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Optimal portfolio selection problems are determined by the (unknown) parameters of
the data generating process. If an investor wants to realize the position suggested by the
optimal portfolios, he/she needs to estimate the unknown parameters and to account for
the parameter uncertainty in the decision process. Most often, the parameters of inter-
est are the population mean vector and the population covariance matrix of the asset
return distribution. In this paper, we characterize the exact sampling distribution of
the estimated optimal portfolio weights and their characteristics. This is done by deriv-
ing their sampling distribution by its stochastic representation. This approach possesses
several advantages, e.g. (i) it determines the sampling distribution of the estimated opti-
mal portfolio weights by expressions, which could be used to draw samples from this
distribution efficiently; (ii) the application of the derived stochastic representation pro-
vides an easy way to obtain the asymptotic approximation of the sampling distribution.
The later property is used to show that the high-dimensional asymptotic distribution
of optimal portfolio weights is a multivariate normal and to determine its parameters.
Moreover, a consistent estimator of optimal portfolio weights and their characteristics
is derived under the high-dimensional settings. Via an extensive simulation study, we
investigate the finite-sample performance of the derived asymptotic approximation and
study its robustness to the violation of the model assumptions used in the derivation of
the theoretical results.

Keywords: Sampling distribution; optimal portfolio; parameter uncertainty; stochastic
representation; high-dimensional asymptotics.

Mathematics Subject Classification 2020: 62E15, 62E20, 62H12, 62H15, 62P05, 91G10

1. Introduction

The solution to the optimal portfolio selection problems are determined by the
parameters of the data generating process. In many cases, the optimal portfolio
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weights and their characteristics, like the portfolio mean, the portfolio variance, the
value-at-risk (VaR), the conditional VaR (CVaR), etc., can be computed by using
the mean vector and the covariance matrix of the asset return distribution. More
precisely, these relationships are summarized by the following five quantities:

VGMV =
1

1�Σ−11
, wGMV =

Σ−11
1�Σ−11

, RGMV =
μ�Σ−11
1�Σ−11

,

s = μ�Qμ, v =
Qμ

μ�Qμ
,

(1.1)

where μ = E(x) and Σ = Var(x) are the mean vector and the covariance matrix of
the p-dimensional asset return vector x and

Q = Σ−1 − Σ−111�Σ−1

1�Σ−11
. (1.2)

The five quantities in (1.1) have an interesting financial interpretation. The
components of the p-dimensional vector wGMV define the weights of the global
minimum variance (GMV) portfolio, i.e. of the portfolio with the smallest variance,
while RGMV and VGMV are the expected return and the variance of the GMV
portfolio. The quantity s is the slope parameter of the efficient frontier, the set
of all optimal portfolios following Markowitz’s approach. This parameter, together
with RGMV and VGMV, fully determines the location and the shape of the efficient
frontier, which is a parabola in the mean-variance space. Finally, the components of
the p-dimensional vector v define the weights of the so-called self-financing portfolio
(cf. Korkie and Turtle [50]), i.e. the sum of its weights is equal to zero, that is
1�v = 0.

The five quantities in (1.1) determine the structure of many optimal portfolios,
like the GMV portfolio, the mean-variance (MV) portfolio, the expected maximum
exponential utility (EU) portfolio, the tangency (T) portfolio, the optimal portfolio
that maximizes the Sharpe ratio (SR), the minimum VaR (MVaR) portfolio, and
the minimum CVaR (MCVaR) portfolio, maximum value-of-return (MVoR) portfo-
lio, MCVoR portfolio, among others (see, e.g. Markowitz [52], Ingersoll [43], Jobson
and Korkie [46], Alexander and Baptista [3], Alexander and Baptista [4], Okhrin
and Schmid [56], Kan and Zhou [49], Frahm and Memmel [37], Bodnar et al. [23],
Adcock [1], Woodgate and Siegel [64], Bodnar et al. [19], Bodnar et al. [13], Simaan
et al. [61], Bodnar et al. [18], Bodnar et al. [11]). On the other hand, the quanti-
ties (1.1) cannot be directly used to compute the weights and the characteristics of
these portfolios, since both μ and Σ are unobservable parameters in practice. As a
result, an investor determines the optimal portfolios by replacing μ and Σ in (1.1)
with the corresponding sample estimators given by

μ̂ =
1
n

n∑
i=1

xi and Σ̂ =
1

n− 1

n∑
i=1

(xi − μ̂)(xi − μ̂)�, (1.3)
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given a sample of asset returns x1,x2, . . . ,xn. This approach leads to the sample
or the so-called plug-in estimators of the optimal portfolios, which are based on the
corresponding sample estimators of (1.1), expressed as

V̂GMV =
1

1�Σ̂
−1

1
, ŵGMV =

Σ̂
−1

1

1�Σ̂
−1

1
, R̂GMV =

μ̂�Σ̂
−1

1

1�Σ̂
−1

1
,

ŝ = μ̂�Q̂μ̂, v̂ =
Q̂μ̂

μ̂�Q̂μ̂
,

(1.4)

with

Q̂ = Σ̂
−1 − Σ̂

−1
11�Σ̂

−1

1�Σ̂
−1

1
(1.5)

as well as to the sample (plug-in) estimators of the optimal portfolio weights.
The notion of the sampling distribution in portfolio allocation has recently been

given large attention. Investors and researchers realize that the uncertainty, intro-
duced by using historical data, needs to be integrated into the optimal portfo-
lio decision process as well as properly assessed. The sampling distribution of the
mean-variance portfolio was investigated as early as Jobson and Korkie [46], Britten-
Jones [25], Okhrin and Schmid [56], where the distributions of estimated optimal
portfolio weights were derived under the assumption of an independent sample of
asset returns taken from a multivariate normal distribution. Moreover, both the
asymptotic and finite-sample distributions of the estimated efficient frontier, the
set of all mean-variance optimal portfolios, were obtained by Jobson [45], Bodnar
and Schmid [21], Kan and Smith [47], and Bodnar and Schmid [22], among others,
while Siegel and Woodgate [60] and Bodnar and Bodnar [8] presented its improved
estimators and proposed a test of its existence. Some of these results were later
extended to the high-dimensional setting in Frahm and Memmel [37], Glombeck
[39], Bodnar et al. [19], Bodnar et al. [18], whereas several limiting results related
to the estimation of optimal portfolios under high-dimensional settings are present
in Ao et al. [5], Kan et al. [48], Cai et al. [28], Ding et al. [33], Bodnar et al. [10],
among others.

The sample mean vector and the sample covariance matrix given by (1.3) have
been used extensively in previous research (see, e.g. Britten-Jones [25], Memmel and
Kempf [54], Okhrin and Schmid [57]) for estimating the asset return vector and its
covariance matrix. These estimators appear to be consistent and the corresponding
estimated optimal portfolios have desirable asymptotic properties when the portfolio
dimension is considerably smaller than the sample size. However, they can no longer
be used when a high-dimensional portfolio is constructed, due to their performance
when the portfolio dimension is comparable to the sample size. One of the issues
lies in that the quantities (1.4) depend on the inverse covariance matrix. Its sample
counterpart is not a consistent estimator in the high-dimensional settings (see, e.g.
Bodnar et al. [12]). To cope with these limitations, a number of improved estimators
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have been considered in the literature (cf. Efron and Morris [34], Jagannathan and
Ma [44], Golosnoy and Okhrin [40], Frahm and Memmel [37], DeMiguel et al. [31],
Rubio et al. [59], Yao et al. [65]).

We contribute to the existent literature by deriving the joint sampling distribu-
tion of the estimated five quantities in (1.4), which solely determine the structure
of optimal portfolios. These results are then used to establish a unified approach
for characterizing the sampling distributions of the estimated weights and the cor-
responding estimated characteristics of optimal portfolios. The goal is achieved by
presenting the joint distribution of (V̂GMV, ŵ�

GMV, R̂GMV, ŝ, v̂�)� in terms of a very
useful stochastic representation. A stochastic representation is a computationally
efficient tool in statistics and econometrics to characterize the distribution of a
random variable/vector, which is widely used in both conventional and Bayesian
statistics. While it plays a special rule in the theory of elliptical distributions (cf.
Gupta et al. [42]), the stochastic representation is also a very popular method to
generate random variables/vectors in computational statistics (see, e.g. Givens and
Hoeting [38]). The applications of stochastic representations in the determination
of the posterior distributions of estimated optimal portfolios can be found in Bod-
nar et al. [14] and Bauder et al. [7]. Finally, Zellner and Ando [66], among others,
argued that the direct Monte Carlo approach based on stochastic representations is
a computationally efficient method to perform bayesian estimation. In this paper,
we employ the derived stochastic representation for (V̂GMV, ŵ�

GMV, R̂GMV, ŝ, v̂�)�

in the derivation of their high-dimensional asymptotic distribution, as well as in
obtaining the high-dimensional asymptotic distribution of estimated optimal port-
folios.

The theoretical results derived in the paper are based on the assumption that
the asset returns are independent and normally distributed. Although this assump-
tion is crucial for the derivation, especially of the finite-sample distributions of the
estimated portfolio weights and their estimated characteristics, it is not obviously
fulfilled in practical applications, especially, when financial data of daily or higher
frequency are considered. On the other side, such assumptions are still appropriate
for data taken of weekly or lower frequency, especially when the data is obtained
from developed financial markets. For that reason, in the numerical part of the
paper, we investigate the robustness of the derived high-dimensional asymptotic
results to the violation of both normality and independence considering multivari-
ate t-distributions and the CCC-GARCH model (see, Bollerslev [24]). The results of
the simulation study indicate the presence of overestimation for the slope parameter
of the efficient frontier and underestimation of the variance of the GMV portfolio
under the t-model, while the asymptotic normality can still be used for the rest of
the desired quantities. Moreover, the presence of autocorrelation between squared
asset returns has only minor influence on the derived high-dimensional distribu-
tions. It means that, when the data follows a heavy tailed distribution, it is not
fully clear what happens with the derived asymptotic distributions, and this case
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should be considered with care. We expect that the asymptotic results will depend
on the fourth moments of the noise variables, and we will study this case deeper in
the future papers.

The rest of the paper is organized as follows. In Sec. 2, we derive the finite-
sample joint distribution of (V̂GMV, ŵ�

GMV, R̂GMV, ŝ, v̂�)�. This result is then used
to establish the sampling distributions of the estimated optimal portfolio weights
and their estimated characteristics in Sec. 3. Section 4 presents the asymptotic
distributions of the estimated weights derived under the large-dimensional asymp-
totics. The results of the finite-sample performance of the asymptotic distributions
and the robustness analysis to the distributional assumptions imposed on the data-
generating process are investigated in Sec. 5, while final remarks are given in Sec. 6.
The technical derivations are moved to Appendix A.

2. Exact Sampling Distribution of V̂GMV, ŵGMV, R̂GMV, ŝ, and v̂

Throughout the paper, we assume that the p-dimensional vectors of asset returns
x1,x2, . . . ,xn are independent and normally distributed with mean vector μ and
covariance matrix Σ, i.e. xi ∼ Np(μ,Σ) for i = 1, . . . , n. While Fama [35] argued
that the distribution of monthly asset returns can be well approximated by the
normal distribution, Tu and Zhou [62] found no significant impact of heavy tails on
the performance of optimal portfolios.

