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 

1 INTRODUCTION

At present, methods for batch processes are mainly 

multivariate statistical methods based on measured data [1], 

such as algorithms based on Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) [2,3,4,5]. However, 

when a large amount of process data is actually processed, 

there are often problems such as data drift [6], difficult to 

obtain labels, and mismatch of the original model [7,8]. 

Multivariate statistical methods are difficult to deal with 

such mixed dynamic characteristics. 

In response to this problem, in [9], Artificial Neural 

Network (ANN) is applied to establish a soft sensor model 

of nonlinear process. However, its generalization ability 

cannot be guaranteed, so a well-trained model may lead to 

poor predictions of new observations. In [10], this paper 

uses Gaussian Mixture Regression (GMR) to establish 

multiple sub-models on historical data, evaluate the soft 

sensor results of each sub-model, weight multiple fusions 

based on the level of model output confidence, and finally 

obtain the integrated regression model. However, the 

output confidence of each sub-model is difficult to estimate, 

and there are large structural risks. In [11,12], this paper 

based on the idea of Just-in-time learning (JITL), select the 

sample set that is most relevant to the current sample from 

the labeled historical data according to similarity metrics, 

and use machine learning methods to build a regression 

model to handle multi-working conditions soft sensor. 

However, when the data of the current working conditions 
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are lacking in the historical data set, the established model 

cannot be adapted to the data of the current working 

conditions, causing the model to be inaccurate. 

Transfer learning [13,14,15] uses existing knowledge to 

solve the target domain problem by mining the shared 

features between domains, and introduces new ideas for the 

above-mentioned multi-modal soft sensor. In [16], this 

paper introduced the semi-supervised domain adapted ELM 

algorithm to the soft sensor field of chemical processes. By 

using the source domain and a small number of labeled 

samples in the target domain, a mathematical model is 

constructed to realize the soft sensor of melt index in the 

process of industrial polyethylene under multi-working 

conditions. But the semi-supervised learning method 

requires a small amount of labeled data in the target domain. 

However, in the actual production process, the problem of 

untagged samples in the target domain is common, and the 

semi-supervised algorithm is no longer applicable. 

Aiming at the problem of unlabeled target domain, 

manifold-based unsupervised transfer learning [17,18] has 

become a research hotspot. Manifold learning maps data to 

a reliable embedded projection, that is, to find the data 

projected into a low-dimensional subspace representation 

[19]. Manifold learning can map different working 

condition data to different points on the potential 

continuous manifold space. Compared with Euclidean 

space, it can better reflect the inherent characteristics and 

rules between different working condition sample data. In 

[20], this paper proposed an unsupervised transfer learning 

method based on geodesic flow for cross-domain image 

classification, mapping the target domain and source 

domain data to two points on the Grassmann manifold 

space [21]. In the direction of the geodesic of these two 
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points, several intermediate points are selected and 

connected in order to realize the gradual domain transfer 

from the source domain to the target domain via the 

geodesic. In [22], this paper introduced a kernel method on 

this basis, and realized the continuous transfer process from 

the source domain to the target domain by integrating an 

infinite number of subspaces. And achieved higher 

accuracy in cross-domain image classification, the results 

further show that compared with the Euclidean space, 

domain transfer in the manifold space can find the inherent 

rules of data between different domains. 

To sum up, in this paper, the characteristic transformation 

based on manifold space is introduced into the 

unsupervised soft sensor of batch process in the geodesic 

flow kernel method, and the model error caused by the large 

difference of data distribution in penicillin fermentation 

process is dealt with. The experimental results show that the 

soft sensor model has good adaptability and high 

measurement accuracy. 

2 Proposed Method 

2.1 Subspace dimension measure 

Suppose the source domain data sX  and the target domain 

data
tX .In order to improve the effect of feature 

transformation, the dimensionality of the subspace needs to 

be determined to reduce the dimensionality of the data in 

order to extract the main features .We use the protagonist 

concept [23], it can be defined as [22] 

   0.5 sin sind dd                 (1) 

where d  denotes the d-th principal angle between the 

PCAS and PCAS+T and 
d  between PCAT and PCAS+T. 

sin d  or sin d  is called the minimum correlation 

distance[24]. The optimal dimension can be obtained by 

formula (2) [22] 

  min 1d d d                      (2) 

2.2 Construct geodesic flow 

Let , D d

S TP P  denote the two sets of basis of the 

subspaces for the source and target domains. D is the 

dimensionality of the data. Let 
( )D D d

SR    denote the 

orthogonal complement to 
SP  , namely 0T

S SP P  . The 

geodesic flow is parameterized as 

   0,1 : ,t t G d D   ： ， under the constraints 

   0 , 1S TP P    . For other t [22] 

      1 2S St P U t R U t                    (3) 

where 1

d dU   and 
 -

2

D d d
U


  are orthonormal 

matrices. They are given by the following pair of SVDs 

[22] 

   1 2,T T T T T T

S SP P U t V R P U t V    
       

(4) 

d d   and d d   are diagonal matrices. The 

diagonal elements are cos i  and sin i  for 1, 2, , .i d  

Particularly, 
i  are called the principal angles between 

SP  

and 
TP : 

1 20 / 2d       
             

 (5) 

Moreover,  t  and  t  are diagonal matrices whose 

elements are  cos it  and  sin it  respectively. 

