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Dune erosion driven by extreme marine storms can damage local infrastructure or
ecosystems and affect the long-term flood safety of the hinterland. These storms
typically affect long stretches (∼100 km) of sandy coastlines with variable topo-
bathymetries. The large spatial scale makes it computationally challenging for process-
based morphological models to be used for predicting dune erosion in early warning
systems or probabilistic assessments. To alleviate this, we take a first step to enable
efficient estimation of dune erosion using the Dutch coast as a case study, due to the
availability of a large topo-bathymetric dataset. Using clustering techniques, we reduce
1,430 elevation profiles in this dataset to a set of typological coastal profiles (TCPs),
that can be employed to represent dune erosion dynamics along the whole coast.
To do so, we use the topo-bathymetric profiles and historic offshore wave and water
level conditions, along with simulations of dune erosion for a number of representative
storms to characterize each profile. First, we identify the most important drivers of
dune erosion variability at the Dutch coast, which are identified as the pre-storm beach
geometry, nearshore slope, tidal level and profile orientation. Then using clustering
methods, we produce various sets of TCPs, and we test how well they represent dune
morphodynamics by cross-validation on the basis of a benchmark set of dune erosion
simulations. We find good prediction skill (0.83) with 100 TCPs, representing a 93%
input and associated computational costs reduction. These TCPs can be used in a
probabilistic model forced with a range of offshore storm conditions, enabling national
scale coastal risk assessments. Additionally, the presented techniques could be used in
a global context, utilizing elevation data from diverse sandy coastlines to obtain a first
order prediction of dune erosion around the world.
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Frontiers in Marine Science | www.frontiersin.org 1 September 2021 | Volume 8 | Article 747754

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.747754
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.747754
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.747754&domain=pdf&date_stamp=2021-09-23
https://www.frontiersin.org/articles/10.3389/fmars.2021.747754/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-747754 September 21, 2021 Time: 12:24 # 2

Athanasiou et al. Profile Clustering for Dune Erosion Prediction

INTRODUCTION

Coastal storms erode sandy beaches and dunes (Vellinga, 1982;
McCall et al., 2010; Castelle et al., 2015; Masselink et al., 2016;
Harley et al., 2017) with direct impacts on coastal communities
through damages to developments and infrastructure (Jongejan
et al., 2016; Ballesteros et al., 2018), reduction of beach’s touristic
and recreational value (Monioudi et al., 2017; Toimil et al.,
2018), and disturbance of coastal ecosystems (Mehvar et al., 2018;
Paprotny et al., 2021). Moreover, the beach and dune system
forms the first line of defense against coastal flooding, and their
weakening or breaching can worsen the hinterland’s susceptibility
to flooding (Grzegorzewski et al., 2011; Keijsers et al., 2015; van
Dongeren et al., 2018; Almar et al., 2021).

As coastal change predictions are critical for coastal zone
management and decision making, process-based numerical
models have been developed and used extensively in order
to simulate morphological changes at the dune system during
extreme events (Roelvink et al., 2009; McCall et al., 2010;
van Dongeren et al., 2018). However, these models can be
computationally expensive, especially when the spatial scale of
interest is large (∼100s of km), or a large range of boundary
conditions need to be applied. Computational time is, for
example, of great importance in early warning systems, when the
forecast window is limited, or in probabilistic projections when a
large number of simulations are needed (Ranasinghe et al., 2012).

Conventionally, forecasts and assessments are performed on
individual profiles because the intensity of large-scale erosion
is not only associated with the offshore characteristics of a
storm event such as the maximum storm surge, maximum wave
height and duration, but also on pre-storm dune and foreshore
morphology and their interactions with the forcing (Houser
et al., 2008; Masselink et al., 2016; Athanasiou et al., 2018;
Davidson et al., 2020). Exploration and understanding of these
dependencies require the availability of high-quality observations
of coastal change with pre- and post-storm surveys over large
coastal areas, which are quite challenging to obtain. Only some
recent studies started to explore the controls of this spatial
variability in coastal response using such datasets. For example,
Beuzen et al. (2019) used a unique dataset of around 1,700 pre-
and post-storm cross-shore profile transects covering a 400 km
span along the southeast Australian coastline, to understand
beach and dune erosion variability. The authors found different
controls responsible for the erosion of the beach and dune system,
where the dune response was governed by the local beach width
and wave runup and beach response was linked to pre-storm
beach volume. Cohn et al. (2019), employed both observations
along the United States Pacific northwest coast and simulations
using the process-based model Xbeach (Roelvink et al., 2009)
with schematized coastal profiles to study the influence of pre-
storm morphology and environmental conditions (i.e., wave
forcing and water levels) on dune erosion, finding strong controls
in backshore beach slope, nearshore slope and the dune slope.

In recent years, predictive tools or meta-models that employ
large number of observations or usually simulations along with
statistical techniques (e.g., Bayesian Networks), have shown
potential for producing efficient predictions of coastal hazard

indicators (Gutierrez et al., 2011; Poelhekke et al., 2016; Beuzen
et al., 2017; Pearson et al., 2017; Giardino et al., 2019; Rueda
et al., 2019; Santos et al., 2019; Sanuy and Jiménez, 2021). The
concept underlying these meta-models is the use of a large
number of combinations of forcing conditions and/or coastal
elevation profiles to predict coastal response. This type of generic
tools can be used in first-pass coastal impact assessments or
early warning systems to identify hotspots along the coastline
(Viavattene et al., 2017; van Dongeren et al., 2018). These models
are trained with model-generated coastal hazard datasets due to
the general lack of observations during extreme events, while the
choice of the input parameters must ensure generalization of the
model to avoid overfitting (Beuzen et al., 2018). Input reduction
is of critical importance when applying these approaches, as it
decreases the computational constrains of creating the synthetic
dataset without significantly affecting the prediction skill.

Input reduction in coastal applications has been commonly
applied to reduce model forcing (Walstra et al., 2013; Chiri et al.,
2019; de Queiroz et al., 2019) for long-term morphodynamic
cases. Recently, Scott et al. (2020) presented a methodology to
reduce a large dataset (>30,000) of coral reef topo-bathymetric
profiles to a representative subset (on the basis of wave runup)
of 50–312 profiles, using machine learning, statistics and a
numerical model. Using clustering algorithms to obtain the
representative profiles and a probabilistic matching technique,
they predicted wave runup for a test subset of profiles with a mean
error of 9.7–13.1%, highlighting the potential of these techniques.
Alternatives for capturing the variability in topo-bathymetric
characteristics, such as the creation of schematic cross-shore
profiles based on a set of parameters (Pearson et al., 2017; Cohn
et al., 2019), lack the realistic representation of the actual coastal
features and can be computationally infeasible, since adding
parameters and/or increasing their resolution can increase the
number of simulations exponentially (Scott et al., 2020).

The main aim of this study is to explore whether a
selected number of coastal profiles along a ∼100 km coastline
is representative of the expected variability of the dune
morphodynamic response during extreme events over the whole
coastline. This would reduce the number of simulations needed to
characterize storm impacts over the whole system and ultimately
aid in having more efficient prediction tools at large spatial scales.

Here we built upon Scott et al. (2020), with a focus on
sandy coasts and dune erosion. Our case study is the Dutch
coast where dune erosion is of critical importance for coastal
zone management, with the dune system being the first line
of defense against coastal flooding (de Vries et al., 2012) of
the low-lying hinterland which is below mean sea level at
almost one quarter of the country (Schiermeier, 2010). To that
end, the unique regional scale topo-bathymetric profiles dataset
JARKUS (Rijkswaterstaat, 2018) is available for the entire Dutch
coast. We used this dataset together with offshore wave/water
level observations to obtain a number of morphological and
hydrodynamic parameters for each profile along the Dutch coast.
Additionally, we employed the process-based numerical model
Xbeach (Roelvink et al., 2009) to characterize the profiles on the
basis of dune erosion volumes during extreme events, exploring
dependencies of simulated spatial variabilities. Combining these
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data with clustering algorithms, we reduced the total profiles to a
representative subset of profiles, which we refer to as Typological
Coastal Profiles (TCPs), after first exploring the dependencies
and relative importance of the derived profile parameters.
Subsequently we assessed the effectiveness of the proposed
technique by using the developed TCPs to predict dune erosion
for an arbitrary set of test profiles. The proposed methodology
can be applied at other areas with sandy beach and dune systems
globally and ultimately may facilitate the development of large-
scale dune erosion prediction tools (Viavattene et al., 2017).