The stochastic representation of V̂GMV, θ̂, R̂GMV, ŝ, and η̂ is derived in a more
general case, namely by considering linear combinations of θ̂ and η̂ expressed as

θ̂ = LŵGMV and η̂ = Lv̂,

where L is a k × p matrix of constant with k < p− 1 and rank(L) = k. In Secs. 2
and 3, we assume that k < p − 1, while a stronger condition on k is imposed in
the derivation of the high-dimensional asymptotic results given in Sec. 4. Here, we
assume that k remains finite, while the portfolio dimension p increases together
with the sample size n. The matrix L represents the investors interest and views
of the portfolio weights. If L is selected to be the row vector with one on the ith
element and zero otherwise, for instance (1, 0, 0, . . . , 0), then the investor would
be interested in the ith weight and its distribution. If the distribution of the ith
weight is centered around zero, then one can start to question whether or not
the true weight is actually zero and in turn if the asset should be present in the
portfolio.

In the same manner as above, we define the population counterparts of θ̂ and η̂

given by

θ = LwGMV and η = Lv.

Since μ̂ and Σ̂ are independently distributed (cf. Rencher [58]), the conditional

distribution of (V̂GMV, θ̂
�

, R̂GMV, ŝ, η̂�)� under the condition μ̂ = μ̃ is equal to

2250008-5
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the distribution of (V̂GMV, θ̂
�
, R̃GMV, s̃, η̃

�)� with

R̃GMV =
μ̃�Σ̂

−1
1

1�Σ̂
−1

1
, s̃ = μ̃�Q̂μ̃, and η̃ =

LQ̂μ̃

μ̃�Q̂μ̃
, (2.1)

while their population counterparts we denote by:

R̆GMV =
μ̃�Σ−11
1�Σ−11

, s̆ = μ̃�Qμ̃, and η̆ =
LQμ̃

μ̃�Qμ̃
. (2.2)

Let the symbol d= denote the equality in distribution. In Lemma A.1, we derive
the joint distribution of (V̂GMV, θ̂

�
, R̃GMV, s̃, η̃

�)�, whose result is an intermediate
step toward Theorem 2.1. For that reason, Lemma A.1 is placed in Appendix A.
In Theorem 2.1, we present a joint stochastic representation of V̂GMV, θ̂, R̂GMV,
ŝ, and η̂, which will be used in the next section to characterize the distribution of
portfolio weights on the efficient frontier. Furthermore, we use the notation t ∼ tp(r)
to indicate that a random vector t of size p follows a standardized multivariate
t distribution with r degrees of freedom. Since the multivariate t distribution is
not uniquely defined, we state the density to be used. The density and further
information can be found in Gupta et al. [42]. If t ∼ tp(r), then we imply that it
has density

ft(y) =
Γ(p)

(πr)p/2Γ(r/2)

(
1 +

y�y
r

)− p+r
2

, (2.3)

where Γ(·) is the gamma function. We omit the subindex in tp when it is a one-
dimensional t distribution. The proof of Theorem 2.1 is given in Appendix A.

Theorem 2.1. Let x1,x2, . . . ,xn be independent and normally distributed with
mean vector μ and covariance matrix Σ, i.e. xi ∼ Np(μ,Σ) for i = 1, . . . , n with
n > p. Define M = (L�, μ̃,1)� and assume that rank(M) = k + 2. Let Σ be
positive definite. Then, a joint stochastic representation of V̂GMV, R̂GMV, θ̂, ŝ, and
η̂ is given by

(i) V̂GMV
d=
VGMV

n− 1
ξ1;

(ii) R̂GMV
d= RGMV +

√
VGMV

(
z1√
n

+
√
f

t1√
n− p+ 1

)
;

(iii)

θ̂
d= θ +

√
VGMV

(
sη + z2/

√
n√

f

t1√
n− p+ 1

+
(
LQL� − (sη + z2/

√
n)(sη + z2/

√
n)�

f

)1/2

×
√

1 +
t21

n− p+ 1
t2√

n− p+ 2

⎞⎠;
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(iv) ŝ
d= (n− 1)(1 + t21

n−p+1 ) f
ξ2

with

f =
ξ3
n

+
(
sη +

z2√
n

)�
(LQL�)−1

(
sη +

z2√
n

)
; (2.4)

(v)

η̂
d=
sη + z2/

√
n

f
+

1√
f

(
LQL� − (sη + z2/

√
n)(sη + z2/

√
n)�

f

)1/2

×

⎛⎜⎜⎜⎜⎝ 1√
1 +

t21
n− p+ 1

t2√
n− p+ 2

t1√
n− p+ 1

+
(
Ik + f

t2t�2
n− p+ 2

)1/2
t3√

n− p+ 3

⎞⎟⎟⎟⎟⎠,

where ξ1 ∼ χ2
n−p, ξ2 ∼ χ2

n−p+2, ξ3 ∼ χ2
p−k−1;nμ�Aμ, z1 ∼ N (0, 1), z2 ∼

Nk(0,LQL�), t1 ∼ t(n − p + 1), t2 ∼ tk(n − p + 2), and t3 ∼ tk(n − p + 3)
are mutually independent with

A = Q− QL�(LQL�)−1LQ. (2.5)

The results of Theorem 2.1 provide a simple way to simulate observations from
the distribution of V̂GMV, R̂GMV, θ̂, ŝ, and η̂. To simulate observations from the
joint distribution, we only need to simulate random variables from well-known dis-
tributions. Moreover, the total dimension of independently simulated variables is
equal to (3k + 5), which is considerably small when direct simulation would imply
simulating p × p matrices from a Wishart distribution and a p-dimensional vec-
tor from a normal distribution. To this end, we point out that both the square
roots in (iii) and (v) can be computed analytically, which will further facilitate
speeding up the simulation study. This observation is based on the following two
equalities:

(D − bb�)1/2 = D1/2(I − cD−1/2bb�D−1/2), (2.6)

where D1/2 is a symmetric square root of D, c = (1 − √
1 − b�D−1b)/b�D−1b

and

(I + dd�)1/2 = I + add�, (2.7)
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where a = (
√

1 + d�d− 1)/d�d. Hence, it holds that(
LQL� − (sη + z2/

√
n)(sη + z2/

√
n)�

f

)1/2

= (LQL�)1/2

⎛⎜⎜⎝Ik −
1 −
√
ξ3
nf

f − ξ3
n

(LQL�)−1/2(sη + z2/
√
n)(sη

+ z2/
√
n)�(LQL�)−1/2

⎞⎟⎟⎠ (2.8)

and (
Ik + f

t2t�2
n− p+ 2

)1/2

= Ik +

⎛⎝√1 + f
t�2 t2

n− p+ 2
− 1

⎞⎠ t2t�2
t�2 t2

. (2.9)

In Eqs. (2.8) and (2.9), the matrix inverse and square roots are functions of
population quantities. They only need to be computed once, independently of the
length of the generated sample. The same argument cannot be performed when
simulations of the joint distribution are obtained through simulating the sample
covariance matrix and the sample mean vector directly. Hence, Theorem 2.1 provides
an efficient algorithm to generate samples of arbitrary large size from the joint
distribution of V̂GMV, R̂GMV, θ̂, ŝ, and η̂ relative to simulating Σ̂ and μ̂ directly.
The findings of Theorem 2.1 also lead to an efficient way of sampling from the sample
distribution of the optimal portfolio weights and their estimated characteristics,
which will be discussed in detail in the next section.

3. Exact Sampling Distribution of Optimal Portfolio Weights

The weights of the optimal portfolios that belong to the efficient frontier have the
following structure:

wg = wGMV + g(RGMV, VGMV, s)v (3.1)

with their k linear combinations expressed as

Lwg = θ + g(RGMV, VGMV, s)η, (3.2)

where the function g(RGMV, VGMV, s) determines a specific type of an optimal port-
folio. This function depends on μ and Σ only through the three quantities RGMV,
VGMV, and s, which fully determine the efficient frontier in the mean-variance space.
By considering the general form of (3.2), we are able to cover a number of well-
known optimal portfolios: the GMV portfolio, the mean-variance (MV) portfolio,
the expected maximum EU portfolio, the T portfolio, the optimal portfolio that

2250008-8
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Table 1. Choice of the function g for several optimal portfolios. The symbol Φ(.) denotes the
distribution function of the standard normal distribution and Φ−1(.) stands for its inverse.

Portfolio g(RGMV, VGMV, s) Additional quantities

GMV 0
MV μ0 − RGMV μ0 ∈ R-target expected return
EU γ−1s γ > 0 is the risk-aversion coefficient
T VGMVs/(RGMV − rf ) rf is the risk-free return

SR VGMVs/RGMV

MVaR s
p

VGMV/(z2
α − s) zα = Φ−1(α)

MCVaR s
p

VGMV/(k2
α − s) kα = exp{−z2

α/2}/(2π(1 − α))

MVoR
(RGMV+v0)s+

√
z2

αs((RGMV+v0)2+(s−z2
α)VGMV)

z2
α−s

v0 > 0 is the target VaR

MCVoR
(RGMV+k0)s+

√
k2

αs((RGMV+k0)2+(s−k2
α)VGMV)

k2
α−s

k0 is the target CVaR

maximizes the SR, the minimum Value-at-Risk (MVaR) portfolio, and the mini-
mum conditional Value-at-Risk (MCVaR) portfolio, the maximum Value-of-Return
(MVoR) portfolio, the MCVoR portfolio, among others. The specific choices of
g(., ., , ) for each of these optimal portfolios are provided in Table 1.

Let ŵg denote the sample estimator of the optimal portfolio weights given in
the general form as in (3.2), which is obtained by plugging the sample mean vector
and the sample covariance matrix instead of the unknown population counterparts.
The k linear combinations of the optimal portfolio weights are estimated by

Lŵg = θ̂ + g(R̂GMV, V̂GMV, ŝ)η̂. (3.3)

By Theorem 2.1 the exact sampling distribution of (3.3) is derived in terms of its
stochastic representation. The results are summarized in Theorem 3.1, whose proof
follows from Theorem 2.1.

Theorem 3.1. Under the conditions of Theorem 2.1, it holds that

Lŵg
d= θ +

(√
VGMV

f

t1√
n− p+ 1

+
g(R̂GMV, V̂GMV, ŝ)

f

)
(sη + z2/

√
n)

+
(
LQL� − (sη + z2/

√
n)(sη + z2/

√
n)�

f

)1/2

×

⎛⎜⎜⎜⎜⎝
√
VGMV

√
1 +

t21
n− p+ 1

+
g(R̂GMV, V̂GMV, ŝ)√

f

t1/
√
n− p+ 1√

1 +
t21

n− p+ 1

⎞⎟⎟⎟⎟⎠
× t2√

n− p+ 2
+
g(R̂GMV, V̂GMV, ŝ)√

f

(
Ik + f

t2t�2
n− p+ 2

)1/2
t3√

n− p+ 3
,

(3.4)
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where the joint stochastic representation of V̂GMV, R̂GMV and ŝ is given in (2.1)–
(2.1) of Theorem 2.1.

