling, important research work has been devoted
to OQ emulation by a CICQ switch. In [71], it has been proven that a CICQ
employing a speedup of two can emulate an OQ switch. This result applies to
a wide range of OQ switches policies such as FIFO, strict priority and Early
Deadline First (EDF). A more recent and extended result [72]showed that a
CICQ switch with two to three times speedup can provide 100% throughput,
rate and delay guarantees. Other recent proposals have shown the same results,
as above, for variable-length packets as well [73] [74].

The advantages of the CICQ, however, do not come for free. TheCICQ switch-
ing architecture has the following drawbacks:

• A costly and complex crossbar withN2 internal buffers is required,
whereN is the switch valency. These buffers are required to be large
enough to match the cell transmission round-trip delays. The quadratic
growth of the internal buffers can limit the scalability andimplementa-
tion feasibility of the switch.

• The CICQ switch requires a large number of flow control signals. Up
to N2 control signals are required to carry the flow control information,
from the buffered crossbar core to the input line cards, on a per-packet
basis. These signals can double if we consider a CICQ switch with out-
put schedulers implemented in the output cards, such as [60][64] [65].
In this case,2N2 flow control signals are required. This is undesirable
as it severely limits the scalability of the CICQ architecture. Solutions to
address this problem have been proposed, such using a limited number
(N [62] andN logN [61]) of I/O pins over multiple time slots. How-



30 CHAPTER 2. HIGH PERFORMANCEPACKET SWITCHES

ever, this results in longer time for flow control updating and can cause
performance degradation.

• At the scheduling level, very little has been done to address multicast
traffic scheduling. Moreover, the integration of unicast and multicast
flows in CICQs is still a largely untapped area.

The goal of this dissertation is to address all the above CICQswitching archi-
tecture shortcomings and provide solutions to each of them.

2.6 Summary

The design of scalable high performance routers requires improving their data-
paths. The underlying packet switching architecture is at the heart of the router
datapath. The current chapter gives an overview of existingpacket switching
architectures and highlights their advantages and limitations. The single-stage
IQ bufferless crossbar switch is the prominent architecture for today’s high
performance routers. This is due to its low hardware cost andscalability. The
crossbar requires a centralized scheduler to transfer cells from the input ports
to their destination output ports. Unfortunately, the highcomputational com-
plexity of the optimal MWM algorithms and the low performance of the prac-
tical RGA scheduling algorithms makes it difficult for the crossbar to deliver
switching at such high bandwidth.

With IQ crossbar switches reaching their practical limitations due to higher
port numbers and data rates, buffered crossbar (CICQ) switches are gaining
increased interest due to their great potential in solving the complexity and
scalability issues faced by their bufferless predecessors. CICQ switches, how-
ever, use expensive and complex buffered crossbar fabric. Additionally, the
design and placement of the proposed algorithms over the input and output
line cards has resulted in excessive use of the buffered crossbar chip pins, lim-
iting its scalability. Additionally, the CICQ has thus far been studied only in
the context of unicast traffic scheduling.

This dissertation undertakes a comprehensive study of the CICQ switch archi-
tecture, proposes solutions to its scalability and studiesits performance under
all types of traffic flows. The next chapter addresses the scalability of CICQ
switches by optimizing the number of control pins of the buffered crossbar
fabric chip.



Chapter 3

The Embedded CICQ
Scheduling Architecture

This chapter proposes a novel buffered crossbar (CICQ) switching archi-
tecture where the input and output distributed schedulers are embedded
inside the crossbar fabric chip. As opposed to previous designs, where

these schedulers are spread across the input and output linecards, our design:
(i) allows the schedulers to have cheap and fast access to the internal buffers;
(ii) optimizes the flow control mechanism; and(iii) provides scalability to the
CICQ switching architecture. We propose a novel class of scheduling algo-
rithms, where the arbitration process is based only on information about the
internal buffers. We refer to this class of algorithms as theMost Critical Buffer
First (MCBF). MCBF is shown to outperform all existing algorithms under
various traffic settings. In order to validate our proposal,we implemented, in
reconfigurable hardware, a CICQ switch core running the MCBFalgorithm,
with the maximum port count that we could fit on a single chip. The experi-
ments prove that a24 × 24 CICQ switch running a 10 Gbps port speed and a
clock cycle time of 6.4 ns can be implemented.

3.1 Introduction

With input queued (IQ) crossbar switches reaching their practical limitations
due to higher port numbers and data rates, buffered crossbar(CICQ) switches
are gaining a lot of interest due to their great potential in solving the complex-
ity and scalability issues faced by their bufferless predecessors [72]. Contrary

31



32 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

to traditional IQ switching, where a centralized and complex scheduler is re-
quired [40], for anN × N CICQ switch, there areN input schedulers and
N output schedulers. These schedulers are decoupled and can work indepen-
dently in parallel [75]. Figure 3.1 depicts the CICQ switching architecture. A
scheduling cycle consists of three independent phases: input scheduling, out-
put scheduling and flow control mechanism. The flow control informs the input
(output) schedulers about the status, or occupancy, of the internal buffers. It is
the only communication means throughout which the schedulers communicate
in order to perform their arbitrations and prevent internalbuffers overflow.

A plethora of scheduling algorithms has been proposed for the CICQ switching
architecture [69] [67] [60]. The vast majority of these algorithms have been
designed under the assumption that the input schedulers arelocated in the input
line cards -one per each card- and the output schedulers are placed at the output
ports of the switch [60] [64] [65]. This implies that, in every time slot, the flow
control mechanism has to communicate to every input (output) scheduler the
occupancy of its corresponding internal buffers. This can be considered not
only costly, in terms of latency and I/O pins, but also a scalability limiting
factor.

In this chapter, we propose a novel design for the CICQ switching architecture
where the input and output schedulers are all embedded within the crossbar
fabric chip. We propose a novel class of scheduling algorithms that we call
MCBF. The MCBF arbitration is fully based on the internal buffers informa-
tion, unlike previous algorithms that base their arbitration process on the in-
put VOQs. The MCBF input scheduling phase gives priority to the VOQ for
which the corresponding internal crosspoint buffer belongs to the least occu-
pied column of internal buffers. Whereas the MCBF output scheduling favors
the crosspoint buffer belonging to the most occupied row of internal buffers.

Embedding the schedulers inside the buffered crossbar fabric chip stems from
the fact that the crossbar fabric switch is bound by pin countand not by the
amount of memory inside the chip. VLSI density increases [62] make it possi-
ble to include enough memory inside the crossbar fabric chip. The fabric I/O
pin count constraint implies that there must be unused area inside the chip that
can be used. The benefits of our proposed design are:

• Optimizing the flow control mechanism between the crossbarfabric chip
and the schedulers. This has the benefit of speeding up the scheduling
time while using a limited number of I/O pins resulting in more scalable
CICQ switches. For a32 × 32 switching system, our CICQ embedded
switching architecture achieves up to 70% saving of chip I/Ocontrol



3.2. CONVENTIONAL CICQ ARCHITECTURE 33

pins when compared to existing CICQ switch architectures.

• Improving the performance of the scheduling algorithms, as there are
many algorithms that base their decisions on the internal buffers and
when embedded within the crossbar chip would have faster decisions
and cheaper access to resources.

• More effective use of the crossbar chip area and saving areaon the input
(output) line cards that could be used for additional tasks.

Our implementation results showed the feasibility of such adesign for a24×24
CICQ switch core with embedded schedulers running a 10 Gbps port speed.
The target technology was the Xilinx Virtex-4FX [76]. Our design can be
extended to implement broader classes of scheduling algorithms such as the
Longest Queue First-Round Robin (LQF-RR) algorithm [66] atno extra cost.
To the best of our knowledge, there has been no other study showing the fea-
sibility of such embedded design. When embedding the scheduler within the
crossbar fabric, the flow control mechanism is optimized resulting in the fea-
sibility of implementing scalable switches both in terms ofport numbers and
speed per port. From a performance viewpoint, our proposed MCBF sched-
uler was shown to outperform all alternative algorithms under a wide range of
traffic patterns.

The remainder of this chapter is structured as follows: Section 3.2 reviews
conventional CICQ switch design and scheduling and discusses its limitations.
Section 3.3 introduces the embedded CICQ scheduling architecture, discusses
its components and explains its dynamics. We describe our proposed MCBF
algorithm and illustrate its properties. In Section 3.4, wepropose a possible
reconfigurable hardware based implementation of the MCBF algorithm. We
devise two variations of our design and discuss the implementation as well as
the performance of each of them. Section 3.5 presents the implementation re-
sults and performance evaluation. Finally, Section 3.6 summarizes the chapter.

3.2 Conventional CICQ Architecture

To keep pace with the Internet’s exponential growth, building routers with large
port numbers and higher interface speed is becoming a must. Generally, the
interconnect runs faster than the line speed to amortize thetime spent on some
additional requirements such as QoS related processing andimperfect output
contention resolution. If we consider transferring packets (or ATM cells), of



34 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

. . .  

. . .  . . .  

1 N

. . .  

N

N

VOQN,1

. . .

VOQN,N

Input

Arbiter

N

1

VOQ1,1

. . .

VOQ1,N

Input

Arbiter

Output

Arbiter

Output

Arbiter

Flow Control
Internal Crosspoint 

Buffer, XP

Figure 3.1: The CICQ Switching architecture.

size 53 Bytes each, through a 40 Gbps switch port with a speed up of 2, the
scheduler has approximately 5.3 ns to decide which packet toforward. This
short time constraint requires the scheduler to make its arbitration as fast as
it possibly can. Moreover, current CICQ schedulers rely on aflow control
mechanism that requires a non negligible proportion of the crossbar chip pins.
As a result, it is difficult to achieve the above goals with current architectures
and algorithms. We address each of these issues below.

3.2.1 Scheduling in Conventional CICQ Switches

Recently, there have been many scheduling algorithms proposed for the CICQ
switching architecture. Most of these schemes are based on sorting, such as
LQF-RR and OCF-OCF, or a combination of sorting and Round-Robin. If we
consider the hardware complexity of the input scheduling LQF for example,
we can see that it takes a relatively long time to make its arbitration. This
is mainly due to the large number of input values (i.e., number of packets in
a line card or VOQ) and the basic building blocks of the arbiters, which are
mainly two-integer comparators and two-integer MUXes [34]. In a similar
implementation (theiLQF [45]), it was shown that the arbitration time is more
than 7 ns for a32× 32 switch with 10 bits representing the input weight. Even
with the fastest implementation, the two-input integer comparator still takes
O(logB) time units to complete the comparison [77], whereB is the number



3.2. CONVENTIONAL CICQ ARCHITECTURE 35

of bits equaling to logLmax (the maximum number of packets a line card can
hold). The 10 bits representing the weight above correspondto a maximum of
53 KB (1 Kilo ATM cells) as the buffer space at the line card. However, it is
normally required that the buffer size at each line card should hold up to 100
ms worth of packets [78]. Meaning that, at 40 Gbps, the buffersize can be as
large as 500 MB. Assuming that this buffer space is divided amongst 32 VOQs,
this would result in every VOQ having a size of approximately1 20 MB and
catering for up to 386 Kilo ATM cells. This requires up to 19 bits to represent
the input weights. Thus, it is clear that employing LQF (or OCF) arbitration
will result in a much longer arbitration time and therefore will most likely be
the bottleneck of the whole switch. As a result, designing CICQ schedulers
with reduced complexity is required. In fact, CICQ switchesare interesting
because of their simple and distributed scheduling.

Alongside their complexity, the existing algorithms have been compared to the
conventional bufferless IQ crossbar switches. As expected, they were shown
to exhibit better performance. These algorithms, however,are just a simple
mapping of earlier algorithms proposed for the bufferless crossbar switches
into the new CICQ switching architecture. Moreover, none ofthe algorithms
presented in the literature has addressed the issue of flow control optimization
and the interaction between the internal buffers and the input line cards.

In fact, as will be illustrated in this chapter (see Section 3.3.3), by carefully
considering the interaction between the VOQs and the internal buffers of the
CICQ architecture, we can design matched pairs of input/output arbitration
algorithms that outperform the straightforward algorithms both in performance
and in hardware cost.

3.2.2 Flow Control in Conventional CICQ Switches

The broad class of proposed algorithms can be classified intoround robin based
algorithms [67] and weighted algorithms [79] [66] or a combination of the
two. Most of the proposed algorithms have been designed withthe assumption
that the input schedulers are taking place at the input line cards and the out-
put schedulers are placed on the output cards. When the inputschedulers are
implemented on the input line cards, the flow control mechanism can be the
bottleneck as the number of ports of the switch or the speed per port increases.
For anN × N CICQ switch, every time slot the flow control mechanism has

1This is assuming that the VOQs occupancies are balanced and that the incoming traffic is
uniformly distributed.



36 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

to sendN bits (one for each crosspoint buffer) to each input scheduler in order
for the latter to know which internal buffer to be served next. A total of up to
N2 flow control signals are required for a lossless switch operation, as shown
in Figure 3.1. If we consider some CICQ designs, where the output arbiters are
implemented on the output cards [60] [64] [65], then up to2N2 bit signals are
required for flow control. Clearly, asN increases, the crossbar implementation
becomes infeasible due to I/O pin limitation. The alternative solution to this
problem is to sacrifice time instead of pins by using the same limited number
of I/O control pins for all input schedulers over many time slots, resulting in
longer arbitration times [62].

In order to overcome the buffered crossbar chip I/O limitation, in the next sec-
tion, we propose the CICQ switching architecture with embedded scheduling
that reduces the flow control bit signals requirement and permits the design of
scalable CICQ switches.

3.3 Embedded Scheduling Architecture

In this section, we describe our proposed CICQ switching architecture where
the input and output schedulers are embedded within the crossbar fabric. We
explain its dynamics and the interaction between its components. To show
the feasibility of our design, we describe the MCBF class of algorithms in
Section 3.3.3 and propose two possible hardware implementations for our al-
gorithm. For the sake of clarity, we introduce some notations that will be used
throughout the remainder of this chapter.

3.3.1 Reference Architecture

The proposed CICQ switching architecture with embedded schedulers is de-
picted in Figure 3.2. Fixed size packets, or cells, are considered. Vari-
able length packets are segmented into cells for internal processing and re-
assembled before they leave the switch. There areN input cards; each main-
tainingN logically separated VOQs. When a packet (cell), destined tooutput
j, 1 ≤ j ≤ N , arrives to the input cardi, 1 ≤ i ≤ N , it is held inVOQi,j. In
addition to the above, we define the following:

• Eligible VOQ: A VOQi,j is said to be eligible for being scheduled in the
input scheduling process if it is not empty and the internal buffer XPi,j is
available to accept at least one cell.



3.3. EMBEDDED SCHEDULING ARCHITECTURE 37

. . .  

. . .  . . .  

1 N

. . .  

Input

Arbiter

2logN

2logN
Input

Arbiter

Output

Arbiter

Output

Arbiter

1

VOQ1,1

. . .

VOQ1,N

N

VOQN,1

. . .

VOQN,N

Internal Crosspoint 
Buffer, XP

Flow Control

Figure 3.2: The CICQ Switching architecture with embedded schedulers.

• The internal fabric consists ofN2 buffered crosspoints (XP), N input
schedulers (IS) andN output schedulers (OS). A crosspointXPi,j holds
cells coming from inputi and destined to outputj.

• The line of crosspoint buffersLXPBi is the set of all the internal cross-
point buffers (XPi,j) that correspond to the same input,i, and holding
cells for all outputs.NLBi is the number of cells held inLXPBi. ISi

schedules the arrival of cells from input card,i, to LXPBi.

• The column of the crosspoint buffersCXPBj is the set of the internal
buffers (XPi,j) that correspond to the same output,j, and receiving cells
from all inputs.NCBj represents the number of cells queued inCXPBj .
OSj arbitrates the departure of cells fromCXPBj.

3.3.2 The Dynamics of The Switch

The proposed CICQ switching architecture has the schedulers embedded
within the buffered crossbar core. It works similarly to a conventional CICQ
switch, in that the input schedulerISi controls the transfer of cells from input
i to the row (line) of internal buffersLXPBi. The output schedulerOSj sched-
ules the departures of cells from the column of internal buffersCXPBj . The
novelty of our CICQ switching architecture resides mainly in its input schedul-
ing and the flow control between the input line cards and the buffered crossbar



38 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

50 100 150 200 250

10
1

10
2

10
3

10
4

N
um

be
r 

of
 1

−
bi

t F
lo

w
 C

on
tr

ol
 S

ig
na

ls

Switch Size, N

Flow Control Signals Usage

Conventional CICQ Switch
Embedded CICQ Switch

Figure 3.3: Flow control signals usage for different switchsizes.

core. The architecture is shown in Figure 3.2 for anN × N switch and oper-
ates as follows. When a new cell, destined to outputj, arrives at inputi, the
index of VOQi,j is forwarded toISi using logN flow control bits. ISi keeps
record2 of the arrivals and departures of cells to and from the VOQs, in input
i, and updates its record accordingly. Simultaneously with the forwarding of
a VOQ index,ISi requests a cell for input scheduling (transfer from the input
line card to the internal buffer). It does this by sending logN bits to the line
card indicating the index of the selected VOQ. The cell is then forwarded to the
corresponding internal buffer. The output scheduler worksas in conventional
CICQ switches, it checks the existence of cells in itsCXPBand selects one cell
to be transmitted to the output port.

Embedding the schedulers inside the buffered crossbar fabric core has two
major advantages. First, the number of flow control 1-bit signals are greatly
reduced. Figure 3.3 shows the number of 1-bit signals required for the flow
control mechanism of our embedded CICQ switch (as depicted in Figure 3.2)
and compares it to the conventional CICQ (as depicted in Figure 3.1). We
can see that for any switch size greater than 4 ports, our architecture requires
far fewer flow control signals (O(N logN)) as compared to traditional CICQ
switches (O(N2)). For a32×32 switch size, our architecture provides a saving
of up to 70% of flow control signaling (I/O pins) as compared tothe conven-
tional CICQ architecture. These pins could be used for useful bandwidth for
additional ports, resulting in more scalable CICQ switches.

The second advantage of the embedded CICQ switch is its scheduling. When
the schedulers are implemented inside the buffered crossbar chip, they can

2Depending on the implementation, it could be a table withN entries, one per VOQ.



3.3. EMBEDDED SCHEDULING ARCHITECTURE 39

have faster access to the internal buffers, hence faster decisions and access
to more information resulting in better and more efficient scheduling. Using
embedded schedulers, each input scheduler has access to thestate ofall cross-
points, whereas an external input scheduler can only has access to the state
of its own line of internal buffers. In the next section, we propose the MCBF
embedded algorithm and discuss the scheduling in more details.

3.3.3 The Most Critical Buffer First Algorithm (MCBF)

The MCBF algorithm is proposed to be a good compromise between perfor-
mance and hardware cost. It is based on the internal buffers information only.
It favors the least occupied internal buffer at the input side. Whereas the output
gives priority to the most occupied internal buffer. Meaning that the scheduler
retains the information about the internal buffers only, instead of the input
queues length in the case of LQF for example. Doing so,B will equal log(PS)
instead of logLmax, whereP is the switch port count andS equals to the inter-
nal buffer size in number of cells. The MCBF has the followingspecification:

Input Scheduling (IS):

• For each inputi:

– Starting from the highest priority pointer location, select the first
eligible VOQ corresponding tominj{NCBj} and send its HoL cell
to the internal crosspoint bufferXPi,j.

– Move the highest priority pointer to the location(j + 1)(modN).

Output Scheduling (OS):

• For each outputj:

– Starting from the highest priority pointer location, select the first
XPi,j corresponding tomaxi{NLBi} and send its HoL cell to the
output.

– Move the highest priority pointer to the location(i + 1)(modN).



40 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

3.3.4 MCBF Properties

The MCBF scheme has three major properties when compared to other
schemes. These properties are related to its efficient matching process, its
hardware cost and its flow control requirement.

• Efficient Matching: MCBF is designed to be a matched pair of input
and output scheduling. The internal buffer element is of keyimportance
in finding matched scheduling because of its shared nature. No output
is idle as long asNCBj≥ 1,∀0 ≤ j ≤ N − 1. To keep the outputs as
busy as possible, MCBF maintains a load balancing among the internal
buffers. The input and output schedulers each perform a merit func-
tion (minj{NCBj} andmaxi{NLBi}) designed to maintain load balanc-
ing inside the buffered crossbar matrix. For the input scheduler, this is
achieved by giving priority of service to the crosspoint buffer, XP, be-
longing to the column of crosspoint buffers (CXPB) with the minimum
workload (packets). In this way, and as long as all the CXPB contain
cells, the load can be distributed (balanced) over all outputs. Meanwhile,
each output arbiter gives priority to the XP belonging to theline of cross-
point buffers (LXPB) with the maximum workload. This enables more
work to be brought forward by ensuring free space for the input arbiter
(with the least choices of scheduling) to have wider scheduling choices.

• Hardware Cost: MCBF is simpler in hardware complexity when com-
pared to LQF-RR or OCF-OCF for example. Recall that the MCBF
scheduling decision is based on the number of cells in the internal buffers
(NLBi, NCBj). That is, for anN ×N one-cell internally buffered cross-
bar switch, an arbiter’s encoder consists only of logN bits (P = N and
S = 1). This is much faster than comparing logB bits, whereB is equal
to logLmax in the case of comparing the queues occupancies [45]. More-
over, the productPS remains small irrespective of the internal buffer
size. It grows linearly with the switch size and/or the internal buffer
size. This makes the hardware sub-blocks of MCBF easier to design and
faster to run at high rates.

• Flow Control: MCBF is designed to be a stateless scheme with respect
to the input line cards. It performs its arbitration with theleast interac-
tion with the input VOQs. The only feedback information thatMCBF
needs to know during its arbitration process is the state of an input VOQ
(empty or not). This reduced feedback information between the input
line cards and the internal buffers optimizes the flow control mechanism.



3.4. THE MCBF IMPLEMENTATION 41

In fact, a recent related work has shown the optimal performance of our pro-
posed MCBF algorithm, particularly its output phase, and its ability to achieve
100% throughput [80]. To achieve fairness, each input (output) arbiter main-
tains a highest priority round robin pointer to break ties among different inputs
(outputs) in the presence of conflicts. Similar to LQF [40], the MCBF algo-
rithm has a drawback of input queues starvation. Under certain traffic patterns,
MCBF may starve flows. One way to overcome this disadvantage is to use a
time stamping mechanism for the MCBF output scheduling. Thenext section
describes the hardware implementation of the MCBF algorithm.

3.4 The MCBF Implementation

Because the scheduling decision is fully based on the internal buffers, XPs,
choosing the internal buffer size is critical to MCBF. In ourimplementation,
we target an FPGA device (Xilinx Virtex4-FX) and make use of the Block
RAMs (BRAMS) as internal buffers (XPs). If we consider 64-Byte packets
and 18 Kbits of buffering space per XP (BRAM size), each XP canaccom-
modate up to 36 packets (cells). The implementation of an MCBF input (out-
put) scheduler consists mainly of two sub-blocks, namely the merit function
of computingminj{NCBj} (maxi{NLBi}) and the highest priority pointer to
break ties in presence of conflicts. However, we can optimizethese two sub-
blocks in hardware cost while maintaining the same performance of the MCBF
algorithm. In what follows, we will propose two alternativeimplementations
that both achieve the same performance as MCBF with lower hardware re-
quirements. In the first implementation, we will approximate the merit func-
tion sub-block with a simpler, yet similar, merit function while keeping the
highest priority pointer sub-block unchanged. We refer to this implementation
asα-MCBF. In the second implementation, we use the same merit function as
MCBF, however we omit the highest priority pointer sub-block and we show
that it is not indeed required for our specific design. We refer to this imple-
mentation asβ-MCBF.

3.4.1 First Approximation: α-MCBF

In this implementation, we approximate the merit function of each input (out-
put) scheduler with a simpler merit function that would result in a faster im-
plementation while maintaining similar performance. Recall that each MCBF
input scheduler attempts to keep as many output line cards busy as possible.



42 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

3

LUTs

+

4

. 
. 
.

6

Column

BOT

3

3

LUTs

4 3

1st Column

Not-empty

FIFO
signals

3

LUTs

+

4

. 
. 
.

6

3

3

LUTs

4 3

. 
. 
.

24. 
. 
.

24th Column

Not-empty

FIFO

signals

5
Decoder

24

5
Decoder

24

. 
. 
.

Figure 3.4: The buffers occupancy table controller.

It performs this task by servicing the XP belonging to the theCXPB with the
least number of packets. If, instead, the input scheduler gives priority to the
XP belonging to the CXPB with the least number of full XPs, this means:(i)
Servicing the XP belonging to the CXPB with the least number of full XPs still
achieves the objective of the input arbiter by keeping as many output line cards
busy as possible. This merit function approximates the original MCBF func-
tion well, especially under heavy input loads (which is critical for the sched-
uler). This is because the likelihood of having many full XPsis proportional to
the input load.(ii) Instead of computingminj{NCBj} which would require
sorting, we can simply avoid it by encoding the number of fullXPs per col-
umn as one hot. This results in faster implementation with lower cost. The
same approximation is applied to each output scheduler. Instead of computing
maxi{NLBi}, each output scheduler gives priority to the XP belonging tothe
LXPB with the maximum number of full XPs.

To efficiently map the input scheduler into hardware the following structure
has been used. Inside the crossbar fabric, there is one24×24-bit double array,
named Column Buffer Occupancy Table (CBOT), and each row represents
the number of occupied internal buffers, XP, for each columnof the crossbar
fabric. Each row is initialized with the first bit asserted “1” and all the others
with “0”. The position of the “1” in the row represents the number of occu-
pied internal buffers in this column. The controller of the CBOT is depicted
in Figure 3.4. Each Xilinx Virtex Look-Up-Table consists of4 inputs and 1
output. Hence,4 not-empty signals are used as inputs to the LUTs to encode
the number of ones, as it is shown in Table 3.1. The number of the occupied
internal buffers (XPs) for a column are added and then decoded and forwarded
to the CBOT. For example, in Figure 3.5, the first, the second and the fourth



3.4. THE MCBF IMPLEMENTATION 43

Table 3.1: Encoding of the number of ‘1’s.
Not-Empty LUT Output

0000 000
0001 001
0010 001
0011 010
0100 001

... ...
1111 100

columns have2 occupied internal buffers, while the third and the fifth columns
have3 occupied internal buffers.

Figure 3.5:α-MCBF input arbiter micro-architecture.

The micro-architecture of the input arbiter is shown in Figure 3.5. When a new
packet arrives to the input card, a signal is asserted stating the id of the VOQ.
The input arbiter first updates the Input Buffer Table (IBT).The IBT keeps the
number of waiting cells in the input line card. The number of waiting cells
is represented using15 bits (up to32 Kilo cells). The input card asserts a
“new packet” for a specific VOQ only when the number of waitingcells in the
corresponding entry in the table is less than4 (The input card keeps a record
of the number of new cells and selected cells of a VOQ). Thus, the IBT is used
mainly to speed up the time consuming process of communication between
the input card and the crossbar switch. The interaction between the input line
cards and the buffered crossbar fabric is as depicted in Figure 3.2. In our
design, each input card uses 6 signals (5 signals for the 24 input VOQs and
1 signal for valid data) to notify the switch fabric card thata new packet has



44 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

arrived to the VOQs (indexed by the 5 bits signal). Once the input scheduler
has decided which input VOQ is selected, a 6 bits signal is sent back to the
input line card containing the selected VOQ index. The cell is then forwarded
to the corresponding internal buffer. Cells can be sent using the SERDES
transceivers [81]. The output card is simpler than the inputcard. Cells are,
again, sent using the SERDES transceivers as soon as the output scheduler
makes a decision. Furthermore, no flow control is needed since the output
scheduler is moved inside the buffered crossbar fabric chip.

The Input Buffer Vector (IBV) is a 24-bit vector that represents the state of the
IBT. If the row is0 then the bit is also 0; otherwise it is 1. IBV can be obtained
as follows:

IBVj =

{

0 if IBTj = 0;
1 otherwise.

The Empty Crosspoint Buffers (EXP) vector represents the empty (available)
internal crosspoint buffer, XP, belonging to a LXPB. The IBVis AND-ed with
the EXP, resulting in a vector that represents the eligible queues. This vector
is used as a mask for the CBOT and a new table (Masked BOT) is created that
represents the number of occupied buffers of the eligible queues . Each row,j,
of the Masked BOT (M BOTj) can be computed as follows:

M BOTj = C BOTj ∧ IBVj ∧ EXPj

The elements of each column of this table are OR-ed and are forwarded to a
priority encoder to find the eligible queues with the minimumnumber of occu-
pied buffers. The priority is given to the first column, from the left (in order to
find the minimum), with a non-zero value. If we consider the example of the
Masked BOT in Figure 3.5, we can see that CXPB1 and CXPB23 each has two
full XPs which corresponds tominj{NCBj}. Using this micro-architecture we
can easily locate the VOQ corresponding to the CXPB with the minimum num-
ber of full XPs, among all eligible queues. Finally, this vector is forwarded to a
Programmable Priority Encoder (PPE) to select the queue based on the highest
round-robin priority pointer. The PPE can be implemented inseveral ways as
it is shown in [82]. In this implementation we used the fastest implementation,
segmented in3 clock cycles.