Section “Materials and Methods” describes the methods
used in the present study to obtain the profile characteristics,
simulate dune response and to cluster the profiles. Results
are presented in section “Results.” In section “Discussion” a
discussion on the insights obtained in the present study, the
limitations of the presented methodology and its implications
for applications elsewhere is presented. Ultimately, a summary of
the main conclusions of the work herein can be found in section
“Conclusion.”

MATERIALS AND METHODS

An outline of the methodology used in the present study is
shown in Figure 1. The objective is to reduce a set of 1,430
cross-shore elevations profiles along the Dutch coastline from
the JARKUS dataset to a, still representative, smaller number
(M) of TCPs, which can then be used in large scale, probabilistic
prediction tools or impact assessments. First the available data,
including the input cross-shore profiles and wave and water
level observations, are described (section “Case Study and Data
Availability”). Then, from these datasets, morphological (section
“Morphological Parameters”) and hydrodynamic (section
“Hydrodynamic Parameters”) parameters are derived using
simple calculations to characterize each profile in the JARKUS
dataset. Next, 10 representative storm boundary conditions are
obtained from the offshore observations (section “Representative
Offshore Storms”). A benchmark dataset on dune erosion
volumes is developed by modeling the impact of these 10
representative storms on the original JARKUS profile dataset
with XBeach (section “Dune Erosion Modeling and Indicators”).
Subsequently, the clustering approach that was considered
herein to attain the TCPs is demonstrated (section “Clustering of
Coastal Profiles”). Finally, the use of the produced TCPs to obtain
dune erosion predictions for a sample of test profiles is described
and the evaluation of the skill of each clustering technique
considered is assessed (section “Prediction and Validation”).

Case Study and Data Availability
The Dutch coast is located at the North Sea, has a length of
about 432 km and can be divided in three regions: (1) the Delta
region in the South which is formed by islands and estuaries, (2)
the Holland coast in the center, which is characterized by long
sandy beach and dune systems and (3) the Wadden islands in the
North, comprising barrier islands and tidal inlets (Figure 2). Of
the 432 km of coastline, 254 km comprise beach and dune systems
(Ruessink and Jeuken, 2002), the majority of which are affected by

human interventions (by means of nourishments, planting etc.)
(Arens and Wiersma, 1994). As part of the JARKUS (“Jaarlijkse
Kustmeting,” Annual Coastal Measurement) program, depth and
elevation measurements are performed annually (between April
and September) at fixed transects along the Dutch coast with a
temporal coverage dating back to 1965. Elevation is measured
with respect to the NAP (“Normaal Amsterdams Peil”), which is
the national vertical datum and roughly corresponds to mean sea
level (MSL). Depending on the time and region, these transects
have an alongshore interval of ∼250 m to ∼1 km and a cross-
shore resolution of 5 and 10 m for the sub-aerial and sub-aqueous
parts, respectively. From the 2,285 available transects, 1,430 sandy
transects were chosen for the present study (Figure 2), after
excluding transects where surveys no longer take place at 2019
(year of the study) and transects that are not beach-dune systems.
This filtering was performed by visual inspection, excluding areas
that have non-erodible hard structures or transects at highly
dynamic areas with no distinct dune features (i.e., inlets at
Wadden islands). The measurements of the latest year at the time
of the study (2019) were used as the pre-storm profiles in the
present analysis.

Time series of wave parameters at a 3-hourly resolution were
available between 1979 and 2009 from directional wave-riders,
at four offshore locations at depths of 32, 21, 26, and 19 m for
the measurement’s locations from South to North, respectively
(Figure 2). This included significant wave height (Hs,0), peak
wave period (Tp,0) and mean direction (Dir0). Additionally,
water level time-series at a 10 min interval were available
from four tide-gauges along the Dutch coast (Figure 2), from
which local tide and storm surge level (SSL) were obtained by
performing a tidal analysis with the T_Tide package (Pawlowicz
et al., 2002). These data were available from Rijkswaterstaat, an
agency of the Ministry of Infrastructure and Water Management
of the Netherlands.

Morphological Parameters
For each profile, a set of morphological pre-storm parameters was
calculated using the JARKUS elevation profiles of 2019. First, the
location of the maximum dune crest, foredune crest, dune toe,
MSL point and depth of closure were detected. The maximum
(i.e., highest) dune (from now on referred to as max dune) crest
location was defined as the location of the maximum elevation
across the profile. The foredune crest was identified as the most
seaward elevation peak, with a minimum elevation of 7 m, a
minimum width of 5 m and a minimum seaward prominence of
2 m. These additional thresholds, which are necessary to ensure
that low elevation undulations on the beach were not detected
erroneously as the foredune, were determined by performing a
sensitivity analysis on the threshold values and visual inspection
using satellite imagery. The dune toe location was calculated
using the approach of Diamantidou et al. (2020), by finding the
location of the most seaward crossing of a threshold of 0.01
for the 2nd derivative of the elevation profile (smoothed with a
Hanning window of 20 m), between the foredune crest and the
local mean high water (MHW) point, in the 1–5 m elevation
range. The MSL profile point was identified by the most seaward
intersection of the elevation profile with the 0 m elevation line
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FIGURE 1 | Flow diagram of the methodology followed in the present study to reduce the initial dataset of Dutch coastal profiles to M typological coastal profiles
(TCPs), based on their morphological, hydrodynamic and dune erosion characteristics, which were calculated using various observations, data analysis and
modeling. The extracted TCPs were used to make predictions of dune erosion volume (DEV) for a set of test profiles using the simulated DEV as benchmark for the
validation. Parentheses in top right corners of boxes indicate the section number that each part is described in.

(assumed to be at 0 m NAP level). The depth of closure point was
found by the most landward intersection of the elevation profile
with the elevation of the local depth of closure as extracted from
the closest points in the global dataset of Athanasiou et al. (2019).
These five points defined four areas along each profile: (1) The
max dune area, between the max dune crest and the dune toe, (2)
the foredune area, between the foredune crest and the dune toe,
(3) the beach area, between the dune toe and the MSL point and
(4) the nearshore area, between the MSL point and the depth of
closure (Figure 3).

Subsequently, using the aforementioned areas, a set of
geometric parameters of the dune, beach and nearshore areas

were derived to characterize each profile. The choice of these
morphological parameters was based on previous studies that
have associated such parameters with dune erosion variability
(Beuzen et al., 2019; Cohn et al., 2019). First, the elevations of
the max dune crest, foredune crest, and dune toe were extracted.
Then the max dune (foredune) volume was calculated as the
subaerial sand volume, per alongshore running meter, seaward of
the max dune (foredune) crest and above the dune toe elevation.
The max dune (foredune) width was calculated as the cross-
shore distance between the max dune (foredune) crest and the
dune toe. The max dune (foredune) volumes and widths, as
calculated here, actually represent the half – volumes and widths.
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FIGURE 2 | Map of the Dutch coast, indicating the location of the JARKUS transects, wave buoys and tide gauges used in the present study. Transect 7002882,
appearing in Figure 3, is highlighted in purple. The map is projected on the “Amersfoort / RD new” coordinate system with the X and Y axis in meters. Basemap
obtained from ESRI (2011).

The beach width and volume were defined between the dune
toe and above the MSL point. Additionally, slope parameters
were calculated for the foredune, beach and nearshore areas as
the linear slope between the two endpoints of each section, as
previously defined (Figure 3). The intertidal slope was calculated
as well, between the MHW and mean low water (MLW) points
(derived from the local water levels defined in the JARKUS
dataset). All these morphological parameters describe the pre-
storm profiles hereon.