From Theorem 3.1 we can derive a number of important results. First, it pro-
vides a complete characterization of the sampling distribution of the estimators for
the optimal portfolio weights. This distribution can be assessed by drawing sam-
ples with independent observations from the derived stochastic representation of
a relatively large size and then applying the well-established statistical methods
for estimating the distribution function, the density, the moments, etc. Second,
the obtained stochastic representation in Theorem 3.1 provides an efficient way for
generating samples from the finite-sample distribution of Lŵg following the discus-
sion provided in Sec. 2 after Theorem 2.1, which is based on drawing independent
realizations from well-known univariate and multivariate distributions. To this end,
we note that the two square roots in (3.4) should be computed as given by (2.8)
and (2.9). Similarly to the prior discussion, using these simplifications the derived
stochastic representation can be rewritten to include matrix inverses and square
roots of population quantities. Once more, these objects should only be computed
once during the whole simulation study. Third, for the chosen values of the popu-
lation quantities used in the simulation study, we can construct concentration sets
of optimal portfolio weights. Fourth, an important probabilistic result about the
sampling distribution of Lŵg follows directly from the derived stochastic represen-
tation, namely that the finite-sample distribution of Lŵg depends on the population
mean vector μ and the population covariance matrix Σ through RGMV, VGMV, s,
θ, η, and LQL. To sample from the distribution of Lŵg we only need to fix these
seven quantities. In particular, in the case of a single linear combination, i.e. when
k = 1, we only have to fix six univariate quantities independently of the dimension
p of the data-generating process.

In a similar way, we derive statistical inference for the estimated characteristics
of optimal portfolio with weights ŵg as given by (3.1). The expected return of the
optimal portfolio with the weights (3.1) is given by

Rg = RGMV + g(RGMV, VGMV, s), (3.5)

while its variance is

Vg = VGMV +
g(RGMV, VGMV, s)2

s
. (3.6)

Similarly, the VaR, the CVaR, the VoR and the CVoR are computed by

VaRg = −(RGMV + g(RGMV, VGMV, s))

− zα

√
VGMV +

g(RGMV, VGMV, s)2

s
, (3.7)
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CVaRg = −(RGMV + g(RGMV, VGMV, s))

− kα

√
VGMV +

g(RGMV, VGMV, s)2

s
, (3.8)

and by symmetry

VoRg = (RGMV + g(RGMV, VGMV, s))

−zα

√
VGMV +

g(RGMV, VGMV, s)2

s
, (3.9)

CVoRg = (RGMV + g(RGMV, VGMV, s))

−kα

√
VGMV +

g(RGMV, VGMV, s)2

s
. (3.10)

Equations (3.7) and (3.8) describe the VaR and CVaR respectively for a specific
portfolio and not a single asset. Since risk measures simply measure the risk of
random objects, the interpretation of the VaR remains the same as in the case of
the univariate case. The VaR measures the loss at a certain confidence level and
specifies a quantile. The CVaR specifies the mean loss when a loss larger than (or
equal to) the VaR occurs, a tail-conditional expectation, hence its name CVaR. By
a change of sign, the same holds for the CVoR and VoR.

Inserting the sample mean vector and the sample covariance matrix in (3.5)–
(3.10) instead of the population counterparts, we get the sample estimators of the
optimal portfolio characteristics. The application of Theorem 2.1 leads to the state-
ment of their (joint) sampling distribution, which is presented in Theorem 3.2.

Theorem 3.2. Under the conditions of Theorem 2.1, the stochastic representation
of the estimated characteristic of optimal portfolio are obtained as in (3.5)–(3.10)
where RGMV, VGMV, and s are replaced by their sample counterparts R̂GMV, V̂GMV,

and ŝ with

V̂GMV
d=
VGMV

n− 1
ξ,

R̂GMV
d= RGMV +

√
VGMV

n

(
1 +

p− 1
n− p+ 1

ψ

)
z,

ŝ
d=

(n− 1)(p− 1)
n(n− p+ 1)

ψ,

where ξ ∼ χ2
n−p, ψ ∼ F (p− 1, n− p+ 1, ns), z ∼ N(0, 1) are mutually independent.

The proof of Theorem 3.2 is given in Appendix A. It has to be noted that
the joint distribution of all six estimators (R̂g, V̂g, V̂aRg, ̂CVaRg, V̂oRg, ̂CVoRg) is
completely determined by three mutually independent random variables ξ, ψ, and
z with the standard marginal univariate distribution. Moreover, it depends on the
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unknown population mean vector and covariance matrix over three univariate quan-
tities RGMV, VGMV, and s. These uniquely determines the whole efficient frontier
in the mean-variance space. To this end, the stochastic representation derived for
the estimated optimal portfolio characteristics appears to be simpler than the one
obtained in Theorem 3.1 for the corresponding estimator of the optimal portfo-
lio weights. Similarly, the independent realizations from the joint distribution of
(R̂g, V̂g, V̂aRg, ̂CVaRg, V̂oRg, ̂CVoRg) can be drawn efficiently by employing the
results of Theorem 3.2.

Another interesting financial application of the derived theoretical findings of
Theorem 3.2 is present in the case of the EU portfolio, whose sample expected
return and sample variance possess the following stochastic representations:

R̂EU
d= R̂GMV + γ−1ŝ, (3.11)

V̂EU
d= V̂GMV + γ−2ŝ. (3.12)

It appears that R̂EU and R̂EU are conditionally independent, given the estimated
slope parameter of the efficient frontier ŝ. In the limit case, when the risk aversion
coefficient γ tends to infinity and the EU portfolio tends toward the vertex of
the efficient frontier, the two estimated portfolio characteristics are unconditionally
independent. In all other cases, the dependence between them is fully captured by
the estimated geometry of the efficient frontier.

4. High-Dimensional Asymptotic Distributions

The derived stochastic representations of Secs. 3 and 4 are also very useful in the
derivation of the asymptotic distributions of the estimators of optimal portfolio
weights and their estimated characteristics. To this end, we note that the same
approach can be used independently whether the dimension of the data generating
process p is assumed to be fixed or allowed to grow together with the sample size n.
These two regimes have been intensively discussed in statistical literature. The for-
mer asymptotic regime, i.e. with fixed p, is called the “standard asymptotics” (see,
e.g. Le Cam and Yang [51]). Here, both the sample mean and the sample covari-
ance matrix are proven to be consistent estimators for the corresponding population
counterparts. Challenges arise when p is comparable to n, i.e. both the dimension
p and the sample size n tend to infinity while their ratio p/n tends to a positive
constant c ∈ [0, 1), the so-called concentration ratio. It is called “large dimensional
asymptotics” or “Kolmogorov asymptotics” (cf., Bühlmann and Van De Geer [26],
Cai and Shen [27]), while the case c = 0 corresponds to the standard asymptotics.

Although a large amount of research has been done on the asymptotic behavior
of functionals which only include the sample mean vector or the sample covariance
matrix under the high-dimensional asymptotics (see, e.g.,Bai and Silverstein [6],
Cai et al. [29], Wang et al. [63], Bodnar et al. [12], Bodnar et al. [16], Bodnar
et al. [9]), the situation becomes more complicated when both the sample mean
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vector and the sample (inverse) covariance matrix are present in the expressions.
The problem is still unsolved and attracts both researchers and practitioners. In this
section, we show how the derived stochastic representations of Secs. 2 and 3 can be
employed in the derivation of the high-dimensional asymptotic distributions of the
estimated optimal portfolios and their characteristics. The main advantage of the
suggested approach based on the stochastic representations is the clear separation
between the deterministic quantities and the stochastic ones. By using the stochastic
representation we can determine the joint asymptotic distributions of the latter.

Throughout this section, we will impose the following technical conditions on
the functions involving the population mean vector and the population covariance
matrix:

(A1) There exist m and M , such that

0 < m ≤ μ�Σ−1μ ≤M <∞ and 0 < m ≤ 1�Σ−11 ≤M <∞ (4.1)

uniformly in p. Moreover, for a linear combination of optimal portfolio weights
determined by the p-dimensional vector l it holds uniformly in p that

0 < m ≤ l�Σ−1l ≤M <∞. (4.2)

Assumption (A1) ensures that the efficient frontier RGMV, VGMV, and s as well
as the components of k linear combinations of optimal portfolio weights Lwg are
all finite numbers in higher dimensions. The financial interpretation shows that
even though we have an infinite amount of assets, we should not be able to gain
an infinite amount of return for any amount of risk taken, i.e. the slope of the
efficient frontier is bounded. It also states that the variance of the GMV portfolio
is finite and bounded from zero, which can also be interpreted as investing in a
market (regardless of how big it is), should imply some risk, but it can be neither
infinite nor zero. Mathematically, it may happen depending on μ and Σ that some
quantities of RGMV, VGMV, s, and Lwg tend to infinity as p increases. In such cases,
one should replace the constants m and M in (4.1) and (4.2) by pκm and pκM for
some κ > 0. This approach would lead only to minor changes in the expressions of
the derived asymptotic covariance matrices in this section, where some terms might
disappear (see, e.g. Bodnar et al. [15] for a similar discussion).

To this end, by an abuse of notations, we use the same notations for the functions
involving the population mean vector μ and the population covariance matrix Σ and
their corresponding deterministic limits. For instance, μ�Σ−1μ will also be used
to denote the limit limp→∞ μ�Σ−1μ. The interpretation of the quantities becomes
clear from the text where they are used.

4.1. High-dimensional asymptotic distribution of V̂GMV, R̂GMV, θ̂,

ŝ, and η̂

Before presenting the high-dimensional asymptotic results for the estimated opti-
mal portfolio weights and their characteristic, we derive the asymptotic stochastic
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representation for the five quantities V̂GMV, R̂GMV, θ̂, ŝ, and η̂. It is presented
in Theorem 4.1 in terms of several independently normally distributed random
variables/vectors. Such a presentation allows also to characterize the asymptotic
dependence structure V̂GMV, R̂GMV, θ̂, ŝ, and η̂ as well as to derive the expression
of the asymptotic covariance matrix which is given after Theorem 4.1.

Theorem 4.1. Under the conditions of Theorem 2.1 and Assumption (A1), it holds
that

(i)

√
n− p

(
V̂GMV − 1 − p/n

1 − 1/n
VGMV

)
d→ √

2(1 − c)VGMVu1,

(ii)
√
n− p(R̂GMV −RGMV) d→

√
VGMV(

√
1 − cu4 +

√
s+ cu5),

(iii)

√
n− p(θ̂ − θ) d→

√
VGMV

(
su5√
s+ c

η +
(
LQL� − s2

s+ c
ηη�

)1/2

u6

)
,

(iv)

√
n− p

(
ŝ− (s+ p/n)(1 − 1/n)

1 − p/n+ 2/n

)
d→ 1

1 − c
(
√

2(1 − c)(c+ 2μ�Aμ)u2

+ 2s
√

(1 − c)η�(LQL�)−1/2u3 +
√

2(s+ c)u7),

(v)

√
n− p

(
η̂ − s

s+ p/n
η

)
d→ 1√

s+ c

(
LQL� − s2

s+ c
ηη�

)1/2

u8

+
√

1 − c

(s+ c)

(
LQL� − 2

s2

s+ c
ηη�

)
(LQL�)−1/2u3

− s
√

2(1 − c)(c+ 2μ�Aμ)u2

(s+ c)2
η

for p/n → c ∈ [0, 1) as n → ∞ where u1, u2,u3, u4, u5,u6, u7,u8 are mutually
independent, u1, u2, u4, u5, u7 ∼ N(0, 1) and u3,u6,u8 ∼ Nk(0, Ik).