2.3   Compute geodesic flow kernel 

Moving from the source domain to the target domain, the 

process of transfer from (0)  to (1) , the new feature 

can be expressed as 

   =
T

z g x t x 
                       

 (6) 

The geodesic flow kernel is defined as [22] 

     
1

0
, ( )

T
T T T

i j i j i jz z t x t x dt x Gx     
      

 (7) 

where 
D DG   is a positive semidefinite matrix, it can 

be calculated by equation  [22] 

  1 2 1

1 2

2 3 2

T T

S

S S T T

S

U R
G P U R U

U R

    
        

        (8) 

where 1 2 3  ， ，  are diagonal matrices, whose 

diagonal elements are 
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                             (9) 

We can get a sample z that transfer the original sample 

features x  along the geodesic direction 

z Gx                                  (10) 

Then, the sample sZ  after 
sX  mapping and the sample tZ  

after 
tX  mapping can be obtained, and the existing label 

sample sZ  in the source domain can be learned and 

modeled to realize the prediction of the sample tZ  label. 

2.4 Unsupervised soft sensor based on GFK 

On the problem of multi-batch unsupervised soft sensor 

modeling, this paper takes into account the difference in 

data distribution after batch changes and the potential 

associations between different batches [25], and introduces 

a manifold-based transfer learning method. Using the 

characteristics of the GFK framework to continuously 

transfer along the geodesic in the manifold space, the 

transfer from the source batch to the target batch was 

completed, and the purpose of predicting the concentration 

of penicillin was achieved. Figure 1 is a schematic diagram 

of the method. 
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Figure 1 Schematic of the method 

 

Combining Figure 1 and the description of related theories 

and algorithms, multi-batch soft sensor based on geodesic 

flow kernel combines pre-processed known batches of 

labeled (source domain) samples 
sX  and unknown batches 

of unlabeled (target domain) samples 
tX  into overall data 

set  = ,s tX X X . The optimal dimension d is obtained from 

the angle between
sXPCA  and XPCA   and between

tXPCA  

and
 XPCA . Subsequently, map the reduced dimension 

sXPCA and 
tXPCA to the Grassmann  manifold space, and it 

is used as a subspace SP  and TP in the GFK framework,  

and combined with equation (3) to construct the geodesic 

equation, and then obtained from equations (8) and (9) the 

geodesic flow kernel is then used to obtain, the 

distribution-adaptive data through equation (10). 

Finally, a soft sensor model is established using the adapted 

source domain samples and source domain labels to achieve 

prediction of the target domain labels. The algorithm 

flowchart of this method is shown in Table 1 

Table 1 Algorithm flowchart 
Input: source domain samples

sX , target domain sample
tX , 

label data
sY for source domains.  

Output: target domain label tY  . 

1：Data preprocessing. 

2 ： Calculate the optimal dimension d according to 

equations (1) and (2). 

3：Construct the geodesic flow  t  by equation(3), get 

the matrix G in the geodesic flow kernel according to equations 

(8) and (9), and obtain the transferred data sz and tz with 

equation (10).  

4：Using 
sz and source domain label sY  to train a PLSR 

soft sensor regression model f . 

5：Find the target domain label tY
 
based on f and tz . 

 

3 Experiments 

Penicillin is the first large-scale clinically purified 

antibiotic used in humans. The fermentation process is a 

typical biochemical reaction process. The penicillin 

fermentation process is a metabolic activity of 

penicillin-producing bacteria to grow and synthesize 

antibiotics under appropriate fermentation conditions 

[26,27]. 

In this paper, penicillin concentration that is often analyzed 

off-line during penicillin fermentation is selected as the 

target variable. Table 2 lists process variables with high 

correlation as inputs to the soft sensor. The data of the 

400-hour fermentation process were selected, samples were 

collected every 0.5 hours, a total of 800 samples, and the 

first five batches were selected as five different working 

conditions for transfer. 