The foredune crest elevation has a high spatial variability
with values between 7.7 and 21.3 m (5th–95th percentiles), and
a median of 13.3 m (Supplementary Figure 1). The highest
elevations appear in the center of the Holland coast, while values
are lower for some of the Wadden coast and most of the Delta
coast. The distribution of the beach width follows a more one-
tailed distribution with extremes appearing in some areas with
extended beach features, mostly as a result of beach nourishments

(e.g., the Sand Motor mega-nourishment in the south part of the
Holland coast) and has a median value of 71 m. The beach volume
is highly correlated with the beach width, having same spatial
patterns and a median value of 146 m3/m. Most of the coastal
profiles have relatively mild nearshore slopes with a median value
of 0.008, with steeper slopes appearing mainly in areas where
tidal inlets are encountered (e.g., southern Delta coast and island
corners at Wadden coast).

Hydrodynamic Parameters
Besides the morphological characterization of the coastline
presented in the previous section, there are variabilities in the
hydrodynamics along the Dutch coast that can affect the dune
response during extreme events. For example, the local tidal
amplitude may influence the total water levels and thus dune
erosion directly, and the profile orientation may dictate the local
profile exposure to specific storm conditions. On the other hand,

Frontiers in Marine Science | www.frontiersin.org 5 September 2021 | Volume 8 | Article 747754

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-747754 September 21, 2021 Time: 12:24 # 6

Athanasiou et al. Profile Clustering for Dune Erosion Prediction

FIGURE 3 | Example of cross-shore elevation profile and morphological locations and areas for one transect (Transect 7002882 – see Figure 2 for location) along
the Dutch coast. The black lines around the MSL line (blue hatch) indicate the elevation of the MLW and MHW. Volumes indicated are volumes per meter alongshore.

spatial variabilities in wave conditions can implicitly shape local
profiles, information which might not be always captured in the
previously defined morphological parameters. To this end, a set
of hydrodynamic parameters was produced for each profile, in
order to test their influence on dune response variability.

In order to characterize the local hydrodynamic environment
of each profile, the offshore wave time-series (Hs,0, Tp,0, and
Dir0) from the closest wave buoy (accounting for the geophysical
extents of each area as well, see Figure 2) were transformed
to the local depth of closure (Hs, Tp, and Dir) using a simple
linear transformation and Snell’s law, assuming alongshore
uniform bathymetry. Subsequently, a peak over threshold (POT)
technique was applied on the local time-series of Hs to identify
extreme events in the historical period between 1979 and
2009 for each profile. An event was defined, between an up-
crossing and down-crossing of a chosen Hs threshold, with a
minimum separation between events of 24 h, and a minimum
event duration of 6 h (Wahl et al., 2016). The Hs threshold
of each profile was chosen to have an average of five events
per year (i.e., ∼150 events in record). For each event, the
maximum Hs and SSL, and the concurrent Tp and Dir were
extracted. The average angle of incidence during the historic
extreme events (aextreme, mean) and the average wave energy flux
toward the coast (Px extreme, mean) (Harley et al., 2017) were
calculated at each location. The MHW of each profile was

extracted from the JARKUS dataset. Thereafter, an extreme value
analysis (EVA) was performed on Hs, SSL, and Tp. A generalized
Pareto distribution was fitted to the extreme Hs, while for
Tp and SSL, the best fit distribution was chosen from a set
of typical distribution used in coastal applications (generalized
extreme value, exponential, gamma, inverse Gaussian, logistic,
lognormal, Rayleigh, and Weibull), by minimizing the root mean
square error (RMSE) between the theoretical and empirical non-
exceedance probabilities (Wahl et al., 2016). Then extreme values
for each parameter with various return periods (RP) could be
extracted for each profile. Here the 100 years RP is used as a
representative extreme probability (i.e., one that could result in
significant dune erosion) to get the associated Hs,RP100, Tp,RP100,
and SSLRP100 for each profile.

The local extreme wave statistics (Hs,RP100, Tp,RP100, and
SSLRP100) show significant variability with increasing (e.g., more
severe) values from south to north (Supplementary Figure 2).
Their median values along the Dutch coast are 8.8 m, 15 s and
2.5 m, respectively. The MHW (i.e., tidal amplitude) increases
from south (∼ 0.7 m) to north (∼1.7 m) as well. The average
angle of incidence of the historic extreme events aextreme, mean per
profile have mostly values between -28◦ and 10◦ (5th and 95th
percentile, respectively) and has a median of 0.6◦ (i.e., almost
shore normal). This parameter is an indicator of the individual
profile orientation and the local wave climate. Generally, extreme
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FIGURE 4 | Scatter plots of offshore storm parameters pairs of the observed extreme events (black dots) extracted from the time-series at the four offshore
locations. Red dots indicate the 10 most dissimilar events identified by the Maximum Dissimilarity Algorithm (MDA). Each scatter plot represents a pair of the offshore
storm parameters: (1) Significant wave height (Hs,0), (2) Peak wave period (Tp,0), (3) Mean wave direction (Dir0), (4) Storm surge level (SSL) and (5) event duration (D).

storms seem to arrive relatively normal to the shore at the
Holland coast, while they arrive at an angle at the Wadden and
Delta coasts. The average wave energy flux toward the coast of
the historic events Px extreme, mean is a combination of the Hs and
the profile orientation. It generally has lower values along the
Delta coast compared to the Wadden coast due to local profiles
orientation and variations in Hs, and has a median value of 190
KWh/m along the entire Dutch coast.

Representative Offshore Storms
Since pre-storm and post-storm surveys of coastal elevations
were not available at the spatial scale of this study, representative

storms from the historic offshore records and a process-based
model were used to simulate the impact of extreme storm
events on the dune system (section “Dune Erosion Modeling and
Indicators”). The spatial variation of the morphodynamic dune
response was then utilized to identify dune erosion drivers, to
group profiles with similar responses and as a benchmark for
validating the proposed clustering techniques.

Here extreme events were identified at time instances when
Hs,0 and SSL are both high, making it more likely that dune
erosion will occur. Previously, Li et al. (2014), have used
thresholds of 3 and 0.5 m, for Hs,0 and SSL, respectively, for
identifying extreme events with dune erosion potential at the
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TABLE 1 | Offshore storm parameters of the 10 most dissimilar extreme storm
events identified by the Maximum Dissimilarity Algorithm (MDA).

Storm ID Hs,0 (m) Tp,0 (s) DIR0 (o N) SSL (m) D (h)

1 8.8 16.9 327 2.0 18.2

2 5.4 8.5 284 1.6 16.4

3 6.5 12.3 308 2.5 8.9

4 6.2 11.0 293 1.8 38.8

5 6.8 12.4 337 1.6 7.7

6 6.8 9.8 253 2.0 7.7

7 7.6 13.5 326 2.3 25.7

8 7.0 12.1 332 1.6 25.0

9 6.3 10.7 312 2.1 19.9

10 8.1 14.9 342 1.6 14.6

IJmuiden-06 location at the Holland coast (Figure 2). After
testing these values, it was found that for a high number of the
detected storms the dune erosion was minor for most of the
Dutch profiles, so the thresholds herein were increased to 5 and
1.5 m, respectively, to make sure that only events with relatively
substantial dune erosion potential were included. The approach
that was followed to identify the observed extreme storms and
their characteristics comprised: (1) finding the Hs,0 exceedances
of the threshold of 5 m in the Hs,0 time-series; (2) defining the
duration (D) of the event as the time period when Hs,0 remained
above this threshold, while events with a time separation of less
than 24 h were merged as they were assumed to be associated with
the same storm (Wahl et al., 2016); (3) extracting the maximum
Hs,0 during the event, and the concurrent Tp,0 and Dir0; (4)
extracting the maximum SSL during the event; (5) excluding
events with a maximum SSL less than 1.5 m. These steps were
applied to the records of all four offshore stations (Figure 2) to
make sure that the spatial variability in the offshore wave climate
was accounted for, creating a database of 70 storm events with
their descriptive parameters (Hs,0, Tp,0, DIR0, SSL, and D). Then,
the Maximum Dissimilarity Algorithm (MDA) (Camus et al.,
2011) was applied to choose a subset of 10 representative events,
which were the most dissimilar (defined by Euclidean distances
in the parameter space) with respect to their storm parameters
(Figure 4 and Table 1). The most dissimilar event (i.e., the one
with the highest sum of Euclidean distances to all other events)
was used as the seed (i.e., the initial data of the subset) in the
MDA. The number of storms was chosen in order to ensure
that the storm variables space was sampled sufficiently, while
maintaining computational costs at a feasible level.