Several interesting results are summarized in the statement of Theorem 4.1,
whose proof is given in Appendix A. We observe that three quantities related to the
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estimators of the weights and of the characteristics of the GMV portfolio, the ver-
tex point on the efficient frontier, are asymptotically independent of the estimated
slope parameter of the efficient frontier ŝ and the self-financing portfolio η̂. However,
these two are not asymptotically independent. This may not be so surprising since
it is implicitly present in the estimated weights of the self-financing portfolio v from
its definition (1.4). Moreover, the sample variance of the GMV portfolio appears
to be asymptotically independent of its estimated expected return R̂GMV and the
estimator of the weights θ̂ following the finite-sample findings of Theorem 2.1.
However, it is surprising that the covariance between θ̂ and R̂GMV is partly deter-
mined by the self-financing portfolio η due to the deterministic expression close
to u5 in the asymptotic stochastic representations of

√
n− p(R̂GMV − RGMV) and√

n− p(θ̂ − θ). Finally, the direct application of the derived stochastic representa-
tions in Theorem 4.1 leads to the expression of the asymptotic covariance matrix
as given in Corollary 4.1.

Corollary 4.1. Under the conditions of Theorem 2.1 and Assumption (A1), it
holds that

√
n− p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V̂GMV − 1 − p/n

1 − 1/n
VGMV

R̂GMV −RGMV

θ̂ − θ

ŝ− (s+ p/n)(1 − 1/n)
1 − p/n+ 2/n

η̂ − s

s+ p/n
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ N2k+3(0,Ξ)

with

Ξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2V 2
GMV(1 − c)2 0 0 0 0

0 VGMV(1 + s) VGMVsη
� 0 0

0 VGMVsη VGMVLQL� 0 0

0 0 0 Ξs,s Ξ�
s,η

0 0 0 Ξs,η Ξη,η

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for p/n→ c ∈ [0, 1) as n→ ∞ where

Ξs,s =
2(c+ 2s)
(1 − c)

+ 2
(s+ c)2

(1 − c)2
, (4.3)

Ξη,η =
s+ 1

(s+ c)2
LQL� − s2(2c(1 − c) + (s+ c)2)

(s+ c)4
ηη�,

Ξs,η =
2s(2c− s+ 4μ�Aμ)

(s+ c)2
η.

(4.4)
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4.2. High-dimensional asymptotic distribution of optimal

portfolio weights

The results of Theorem 4.1 are used to derive the high-dimensional asymptotic
distribution of linear combinations of the estimated optimal portfolio weights ŵg

as well as of the corresponding estimated characteristics of the portfolios given in
Sec. 3. Throughout this section, we assume that the number of linear combinations
k is finite.

Let

λ̂ = (R̂GMV, V̂GMV, ŝ)� and

λ =
(
RGMV, (1 − c)VGMV,

s+ c

1 − c

)�
,

(4.5)

where the results of Theorem 4.1 show that

R̂GMV −RGMV = oP (1),

V̂GMV − (1 − c)VGMV = oP (1),

ŝ− s+ c

1 − c
= oP (1),

where oP (1)→0 for p/n→ c ∈ [0, 1) as n→ ∞.
Throughout this section, it is assumed that the function g(x, y, z) is differentiable

with first-order continuous derivatives and define

g1(x0, y0, z0) =
∂g(x, y, z)

∂x

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

,

g2(x0, y0, z0) =
∂g(x, y, z)

∂y

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

,

g3(x0, y0, z0) =
∂g(x, y, z)

∂z

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

.

The asymptotic distribution of Lŵg is given in Theorem 4.2, with the proof pre-
sented in Appendix A.

Theorem 4.2. Let g(., ., .) be differentiable with first-order continuous derivatives.
Then, under the conditions of Theorem 2.1 and Assumption (A1), we get

√
n− p

(
Lŵg −

(
θ +

sg (λ)
s+ p/n

η

))
d→ Nk(0,ΩL,g) (4.6)
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for p/n→ c ∈ [0, 1) as n→ ∞ with

ΩL,g =
((

1 − c

s+ c
+ g(λ)

)
g(λ)
s+ c

+ VGMV

)
LQL�

+ s2

{
2
(1 − c)2V 2

GMV

(s+ c)2
g2(λ) +

(
g3(λ)
1 − c

− g(λ)
s+ c

)2 2(1 − c)c
(s+ c)2

+
4(1 − c)
(s+ c)2

[
g(λ)

(
g3(λ)
1 − c

− g(λ)
s+ c

)
+ s

(
g3(λ)
1 − c

− g(λ)
s+ c

)2
]

+
VGMV(1 − c)

(s+ c)2
g1(λ)2 +

VGMV

(s+ c)
g1(λ) +

2
1 − c

g3(λ)2 − g(λ)2

(s+ c)2

}
ηη�.

(4.7)

The results of Theorem 4.2 are derived for the finite number k of linear combina-
tions of the estimated optimal portfolio weights ŵg and, consequently, they cannot
be used to verify the consistency of the whole vector ŵg. Several consistency results
about estimated optimal portfolio weights can be found in Ao et al. [5].

In the special case of the EU portfolio we get g(x, y, z) = γ−1z, g1(x, y, z) =
g2(x, y, z) = 0, and

g3(λ)
1 − c

− g(λ)
s+ c

=
1

1 − c
γ−1 − γ−1(s+ c)

(1 − c)(s+ c)
= 0.

As a result, the asymptotic covariance matrix of LŵEU is expressed as

ΩL,EU =
((

1 − c

s+ c
+ γ−1 s+ c

1 − c

)
γ−1

1 − c
+ VGMV

)
LQL�

+
(1 − 2c)γ−2s2

(1 − c)2
ηη�. (4.8)

In the same way, the high-dimensional asymptotic distribution of the
estimated optimal portfolio characteristics is obtained. Following (3.5)–(3.10),
(Rg, Vg,VaRg,CVaRg,VoRg,CVoRg) are functions of RGMV, VGMV, and s only.
On the other hand, Theorem 4.1 determines the joint high-dimensional asymptotic
distribution of R̂GMV, V̂GMV, and ŝ expressed as

√
n− p

⎛⎜⎜⎜⎜⎜⎜⎝

R̂GMV −RGMV

V̂GMV − 1 − p/n

1 − 1/n
VGMV

ŝ− (s+ p/n)(1 − 1/n)
1 − p/n+ 2/n

⎞⎟⎟⎟⎟⎟⎟⎠→ N3(0,ΞRV s)
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for p/n→ c ∈ [0, 1) as n→ ∞ with

ΞRV s =

⎛⎜⎜⎜⎝
VGMV(1 + s) 0 0

0 2V 2
GMV(1 − c)2 0

0 0
2(c+ 2s)
(1 − c)

+ 2
(s+ c)2

(1 − c)2

⎞⎟⎟⎟⎠,
which shows that (R̂GMV, V̂GMV, ŝ) are asymptotically independently distributed.

The characteristics in Eqs. (3.5)–(3.10) can be viewed as transformations of
RGMV, VGMV, s. In a similar fashion to Theorem 4.2, we can also construct high-
dimensional asymptotic distributions for these. Let hg,i(RGMV, VGMV, s) denote the
ith characteristic of the optimal portfolio with the weights wg and let hg,i(λ̂) denote
its corresponding estimate, where λ is defined in (4.5). In the example of character-
istics given by Eqs. (3.5)–(3.10), i would range from 1 to 6. Let the jth first-order
partial derivative of hg,i(.) at λ be denoted by hg,i;j(λ). We get the following result
of the high-dimensional distribution of estimated optimal portfolio characteristic,
whose proof is obtained from the proof of Theorem 4.2.

Theorem 4.3. Let hg,i(., ., .), i = 1, . . . , q, be differentiable with first-order contin-
uous derivatives. Then, under the conditions of Theorem 2.1 and Assumption (A1),
we get for p/n→ c ∈ [0, 1) as n→ ∞

√
n− p

⎛⎜⎜⎜⎝
hg,1(λ̂) − hg,1(λ)

...

hg,q(λ̂) − hg,q(λ)

⎞⎟⎟⎟⎠→ Nq(0,Ξh)

with Ξh = (Ξh;ij)i,j=1,...,q where

Ξh;ij =
3∑

l=1

ΞRV s;llhg,i;l(λ)hg,j;l(λ). (4.9)

4.3. Interval estimation and high-dimensional test theory

The results of Theorems 4.2 and 4.3 indicate that both Lŵg and hg,i(λ̂), i = 1, . . . , q,
are not consistent estimators for Lŵg and hg,i(RGMV, VGMV, s), i = 1, . . . , q, respec-
tively. While the asymptotic bias of the sample estimator of linear combinations of
optimal portfolio weights is ( s

s+cg(λ) − g(RGMV, VGMV, s))η, the asymptotic bias
in the estimator of the ith portfolio characteristic is hg,i(λ)−hg,i(RGMV, VGMV, s).

On the other hand, the results of Theorem 4.1 already provide consistent esti-
mators for VGMV, RGMV, θ, s, and η. Namely, they are given by

V̂GMV ;c =
V̂GMV

1 − p/n
, (4.10)

R̂GMV ;c = R̂GMV, (4.11)
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θ̂c = θ̂, (4.12)

ŝc =
n− p

n

(
ŝ− p

p+ n

)
, (4.13)

η̂c =
ŝc + p/n

ŝc
η̂. (4.14)

Combining these equalities, we derive consistent estimators for Lŵg and
hg,i(RGMV, VGMV, s) expressed as

Lŵg;c = θ̂ + g(R̂GMV ;c, V̂GMV ;c, ŝc)η̂c and (4.15)

ĥg,i,c = hg,i(R̂GMV ;c, V̂GMV ;c, ŝc). (4.16)

In Theorem 4.4, the asymptotic covariance matrices of the consistent estimators
of optimal portfolio weights and their characteristics are present.

Theorem 4.4. Let λ = (RGMV, VGMV, s)�. Then, under the conditions of Theo-
rems 4.2 and 4.3, it holds that

(a)
√
n− p(Lŵg;c − Lwg)

d→ Nk(0,ΩL,g,c) for p/n→ c ∈ [0, 1) as n→ ∞ with

ΩL,g,c =
((

1 − c

s+ c
+
s+ c

s
g(λ0)

)
g(λ0)
s

+ VGMV

)
LQL�

+ s2

{
2
(1 − c)V 2

GMV

s(s+ c)
g2(λ0) +

(
g3(λ0)(s+ c)

s
− g(λ0)

s

)2 2(1 − c)c
(s+ c)2

+
4(1 − c)
(s+ c)2

[
s+ c

s
g(λ0)

(
g3(λ0)(s+ c)

s
− g(λ0)

s

)

+ s

(
g3(λ0)(s+ c)

s
− g(λ0)

s

)2
]

+
VGMV(1 − c)

s2
g1(λ0)2

+
VGMV

s
g1(λ0) +

2(1 − c)(s+ c)2

s2
g3(λ0)2 − g(λ0)2

s2

}
ηη�;

(b) for p/n→ c ∈ [0, 1) as n→ ∞ holds

√
n− p

⎛⎜⎜⎜⎝
ĥg,1,c − hg,1(λ0)

...