The output arbiter, depicted in Figure 3.6, is similar to, even simpler than,
the input arbiter. A24 × 24-bit array, named Row Buffer Occupancy Table
(R BOT), is used to store the occupancy of the internal buffers for each row
of the buffered crossbar fabric. The position of the ‘1’ in the entry,i, in the
array represents the number of queued cells in the line of crosspoint buffers
LXPBi. For example, if the ‘1’ is on the third position it means thatLXPBi has



3.4. THE MCBF IMPLEMENTATION 45

NEXP

R_BOT

PPE

PEOR
10000...0
00100...0
01000...0
00100...0
10000...0

Selected 
XP

NEXP: Non-Empty XP Buffer

R_BOT: Row Buffer Occupancy Table

PE: Priority Encoder

PPE: Programmable Priority Encoder

Priority

00100...0
01000...0
00100...0

00000...0

00000...0

0
1
1
1
0

Masked BOT

24

...

24

. 
. 

.

24

. 
. 
.

24
24

24

24

24

Figure 3.6:α-MCBF output arbiter micro-architecture.

2 queued cells. The Non-Empty Crosspoint buffers (NEXP) is a24-bit vector
that represents the non-empty internal crosspoint buffer,XP, belonging to a
LXPB. NEXP is used as a mask for the RBOT to create a masked BOT. Each
row, j, of the Masked BOT (M BOTj) can be computed as follows:

M BOTj =

{

R BOTj if NEXPj = 1;
0 otherwise.

Each24-bit column of the masked BOT is OR-ed and the first column from
the right with a non-zero value is forwarded to the Priority Encoder (PE).
The priority is given to the first column from the right in order to find the
maximum value. Then, this vector is forwarded to the PPE to decide which
will be the selected crosspoint, XP, based on a the highest priority pointer.

3.4.2 Second Approximation:β-MCBF

In this implementation, we omit the highest priority pointer sub-block while
keeping the original MCBF merit function for each input and output scheduler.
The highest priority pointer is used to break ties in the presence of conflicts.
If two or more CXPBs (or LXPBs) have the same number of packets, then
the choice of which to favor is based on the highest priority pointer’s location.
However, by observing that our target design is a24 × 24 CICQ with each
XP size of 36 cells, the chance of having two or more CXPBs (or LXPBs)
with the same number of packets is very low. The likelihood ofhaving two or
more CXPBs with equal number of packets, which requires the highest prior-
ity pointer to decide which one to favor, is less than 0.1% (or1

24 × 36
). There-

fore, the possibility of unfairly favoring a XP over others is very unlikely. In



46 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

fact, we designed the merit function of each input (output) scheduler using a
carry propagation circuit (see Figure 3.8). This affords usthe option to break
ties based on the lowest port number first, which is commonly used by other
weight based scheduling algorithms [60]. Additionally, from a performance
point of view, simulation results showed that the average cell delay of MCBF
is shorter without using the highest priority pointer3. Finally, the elimination
of the highest priority pointer sub-block, which requires implementing a PPE
that takes 3 clock cycles, results in a faster implementation of both the input
and output schedulers.

The architecture of theβ-MCBF scheme is depicted in Figure 3.7. The En-
coder, the Accumulator and the Column Buffer Occupancy Table (C BOT) are
common for all the input arbiters. The accumulator is used tokeep the number
of cells stored for each column. Each time a new selection hasto be made,
the accumulator adds the number of new incoming packets for the specific col-
umn and subtracts one packet if the output arbiter has sent any. The maximum
number of new packets is the same as the number of input arbiters (24). These
signals are encoded using a 25-to-5 encoder and used by the accumulator. The
maximum number of cells that each column has to store is 864 (24 XP buffers,
each with 36 cells), hence the accumulator is 10-bits wide. The CBOT stores
the data of the accumulator used for each input arbiter. If there is a waiting cell
at an input queue for which there is space in the corresponding internal buffer,
then the queue is deemed eligible and the row of the corresponding C BOT is
forwarded to the masked CBOT. Otherwise, the row in the masked CBOT
is filled with 1’s (indicating it is not the minimum). The rowsof the masked
C BOT are used as entries to aMin Index Functioncircuit. TheMin Index
Functionoutputs the index of the eligible VOQ with the correspondingleast
occupied CXPB.

The minimum index function is performed using a tree structure with com-
parators as it is shown in Figure 3.8. In each stage, the elements are compared
in pairs and the minimum (or maximum, in the case of the outputarbiter) is
propagated to the next stage along with its partial index (inthe first stage the
output index is 1 bit, in the second 2-bits and so on). The detailed structure of
finding the minimum among two elements is also depicted in Figure 3.8. The
MIN box performs the following: one of the inputs is inverted anda carry-
propagation circuit is used, if the carry is ‘1’ then the inverted input is smaller
than the normal input. The output of theMIN is used to select the minimum
element and its partial input index through a multiplexer and the outputs of the

3The better performance comes at the cost of unfairness. See Section 3.5.2 for more details.



3.4. THE MCBF IMPLEMENTATION 47

Figure 3.7:β-MCBF input arbiter micro-architecture.

two multiplexors are forwarded to the next stage. Please note that, for the first
stage, the index multiplexer (upper multiplexer) is not required, since there are
no partial input indexes. Also, for the last stage, the lowermultiplexer is dis-
carded since the output of the overall block is only the indexof the minimum
element. Additionally, if the two inputs are equal, we can design the circuit to
choose the input with the lower index to be selected4. This means that ties are
broken based on the lowest port number first (in the presence of conflicts) and
this conforms to the desired result. The same applies for finding the maximum
element, for the output arbiter.

The micro-architecture of theβ-MCBF output scheduler is depicted in Fig-
ure 3.9. While the dynamics of the output arbiter are opposite to the input
arbiter, most of the components used by each are similar. Recall that each
CXPB, used by the input arbiter, can receive up to 24 new packets and can
discharge at most one packet every scheduling cycle. Oppositely the same ap-
plies to the output arbiter, in that each LXPB can receive at most one packet
and can discharge up to 24 packets each scheduling cycle. Forthis reason
we employed the same encoder and accumulator for the design of the output
arbiter. The accumulator keeps track of the number of cells at each LXPB.
The Row Buffers Occupancy table RBOT, similar to the CBOT, is used to
store the number of queued cells per LXPB. Similar to theα-MCBF output
scheduler, a24-bit vector named the Non-Empty Crosspoint buffers (NEXP)
is used to represent the non-empty internal crosspoint buffers, XP, belonging

4We can achieve this by always inverting the input with higherindex (Min1 in Figure 3.8).



48 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

.

.

.

0

.

.

.

S

T

A

G

E

1

S

T

A

G

E

2

S

T

A

G

E

3

S

T

A

G

E

4

1

2

3

20

21

22

23

MIN
10

10

10

Min0 

Min1 

Min

IndexIndex0

Index1 

10

10

i-1

i-1

i-1
i

Stage i

1

Index of 
the min 

Figure 3.8: The minimum index function.

Figure 3.9:β-MCBF output arbiter micro-architecture.

to a LXPB. NEXP is used as a mask for the RBOT to create a masked BOT
(M BOT). The rows of the MBOT are used as inputs for theMax Index Func-
tion block. The max index function is similar to the one shown in Figure 3.8
and the carry-propagation circuitry is used to find the indexof the maximum
internal buffer, XP, selected by the output arbiter.



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 49

3.4.3 Extension to Wider Range of Algorithms

Our design can be extended to implement a wider range of scheduling algo-
rithms. For example, we can use our design and embed the Longest Queue
First-Round Robin (LQF-RR) algorithm [66] or the Oldest Cell First (OCF-
OCF) algorithm [60] in a similar manner as MCBF. We expect allthese algo-
rithms to be easily mapped inside the buffered crossbar chipbecause of their
similar hardware requirements, as weighted schemes. In thecase of the LQF-
RR algorithm, the input scheduler (LQF) can be embedded within the buffered
crossbar chip by using the IBT table with a slight modification. The LQF al-
gorithm gives priority to the input VOQ with the highest number of packets
(cells). As mentioned in the previous section, the IBT tableuses 15 bits to rep-
resent the occupancy (length) of each input VOQ in number of cells. However,
in practice, an input line card should hold up to 100 ms worth of packets [78].
At 10 Gbps, the buffer requirement per line card would be 125 MB. For a
24 × 24 CICQ switch and 64 B cells, every VOQ is approximately 5.2 MB
(or 81.25 Kilo cells). This translates to an IBT entry of 17 bits, which can be
easily modified. Besides the IBT modification, LQF would not require much
of a difference compared to the MCBF scheme. The same modification can be
applied to the OCF algorithm in order to represent the arrival time of cells to
the VOQs instead of queue length.

3.5 Implementation and Performance Results

This section presents the hardware implementation resultsin terms of timing
and area of our design. In addition to the implementation results, we also
conduct a simulation study (Section 3.5.2) to evaluate the performance of our
switching architecture in terms of average cell delay, throughput and input
buffer requirements. We study the performance of the MCBF algorithm for
the specific design presented above (the FPGA implementation of the 24 ports
switch) as well as for more generic switching systems.

3.5.1 Implementation Results

In this section, we present the implementation results in terms of timing and
area. The design is mapped to a Xilinx Virtex4-FX device and the results are
presented after place and route. The arrival rate of64-Bytes packets at OC-
192 line rate is one packet every 51.2 ns. The Rocket IO transceiver can



50 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

Table 3.2:α-MCBF area results.
Module Slices Instances Total Slices

Input Arbiter 1197 24 28728
Output Arbiter 632 24 15168
Column BOT 28 24 672

Row BOT 28 24 672
BRAMS 19 529 10051

Total Slices 55291

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Figure 3.10: Packets flow.

be configured to de-serialize the input into a64-bit wide bus at 156 MHz
(64x156x106 ≈ 10x109 = 10 Gbps). The clock cycle time is 6.4 ns, hence
each packet can be transferred in8 cycles (6.4x8=51.2 ns). The input arbiter
for bothα-MCBF andβ-MCBF have been designed to work at the same clock
frequency and each has been divided into8 cycles. Hence, while a packet is
being transferred from the input card to the crossbar switch, a new queue is
selected by the input arbiter, as depicted in Figure 3.10. The critical path of
the first design is the Priority Encoder used to forward the selected vector to
the PPE. This module is made of a 24-to-1 24-bit multiplexer,checking24 bits
to decide which vector is selected. For theβ-MCBF design, the function used
to find the index of the minimum dominates the timing of the circuit and was
segmented in5 clock cycles.

The area results of the implementation into a Virtex4-FX140of theα-MCBF
and theβ-MCBF schemes are depicted in Table 3.2 and Table 3.3, respectively.
We can see that the area, in number of slices, required for theβ-MCBF is far
less than that of theα-MCBF implementation. The allocation of the resources,
of both implementations is shown in Table 3.4. While both schemes use the
same interfaces in terms of Rocket IOs and pin count, their main difference
lies in the number of slices required for each of them. Theα-MCBF imple-
mentation requires87.3% of the available slices on the FPGA device, while
the β-MCBF implementation requires only approximately half theslices of



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 51

Table 3.3:β-MCBF area results.
Module Slices Instances Total Slices

Input Arbiter 676 24 16224
Output Arbiter 300 24 7200
Column BOT 51 24 1224

Row BOT 51 24 1224
BRAMS 19 529 10051

Total Slices 35923

Table 3.4: Percentage of resource allocation.
Module Instances Used Available Percentage

BRAMs 529 552 95.83
RocketIO 24 24 100 %

Slices
α-MCBF 55291 63168 87.3 %
β-MCBF 35923 63168 56.8 %

Pins 288 896 32.14 %

the device (56.8%). Please note that the number of crossbar buffers (BRAMs)
is 23× 23 =529 and not24× 24, since the transmission of cells from the same
input and output indexes is not required to go through the crossbar fabric.

3.5.2 Performance Results

This section studies the performance results of the MCBF setof algorithms and
compares it to alternative algorithms. Because MCBF is a weight-based algo-
rithm, it is compared to LQF-RR and OCF-OCF since they also use weight for
their arbitration process. The performance study is structured in two parts. The
first part studies the performance of the MCBF and its two implementations
for the specific design proposed in Section 3.4. The second part presents the
MCBF performance for a generalN ×N CICQ switching system. The perfor-
mance metrics studied here are the average cell latency, throughput and input
queues occupancies. Simulations run for 1 million time slots and statistics are
gathered when fourth of the total simulation length has elapsed. The analysis
is carried under Bernoulli uniform traffic, Bursty uniform traffic, Unbalanced
traffic and Diagonal traffic. More details about the simulation environment and



52 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

24x24 CICQ Switch under diagonal traffic arrivals

0

5

10

15

20

25

30

0.500 0.600 0.700 0.800 0.850 0.900 0.925 0.950 0.975 0.990

Input Load

A
v
e
ra

g
e
 C

e
ll
 D

e
la

y
 

MCBF(1)_S(2)

MCBF(36)_S(1)

LQF-RR(1)_S(2)

LQF-RR(36)_S(1)

OCF-OCF(1)_S(2)

OCF-OCF(36)_S(1)

Figure 3.11: Average delay comparison between using a speedup of 2 and
internal buffer size per cross point of 36 cells, under diagonal traffic.

the traffic scenarios used are defined in Appendix B.2.

MCBF Performance: The designed24 × 24 CICQ Switch

In this section we present the performance of MCBF of our proposed archi-
tecture and specific design of a24 × 24 CICQ Switch. The 18 Kbit Block
RAMs (BRAMs) of the FPGA device have been used as internal crosspoint
buffers meaning that every crosspoint buffer can hold up to36 cells (64 Bytes
each). We also compared MCBF to the two approximations we implemented
(α-MCBF andβ-MCBF).

As depicted in Figure 3.11 and 3.12, the average delay of the algorithms used in
our design is closely comparable to the average delay of these algorithms when
running on the same switch but with just one cell as internal buffer size and a
speed up of two5. Note that MCBF(1)S(2) refers to the CICQ switch running
the MCBF scheduler, using an internal crosspoint buffer size of just 1 cell and
running at a speedup of 2, while MCBF(36)S(1) refers to the same system but
with an internal crosspoint buffer size of 36 cells and a speedup of just 1. This

5A speedup of two means that the crossbar fabric runs twice as fast as the input/output ports.



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 53

24x24 CICQ Switch under unbalanced traffic arrivals

0

10

20

30

40

50

60

0.500 0.600 0.700 0.800 0.850 0.900 0.925 0.950 0.975 0.990

Input Load

A
v
e
ra

g
e
 C

e
ll
 D

e
la

y
MCBF(1)_S(2)

MCBF(36)_S(1)

LQF-RR(1)_S(2)

LQF-RR(36)_S(1)

OCF-OCF(1)_S(2)

OCF-OCF(36)_S(1)

Figure 3.12: Average delay comparison between using a speedup of 2 and
internal buffer size per cross point of 36 cells, under non-uniform unbalanced
traffic, ω = 0.5.

result suggests that we can trade fabric speed for internal crosspoint memory
size. However, as mentioned before, our FPGA device contains the BRAMS
that can be directly used as internal buffers. Therefore, weachieved delay
performance equal to that of a speedup of two. Although it is quite expected
to have such good performance, since the internal buffer size is big enough
making it similar to OQ switch, the idea here is to assess the efficiency of
MCBF as compared to other algorithms. We can see that MCBF hasa shorter
delay than the other two due to its matched pair of input/output scheduling as
well as its balanced use of the internal buffers.

In the remaining figures, we studied the performance of the MCBF and its vari-
ations under different internal buffer sizes. Note that MCBF(i) (respectively
α-MCBF(i) andβ-MCBF(i)) refers to MCBF running on an CICQ switch with
an internal crosspoint buffer size ofi cells where{i = 1, 4, 8, 36}. We
compared theα-MCBF andβ-MCBF variations to the original MCBF scheme
under both the diagonal and unbalanced traffic models. Figure 3.13 depicts the
average cell delay of the MCBF andα-MCBF schemes with different internal
buffer size under the diagonal traffic. When the internal buffer size is equal to
one cell per crosspoint, both algorithms have the same average delay because



54 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Input Load

24x24 CICQ switch under diagonal traffic

(α−)MCBF(1)
MCBF(4)
α−MCBF(4)
MCBF(8)
α−MCBF(8)
MCBF(36)
α−MCBF(36)

Figure 3.13: Delay performance comparison between the MCBFandα-MCBF
schedulers with different internal buffer sizes under Diagonal traffic.

their merit functions are the same under these settings. Thesame performance
is achieved when the XP size is 36 cells, and these settings correspond to our
target system. However, when the internal buffer size is between 1 and 8 cells,
the MCBF delay is better than that ofα-MCBF. The reason for this is because
the merit function used byα-MCBF just approximates the occupancy of the
internal buffers, whereas the original MCBF uses the exact occupancy of the
internal buffers.

As for theβ-MCBF scheme, Figure 3.14, its average delay under the diagonal
traffic model is consistently better than the original MCBF scheme. This is
because of the different priorities policies used by each ofthe schedulers.β-
MCBf breaks ties based on the lowest port first, although thiscauses some sort
of unfairness. However, due to the very unlikely event of having two or more
cells with thesamehighest priority in our system, the highest priority pointer
can indeed be omitted.

The same results are found with the unbalanced traffic pattern. Figure 3.15 and
Figure 3.16 depict the average delay performance ofα-MCBF andβ-MCBF
compared to the original MCBF scheme. Based on these results, and the im-
plementation results, it is clear that theβ-MCBF is the best choice due to its
lower hardware cost as well as its shorter average delay performance. One



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 55

0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Input Load

24x24 CICQ switch under diagonal traffic

MCBF(1)
β−MCBF(1)
MCBF(4)
β−MCBF(4)
MCBF(8)
β−MCBF(8)
MCBF(36)
β−MCBF(36)

Figure 3.14: Delay performance comparison between the MCBFandβ-MCBF
schedulers with different internal buffer sizes under Diagonal traffic.

0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Input Load

24x24 CICQ switch under unbalanced traffic, ω=0.5

(α−)MCBF(1)
MCBF(4)
α−MCBF(4)
MCBF(8)
α−MCBF(8)
MCBF(36)
α−MCBF(36)

Figure 3.15: Delay performance comparison between the MCBFandα-MCBF
schedulers with different internal buffer sizes under Unbalanced traffic.



56 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Input Load

24x24 CICQ switch under unbalanced traffic, ω=0.5

MCBF(1)
β−MCBF(1)
MCBF(4)
β−MCBF(4)
MCBF(8)
β−MCBF(8)
MCBF(36)
β−MCBF(36)

Figure 3.16: Delay performance comparison between the MCBFandβ-MCBF
schedulers with different internal buffer sizes under Unbalanced traffic.

more interesting result is, we found that by allowing enoughbuffering for the
internal cross points, the input line card size is no longer required to be as
large. The experimental results (not shown) suggested thatour CICQ switch
running any of the three algorithms mentioned above and using 36 cells per
cross point do not require a line card buffer of more than 16 KB.

In traditional scheduler design, where the input and outputschedulers are im-
plemented outside the crossbar fabric chip, it is hard to take full advantage of
the internal buffer information. This is because, as the internal buffers size
increases, extra control pins are required for flow control to capture the exact
sate of the internal buffers. Our design, however, overcomes this constraint by
avoiding the requirement for extra pins irrespective of theinternal buffers size.
Because the schedulers are embedded within the buffered crossbar fabric, there
are no restrictions on the internal crosspoint buffer size as the flow control is
performedlocally (on the same chip). This would not have been possible if
the schedulers were taking place outside the crossbar fabric chip. To show the
benefit of our design as compared to traditional implementations, Figure 3.17
shows how the MCBF delay improves dramatically as the internal buffer size
increases. We can see that a small increase in the XP size results is far shorter
average cell delay, as in MCBF(1) and MCBF(8) (for XP size of 1cell and 8
cells respectively).



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 57

0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Input Load

24x24 CICQ switch under diagonal traffic

MCBF(1)
MCBF(4)
MCBF(8)
MCBF(36)

Figure 3.17: Delay performance of the MCBF scheduler with different internal
buffer sizes under Diagonal traffic.

MCBF Performance: N × N CICQ Switch

We analyzed the performance of MCBF with LQF-RR and OCF-OCF for two
switch sizes of16 × 16 and32 × 32 and different internal buffers sizes, re-
spectively. The performance analysis is carried under various traffic models as
defined in Appendix B.2.

Uniform Traffic

Figure 3.18 depicts the average cell delay performance under bursty uniform
traffic with burst lengths (b) equal to 1, 10, 50 and 100 respectively. Un-
der heavy loads, MCBF exhibits the shortest delay of all the three schemes
presented. Note that when the burst length equals 1, the traffic is Bernoulli
uniform. At 99% load and burst length of 10, MCBF has an average queueing
delay less than 80% of that of LQF-RR.

As for theL2 norm vector (see Appendix B.3) representing the occupancies
of the input VOQs, illustrated in Figure 3.19, MCBF has surprisingly the best
performance amongst all despite the fact that it maintains no state information
about the input VOQs, neither does it use their occupancies for scheduling
decisions.



58 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Input Load

32x32 CICQ switch under uniform traffic

MCBF
LQF−RR
OCF−OCF

b= 100

b= 1, Bernoulli

b= 10

b= 50

Figure 3.18: Average cell delay performance under uniform traffic.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

10
4

In
pu

t Q
ue

ue
s 

O
cc

up
an

ic
es

, |
|L

(1
06 )|

|

Input Load

32x32 CICQ switch under uniform traffic

MCBF
LQF−RR
OCF−OCF

b=100

b=50

b=10

b=1, Bernoulli

Figure 3.19: The Input queues occupancies under uniform traffic.



3.5. IMPLEMENTATION AND PERFORMANCERESULTS 59

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

T
hr

ou
gh

pu
t

Unbalanced Coefficient, ω

32x32 CICQ switch under unbalanced traffic

MCBF
LQF−RR
OCF−OCF

Figure 3.20: Stability under unbalanced traffic with internal buffer size of 1
cell.

Non Uniform Traffic

The remainder of the simulation is carried under non uniformtraffic models,
where we wanted to test the stability of MCBF when using internal buffers of
small sizes. Figure 3.20 depicts the stability performanceof MCBF as com-
pared to LQF-RR and OCF respectively. We can see that MCBF no longer
exhibits the best performance. This is due to the small size of the internal
buffers. The MCBF scheduling is based fully on the internal buffers occu-
pancies, and setting the XP size to be 1 cell appears to be not enough for an
efficient MCBF scheduling decision.

It is natural to ask the question as to what is the minimum internal buffer size
for which MCBF would make efficient scheduling choices. For this, we set the
XP size to be 4 and 8 cells respectively and observed the stability of MCBF,
as depicted in Figure 3.21 and Figure 3.22. When XP=4 cells, the MCBF per-
formance increases from 87%, for XP=1, to more than 98%. The MCBF has
a comparable performance to that of LQF-RR. Setting XP=8 results in MCBF
outperforming the other algorithms by having the highest throughput. This
suggests that the optimal internal size for MCBF can be somewhere between
4 and 8 cells per crosspoint. This result is also endorsed from the average
cell delay standpoint. Figure 3.23 depicts the average celldelay of a16 × 16



60 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

0 0.2 0.4 0.6 0.8 1
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

T
hr

ou
gh

pu
t

Unbalanced Coefficient, ω

32x32 CICQ switch under unbalanced traffic

MCBF
LQF−RR
OCF−OCF

Figure 3.21: Stability under unbalanced traffic with internal buffer size of 4
cells.

0 0.2 0.4 0.6 0.8 1
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

T
hr

ou
gh

pu
t

Unbalanced Coefficient, ω

32x32 CICQ switch under unbalanced traffic

MCBF
LQF−RR
OCF−OCF

Figure 3.22: Stability under unbalanced traffic with internal buffer size of 8
cells.



3.6. SUMMARY 61

0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Input Load

16x16 CICQ switch under unbalanced traffic, ω=0.5

MCBF(1)
MCBF(2)
MCBF(4)

Figure 3.23: Average cell latency for different internal buffer settings under
unbalanced traffic,ω = 0.5.

CICQ running MCBF with unbalanced traffic arrivals and an unbalanced co-
efficient ω = 50%. As we can see from the figure, the cell latency improves
substantially when using 4 cells per crosspoint instead of just 1 cell.

3.6 Summary

This chapter proposes a new trend in designing scheduling algorithms. In-
stead of being distributed over the input and output line cards, the new design
embeds all the schedulers within the buffered crossbar fabric chip. Placing
the schedulers inside the crossbar chip has the benefit of optimizing the flow
control mechanism. For a32 × 32 switching system, our embedded CICQ
switching architecture achieves up to 70% saving of chip I/Oflow control pins
when compared to existing CICQ switch architectures. When the schedulers
are embedded within the buffered crossbar fabric chip they have faster and
cheaper access to resources, with the further benefit of saving area on the in-
put and output line cards. We proposed a new class of scheduling algorithms
named the Most Critical Buffer First (MCBF). Unlike alternative algorithms,
the MCBF scheduling decision is fully based on the internal buffers.

To show the feasibility of our design, we proposed two implementations of the



62 CHAPTER 3. THE EMBEDDED CICQ SCHEDULING ARCHITECTURE

MCBF scheduling scheme and showed that each can fit within thecrossbar
fabric chip. We studied the trade offs between both implementations in terms
of hardware cost and performance. Our design shows that a24 × 24 CICQ
switch with embedded schedulers running a 10 Gbps port speedand a clock
cycle time of 6.4 ns can be readily implemented within a single FPGA chip.

The MCBF algorithm has been shown to exhibit high performance and outper-
form state of the art algorithms. Performance results indicate that an internal
buffer size of less than 8 cells is sufficient for MCBF to achieve high perfor-
mance. MCBF is, however, not always stable. If the internal buffer size is just
1 cell, MCBF cannot achieve high throughput under non uniform traffic. In or-
der to provide throughput guarantees, we either need more sophisticated algo-
rithms or we need to use speedup. We derived a theoretical study and showed
that our proposed CICQ switch employing appropriate embedded scheduling
and running a speedup of two can emulate an ideal FIFO output queued switch.
We divert our study to Appendix A.

While it is possible to achieve high performance and even performance guar-
antees with distributed and simple algorithms, the traffic we envisioned is lim-
ited to unicast. It is desirable to achieve the same, or similar, goals for broader
class of traffic such as multicast. In the following chapter,we will address the
problem of scheduling multicast traffic flows.



Chapter 4

Scheduling Multicast Traffic

The tremendous growth of the Internet coupled with newly emerging
applications has created a vital need for multicast traffic support by
backbone routers and switches. In this chapter, we study themulti-

cast scheduling problem in buffered crossbar (CICQ) switches. We propose a
novel CICQ switching architecture with one multicast FIFO queue per input
port. We describe a simple scheduling algorithm for this architecture. Our al-
gorithm, named the Multicast Round-Robin (MXRR) scheduling is shown to
outperform alternative algorithms. We extend our study andaddress the CICQ
switching architecture with multiple input multicast FIFOqueues per input.
We devise a cell placement algorithm, named Modulo, that maps incoming
traffic to the input multicast queues faster and more efficiently than existing
algorithms. We also extend the MXRR scheduling algorithm toschedule cells
in the presence of multiple multicast queues per input port of the switch. Sim-
ulation results show that we can trade the size of the internal buffers for the
number of input multicast queues. Hence, affording a switchdesigner the
choice between the cost and complexity of the switch core andthe scheduler.

4.1 Introduction

Traditionally, network nodes (IP routers, ATM switches, Ethernet switches)
were designed for point-to-point communication (unicast). However, the va-
riety of services on the Internet today has resulted in the emergence of new
applications such as teleconferencing, distance learning, IPTV etc. These new
applications have led to a high demand for high-speed switches/routers capable

63



64 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

of handling point-to-multipoint communication (multicast). Several architec-
tures for efficient multicast support have been investigated and implemented.
These architectures can be classified based on various factors such as queueing
schemes, scheduling algorithms and switch fabric type. Thecrossbar-based
architecture [83] is widely considered the most suitable switching architecture
due to its low cost, scalability and more importantly itsintrinsic multicast ca-
pabilities [84].

Unlike unicast traffic, where a packet (cell) at an input portis destined to only
one output port, a multicast cell queued at an input port can have 1 or more des-
tination output ports known as its fanout set. Although different architectures
have been proposed for multicast traffic handling [85] whichare based on copy
networks, in this chapter we consider the crossbar-based switching architecture
due to its architectural intrinsic multicast capabilities. There has been signif-
icant research work on multicast scheduling in the literature, most of which
is based on a multicast FIFO queue architecture [83]. However, because of a
similar HoL blocking problem as for the unicast traffic, the performance is low.
Avoiding the HoL problem in this case requires a FIFO queue for every fanout
set per input. This implies maintaining up to2N − 1 separate FIFO queues
per input, whereN is the number of ports of the switch. This architecture is
known as the multicast VOQ (MC-VOQ) switching architecture[86]. This ar-
chitecture is clearly impractical for even small sized switches due to the large
number of queues required. As a compromise, researchers have proposed to
use a small number of queues,k (1 ≤ k ≪ 2N − 1) per input [87].