Dune Erosion Modeling and Indicators
For the dune erosion computations we applied Xbeach which is
an open-source, process-based model which simulates short wave
energy and long wave transformation, wave-driven currents,
sediment transport and corresponding morphological changes
at sandy coasts (Roelvink et al., 2009). In the present study,
XBeachX (v1.23) was used in a “surfbeat” mode, where the
short-wave variations are resolved at the wave group scale. This
mode has been extensively validated in dissipative beaches (such
as the Dutch coast) where infragravity waves dominate the

hydrodynamics and morphodynamics. A one-dimensional (1D)
cross-shore model was created for each study transect, with the
grid resolution varying across the profile, having finer resolution
in the dune area. The topo-bathymetry was extracted from each
individual JARKUS transect and was extended to a 30 m depth
assuming a slope of 0.01, to make sure that the offshore boundary
was deep enough so that the waves are in intermediate water
(while the land boundary was defined by the most landward
JARKUS profile point).

For each storm, the offshore parameters (Figure 4 and Table 1)
were used to construct the XBeach boundary conditions of time-
varying surface elevations and wave energy at the wave group
scale. For the time evolution of Hs during each storm, a triangular
approach was used (Supplementary Section 2), while for Tp it
was assumed that the wave steepness (derived from the maximum
Hs and Tp during the storm) stays constant throughout the
event. DIR was assumed constant throughout the event. These
wave time series were then used to construct JONSWAP spectra
time series (gamma = 3.3 and wave directional spreading of
30◦) that were imposed at the offshore boundary of the model
(Figures 5A,B). For the water levels, a SSL curve was created by
rescaling the normalized hydrograph extracted from the historic
events (Supplementary Section 2), using the maximum SSL
and D of the individual event. A tidal signal was used for each
profile based on observed tidal records and the local MHW
(see Supplementary Section 2). The superimposition of the SSL
and tidal signals was imposed at the offshore boundary of each
model (Figure 5C), while the bound long waves were calculated
internally by XBeach (Van Dongeren et al., 2003; Roelvink et al.,
2009). Each XBeach 1D model, was forced with the exact same
offshore storm conditions for each representative storm (except
the local tidal amplitude), while the local profile orientation
was included in the model to account for differences in wave
energy exposure.

Since the present study aims to propose a methodology for
predicting dune morphodynamic response by identifying drivers
for dune erosion and grouping similar coastal profiles, but not to
directly produce a predictive tool, the “default values” of XBeach
(Deltares, 2018) were applied without any further calibration.
Considering that a large number of simulations needed to
be run (1,430 profiles × 10 storms = 14,300 simulations),
various model parameters (morphological acceleration factor
(morfac) (Roelvink et al., 2009), maximum Courant-Friedrichs-
Lewy number (CFL) and grid resolution) were tested to reduce
the computational time without affecting the dune response
significantly (relatively to the default parameters). The tests were
performed for the five most dissimilar storms and for 10 profiles
with diverse morphological characteristics, to ensure that the
results captured a broad spectrum of profile geometries and
boundary conditions. Based on the outcomes of these tests, a
morfac of 5, a CFL of 0.9 and a grid resolution of 1 m in the dune
area were selected.

Here, the dune erosion volume (DEV), defined as the volume
of dune loss above the maximum surge and tide level during an
event and landward of the pre-storm dune toe (Figure 5D), was
chosen as the dune impact indicator (Giardino et al., 2014) and
was calculated for all profiles and storms that were simulated.
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FIGURE 5 | Example of XBeach offshore boundary conditions for Storm 1 (Figure 4 and Table 1), and of the dune impact for one test transect. (A) Hs time series
(red line) and Hs for the JONSWAP spectrum (blue bars), (B) same as panel (A), but for Tp, (C) water level time series at offshore boundary. (D) Example of dune
erosion volume (DEV) at transect 7002882 – see Figure 2.

The presence of linear correlations between the spatial
variability of the computed DEVs for each storm (section
“Representative Offshore Storms”) and each morphological
(section “Morphological Parameters”) and hydrodynamic
(section “Hydrodynamic Parameters”) parameter along the
Dutch coast were explored by calculating Pearson correlations
(r) (section “Dune Erosion Drivers”). This initial analysis
provided an overview of the sensitivity of the dune impact
(DEV) to profile characteristics (both morphological and
hydrodynamic) and was used as a pre-filtering guide for
the parameter combinations used in the clustering phase
(section “Clustering Sensitivity Analysis”). Additionally, the
DEV dataset acted as a benchmark for the cross-validation
of the proposed prediction techniques (section “Prediction
and Validation”).

Clustering of Coastal Profiles
In order to group similar coastal profiles and identify
TCPs that are representative of each group, unsupervised
multivariate clustering techniques (Hastie, 2017) were employed,
using the morphodynamic, hydrodynamic or dune erosion
parameters that were calculated per profile (see previous section).
In the present study, different combinations of parameters
and different clustering algorithms were tested (K-means,
K-medoids, and Hierarchical clustering, see Supplementary
Section 3). A clustering example with nine clusters (number of
clusters chosen to enable easy visualization), using K-means on
five morphological parameters (equally weighted in this example)
is presented in Figure 6. In this example, profiles are grouped
based on these specific characteristics (Foredune crest z, Max
dune volume, Beach width, Beach volume, and Nearshore slope),
with, for example, cluster 1 representing the most frequently
encountered type of profiles with relatively minor beach size and
mild nearshore slopes, cluster 7 representing profiles with large

beach features but lower dune features, while cluster 8 profiles
that have steep nearshore slopes.

The clustering example presented in Figure 6 grouped the
profiles based on a chosen set of morphological parameters
only and used a rather low number of clusters to demonstrate
the procedure. But, as mentioned in section “Hydrodynamic
Parameters”, spatial variability in hydrodynamic parameters
can affect dune response variability during extreme events as
well. Therefore, different combinations of the morphological
and hydrodynamic parameters and weighting factors were
tested using the developed DEV benchmark dataset (section
“Dune Erosion Modeling and Indicators”) to validate the
representativeness of the selected TCPs with respect to dune
response (section “Prediction and Validation”) and are presented
in section “Clustering Sensitivity Analysis.” Then, using the
simulated DEVs of these initial TCPs in a 2nd clustering step,
the profiles were further reduced to a smaller number of final
TCPs, using their dune response explicitly. This entire clustering
approach defined herein as 2-step clustering (Figure 1) can be
summarized as follows:

(1) A 1st clustering of profiles based on a combination
of morphological and hydrodynamic parameters to obtain N
number of initial TCPs (iTCPs). The number of iTCPs N should
always be larger than the number of final TCPs M. Here, different
values of N were tested, and a value of N = 300 iTCPs was
chosen based on an elbow approach (Scott et al., 2020; see
Supplementary Figure 4), ensuring a high inter-cluster similarity
while having a small number of iTCPs.