ĥg,q,c − hg,q(λ0)

⎞⎟⎟⎟⎠→ Nq(0,Ξh,c) with Ξh,c = (Ξh,c;ij)i,j=1,...,q,

where

Ξh,c;ij = VGMV(1 + s)hg,i;1(λ0)hg,j;1(λ0) + 2V 2
GMVhg,i;2(λ0)hg,j;2(λ0)

+ (2s2 + 4s+ 2c)hg,i;3(λ0)hg,j;3(λ0). (4.17)
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Since both ΩL,g,c and Ξh,c depend on unobservable quantities, we have to esti-
mate them consistently under the high-dimensional asymptotic regime when confi-
dence regions for the optimal portfolio weights and for the optimal portfolio char-
acteristics are derived.

Consistent estimators for VGMV, RGMV, θ, s, and η are given in (4.10)–(4.14).
Similarly, to construct a consistent estimator for LQL�, we have that

LQL� = L
(
Σ−1 − Σ−111�Σ−1

1�Σ−11

)
L� = LΣ−1L� − 1

VGMV
θθ�.

First, VGMV and θ are replaced by their consistent estimators V̂GMV ;c and θ̂c.
Second, note that a consistent estimator for l�i Σ−1lj with deterministic vectors li
and lj satisfying Assumption (A1) is given by (1− p/n)l�i Σ̂

−1
lj (cf., Bodnar et al.

[18, Lemma 5.3]). As a result, LQL� is consistently estimated by (1 − p/n)LQ̂L�

with Q̂ given in (1.5) and, hence, VGMV, RGMV, θ, s, η, and LQL� with their
consistent estimators in (4.17) and (4.17), we obtain consistent estimators for ΩL,g,c

and Ξh,c denoted by Ω̂L,g,c and Ξ̂h,c. For instance, a consistent estimator for the
covariance matrix of the estimated weights of the EU portfolio is given by:

Ω̂L,EU,c =
((

1 − cn
ŝc + cn

+ (ŝc + cn)γ−1

)
γ−1 + V̂GMV ;c

)
(1 − cn)LQ̂L�

+ γ−2

{
2(1 − cn)c3n
(ŝc + cn)2

+ 4(1 − cn)cn
ŝc(ŝc + 2cn)
(ŝc + cn)2

+
2(1 − cn)c2n(ŝc + cn)2

ŝ2c
− ŝ2c

}
η̂cη̂

�
c , (4.18)

where cn = p/n.
The suggested consistent estimators of ΩL,g,c and Ξh,c are then used to derive

(1−β) asymptotic confidence intervals for the population optimal portfolio weights
and their characteristics. In the case of k linear combination of the optimal portfolio
weights wg we get

CL,g;1−β = {ω : (n− p)(Lŵg;c − Lwg)�Ω̂
−1

L,g,c(Lŵg;c − Lwg) ≤ χ2
k;1−β}, (4.19)

where χ2
k;1−β denotes the (1 − β) quantile from the χ2-distribution with k degrees

of freedom.
Finally, using the duality between the interval estimation and the test theory

(cf., Aitchison [2]), a test on the equality of k-linear combination of optimal portfolio
weights to a preselected vector r can be derived. Namely, one has to reject the null
hypothesis H0: Lwg = r in favor to the alternative hypothesis H0: Lwg = r at
significance level β as soon as r does not belong to the confidence interval CL,g;1−β ,
as given in (4.19). Similar results are also obtained in the case of optimal portfolio
characteristics.
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5. Finite-Sample Performance and Robustness Analysis

The finite-sample performance of the derived high-dimensional asymptotic approx-
imation of the sampling distribution of the estimated optimal portfolio weights is
investigated via an extensive Monte Carlo study in this section. Additionally, we
study the robustness of the obtained asymptotic distributions to the violation of
the assumption of normality used in their derivation. The following four simulation
scenarios will be considered in the simulation study:

Scenario 1: Multivariate normal distribution

Sample of asset returns x1,x2, . . . ,xn are generated independently from Np(μ,Σ);

Scenario 2: CAPM model

Sample of asset returns x1,x2, . . . ,xn are generated independently from the CAPM
model. That is, we sample n observations from xi = yi + βzi where y1, . . . ,yn are
generated independently from Np(μ,Σ) and z1, . . . , zn are generated independently
from a standard normal distribution;

Scenario 3: Multivariate t-distribution

Sample of asset returns x1,x2, . . . ,xn are generated independently from multivari-
ate t-distribution with degrees of freedom d = 10, location parameter μ, scale matrix
d−2

d Σ. This choice of the scale matrix ensures that the covariance matrix of xi is Σ;

Scenario 4: CCC-GARCH model (cf., Bollerslev [24])

The asset returns are assumed to be conditionally normally distributed with xt|Σt ∼
Np(μ,Σt). The conditional covariance matrix is specified by Σt = D1/2

t CD1/2
t with

Dt = diag(h1,t, . . . , hp,t) and

hi,t = αi,0 + α1,i(xi,t−1 − μi)2 + β1,ihi,t−1, for i = 1, . . . , p and t = 1, . . . , n,

where xt = (x1,t, . . . , xp,t)�, μ = (μ1, . . . , μp)�, αi,0 ≥ 0 and α1,i, β1,i > 0 for
i = 1, . . . , p.

Scenario 1 corresponds to the assumption used in the derivation of the theo-
retical results of the paper. Scenario 2 corresponds to a one-factor model of asset
returns, which is a popular approach in financial literature. Although following this
model the largest eigenvalue of the covariance matrix Σ+ β211� is of order p (see,
e.g. Fan et al. [36]), it still fulfills the assumptions used in the derivation of the
theoretical findings of Secs. 2 and 3. Scenario 3 violates the key assumption of
normality by allowing heavy tails in the distribution of the asset returns. Finally,
Scenario 4 is used to investigate the performance of the high-dimensional asymp-
totic approximation of the sampling distribution of the estimated optimal portfolio
weights when the assumption of independence does not hold by introducing nonzero
autocorrelation between the squared values of the asset returns.
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In order to make the results more flexible, the model parameters are not fixed
to some preselected values, but are randomly simulated. In the considered scenarios
the components of μ are generated from U(−0.2, 0.2), where U(a, b) stands for the
uniform distribution on [a, b]. The eigenvalues of the covariance matrix Σ are fixed,
such that 20% of them are equal to 0.2, 40% are equal to 1, and 40% are equal
to 5, while its eigenvectors are simulated from the Haar distribution. In Scenario
3, we sample βj ∼ U(−0.2, 0.2), j = 1, 2, . . . , p. The coefficients α1,i, β1,i of CCC-
GARCH model in Scenario 4 are generated according to α1,i ∼ U(0, 0.1) and

Fig. 1. QQ-plots of the empirical quantiles computed for the (standardized) sample estima-
tors (left column) and for the (standardized) consistent estimators (right column) of VGMV, θ,
RGMV, s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-
dimensional asymptotic distribution. Data of asset returns are generated following Scenario 1 with
c = 0.5.
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β1,i ∼ U(0.6, 0.7). By such a construction, we always ensure α1,i + β1,i < 1, i.e. the
stationarity condition is fulfilled. Finally, αi,0 is chosen such that the unconditional
covariance matrix of the CCC-GARCH process is equal to Σ. Finally, we put n =
1000 and c ∈ {0.5, 0.9} in all four scenarios.

The results of the simulation study are illustrated in the case of five quantities
VGMV, θGMV, RGMV, s, and η, and the first weight of the EU portfolio with γ = 20
and L = (1, 0, 0, . . . , 0). We will compute the sample and consistent estimators for
these quantities in all scenarios, and compare their finite-sample distributions to

Fig. 2. QQ-plots of the empirical quantiles computed for the (standardized) sample estima-
tors (left column) and for the (standardized) consistent estimators (right column) of VGMV, θ,
RGMV, s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-
dimensional asymptotic distribution. Data of asset returns are generated following Scenario 1 with
c = 0.9.
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Fig. 3. QQ-plots of the empirical quantiles computed for the (standardized) sample estima-
tors (left column) and for the (standardized) consistent estimators (right column) of VGMV, θ,
RGMV, s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-
dimensional asymptotic distribution. Data of asset returns are generated following Scenario 2 with
c = 0.5.

the corresponding high-dimensional ones derived in Sec. 4. In Figs. 1–8, we display
QQ-plots for each of the six estimated quantities, both ordinary sample estimator
and consistent ones, against the quantiles obtained from their corresponding high-
dimensional distribution. On the first row of each figure, we see the estimators
for R̂GMV and θ̂, where the sample and consistent estimators coincide. On the
second to fifth row, the first column corresponds to the sample estimators of the
considered quantities, while the second column presents the results for the consistent
estimators.
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Fig. 4. QQ-plots of the empirical quantiles computed for the (standardized) sample estimators
(left column) and for the (standardized) consistent estimators (right column) of VGMV, θ, RGMV,
s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-dimensional
asymptotic distribution. Data of asset returns are generated following Scenario 2 with c = 0.9.

In the first and second scenarios, we employ the stochastic representations of
Theorems 2.1 and 3.1. We sample from the finite-sample distribution of each esti-

mated quantity through 1000 independent draws V̂ (b)
GMV, θ̂

(b)

GMV, R̂(b)
GMV, ŝ(b), η̂(b),

and Lŵ(b)
EU for b = 1, . . . , 1000. To this end, we note that the application of The-

orems 2.1 and 3.1 provides an efficient way to generate the sample V̂ (b)
GMV, θ̂

(b)

GMV,
R̂

(b)
GMV, ŝ(b), η̂(b), and Lŵ(b)

EU, which also avoids the computation of the inverse
sample covariance matrix, which might be an ill-defined object in large dimensions,
especially when c = 0.9. In Scenarios 3 and 4, the stochastic representations derived
in Theorems 2.1 and 3.1 can no longer be used, since the assumptions used for
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Fig. 5. QQ-plots of the empirical quantiles computed for the (standardized) sample estimators
(left column) and for the (standardized) consistent estimators (right column) of VGMV, θ, RGMV,
s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-dimensional
asymptotic distribution. Data of asset returns are generated following Scenario 3 with c = 0.5.

their derivation are no longer fulfilled. In these two cases, we calculate all quantities
explicitly for each simulation run. This increases the computational cost immensely,
since we need to invert a p× p matrix for each generated sample.

In Figs. 1 and 2 the results obtained under Scenario 1 are depicted. We observe
in the figures that the high-dimensional asymptotic distributions provide a good
approximation for the moderate value of the concentration ratio c = 0.5 and its
large value c = 0.9. The approximation seems to be worst off in the context of
approximating the distribution of ŝ when c = 0.9, as the tails become much heavier
than the approximation seems to be able to account for. Also, there seems to be
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Fig. 6. QQ-plots of the empirical quantiles computed for the (standardized) sample estimators
(left column) and for the (standardized) consistent estimators (right column) of VGMV, θ, RGMV,
s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-dimensional
asymptotic distribution. Data of asset returns are generated following Scenario 3 with c = 0.9.

some instability in the sample estimator for η̂, as there is one observation which is
very large. We do not see the same behavior for the consistent estimator. Similar
findings are also present in Figs. 3 and 4, where we simulated from Scenario 2, that
is from the CAPM model. The sample estimator for η̂ seems to have some devi-
ating observations which are no longer observable when the consistent estimator is
used.