Table 2 Input variables for penicillin fermentation process 

No. Variable description unit 

1 Culture time h 

2 Aeration rate L/h 

3 Agitator power W 

4 Substrate feed rate L/h 

5 Substrate feed temperature K 

6 Substrate concentration g/L 

7 Dissolved oxygen concentration g/L 

8 Biomass concentration g/L 

9 Culture volume L 

10 Carbon dioxide concentration g/L 

11 pH - 

12 Fermenter temperature K 

13 Generated heat kcal 

14 Acid flow rate L/h 

15 Base flow rate L/h 

16 Cold water flow rate L/h 

17 Hot water flow rate L/h 



  

     

     
Figure 2 The prediction results of each algorithm under the conditions of batch 1-4 

 

In order to quantify the prediction performance of various 

methods, Root Mean Square Error (RMSE) is used as the 

evaluation standard for measurement accuracy. The 

calculation formula is as follows 

2

1

1
RMSE ( )



 
N

i i
i

y y
N

                    (11) 

where and represent the actual value and predicted 

value of the i-th sample respectively, is the number of 

test samples.   

It is assumed that the known condition is the source domain 

and the condition to be measured is the target domain. In 

the experiment, multiple algorithms were used to predict 

and compare the substrate concentration. This paper uses 

PCA, PLS, ANN, GMR, JITL methods for comparison.  

Figure 2 depicts the comparison of the predicted results of 

penicillin concentration by each unsupervised method. It 

can be seen from the figure that under the same batch 

conditions, when the source batch and the target batch have 

a large difference in distribution, the accuracy of this 

method is improved to different degrees compared with 

other methods. It can be seen that the blue curve (predicted 

value) in the figure can better track the red curve (real 

value), which reflects the advantages of this method.  

Table 3 describes the comparison results of penicillin 

concentrations predicted by different soft sensor under all 

batch conditions. The leftmost column “n→m” indicates 

transfer from batch n to batch m. The bottom line represents 

the mean of root mean square error of each algorithm. It can 

be seen that when using the PCA, PLS, ANN, GMR and 

Table 3 Comparison of root mean square error of different algorithms in each batch 

Batch PCA PLS ANN JITL GMR GFK 

1→2 0.0520 0.1392 0.0373 0.0568 0.0486 0.0469 

1→3 0.0806 0.1871 0.1219 0.1205 0.0684 0.0552 

1→4 0.1437 0.1869 0.1425 0.1564 0.1008 0.0686 

1→5 0.3179 0.3603 0.1347 0.6369 0.1122 0.1078 

2→1 0.0541 0.0836 0.0449 0.0536 0.0594 0.0441 

2→3 0.1444 0.1247 0.0566 0.0701 0.0574 0.0347 

2→4 0.1635 0.1862 0.1335 0.1131 0.1256 0.0949 

2→5 0.3116 0.2553 0.1633 0.1874 0.1327 0.0997 

3→1 0.0662 0.0672 0.0798 0.0815 0.0734 0.0526 

3→2 0.0679 0.0568 0.0743 0.0569 0.0531 0.0335 

3→4 0.2098 0.1711 0.1249 0.1104 0.1260 0.0992 

3→5 0.4631 0.3321 0.1360 0.0921 0.1301 0.0893 

4→1 0.1223 0.2196 0.0669 0.0821 0.0781 0.0664 

4→2 0.1464 0.2563 0.1001 0.1126 0.1003 0.0971 

4→3 0.1579 0.2721 0.1494 0.1216 0.1082 0.1060 

4→5 0.2485 0.4444 0.1365 0.1121 0.0692 0.0506 

5→1 0.0824 0.5533 0.1184 0.1047 0.0804 0.0755 

5→2 0.0921 0.5949 0.1126 0.0989 0.0923 0.0551 

5→3 0.1730 0.5637 0.1297 0.0963 0.0985 0.1067 

5→4 0.0787 0.3935 0.0924 0.0769 0.0783 0.0515 

Average 0.1588 0.2724 0.1078 0.1270 0.0897 0.0717 

i
y

i
y

N



  

JITL, the prediction results are not ideal, and there are 

different degrees of accuracy degradation under different 

batches. Compared with other prediction models, GFK 

achieves the distribution adaptation of the source batch to 

the target batch by mapping the subspace to the manifold 

space for feature transformation, and taking into account 

the problem of feature differences, most prediction values 

have achieved better predictive effect.  

4 Conclusion  

This paper uses an unsupervised soft sensor for batch 

process based on geodesic flow kernel method to mine and 

utilize features common between multiple batches and 

extract knowledge structures similar to the target batch in 

the source batch to improve unsupervised soft sensor 

performance. In order to verify the validity of the method, it 

was applied to the soft sensor of concentration prediction 

during the multi-batch penicillin fermentation process. The 

multi-batch soft sensor modeling was completed. 

Experimental results show that the method used in this 

paper can effectively improve the prediction accuracy of 

the model. 
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