(2) A 2nd clustering of the N = 300 iTCPS based on the
same combination of their morphological and hydrodynamic
parameters (50% weighting) as in the 1st clustering, but now
adding the 10 individual DEV parameters simulated for each
of the representative storms and each iTCP as extra clustering
attributes (50% weighting), to get M number of TCPs. In this
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FIGURE 6 | Example of clustering the 1430 JARKUS profiles with K-means into nine clusters (TCPs) using the foredune crest z, max dune volume, beach width,
beach volume and nearshore slope as clustering parameters. (A) Boxplots of intra-cluster scaled parameters variability. Boxes define the 25–75% percentile, lines
the 5–95% percentile and crosses outliers. Circles indicate the TCP of each cluster. (B) TCPs and intra-cluster elevation profile variability. Profiles are plotted from the
foredune crest to the depth of closure. (C) Map of clustering of the Dutch profiles. The cluster number, frequency of appearance and color are shown in the grid at
the top right, which is the same order as the grid at panels (A,B). Cluster numbers are ordered by frequency of appearance.

2nd clustering, the morphological and hydrodynamic parameters
are used again (with a 50% weighting in total), to preserve
some profile descriptive information in the clustering process
and avoid having profiles that might have completely different
morphological characteristics but similar dune response, in the
same cluster. Different numbers M of TCPs were considered (10,
50, 100, and 200) to test the influence of this number on the
clustering performance.

Prediction and Validation
To make a DEV prediction for a new “unseen” profile, it must
be matched to one or more of the previously derived TCPs by
using a similarity indicator. Since, for this “unseen” profile, an
XBeach simulation will not be available, the matching should
be performed based only on morphological and hydrodynamic
parameters (same used during the 1st clustering step). This means
that the test profile will be first matched to the iTCPs and then the
TCP assignments of the iTCPs will be followed to finally match
the test profile with the TCPs. Two matching methods were
compared following Scott et al. (2020). First, a direct matching
approach was tested, which was simply done by matching the
test profile with the most similar iTCP, defined by the smallest
pairwise distance between the test profile and the iTCPs. The
same distance metric as in the clustering was used to calculate the

pairwise distances. Secondly, a probabilistic matching was tested,
assigning matching probabilities to each iTCP according to the
pairwise distances. The matching probabilities of a test profile to
the iTCPs were calculated using the softmax function:

P (i) =
e(−B·xi)∑N
j=1 e(−B·xj)

(1)

Where P (i) is the probability of matching to iTCP i, xi is
the distance between the test profile and the iTCP i, xj is the
distance between the test profile and the iTCP j, B is the stiffness
parameter and N is the number of iTCPs (Scott et al., 2020).
Different values of B were tested, which essentially determined
the variance of the probabilities, with larger B values resulting in
larger probabilities for iTCPs associated with smaller distances.
Ultimately the DEV prediction for the “unseen” profile is made
either by (1) using the simulated DEV value of the single matched
TCP in the case of direct matching or (2) the weighted average
DEV value of the TCPs, using the previously described matching
probabilities as weights. The two methods are compared for
different number of clusters in section “Clustering Sensitivity
Analysis” and (Figure 9B).

The predictive performance of the choice of different feature
combinations, clustering algorithms, number of clusters, and
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matching methods used (referred from here onward as model)
was assessed by a k-fold validation using the DEV data derived in
section “Dune Erosion Modeling and Indicators” as benchmark.
This cross-validation technique allows to assess the performance
of the model to “unseen” data, therefore avoiding overfitting
and artificial skill. The k-fold validation involved the following
steps: (1) randomize the order of the 1,430 profiles in the
dataset, (2) split the dataset in k subsets of equal size, (3)
use 1st subset as test (“unseen”) data and the other k − 1
subsets as training data, (4) repeat 3rd step for each subset,
(5) calculate average performance metrics of all k repetitions.
After testing different k values, a k = 10 was used as that
was the value for which the performance metrics stabilized
and ensured that the model was well trained (∼1,300 profiles),
while having a high enough number of profiles (∼150) left for
validation. To make sure that the performance metrics were not
biased to the randomization process (1st step), the procedure
was repeated five times with different randomization seeds. For
each performance metric the mean and standard deviation were
calculated from the 50 (5 randomizations × 10 k-folds) results
per metric.

The accuracy of the DEV predictions was mainly assessed with
the skill score (Murphy, 1988):

Skill = 1−
RMSE2

σ2
DEVm

(2)

RMSE =

√∑n
i=1
(
DEVp − DEVm

)2

n
(3)

where DEVp and DEVm are the predicted and simulated DEVs
for all 10 storms of the test profiles, respectively, σDEVm is the
standard deviation of the simulated DEVs and n is the number of
predictions validated (i.e., 10 storms × 143 test profiles = 1,430).
A skill value of 1 indicates a perfect prediction. The bias,
RMSE and the modified index of Mielke (λ) (Duveiller et al.,
2016; Santos et al., 2019) were also explored as performance
metrics. The predictive capabilities of the model were assessed
using the previously described performance metrics (Sections
“Clustering Sensitivity Analysis” and “Applying the Typological
Coastal Profiles”).

RESULTS

Dune Erosion Drivers
The pronounced along-coast spatial variability of DEV during
the different representative storms is related to the variability of
the morphological pre-storm parameters, the orientation of the
profiles and the local tidal amplitude (Figure 7). The highest
median DEV is observed for storm 1 (∼ 63 m3/m) and the
lowest for storm 2 (∼ 1.5 m3/m), which have the highest
and lowest Hs,0, respectively. Inter-storm variability in DEV
statistics is associated with differences in the storm intensity,
described by the different offshore storm ocean variables, and
verified that the MDA performed a good job in picking
diverse storms.

A first indication on the most important drivers of dune
erosion variability along the Dutch coast was explored with
Pearson correlations (r) between the DEV per storm and each
morphological and hydrodynamic parameter studied herein
(Figure 7). The calculated r were defined as significant when
the absolute value was larger than 0.2 and it was statistically
significant at the 95% level (Beuzen et al., 2019). The highest
average (absolute) r values are found for the beach width
(r =−0.46), beach volume (r =−0.49) and beach slope (r = 0.58),
for which r is statistically significant for all storms. Next, it is the
nearshore slope (r = 0.31) and MHW (r = 0.31), for which the
relationship for storm 3 is not significant. This can be associated
with storm 3 being the one with the highest SSL (2.5 m), which
results in parameters such as the nearshore slope and MHW
being less important, since the average depth increases. This
pattern can be observed for all other storms, with lower SSL being
associated with higher r values for the nearshore slope and MHW.
The aextreme, mean parameter has an average r of 0.21 which is not
significant for five storms associated with the largest DIR values
(coming from the North).

In general, relationships can be identified between the strength
of the correlation of a parameter with DEV and associated
storm characteristics. For example, r values between DEV
and dune parameters are generally higher for storms with
smaller DIR values (incident from the West). Additionally, r
values between DEV and pre-storm beach width and between
DEV and pre-storm beach volume are higher for events with
larger SSL values. These results suggest that the offshore storm
characteristics (e.g., storm SSL) can affect how strongly the
local coastal characteristics can drive dune erosion variability
(Supplementary Figure 5). The other characteristic local
hydrodynamic parameters (Hs,RP100, Tp,RP100, SSLRP100, and
Px,extreme,mean) had average r values between −0.13 and −0.27.
The negative correlation can relate to feedback mechanisms (e.g.,
coasts exposed to more severe offshore characteristics might
have larger fronting beaches and/or milder nearshore slopes)
and the fact the same offshore forcing was used for all profiles
(i.e., profiles in Delta coast are exposed to less intense offshore
conditions but when forced with a severe offshore storm they are
prone to high DEV).