In Figs. 5 and 6 we display the high-dimensional asymptotic approximations
of the sampling distributions of the sample and consistent estimators of VGMV,
θ, RGMV, s, η, and LwEU. The high-dimensional distributions approximate the
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Fig. 7. QQ-plots of the empirical quantiles computed for the (standardized) sample estimators
(left column) and for the (standardized) consistent estimators (right column) of VGMV, θ, RGMV,
s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-dimensional
asymptotic distribution. Data of asset returns are generated following Scenario 4 with c = 0.5.

corresponding sampling distributions reasonably well when the asset returns are
assumed to be multivariate t-distributed. There are some deviations from normality
in the sampling distributions of the estimators for s and VGMV, regardless of which
estimator we use. There are also some observations in the finite-sample distribution
of the sample estimator η̂ that might indicate the presence of heavy tails or skew-
ness, while the same behavior is not seen in its consistent estimator. There is a small
bias for two quantities s and VGMV which could be explained by the influence of
heavy tails in the data-generating model on the estimation of the inverse of the high-
dimensional covariance matrix. On the other hand, the asymptotic variances seem
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Fig. 8. QQ-plots of the empirical quantiles computed for the (standardized) sample estimators
(left column) and for the (standardized) consistent estimators (right column) of VGMV, θ, RGMV,
s, η, and LwEU in comparison to the quantiles obtained from the corresponding high-dimensional
asymptotic distribution. Data of asset returns are generated following Scenario 4 with c = 0.9.

to be well approximated by the results of Theorems 4.1 and 4.2. All other quantities
show a good performance despite the violation of the distributional assumption. We
also observe the same type of skewness as in Scenarios 1 and 2 in the case of s,
when the asset universe becomes large.

In Figs. 7 and 8, the results of the simulation are shown in the case of Sce-
nario 4. In contrast to the previous three scenarios, here it is assumed that the
square asset returns are autocorrelated, which violates the assumption of indepen-
dence imposed in the derivation of the theoretical results. The empirical findings of
both figures also document here that the high-dimensional asymptotic distributions
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provide a good approximation of the corresponding finite-sample distributions. The
only inconsistency we observe is the same type of heavy tail behavior in the finite-
sample distribution of the sample estimator for η which disappear in its consistent
counterpart. No significant impact of dependence on the performance of the derived
high-dimensional distribution is observable in other plots of Figs. 7 and 8.

6. Summary

In this paper, we derive the exact sampling distribution of the estimators for a
large class of optimal portfolio weights and their estimated characteristics. The
results are present in terms of stochastic representations, which provides an easy
way to assess the sampling distribution of the estimated optimal portfolio weights.
Another important application of the derived stochastic representations is that it
presents an efficient way to sample from the corresponding (joint) distribution. The
largest computational efficiency comes from the fact that it excludes the inversion
of the sample covariance matrix in each simulation run. Furthermore, the derived
stochastic representation simplifies the study of the asymptotic properties of the
estimated quantities under the high-dimensional asymptotic regime.

In the derivation of the theoretical results we assume that the asset returns are
independent and normally distributed. These assumptions seem to be appropriate
when asset returns are taken at weekly or lower frequency, while they are not fulfilled
for financial data of daily and higher frequency. In our Monte Carlo simulations,
we study the finite-sample performance of the obtained asymptotic distributions
in comparison to the exact sampling distributions. We investigate the implications
of violations to the model assumptions, namely departures from the assumption
of normality and independence. We observe a good performance of the asymptotic
distributions for finite samples when the data are simulated from the normal dis-
tribution. If the assumption of normality is violated, the asymptotic distribution
fails to capture some structure in the data. These are biases that appear in the
means and variances for a selected few of the estimated quantities. For the rest,
the normal approximations still seem to provide a good fit. Assessing the biases in
the asymptotic means and in the asymptotic (co)variances of the estimated optimal
portfolio weights and their characteristic is an important challenge which will be
treated in the consequent paper. Finally, we also find minor impact of the presence
of autocorrelation between squared asset returns on the performance of the derived
asymptotic distributions.
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Appendix A.

In this section, the proofs of the theoretical results are given. In Lemma A.1, we
derive the conditional distribution of (V̂GMV, θ̂

�
, R̂GMV, ŝ, η̂

�)� under the condition

μ̂ = μ̃, i.e. the distribution of (V̂GMV, θ̂
�
, R̃GMV, s̃, η̃

�)�.

Lemma A.1. Under the conditions of Theorem 2.1, the distribution of
(V̂GMV, θ̂

�
, R̃GMV, s̃, η̃

�)� is determined by

(i) V̂GMV is independent of (θ̂
�
, R̃GMV, s̃, η̃

�)�;
(ii)

(n− 1)
V̂GMV

VGMV
∼ χ2

n−p;

(iii) (
θ̂

R̃GMV

)
∼ tk+1

(
n− p+ 1,

(
θ

R̆GMV

)
,

VGMV

n− p+ 1
Ğ

)
,

with

Ğ =

(
LQL� LQμ̃

μ̃�QL� μ̃�Qμ̃

)
=

(
LQL� s̆η̆

s̆η̆� s̆

)
(iv) s̃ and η̃ are conditionally independent given θ̂ and R̃GMV

(v)

(n− 1)
s̆

s̃
(1 +

(R̃GMV − R̆GMV)2

VGMVs̆
) ∼ χ2

n−p+2;

(vi)

η̃|θ̂�
, R̃GMV ∼ tk(n− p+ 3, η̆ + h,

(n− p+ 3)−1F̃

s̆(1 + (R̃GMV−R̆GMV)2

VGMV s̆ )2
),

where

h =

(
1 +

(R̃GMV − R̆GMV)2

VGMV s̆

)−1
(θ̂ − θ − η̆(R̃GMV − R̆GMV))(R̃GMV − R̆GMV)

VGMVs̆

F̃ = (LQL� − s̆η̆η̆�)

(
1 +

(R̃GMV − R̆GMV)2

VGMVs̆

)

+
s̆

VGMV
(θ̂ − θ − η̆(R̃GMV − R̆GMV))(θ̂ − θ − η̆(R̃GMV − R̆GMV))�.

Proof of Lemma A.1. Under the assumption of independent and normally dis-
tributed sample of the asset returns, we get that

(a) μ̂ ∼ Np(μ, 1
nΣ);
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(b) (n − 1)Σ̂ ∼ Wp(n − 1,Σ) (p-dimensional Wishart distribution with (n − 1)
degrees of freedom and covariance matrix Σ);

(c) μ̂ and Σ̂ are independent.

As a result, the conditional distribution of a random variable defined as a function
of μ̂ and Σ̂ given μ̂ = μ̃ is equal to the distribution of a random variable defined
by the same function where μ̂ is replaced by μ̃.

Let M̃ = (L�, μ̃,1)� and define

H̃ = M̃Σ̂
−1

M̃� =

(
H̃11 H̃12

H̃21 H̃22

)
with

H̃11 =

⎛⎝ LΣ̂
−1

L� LΣ̂
−1

μ̃

μ̃�Σ̂
−1

L� μ̃�Σ̂
−1

μ̃

⎞⎠, H̃12 =

⎛⎝ LΣ̂
−1

1

μ̃�Σ̂
−1

1

⎞⎠,
H̃21 = H̃�

12, H̃22 = 1�Σ̂
−1

1

and

H = M̃Σ−1M̃� =

(
H11 H12

H21 H22

)
with

H11 =

(
LΣ−1L� LΣ−1μ̃

μ̃�Σ−1L� μ̃�Σ−1μ̃

)
, H12 =

(
LΣ−11

μ̃�Σ−11

)
,

H21 = H�
12, H22 = 1�Σ−11.

Also, let

G̃ = H̃11 − H̃12H̃21

H̃22

=

(
L

μ̃�

)
Q̂
(
L� μ̃

)
=

(
LQ̂L� LQ̂μ̃

μ̃�Q̂L� μ̃�Q̂μ̃

)
=

(
G̃11 G̃12

G̃21 G̃22

)
(A.1)

and

G = H11 − H12H21

H22
=

(
L

μ̃�

)
Q
(
L� μ̃

)
=

(
LQL� LQμ̃

μ̃�QL� μ̃�Qμ̃

)
=

(
G11 G12

G21 G22

)
(A.2)

with G̃22 = μ̃�Q̂μ̃ and G22 = μ̃�Qμ̃.
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In using the definitions of H̃ and G̃, we get

V̂GMV =
1

H̃22

,

(
θ̂

R̃GMV

)
=

H̃12

H̃22

, s̃ = G̃22, η̃ =
G̃12

G̃22

.

Moreover, from Muirhead [55, Theorem 3.2.11] we get (n−1)H̃−1 ∼ Wk+2(n−p+k+
1,H−1) and, consequently, (see, Gupta and Nagar [41, Theorem 3.4.1] (n−1)−1H̃ ∼
W−1

k+2(n − p + 2k + 4,H) ((k + 2)-dimensional inverse Wishart distribution with
n − p + 2k + 4 degrees of freedom and parameter matrix H). The application of
Theorem 3 in Bodnar and Okhrin [17] leads to

(i) H̃22 is independent of H̃12/H̃22 and G̃ and, consequently,

V̂GMV is independent of (θ̂
�
, R̃GMV, s̃, η̃

�)�.

(ii) We get that (n− 1)−1H̃22 ∼ W−1
1 (n− p+ 2,H22). Hence,

(n− 1)
1�Σ−11

1�Σ̂
−1

1
= (n− 1)

V̂GMV

VGMV
∼ χ2

n−p ; (A.3)

(iii) Let Γl(m
2 ) = πl(l−1)/4

∏l
i=1 Γ(m−i+1

2 ) be the multivariate gamma function.

Then, the density of H̃12/H̃22 = (θ̂
�
R̃GMV)� is given by

f(y) =
|G|− 1

2 |H22| (k+1)
2

π
k+1
2

Γk+1

(
n− p+ k + 2

2

)
Γk+1

(
n− p+ k + 1

2

) |I + G−1(y

−H12/H22)H22(y − H12/H22)�|−
n−p+k+2

2

=
|G/H22|− 1

2

π
k+1
2

Γk+1

(
n− p+ k + 2

2

)
Γk+1

(
n− p+ k + 1

2

) (1 + H22(y − H12/H22)�G−1

× (y − H12/H22))−
n−p+k+2

2 , (A.4)

where the last equality is obtained by the use of the Sylvester determinant
identity. The density presented in (A.4) corresponds to a (k+1)-dimensional t
distribution with (n−p+1) degrees of freedom, location parameter H12/H22 =
(θ� R̆GMV)� and scale matrix VGMV

n−p+1G.

In the proof of parts (iv)–(vi) we use the following result (see Theorem 3.f of
Bodnar and Okhrin [17])

(n− 1)−1G̃|θ̂�
, R̃GMV ∼ W−1

k+1(n− p+ 2k + 4, B̃),
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where

B̃ = G +
1

VGMV

(
θ̂ − θ

R̃GMV − R̆GMV

)(
θ̂ − θ

R̃GMV − R̆GMV

)�

=

(
B̃11 B̃12

B̃21 B̃22

)

with B̃22 = G22 + (R̃GMV−R̆GMV)2

VGMV

Hence,

(iv) s̃ = G̃22 and η̃ = G̃12/G̃22 are conditionally independent given θ̂
�

and R̃GMV.