This chapter focusses on the multicast scheduling problem in Combined In-
put and Crossbar Queued (CICQ) switches. We describe a set ofmulticast
scheduling algorithms along with appropriate architectures. In particular, we
propose the following:

• A novel CICQ switching architecture, where there is one multicast FIFO
queue per input port of the CICQ switch. We describe a simple schedul-
ing algorithm for this architecture. Our algorithm, named the Multicast
Round Robin (MXRR) is based on FIFO scheduling as its input schedul-
ing and a Round Robin scheduling for its output scheduling.

• We studied the multicast problem in CICQ switches with multiple mul-
ticast FIFO queues per input port. We devise a cell placementalgorithm,
namedModulo, that efficiently maps incoming traffic to the input multi-
cast queues. We also extend the MXRR scheduling algorithm tosched-
ule cells in the presence of multiple multicast queues per input port of
the switch. We refer to this algorithm as MXRRk.



4.2. THE MULTICASTING PROBLEM 65

The experimental results showed the superiority of the CICQarchitecture com-
pared with its bufferless predecessor and its high capability to support multi-
cast traffic. Although simple in hardware, the MXRR was shownto outper-
form state of the art alternative algorithms [88]. The same results apply for
the MXRR k scheduling algorithm. We compared the Modulo cell assignment
scheme to the Majority scheme [87] and showed that our schemeassigns ar-
riving traffic to the input multicast queues more efficientlyand quickly than
Majority, while requiring low hardware cost. Additionally, the experimental
results showed an interesting trade off between the number of input multicast
queues and the size of the internal buffers. The reduction inthe number of
input queues, at the expense of adding small extra internal buffering, is very
important not only because it results in better performance, but also because
it greatly reduces the complexity of the scheduler in terms of information ex-
change, resulting in faster and more scalable switching. This affords a switch
designer the choice between the cost and complexity of the buffered crossbar
core on one hand, and the complexity and speed of the scheduling algorithm
on the other.

The remainder of this chapter is structured as follows: Section 4.2 introduces
the multicast scheduling problem and presents background knowledge and re-
lated work. We review existing multicast switching architectures and discuss
their scheduling. In Section 4.3, we describe our proposed multicast FIFO
queue CICQ switching architecture. We describe the MXRR algorithm and
present its properties. Section 4.4 describes the CICQ switching architecture
with multiple input multicast queues. We describe a novel, simple and efficient
cell placement algorithm, named Modulo. We also propose an extended ver-
sion of the MXRR algorithm, that we have named MXRRk. In Section 4.5, we
present and analyze the performance of our devised architecture and schedul-
ing algorithms and compare them to existing solutions. Finally, Section 4.6
concludes the chapter.

4.2 The Multicasting Problem

Multicast traffic handling, in its simplest form, is the capability of a router
to transfer the same data (a cell) to multiple output ports atminimum cost
in terms of data processing and time. This is important due tothe growing
volume of multicast traffic on the Internet (audio, video, IPTV, etc.). Consider
the example in Figure 4.1, and assume that the 3 hosts connected to router R2
are receiving the same multimedia content from the server. If the server sends



66 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

`

R2

`

`

`

R1

Host: H1

H2

H3

Server

Figure 4.1: Multicast traffic support in core routers.

the same message to hosts H1, H2, and H3, it either sends the same message
3 times (one per destination) or it can send the message only once over routers
R1 and R2. Upon reaching R2, the message gets split into 3 copies, one copy
per destination host. Clearly, the latter case is a better choice since it optimizes
the network resources and the time taken for the hosts to receive the data. To
achieve this, routers R1 and R2 must be designed to support multicast traffic.

The set of destination output ports of a multicast cell is known as its fanout
set. If we consider anN × M router with multicast capabilities, a multicast
cell arriving at any of theN input ports can have any set of destinations be-
tween 1 andM . In order to avoid the HoL problem, the router must maintain
up to 2M − 1 separate FIFO queues per input in order to cover all possible
fanout set configurations (see Section 4.4.1). This architecture is known as
the multicast VOQ (MC-VOQ) [86]. Because of the huge number of queues
maintained at each input and the need for extensive information exchange in
order to schedule the traffic, this architecture is considered impractical. In-
stead, researchers have implemented just one FIFO queue perinput. While
using just one queue per input is practical, it has poor performance due to the
HoL problem. Another solution was to maintain a small number, k, of queues
per input for multicast traffic. This proved a good compromise to achieve good
performance while maintaining affordable hardware requirements. Becausek
is much smaller than2M − 1, cells with different fanout sets may have to be
queued in the same input queue. This mapping is known as the multicast cell
placement policy and will be discussed in more detail in Section 4.4.1.



4.2. THE MULTICASTING PROBLEM 67

1

2

3

1

2

4

3

4

2

3

4

1 2 3 4

1

2

MQ1

MQ2

Figure 4.2: A2 × 4 FIFO multicast crossbar switch.

4.2.1 The Multicast FIFO Architecture

If we consider that router R2 (in Figure 4.1) uses just one FIFO queue per input
for multicast traffic, its architecture can be described as depicted in Figure 4.2.
By considering that the crossbar fabric operates at the samespeed as the ex-
ternal lines, at each time slot every input can send at most one cell and every
output can receive at most one cell. Because of the intrinsicmulticast capabil-
ities of the crossbar fabric, a cell can be sent to all its destinations at the cost of
one by simply closing those crosspoints corresponding to the cell destination
output ports provided that these outputs are ready (available) to receive cells.

Subject to output availability and the scheduling algorithm used, a cell may
not reach all its destinations, indicated by its fanout set,during one time slot.
There are two known service disciplines used to deal with this situation [83].
The first discipline is known asno fanout splittingand the latter is known
as fanout splitting. When no fanout splitting discipline is used, a cell must
traverse the crossbar fabric only once. Meaning that a cell is switched to its
output destination ports if and only if all its destination outputs are available
at the same time. If one, or more, of the output destinations are busy, the cell
loses contention and all of its copies remain in the input port. If we consider
the no fanout splitting discipline in Figure 4.2, then only one of the two HoL
cells of queuesMQ1 andMQ2 will be switched out butnot both. The reason
for this is that both cells have output ports 1 and 2 in their fanout sets, and
knowing that an output port can receive at most one cell and the no fanout
splitting discipline does not allow partial cell switching, this results in only one
cell of the two being eligible for transfer. The no fanout splitting discipline is



68 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

known to be bandwidth efficient and easy to implement, however it achieves
low throughput because it is not work conserving1. This can be seen from the
example above as either output 3 or output 4 will receive a cell, but not both
depending on which MQ has been selected.

When, however, fanout splitting discipline is used, a cell can bepartially sent
to its destination output ports over many time slots. Copiesof the cell that
are not switched, due to output contention, during one time slot continue com-
peting for transfer during the following time slot(s). The flexibility of allow-
ing partial cell transfer is achieved through a little increase in implementation
complexity, however it provides higher throughput becauseit is work conserv-
ing [89]. In this chapter, we consider fanout splitting. If we consider the exam-
ple of Figure 4.2 again and assuming a fanout splitting discipline is used, then
both the HoL cells ofMQ1 andMQ2 can send copies to a subset of their output
ports. Output 3 and 4 are receiving one cell each and therefore both copies
destined to them, in the input queues, are transferred with no contention. Ad-
ditionally, both HoL cells ofMQ1 andMQ2 have cells destined to outputs 1
and 2. However, we know that each output can receive at most one cell at a
time. Therefore, at the end of the time slot, we will have remaining cells for
output ports 1 and 2. These remaining cells are referred to astheresidue.

Depending on the policy used, the residue can either beconcentratedon the
input ports or it can bedistributedover the input ports. As defined in [83], the
residue is the set of cells remaining at the HoL of the input queues after losing
contention for the output ports at the end of each time slot. In the example of
Figure 4.2, the residue is{1, 2}. A concentrating policy is one that leaves the
residue on the minimum number of input ports. If we consider aconcentrating
policy in Figure 4.2, the residue will be left (concentrated) on eitherMQ1 or
on MQ2 but not on both. On the other hand, a distributing policy is one that
leaves the residue on the maximum number of input ports. Using a distributing
policy in Figure 4.2 would result in the residue being distributed overMQ1 and
MQ2 but not on one queue only.

4.2.2 Algorithms For The Multicast FIFO Architecture

Several algorithms have been proposed for this architecture, all of which were
designed for the bufferless crossbar fabric switches.

• The Concentrate Algorithm:As the name indicates, the concentrate al-
1A work conserving policy ensures that an output port is neveridle so long as there are cells

destined to it in the input ports



4.2. THE MULTICASTING PROBLEM 69

gorithm [83] always concentrates the residue onto as few inputs as pos-
sible. The purpose of this algorithm is to provide a basis forevaluating
the performances of other algorithms, since it achieves high throughput
for the FIFO queue structure. However, this algorithm does not meet the
fairness requirement due to the starvation problem it creates. The Con-
centrate algorithm is not considered a practical algorithm. It requires
up toM iterations per cell time to complete, which makes it difficult to
implement at high speed.

• The mRRM Algorithm:The Multicast Round-Robin Matching (mRRM)
was proposed by [88]. A single round-robin pointer is collectively main-
tained by all of the outputs. Each output selects the next input that re-
quests it at, or after, the pointer. At the end of the packet time, the pointer
is moved to one position beyond the first input that is served.Designed
to be simple to implement in hardware, mRRM tends to concentrate the
selection onto a small number of inputs, yet maintains fairness.

• The TATRA Algorithm:The general multicast scheduling problem can
be mapped onto a variation of the popular block-packing gameTetris.
TATRA is based on the Tetris model and was first introduced in [88].
TATRA has the properties of guaranteeing at least one input packet is
discharged within each packet time, and also concentrates the residue.
Designed to approximate the concentrate algorithm with less complex-
ity, unfortunately TATRA is a complex algorithm since it cannot be par-
allelized. Moreover, TATRA treats all inputs uniformly which is of no
value when the inputs are non-uniformly loaded or when some inputs
request a higher priority.

4.2.3 The Multicast k FIFO Queues Architecture

Due to the impracticality of the MC-VOQ switching architecture [86] and to
the low performance of the multicast FIFO architecture, a good compromise is
to use the multicast k FIFO queues architecture. It is a queueing architecture
with a small number of input multicast FIFO queues per input (1 ≤ k ≪ 2M −
1). This queueing architecture has been studied in the context of bufferless
crossbar switches [90] [91] as well as CICQ switches [92]. Figure 4.5 depicts
the multicast k FIFO architecture for anN × M buffered crossbar switch.
Recent work has showed that, similarly to IQ architectures,CICQ switches
with arbitrarily large number of ports may also suffer significant throughput
degradation for multicast traffic [92].



70 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

Because the number of multicast queues maintained at each input is signifi-
cantly smaller than the cardinality of the set of all fanout sets, incoming cells
must be inserted in appropriate queues, MQs, by following certain criteria [87].
This is known as the cell placement strategy and will be discussed in Sec-
tion 4.4.1.

4.2.4 Algorithms For The Multicast k FIFO Queues Architecture

The low performance and high complexity of the multicast FIFO architecture
have stressed the need for the multicast k FIFO queues architecture and many
scheduling algorithms have been proposed. These algorithms have been de-
signed for the bufferless as well as for the buffered crossbar architectures.

• Bufferless Crossbar Based Algorithms: Algorithms for this architecture
include the random scheduler (RS), the Greedy Scheduler (GS) and the
Greedy Min-Split Scheduler (GMSS) [90]. The first algorithm(RS)
makes decisions randomly among the input and output ports. In addition
to its costly hardware requirement, this scheme has poor performance as
it leaves idle outputs due to the contention effect. The second algo-
rithm, GS, tries to overcome the shortcoming of RS. It assigns weights
to the queues such as queue length and then makes its selection based on
weight ordering. The third algorithm is also a weighted algorithm and
tries to combine the advantages of the previous. Because of the required
sorting process, the implementation of this algorithm is not trivial and
prevents it from running at high rates.

• Buffered Crossbar Based Algorithms:A group of scheduling algorithms
has recently been proposed for the multicast k FIFO queues architecture
designed for the CICQ switching architecture [93]. These algorithms
were proposed along with a class of cell placement schemes. The in-
put arbitration was based on some policies such as giving preference to
HoL cells that would result in the minimum left residue. Another input
scheduling algorithm was based on selecting the cell with the maximum
number of reachable destinations first. A third policy is to give pref-
erence to cells with the maximum service ratio, defined as thenumber
of reachable destination outputs divided by the fanout number of a cell.
The output arbitration was based on Round Robin (RR) and Longest
Queue First (LQF).



4.3. THE MULTICAST CICQ SWITCHING ARCHITECTURE 71

. . .  

. . .  . . .  

1 M

. . .  

Output

Arbiter

Output

Arbiter

Flow Control
Internal Crosspoint 

Buffer, XP

N

1
Input Arbiter

Multicast FIFO

N

N
Input Arbiter

Multicast FIFO

Figure 4.3:N × M multicast CICQ Switch.

As a summary of the related work, we argue that each of the above presented
schemes tries to address some issues but fails to meet other vital requirements.
So far, none of these algorithms have proven simultaneouslyefficient in terms
of high throughput, practical in terms of implementation complexity or fair
with respect to the input FIFO queues. In the following section, we propose
our new architecture along with a scheduling scheme that meets all these re-
quirements.

4.3 The Multicast CICQ Switching Architecture

Our choice of the multicast CICQ crossbar switch architecture is motivated by
the fact that this architecture has key advantages in simplifying the schedul-
ing process. The presence of internal buffers drastically improves the overall
performance of the switch due to the advantages it offers. The adoption of
internal buffers makes the scheduling totally distributed, hence reducing the
arbitration complexity to linear. It is this autonomy and the absence of coor-
dination between the input (output) scheduling algorithmsthat makes CICQ
switches appealing and desirable for multicast traffic support. Additionally,
these internal buffers reduce (or avoid) the output contention. Meaning, they
allow the inputs to send cells to an output irrespective of simultaneous cell
transfer to the same output by other inputs. If an output is not ready to receive
a cell from an input, the input can still send it to the internal buffer, provided
that this internal buffer can accommodate that cell.



72 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

1
2
3
4

2

3
4

1

3
4

2

3
4

1

2

MQ1

MQ2

1 2 3 4

1

2
3

1

3
4

1

3

2
3

Figure 4.4: A2 × 4 multicast CICQ Switch.

4.3.1 Switch Model

We consider our proposed switching architecture as depicted in Figure 4.3.
The switch is assumed to operate on fixed-size packets (cells). There areN
input cards, each one contains a FIFO multicast queue. The internal fabric
consists of NM buffered crosspoints (XP). When an arriving cell, to an input
port i, ∀ 1 ≤ i ≤ N , has a fanout vector containing the outputj, ∀ 1 ≤ j ≤ M ,
it passes through the crosspointXPi,j, before continuing to the output buffer.

As with unicast scheduling, a multicast scheduling cycle consists of the follow-
ing three steps: input scheduling, output scheduling and delivery notification.
During the input scheduling phase, each inputi, in an independent and paral-
lel way, sends the HoL cell of its multicast FIFO queue to the internal buffer
corresponding to its fanout set. Likewise, each outputj selects, independently
and in parallel, a non empty crosspoint buffer,XPi,j , and sends its cell to the
output queue. Then, the flow control is performed between theinternal buffers
and the input queues, to inform the inputs about the internalbuffers status.

As depicted in Figure 4.3, the input scheduler is not embedded as proposed
in Chapter 3. Embedding an input multicast scheduler withinthe buffered
crossbar chip would requireN flow control signals, from the input line card
to the crossbar chip, to carry the fanout set of every new cell. Additionally,
N + logk flow control signals are required, from the crossbar chip to the input
line card, to carry the scheduler decision, whereN denotes the set of reachable
internal buffers that the cell can be sent to and logk represents the index of the
selected input multicast queue2. As a result, it is better to implement the input

2In the case of Figure 4.3,k equals one. However,k can be greater than one for other
architectures, such as the one presented in Figure 4.5



4.3. THE MULTICAST CICQ SWITCHING ARCHITECTURE 73

scheduler at the input line card since onlyN flow control signals are required.

4.3.2 The Multicast Crosspoint Round Robin Algorithm: MXRR

The description of each scheduling phase of the Multicast cross-point Round
Robin algorithm, MXRR, is as follows:

Input Scheduling:

• For each input,i, do

– Send the FIFO HoL multicast cell to the set of internal buffers
corresponding to its fanout vector.

– If one or more internal buffers are not free, the cell remainsat the
HoL of that input and waits for the next input scheduling phase to
send to its remaining internal buffers.

Output Scheduling:

• Initialization: All the output pointers are, arbitrarily, set to the same
initial position and incremented, in each time slot, by onemod (N).

• For each output,j, do

– Starting from its pointer index, select the first non empty crosspoint
buffer, XP, and send its queued cell to the output buffer.

The MXRR algorithm exhibits good properties such as fairness, non starvation,
speed and simplicity in design. The output pointers settingis of key importance
due to their synchronous update mechanism. To better see this, consider the
2 × 4 multicast CICQ switch depicted in Figure 4.4. Let us assume that the
output pointers are all pointing to input 1 and all the internal buffers are empty.
During the input scheduling phase, both HoL cells ofMQ1 andMQ2 will be
completely transferred to the internal buffers. During theoutput scheduling
phase, since the output pointers have index 1 each, every output j will select
the internal bufferXP1,j , ∀ 1 ≤ j ≤ 4. During the current time slot, the
HoL cell of MQ1 is completely served and its copies are all transferred to
their destination output ports. At the beginning of the second time slot,XP2,2,
XP2,3, and XP2,4 are occupied. Therefore, the second cell ofMQ2 (which
becomes the HoL cell) cannot send its copies to all their destination outputs



74 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

{1, 3, 4}. It can only send toXP2,1 which leaves a residue of{3, 4}. MQ1,
however, can send its HoL cell completely to the internal buffers. During the
output scheduling phase, since the output pointers indexesare incremented to
2, each outputj will select the internal bufferXP2,j, ∀ 1 ≤ j ≤ 4. This means
that, during this time slot, the HoL cell ofMQ2 is completely served and the
second cell is also partially served. From this example we draw the following
properties and advantages of the MXRR scheduling scheme:

• The MXRR scheme guarantees the total service of at least onepacket
each time due to the output pointers setting (which point to the same
internal buffer and advance synchronously). Moreover, thetime a packet
waits at the HoL is bounded by number of input ports,N .

• Fair and starvation free. Since the output pointers move artificially and
in a synchronous fashion irrespective of the chosen packet,the starva-
tion problem will never occur. The chance of service for any two cells
from two different input ports is exactly the same due to the round robin
pointer movement.

• Simple in hardware implementation. Each input independently carries
out FIFO arbitration. The outputs, on the other hand, work ina to-
tally distributed and parallel manner. No computation and comparison
of weights is needed to make an arbitration decision. Each output arbiter
just performs simple static round-robin arbitration.

• The MXRR achieves higher throughput and a lower packet latency than
all existing bufferless multicast FIFO algorithms. We willexamine this
property through performance evaluation in Section 4.5.

4.4 The MulticastK FIFOs CICQ Switch Architecture

Although the Multicast FIFO architecture is simple and practical, it suffers
poor performance due to the HoL problem. In order to completely eliminate
the HoL blocking problem, multicast cells having the same fanout sets must
be placed in the sameseparatemulticast queue (MQ), which requires as many
MQs as the multicast VOQ (MC-VOQ) architecture would and this is clearly
infeasible even for a small switching system. An attractivealternative is to
use a small number,k, of MQs per input to accommodate the incoming mul-
ticast cells. This is a good compromise to achieve good performance while



4.4. THE MULTICAST K FIFOS CICQ SWITCH ARCHITECTURE 75

1 ... M

N

1

MQ N,1

MQ N,K

...

2

3

4

1

2

4

2

4

3

4

MQ 1,1

MQ 1,K

...

1

3

1

2

3

2

4

2

3

4

...

...

Figure 4.5: AnN × M multicast k FIFO queues CICQ switch.

maintaining affordable hardware requirements. This is themodel we adopt, as
depicted in Figure 4.5. Each input maintains a small number,k, of multicast
FIFO queues per input, where{k | 1 ≤ k ≪ 2M −1}. At each input, multicast
queues are denoted byMQi,j where{(i, j) | 1 ≤ i ≤ N ; 1 ≤ j ≤ k}. An
input multicast queue, MQ, is considered eligible (denotedEMQ) if it is not
empty and at least one of its destination output ports corresponds to a free XP.
Becausek is much smaller than2M − 1, cells with different fanout sets may
have to be queued in the same input queue. This mapping is known as the
multicast cell assignment policy, which we describe next.

4.4.1 Multicast Cell Assignment

Before going into detail, we first explain why multicast cells require a cell
assignment scheme (policy) in order to place incoming multicast cells into
specific multicast queues (MQ) while waiting their turn to bescheduled. In
general, the cardinality of the fanout set,Φ, of a multicast cell can vary between
|Φmin| and|Φmax|. Since a multicast cell can have a minimum of 1 destination
output port and a maximum ofN destination output ports, we can set|Φmin| =
1 and|Φmax| = N . Therefore, the cardinality of the set of all fanout sets,CΦ,
can be calculated as follows:

CΦ = |℘(Φ)| =

N
∑

Φi=1

(

N

Φi

)

= 2N − 1, Φmin ≤ Φi ≤ Φmax (4.1)



76 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

In order to completely avoid the HoL blocking problem, multicast cells hav-
ing the same fanout sets must be placed in the sameseparatemulticast queue
(MQ), which requires as many MQs asCΦ. Maintaining such a big number
of MQs is however impractical. The alternative is to use a small number,k,
of MQs per input to accommodate the incoming multicast cells. Becausek
is smaller thanCΦ, cells with different fanout sets have to be queued in the
same MQ and every MQ receives cells with at most⌈CΦ

k ⌉ different fanout sets.
Thus, acell placement schemeis required to map incoming multicast cells into
thek multicast queues.

Since, in our model (Figure 4.5), the number of MQs,k, maintained at each
input is much smaller than the number of all fanout configurations,CΦ, a cell
assignment policy is required in order to map incoming cellsto the MQs. This
has a significant effect on the scheduling performance. Previous work [87]
has outlined some criteria in designing such a policy:(i) The heads of the
MQs should bediversein order to span a large number of the outputs. This
would ensure more scheduling opportunities and work conservation. (ii) Cells
with the same, or similar, fanout sets should be stored in thesame queue, to
reduce HoL blocking and prevent the out of sequence deliveryproblem. Many
cell assignment schemes existed, such as Majority [87], Minimum Distance
Queue (MDQ) and Load Balanced Queueing (LBQ) [90]. The MDQ scheme
assigns a representative fanout set per MQ. Each incoming packet is inserted in
the MQ with the representative having the minimum hamming distance from
the packet’s fanout set. The LBQ scheme assigns packets to MQbased on
either sorting the packets fanout sets or fanout values. Theprevious two cell
assignment algorithms are inspired by the Majority algorithm.

In the majority scheme, each MQ is associated a bit mask that corresponds to
a subset of outputs. The mask is created by forming a balancedpartition of the
set of outputs whose cardinality is equal to the number of MQs. For example,
if an 8 × 8 switch has 2 MQs per input, the partition will result in everyMQ’s
mask equalling to8

2
= 4. The drawback of this partition is that the number of

bits set for each mask decreases with increasing numbers of MQs. As a result,
this assignment does not adequately capture the multicast destination sets of
packets. The solution to the bit mask partition was to allow the bit masks to
overlap. In addition to the original balanced partition, the remaining bits of
every mask are set at random. Because masks overlap, Majority has to deal
with cases when a packet has the maximum match with more than one mask.
Majority resolves this by associating multiple sets of masks for each MQ and
resolves ties with multiple levels of comparisons, with thefinal comparison
breaking ties statically.



4.4. THE MULTICAST K FIFOS CICQ SWITCH ARCHITECTURE 77

Unfortunately, in addition to its complex and time consuming procedure, Ma-
jority suffers a major problem by causing MQs to be unbalanced in the number
of packets they cater for, causing part of these MQs to becomeunder utilized.
This problem arises from the statical tie breaking mechanism of Majority. Be-
cause ties are broken statically, packets with small numbers of fanout sets will
always be inserted in the same MQ. This results in the same MQsreceiving
more packets than others and severely limits the performance of Majority, and
defeats the purpose and advantage of increasing the number of MQs per input
port (Figure 4.11 and Figure 4.12 illustrates this effect).

4.4.2 The Modulo Cell Assignment Algorithm

Our queueing structure implements a simple and efficient cell assignment
scheme that does not require any sorting. Our cell assignment scheme, named
Modulo, works as follows:

Modulo:

• For each input,i, do

• If an incoming multicast cell,c, has a fanout setΦc

– Insertc in MQi,j , wherej = |Φc| mod(k).

In addition to its simplicity, especially if the number of MQs,k, is a power of
two, Modulo meets all previously mentioned criteria for efficient cell assign-
ment. To better understand this, let us consider an example.Assume we have
an8 × 8 switch and 2 multicast queues per input (k = 2). At each input,i,
Modulo places cells with even fanout sets inMQi,0 and those cells with odd
fanout sets inMQi,1. This way, the heads of the MQs can span large numbers
of destinations3 (i.e.,the fanout set cardinality of the HoL cell ofMQi,0 = 6
and that of the HoL cell ofMQi,1 = 3). Moreover, cells with the same fanout
sets are ensured to be queued in the same MQ, avoiding the out of sequence
problem. Additionally, our scheme exhibits one further important property as
a fair scheme, in the sense that it gives equal opportunitiesto the cells to ad-
vance to the head of the queues irrespective of their number of destinations.
This is important as there are scheduling algorithms that use the fanout set as

3This is assuming uniform traffic. When the traffic is non-uniform or bursty, the HoL fanout
sets may overlap to a large degree.



78 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

the weight for priority scheduling and, unless the cells fanout sets per MQ are
diverse, MQ starvation (unfairness) can occur.

MQ0

MQk-1

Cell Data

b = Least Log2 (k)

bits of c

8 ...

8

8

b

Figure 4.6: The Modulo cell placement scheme.

Table 4.1: The Modulo scheme implementation results for differentk.
Number (k) Area Delay

of MQs Slices Equivalent Gate Count (ns)
k = 2 4 248 1.5
k = 3 13 432 1.9
k = 4 22 576 1.9
k = 8 39 1032 2.4

Finally, theModulo scheme has simple hardware requirement allowing it to
place cells in the MQ at very high speed. Assuming there arek MQs per
input and that each incoming cell has a fanout set value|Φc|, our scheme can
be implemented as DeMux with its input consisting of the celldata, its select
bit(s) consist(s) of the least log(k) bits of |Φc| and its outputs consist ofMQj

where{j | 0 ≤ j < k} as depicted in Figure 4.6. We implemented theModulo
scheme in reconfigurable logic, using the Xilinx Virtex IV [76] as the target
device and the Xilinx ISE platform 7.1 design flow platform. The design was
simulated for different numbers of MQs (k = 2, 3, 4, and 8 respectively) and
the post place and route results in terms of area and timing are depicted in
Table 4.1. We can see from the table that the delay of the scheme is very
small irrespective of the number of MQs used per input. Whenk = 2, the
Moduloscheme checks the least significant bit of the cell’s fanout value; if it
is 0 the cell will be placed inMQ0 else it will be placed inMQ1. Whenk = 8,
however, we can see that the delay is higher. It is of note thatwhen settingk
= 3 or 4 results in the same delay. This is because the select bits b are equal to



4.4. THE MULTICAST K FIFOS CICQ SWITCH ARCHITECTURE 79

2 resulting in a 2-to-4 DeMux whetherk is equal to 3 or 4. This results in the
same delay and different area due to the partial use of the DeMux. As a result,
it is better to choose a number of MQ,k, that is a power of 2 as it results not
only in a full DeMux but also in balanced MQs in the number of fanout sets
per queue. This is because, generally, the switch sizes are apower of 2 and
using a small numberk of MQs per input (that is also a power of 2) will result
in balanced queues in the number of fanout sets that they can accommodate.
Next, we need to devise the appropriate algorithm to schedule the transfer of
cells from the input MQs to the output ports. The next sectiondescribes our
proposed scheduling algorithm.

4.4.3 The Multicastk FIFOs Algorithm: MXRR k

The MXRR k algorithm is based on a static round robin selection. To avoid
pointers synchronization, MXRRk uses a fully unsynchronized pointer updat-
ing scheme similar to [54]. The description of each scheduling phase of the
Multicast cross-point Round Robin algorithm, MXRRk, is as follows:

Input Scheduling:
All input pointers are initialized to arbitrarily different positions.

• For each input,i, do

– Starting from the pointer location,j, select the first eligible queue
EMQi,j and send its HoL cell copies4 to the free internal buffers
(XPi,j).

– Move the pointer to position(j + 1) (mod N).

Output Scheduling:
All the output pointers are, artificially, set to the same initial position and in-
cremented, each time slot, by onemod (N).

• For each output,j, do

– Starting from the pointer position, select the first non empty cross
point buffer and send its queued cell to the output buffer.