Clustering Sensitivity Analysis
A second analysis of the importance of parameters was performed
on the basis of the actual DEV predictive skill when using 50
iTCPs produced with K-means and a direct matching method
under a 10-fold cross-validation (Sections “Clustering of Coastal
Profiles” and “Prediction and Validation”). For this analysis,
only the 1st clustering step was performed, as the target was
to optimize the morphological and hydrodynamic parameters
combination. The choice of K-means and 50 iTCPs was based
on minimizing the computational time, since a high number of
combinations needed to be tested. All the parameters previously
considered (Figure 7) were used, except the foredune and max
dune widths which showed low correlation with DEV and were
strongly correlated with other dune parameters, such as the dune
volume (not shown here). All the potential combinations of
the remaining 17 morphological and hydrodynamic parameters
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FIGURE 7 | Dune erosion volume spatial variability and cross-correlation matrix for the 10 representative storms. The maps show the spatial distributions of DEV for
each storm along with the offshore characteristics of each storm (top left of each map). The matrix at the bottom right shows the Pearson correlation coefficients
between the DEV for each storm and various pre-storm morphological and hydrodynamic parameters at each profile. Dots indicate correlations with absolute values
larger than 0.2 and significant at the 95% confidence level.

were tested (∼130,000 combinations), assuming the same weight
for all respective parameters and the mean skill scores per
combination were calculated. The frequency of appearance
of each parameter in the top 1% performing combinations
(Figure 8) and not the single best one was investigated, to avoid
overfitting. The frequency of the appearance of the parameters
in the top combinations indicated that their inclusion in the
combinations provided valuable (regarding DEV prediction)
information and showed a similar picture as in the correlation

analysis (Figure 7). Differences mainly concerned the dune
parameters and some of the wave parameters, as for example here
the dune parameter with the highest frequency was the max dune
volume which had a low average correlation. Additionally, the
dune toe z, which had a significant correlation in the correlation
analysis appeared only∼25% of the time in the top combinations.
These results suggest that when parameters are considered in
combination, other interdependencies between them can be of
importance. Using these results, the important parameters were
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TABLE 2 | Parameters weighting used in the clustering algorithms.

Parameter Weight

Beach volume 1.00

Beach width 0.95

Beach slope 0.95

Nearshore slope 0.70

aextreme,mean 0.70

MHW 0.65

SSLRP100 0.35

Tp,RP100 0.30

Px,extreme,mean 0.25

Max dune volume 0.20

chosen as the ones that had a frequency of more than 33% (e.g.,
appear at least 1 out of 3 times). A sensitivity analysis on the
choice of this threshold showed small differences in the results,
since the selected parameters are then weighted according to their
contribution. Ultimately, the parameters that were selected for
further analysis were: (a) from the morphological parameters:
the max dune volume, beach width, beach volume, beach slope
and nearshore slope; (b) from the hydrodynamic parameters: the
MHW, Tp,RP100, SSLRP100, aextreme,mean, and Px,extreme, mean.

In the previous tests where all the combinations of parameters
were considered for the clustering procedure, all parameters had
the same weight in the clustering algorithm. However, as it has
been previously shown, some of the parameters can be more
important in driving dune erosion variability during storms. To
this end, an exhaustive/grid search approach was followed to
find the optimum weights of each parameter for the clustering,
by testing different weight combinations. The average weights
(rounded at the 0.05 precision level) of the top 1% performing
(on the basis of prediction skill) weights combinations were
calculated and used as the final weighting in the clustering
analysis (Table 2).

The proposed clustering algorithms (section “Clustering of
Coastal Profiles”) were tested for different number of clusters (i.e.,
number M of TCPs) with a direct matching method and showed
similar skill in predicting DEV (Figure 9A). It should be noted,
that having similar skill does not mean that the same TCPs were
chosen, but rather that similar predictive skills were obtained
with the respective TCPs. To this end, the K-means clustering
algorithm was used for the rest of the analysis as it was the fastest
one between the three.

The different matching methods of the prediction model
(section “Prediction and Validation”) were compared as well
using K-means clustering and different number of TCPs
(Figure 9B). For the probabilistic matching, different values of
the stiffness parameter B were tested. The probabilistic matching
mostly outperformed the direct matching method, except for
small values B (i.e., less constrained weights). For the rest
of the study, a probabilistic matching was used, with a B
value of 200, since it performed best for the range of 100–
200 clusters, which gives an acceptable input reduction and
prediction skill combination.

Applying the Typological Coastal Profiles
Using the 2-step clustering approach with the aforementioned
parameters combination and weighting, a K-means clustering
algorithm and a probabilistic matching (stiffness parameter
B = 200), the prediction capabilities were further investigated.
Looking into the predicted DEV values versus the XBeach
simulated DEVs (for all 10 storms) for one of the 10-fold cross-
validations (143 test profiles), it can be observed, that as the
number of clusters (TCPs) increases, the deviation from the 1:1
line (perfect prediction) decreases (Figure 10). These improved
prediction capabilities are demonstrated by the performance
metrics calculated (skill, λ, RMSE, and bias), which all attain
improved values as the number of cluster increases (Figure 10).
For M = 200 TCPs (i.e., highest number of clusters tested here),
the skill score reaches a value of 0.86 with a RMSE of 13 m3/m. As
described in section “Prediction and Validation,” the error metrics
are presented for all 10 storms, but they can be calculated for
the individual storms as well (Supplementary Figure 6). These
were lower than the skill calculated using all the storms for all the
number of clusters tested here, with an average skill of ∼0.6 for
10 clusters and∼0.75 for 200 clusters.

Since increasing the number of clusters always improves the
error statistics (Figure 10), there is no optimum choice for the
number of clusters/TCPs. However, a higher number of TCPs
means a lower input reduction. Here, we used M = 100, since
it provided a good input reduction with good prediction skill,
reducing the JARKUS profiles (1,430) to 100 TCPs (Figure 11 and
Supplementary Figure 7). It can be observed that∼50% of all the
profiles is already represented with 12 TCPs, while ∼90% can be
represented by 47 TCPs (Figure 11A). The location of the TCPs
shows that 18 of the 100 TCPs are on the Holland coast, 31 are
on the Wadden coast and 51 on the Delta coast (Figure 11B).
This indicates that the profiles on the Holland Coast are more
coherent, while the profiles on the Delta coast are more diverse.
The percentage of the TCPs per area relative to the total number
of profiles per area were 13, 3, and 6% for the Delta, Holland and
Wadden coasts, respectively. The representation of the TCPs for
each area changes for the different number of TCPs tested here
(Supplementary Figures 8, 9).

DISCUSSION

Insights
The present study aimed at exploring the use of clustering
approaches to reduce a large dataset of elevation transects
to a fewer number of representative transects in order to
facilitate the more efficient assessment of dune erosion due to
extreme storms using the Dutch coast as a case study. We
found that 1,430 profiles could be reduced to 100 representative
ones, which would imply a large computational cost savings.
The results furthermore highlight the importance of the shape
of the beach fronting the dune systems in driving dune
erosion variability during extreme coastal storms, with pre-storm
beach width, volume and slope being in the most important
parameters with respect to both the correlation analysis (section
“Dune Erosion Drivers”) and the clustering analysis (section
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FIGURE 8 | Frequency of occurrence of each potential parameter in the best performing combinations. Clustering was performed using a K-means algorithm and
50 clusters. The top performing combinations are the top 1% of the ∼130,000 possible combinations, defined on the basis of their skill score metric with a 10-fold
validation. The dashed horizontal line indicated the 33% frequency.

FIGURE 9 | Sensitivity analysis for clustering algorithms and matching methods. (A) Prediction skill for different clustering techniques and number of clusters, using
the direct matching method. (B) Prediction skill for different matching methods (direct and probabilistic with different B values) and number of clusters, using
K-means clustering. Bars indicate the mean values and lines the standard deviation of the 10-fold cross-validation.

“Clustering Sensitivity Analysis”). These results agree with
previous observations from measured changes in dune volume
along the United States West Coast (Cohn et al., 2019) and at the
southeast Australian coast (Beuzen et al., 2019). Additionally, the
inclusion of the observed mean angle of incidence during extreme
events (aextreme, mean), which represents both the local wave
climate and profile orientation, improved the DEV prediction

skill of the clustering approach, due to the variability in profile
orientation along the Dutch coastline studied herein. The local
nearshore slope, driving the wave dissipation and the MHW
contributing to the total water level were found to be important
driving parameters as well. Moreover, it was found that the
importance of the morphological drivers can be dependent on
the extreme storm characteristics with, for example, higher
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FIGURE 10 | Scatter plots of simulated DEV with Xbeach vs. the predicted DEV for the 143 test profiles (10% of total profiles) and 10 storms, using a 2-step
clustering with K-means (with 300 iTCPs) and a probabilistic matching (B = 200) for four different number of clusters (TCPs). The graphs indicate an example for one
of the 10-fold cross-validations and points are colored for different storms. Dashed lines indicate a 10% deviation. At the bottom, the table shows the different mean
error metrics of the 10-fold validation for each number of clusters (TCPs) used.