(v) It holds that (n− 1)−1G̃22|θ̂�
, R̃GMV ∼ W−1

1 (n− p+ 4, B̃22). Hence,

(n− 1)
s̆+ (R̃GMV − R̆GMV)2/VGMV

s̃
∼ χ2

n−p+2. (A.5)

(vi) Finally, similarly to the proof of part (iii), we get

η̃|θ̂�
, R̃GMV ∼ tk

(
n− p+ 3,

B̃12

B̃22

,
1

n− p+ 3
B̃11B̃22 − B̃12B̃21

B̃2
22

)
,

where

B̃11B̃22 − B̃12B̃21

=
(
G11 +

1
VGMV

(θ̂ − θ)(θ̂ − θ)�
)(

G22 +
(R̃GMV − R̆GMV)2

VGMV

)

−
(

G12 +
R̃GMV − R̆GMV

VGMV
(θ̂ − θ)

)(
G12 +

R̃GMV − R̆GMV

VGMV
(θ̂ − θ)

)�

= G11G22 − G12G21 +
G22

VGMV
(θ̂ − θ)(θ̂ − θ)�

+
(R̃GMV − R̆GMV)2

VGMV
G11 − R̃GMV − R̆GMV

VGMV
((θ̂ − θ)G�

12 +G12(θ̂ − θ)�)

=
(
G11 − G12G21

G22

)(
G22 +

(R̃GMV − R̆GMV)2

VGMV

)

+
G22

VGMV

(
θ̂ − θ − G12

G22
(R̃GMV − R̆GMV)

)

×
(

θ̂ − θ − G12

G22
(R̃GMV − R̆GMV)

)�
.

Proof of Theorem 2.1. From Theorem 6.1(ii) we get

V̂GMV
d=
VGMV

n− 1
ξ1 (A.6)
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where ξ1 ∼ χ2
n−p. Moreover, Theorem 6.1(iii) implies that θ̂ and R̃GMV are jointly

multivariate t-distributed and, hence, it holds that (see, e.g. Ding [32]) R̃GMV ∼
t(n− p+ 1, R̆GMV,

VGMV s̆
n−p+1 ) and

θ̂|R̃GMV ∼ tk

(
n− p+ 2,θ + η̆(R̃GMV − R̆GMV),

n− p+ 1 + (n− p+ 1)(R̃GMV − R̆GMV)2/(VGMV s̆)
n− p+ 2

VGMV

n− p+ 1
(LQL� − s̆η̆η̆�)

)
= tk

(
n− p+ 2,θ + η̆(R̃GMV − R̆GMV),

VGMV

n− p+ 2(
1 +

(R̃GMV − R̆GMV)2

VGMVs̆

)(
LQL� − s̆η̆η̆�

))
.

As a result, we get

R̂GMV
d=

1�Σ−1μ̂

1�Σ−11
+

√
VGMV

√
μ̂�Qμ̂√

n− p+ 1
t1 (A.7)

and

θ̂
d= θ +

√
VGMV

t1√
n− p+ 1

LQμ̂√
μ̂�Qμ̂

+

√
1 +

t21
n− p+ 1

√
VGMV√

n− p+ 2

(
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2

t2

= θ +
√
VGMV

⎛⎝ LQμ̂√
μ̂�Qμ̂

t1√
n− p+ 1

+

(
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2

√
1 +

t21
n− p+ 1

t2√
n− p+ 2

⎞⎠, (A.8)

where t1 ∼ t(n − p + 1), t2 ∼ tk(n − p + 2) are independent and also they are
independent of ξ1.

Similarly, the application of Theorem 6.1(v) leads to

ŝ
d= (n− 1)

(
1 +

t21
n− p+ 1

)
μ̂�Qμ̂

ξ2
,

where ξ2 ∼ χ2
n−p+2 and is independent of t1, t2, and ξ1. (A.9)
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Finally, the application of Theorem 6.1(vi) leads to

η̂
d=

LQμ̂

μ̂�Qμ̂
+

√
1 +

t21
n− p+ 1

(
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2

× t2√
n− p+ 2

1√
μ̂�Qμ̂

t1√
n− p+ 1

1 +
t21

n− p+ 1

+
1√

μ̂�Qμ̂

1

1 + t21
n−p+1

((
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)(
1 +

t21
n− p+ 1

)

+
μ̂�Qμ̂

VGMV

(
1 +

t21
n− p+ 1

)
VGMV

n− p+ 2

(
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2

× t2t�2

⎛⎝(LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2
⎞⎠�⎞⎟⎠

1/2

t3√
n− p+ 3

=
LQμ̂

μ̂�Qμ̂
+

1√
μ̂�Qμ̂

(
LQL� − LQμ̂μ̂�QL�

μ̂�Qμ̂

)1/2

×

⎛⎜⎜⎜⎜⎝ 1√
1 +

t21
n− p+ 1

t2√
n− p+ 2

t1√
n− p+ 1

+
(
Ik + μ̂�Qμ̂

t2t�2
n− p+ 2

)1/2
t3√

n− p+ 3

⎞⎟⎟⎟⎟⎠, (A.10)

where t3 ∼ tk(n− p+ 3) and is independent of t1 and t2. Moreover, due to Theo-
rem 6.1(i) and (iv) we get that ξ1, ξ2, t1, t2, and t3 are mutually independent.

Next, we derive stochastic representations for the linear and quadratic forms in
μ̂, namely of 1�Σ−1μ̂, LQμ̂ and μ̂�Qμ̂ which are present in the derived above
stochastic representations. Let P = QL� (LQL�)−1/2 and A = Q − PP� =
Q − QL�(LQL�)−1LQ. Then

μ̂�Qμ̂ = μ̂�Aμ̂ + (P�μ̂)�(P�μ̂). (A.11)
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Moreover, the equality 1�Q = 0� implies
(1�Σ−1

P�
)
ΣA =

` 1�A

P�ΣA

´
=

` 0�

P� − P�
´

= O

and, consequently, we get from Theorem 5.5.1 in Mathai and Provost [53] that
μ̂�Aμ̂ is independent of 1�Σ−1μ̂ and P�μ̂, while Corollary 5.1.3a in Mathai and
Provost [53] implies that

nμ̂�Aμ̂
d= ξ3, where ξ3 ∼ χ2

p−k−1;nμ�Aμ. (A.12)

Finally, the identity 1�Σ−1ΣP = 0 ensures that 1�Σ−1μ̂ and P�μ̂ are inde-
pendent (cf. Rencher [58, Chap. 2.2]) with

1�Σ−1μ̂
d= 1�Σ−1μ +

√
1�Σ−11

z1√
n

=
RGMV

VGMV
+

1√
VGMV

z1√
n

(A.13)

P�μ̂
d= P�μ +

(
P�ΣP

)1/2 z̃2√
n

=
(
LQL�)−1/2

sη +
z2√
n
, (A.14)

where z1 ∼ N (0, 1) and z̃2 ∼ Nk(0, Ik) are independent. Inserting (A.11)–
(A.14) in (A.6)–(A.10) and performing some algebra, we get the statement of
the theorem.

Proof of Theorem 3.1. The statement of the theorem follows directly from the
results of Theorem 2.1.

Proof of Theorem 3.2. The mutual independence of ξ, ψ, and z follows
from Theorem 2.1, while Theorem 2.1(i) provides the stochastic representation
for V̂GMV.

Next, we derive the joint stochastic representation for R̂GMV and ŝ. Let ξ̃2 =
ξ−1
2 , then the distribution of (R̂GMV, ŝ, t1, f) is obtained as a transformation of

(z1, ξ̃2, t1, f) with the Jacobian matrix given by

J =

0
BBBBBBBBBBBB@

√
VGMV√

n
0

√
f
√

VGMV√
n − p + 1

1

2

√
VGMVt1√

n − p + 1
√

f

0 (n − 1)

„
1 +

t21
n − p + 1

«
f

2(n − 1)

n − p + 1
ft1 ξ̃2 (n − 1)

„
1 +

t21
n − p + 1

«
ξ̃2

0 0 1 0

0 0 0 1

1
CCCCCCCCCCCCA

which implies that |J| = (n−1)√
n

√
VGMV(1 + t21

n−p+1 )f .
Let df (·) denote the marginal density of the distribution of f . Ignor-

ing the normalizing constants, we get the joint density of (R̂GMV, ŝ, t1, f)
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expressed as

d(R̂GMV, ŝ, t1, f) ∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−n
2

(
R̂GMV −RGMV −√

f
t1
√
VGMV√

n− p+ 1

)2

VGMV

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×
(

(n− 1)f
ŝ

(
1 +

t21
n− p+ 1

))n−p+2
2 +1

× exp
{
− (n− 1)f

2ŝ

(
1 +

t21
n− p+ 1

)}(
1 +

t21
n− p+ 1

)−n−p+2
2

×
(
f

(
1 +

t21
n− p+ 1

))−1

df (f)

∝
(
f

ŝ

)n−p+2
2 +1 1

f
exp

{
−n

2
(R̂GMV −RGMV)2

VGMV

+
n
(
R̂GMV −RGMV

)√
f t1√

n−p+1√
VGMV

− (n− 1)f
2ŝ

− 1
2

(
n+

n− 1
ŝ

)
ft21

n− p+ 1

}
df (f).

We now notice that

exp

⎧⎪⎪⎨⎪⎪⎩
n
(
R̂GMV −RGMV

)√
f

t1√
n− p+ 1√

VGMV

− (nŝ+ (n− 1))f
2ŝ(n− p+ 1)

t21

⎫⎪⎪⎬⎪⎪⎭
= exp

⎧⎪⎨⎪⎩− (nŝ+ (n− 1))f
2ŝ(n− p+ 1)

⎛⎝t1 − n2ŝ
√
n− p+ 1

(
R̂GMV −RGMV

)
√
VGMVf(nŝ+ (n− 1))

⎞⎠2
⎫⎪⎬⎪⎭

× exp

⎧⎪⎨⎪⎩
n2ŝ
(
R̂GMV −RGMV

)2

2VGMV(nŝ+ (n− 1))

⎫⎪⎬⎪⎭,
where the first factor is the kernel of a normal distribution. Hence,

d(R̂GMV, ŝ) =
∫

R+

∫
R

d(R̂GMV, ŝ, t1, f)dt1df

∝ exp

{
−n

2
(R̂GMV −RGMV)2

VGMV

}
exp

{
n2ŝ(R̂GMV −RGMV)2

2VGMV(nŝ+ (n− 1))

}
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×
∫

R+

(
f

ŝ

)n−p+2
2 +1

e−
f
2ŝ

f
df (f)

×
∫

R

e
− ((n−1)+nŝ)f

2ŝ(n−p+1)

„
t1− ŝ

√
n−p+1(R̂GMV−RGMV)√

VGMVf(ŝ−1+1/n)

«2

dt1df

∝
(

1 +
n

n− 1
ŝ

)−1/2

exp

⎧⎪⎨⎪⎩−n
2

(R̂GMV −RGMV)2

(1 +
n

n− 1
ŝ)VGMV

⎫⎪⎬⎪⎭ (A.15)

∫
R+

(
f

ŝ

)n−p+1
2 +1

e−
(n−1)f

2ŝ

f
df (f)df, (A.16)

where (A.15) determines the conditional distribution of R̂GMV given ŝ which is a
normal distribution with mean RGMV and variance (1+ n

n−1 ŝ)
VGMV

n . The expression
in (A.16) specifies the marginal distribution of ŝ which is the integral representation
of the density of the ratio of two independent variables f and ζ with (n − 1)ζ ∼
χ2

n−p+1 and nf ∼ χ2
p−1(ns) (cf. Mathai and Provost [53, Theorem 5.1.3]). Hence,

n(n − p + 1)/((n − 1)(p − 1))ŝ has a noncentral F -distribution with (p − 1) and
(n− p+ 1) degrees of freedom and noncentrality parameter ns.