4Only copies destined toc outputs are sent, wherec ∈ {1, ..., N} andXPi,c is not full.
Other copies will have to compete in later time slots.



80 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

The MXRR k output scheduling remains the same as that of MXRR because
every cell is treated the same irrespective of whether it is coming from an
input FIFO or an input multicast queue, MQ. Additionally, maintaining the
same output scheduling retains the same property of ensuring the complete
service of at least one cell per time slot. MXRRk differs from MXRR in its
input scheduling. First, it uses a round robin priority pointer in servicing the
input multicast queues, MQ. Second, the delay a cell waits atthe HoL under
MXRR k is bound bykN time slots, whereN is the number of input ports
of the switch andk is the number of input multicast queues per input. The
queueing delay inside the crossbar fabric is the same as thatof MXRR (N
time slots). So, the delay experienced by a HoL cell inside the switch under
MXRR k is bound byN(k + 1) time slots. The round robin mechanism of
MXRR k allows it to be fair and starvation free while kept simple inhardware.

4.5 Performance Results

This section analyzes the performance of different CICQ based queueing and
switching architectures and their multicast scheduling algorithms. The perfor-
mance results presented in this section are obtained for twodifferent switch
sizes of8 × 8 and16 × 16. The mean fanout size used throughout the simu-
lation is equal toN

2
, whereN is the number of the output ports of the switch.

Unless otherwise specified, the default internal buffer size is equal to 1 cell
per crosspoint. We conducted the performance analysis under two input traffic
scenarios: Bernoulli uniform and Bursty uniform. Please refer to Appendix B
for finer details about the simulation environment and traffic scenarios.

The experimental results are structured in three parts. In the first part, we
studied the performance of the MXRR algorithm for the multicast FIFO queues
CICQ switching architecture. We compared the TATRA algorithm [88] and a
Multicast SLIP-like (that we denote McastSLIP) for the bufferless crossbar
switch and the MXRR algorithm for the CICQ architecture. We chose TATRA
because it is considered to be one of the most practical algorithms that achieve
high performance and multicast SLIP because it resembles MXRR. The second
part of the experiments targets the multicast k FIFO queues CICQ switching
architecture. We started by assessing the performance of our devised Modulo
cell assignment scheme. We compared Modulo with the Majority scheme.
Then, we compared the performance of MXRRk with that of the McastSLIP
algorithm. The latter part studies the tradeoff between thenumber of input
multicast queues and the size of the internal crosspoint buffers.



4.5. PERFORMANCERESULTS 81

0.7 0.75 0.8 0.85 0.9 0.95
10

0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

8x8 Switch under Bernoulli uniform traffic

MXRR
TATRA
Mcast_SLIP

Figure 4.7: Average cell delay of8× 8 multicast FIFO switch under Bernoulli
uniform traffic.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

Bursty uniform traffic

MXRR
TATRA
Mcast_SLIP

  16x16 Switch

  8x8 Switch

Figure 4.8: Average cell delay of a multicast FIFO switch under Bursty uni-
form traffic.

4.5.1 Performance of the Multicast FIFO Architecture

Figure 4.7 depicts the average delay performance of the TATRA and
Mcast SLIP for the an8×8 bufferless crossbar switch compared to the MXRR



82 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

0.75 0.8 0.85 0.9 0.95
10

0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MXRR
TATRA
Mcast_SLIP

Figure 4.9: Average cell delay of16 × 16 multicast FIFO switch under
Bernoulli uniform traffic.

algorithm for an8 × 8 buffered crossbar switch. As the figure shows, MXRR
has better delay performance than the other two. This resultremains the same
uniform bursty arrival as well. This confirms the superior performance of the
CICQ, even with simple scheduling, as compared to the IQ architecture which
employs a sophisticated algorithm, such as TATRA. Figure 4.8 illustrates the
average cell delay under the same settings as above but with uniform bursty
arrivals, with a burst length of 16 cells.

In order to better analyze the behavior of each algorithm, wetested the algo-
rithms under the same settings as above using a larger sized switch. This is
important because, as the switch size increases, the fanoutsets of the cells also
increase making it harder for the algorithm to schedule the traffic due to in-
creased contention. To assess this behavior, Figure 4.9 (and part of Figure 4.8)
depicts the average cell delay of each of the three algorithms for a16 × 16
switch. Again, the MXRR algorithm keeps the shortest cell delay amongst
the three algorithms both under Bernoulli uniform and bursty uniform arrivals.
Average cell delay is expected to improve if we increase the internal buffer
size. This is confirmed in Figure 4.10, where internal buffers sizes of 2, 4
and 8 cells are used for MXRR. This suggests that bigger internal buffer sizes
can help in absorbing the multicast cell fanout problem and therefore giving
scheduling opportunities to more cells in shorter durations.



4.5. PERFORMANCERESULTS 83

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 CICQ switch under Bernoulli uniform traffic

MXRR(1)
MXRR(4)
MXRR(8)

Figure 4.10: Average cell delay of MXRR with different internal buffer set-
tings.

1 2 3 4 5 6 7 8
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
hr

ou
gh

pu
t

Number of Multicast Queues, k, per Input

Bernoulli uniform traffic

Majority (8x8)
Majority (16x16)
Modulo (8x8)
Modulo (16x16)

Figure 4.11: Throughput comparison between Modulo and Majority cell place-
ment schemes under Bernoulli uniform traffic.

4.5.2 Performance of the Multicastk FIFOs Architecture

This section starts by assessing the performance of the Modulo cell assignment
algorithm. We compared the Modulo and Majority cell placement schemes
in terms of throughput and input queues occupancies for two switch sizes of



84 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

1 2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

In
pu

t Q
ue

ue
s 

O
cc

up
an

ic
es

, |
|L

(1
06 )|

|

Number of Multicast Queues, k, per Input

Bernoulli uniform traffic

Majority (8x8)
Majority (16x16)
Modulo (8x8)
Modulo (16x16)

Figure 4.12: Input queues occupancies of Modulo and Majority under
Bernoulli uniform traffic.

8 × 8 and 16 × 16 both employing the MXRRk algorithm under uniform
traffic. We varied the number of MQs per input and observed themaximum
throughput achieved by each of the cell placement algorithms. We can see from
Figure 4.11 that the throughput of Modulo increases proportionally with the
number of MQs. However, Majority tends to have even lower throughput with
increasing number of MQs. This is attributed to the unbalanced MQs effect
by its assignment policy and its statical tie breaking. Figure 4.12 depicts the
MQs occupancies for each algorithm just before saturation (at 95% input load).
Again, Modulo outperforms Majority irrespective of the switch size or number
of MQs. Since the input traffic is uniform, by applying Little’s Law [94], we
can directly deduct the average cell delay under each schemefrom Figure 4.12.
Since the input load is 95%, therefore the values of Figure 4.12 are similar to
the average cell delay. This delay does not include the internal buffers delay,
which is bound by the number of input portsN , as discussed in Section 4.4.3

In the previous experiments, we tested all three algorithmsfor the multicast
FIFO queueing architecture. In the following simulations,we compare the
delay performance of the McastSLIP bufferless algorithm with the MXRR al-
gorithm because of their similarities, as non weighted algorithms. Figure 4.13
depicts the average delay performance for each of McastSLIP and MXRR for
the multicast k FIFO queues architecture. We used 2 and 4 MQs per input
for a16 × 16 switch under Bernoulli unform traffic arrivals. We can see from
Figure 4.13 that MXRR outperforms the bufferless McastSLIP algorithm irre-



4.5. PERFORMANCERESULTS 85

0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MXRR_2
Mcast_SLIP_2
MXRR_4
Mcast_SLIP_4

Figure 4.13: Average cell delay of16 × 16 multicast k FIFO switch with dif-
ferent numbers of input queues, k = 2, 4.

spective of the number of MQs used per input. MXRR2 still achieves higher
performance while using half the number of MQs that McastSLIP 4 does.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

MXRR_k under Bernoulli uniform traffic

8×8, MQ(1)−XP(4)
8×8, MQ(4)−XP(1)
16×16, MQ(1)−XP(4)
16×16, MQ(4)−XP(1)

Figure 4.14: Average cell delay of MXRRk with different MQ numbers and
XP sizes.

In the remainder of the simulations, we study the effect of varying the size of
the internal buffers and the number of multicast queues,k, per input port of the



86 CHAPTER 4. SCHEDULING MULTICAST TRAFFIC

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
10

0

10
1

10
2

10
3

10
4

In
pu

t Q
ue

ue
s 

O
cc

up
an

ci
es

, |
|L

(1
06 )|

|

Normalized Output Load

MXRR_k under Bernoulli uniform traffic

8×8:MQ(1)−XP(4)
8×8:MQ(4)−XP(1)
16×16:MQ(1)−XP(4)
16×16:MQ(4)−XP(1)

Figure 4.15: Input queues occupancies with different MQ numbers and XP
sizes.

switch. Figure 4.14 depicts the average cell delay of MXRRk using different
numbers of MQs per input, different internal buffers sizes and different switch
sizes. For example,16 × 16-MQ(1)-XP(4) refers to the average cell delay of
MXRR k when using a16×16 CICQ switch, 1 MQ per input port and internal
buffer size, XP, of 4 cells per crosspoint. We can see from thefigure that
MXRR k achieves a slightly shorter cell delay with just 1 MQ and an XP size
of 4 cells than when using 4 MQs per input and just 1 cell per XP.In addition to
confirming the importance of the internal buffers in improving the switching
delay and reducing the HoL blocking, this result has a major implication on
the design of the MXRRk input scheduler. Instead of using MXRRk that
requires a priority encoder for the round robin selection among thek MQs per
input port, a switch designer has the option to just use the MXRR algorithm
(consequently the FIFO CICQ architecture) withk cells per XP.

Figure 4.15 depicts the occupancy of the MQs using theL2 norm vector as
defined in Appendix B.3. In the case of multicast CICQ architecture, theL2

norm vector, at time slotn, is calculated as follows:

‖L(n)‖ =

√

√

√

√

n
∑

i=1

k
∑

j=1

(

MQi,j(n)
)2

We can see from the figure that, at 99% input load and with both switch sizes,
theL2 norm of MQ(1)-XP(4) is 1.5 bigger than that of MQ(4)-XP(1). How-



4.6. SUMMARY 87

ever, the total number of cells per input port is smaller withMQ(1)-XP(4) than
with MQ(4)-XP(1). To see this, leta be theL2 norm of MQ(1)-XP(4) andb
equals to theL2 norm of MQ(4)-XP(1). Then, we have:

√
a2 = 1.5

√
4b2 hence,a = 3b

Meaning, at 99% input load, the total number of cells –using just 1 FIFO queue
per input port and an XP size of 4 cells– is equal to 75% of the total number
of cells when we use 4 FIFO queues per input port and XP size of 1cell. This
result is conform to the lower average cell delay (Figure 4.14) of MXRR with
MQ(1)-XP(4) instead of MQ(4)-XP(1).

4.6 Summary

This chapter studies the multicast traffic scheduling problem in CICQ switches.
We began by surveying existing multicast switching architectures with their
scheduling algorithms and discussing their shortcomings.We proposed a
CICQ switch architecture based on one multicast FIFO per input port. We
devised a simple round robin algorithm, named MXRR, for thisarchitecture
and showed its better performance by comparison to existingalgorithms.

We further studied the CICQ switching architecture, where there are multiple
multicast queues per input port. We proposed a cell assignment algorithm
capable of assigning incoming traffic to the input queues more efficiently than
existing state of the art algorithms. We also extended the MXRR algorithm
to schedule cells in the presence of multiple queues per input. Our devised
algorithm, MXRRk, outperforms alternative algorithms under various traffic
scenarios. The experimental results showed an equivalencebetween using only
one multicast FIFO queue per input or multiple queues per input, subject to a
trade off in the size of the internal buffers. Hence, giving the option of choosing
between the complexity and speed of the scheduling algorithm on one hand,
and the cost of the buffered crossbar fabric on the other.

This chapter and the previous chapter each addresses eitherpurely unicast traf-
fic scheduling or purely multicast scheduling. However, real Internet traffic is
a mixture of both traffic types. In the next chapter, we study the scheduling of
integrated unicast and multicast traffic flows in one unified CICQ switch.



Chapter 5

Integrated Unicast and
Multicast Scheduling

I nternet traffic is a mixture of unicast and multicast flows. In the previous
two chapters, we studied the scheduling problem in either a pure unicast
context or a pure multicast context. In this chapter, we propose a novel

switching architecture that combines both architectures studied in Chapter 3
and Chapter 4. Our proposed buffered crossbar (CICQ) switching architecture
is capable of supporting both unicast and multicast traffic flows concurrently.
We propose an integrated Round Robin based scheduler that efficiently ser-
vices both unicast and multicast traffic simultaneously. Our algorithm, named
Multicast and Unicast Round robin Scheduling (MURS), has been shown to
outperform all existing schemes under various traffic patterns. We further pro-
pose a hardware implementation of our algorithm for a16 × 16 CICQ switch.
The implementation suggests that MURS can sustain a 20 Gbps line rate and a
clock cycle time of 2.8 ns, reaching an aggregate switching bandwidth of 320
Gbps.

5.1 Introduction

The growing number of newly emerging applications such as teleconferenc-
ing, distance learning, IPTV etc. over the Internet has resulted in a growing
proportion of multicast traffic. In addition to point-to-point (unicast) commu-
nications, a network node (high speed IP routers and ATM switches) is also
required to deal with point-to-multipoint (multicast) communications and the

88



5.1. INTRODUCTION 89

combination of the two. In contrast to traditional switch design where uni-
cast and multicast traffic flows are treated separately, designing a switching
architecture and scheduling algorithms capable of supporting heterogenous,
yet simultaneous, different traffic types is becoming increasingly important.

To date, little research has been done on the design of integrated scheduling
algorithms to support both unicast and multicast traffic types. The previously
proposed scheduling algorithms are in fact a combination ofearlier unicast and
multicast algorithms unified in one integrated scheduler. The input queueing
structure has also combined a unicast queueing structure and multicast queue-
ing structure. The widely used unicast queueing structure is the virtual output
queueing (VOQ) [40], since it avoids the head-of-line (HoL)blocking prob-
lem [36]. As for multicast traffic, a multicast packet (cell)can have more than
one destination, known as itsfanout set. Consequently, a multicast queueing
structure can vary from just one multicast FIFO queue per input to 2N − 1
queues per input, whereN is the number of output ports of the switch. De-
pending on the input queueing structure, integrated scheduling algorithms have
been proposed. These algorithms were mainly proposed for the input queued
(IQ) bufferless crossbar fabric switching architecture because of its scalabil-
ity, low hardware requirements andintrinsic multicast capabilities. Most of
the proposed algorithms were based on input VOQs for unicasttraffic and one
FIFO queue for multicast traffic [18] [95]. Other algorithms[96] used VOQs
for unicast andk queues for multicast traffic, where1 < k ≪ 2N − 1. The
major drawback of these algorithms lies in their inability to either achieve high
performance or run at high speed. This is mainly due to their centralized design
and to the nature of the crossbar fabric switching architecture.

The previous chapters have shown the optimal performance ofthe CICQ
switching architecture. Instead of one centralized and complex scheduler, a
CICQ switch maintains one scheduler per input as well as one scheduler per
output. These schedulers are therefore decoupled and can work independently
in parallel, improving the switching performance. Substantial work has fo-
cussed on designing unicast algorithms for the CICQ switching architecture
(see Chapter 2). However, fewer results have appeared for multicast schedul-
ing in CICQ switches [97] [92] [93]. These algorithms, unicast and multicast,
have been shown to have superior performance than all algorithms proposed
for the IQ bufferless switching architecture.

Despite the CICQ switches potential in solving the scheduling complexity is-
sues faced by their bufferless predecessors, the problem ofscheduling inte-
grated (unicast and multicast) traffic in CICQ switches has not been addressed



90 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

so far. In this chapter, we fill this gap and propose the following:

• An integrated CICQ switching architecture that supports concurrent uni-
cast and multicast flows. The proposed architecture, shown in Fig-
ure 5.1, is based on input VOQs for unicast traffic andk (1 ≤ k ≪
2N − 1) FIFO queues per input for multicast traffic.

• A simple round robin scheduling algorithm, termed Multicast and Uni-
cast Round robin Scheduling (MURS), capable of arbitratingboth traffic
types simultaneously. Different variations of the MURS algorithm are
also proposed, depending on the scheduling priority of eachtraffic type.

The proposed MURS algorithm was shown, through simulation,to achieve
high performance and outperform alternative algorithms under various traffic
scenarios and combinations of unicast and multicast fractions. Similar to the
previous chapter, simulation results showed that, even in the presence of mixed
input traffic, we can still trade the size of the internal buffers for the number of
input multicast queues resulting in better delay performance as well as simpler
scheduler design. We further implemented the MURS algorithm for a16× 16
buffered crossbar switch. It has been segmented into 7 clockcycles with a
clock cycle time of 2.8 ns. The hardware implementation results suggest that
our proposed algorithm can sustain up to 20 Gbps line rate, allowing every
switch line card to forward more than 47 million ATM cells persecond.

The remainder of this chapter is organized as follows: Section 5.2 presents
background knowledge and related work. In Section 5.3, we introduce the
integrated CICQ switching architecture. We describe the proposed MURS al-
gorithm, along with two variations: one for unicast priority scheduling and the
other for multicast priority scheduling. Section 5.4 presents the performance
study of our algorithms with a comparison to existing schemes. In Section 5.5,
we propose a possible hardware implementation of our proposed scheme, for
a16× 16 CICQ integrated switch. Finally, Section 5.6 provides a summary of
the chapter.

5.2 Background

The problem of packet scheduling has been extensively studied over the past
two decades for IQ bufferless crossbar based switches. Mostof the research
work has focused either in a purely unicast or a purely multicast context. Sev-
eral unicast scheduling algorithms have been proposed (seeSection 2.4.1).



5.2. BACKGROUND 91

The scheduling of multicast traffic flows in IQ switches has also been exten-
sively studied, as discussed in Chapter 4. The multicast queueing structure is
paramount to the performance and the implementation feasibility of the switch-
ing system, and different solutions have been studied. Similar to the work on
IQ switches, CICQ switches have attracted great interest recently due to the
advantages they offer in reducing the scheduling complexity and scaling the
switching performance. Considerable research work has focussed on schedul-
ing unicast traffic in CICQ switches, as described in Chapter2 and Chapter 3.
Little attention, however, has been dedicated to scheduling multicast traffic
in CICQ switches. The first work on multicast traffic scheduling in CICQ
switches date back to just 3 years ago [97]. Since then, only afew additional
results have been proposed [92] [93].

Despite the substantial work advocated to either unicast ormulticast schedul-
ing, comparatively little has been done on integrating unicast and multicast
traffic. Except [98], where the architecture is a shared memory, the few other
algorithms have been proposed for the IQ buffer-less switching architecture.
In [95], the problem of integration of unicast and multicasthas been addressed
and its hardness has been derived. At each input, the queueing architecture
was based on VOQs for unicast and one multicast queue for multicast. A prac-
tical algorithm was proposed that consists of scheduling multicast traffic first
and leaving the unicast traffic for idle inputs (or outputs).While this solution
achieves good performance, it leads to permanent starvation of unicast flows.
A similar architecture to [95] was proposed in [99]. In more recent work [96],
the input queueing structure used was based on VOQs for unicast and a small
number,k, of multicast queues for multicast per input. The authors proposed
integrated algorithms based on previous unicast and multicast scheduling al-
gorithms. The integration was based on some priority metrics, such as time
and/or multicast service ratio. These algorithms perform many iterations in
order to achieve good performance, limiting their scalability in port counts
and/or speed per port.

Although the CICQ switching architecture exhibits higher performance than
the IQ bufferless architecture, the integration of unicastand multicast traffic
in CICQ switches has thus far not been addressed. Motivated by the above, in
this chapter we describe a CICQ switch capable of supportingboth unicast and
multicast traffic flow simultaneously. The next section introduces our proposed
architecture.



92 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

. . .

Internal crosspoint buffer
Flow Control

Data

. . .

VOQ N,1

VOQ N,N

MQ N,1

MQ N,K

. . .

In
te

g
ra

te
d

 

S
c
h

e
d

u
le

r

. . .  

. . .  

. . .  

Output

Arbiter

Output

Arbiter

N

Input Card

. . .

VOQ 1,1

VOQ 1,N1

MQ 1,1

MQ 1,K

. . .

In
te

g
ra

te
d
 

S
c
h
e

d
u

le
r

N
N

1 N

Figure 5.1: The integrated CICQ Switching architecture.

5.3 The Integrated CICQ Switching Architecture

The proposed CICQ switch model is depicted in Figure 5.1, foran N × N

switch. This architecture differs from conventional CICQ switches [60] in
its input queueing structure as well as its input scheduling. There areN in-
put ports, each maintaining two types of queues: unicast traffic queues and
multicast traffic queues. The VOQ structure is adopted for unicast queues
and there areN VOQs per input, one per output. When a unicast cell, des-
tined to outputj, arrives at inputi, it is placed inVOQi,j . The multicast
k FIFO queueing architecture is used for multicast flows, as described in
Section 4.4. At each input, multicast queues are denoted byMQi,j where
{(i, j) | 1 ≤ i ≤ N ; 1 ≤ j ≤ k}. The Modulo cell assignment scheme (see
Section 4.4.2) is used to place incoming multicast cells into their appropriate
input queues.

In addition to the input queueing structure, each input cardcontains aninte-
grated input scheduler. The scheduler, at each input, examines the HoL of the
eligible queues belonging to that input and selects one cell to be transmitted to
the buffered crossbar fabric chip. An input VOQ is deemed eligible if it is not



5.3. THE INTEGRATED CICQ SWITCHING ARCHITECTURE 93

empty and its corresponding XP is available. An input multicast queue (MQ)
is considered eligible if it is not empty and at least one of its destination output
ports corresponds to an available XP. We denote an eligible queue by EQ ir-
respective of whether it is a VOQ or a MQ. The buffered crossbar fabric chip,
along with the output schedulers and the flow control mechanism, remains the
same as that described in Section 4.3.1.

5.3.1 Integrated Scheduling

This section introduces the proposed integrated scheduling algorithms, Multi-
cast and Unicast Round robin Scheduling (MURS). Because theinput queue-
ing structure consists of two types of queues and two types oftraffic (unicast
and multicast), extra focus has to be placed on the input scheduler at each in-
put. The input scheduler, is not only required toselectcells to be transmitted
to the fabric chip, but also needs to decidewhen to choose a cell andfrom
whichset of queues (VOQs or MQ). This is called theintegrationphase of the
scheduler. The integration phase of the scheduler determines the priority of
scheduling of each traffic type. The selection policy of our scheme is based
on round robin because of its fairness and simple hardware implementation.
The selection policy is fixed and independent of the integration phase. Before
discussing the integration policy, we first describe the selection policy since it
is fixed. The specification of the selection policy is as follows:

Selection Phase:
SelectQueue (Queuetype , Pointertype):
N = number of queues in Queuetype;
i = current input;

- Starting from thePointer typeindex, select the first eligible queueEQi,j

and send its HoL cell1 to the internal bufferXPi,j .

- MovePointer typeto the location(j + 1) (mod N).

The integration phase of the scheduler decides the priorityof the scheduling
of cells at the queue type level. Each input scheduler maintains 2 priority
pointers: a unicast pointer (UP) and a multicast pointer (MP). If the VOQs

1If the cell is multicast, then only copies destined toc outputs are sent, where{c|c
∈ {1, ..., N} andXPi,c is available}. Other copies will have to compete in later time slots.



94 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

(MQ) set of queues is chosen to select a cell from, the round robin pointer will
be based on UP (MP). Note that we considerfanout splittingwhen serving
multicast flows [100]. The integration phase is responsiblefor deciding which
set of queues to choose from. As the traffic can be unicast, multicast or a mix
of both, we derived 3 integration policies. The first is called MURS uf (unicast
first) and always gives priority to unicast traffic. The second, MURS mix, is
designed to be a fair policy and treats both traffic types equally. MURS mix
gives priority to unicast traffic during even time slots, while multicast traffic is
favored during odd time slots. The third integration policyis named MURSmf
(multicast first) and always gives priority to multicast traffic. Each integration
policy corresponds to an input scheduling algorithm.

MURS uf always gives priority to unicast flows over multicast flows. There-
fore, in the presence of mixed unicast and multicast traffic,MUR uf will al-
ways favor the VOQ set of queues to receive service and leave remaining idle
connections to multicast flows. As a result, this scheme willproduce more
one-to-one connections than one-to-many connections. This causes perfor-
mance degradation under heavy loads since when a unicast cell is chosen to be
sent from an input port containing multicast cells, only onecell (copy) will be
transmitted to the buffered crossbar fabric. The specification of the MURSuf
algorithm is as follows:

MURS uf:
/*Always Unicast traffic first (prioritized)*/:

• SelectQueue(VOQs , UP);

• If no queue was selected

– SelectQueue(MQs , MP);

If instead of MURSuf we allow preference to multicast flows in the presence
of unicast flows at the same input, this would result in more cells (copies) be-
ing transmitted to the buffered crossbar. As a result, the performance can be
greatly scaled up. This is exactly what MURSmf algorithm achieves, by fa-
voring multicast flows over unicast flows. Despite the performance difference,
there are similarities between MURSuf and MURSmf. They both have the
same performance when the traffic is either purely unicast orpurely multicast.
Additionally, both schemes areunfair . Each tries to monopolize the switch
bandwidth to its preferred traffic flows and this is undesirable. The specifica-
tion of the MURSmf algorithm is as follows:



5.3. THE INTEGRATED CICQ SWITCHING ARCHITECTURE 95

MURS mf:
/*Always Multicast traffic first (prioritized)*/:

• SelectQueue(MQs , MP);

• If no queue was selected

– SelectQueue(VOQs , UP);

As a compromise between MURSuf and MURSmf, we propose MURSmix.
The scheduling priority of each traffic type is time slot dependent. The speci-
fication of the MURSmix algorithm is as follows:

MURS mix:
/*Equal Priority*/ :

• If current time slot is even /*Unicast is served first*/

– SelectQueue(VOQs , UP);

– If no queue was selected

* SelectQueue(MQs , MP);

• Else /*Multicast is served first*/

– SelectQueue(MQs , MP);

– If no queue was selected

* SelectQueue(VOQs , UP);

In addition to its fairness in the presence of different traffic types, the
MURS mix algorithm exhibits the same performance as the other twoal-
gorithms when the traffic is all unicast or all multicast. Theproperties of
MURS mix makes it a good candidate for being an optimal integratedscheme
because:(i) It is fair and starvation free both on the traffic level as wellas the
flow level. In the presence of different traffic types, MURSmix provides equal
chances (even and odd time slots) to heterogeneous traffic types to be served.
At the flow level, the round robin scheduling mechanism ensures fairness to
flows belonging to different queues (whether unicast or multicast) and sched-
ules them with the same likelihood.(ii) MURS mix requires simple hardware
allowing it to run at high speed.(iii) Finally, MURS mix shows enhanced



96 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

performance in terms of high throughput and low cell latencyby comparison
to existing algorithms. This is illustrated in the following section.

For all the 3 input schedulers, we used the same output scheduling algorithm
that we described in Section 4.3.2. It is based on a static round robin se-
lection, wherein all the output arbiters share the same pointer. The pointer
is initialized to a random position and is incremented by 1 every scheduling
cycle. The pointer setting is very important and has a two-fold advantage.
First, the synchronous move of the output pointer ensures that at least one
complete multicast cell is discharged every scheduling cycle as described in
Section 4.3.2. Second, while our scheme adopts a fanout splitting discipline
resulting in higher throughput, it also closely resembles anon-fanout splitting
discipline which results in optimized use of internal bandwidth on the serial
links between the input line cards and the buffered crossbarfabric core.

5.4 Performance Results

This section presents the simulation study of an8 × 8 and a16 × 16 CICQ
switching systems employing the MURS set of algorithms. Theexperimental
results are structured in 3 parts. In the first part of the experiments, we compare
the performance of MURSmix to the Eslip algorithm which uses a bufferless
crossbar switch [18]. The second set of experiments studiesthe performance
of our set of algorithms under different settings of MQs. Thelast section of
the experiments analyzes the effect of varying both the number of MQs and the
size of the internal buffers. Additionally, we observe the stability of the input
queues under different traffic, input queueing and internalbuffer size settings.

We studied the performance of our set of algorithms under theBernoulli uni-
form and bursty uniform traffic scenarios described in Appendix B.2. Arriving
cells can be either unicast or multicast. Cells arrive with arate denoted byλ.
Since the traffic is uniform,λ is the input load of the switch. The departure
rate is denoted byµ. Similarly,µ is the output load of the switch. We consider
admissible traffic, no input or output is oversubscribed. Because the traffic is a
combination of unicast and multicast flows, the input load consists of a multi-
cast fraction (fm) and a unicast fraction (fu), where{(fm, fu)|fm = 1 − fu}.
The fanout set,Φ, of multicast cells has cardinality (fanout number)|Φ| which
is uniformly distributed between 1 and 16 and all outputs have equal chances
to be the destination of a multicast cell. Based on the above,the relationship
between the switch input and output loads is expressed by Equation (5.1).