FIGURE 11 | Typological coastal profiles (TCPs) for a 2-step clustering with K-means and 100 clusters. (A) Profile coverage of each TCP with bars and left axis
showing the number of profiles per TCP and red line and right axis showing the cumulative coverage (%) of the profiles. The first 12 TCPs already describe ∼50% of
all the profiles, while the first 47 TCPs describe ∼90% of all the profiles. (B) Map of the location of each of the 100 TCPs.

SSL making the beach characteristics stronger drivers of DEV
spatial variability. The pre-storm dune parameters did not play
an important role in driving DEV for the case of the Dutch
coast, which is potentially related to the fact that dunes in
the Netherlands are quite large with high features, seldomly
being overwashed even during extreme events. This agrees
with previous observations from Beuzen et al. (2019), where

the dune characteristics were not found to be important for
DEV predictions.

While the correlation analysis of the linear dependencies
between DEV and the profile parameters provided a useful
basis for exploring the importance of these characteristics for
dune erosion, the clustering analysis provided new insights,
taking into account the interdependencies between some of the
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parameters, since they were used in combination. Parameterizing
each profile and then using these parameters in a clustering
procedure, led to a descriptive grouping of the profiles, where
profiles with similar characteristics were grouped together (e.g.,
profiles with high foredune and narrow beaches formed one
cluster). But when accounting for the individual importance of
each parameter in driving dune erosion the clustering techniques
showed significant predictive skill in estimating DEV at “unseen”
profiles, which highlights the potential use of this subset in a
large-scale predictive tool.

As described in section “Clustering of Coastal Profiles,”
a two-step clustering approach was followed herein, which
uses simulated DEV for 10 representative storms in a 2nd
clustering step, that re-clusters the initial typological profiles
(iTCPs) in the final TCPs. However, since the correlation and
feature combination analysis (sections “Dune Erosion Drivers”
and “Clustering Sensitivity Analysis”) already ensured that the
combination of morphological and hydrodynamic parameters
used in the clustering phases consider the erosion driving
processes, the 2nd clustering step could be potentially skipped
and the iTCPs could directly act as TCPs (i.e., 1-step clustering).
A comparison of the skill metrics of the 1-step clustering versus
2-step clustering with different number of TCPs is shown in
Table 3. As expected, for all cases an increase in the number of
clusters (TCPs) results in an improvement of skill. Additionally,
the skill improvement with increasing number of clusters (TCPs)
is more evident for the case of the 1-step clustering. Already,
with 10 TCPs the skill score of the 2-step clustering is 0.3 larger
than that for the 1-step clustering, while only for 200 TCPs the
error statistics attain similar values for the two methods. This
highlights the added value of using the simulated DEV in the
clustering procedure.

Generally, with the 2-step clustering a better prediction skill
is attained for the same number of clusters (with increasing gain
for lower number of clusters), relatively to the 1-step clustering.
However, there is a compromise in the input data demands, since
for the 2-step clustering, DEV observations or simulations need
to be at hand for a number of profiles (equal to the chosen
number of iTCPs in the 1st step clustering), while for the 1-step
clustering only the morphological and hydrodynamic variables
(which are easier to calculate) are needed. Ultimately, choosing
between the two clustering techniques depends on the amount
of input reduction needed for the specific application of the
calculated TCPs, since for a small number of TCPs (i.e., high
input reduction), a 2-step clustering would be necessary, to get
a good prediction skill. The extra morphodynamic simulations
that would be then needed for the 2nd clustering, could worth the
extra workload, if they significantly decrease the computational
burden for the final application. Additionally, this choice can
relate to the needed accuracy of the final application, which could
enable the use of 1-step clustering even for a smaller number of
TCPs for more explorative and qualitative studies.

Limitations
In order to transform the offshore wave time-series to nearshore
ones, a simple linear wave transformation and Snell’s law
were applied with the implied assumption of an alongshore

uniform bathymetry. Since this transformation was performed
only to derive a proxy of the extreme nearshore hydrodynamic
parameters characterizing each profile (section “Hydrodynamic
Parameters”), a more elaborate approach based on wave modeling
(Gouldby et al., 2014) was deemed out of the scope of this
explorative study. Furthermore, this more generally applicable
methodology has larger potential for upscaling this kind of
studies globally, using offshore wave reanalysis or future scenario
simulations (Vousdoukas et al., 2018). Additionally, in order to
be able to apply our techniques for non-observed storms, we used
schematized time-series for the wave conditions and SSL, when
forcing XBeach, instead of actual observed time series. However,
it should be noted that the use of a triangular distribution has
been shown to introduce extra uncertainties in estimated DEVs
(Duo et al., 2020), which are dependent on the initial profiles, thus
affecting the computed DEV. Our methodology can be improved
by considering synthetic hydrographs (Rizwan et al., 2019),
however, such an effort would involve substantial computational
effort. Given the fact that the schematized hydrographs showed
a good agreement on the basis of a number of bulk parameters
known to affect dune erosion (see Supplementary Section 2),
here we decided to follow this simpler methodology.

Since pre and post-storm surveys were not available at this
scale (as only annual observations are in the data set), dune
impacts were simulated using a well-established dune erosion
model and a set of representative storms at the Dutch coast.
Xbeach has been shown to perform well in capturing the physical
processes at dissipative sandy beach and dune coasts during
storms in numerous previous studies (Lindemer et al., 2010;
McCall et al., 2010; Vousdoukas et al., 2011; de Winter et al.,
2015; Mickey et al., 2018; Passeri et al., 2018); and since the aim
of the study was not to develop a predictive tool but rather to
develop a methodology for making more efficient predictions of
dune morphodynamics, the default settings of the model were
used. Certainly, this is expected to influence the magnitude of
simulated DEV along the Dutch coast. A consistent sensitivity
analysis to test the influence of using the default parameters
was not performed in this study but it is expected that while
the magnitude of DEV could be affected, the general spatial
variability and trends observed herein (which are more critical
for the purposes of the study) will not be strongly influenced.
Furthermore, the results presented herein are representative of
dissipative coasts, where infragravity waves are driving coastal
hydrodynamic and erosion. Possibly other parameters and other
modeling tools (McCall et al., 2014) would be needed to apply the
presented techniques at steeper coasts.

Sediment grain size variability can influence variabilities in
dune response, an effect that was not explicitly considered in
the present study. While this could be an important aspect in
a global study including various study sites with a large range
of grain sizes, we expect a small effect at the Dutch coast where
the variability of D50 at the foredune along the coast is not that
pronounced (Supplementary Figure 10) having a mean value of
∼210 µm and a standard deviation of ∼30 µm. The mean value
along the Dutch coast is close to the default D50 value used in
the Xbeach simulations herein, which is 200 µm. Considering
the actual variability of D50 is expected to have minor effects in
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TABLE 3 | Error statistics for 2-step and 1-step clustering using different number of typological coastal profiles (TCPs).

TCPs skill λ RMSE bias

Clustering 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step

10 0.45 0.75 0.69 0.85 25.66 17.44 0.48 −1.73

50 0.70 0.82 0.83 0.90 19.09 14.70 −1.19 −0.84

100 0.79 0.84 0.88 0.91 15.81 13.76 −1.12 −0.37

200 0.84 0.86 0.91 0.92 14.01 13.01 −0.45 −0.22

the simulated DEVs, since XBeach has little sensitivity to the D50
parameter (Ellen Quataert, Deltares, personal communication).
Furthermore, the grain size variability is implicitly considered to
some extent, since it is expected to be physically correlated with
some of the other parameters used in the clustering procedure
(e.g., beach slope).