Proof of Theorem 4.1. If ξ ∼ χ2
m,δ, then it holds that (see, e.g. Bodnar and Reiß

[20, Lemma 3])

(
ξ

m
− 1 − δ

m

)
a.s.→ 0 and

√
m

(
2
(

1 + 2
δ

m

))−1/2(
ξ

m
− 1 − δ

m

)
d→ N (0, 1)

(A.17)

for m→ ∞.
Throughout the proof of the theorem the asymptotic results are derived under

the high-dimensional asymptotic regime, that is under p/n → c ∈ [0, 1) as n →
∞. The applications of Slutsky’s lemma (cf. DasGupta [30, Theorem 1.5]) and
Theorem 2.1, and the fact that a t -distribution with increasing degrees of freedom
tends to the standard normal distribution yield the following results:

(i) The application of Theorem 2.1(i) and (A.17) with m = n− p leads to

√
n− p

(
V̂GMV − 1 − p/n

1 − 1/n
VGMV

)
d=

1 − p/n

1 − 1/n
VGMV

√
n− p

(
ξ2

n− p
− 1
)

d→ √
2(1 − c)VGMVu1,

where u1 ∼ N(0, 1).
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(ii) Using (A.17) with m = p− k − 1 and δ = nμ�Aμ, we get

f
d=
ξ3
n

+
(
sη +

z2√
n

)�
(LQL�)−1

(
sη +

z2√
n

)

=
(p− k − 1)

n

(
ξ3

p− k − 1
− 1 − nμ�Aμ

p− k − 1

)
+

(p− k − 1)
n

+ μ�Qμ

+
1√
n

(
2sη(LQL�)−1z2 +

1√
n
z�2 (LQL�)−1z2

)
a.s.→ s+ c (A.18)

and, hence,
√
n− p(f − (s + p/n)) d→ √

2(1 − c)(c+ 2μ�Aμ)u2 +
2s
√

(1 − c)η�(LQL�)−1/2u3, where u2 ∼ N(0, 1) and u3 ∼ Nk(0, Ik) which
are independent of u1 following Theorem 2.1. Furthermore, the application
of (A.18) yields

√
n− p(R̂GMV −RGMV)

d=
√
VGMV

(√
1 − p/nz1 +

(
1 − p/n

1 − p/n+ 1/n

)1/2√
ft1

)
d→
√
V GMV(

√
1 − cu4 +

√
s+ cu5)

where u4, u5 ∼ N(0, 1) and u1, u2, u3, u4, u5 independent.
(iii) Furthermore, by the stochastic representation of θ̂ as given in Theorem 2.1(iii)

we have that in distribution

√
n− p(θ̂ − θ)

d=
√
VGMV

(
sη + z2/

√
n√

f

√
1 − p/n

1 − p/n+ 1/n
t1

+

(
LQL� − (sη + z2/

√
n) (sη + z2/

√
n)�

f

)1/2

×
√

1 +
t21

n− p+ 1

√
n− p√

n− p+ 2
t2

⎞⎠
d→
√
VGMV

(
sη√
s+ c

u5 +
(
LQL� − s2

s+ c
ηη�

)1/2

u6

)
,

where u6 ∼ Nk(0, Ik) and is independent of u1, u2, u3, u4, and u5.
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(iv) The application of Theorem 2.1(iv) and (A.17) leads to

√
n− p

(
ŝ− (s+ p/n)(1 − 1/n)

1 − p/n+ 2/n

)
d=

1 − 1/n
1 − p/n+ 2/n

((
1 +

t21
n− p+ 1

) √
n− p(f − (s+ p/n))
ξ2/(n− p+ 2)

+ (s+ p/n)

⎛⎝ t21
n−p+1 −

(
ξ2

n−p+2 − 1
)

ξ2/(n− p+ 2)

⎞⎠⎞⎠
d→ 1

1 − c
(
√

2(1 − c)(c+ 2μ�Aμ)u2

+ 2s
√

(1 − c)η�(LQL�)−1/2u3 +
√

2(s+ c)u7),

where u7 ∼ N(0, 1) and is independent of u1, u2, u3, u4, u5, and u6.
(v) Similarly, from Theorem 2.1(v) we get

√
n− p

(
η̂ − s

s+ p/n
η

)
d=

1
f

( −s
s+ p/n

√
n− p(f − (s+ p/n))η +

√
1 − p/nz2

)

+
1√
f

(
LQL� − (sη + z2/

√
n) (sη + z2/

√
n)�

f

)1/2

×
⎛⎝ 1√

1 + t21
n−p+1

t2√
n− p+ 2

(
n− p

n− p+ 1

)1/2

t1

+
(
Ik + f

t2t�2
n− p+ 2

)1/2(
n− p

n− p+ 3

)1/2

t3

)

d→ 1√
s+ c

(
LQL� − s2ηη�

s+ c

)1/2

ū8

+
√

1 − c

(s+ c)

(
LQL� − 2

s2ηη�

s+ c

)
(LQL�)−1/2u3

− s
√

2(1 − c)(c+ 2μ�Aμ)u2

(s+ c)2
η,

where u8 ∼ Nk(0, Ik) and u1, u2, u3, u4, u5, u6, u7, u8 are mutually indepen-
dent distributed.
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Proof of Theorem 4.2. The application of Theorem 4.1 and of the contin-
uous mapping theorem (cf., DasGupta [30, Theorem 1.14]) leads to Lŵg

a.s.→
θ + sg(RGMV ,(1−c)VGMV,(s+c)/(1−c))

s+c η for p/n→ c as n→ ∞.
Let λ̂ and λ be defined as in (4.5). Then, the first-order Taylor series expansion

yields

√
n− p

(
Lŵg −

(
θ +

sg (λ)
s+ p/n

η

))
=

√
n− p(θ̂ − θ) +

√
n− p

(
η̂ − s

s+ p/n
η

)
g
(
λ̂
)

+
√
n− p(g(λ̂) − g(λ))

sη

s+ p/n

=
√
n− p(θ̂ − θ) +

√
n− p

(
η̂ − s

s+ p/n
η

)
g(λ̂)

+
√
n− p

⎛⎜⎜⎜⎝
R̂GMV −RGMV

V̂GMV − (1 − p/n)VGMV

ŝ− s+ p/n

1 − p/n

⎞⎟⎟⎟⎠
�⎛⎜⎜⎝

g1(λ)

g2(λ)

g3(λ)

⎞⎟⎟⎠ s

s+ p/n
η + oP (1).

(A.19)

Hence, from Theorem 4.1 we get

√
n− p

(
Lŵg −

(
θ +

sg (λ)
s+ p/n

η

))
d→
√
VGMV

(
su5√
s+ c

η +
(
LQL� − s2

s+ c
ηη�

)1/2

u6

)

+

(
1√
s+ c

(
LQL� − s2

s+ c
ηη�

)1/2

u8

+
√

1 − c

(s+ c)

(
LQL� − 2

s2

s+ c
ηη�

)
(LQL�)−1/2u3

− s
√

2(1 − c)(c+ 2μ�Aμ)u2

(s+ c)2
η

)
g(λ)

+ g1(λ)(
√
VGMV(

√
1 − cu4 +

√
s+ cu5))

s

s+ c
η

+ g2(λ)(
√

2(1 − c)VGMVu1)
s

s+ c
η
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+ g3(λ)
(

1
1 − c

(
√

2(1 − c)(c+ 2μ�Aμ)u2

+ 2s
√

(1 − c)η�(LQL�)−1/2u3 +
√

2(s+ c)u7)
)

s

s+ c
η

= g2(λ)
√

2(1 − c)VGMVs

s+ c
ηu1

+
(
g3(λ)
1 − c

− g(λ)
(s+ c)

) √
2(1 − c)(c+ 2μ�Aμ)s

s+ c
ηu2

+
√

1 − c

s+ c

(
g(λ)LQL� + 2s2

(
g3(λ)
1 − c

− g(λ)
(s+ c)

)
ηη�

)
(LQL)−1/2u3

+
(
s
√
VGMV

√
1 − c

s+ c
g1(λ)

)
ηu4 + (g1(λ) + 1)

s
√
VGMV√
s+ c

ηu5

+
√
VGMV

(
LQL� − s2

s+ c
ηη�

)1/2

u6 +
(√

2
s

1 − c
g3(λ)

)
ηu7

+
g(λ)√
s+ c

(
LQL� − s2

s+ c
ηη�

)1/2

u8.

Using that u1, u2, u3, u4, u5, u6, u7, u8 are mutually independent and standard
(multivariate) normally distributed, the expression of the asymptotic covariance
matrix of Lŵq is obtained.

Proof of Theorem 4.4:. Using (4.10)–(4.14) together with a first-order Taylor
expansion we get that

√
n− p(Lŵg;c − Lwg)

d=
√
n− p(θ̂ − θ) −√

n− p(ŝc − s)
p/n

ŝc(p/n+ s)
g(R̂GMV ;c, V̂GMV ;c, ŝc)η

+
√
n− p

(
η̂ − s

s+ p/n
η

)
ŝc + p/n

ŝc
g(R̂GMV ;c, V̂GMV ;c, ŝc)

+
√
n− p

⎛⎜⎜⎝
R̂GMV ;c − RGMV

V̂GMV ;c − VGMV

ŝc − s

⎞⎟⎟⎠
�⎛⎜⎜⎝

g1(RGMV, VGMV, s)

g2(RGMV, VGMV, s)

g3(RGMV, VGMV, s)

⎞⎟⎟⎠η + oP (1)

=
√
n− p(θ̂ − θ) +

√
n− p

(
η̂ − s

s+ p/n
η

)
ŝc + p/n

ŝc
g
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× (R̂GMV ;c, V̂GMV ;c, ŝc) +
√
n− p

⎛⎜⎜⎜⎝
R̂GMV −RGMV

V̂GMV − (1 − p/n)VGMV

ŝ− s+ p/n

1 − p/n

⎞⎟⎟⎟⎠
�

×

⎛⎜⎜⎜⎝
g1(RGMV, VGMV, s)

(1 − p/n)−1g2(RGMV, VGMV, s)

(1− p/n)
(
g3(RGMV, VGMV, s)− p/n

ŝc(p/n+ s)
g(R̂GMV ;c, V̂GMV ;c, ŝc)

)
⎞⎟⎟⎟⎠η

+ oP (1).

The rest of the proof of part (a) follows from the proof of Theorem 4.2. Similarly,
the statement of part (b) is obtained.
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