5.4. PERFORMANCERESULTS 97

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Input Load

16x16 Switch under Bernoulli uniform traffic

MURS_mix
Eslip_1
Eslip_2
Eslip_4

Figure 5.2: Average cell delay of MURSmix and Eslip under Bernoulli uni-
form unicast traffic (fm = 0).

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MURS_mix
Eslip_1
Eslip_2
Eslip_4

Figure 5.3: Average cell delay of MURSmix and Eslip under Bernoulli uni-
form mixed traffic, (fm = 0.5).



98 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under uniform traffic

MURS_mix
Eslip

Bursty, B = 16 cells 

Bernoulli, B = 1 cell 

Figure 5.4: Average cell delay of MURSmix and Eslip under Bernoulli uni-
form multicast traffic (fm = 1).

µ = λ(fu + |Φ|fm). (5.1)

In our simulation, we averaged the cells fanout set to be|Φ| = 8. Following
our settings and substitutingfu with fm, we have:

µ = λ(1 + 7fm). (5.2)

For example, if we setfm to be 0 in Equation (5.2), the traffic is all unicast.
When we set it to 1, the traffic becomes pure multicast. Whereas, if we fix
µ to 1 for example (switch fully loaded), we can varyfm and see its effect
on the throughput. Whenfm = 0.5, the incoming traffic is evenly distributed
between unicast and multicast flows.

5.4.1 MURSmix vs. Eslip

Because Eslip is based only on a single multicast queue per input, we used
the same settings with MURSmix by using just one MQ (k = 1) for fair
comparison. Note that Eslipi refers to Eslip withi iteration(s). In Figure 5.2,
we compare the average delay performance of MURSmix and Eslip under
Bernoulli uniform traffic with all cells being unicast. As depicted in Figure 5.2,
the performance of MURSmix is always higher than Eslip irrespective of the



5.4. PERFORMANCERESULTS 99

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
hr

ou
gh

pu
t

Multicast Fraction

 Throughput under Bernoulli uniform traffic

MURS_mix (16×16)

Eslip_4 (16×16)

MURS_mix (8×8)

Eslip_4 (8×8)

Figure 5.5: Throughput performance of MURSmix and Eslip4 under differ-
ent switch sizes and different multicast fractions.

number of iterations performed by the latter. Figure 5.3 depicts the average
cell delay of the two algorithms when the input traffic is evenly distributed
between unicast and multicast flows (fm = 0.5). Again, MURSmix has a
shorter average delay than Eslip. Figure 5.4 depicts the delay performance of
MURS mix to Eslip when the incoming traffic is all multicast. As we can see
from the previous 3 figures MURSmix always achieves a far shorter delay
than Eslip irrespective of the incoming traffic type.

We wanted to compare the performance of MURS and Eslip for different
mixed traffic settings. However, checking all possibilities of mixed traffic re-
quires tuningfm from 0 to 1 and observing the throughput. To this end, we
fixed the output load,µ, to be 100% (fully loaded system) and recorded the
throughput of each algorithm asfm varies from 0 to 1. Figure 5.5 compares
the maximum achievable throughput of MURSmix and Eslip4 under differ-
ent switch sizes1 (8× 8 and16× 16). MURS mix achieves higher throughout
than Eslip irrespective of the switch size and/the multicast fraction of the in-
coming traffic. Note that, while each of our algorithms have asmaller delay
than Eslip, we chose MURSmix because it is more analogous to Eslip in the
sense that is does not prioritize one traffic type over another.

1Note that when the size of the switch is8 × 8, the average fanout size becomes 4 and
Equation (5.2) becomes:µ = λ(1 + 3fm).



100 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

8x8 Switch under Bernoulli uniform traffic

MURS_mf(1)
MURS_mix(1)
MURS_uf(1)
MURS_mf(2)
MURS_mix(2)
MURS_uf(2)
MURS_mf(4)
MURS_mix(4)
MURS_uf(4)

Figure 5.6: Average cell delay of an8 × 8 CICQ switch running MURS with
different numbers of MQs per input and mixed input traffic (fm = 0.5).

5.4.2 The Effect of MQs Number,k

The remainder of the simulation is conducted for multicast queues set MQ per
input equal to or bigger than one (k ≥ 1). We study the average cell delay per-
formance of each of our algorithms fork = 1, 2 and 4 respectively and evenly
distributed traffic over unicast and multicast (fm = 0.5). Figure 5.6 depicts the
average delay for an8 × 8 switch and Figure 5.7 shows the average cell delay
for a 16 × 16 switch. As expected, the MURSmf scheme has the best delay
irrespective of the arrival traffic and the switch size. Thisis because it gives
priority to multicast flows over unicast flows resulting in more connections
per scheduling cycle. This result holds independently of the number of MQ
used per input. MURSuf, however, has the worst delay because it prioritizes
unicast over multicast, resulting in fewer cells transferred to each output per
scheduling cycle. MURSmix has a moderate average delay because it treats
both traffic types with the same priority. Overall, MURSmix is the best choice
due to its fairness. Figure 5.8 depicts the average cell delay of MURS mix with
varying switch sizes and different numbers of MQs. We can seethat the aver-
age cell delay decreases with increasing numbers of MQs and this is due to the
role of the MQs in reducing the effect of the HoL blocking problem.



5.4. PERFORMANCERESULTS 101

0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MURS_mf(1)
MURS_mix(1)
MURS_uf(1)
MURS_mf(2)
MURS_mix(2)
MURS_uf(2)
MURS_mf(4)
MURS_mix(4)
MURS_uf(4)

Figure 5.7: Average cell delay of a16× 16 CICQ switch running MURS with
different numbers of MQs,k, per input and mixed input traffic (fm = 0.5).

0.7 0.75 0.8 0.85 0.9 0.95
10

0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

MURS_mix under mixed Bernoulli uniform traffic

MQ(1) (8×8)
MQ(4) (8×8)
MQ(1) (16×16)
MQ(4) (16×16)

Figure 5.8: Average delay of MURSmix with different switch sizes and dif-
ferent MQ numbers.



102 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
10

0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

MURS_mix under Bernoulli uniform traffic

MQ(1)−XP(4)_Ucast
MQ(1)−XP(4)_Mix
MQ(1)−XP(4)_Mcast
MQ(4)−XP(1)_Ucast
MQ(4)−XP(1)_Mix
MQ(4)−XP(1)_Mcast

Figure 5.9: Average cell delay of MURSmix as a function of the numbers of
MQs, the XP sizes and input traffic combinations.

5.4.3 The Number of MQs vs. The XP Size

Due to the importance of the internal buffers in simplifyingthe scheduling, we
tested our algorithms under different internal buffer sizes. Figure 5.9 depicts
the average delay performance of the MURSmix algorithm under 3 different
scenarios. Incoming traffic is either all unicast (fm = 0), or a mix (fm = 0.5)
or all multicast (fm = 1). We varied the number of input multicast queues per
input as well as the size of the internal buffers (XP) and studied their effect
under each traffic scenario. For example, “MQ(1)-XP(4)Ucast” corresponds
to the MURSmix algorithm with 1 multicast queue per input (MQ=1), 4 cells
per internal buffer (XP=4) and incoming traffic consisting of unicast cells only.
“MQ(4)-XP(1) Mix” corresponds to MURSmix with 4 MQs (k = 4) per
input, 1 cell per XP and a mixed incoming traffic over unicast and multicast
flows (fm = 0.5).

The plots in Figure 5.9 show that the average delay of MURSmix is shorter
when only one multicast is used per input port (instead of 4) with an internal
buffer size of 4 cells per XP (instead of 1). It is apparent that the delay of
“MQ(1)-XP(4) Ucast” should be shorter than that of “MQ(4)-XP(1)Ucast”.
The reason for this is because incoming traffic is all unicastand therefore vary-
ing the number of MQs does not affect the delay. However, increasing the size



5.4. PERFORMANCERESULTS 103

0.93 0.94 0.95 0.96 0.97 0.98 0.99
10

0

10
1

10
2

10
3

10
4

In
pu

t Q
ue

ue
s 

O
cc

up
an

ci
es

, |
|L

(1
06 )|

|

Normalized Output Load

MURS_mix under Bernoulli uniform traffic

MQ(1)−XP(4)_Ucast
MQ(1)−XP(4)_Mix
MQ(1)−XP(4)_Mcast
MQ(4)−XP(1)_Ucast
MQ(4)−XP(1)_Mix
MQ(4)−XP(1)_Mcast

Figure 5.10: Input queues occupancies of MURSmix as a function of the
numbers of MQs, the XP sizes and input traffic combinations.

of XP does. When the incoming traffic is mixed (“MQ(1)-XP(4)mix”) and at
99% input load, the average cell delay of MURSmix is 25% shorter than the
cell delay when using “MQ(4)-XP(1)mix”.

We also studied the stability of the input queues under the same settings as
above. We used theL2 norm vector representing the occupancy of all input
queues as defined in Appendix B.3. Because each input port contains both
VOQs and MQs, theL2 norm vector in this case is defined as follows:

‖L(n)‖ =

√

√

√

√

n
∑

i=1

(

n
∑

j=1

V OQi,j(n)2 +

k
∑

l=1

MQi,l(n)2
)

As depicted in Figure 5.10, the input queues occupancy is smaller when we use
only 1 multicast queue per input and an internal buffer size of 4 cells compared
with employing 4 multicast queues per input and internal buffer size of 1 cell.

These results endorse our argument in Chapter 4 regarding the simplification
in the design of the input scheduler. Using just 1 MQ per inputport instead
of 4 MQs at the expense of a little increase in the size of the internal buffers
results in significant reduction in the hardware complexityof the input inte-
grated scheduler. This is because the scheduler needs to maintain the state of



104 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

the fanout sets of the HoL cells of every MQ and using just 1 MQ would trans-
late in reduced information exchange and consequently in a shorter scheduling
cycle time.

5.5 Hardware Implementation

This section presents the hardware implementation of the MURS scheduling
algorithm for a16 × 16 CICQ switch. Figure 5.11 depicts the schematic dia-
gram of the algorithm and the scheduling process. The designcan be divided
into four main blocks, as follows:

0
1

.

.

.

1
1

1

0

.

.

1

1

EXP

VOQ

MQF

.

.

.

.

.

.

0
0

.

.

.

1
1

1

0
.
.

.
1

0

16

17 bit Register

16

0

1
.

.

.
0

0

1
1

.

.

.
1
0

....

16

New Multicast 

Cell Header
16

State of the

VOQs 16

ENB

ENB

MSB

MPE

Priority

Traffic

Priority

Logic

16

1

1

16

FR

EVOQ

EF

VOQ:  Virtual Output Queue

EXP:   Empty Crosspoint (XP)

MQF:  Multicast Queue Fanout
EVOQ: Eligible VOQ

EF: Eligible Fanout

FR:   Fanout Residue
MPE: Masked Priority Encoder

Index of the

selected VOQ 

or

The selected 

copies of MQENB

1

1

Ob

Ov

Figure 5.11: The MURSmix input scheduler algorithm.

• Unicast Block: This block is responsible for handling unicast traffic
and consists of a 16 bit vector called VOQ (Virtual Output Queue) that
contains the state of each VOQ in a line card. A 16 bit vector named
the EVOQ (Eligible VOQ) is used for the index of the VOQs eligible
for scheduling. The EVOQ is obtained by ANDing the VOQ vector
with the EXP (Empty internal Crosspoint, XP). A component named
MPE (Masked Priority Encoder) that is responsible for selecting the next



5.5. HARDWARE IMPLEMENTATION 105

index from the EVOQ vector in a round robin fashion. In our design, we
used the MPE proposed by [101].

• Multicast Block: This block is responsible for the multicast traffic and
contains the following components. A 16 bit vector, MQF (Multicast
Queue Fanout) that contains the fanout set of the HoL cell of theMQ.
A 16 bit vector, EF (Eligible Fanout) that contains the subset of output
that the multicast cell can be sent to. The EF is the result of alogic
AND of the MQF and the EXP vectors. A vector called FR (Fanout
Residue) that contains the subset of unreachable output ports of the HoL
cell of the MQ. This vector is obtained by ANDing the MQF and the
logic inverse of the EF vector.

• Traffic Priority Block: This block manages the scheduling priority of
unicast and multicast cells over time. It is designed as a state machine
and works as follows: it takes as input two bits, the first bit (Ub) is the
logic OR of the EVOQ vector bits and the second bit (Mb) is the logic
OR of the EF vector bits. There is an internal bit (Pb) that determines
which traffic is prioritized during the current scheduling cycle2. The
value ofPb is inverted every scheduling cycle3. There are two output
bits of the traffic priority block denotedOb andOv (see Figure 5.11).
The value of each of them is obtained as follows:
Ob = (Pb ∧ Mb) ∨ Ub

Ov = Mb ∨ Ub.

The upper output bit of the traffic priority block is used as the select bit of
the 2-to-1 Mux that decides which traffic type cell is chosen.The other
output bit,Ov , indicates whether or not the outputOb is valid. TheOb bit
along with the output of the the MPE (first block) and the content of the
EF (second block) are used as the select bit and the 2 inputs ofthe Mux.
Finally, the output of the Mux is forwarded, along with the select bit
to a 17-bit register that contains the scheduling decision.This decision
register is 17 bits wide with the select bit being its most significant bit
(MSB). If the MSB bit is 1, then we know that the content of the register
(16 bits) represents the reachable destination ports of theHoL multicast
cell. Otherwise, the content of the register represents theindex of the
VOQ containing the selected unicast cell.

2MURS has been segmented into 7 clock cycles, which equals a scheduling cycle.
3InvertingPb every scheduling cycle results in MURSmix. SettingPb to always 1 results

in MURS mf being implemented and when it is set to always 0, it resultsin MURS uf.



106 CHAPTER 5. INTEGRATED UNICAST AND MULTICAST SCHEDULING

Table 5.1: Hardware implementation results.
Module Area (slices) Delay (ns)

Input Scheduler (MURSmix) 232 19.6
Output Scheduler (OS) 107 10.2

It is important to note that as soon as the output of the trafficpriority block
is computed, the following update process takes place. IfOb = 1, then we
know that a multicast cell will be scheduled and the content of the VOQs will
not need to change (VOQ ENB set to 0). Therefore, the content of the MQF
must be updated (ENB = 1) with a new value and this depends on the content
of the FR vector (the lower shaded area of Figure 5.11). The bits of the FR
vector are ORed and if the result is 1 then the input Mux (see lower left side
of Figure 5.11) will forward the content of the FR vector to the MQF vector
as its new content. Otherwise, the result is 0 meaning the whole multicast cell
was completely scheduled and therefore a new multicast cellfanout will be
forwarded to the MQF vector. If, however,Ob = 0, meaning a unicast cell is
chosen, the VOQ vector will be updated while the MQF remains unchanged.

As for the output arbiter, as mentioned previously, it consists of a round robin
scheduling mechanism based on a priority encoder. In our design we employed
the MPE design proposed by [101]. It has been segmented into 3cycles. We
employed the Xilinx Virtex IV platform and implemented our algorithm. The
target device of our design was the Xilinx Virtex IV FX familyand the results
are obtained after place and route. Table 5.1 depicts the area, in number of
slices, and delay, in nanoseconds, results of our design. The input arbiter has a
clock cycle time of 2.8 ns and was segmented into 7 cycles resulting in a delay
of 19.6 ns. The critical path of the design is the MPE block. The output arbiter
has been segmented into 3 cycles of 3.4 ns each. The area results is 232 slices
for the input arbiter and 107 for the output arbiter respectively.

5.6 Summary

Combined Input and Crossbar Queued (CICQ) switches have been known to
outperform IQ switches due to the simplicity of their scheduling. The problem
of integrating unicast and multicast traffic scheduling has, so far, mainly been
studied for IQ switches. In this chapter, we proposed a novelCICQ switch-
ing architecture able to efficiently support both traffic types. We presented a
simple set of integrated scheduling algorithms, named MURS, that can sched-



5.6. SUMMARY 107

ule concurrent unicast and multicast traffic flows. We studied the performance
of our algorithms under a wide range of input traffic settings, different input
queueing structures and different CICQ internal buffer sizes. In particular, the
MURS mix algorithm has been shown to exhibit very good performance and
outperform previous algorithms. Simulation results suggested that a profitable
trade off between the number of input multicast queues and the size of the in-
ternal buffers is possible, allowing for simplified design of the input scheduler.
We presented a hardware implementation of the MURS algorithm for a16×16
buffered crossbar switch using the Xilinx reconfigurable logic platform. The
implementation results showed that MURSmix can sustain a 20 Gbps line
rate, reaching an aggregate switching bandwidth of 320 Gbpsfor our target
switching system.





Chapter 6

Partially Buffered Crossbar
Switches

The crossbar fabric is widely used as the interconnect for high perfor-
mance packet switches due to its low cost and scalability. There are
two main variants of the crossbar fabric: unbuffered and internally

buffered. On one hand, unbuffered crossbar fabric switchesexhibit the advan-
tage of using no internal buffers. However, they require a complex scheduler
to solve input and output ports contention. Internally buffered crossbar fabric
switches, on the other hand, overcome the scheduling complexity using dis-
tributed schedulers. However, they require expensive internal buffers — one
per crosspoint. In this chapter we propose a novel architecture, namely the Par-
tially Buffered Crossbar (PBC) switching architecture, where a small number
of separateinternal buffers are maintained per output. Our goal is to design a
PBC switch having the performance of buffered crossbars with a cost compa-
rable to unbuffered crossbars. We propose a class of round robin scheduling
algorithms for the PBC architecture. Simulation results show that using as few
as 8 internal buffers per fabric output and irrespective of the number,N , of in-
put ports of the switch, we can achieve even better performance than buffered
crossbars that useN internal buffers per output.

6.1 Introduction

Various proposals for identifying suitable architecture for high-performance
packet switches have been investigated and implemented in both academia and

109



110 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

industry [18] [102] [103] [63]. These architectures can be classified based on
numerous factors such as queueing schemes, scheduling algorithms, and/or
switch fabric topology. The crossbar-based architecture is the dominant ar-
chitecture for today’s high-performance packet switches because of its low
cost and scalability. As a result, the vast majority of commercially used core
switches/routers are based on crossbar fabric with virtualoutput queueing
(VOQ) [40]. The crossbar fabric architecture can mainly be classified into
two categories: unbuffered or internally buffered crossbar fabric.

Extensive research work has been dedicated to unbuffered crossbar switches
for over two decades (see Section 2.3 and Section 2.4). Figure 6.1 (a) de-
picts an Input Queued (IQ) crossbar fabric switch with VOQs at the inputs.
The crossbar of an IQ switch runs at the same speed as externalinput/output
ports. In order to maintain this low bandwidth requirement,an unbuffered
IQ switch requires a centralized scheduler to resolve two main blocking prob-
lems, namely input and output contention. Input contentionresults from the
constraint that an input can send at most one packet every time slot. Similarly,
output contention arises from the constraint that an outputcan receive at most
one packet every time slot. These blockings make the task of the scheduler
complex and packets delay unpredictable. As a result, the switch performance
essentially depends on its scheduling algorithm. Different classes of schedul-
ing algorithms have been proposed [53] [51] [54] [104] [45].Unfortunately,
for high-bandwidth IQ switches, almost all scheduling algorithms are either
too complex (see Section 2.4.2) to run at high speed or fail toexhibit satisfac-
tory performance (see Section 2.4.3). This is mainly attributed to the central-
ized design of these schedulers and to the nature of the unbuffered crossbar
switching architecture.

In order to overcome the scheduling complexity faced by IQ unbuffered cross-
bar switches, buffered crossbar switches have been proposed (see Section 2.5).
Figure 6.1 (b) depicts a buffered crossbar switch, a crossbar where a limited
amount of memory is added per crosspoint. The existence of internal buffers
relaxes the output contention constraint, making the scheduling task much sim-
pler. Buffered crossbars use distributed and independent schedulers (one per
input/output port) to switch packets from the input to the output ports of the
switch. A scheduling cycle consists of input scheduling, output scheduling
and flow control to prevent internal buffer overflow. Efficient scheduling algo-
rithms have been proposed for this architecture [67] [79] [105]. The scheduling
simplification comes at the expense of a costly crossbar. Thecrossbar has to
maintainN2 internal buffers, whereN is the number of input/output ports of
the switch. The number of internal buffers grows quadratically with respect to



6.1. INTRODUCTION 111

. . .

. . .

1 N
. . .

1

N

. . .

1

N

. . .

. . .

N

1

. . .

. . .

1 N
. . .

1

N

. . .

1

N

. . .

. . .

N

1

a b

Figure 6.1: Crossbar Fabric variants: (a) Unbuffered Crossbar Fabric. (b)
Buffered Crossbar Fabric, withN2 Internal Buffers.

the switch size and linearly with round trip delays [63]. This makes buffered
crossbar switches highly expensive and hence less appealing.

In this chapter, we propose a novel architecture, referred to as Partially
Buffered Crossbar (PBC) switching. The PBC is designed to bea switch-
ing architecture that exhibits the performance of bufferedcrossbars but at a
cost comparable to unbuffered crossbars. The PBC switch, depicted in Fig-
ure 6.2, contains a small number of separate internal buffers,B ≪ N , per out-
put port. We propose a class of pipelined scheduling algorithms for the PBC
switch and study their performance under various traffic patterns. The exper-
imental study shows that setting the number of internal buffers per output to
B = 8 is sufficient for the PBC to achieve optimal performance irrespective
of the switch size,N . Previous work proposed similar switching architec-
ture to the PBC switch [106] [27]. Our work differs from [106][27] both
at the architectural and the scheduling level. While the architecture in [106]
relies on internal shared memory per output port, our PBC architecture uses
separate internal buffers per output, hence avoiding the requirement of expen-
sive shared buffers. Secondly, the architecture proposed by [27] was target-
ing multistage switches whereas our proposed architecturetargets single stage
switches. On the scheduling level, our proposed algorithmsoutperform those
proposed by [106] [27].

The remainder of the chapter is organized as follows: Section 6.2 presents the
PBC architecture and its scheduling. In Section 6.3, we introduce our set of
scheduling algorithms. The first algorithm is called Distributed Round Robin
(DRR). It is based on round robin input and credit schedulersper fabric input
and output respectively. Because of the credit release delay experienced by



112 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

DRR (see Section 6.3.2), we propose an alternative algorithm named DROP
that drops unaccepted grants every time slot and consequently minimizes the
credit release delay. We also propose an enhanced version ofthe DROP al-
gorithm, named DROP-PR, that selects grants based on outputpriority. Sec-
tion 6.4 presents the performance study of our algorithms under various set-
tings. Finally, Section 6.5 summarizes the chapter.

6.2 The Partially Buffered Crossbar Architecture
(PBC)

This section introduces the Partially Buffered Crossbar switching architectural
organization along with its scheduling.

6.2.1 Switch Model

We consider the Partially Buffered Crossbar switching architecture (PBC) de-
picted in Figure 6.2. The switch operates on fixed sized packets (cells). Vari-
able size packets are segmented into fixed sized cells while inside the switch
and reassembled back into packets upon their exit. The PBC has N input and
N output ports. When a cell, destined to outputj arrives at inputi, it gets
queued inVOQi,j while waiting its turn to be selected by the input scheduler
(ISi). There areN input schedulers, one per input port that control the trans-
fer of cells from the input line cards to the internal fabric buffers. The input
scheduler decision is coordinated with a grant scheduler that manages the in-
ternal buffers availability (and access) for each output. The input and grant
schedulers communicate throughout a grant queue (GQ) maintained per input.
There areN GQs, one per input, and each containsN entries, one per output.
When a grant scheduler (GS),j, sends a grant,g, to input, i, GQi,j is set to
one. Once input,i, acceptsg, GQi,j is reset to zero.

The crossbar fabric contains a small number of internal buffers. These internal
buffers are maintained per fabric port and there areB ≪ N separate internal
buffers per fabric output. The fabric hasB internal buses per output, one per
internal buffer. These buses run at the same bandwidth as theexternal line
rates. These buses are required in order to maintain low bandwidth. If we use
one bus per output, instead, its bandwidth is required to beB times the external
bandwidth in addition to intermediate buffering of cells which is costly. Each
fabric output contains an output scheduler (OS) that arbitrates cells departures
from the internal buffers to the output queue. There areN credit queues (CQ),



6.2. THE PARTIALLY BUFFEREDCROSSBARARCHITECTURE (PBC) 113

1 N
. . .

1

N

. . .

1

N

. . .

. . .

N

1

. . .

GSNISN

IS1

OSN

CQ

IS: Input Scheduler

GS: Grant Scheduler

OS: Output Scheduler

CQ: Credit Queue

GQ: Grant Queue

GS1

CQ

OS1

. . .

GQ

GQ

. . .B . . .B

Figure 6.2: The Partially Buffered Crossbar (PBC) Switching architecture.

one per output. Each CQ containsB entries andCQj records the availability
of the internal buffers belonging to outputj. A CQ is decremented whenever
a grant is sent to the input, and incremented during output scheduling.

6.2.2 Scheduling Process

The scheduling process in the PBC switch is a combination of unbuffered as
well as buffered crossbar scheduling. A scheduling cycle consists of input
scheduling and output scheduling phases as in buffered crossbars. The input
scheduling phase resembles a scheduling cycle in unbuffered crossbars, as it
is based on request-grant-accept handshaking protocol. The input scheduling
phase works as follows: During time slot,t, each non emptyVOQi,j sends a
request to the grant scheduler (GS) corresponding to outputport j. Subject to
internal buffers availability (CQj) and the grant scheduler policy, a grant may
be sent back to the input scheduleri and stored in its GQ (GQi,j set to 1). At
the same time, input scheduler (ISi) picks a VOQ Head of Line (HoL) cell to
be transferred to the internal buffers based on its GQ, excluding the current



114 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

grants of time slot,t. Meaning that the outcome ofGSi at timet is only valid
during time slott + 1 or later. This allows a two-stage pipelined scheduling,
avoiding the need for synchronized coordination between the grant schedulers
and the input (accept) schedulers on a time slot basis as doesiSLIP [53] and
PIM [39].

1

2

3

4

4 1

23
1

2

3

4

1

2

3

4

1

2

3

4
4 1

23

4 1

23

g1

g4

a2

Accept
Grant

1

2

3

4

1

2

3

4

Request

Figure 6.3: The iSLIP scheduling algorithm.

Because the number of internal buffers,B, maintained per output is much
smaller than the number of competing inputs,N , crucial care to consider how
to service cells during output scheduling is important. Theinternal buffers are
separate and cells from the same VOQ may arrive to different internal buffers
during consecutive time slots. In this case, we have to maintain in-sequence
cell delivery. To this end, we employed a First-Come-First-Serve (FCFS) out-
put scheduling to ensure in order cell delivery [107]. A celldeparture from the
internal buffers at outputj, causesCQj to increments by one. A cell arrival,
from an input, to an internal buffer at outputj causesCQj to decrement by
one. Likewise, the grant queue, at an inputi, is incremented whenever a grant
scheduler sends a grant to inputi, and decremented whenever a cell departs
the input porti.

1

2

3

4

1

2

3

4

1

2

3

4

4 1

23

1

2

3

4

1

2

3

4

1

2

3

44 1

23

g1

g4

CQ1

CQ4

CQ2

4 1

23

a3

Request Grant Accept

Figure 6.4: A PBC Scheduling cycle,4 × 4 PBC switch withB = 2.

The input scheduling in PBC is similar to the iterative matching performed by
unbuffered crossbar scheduling. However, maintaining a small number of in-



6.2. THE PARTIALLY BUFFEREDCROSSBARARCHITECTURE (PBC) 115

1 2 3 4 5 6 7 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G
ra

n
t 

P
ro

b
a
b
ili

ty
 p

e
r 

In
p
u
t

Number of Internal Buffers, B, per Crossbar Output

Randomly Uniform Traffic

N= 10000

N= 1000

N= 128

N= 16

N= 8

N= 2

N= 32

N= 4

PIM

Figure 6.5: Grant probability as function of switch size,N , and different in-
ternal buffers settings.

ternal buffers makes it significantly different. The absence of internal buffers
in an unbuffered crossbar switch meant that a grant arbiter can grant at most
one input, to avoid output contention. Similarly, an input accept arbiter has
to accept at most one grant, to avoid input contention. Figure 6.3 depicts the
matching process of iSLIP with one iteration. The PBC scheduling, while
keeping the input contention constraint enforced, relaxesthe output contention
constraint by allowing conflicting cells (up toB) to be admitted to the internal
buffers for the same output. This is equivalent to unbuffered crossbars sched-
ulers accepting one grant and storing otherB − 1 grants instead of discarding
all the rest. Unbuffered crossbar schedulers resort to multiple iterations to im-
prove the match size.