With respect to the clustering of the profiles and defining
the TCPs, various sensitivities were tested in the study herein,
mainly focusing on (1) the parameters used, (2) their weights,
(3) the clustering algorithm and (4) the matching technique.
With respect to the parameters used, the extraction of parameters
per profile was based on data availability and previous studies
that explored their importance in driving dune erosion (Beuzen
et al., 2019; Cohn et al., 2019; Santos et al., 2019). Undoubtedly,
there are parameters that were not studied here and could be
of importance for simulating the dune erosion more accurately
and obtaining a better grouping of the profiles and thus more
representative TCPs. These parameters could for example, be
the local sand grain size (discussed previously) or the presence
of vegetation on the dune (Charbonneau et al., 2017; Feagin
et al., 2019). Three clustering algorithms were tested which
fall in the categories of centroid-based clustering (K-means
and K-medoids) and connectivity-based clustering (hierarchical).
Other clustering techniques, based on other concepts are
available as well, but were not tested here, due to the high
number of profiles in the initial dataset, the high dimensionality
(large number of parameters to be tested) and the computational
constrains. For example, distribution-based algorithms like the
Gaussian mixture models, might present some benefits for better
clustering the coastal profiles, but are computationally expensive,
restricting their application in the present study. Even though,
comparing K-means, K-medoids and hierarchical clustering,
resulted in quite similar prediction skill, the actual TCPs were
different between the algorithms. This is expected to be of greater
importance, when a small number of clusters (TCPs) is used,
but as the intra-cluster variability decreases with an increasing
number of clusters, the TCPs for a high number of clusters are
expected to be similar between the algorithms.

On the Dutch coast, the dunes remain mostly in a swash or
collision regime even during extreme events (flooding hazard
scale by Sallenger, 2000) due to their considerable size and
height. This means that while dune scarping can be expected
during storms, overwash or inundation is not. Additionally,
there is frequent maintenance of the Dutch dunes with sand
nourishments. To this end, DEV was chosen as a descriptive
indicator of dune erosion for the present study. Other indicators,

such as foredune crest lowering, dune toe recession, beach
width change and others, were tested but were disqualified
due to either luck of variability or inconsistencies in the
calculations. For example, due to the high dune features of
the Dutch coast, foredune crest lowering was only seldomly
observed in the modeled profiles. Additionally, in some other
cases dune toe detection was not consistent in the pre-
storm and post-storm profiles (i.e., erroneous detection of
dune toe in post-storm profile) leading to inconsistencies in
calculating the relative change, which could potentially introduce
artificial inhomogeneities during the clustering phase. It would
be expected tough, that for locations with barriers islands
and lower dune features, other indicators like dune crest
lowering or overwash volumes might be of more importance
(Santos et al., 2019).

The presented methodology was built upon a specific dataset
of coastal elevations and hydrodynamic conditions covering the
Dutch coast and its specific range of potential values for each of
the descriptive parameters used. Consequently, the derived TCPs
have characteristic parameters that belong to that same range.
Since the matching of an “unseen” test profile with one of the
TCPs is performed on the basis of their similarity, there is no
threshold that defines a minimum similarity when this matching
is performed. This means that a profile with strongly different
characteristics than any of the TCPs would still be matched to
the TCP that is the most similar (on the basis of the distance
metric used), but with a more uncertain DEV prediction. To
that end, a threshold for the similarity could be applied, which
when reached, the new profile should be considered as a new TCP
itself and thus a set of new descriptive coastal change simulations
would need to be performed. This threshold could be defined
based on the maximum intra-cluster distances to the respective
TCP of the already defined clusters. In the absence of such
threshold, the decision of the number of TCPs can become more
critical, to ensure that the test profiles are matched to similar
TCPs with meaningful DEV prediction.

Implications
Large scale assessments and coastal screening studies are often
based on tools or meta-models that enable efficient prediction
of impact indicators (Viavattene et al., 2017; Athanasiou et al.,
2020; Sanuy and Jiménez, 2021). The proposed input reduction
methodology can be incorporated in such tools to reduce
computational costs and enable the inclusion of more forcing
scenarios. This could be useful for example in (1) early warning
systems, when computational time is critical or (2) probabilistic
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long-term coastal vulnerability probabilistic assessments, when a
high number of simulations is required. Large scale probabilistic
estimation of impact indicators can reveal spatial variabilities
in erosion hazard and identify hotspots where more elaborate
modeling (e.g., 2DH Xbeach) could be applied. The methodology
can also be useful in case of changes in the hydrodynamic
forcing (e.g., as a result of climate change) or morphological
parameters (e.g., as a result of man-made interventions such as
a nourishment), since the results can be directly updated on the
basis of the new similarities of the pre-defined TCPs, instead of
re-running all the simulations.

Additionally, the input dataset could be extended with more
elevation profile datasets (Athanasiou et al., 2019) and storm
conditions to capture a bigger range of coastal settings. Applying
the presented clustering methodology to this extended dataset
will produce more diverse TCPs, which capture a broader
spectrum of coastal typologies. Since this extended set of TCPs
would represent a higher range of coastal morphologies and/or
local hydrodynamics, they could potentially be used to get a 1st
order estimate of dune erosion hazard to extremes storms at
data poor locations. For example, less accurate data (e.g., satellite
derived DEMs) could be used to get information on the beach and
nearshore characteristics for this kind of areas.

More specifically, the derived TCPs at the Dutch coast could be
used in a Bayesian Network in combination with a high number
of potential storm conditions and calibrated Xbeach 1D models,
to: (1) assess the influence of different scenarios or/and climate
change, (2) identify critical areas with respect to dune erosion
along the Dutch coast and (3) provide a first qualitive assessment
of sand nourishment volumes needed after a storm. For the case
of the Dutch coast, a good prediction skill (0.84) of DEV was
attained with at least 100 TCPs which represents a 93% input
reduction from the initial 1,430 JARKUS profiles.

CONCLUSION

Clustering algorithms were employed in order to obtain a
representative subset of sandy beach and dune profiles (called
typological coastal profiles or TCPs) that can be used to describe
the dune response to extreme events for a large domain (Dutch
coast) at a much-reduced computational cost relative to a
conventional brute force approach where individual profiles are
assessed. These TCPs were chosen on the basis of various local
morphological and hydrodynamic characteristics that have been
shown to drive dune response during extreme events, while
simulated DEVs under representative storms were accounted
as well (i.e., 2-step clustering). Dune fronting pre-storm beach
geometries, nearshore slopes, local tidal amplitude, and profile
orientations were found to be the most important drivers of
simulated DEV variability.

Using these insights, different clustering methodologies were
tested, and their performance was explored through a cross-
validation technique. Using 100 TCPs (a 93% input reduction
relative to the initial 1,430 profiles) resulted in a good prediction
skill (0.84) for DEV with an average RMSE of 13.8 m3/m. For
the case of the Dutch coast, 47 of these TCPs already represent

∼90% of the total available profiles, with large stretches of the
Wadden and Holland coasts being adequately represented by a
small number of TCPs relatively to the Delta coast. An approach
where simulations of DEV are not necessary, by using only the
pre-storm morphological and hydrodynamic parameters for the
clustering procedure (1-step clustering) was assessed as well. This
method produced a skill score of 0.83 only when a higher number
of 200 TCPs was used.

Ultimately, the final application of the TCPs, and thus the level
of input (and thus computational cost) reduction or accuracy
needed, would dictate the choice of the clustering approach
and the number of TCPs used. Potential applications of the
proposed methodology include incorporation in a Bayesian
Network, enabling large scale probabilistic impact assessments.
Additionally, expanding the input training data with globally
available datasets of coastal elevations can contribute in upscaling
the methodology for a first order assessments of dune erosion
potential at data-poor coastal locations.
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