Figure 6.4 describes a PBC input scheduling cycle. As we can see, the grant
scheduler at output 1,g1, sends two grants (to input 1 and 3) because its credit
queue,CQ1, has two available credits. The same process happens withg3 and
g4. However,g2 sends only one grant because its output buffers have only one
location free (CQ2 = 1). From the example, we can see the benefit in using
internal buffers, thereby improving the grant opportunities per output. Conse-
quently, the accept phase produces a bigger match size. Using one iteration for
a random scheduling policy such as PIM [39], the probabilitythat an input will



116 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

remain ungranted is(N−1

N )N , whereN is the port count of the switch [53]. As
N increases, this probability tends to1

e . If we use the same random scheduling
policy in the PBC withB internal buffers per output and assuming that pack-
ets are flushed in every time slot (memoryless Markov process), the probability
that an input remains ungranted is(N−B

N )N . With increasingN , this proba-
bility tends to 1

eB (almost 0 forB ≥ 4). Figure 6.5 illustrates this behavior.
WhenB = 1 the PBC behaves identically to the bufferless PIM algorithm
and the grant probability approaches 63% with increasing switch size. A small
increase inB, just 2, scales up the grant probability to more than 86% for all
switch sizes. WhenB is set to 4 per fabric output, the grant probability is
100%.

6.3 Scheduling in PBC Switches

This section introduces our set of scheduling algorithms for the PBC switch-
ing architecture. We propose a class of round robin based input scheduling
algorithms. The output scheduling we use here and throughout this chapter
is based on FCFS policy, as discussed in the previous section. Each time the
output scheduler, at outputj, performs its FCFS selection and sends a cell to
the output queue, it incrementsCQj by one. As for the input scheduling, we
propose a set of round robin based schedulers. The first algorithm we propose
is named Distributed Round Robin (DRR) and is described in the following
section.

6.3.1 The Distributed Round Robin (DRR) Algorithm

The DRR algorithm is similar to the scheme proposed by [106] and its grant
scheduler’s pointer update is the same as iSLIP [53]. This isbecause, a grant
sent by a GS to an input scheduler, if not immediately accepted, is stored and
will eventually get accepted in the short run (less thanN time slots later). The
DRR differs in the way it assigns cells to internal buffers when they leave the
input VOQs. However this is specific to the PBC architecture.Cell assignment
to internal buffers can be realized by maintaining a separate field in each entry
of the GQ. Whenever theGSj grants to inputi, it sets the entryGQi,j = 1
and the field corresponding to the internal buffer to the index of the next free
internal bufferBk,j.

The DRR algorithms performs its arbitration as described inSection 6.2.2.
Figure 6.6 illustrates a DRR input scheduling phase. The first pipeline stage of



6.3. SCHEDULING IN PBC SWITCHES 117

DRR:
Grant Phase:
For each output,j, do

. While there are credits inCQj do

- Starting from the grant pointergj index, send a grant to the first
input, i, that requested this output (setGQi,j = 1).

- DecrementCQj by one.

- Move the pointergj to location(i + 1) (mod N).

Input Scheduling Phase:
For each input,i, do

. Starting from the input pointerai index, select the first non empty
VOQi,j for whichGQi,j = 1 and send its HoL cell to the internal buffer.

. SetGQi,j = 0.

. Move the pointerai to location(ai + 1) (mod N).

the algorithm starts as follows: Based on the VOQs requests (request phase)
and the credit queues (CQ), each grant scheduler performs its arbitration. As
shown in Figure 6.6,GS1 and GS4 can each issue two grants because their
credit queues have available credits (CQ1 and CQ4). GS1 receives requests
from inputs: 2, 3 and 4. It grants to input 2 and 3 because its pointer is at
position 1. After granting input 2 and 3,GS1 points to output 4, as in iSLIP.
GS4 does the same, by granting to input 2 and 4 respectively. However, GS2

andGS3 (not shown in the figure) perform differently in this examplebecause
of their credit queues.GS2 grants only to input one because its credit queues,
CQ2 contains only one credit. The other credit of output 2, is held by input 4
(second entry ofGQ4 = 1). Output 3 cannot issue any grant because it has no
credits (CQ3 = 0) and its credits are held by input 1 and 4. The outcome of
the grant scheduler will not be taken into account by the input scheduler until
the next time slot. This is shown in Figure 6.6 by dashed entries inGQ1 and
GQ4 (second entry ofGQ1 and last entry ofGQ4). Simultaneously with the
first pipeline phase, the second pipeline phase is executed as follows: Based on
the grant queues so far, each input scheduler,i, selects the next non zero entry,



118 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

j, of its GQi and sends the corresponding HoL cell ofVOQi,j to the internal
buffer. It also updates its GQ, by resetting the entry of the sent cell (both third
entries ofGQ1 andGQ1 in accept phase are reset). Then, it increments its
pointer by one Mod (N ). We can see in this example that output 3 receives 2
cells simultaneously, this is the advantage of the PBC architecture –allowing
conflicting cells to enter the fabric.���� ������������

���� ���� ���� ����� 	�
�����
�

� �
 �

 �� �

�������������� 	
��
 ����
��

�� 	 ������������� 	
�����������
 ���� ����

������������� 	
�������������
�� ��� ��

����� ��� ���� ����� �   �!� �����"�#$��� �����

%&'()* +,-&.,)& % /01&2,34/ +,-& .,)& % /01&
����5 �

�
�
������6

Figure 6.6: A DRR scheduling phase for a4 × 4 PBC switch withB = 2.

6.3.2 The Credit Release Delay

The DRR scheme experiences the same credit release delay as with the scheme
in [106]. Credit release delay arises when multiple grant schedulers grant to
the same input concurrently. Because DRR returns credits one at a time (input
contention), credits may not return fast enough. This, consequently, affects the
rate at which grants are sent back to other inputs, hence delaying the trans-
fer of cells from the input line cards. In order to reduce thisdelay, a grant
throttling mechanism was proposed in [106]. It consists of setting a threshold
(TH) for the grant queue and requests from an input are eligible so long as
the grant queue relative to their input is less thanTH. While this mechanism
speeds up the credits release, it does not completely eliminate it or minimize
it. Additionally, it requires some extra signaling to control the grant queues
thresholds.

Our solution to credits release delay is different. We do notwant to just lower
the credit release delay. Instead, our goal is to completelyeliminate it or set



6.3. SCHEDULING IN PBC SWITCHES 119

it to its absolute minimum. First, we need to quantify this delay. A grant has
to wait up toN time slots in each grant queue before its associated credit is
released back. Therefore, an input request waits at mostN2

B time slots before it
gets granted. To better explain this, consider the scheduling example depicted
in Figure 6.6. Input 3 has a request for output 3. However, output 3 has no
credits because they are already held by input 1 and 4 respectively. So, in the
worst case output 3 will grant to input 3 after each credit is released by all
other inputs (grant queue updated). This can take up to 4 timeslots in each of
the 4 grant queues. However, since we have 2 credits per credit queue, they
are always divided among requesting inputs. Therefore, output 3 will grant to
input 3 no later than4

2

2
= 8 time slots since input 3 first issues its request.

WhenB = 1, the performance of DRR is similar1 to iSLIP (see Figure 6.11
and Figure 6.12). However, asB increases, the credit release delay decreases
(N2

B decreases). Thus, the problem of credit release delay is nowreduced to
solving the grant queueing delay. Minimizing the credit release delay means
altering the grant mechanism to reduce the grant queueing delay. We, there-
fore, modified the way DRR allocates grants per input, hence anew grant
scheduler is proposed. Instead ofstoring the grants, that are not accepted, in
a grant queue while they wait their turn to be accepted, and therefore causing
credits waiting (delayed) to get released, we simplydrop them. The new de-
vised scheme never stores grants, instead they are just dropped and the scheme
is named DROP. Proceeding this way, a request waits no more than N time
slots before it gets granted. This is to be compared toN2

B .

6.3.3 The DROP Algorithm

Dropping the not accepted grants implies that the pointer updating scheme of
the grant scheduler has to change. This is because, otherwise, using the iS-
LIP pointer updating mechanism results in pointer synchronization similar to
RRM [53]. This convergence of iSLIP to RRM, under our settings, comes
from the two-stage pipeline scheduling relative to the PBC architecture. Re-
call that DRR stores the unaccepted grants, guaranteeing their immediate or
soon acceptance, and therefore the grant pointer can safelybe updated. This is
similar to iSLIP, where the grant pointer gets updated only on accept (which is
in the same time slot or stage). With the DROP scheme, however, dropping the
unaccepted grants during the accept phase (second pipelinestage) means that
we have to update the grant pointer (first stage) which is already late and out

1The slight difference observed results from the the DRR input scheduler pointer update
mechanism. Unlike iSLIP, DRR input scheduler pointer is fully unsynchronized, as in [54].



120 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

of date. Therefore, using the iSLIP pointer update mechanism in DROP means
‘blindly’ updating the grant pointers, which leads to synchronization and poor
performance as in RRM [53]. To overcome this problem, we use fully un-
synchronized grant pointers settings, similar to [54]. Thegrant pointers are
initially set to different positions and are always incremented by one irrespec-
tive of the accept/drop outcome. The specification of the DROP algorithm is
as below.

DROP:
Grant Phase:
All output pointers,gj , are initialized to different positions.
For each output,j, do

. SetCQj equals to the number of non full internal buffers for outputj.

. While there are credits in CQj do

- Starting fromgj index, send a grant to the first input,i, that re-
quested this output (setGQi,j = 1).

- DecrementCQj by one.

. Move the pointergj to location(gj + 1) (mod N).

Input Scheduling Phase:
All input pointers,ai, are initialized to different positions.
For each input,i, do

. Starting fromai index, select the first non emptyVOQi,j for which
GQi,j = 1 and send its HoL cell to the internal buffer.

. Drop the remaining grants (reset GQ:GQi,∗ = 0).

. Move the pointerai to location(ai + 1) (mod N).

6.3.4 The Prioritized DROP Algorithm

We wanted to further improve the performance of the DROP scheme. The need
to enhance DROP stems from two reasons. From one hand, DROP works in a



6.3. SCHEDULING IN PBC SWITCHES 121

two-stage pipeline meaning that it experiences some initial delay. On the other,
DROP is designed for the PBC architecture that is assumed to have a limited
small number of internal buffers per output,B. With these observations, we
propose an enhanced version of DROP that services grants based on output
priority. We call this version prioritized DROP and refer toit as DROP-PR.
The specification of the DROP-PR scheme is as follows:

DROP-PR:
Grant Phase:
All output pointers,gj , are initialized to different positions.
For each output,j, do

. SetCQj equals to the number of non full internal buffers for outputj.

. Set the priority bit,P , to the logic OR ofCQj entries.

. While there are credits inCQj do

- Starting fromgj index, send a grant to the first input,i, that re-
quested this output (setGQi,j = 1 and add bit P).

- DecrementCQj by one.

. Move the pointergj to location(gj + 1) (mod N).

Input Scheduling Phase:
All input pointers,ai, are initialized to different positions.
For each input,i, do

. Starting fromai index, select the first non emptyVOQi,j for which
GQi,j = 1 and bitP = 1 and send its HoL cell to the internal buffer.

. If no HoL cell is selected, Then

- Starting fromai index, select the first non emptyVOQi,j for which
GQi,j = 1 and send its HoL cell to the internal buffer.

. Drop the remaining grants (reset GQ:GQi,∗ = 0).

. Move the pointerai to location(ai + 1) (mod N).



122 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

When selecting a cell for input scheduling, the DROP-PR scheme takes into
account the occupancy of the internal buffers belonging to an output. When a
grant scheduler grants an input request, it sends back the grant with an addi-
tional priority bit. The priority bit informs the granted input whether or not the
grant comes from an output with empty internal buffers (prioritized output).
During the input scheduling phase (second pipeline stage),the input scheduler
first gives priority to grants where the priority bit is set to1. The priority bit is
obtained by logically OR-ing the entries of the Credit Queue(CQ).

6.4 Performance Results

0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Input Load

32x32 Switch under Bernoulli uniform traffic

PBC(1)
DRR(4)
DRR(8)
DROP(4)
DROP(8)
DROP−PR(4)
DROP−PR(8)

Figure 6.7: Average cell delay of the PBC algorithms under Bernoulli uniform
traffic.

This section presents the performance study of the PBC switching architec-
ture. The study is aimed at comparing our proposed architecture to both the
unbuffered and the buffered crossbar fabric architecturesas well as an ideal
Output Queued (OQ) switch. The experiments are carried out under three in-
put traffic patterns: Bernoulli uniform, Bursty uniform andUnbalanced traffic
as defined in Appendix B.2. We tested different PBC switch sizes, each with
different numbers of internal buffers2. In this section, we present the results

2Extensive simulations have been carried out for switch sizes of8×8, 16×16, 32×32 and



6.4. PERFORMANCERESULTS 123

of switch sizes of16 × 16 and32 × 32 only.

0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Input Load

32x32 Switch under Bursty uniform traffic

PBC(1)
DRR(4)
DRR(8)
DROP(4)
DROP(8)
DROP−PR(4)
DROP−PR(8)

Figure 6.8: Average cell delay of the PBC algorithms under Bursty uniform
traffic.

6.4.1 Uniform Traffic

Figure 6.7 illustrates the average cell delay performance of each of our pro-
posed algorithms under Bernoulli uniform traffic. We measured the delay of
each of the algorithms with different internal buffer settings. When the num-
ber of internal buffers per output,B = 1, the three algorithms all have the same
delay because there is no credit release delay. For this reason we denote any of
the algorithms by “PBC(1)” in the figure. IncreasingB to as few as 4 internal
buffers per output boosts up the performance by an order of magnitude. The
delay improvement is less sharp forB between 4 and 8. This behavior agrees
with our model (refer to Figure 6.5) discussed in Section 6.2.2. WhenB =
4 or more, the granting likelihood is almost 100% from each grant scheduler
to each input scheduler. The same behavior is observed underBursty uniform
arrivals, as depicted in Figures 6.8.

Assessing the performance of each of our three proposed algorithms (DRR,

64×64. Depending on each PBC switch size, different internal buffer sizes,B, have been used
(1,2,3,4,5,6,8,10,12,16,32) under each scheduling algorithm (DRR, DROP and DROP-PR).



124 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

1 2 3 4 5 6 7 8

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Number of Internal Buffers, B, per Output

Fully loaded switch under Bernoulli uniform traffic

DRR(16x16)
DROP(16x16)
DROP−PR(16x16)
DRR(32x32)
DROP(32x32)
DROP−PR(32x32)

Figure 6.9: PBC Performance under Bernoulli uniform arrivals.

DROP and DROP-PR respectively) requires tuning different parameters such
as switch size, internal buffers sizes and input traffic loads, hence many plots.
However, because we are most interested in switch cell delays under heavy
input loads, in the following two figures (Figure 6.9 and Figure 6.10) we fixed
the input load to be99% and varied the switch size as well as the number of
internal buffers per output for each algorithm. Figure 6.9 depicts the perfor-
mance of each of our algorithms under Bernoulli uniform arrivals for a16×16
and32 × 32 respectively. We observed the average cell delay as a function of
the number of internal buffers per output,B. We can see that whenB = 1,
unbuffered crossbar switch, the three algorithms have the same delay which is
comparable to iSLIP with one iteration. This is because whenB = 1, every
request waits for the same time (N2 times slots at most) before it gets served.

However, with increasingB, both DROP and DROP-PR have lower cell delays
than DRR because of their fast credits release. Recall that the credit release
delay (and consequently grant and service delays) of DRR isN2

B . However,
both DROP and DROP-PR have a credit release delay ofN . As B increases,
(especially asB approachesN , not shown in the Figures) all the algorithms
have the same delay. However, we are only interested in PBC switches with
B ≪ N . The same trend is observed also under bursty arrivals, Figure 6.10.
The delay of DRR decreases faster under Bernoulli uniform than under Bursty



6.4. PERFORMANCERESULTS 125

1 2 3 4 5 6 7 8
10

3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Number of Internal Buffers, B, per Output

Fully loaded switch under Bursty uniform traffic

DRR(16x16)
DROP(16x16)
DROP−PR(16x16)
DRR(32x32)
DROP(32x32)
DROP−PR(32x32)

Figure 6.10: PBC Performance under Bursty uniform arrivals.

arrivals because of the burstiness effect. DROP-PR has the overall lowest delay
because it prioritizes outputs with empty internal buffers, resulting in more
balanced internal buffers occupancies and hence lower celllatencies.

We compared the average cell latency of the DROP-PR algorithm for 32 × 32
PBC switch to that of an unbuffered crossbar switch, a fully buffered cross-
bar switch and an ideal OQ switch. The iSLIP algorithm is usedfor the un-
buffered crossbar architecture. The fully buffered crossbar switch uses input
round robin (RR) scheduling and Oldest Cell First (OCF) output scheduling.
The comparison is performed under uniform Bernoulli and Bursty arrivals.
Figure 6.11 depicts the performance of DROP with different internal buffers,
iSLIP (with 1 and 4 iterations), RROCF and OQ. Irrespective of whether the
input traffic is Bernoulli or Bursty, DROP-PR(1) (1 refers toB = 1) has a
similar behavior to 1SLIP, as described earlier (see Section 6.3). AsB in-
creases, the delay of DROP-PR significantly decreases. It approaches that of
an ideal OQ with just 8 internal buffers per output (B = 8). Similar perfor-
mance is observed under bursty arrivals (Figure 6.12). These results suggest
that a PBC switch can replace a buffered crossbar, or even an ideal OQ switch
with as few as 8 internal buffers per output. These results can also afford a
switch designer the choice depending on the constraints andneeds. For exam-
ple, if the delay-cost product is the main target, there is the option to replace



126 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Input Load

32x32 Switch under Bernoulli uniform traffic

1SLIP
4SLIP
OQ
RR_OCF
DROP−PR(1)
DROP−PR(2)
DROP−PR(4)
DROP−PR(8)

Figure 6.11: Performance under Bernoulli uniform arrivals.

0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Input Load

32x32 Switch under Bursty uniform traffic

1SLIP
4SLIP
OQ
RR_OCF
DROP−PR(1)
DROP−PR(2)
DROP−PR(4)
DROP−PR(8)

Figure 6.12: Performance under Bursty uniform arrivals.

an unbuffered crossbar switch employing 4SLIP with a PBC switch with only
4 internal buffers per output (see the delay performance of 4SLIP and DROP-



6.4. PERFORMANCERESULTS 127

PR(4) in Figure 6.11 and Figure 6.12 respectively). However, if performance
is the main criteria with a little flexibility in cost, one canthen employ a PBC
switch with 8 internal buffers per output since it exhibits ideal performance.

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
T

hr
ou

gh
pu

t

Unbalanced Coefficient, ω

32x32 Switch under Unbalanced traffic

DROP−PR(1)
DROP−PR(2)
DROP−PR(4)
DROP−PR(8)
RR_OCF

Figure 6.13: Throughput performance under Unbalanced traffic.

6.4.2 Unbalanced Traffic

To further endorse our claims with respect to the PBC performance, we ana-
lyzed the stability of a32 × 32 PBC switch under unbalanced traffic arrivals
(see Appendix B.2). We employed the unbalanced traffic proposed in [67].
We set the switch input load at100% and varied the unbalanced coefficient,ω

and observed the switch throughput performance. Figure 6.13 depicts the per-
formance of the PBC switch with DROP-PR algorithm and different internal
buffer settings and compares it to a buffered crossbar (using RR OCF schedul-
ing). We can see that, withB = 2 internal buffers per output, we can achieve
comparable throughput to a fully buffered crossbar when theunbalanced co-
efficient,ω, is higher than 0.6. This translates to a saving worth of up to960
internal buffers. SettingB = 4, we can achieve higher throughput than a fully
buffered crossbar. The ideal throughput of the PBC is reached when using 8
internal buffers per output.



128 CHAPTER 6. PARTIALLY BUFFEREDCROSSBARSWITCHES

6.5 Summary

A novel Partially Buffered Crossbar (PBC) switching architecture is proposed
in this chapter. The PBC switch is designed to be the best compromise between
unbuffered crossbars and fully buffered crossbars. On one hand, it overcomes
the high cost of fully buffered crossbars that useN2 internal buffers, by using a
low number of internal buffers per output irrespective ofN . On the other hand,
it overcomes the scheduling complexity experienced by unbuffered crossbars
by means of distributed and pipelined scheduling algorithms. We proposed a
class of distributed and pipelined round robin scheduling algorithms for the
PBC architecture. In particular, the DROP-PR scheme was shown to have
optimal performance under different traffic patterns and switch sizes.

The experimental results showed that a PBC switch with 8 internal buffers per
output exhibits ideal performance, irrespective of the switch size,N . We also
showed a design trade off between using the bufferless iSLIPalgorithm with 4
iterations, or using the PBC with 4 internal buffers per fabric output. This trade
off affords a switch designer wider performance and cost based choices. We
believe that the PBC architecture has good potential to become the architecture
of choice for next generation routers. The reason for this isnot only because
the PBC achieves the best of both the unbuffered and fully buffered crossbars,
but also because it can provide the opportunity to implementoptimal bufferless
scheduling algorithms in a pipelined and distributed fashion.



Chapter 7

Conclusions

Buffered crossbar (CICQ) switches are considered viable and practical archi-
tectures for the design of high performance routers. A CICQ switch has good
potential in overcoming the scheduling bottleneck experienced by alternative
switching architectures. However, the scheduling simplicity comes at the cost
of an expensive and complex buffered crossbar fabric chip interms of on chip
memory and flow control signaling. Additionally, the CICQ switching has so
far been studied only in the context of unicast traffic scheduling.

This dissertation studies the CICQ switching architectureand addresses its
scalability and performance issues. To address the scalability limitations, we
have proposed a CICQ switching architecture where the schedulers are all
embedded within the buffered crossbar fabric chip. This results in an opti-
mized flow control mechanism and allows the design of scalable switching.
We showed that this architecture is able to provide performance guarantees.
We have also studied the problem of multicast as well as the integration of uni-
cast and multicast flows scheduling for the CICQ architecture. To reduce the
internal memory limitation, we proposed a partially buffered crossbar switch-
ing architecture, wherein only a small fixed number of internal buffers are used
inside the buffered crossbar fabric chip.

This chapter is structured in three sections. Section 7.1 summarizes the work
presented in this dissertation. In Section 7.2, we present the mains contri-
butions of the dissertation. Finally, Section 7.3 lists some future directions
and open issues worthy of further research and investigation in the context of
buffered crossbars.

129



130 CHAPTER 7. CONCLUSIONS

7.1 Summary

The dissertation begins by providing the background of the work. A survey of
existing switching architectures was given in Chapter 2. The survey focussed
on the IQ crossbar fabric switching architecture because ofits similarity to
the CICQ switch. We have described the CICQ switching architecture and
outlined its main limitations, motivating the work in this dissertation.

Chapter 3 describes the design and implementation of a set ofembedded sched-
ulers within the buffered crossbar fabric chip. This is a novel class of algo-
rithms, where the arbitration process is fully based on the internal buffer in-
formation. This was motivated by the observation that the buffered crossbar
fabric chip is I/O pin count constrained, implying the existence of unused area
on the chip. When the schedulers are located inside the crossbar chip, there is
no longer a requirement for the flow control to carry the availability of every
crosspoint. Instead, the index of a new arriving cell will beforwarded to the
crossbar chip, resulting in optimized flow control between the crossbar fabric
chip and the input line cards. For a32 × 32 switching system, our embed-
ded CICQ switching architecture achieves up to 70% saving ofchip I/O flow
control pins when compared to existing CICQ switch architectures. This has
the benefit of speeding up the scheduling time while using alimited number
of flow control signals, resulting in more scalable crossbarswitches. It also
improves the performance of the scheduling algorithms, since there are many
algorithms that base their decisions on the internal buffers and when embed-
ded within the crossbar chip would have faster decisions andcheaper access
to resources. The experimental results showed that our set of algorithms out-
perform existing algorithms under various traffic settings. To show the fea-
sibility of the embedded scheduling architecture, we implemented a24 × 24
buffered crossbar core with each port running at 10 Gbps, achieving an aggre-
gated switching bandwidth of 240 Gbps.

Although our devised embedded schedulers were shown to provide high per-
formance under a wide range of unicast traffic patterns, theydo not provide
performance guarantees. In Appendix A, we devised a set of embedded sched-
ulers for a buffered crossbar that can mimic an ideal OQ switch. We showed
that our proposed fabric, when running twice as fast as the external line rate,
can emulate an ideal output queued switch. Our results applied to the class of
OQ switches that use FIFO output scheduling discipline.

Chapter 4 addresses the problem of multicast traffic flows scheduling. We pro-
posed a multicast buffered crossbar switching architecture based on input FIFO



7.2. CONTRIBUTIONS 131

queues along with appropriate scheduling. We showed that our architecture ex-
hibits better performance than existing architectures. Wefurther improved our
multicast switching architecture by using a small number ofinput queues per
port of the switch. We devised a multicast cell assignment algorithm to map
incoming multicast traffic to the input queues. Our algorithm was shown to as-
sign traffic more efficiently, fairly and faster than existing algorithms. We used
simple round robin for cell scheduling and showed its superiority to alternative
proposals. Our study showed an interesting trade off between the number of
input multicast queues and the size of the internal buffers.This results not only
in better performance, but also in significantly reduced scheduling complexity,
hence faster and more scalable switching.

In Chapter 5, we proceeded to scheduling more realistic traffic flows: the
combination of unicast and multicast traffic. We proposed a buffered cross-
bar based architecture, along with the appropriate scheduler, that efficiently
supports both unicast and multicast flows. Our scheduler, while based on a
fanout splitting policy, tends to not exhaust the serial links between the line
cards and the fabric core when servicing multicast traffic. We employed plain
round robin scheduling, both at the traffic level as well as the queue level,
and showed higher performance than previous algorithms. Inorder to verify
the feasibility of our design, we implemented our integrated scheduler for a
16×16 switching system running a 20 Gbps port speed, allowing every switch
port to forward more than 47 million ATM cells per second.

Chapter 6 describes a novel variation to the CICQ switching architecture that
overcomes the buffered crossbar internal memory limitation. We proposed a
partially buffered crossbar switching architecture that is designedto be a good
compromise between the two extreme cases of unbuffered crossbars and fully
buffered crossbars. The proposed partially buffered crossbar is based on few
internal buffers per fabric output, making its cost comparable to unbuffered
crossbars. It overcomes the centralized IQ crossbar scheduling bottleneck by
using distributed and pipelined schedulers, as in fully buffered crossbars, mak-
ing it a practical and low cost architecture for ultra high capacity networks.

7.2 Contributions

The main contributions of this dissertation are as follows:

• Unicast Scheduling:We have designed and implemented a novel class
of unicast scheduling algorithms for the CICQ switching architecture.



132 CHAPTER 7. CONCLUSIONS

These algorithms make their scheduling decisions based only on the in-
ternal buffers information. We have proposed an embedded scheduling
architecture, where all the input and output schedulers areembedded
within the buffered crossbar fabric chip. Embedding the schedulers in-
side the crossbar results inoptimized flow controlbetween the cross-
bar fabric chip and the input line cards. We showed that, for aswitch
with N ports, a flow control of2N logN signals is sufficient for efficient
scheduling as opposed to usingN2 flow control signals. For a typical
32 × 32 switching system, our proposed embedded CICQ switching ar-
chitecture achieves up to 70% saving in chip I/O flow control pins when
compared to existing CICQ switch architectures. This has the benefit of
speeding up the scheduling time while using alimited number of flow
control signals, resulting in more scalable buffered crossbar switches.

• Providing Performance Guarantees:we described a set of embedded
schedulers for a buffered crossbar that can mimic an ideal OQswitch.
We showed that our proposed buffered fabric, using a speedupof two,
can emulate an ideal FIFO OQ switch.

• Multicast Scheduling: We studied the problem of multicast traffic flows
scheduling in CICQ. We proposed a multicast FIFO based buffered
crossbar switching architecture along with appropriate scheduling. We
showed that our architecture outperforms existing architectures. We fur-
ther extended our multicast switching architecture and used a small num-
ber of input queues per port of the switch. We devised a multicast cell
assignment algorithm to map incoming traffic to input queues. Our al-
gorithm was shown to assign traffic more efficiently, fairly and quickly
than existing algorithms. The experimental results showedthat the num-
ber of input multicast queues can be reduced for a little increase in the
size of the internal buffer memory per crosspoint. This results in higher
switching performance in terms of cell delay as well as reducing the
scheduler complexity, providing faster and more scalable switching.

• Integration of Unicast and Multicast Flows: We studied the problem
of multicast traffic flows scheduling in CICQ switches. We proposed,
designed and implemented an integrated scheduling algorithm capable
of scheduling unicast and multicast flows simultaneously. Our design
was implemented for a16 × 16 CICQ switch running a 20 Gbps port
speed, resulting in every switch port capable to forward more than 47
million ATM cells per second.



7.3. FUTURE RESEARCHDIRECTIONS 133

• Partially Buffered Crossbar Switches: We proposed a novel variation
to the CICQ switching architecture that overcomes the buffered cross-
bar excessive internal memory requirement. We proposed apartially
buffered crossbar switching architecture that is designedto be a good
compromise between the two extreme cases of unbuffered crossbars and
fully buffered crossbars. The proposed partially bufferedcrossbar is
based on few internal buffers per fabric output, making its cost compa-
rable to unbuffered crossbars. It overcomes the centralized IQ crossbar
scheduling bottleneck by using distributed and pipelined schedulers as in
fully buffered crossbars making it a practical and low cost architecture
for high speed and capacity networks. Experimental resultssuggested
that using 8 internal buffers per crossbar output is sufficient to achieve
ideal performance for any switch size,N .

7.3 Future Research Directions

The increasing need for terabit switches and routers means that future com-
mercial packet switches must be implemented with reduced scheduling com-
plexity, low cost and scalability while providing performance guarantees. In
this dissertation, we have proposed several schemes for thebuffered crossbar
architecture in order to meet next generation routers requirements. We con-
jecture that there are a number of other research directionsthat require more
investigation. These directions include the following:

• Embedded Multicast Scheduling: The work in this dissertation has
focussed on embedding only unicast scheduling algorithms inside the
buffered crossbar chip. It would be interesting to explore implementing
a scheduler capable of supporting all types of traffic flows (including
multicast and/or the integration of both unicast and multicast flows) in-
side the buffered crossbar fabric. This would provide scalability of the
buffered crossbar fabric architecture irrespective of thetraffic type. Re-
garding the integrated traffic scheduling; although in thisdissertation we
considered multicast fanout-splitting policy due to its high throughput,
adopting non fanout-splitting policy is better as it is morebandwidth
efficient. We believe that a carefully designed CICQ switch architec-
ture, owing to the existence of its internal buffers, can adopt non fanout-
splitting discipline without throughput degradation. Oneway to address
this is by dedicating internal buffers for multicast trafficand crossing



134 CHAPTER 7. CONCLUSIONS

every multicast packet only once over the serial links between the input
line cards and the buffered crossbar core.

• Providing Performance Guarantees:Current VLSI technology is ca-
pable of allowing one cell per crosspoint when the number of the switch
ports is less than one hundred. The size of memory that can fit on chip is
expected to grow. It would be interesting to investigate thepossibility of
providing performance guarantees (OQ emulation) with a speedup less
than two, but with internal buffers of bigger sizes.

• Partially Buffered Crossbar Switches:The partially buffered crossbar
switching architecture is perhaps the most promising of all. The work in
this dissertation has mainly focussed on introducing the concept of the
partially buffered crossbar architecture by testing and validating its per-
formance. We believe that all the future directions outlined above can
be incorporated in one, practical and optimal architecturesuch as the
partially buffered crossbar. One very important issue is toinvestigate
whether it is possible to map the bufferless MWM optimal scheduling
algorithms to the partially buffered crossbar architecture and implement
them in a pipelined and distributed fashion. It has so far been not pos-
sible to achieve this task for fully buffered crossbars and the reason is
mainly attributed to the physically distributed internal buffers as well as
their scheduling. We believe that the partially buffered crossbar archi-
tecture with its efficient internal buffers sharing, can notonly practically
run optimal scheduling, but can also provide throughput, rate and delay
guarantees as well.



Appendix A

Output Queued Switch
Emulation

Output -Queued (OQ) switches are known to be of optimal performance
amongst all queueing approaches. However, an OQ switch is not scal-
able due to the high memory bandwidth limitation (see Section 2.3.3).

While it has been shown that we can emulate an OQ using a more scalable
crossbar switch (i.e., Input-Queued (IQ) switch) and a small speedup, the al-
gorithms proposed were impractical (see Section 2.3.5). More recent work has
shown that a conventional CICQ can practically emulate an OQswitch (see
Section 2.5.2). In this appendix, we show a similar result tothe related work
presented in Section 2.5.2, however with different architecture and scheduling.
In particular, we propose the following:

• A 1-cell internally buffered CICQ switch with embedded schedulers (as
proposed in Chapter 3) that can exactly emulate a FIFO OQ switch. The
embedded CICQ switch core has a speedup of two.

• A set of embedded scheduling algorithms. The input scheduling is
named Most Current Arrival First (MCAF) with an output schedul-
ing scheme named Lowest Time to Leave First (LTF). Our algorithm,
MCAF LTF, particularly its output scheduler is simpler than previously
proposed algorithms.

The remainder of the appendix is structured as follows: Section A.1 describes
the architecture and illustrates the definitions used thereafter. Section A.2
presents the MCAFLTF scheme and provides sufficient proof for OQ emu-

135



136 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

lation by CICQ switch with a speedup of 2.

A.1 Switch Model and Definitions

. . .  

. . .  . . .  

1 N

. . .  

2logN

2logN

1

VOQ1,1

. . .

VOQ1,N

N

VOQN,1

. . .

VOQN,N

Internal Crosspoint 
Buffer, XP

Flow Control

ISN

IPLN

IS1

IPL1

OS1

OPL1

OSN

OPLN

IS: Input Scheduler
IPL: Input Priority List
OS: Output Scheduler
OPL: Output Priority List

Figure A.1: CICQ Switching architecture with embedded schedulers and out-
put queues.

The embedded CICQ switching architecture that we propose here is similar to
the architecture we described in Section 3.3. However, since we use a speedup
of 2, queueing is now required in the inputs as well as in the outputs, as de-
picted in Figure A.1. With a speedup of 2, each time slot is divided into 4
phases as depicted in Figure A.2. These phases are describedbelow:

• Arrival phase:All arrivals occur during this phase.

• First scheduling phase:a scheduling cycle is performed during this
phase.

• Second scheduling phase:a second scheduling cycle is performed dur-
ing this phase.

• Departure phase:All cell departures occur during this phase. The end
of this phase coincides with the end of a time slot.



A.1. SWITCH MODEL AND DEFINITIONS 137

Arrival
Input

Schedule 1
Output

Schedule 1
Output

Schedule 2
Input

Schedule 2
Departure

Schedule Phase 1 Schedule Phase 2

Time Slot

Figure A.2: Scheduling phases in an embedded CICQ Switch.

In the following section, we provide some definitions necessary for the deriva-
tion of the OQ emulation. These definitions are similar to those presented
in [35]:

1. Input Priority List (IPL): Each input scheduler maintains an input pri-
ority list, IPL, of all cells queued in its corresponding input port. The
IPL determines the departure order of cells from the input tothe internal
buffers.

2. Shadow OQ Switch: A theoretical OQ switch that determines the de-
parture order and time of each cell from the CICQ to emulate anOQ.

3. Time-to-Leave (TTL): Equals the departure time slot of cell c, speci-
fied by the shadow OQ switch. Note that all cells, destined forthe same
output, must have distinct TTLs.

4. Output Priority List (OPL): Each output scheduler,j, maintains an
output priority list, OPL, of all cells queued at the column buffer CXPBj .
The OPL at an output scheduler is composed a FIFO queue and a PIFO
queue. The ordering of cells in the FIFO and PIFO queues determines
the departure order of cells from the internal buffers to theoutput queue.
Cells are inserted in the PIFO queues based on their TTL field.A cell
c, destined to a PIFO queue, is inserted ahead of all cells with a greater
TTL and behind all cells with smaller TTL.

5. Input Thread (IT): The input thread of a cell c,IT(c), is equal to the
number of cells ahead of c in its input priority list.IT(c) is defined for
each cell queued at an input port. It is influenced by the arrival and input
scheduling phases. A newly arriving cell may causeIT(c) to increment.
However, an input scheduling phase may causeIT(c) to decrement. If c
is transferred to the internal buffers, itsIT(c) becomes zero .



138 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

6. Output Cushion (OC): The output cushion of a cell c is equal to the
number of cells at c’s output queue with lower TTL than c. Unlike IT(c),
OC(c) is influenced by the output scheduling and the departure phases,
respectively. An output scheduling phase may causeOC(c)to increment.
Conversely, a departure phase may causeOC(c) to decrement.OC(c)
does not change during an input scheduling phase.

7. Slackness (L):Every time slot, the slackness of cell c,L(c), equals the
output cushion of cell c minus its input thread. That is,

L(c) = OC(c) − IT (c)

The slackness is defined for cells queued either at an input port or at a
crosspoint buffer .

The slackness of a cell c determines the urgency of c’s transfer from its incom-
ing port to its outgoing port [35]. Recall that emulating OQ means that every
cell must reach its output queue on or before its time to leaveas specified by
the shadow OQ. The OQ emulation process is highly influenced by the slack-
ness of every cell, c, inside the system. Any increase inL(c) is translated by
either an increase inOC(c)or a decrease inIT(c). In both cases,L(c) increases
and there is no fear for c of reaching its output on time. Any decrease inL(c),
however, is translated by either a decrease inOC(c)or an increase inIT(c). In
both cases,L(c) decreases and c should be urgently transferred to its output
queue before it misses its time to leave. As a result, in orderfor the OQ em-
ulation to occur, we have to ensure that the slackness of every cell inside the
switch is positive and non-decreasing.

During each time slot, every cell, c, can have one of the following statuses:
just arrived, selected for input scheduling, not selected for input scheduling
(blocked by a flow control), selected for output scheduling,not selected for
output scheduling (blocked by a more urgent cell) or departed the switch. Note
that we are no longer concerned about any cell that either reaches its output
queue (i.e., the status: selected for output scheduling) ordeparted the switch.
The OQ emulation takes place if, irrespective of its status,any cell, c, has a non
negative slackness. In the following section, we propose a scheduling scheme
along with its complete proof that a CICQ switch running at a speedup of 2 can
exactly emulate an OQ switch. In particular, we will show that, upon its arrival,
every cell, c, is inserted with a non-negative slackness. Then, ongoing, as long
as the cell c is inside the switch and having one of the statuses of interest, its
slackness never decreases.



A.2. FIFO OUTPUT QUEUEING EMULATION 139

A.2 FIFO Output Queueing Emulation

This section provides the specification of our proposed scheduling scheme
along with the sufficient conditions that prove that, with a speedup of two, a
CICQ switch can exactly emulate an OQ switch. The specification of each of
scheduling phase is as follows:

Input Schedule: MCAF
Each input, i, maintains its IPL as follows:

- If there is a currently arriving cell,c, to aVOQi,j.

- Then insertc, just behind the last entry ofVOQi,j in the IPL.

- If VOQi,j is eligible

. If VOQi,j contains other cells thanc

Move the HoL cell ofVOQi,j to the front of IPL and assignc
a priority flag ‘P’.

. Else, move the HoL cell ofVOQi,j to the front of IPL and assignc
a priority flag ‘F’.

- Serve cells based on IPL order.

Output Schedule: LTF
Each output, j, maintains its OPL as follows:

- If cell c has a priority flag ‘P’

. Then, insertc into thePIFOj.

. Else, insertc into the tail ofFIFOj.

- Move the HoL cell ofPIFOj or FIFOj based on the Lowest TTL to the
front of the OPL.

- Serve cells based on OPL order.



140 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

Lemma A.1. The LTF output scheduling scheme ensures Lowest TTL (LTTL)
scheduling property.

Proof. Every cell, c, sent from an inputVOQi,j to a crosspoint buffer,XPi,j,
is inserted either at the tail ofFIFOj or in thePIFOj.

• Case 1: Cell, c, is inserted at the tail ofFIFOj

i) Cell, c, enters the switch at the current time slot.

ii) Similar to FIFO OQ, if simultaneous arrivals occur to thesame
FIFO, tie-breaking is used.

iii) For cell c’, ahead of c inFIFOj, TTL(c’) < TTL(c)

iv) Combining (i), (ii) and (iii) implies: cells inFIFOj are ordered by
their TTL, and the HoL cell ofFIFOj has the lowest TTL.

• Case 2: cell, c, is inserted inPIFOj

1) By definition 4, inserted cells in thePIFOj are ordered by their
LTTL.

2) The LTF scheme compares thePIFOj HoL cell with PIFOj HoL
cell and moves the cell with Lowest TTL to the front of the OPL.

3) The LTF output algorithm serves cells based on the OPL order.

Combining (iv), (1), (2) and (3) proves the Lemma.

Theorem A.1. For a CICQ switch employing the MCAFLTF scheduling
scheme, the slackness of any cell, c, that does not yet reach its output queue,
increases by at least 1 during each scheduling phase.

Proof. We know that any cell, c, that does not yet reach its output queue can
only be either at internal buffer or at an input queue. Therefore we have the
two followings cases:

• Case 1: Cell, c, is queued at an internal buffer,XPi,j

i) By Definition 7,

L(c) = OC(c) − IT (c)



A.2. FIFO OUTPUT QUEUEING EMULATION 141

ii) By Definition 5, since cell c is queued at the internal buffer, then
IT(c) = 0.

iii) If c ends the scheduling phase at the internal buffer, weknow that
cell, c’, such thatTTL(c’) < TTL(c) has been selected for output
scheduling (Lemma A.1). Hence,OC(c) increases by 1

• Combining (i), (ii) and (iii) yields:L(c) increases by 1. (1)

• Case 2: cell, c, is queued at an input queue,VOQi,j

In this case, there are two possibilities: eitherVOQi,j is eligible or it is
backlogged.

• Case a:VOQi,j is eligible

i) During the input scheduling phase either c is chosen or a cell
c’ ahead of c in the IPL is chosen to be transferred to the in-
ternal buffer.

ii) If c is chosen,IT (c) becomes zero, and therefore decreases at
least by 1.

iii) If c’ is chosen,IT(c) decreases by 1.

iv) By definition 6, OC(c) remains unchanged during input
scheduling.

• Combining (i), (ii), (iii) and (iv) yields:L(c) increases by 1. (2)

• Case b:VOQi,j is is backlogged by an internally queued cell c’

i) Both c and c’ belong to the same FIFOVOQi,j.
Hence,TTL(c’) < TTL(c).

ii) During an output scheduling phase, either c’ or c” such that:

TTL(c”) < TTL(c′) < TTL(c)

is sent to the output. In either cases,OC(c) increases by 1.

iii) During an input scheduling phase,IT(c) either decreases or
remains unchanged.

• Combining (i), (ii) and (iii) yields:L(c) increases by 1. (3)

• The combination of (1), (2) and (3) yields: the slackness ofany cell, c,
that does not yet reach its output queue, increases at least by 1 during
each scheduling phase. Hence, the proof of Theorem A.1 is complete.



142 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

Theorem A.2. Consider a CICQ switch with a speedup of 2 that employs
MCAF LTF scheduling policy. For every time slot and for every cell, c, that
does not yet reach its output queue, the slackness never decreases.

Proof. For the CICQ switch operating at speedup of 2, the time slot isdivided
into an arrival phase, two scheduling phases and a departurephase.

i) During an arrival phase,IT(c) can increase by at most 1 (in case the newly
arriving cell is more urgent than c). The possibility thatIT(c) increases by
at most 1 causesL(c) to decrease by 1.

ii) During a departure phase,OC(c)decreases by exactly 1, since a cell in its
output queue left the switch. The decrease ofOC(c)by 1 causesL(c) to
decrease by exactly 1.

iii) From Theorem A.2, we know that the slackness of any cell,c, that does
not yet reach its output queue, increases at least by 1 each scheduling
phase. Since we have a speedup of 2, every time slot contains two schedul-
ing phases. Hence, every time slot,L(c) increases by at least 2.

Summing over (i), (ii) and (iii) results in a non decreasing slackness,L(c).

Now, as we proved that the slackness never decreases from time slot to the
next, we need to ensure that any arriving cell, c, must be inserted into the IPL
with a non negative slackness.

Lemma A.2. The MCAFLTF scheduling scheme satisfies the non-negative
slackness (NNS) insertion property for a CICQ switch running at a speedup of
2.

Proof. (by induction)
Suppose that lemma 2 held up until time slott. We show that lemma 2 holds
at time slott + 1.
At time slott + 1, a new arriving cell, c, can arrive to either an empty or a non
empty VOQ, as follows:

• Case a: Cell c arrives to an emptyVOQi,j

Based on MCAF scheme, an empty VOQ to which arrival occurs be-
come highest priority and has the following:



A.2. FIFO OUTPUT QUEUEING EMULATION 143

IT (c) = 0, OC(c) ≥ 0, thus:

L(c) = OC(c) − IT (c) ≥ 0 (4)

• Case b: Cell c arrives to a non emptyV OQi,j

We know that the NNS property held up until the end of time slott.
Suppose that cell, c’, behind which c is inserted had a positive slackness
of Lt(c’) at timet. From Theorem A.2, we know that the slackness never
decreases from time slot to the next. This implies:

Lt+1(c
′) = OCt+1(c

′) − ITt+1(c
′)

≥ Lt(c
′) (5)

Cell c is behind c’, that is:

ITt+1(c) = ITt+1(c
′) + 1 (6)

Both, c and c’, are destined to the same output andTTL(c’) < TTL(c)
implying:

OCt+1(c) ≥ OCt+1(c
′) + 1 (7)

(5), (6) and (7) imply:

Lt+1(c) = OCt+1(c) − ITt+1(c)

≥ (OCt+1(c
′) + 1) − (ITt+1(c

′) + 1)

≥ Lt+1(c
′)

≥ Lt(c
′) (8)

Combining (4) and (8) results in a non-negative slackness insertion policy.
Hence, the proof of Lemma A.2 is done.

Having showed that a CICQ using MCAFLTF scheduling scheme and a
speedup of 2 satisfies the non-negative slackness insertionpolicy and a non-
decreasing slackness from time slot to the next, we are readyto prove our main
theorem.



144 APPENDIX A. OUTPUT QUEUED SWITCH EMULATION

Theorem A.3. A CICQ switch employing the MCAFLTF scheduling policy
with two times speed up can exactly emulate a FIFOOQ switch.

Proof. (By induction)
Suppose that the CICQ has emulated a FIFOOQ switch up until the departure
phase of time slott. We show that any cell, c, such thatTTL(c) = t +1 reaches
its output queue on or before the second scheduling phase of time slott + 1 as
follows:

• Case a: Cell c is queued at an internal buffer,XPi,j

i) There are no cells left inside the switch withTTL< t+1 .

ii) TTL(c) = t +1 and the LTF scheme ensures LTTL scheduling
(Lemma A.1).

• (i) and (ii) result in c being scheduled during the first output scheduling
phase of time slott + 1. (9)

• Case b: cell, c,is queued at an input queue,VOQi,j

i) Cell c has the lowestTTL, henceOCt+1(c) = 0.

ii) Cell c was inserted withNNS(Lemma A.2).

iii) Since c has the lowestTTL, all cells with lowerTTL than c are
gone from the system. Thus the internal fabricXPi,j must be
available.

• (i) and (ii)imply ITt+1(c) = 0, and thus c must be in the front of the IPL.
(10)

• (iii) and (10) result inVOQi,j being eligible and cell c must be trans-
ferred to the internal buffer during the first input scheduling phase (11).

• (iii) and (11) result in cell c being chosen by the output scheduler during
the first output scheduling phase.

In our embedded CICQ switch, the arrival phase and the first scheduling
phase can be performed simultaneously to reduce the round trip delay of input
scheduling, as in Figure A.3. In this case, the embedded CICQwill emulate



A.2. FIFO OUTPUT QUEUEING EMULATION 145

an OQ with one time slot delay. The proof remains the same, by always con-
sidering only the cells that reach the switch input queues one scheduling phase
earlier. The reason for this is because the first scheduling phase excludes cur-
rently arriving cells, which are considered starting from the following input
scheduling phase onwards.

Arrival

Input 

Schedule 1

Output 

Schedule 1

Output 

Schedule 2

Input 

Schedule 2
Departure

Schedule Phase 1 Schedule Phase 2

Time Slot

Figure A.3: Scheduling phases in embedded CICQ Switch with parallel arrival
and input scheduling phases.





Appendix B

Performance Simulation
Environment

This appendix describes the simulation environment used to evaluate the
performance of the switching systems studied in this dissertation. First,
we introduce the software simulation tool, along with a generic switch-

ing system and provide some definitions for its inputs and outputs. We, then,
illustrate and describe the traffic models employed to run the experiments. Fi-
nally, we explain the indices used to evaluate the performance of the schedul-
ing algorithms and the switching architectures studied in this dissertation.

B.1 Simulation Environment

Throughout all the simulation studies in the dissertation,we used the
SIM [108] simulator. SIM is a slotted-time simulator written in ANSI C and
was designed for simulating fixed-size switching architectures, such as ATM
switches. Instead of discrete-time simulation (event-driven), the simulation in
SIM progresses on a time-slot basis (ATM cell). Every time-slot consists of
three main steps:(i) check the arrival of new cells;(ii) schedule the transfer of
cells from the inputs of the switch to the output of the switch; and(iii) sched-
ule the departure of cells from the outputs of the switch. SIMis structured in
modules and each module performs a specific task, such as traffic generator,
input queues, fabric switch, scheduling algorithm, and output queues.

We have modified SIM in order to incorporate our scheduling algorithms,
queueing structures and the different buffered crossbar configurations. We

147



148 APPENDIX B. PERFORMANCESIMULATION ENVIRONMENT

. . .

1 1

N

. . .

VOQ1,1

. . .

VOQ1,N

VOQN,1

. . .

VOQN,N

. . .

N

A1(n) A1,1
(n)

AN(n)
A

N,N(n)

DN(n)

D1(n)

Figure B.1: The dynamics of a generic switch.

have included the queueing structure to support the multicast k input queues
studied in Chapter 4. We have included two new modules for input schedul-
ing and output scheduling respectively, used throughout the whole disserta-
tion. We have also included two new modules to support the buffered crossbar
switch fabric used throughout the dissertation as well as the partially buffered
crossbar switch introduced in Chapter 6.

A generic switch withN inputs andN outputs is depicted in Figure B.1.
Ai,j(n) denotes the number of arrivals to inputi of cells destined to output
j at time-slotn, while Ai(n) is the aggregate number of arrivals to inputi

during time-slotn. Every time-slot, at most one cell can arrive at each input.
The arrival rate ofAi,j(n) is denoted byλi,j. Di,j(n) denotes the number of
departures from outputj of cells arriving from inputi while Dj(n) is the ag-
gregate number of departures from outputj at time-slotn. Similarly, every
time-slot, at most one cell can depart from each output. In order to gather per-
formance results and related statistics, we run SIM for one million time-slots
and we gather the data when fourth the simulation time has elapsed. In all the
simulations, we consideradmissiblearrival process and i.i.d Bernoulli traffic
as defined below.

Definition B.1. An arrival process is said to be admissible if no input or output
is oversubscribed, i.e, when

∑N
i=1

λi,j < 1,
∑N

j=1
λi,j < 1, λi,j ≥ 0.

Definition B.2. Arriving Traffic is said to be independent and identically dis-
tributed (i.i.d) if and only if:



B.2. TRAFFIC SCENARIOS 149

1. Every arrival is independent of all other arrivals both atthe same input
and at different inputs.

2. All arrivals at each input are identically distributed.

B.2 Traffic Scenarios

A traffic scenario is generally characterized by two random processes to model
the spatial and temporal characteristics. The temporal process refers to the
inter-arrival times of successive cell arrivals. This is characterized by the ar-
rival frequency, or input load. The spatial process of traffic is characterized
by the distribution of arriving cells over the output destinations. Throughout
our simulations, we used both uniform and non-uniform traffic models as de-
scribed in the next section.

B.2.1 Uniform Traffic

Internet traffic is a mix of all types of traffic. Uniform traffic constitutes a large
part of this traffic. The two widely used uniform traffic patterns are Bernoulli
uniform and Bursty uniform. We describe each of them below.

Bernoulli Uniform Traffic

This a common test-bed traffic scenario used for evaluating the performance of
switch performance. In every time-slot, a cell is generatedwith probability ρ

(also known as the normalized switch input load). Since the traffic is uniform,
ρ=λ. The output destination is uniformly distributed over all,N , outputs.

Bursty Uniform Traffic

Bursty traffic is a commonly used traffic model due to its closeapproximation
of Internet traffic. Real network traffic is highly correlated from cell to cell [40]
and so in practice, cells tend to arrive in bursts. When data traffic arrives
at the input ports of a router, it is often segmented into cells, such as video
and/or audio frames, forming a burst or a set of bursts. Therefore, studying
the performance of a switching system under bursty traffic isvery important.
Bursty traffic can be modeled by a two-state Markov-chain consisting of an ON
(busy) and an OFF (idle) state. During the ON state, cells (all with the same



150 APPENDIX B. PERFORMANCESIMULATION ENVIRONMENT

destination) are generated every time-slot. During an OFF state, no traffic
is generated. The busy and idle periods contain a geometrically distributed
number of cells, known as the burst size and denoted byb.

B.2.2 Non-Uniform Traffic

Traffic non-uniformity refers to the variation in the distribution of input traffic
over the destination output ports. Internet traffic is, generally, non-uniform
and asymmetric. Many Internet traffic examples confirm this property, such
as client-server applications, where a number of clients communicate with a
small number of servers. Since it is nearly impossible to simulate all such
workloads, there exist some representative and commonly used non-uniform
traffic models. In our simulations, we used two known non-uniform models
which we describe next.

Diagonal Traffic

The Diagonal traffic is defined as in the following traffic matrix, for 4 × 4
switch:

λ(Diagonal) =
1

3









2ρ ρ 0 0
0 2ρ ρ 0
0 0 2ρ ρ

ρ 0 0 2ρ









This is a very skewed and critical traffic, in the sense that input i has cells only
for outputi and output|i + 1|. A diagonal load hasλi,i = 2ρ

3
, λi,|i+1| = ρ

3
∀ i

andλi,j = 0 for all otheri andj.

Unbalanced Traffic

The unbalanced traffic is defined by using an unbalanced probability, ω. For
a N × N switch, the traffic load at each input port is defined byρ. Then, for
each input ports and output portd, the traffic load,ρs,d, is given by:

ρs,d =

{

ρ (ω + 1−ω
N ) if s = d;

ρ 1−ω
N otherwise.

Note that whenω = 0, the load is uniform over all outputs and whenω = 1,
the traffic is totally unbalanced (only the diagonal). In ourexperiments, we



B.3. PERFORMANCE INDICES 151

setω to be0.5 because this value corresponds to the pattern with the lowest
performance (the hardest to schedule).

B.3 Performance Indices

Three common metrics are, generally, used to evaluate the performance of a
switching system: the average cell delay, the switch throughput and the in-
put queues occupancies (for buffer sizing and cell loss ratio). We used these
metrics to evaluate the studied switching systems. We describe each of these
metrics below.

Average Cell Delay

The delay of a cell is the time duration the cell spends insidethe switch queues
until it reaches its output port. Depending on the switch architecture used (see
Figure B.1), the delay of a cell can refer to the time spent inside the input
VOQs (in the case of IQ bufferless switches) or the time spentinside the input
VOQs as well as the internal buffers (in the case of CICQ buffered switches).
In our study, we consider the average delay over all cells. Note that the average
cell delay can be referred to as the mean cell delay, or the mean (average) cell
latency. The average cell delay is important as it indicatesthe efficiency of a
scheduling algorithm (or of a switching architecture).

Switch Throughput

The switch throughput is defined as the ratio between the output load and the
input load of the switch. The maximum throughput is defined asthe maxi-
mum input load after which the switch becomes unstable. Instability means
that the input load is higher than the throughput of the switch, hence queues
will keep growing indefinitely. The maximum throughput is also known as the
saturation throughput of the switch and indicates the switch capacity. If the
saturation throughput of a switch with a given scheduling algorithm equals to
one, which is the maximum value due for a speedup of one, then the given
scheduling algorithm is said to achieve 100% throughput. Given two schedul-
ing algorithms both of which can achieve 100% throughput, the one with the
shorter average cell delay is preferable. A scheduling algorithm is considered
stable if it provides 100% throughput and it keeps the input buffer size bound
in number of cells.



152 APPENDIX B. PERFORMANCESIMULATION ENVIRONMENT

Input Queues Occupancies

The input queues occupancies metric indicates the stability of the switching
system both with respect to the scheduling algorithm used and/or the underly-
ing switching fabric topology. The input queues occupancies can also serve
as an indication on the input buffer size needed to prevent cell loss. We
used theL2 norm vector representing the input VOQs occupancies [104].Let
V OQi,j(n) be the number of cells queued inV OQi,j at time slotn. TheL2

norm1 vector at time slotn is denoted by‖L(n)‖ and defined as follows:

‖L(n)‖ =

√

√

√

√

n
∑

i=1

n
∑

j=1

(

V OQi,j(n)
)2

As it was shown in [104], the input queues occupancies can serve to prove the
stability of the scheduling algorithm. That is if, under a scheduling algorithm
X, one can show thatE(‖L(n)‖) < ∞, then it can be concluded thatX is
stable. Here,E(x) refers to the expected value of x.

1Also known as the Euclidean norm.



Bibliography

[1] W. Bux, W. Denzel, T. Engbersen, A. Herkersdorf, and R. Luijten,
“Technologies and Building Blocks for Fast Packet Forwarding,” IEEE
Communications Magazine, vol. 39, no. 01, pp. 70–77, January 2001.

[2] L. Roberts, “Beyond Moore’s Law: Internet Growth Trends,” IEEE
Computer Magazine, vol. 33, no. 1, pp. 117–119, January 2000.

[3] The Internet Systems Consortium, Inc. (ISC), ”http://www.isc.org”.

[4] L. G. Roberts, “Data by the Packet,”IEEE Spectrum, vol. 11, no. 2, pp.
46–51, February 1974.

[5] B. Leiner, V. Cerf, D. Clark, R. Khan, L. Kleinrock, D. Lynch, J. Postel,
L. Roberts, and S. Wolff, “The Past and Future History of the Internet,”
Communications of the ACM, vol. 40, no. 2, pp. 102–108, February
1997.

[6] L. Kleinrock, “Information Flow in Large CommunicationNets,” RLE
Quarterly Progress Report, July 1961.

[7] M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,”
IEEE/ACM Transactions On Networking, vol. COM-28, no. 04, April
1980.

[8] G. Pfisher and A. Norton, “Hot Spot Contention and Combining in Mul-
tistage Interconnection Networks,”IEEE Transactions On Computers,
vol. C-34, no. 08, pp. 934–948, October 1985.

[9] M. Katevenis, “Fast Switching and Fair Control of Congested Flow in
Broad-Band Networks,”IEEE Journal in Selected Areas in Communi-
cations, vol. 05, no. 08, pp. 1315–1326, October 1987.

153



154 BIBLIOGRAPHY

[10] U. Black, ATM: Foundation for Broadband Networks. Prentice Hall,
1995.

[11] R. Y. Awdeh and H. T. Mouftah, “Survey of ATM Switch Architec-
tures,” Computer Networks and ISDN Systems, vol. 27, no. 12, pp.
1567–1613, September 1995.

[12] D. Clark, “The Design Philosophy of the Darpa Internet Protocols,”
ACM SIGCOMM, pp. 106–114, August 1988.

[13] S. Keshav and R. Sharma, “Issues and Trends in Router Design,” IEEE
Communications Magazine, vol. 36, no. 05, pp. 144–151, May 1998.

[14] A. Tanenbaum,Computer Networks, Third Edition ed. Prentice Hall,
1996.

[15] L. Roberts, “Packet Switching or Optical Switching?”IEEE Internet
Computing, vol. 04, no. 01, January/February 2000.

[16] P. Gupta, “Algorithms for Routing Lookups and Packet Classifcation,”
Ph.D. dissertation, Stanford University, 2000.

[17] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintaining Statis-
tics Counters in Router Line Cards,”IEEE Micro, pp. 76–81, Jan-
uary/February 2002.

[18] N. McKeown, “A Fast Switched Backplane For A Gigabit Switched
Router,”Business Communications Review, vol. 27, no. 12, 1997.

[19] J. Hui, “Switching and Traffic Theory for Integrated Broadband Net-
works,” Kluwer Academic Publishers, January 1990.

[20] A. Pattavina, “Switching Theory: Architectures and Performance in
Broadband ATM Networks,”Wiley, John & Sons, December 1997.

[21] C. Minkenberg, “On Packet Switch Design,” Ph.D. dissertation, Tech-
nische Universiteit Eindhoven, September 2001.

[22] X. Li, L. Mhamdi, J. Liu, K. Pun, and M. Hamdi,Architectures of In-
ternet Switches and Routers. Springer-Verlag, September 2006.

[23] J. H. Patel, “Performance of Processor-Memory Interconnections for
Multiprocessors,”IEEE Transactions on Computers, vol. 30, no. 10,
pp. 771–780, 1981.



BIBLIOGRAPHY 155

[24] C. Clos, “A Study of Nonblocking Switching Networks,”Bell Systems
Technical Journal, vol. 32, p. 406–424, 1953.

[25] V. Benes, “Optimal Rearrangeable Multistage Connecting Networks,”
Bell Systems Technical Journal, vol. 43, pp. 1641–1656, 1964.

[26] S. Iyer and N. McKeown, “Analysis of the Parallel PacketSwitch Ar-
chitecture,”IEEE/ACM Transactions on Networking, vol. 11, no. 2, pp.
314–324, 2003.

[27] N. Chrysos and M. Katevenis, “Scheduling in Non-Blocking Buffered
Three-Stage Switching Fabrics,”IEEE Infocom, April 2006.

[28] T. Aramaki, H. Suzuki, S. Hayano, and T. Takeuchi, “Parallel ’ATOM’
Switch Architecture For High Speed ATM Networks,”IEEE Interna-
tional Conference on Communications (ICC), pp. 250–254, 1992.

[29] M. Devault, J. Y. Cochennec, and M. Servel, “The PreludeATD Exper-
iment: Assessments and Future Prospects,”IEEE Journal on Selected
Areas in Communications, vol. 06, no. 09, pp. 1528–1537, December
1998.

[30] Cisco Systems, “Cisco 12000 Gigabit Switch Router.”

[31] Lucent Technologies, “Performance Optimized Ethernet Switching,”
Cajun White Paper, 1997.

[32] K. Yoshigoe, “Design and Evaluation of the Combined Input Cross-
bar Queued (CICQ) Switch,” Ph.D. dissertation, Universityof South
Florida, August 2004.

[33] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queuing Algorithm,”Internetworking: Research and Experience,
vol. 01, no. 01, pp. 3–26, September 1990.

[34] H. Zhang, “Service Disciplines for Guaranteed Performance Service in
Packet-switching Networks,”Proceedings of the IEEE, vol. 83, no. 10,
pp. 1374–1396, October 1995.

[35] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching Output
Queueing with a Combined Input Output Queued Switch,”IEEE Jour-
nal on Selected Areas in Communications, vol. 17, no. 06, pp. 1030–
1039, December 1999.



156 BIBLIOGRAPHY

[36] M. Karol, M. Hluchyj, and S. Morgan, “Input Versus Output Queuing
on a Space-Division Packet Switch,”IEEE Transactions on Communi-
cations, vol. 35, no. 09, pp. 1337–1356, December 1987.

[37] S. Q. Li, “Performance of a Non-blocking Space-division Packet Switch
with Correlated Input Traffic,”IEEE Globecom, pp. 1754 – 1763, 1989.

[38] C. Y. Chang, A. J. Paulraj, and T. Kailath, “A Broadband Packet Switch
Architecture with Input and Output Queuing,”IEEE Globecom, 1994.

[39] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High Speed Switch
Scheduling for Local Area Networks,”ACM Transactions on Computer
Systems, pp. 319–352, 1993.

[40] N. McKeown, “Scheduling Algorithms for Input-Queued Cell
Switches,” Ph.D. dissertation, University of California at Berkeley, May
1995.

[41] H. C. Chi and Y. Tamir, “Symmetric Crossbar Arbiters forVLSI Com-
munication Switches,”IEEE Transactions on Parallel and Distributed
Systems, vol. 04, no. 01, pp. 13–27, January 1993.

[42] N. McKeown, B. Prabhakar, and M. Zhu, “Matching Output Queueing
with Combined Input and Output Queueing,”35th Annual Allerton Con-
ference on Communications, Control and Computing, October 1997.

[43] P. Krishna, N. S. Patel, A. Charny, and R. J. Simcoe, “On the Speedup
Required for Work-Conserving Crossbar Switches,”IEEE Journal on
Selected Areas in Communications, vol. 17, no. 06, pp. 1528–1537, June
1999.

[44] B. Prabhakar and N. McKeown, “On the Speedup Required for Com-
bined Input and Output Queued Switching,”Automatica, vol. 35, no. 12,
pp. 1909–1920, September 1999.

[45] A. Mekkittikul, “Scheduling Non-Uniform Traffic In High Speed Packet
Switches and Routers,” Ph.D. dissertation, Stanford University, Novem-
ber 1998.

[46] M. A. Marsan, A. Bianco, E. Leonardi, and L. Milia, “RPA:A Flexible
Scheduling Algorithm for Input Buffered Switches,”IEEE Transactions
on Communications, vol. 47, no. 06, p. 1921–1933, May 1999.



BIBLIOGRAPHY 157

[47] P. Giaccone, “Queueing and Scheduling Algorithms for High Perfor-
mance Routers,” Ph.D. dissertation, Politecnico Di Torino, February
2002.

[48] R. E. Tarjan, “Data Structures and Network Algorithms,” Society for
Industrial & Applied Mathematics, 1983.

[49] J. E. Hopcroft and R. Karp, “AnN5/2 Algorithm For Maximum Match-
ing In Bipartite Graphs,”Society for Industrial & Applied Mathematics
Journal on Computing, vol. 02, p. 225–231, 1973.

[50] H. C. Chi and Y. Tamir, “Starvation Prevention For Arbiters Of Cross-
bars With Multi-Queue Input Buffers,”IEEE International Conference
on Communications (ICC), pp. 1646–1650, June 1992.

[51] D. Serpanos and P. I. Antoniadis, “FIRM: A Class of Distributed
Scheduling Algorithms for High-Speed ATM Switches with Input
Queues,”IEEE Infocom, 2000.

[52] A. Mekkittikul and N. McKeown, “A Starvation-Free Algorithm For
Achieving 100% Throughput in an Input-Queued Switch,”International
Conference on Computer Communications and Networks (ICCCN), pp.
226–231, October 1996.

[53] N. McKeown, “iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Transactions On Networking, vol. 07, no. 02,
pp. 188–201, April 1999.

[54] Y. Jiang and M. Hamdi, “A Fully Desyncronized Round-Robin Match-
ing Scheduler For A VOQ Packet Switch Architecture,”IEEE Workshop
on High Performance Switching and Routing, pp. 407–411, 2001.

[55] R. Bakka and M. Dieudonne, “Switching Circuits for Digital Packet
Switching Network,”United States Patent 4,314,367, February 1982.

[56] S. Nojima, E. Tsutsui, H. Fukuda, and M. Hashimmoto, “Integrated
Packet Network Using Bus Matrix,”IEEE Transactions on Communi-
cations, vol. 05, no. 08, pp. 1284–1291, October 1987.

[57] A. K. Gupta, L. O. Barbosa, and N. D. Gorganas, “16x16 Limited Inter-
mediate Buffer Switch Module for ATM Networks for B-ISDN,”IEEE
Globecom, pp. 939–943, December 1991.



158 BIBLIOGRAPHY

[58] ——, “Limited Intermediate Buffer Switch Modules and Their Inter-
connection for B-ISDN,”IEEE International Conference on Communi-
cations (ICC), pp. 1646–1650, June 1992.

[59] M. Lin and N. Mckeown, “The Throughput of A Buffered Crossbar
Switch,” IEEE Communications Letters, vol. 9, no. 5, pp. 465–467, May
2005.

[60] M. Nabeshima, “Performance Evaluation of Combined Input-and
Crosspoint-Queued Switch,”IEICE Transactions On Communications,
vol. B83-B, no. 3, March. 2000.

[61] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos,
“Variable Packet Size Buffered Crossbar (CICQ) Switches,”IEEE In-
ternational Conference on Communications (ICC 2004), vol. 02, pp.
1090–1096, June 2004.

[62] K. Yoshigoe, A. Jacob, and K. J. Christensen, “The RR/RRCICQ
Switch: Hardware Design for 10-Gbps Link Speed,”IEEE International
Performance, Computing, and Communications Conference, pp. 481–
485, April 2003.

[63] F. Abel, C. Minkenberg, P. Luijten, M. Gusat, and I. Iliadis, “A Four-
Terabit Packet Switch Supporting Long Round-Trip Times,”IEEE Mi-
cro, vol. 23, no. 1, pp. 10–24, January/February 2003.

[64] R. R. Cessa, “Design and Analysis of Reliable High-Performance
Packet Switches,” Ph.D. dissertation, Plytechnic University, April 2001.

[65] S. T. Chuang, “Providing Performance Guarantees with Crossbar-Based
Routers,” Ph.D. dissertation, Stanford University, December 2004.

[66] T. Javadi, R. Magill, and T. Hrabik, “A High-ThroughputAlgorithm for
Buffered Crossbar Switch Fabric,”IEEE International Conference on
Communications (ICC), pp. 1581–1591, June 2001.

[67] R. Rojas-Cessa, Z. J. E. Oki, and H. J. Chao, “CIXB-1: Combined Input
One-Cell-Crosspoint Buffered Switch,”IEEE Workshop on High Per-
formance Switching and Routing (HPSR), pp. 324–329, 2001.

[68] K. Yoshigoe and K. J. Christensen, “A Parallel-Polled Virtual Output
Queued Switch with a Buffered Crossbar,”IEEE Workshop on High
Performance Switching and Routing, pp. 271–275, 2001.



BIBLIOGRAPHY 159

[69] L. Mhamdi and M. Hamdi, “Practical Scheduling Algorithms for
High-Performance Packet Switches,”IEEE International Conference on
Communications (ICC), vol. 03, pp. 1659–1663, May 2003.

[70] R. R. Cessa, E. Oki, and H. J. Chao, “On the Combined InputCrosspoint
Buffered Packet Switch with Round-Robin Arbitration,”IEEE Transac-
tions on Communications, vol. 53, no. 11, p. 1945–1951, November
2005.

[71] B. Magill, C. Rohrs, and R. Stevenson, “Output Queued Switch Emula-
tion by a Buffered Crossbar Fabric,”IEEE Journal on Selected Areas in
Communications, vol. 17, no. 06, pp. 1030–1039, May. 2003.

[72] S. Chuang, S. Iyer, and N. McKeown, “Practical Algorithms for Perfor-
mance Guarantees in Buffered Crossbars,”IEEE Infocom, March 2005.

[73] J. Turner, “Strong Performance Guarantees for Asynchronous Crossbar
Schedulers,”IEEE Infocom, pp. 1–11, April 2006.

[74] D. Pan and Y. Yang, “Localized Asynchronous Packet Scheduling For
Buffered Crossbar Switches,”Proceedings of the 2006 ACM/IEEE Sym-
posium on Architecture for Networking and Communications Systems
(ANCS 06), pp. 153–162, December 2006.

[75] L. Mhamdi, M. Hamdi, C. Kachris, S. Wong, and S. Vassiliadis, “High-
Performance Switching Based on Buffered Crossbar Fabrics,” Com-
puter Networks, vol. 50, no. 13, pp. 2271–2285, September 2006.

[76] Xilinx Inc., “Virtex-4 Family Overview,” http://www.xilinx.com,
March 2005.

[77] T. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction To Algo-
rithms. The MIT Press, Cambridge, Massachusetts, March 1990.

[78] H. J. Chao, “Next Generation Routers,”Proceedings of the IEEE,
vol. 90, no. 9, pp. 1518–1558, September 2002.

[79] L. Mhamdi and M. Hamdi, “MCBF: A High-Performance Schedul-
ing Algorithm for Buffered Crossbar Switches,”IEEE Communications
Letters, vol. 07, no. 09, pp. 451–453, September 2003.

[80] R. Rojas-Cessa, Z. Guo, and N. Ansari, “On the Maximum Throughput
of a Combined Input-Crosspoint Buffered Packet Switch,”IEICE Trans-
actions on Communications, vol. E89-B, pp. 3120 – 3123, November
2006.



160 BIBLIOGRAPHY

[81] Xilinx Inc., “Virtex-4 RocketIO Multi-Gigabit Transceiver,”
http://www.xilinx.com, March 2005.

[82] P. Gupta and N. McKeown, “Design and Implementation of aFast
Crossbar Scheduler,”IEEE Micro, vol. 19, no. 01, January/February
1999.

[83] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling for
Input-Queued Switches,”IEEE Journal on Selected Areas in Com-
munoications (JSAC), vol. 15, no. 15, pp. 885–866, June 1997.

[84] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F.Neri, “Mul-
ticast Traffic in Input-Queued Switches: Optimal Scheduling and Max-
imum Throughput,”IEEE/ACM Transactions on Networking, vol. 03,
no. 11, pp. 465–477, June 2003.

[85] M. Guo and R. Chang, “Multicast ATM Switches: Survey andPerfor-
mance Evaluation,”Computer Communication Review, vol. 28, no. 02,
pp. 98–131, April 1998.

[86] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F.Neri, “Op-
timal Multicast Scheduling in Input-Queued Switches,”IEEE Interna-
tional Conference on Communications (ICC), 2001.

[87] S. Gupta and A. Aziz, “Multicast Scheduling for Switches with Multiple
Input-Queues,”Proceedings of Hot Interconnects, pp. 28–33, 2002.

[88] B. Prabhakar and N. McKeown, “Designing a Multicast Switch Sched-
uler,” Proceedings of the 33rd Annual Allerton Conference on Commu-
nication, Control, and Computing, pp. 984–993, Oct. 1995.

[89] J. Y. Hui and T. Renner, “Queuing Analysis for MulticastPacket Switch-
ing,” IEEE Transactions on Communications, vol. 42, no. 02, pp. 723–
731, February 1994.

[90] A. Bianco, P. Giaccone, E. Leonardi, F. Neri, and C. Piglione, “On the
Number of Input Queues to Efficiently Support Multicast Traffic in In-
put Queued Switches,”IEEE Workshop on High Performance Switching
and Routing (HPSR), pp. 111–116, June 2003.

[91] M. Song and W. Zhu, “Throughput Analysis for Multicast Switches
with Multiple Input Queues,”IEEE Communications Letters, vol. 08,
pp. 479—-481, July 2004.



BIBLIOGRAPHY 161

[92] P. Giaccone and E. Leonardi, “Asymptotic Performance Limits of
Switches with Buffered Crossbars Supporting Multicast Traffic,” IEEE
Infocom, pp. 1–10, April 2006.

[93] S. Sun, S. He, Y. Zheng, and W. Gao, “Multicast Scheduling in Buffered
Crossbar Switches with Multiple Input Queues,”IEEE Workshop on
High Performance Switching and Routing (HPSR), pp. 73–77, May
2005.

[94] J. D. C. Little, “A Proof of the Queueing FormulaL = λ W ,” Opera-
tions Research, vol. 9, pp. 383–387, 1961.

[95] M. Andrews, S. Khanna, and K. Kumaran, “Integrated Scheduling of
Unicast and Multicast Traffic in an Input-Queued Switch,”IEEE Info-
com, pp. 1144–1151, 1999.

[96] M. Song and W. Zhu, “Integrated Queuing and Scheduling for Unicast
and Multicast Traffic in Input-Queued Packet Switches,”IASTED Inter-
national Conference on Communication and Computer Networks (CCN
2004), November 2004.

[97] L. Mhamdi and M. Hamdi, “Scheduling Multicast Traffic inInternally
Buffered Crossbar Switches,”IEEE International Conference on Com-
munications (ICC), pp. 1103–1107, June 2004.

[98] C. Minkenberg, “Integrating Unicast and Multicast Traffic Scheduling
in A Combined Input- and Output-Queued Packet-Switching System,”
International Conference on Computer Communications and Networks
(ICCCN), pp. 127–234, 2000.

[99] E. Schiattarella and C. Minkenberg, “Fair Integrated Scheduling of Uni-
cast and Multicast Traffic in an Input-Queued Switch,”IEEE Interna-
tional Conference on Communications (ICC), vol. 01, pp. 287–292,
June 2006.

[100] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling for
Input-Queued Switches,”IEEE Journal in Selected Areas in Communi-
cations (JSAC), pp. 2021–2027, June 1997.

[101] K. Yoshigoe, K. Christensen, and A. Jacob, “The RR/RR CICQ Switch:
Hardware Design for 10-Gbps Link Speed,”IEEE International Per-
formance, Computing, and Communications Conference, pp. 481–485,
April 2003.



162 BIBLIOGRAPHY

[102] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz,
“The Tiny Tera: A Packet Switch Core,”IEEE Micro, pp. 26–33, Jan-
uary/February 1997.

[103] C. Minkenberg and T. Engbersen, “A Combined Input And Output
Queued Packet-Switched System Based On A Prizma Switch-On-A-
Chip Technology,”IEEE Communications Magazine, vol. 38, no. 2, pp.
70–77, December 2000.

[104] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% Throughput in Input-Queued Switch,”IEEE Transastions On
Communications, vol. 47, no. 08, 1999.

[105] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou,and N. Chrysos,
“Variable Packet Size Buffered Crossbar (CICQ) Switches,”IEEE Inter-
national Conference on Communications (ICC 2004), vol. 2, pp. 1090–
1096, June 2004.

[106] N. Chrysos and M. Katevenis, “Scheduling in Switches with Small In-
ternal Buffers,”IEEE Globecom, pp. 614–619, November 2005.

[107] R. Rojas-Cessa and Z. Dong, “Combined Input-Crosspoint Buffered
Packet Switch with Flexible Access to Crosspoint Buffers,”IEEE In-
ternational Caribbean Conference on Devices, Circuits andSystems,
Playa del Carmen, April 2006.

[108] “SIM,” High-Performance Networking Group, StanfordUniversity
http://klamath.stanford.edu/tools/SIM/.



List of Publications

Book Chapters

1. X. Li, L. Mhamdi, J. Liu, K. Pun, and M. Hamdi.Architectures of
Internet Switches and Routers. Springer-Verlag, pp. 1–38, ISBN:
978-1-84628-273-7, September 2006.

International Journals

1. L. Mhamdi, G. N. Gaydadjiev, and S. Vassiliadis.Efficient Multicast
Support in High-Speed Packet Switches. Journal of Networks, Vol. 2
No. 3, pp. 28–35, June 2007

2. L. Mhamdi, M. Hamdi, C. Kachris, S. Wong and S. Vassiliadis.
High-Performance Switching Based on Buffered Crossbar Switches.
Computer Networks, 50(13): 2271–2285, September 2006.

3. L. Mhamdi and M. Hamdi.MCBF: A High-Performance Scheduling
Algorithm for Buffered Crossbar Switches. IEEE Communications
Letters, 07(09): 451–453, September 2003.

Conference Proceedings

1. L. Mhamdi and S. Vassiliadis. Hybrid Scheduling in High-Speed
Packet Switches. IEEE International Conference on Signal Processing
and Communications (ICSPC 2007), To appear.

2. L. Mhamdi and S. Vassiliadis. Integrating Uni- and Multicast
Scheduling in Buffered Crossbar Switches. IEEE Workshop on High
Performance Switching and Routing (HPSR 2006), pages 99–104, June
2006.

163



164 L IST OF PUBLICATIONS

3. L. Mhamdi, C. Kachris and S. Vassiliadis. A Reconfigurable
Hardware Based Embedded Scheduler for Buffered Crossbar
Switches. ACM/SIGDA Fourteenth International Symposium on Field
Programmable Gate Arrays (FPGA 2006), pages 143–149, February
2006.

4. L. Mhamdi and S. Vassiliadis.Multicast Traffic Scheduling Based On
High-Speed Crossbar Switches. Proc. of the 17th Annual Workshop
on Circuits, Systems and Signal Processing, (ProRisc 2006), pages 313–
318, November 2006.

5. L. Mhamdi and S. Vassiliadis.A Practical Scheduler for High-Speed
Switches and Internet Routers. Proc. of the 16th Annual Workshop on
Circuits, Systems and Signal Processing, (ProRisc 2005, pages 398–403,
November 2005.

6. L. Mhamdi and M. Hamdi. Scheduling Multicast Traffic in Inter-
nally Buffered Crossbar Switches. IEEE International Conference on
Communications (ICC 2004), pages 1103–1107, June 2004.

7. L. Mhamdi and M. Hamdi. Output Queued Switch Emulation By
a One-Cell-Internally Buffered Crossbar Switch. IEEE Global
Telecommunications Conference, (GLOBECOM 2003), pages 67–72,
June 2003.

8. L. Mhamdi and M. Hamdi. CBF: A High-Performance Scheduling
Algorithm for Buffered Crossbar Switches. IEEE Workshop on High
Performance Switching and Routing, (HPSR 2003), pages 3688–3693,
December 2003.

9. L. Mhamdi and M. Hamdi. Practical Scheduling Algorithms for
High-Performance Packet Switches. IEEE International Conference
on Communications, (ICC 03), pages 1659–1663, May 2003.



Samenvatting

Verscheidene voorstellen om geschikte architecturen voorhoge snelheid
packet switches(IP routersen ATM switches) te vinden zijn door academici
en industrie onderzocht en geı̈mplementeerd. De onderverdeling van deze ar-
chitecturen kan gebeuren op basis van verschillende attributen, zoals wachtrij-
methoden, arbitrage algoritmen en/of de interne topologie. De meeste hoge
snelheid switches en Internet routers van vandaag de dag gebruiken eencross-
bar fabric zonder buffers op de kruispunten. Het ontwerpen van op crossbars
gebaseerde routers die schaalbaar zijn en gegarandeerde prestatie leveren, is
moeilijk met de huidige technologie. Dit wordt toegeschreven aan de hoge
complexiteit van berekeningen in de centrale crossbar arbiter en aan de natuur
van de op crossbars gebaseerde switchingarchitectuur zelf.

Dit proefschrift bestudeert het arbitrage probleem in crossbar switches met
buffers, waar de kruispunten een kleine buffer hebben. De arbitrage van
unicast- enmulticastverkeersstromen en tevens de integratie van beiden wor-
den behandeld. Een aantal gedistribueerde en parallelle arbitragealgoritmen
met bijbehorende architecturen worden beschreven. Deze algoritmen zijn ont-
worpen om praktisch implementeerbaar te zijn en om schaalbaar te zijn met
het aantal poorten van een router en met de lijnsnelheid.

Een klasse van unicastarbitragealgoritmen wordt beschreven, die alleen de
status van de interne buffers gebruiken. Een switchingarchitectuur wordt
voorgesteld, waar alle arbiters in de crossbar chip geı̈ntegreerd zijn. Verder
wordt beschreven hoe de voorgestelde architectuur gagarandeerde prestaties
kan leveren. Met een zogenaamde versnelling van een factor twee is de
voorgestelde architectuur in staat een ideale switch met wachtrijen op de uit-
gangen te emuleren.

Het probleem van arbitrage van multicastverkeersstromen wordt ook
bestudeerd. Een gebufferde crossbararchitectuur gebaseerd op ingangs-
multicast eerst-komt-eerst-maalt rijen met de bijbehorende arbitrage wordt
beschreven. Deze architectuur presteert beter dan bestaande architecturen. De
architectuur voor de multicast switch wordt verder verbeterd door een klein
aantal buffers per ingang te gebruiken. Er wordt een algoritme voor cel plaats-
ing bepaald dat inkomend verkeer aan ingangsbuffers toewijst. Er wordt aange-
toond dat dit algoritme verkeer efficiënter, eerlijker en sneller kan toewijzen
dan bestaande algoritmes. Deze studie laat een interessante afweging zien
tussen het aantal ingangsbuffers voor multicast en de grootte van de interne

165



166 SAMENVATTING

buffers. Dit zorgt zowel voor verdere prestatieverbetering van de switch als
voor een vermindering in de arbitrage complexiteit, met alsgevolg een snellere
en beter schaalbare switcharchitectuur.

Voorts wordt de arbitrage van meer realistische verkeersstromen bestudeerd:
de combinatie van unicast en multicast. De architectuur vaneen op crossbars
gebaseerde switch wordt beschreven, vergezeld van bijbehorende arbitrage die
unicast en multicast efficiënt ondersteunt. Hoewel de voorgestelde arbiter op
fanout splittingis gebaseerd, nijgt deze multicast verkeer te kunnen behan-
delen zonder de verbinding tussen de lijnkaarten en de kern van de switch te
overbelasten. Er wordt aangetoond dat deze architectuur betere prestaties lev-
ert dan bestaande architecturen.

Als laatste wordt een variant op de architectuur voor de gebufferde crossbar
switch bestudeerd. Er wordt een gedeeltelijk gebufferde crossbararchitectuur
voorgesteld. Deze is ontworpen om een goed compromis te zijntussen de
twee uitersten van bufferloze crossbars en volledig gebufferde crossbars. De
gedeeltelijke gebufferde crossbar is gebaseerd op een paarinterne buffers per
crossbar uitgang, waardoor de kosten vergelijkbaar zijn met een architectuur
zonder buffers. Het knelpunt van de gecentraliseerde crossbar arbitrage wordt
verholpen door deze arbitrage gedistribueerd enpipelined te doen zoals ook
wordt gedaan in volledig gebufferde crossbars. Hierdoor wordt de architectuur
goedkoop en praktisch voor gebruik in netwerken met extreemhoge capaciteit.



Curriculum Vitae

Lotfi Mhamdi was born on the16th of November 1975
in Sidi Bouzid, Tunisia. He received the Bachelor of Sci-
ence (BS) degree from South University, Tunisia, in 2000.
In the same year, he was admitted to the Computer Sci-
ence department at the Hong Kong University of Science
and Technology (HKUST), Hong Kong, as a postgraduate
student. In November 2002, he obtained the Master of Phi-
losophy (MPhil) degree in computer science from HKUST.

From 2001 until 2003, he has been a teaching assistant for various bachelor
level computer science courses at HKUST. During the same period, he has
also been a research assistant within the Area Of Excellencein Information
Technology (AOE-IT) project, Hong Kong.

In 2004, Mr. Mhamdi joined the Computer Engineering (CE) Laboratory of
Delft University of Technology (TU Delft), The Netherlands, as a researcher.
He has been working towards the PhD degree under the guidanceof Prof.
dr. Stamatis Vassiliadis. His research work spans the area of high-speed net-
works including the design, analysis, scheduling and management of high-
speed switches and Internet routers.

Mr. Mhamdi is a reviewer for most of the major IEEE ComSoc as well as
various Computer Architecture conferences and journals. He served as the
publicity chair of the International Conference on Design and Technology of
Integrated Systems in nanoscale era (DTIS 2007). He is a technical program
committee member of the IEEE International Workshop on HighPerformance
Switching and Routing (HPSR 2008), the IEEE International Conference on
Communications (ICC 2008) and the ACM/IEEE International Symposium on
Networks-on-Chip (NoCS 2008). He is a member of IEEE.

167




	Cover_page.pdf
	Stellingen_ENG_NL_Ltf_V1.1_FINAL.pdf
	NEW_Lotfi_Mhamdi_Phd_Thesis.pdf
	Back_page.pdf

