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ABSTRACT 

 
The starting point of this thesis lies in the area on Groningen, Netherlands. More specifically, induced 

earthquake activity is observed in this area due to gas extraction activities, which reduce underground 

gas pressure. In combination with the location’s geomorphology, liquefaction can occur due to 

earthquake excitations. Furthermore, the area of Groningen is a location with urban activity and 

infrastructure, such as pipelines, present. The post-liquefaction effect of these pipelines is their uplift, 

which can lead to failure, along with all its negative consequences. Furthermore, the creation of two 

different models, capable of describing the soil-structure interaction of pipelines and post-liquefied 

soil was the main objective of this thesis. 

The means by which these models were created was the implementation of the spring and dashpot 

method. More specifically, Kelvin-Voigt models were used for the ground’s behaviour to be modelled. 

These models required two main parameters to be specified in each case, the spring coefficient (k) 

and the dashpot coefficient (c). In order for the spring coefficient to be determined, the creation and 

usage of post-liquefaction p-y curves was deemed necessary while the problem specific dashpot 

coefficients used, had previously been determined by means of physical modelling. The ground profile 

consisted of fully saturated loose sand and the pipes investigated had diameters of 110, 160 and 

200mm. 

The first model was a single degree of freedom one, with that being the vertical. As for the second 

one, it was a multi degree of freedom one. More specifically, it consisted on two degrees of freedom, 

the vertical and horizontal ones. The results of these models were validated by comparison to previous 

studies and further investigation of affecting parameters was carried out. More specifically, the way 

and the degree up to which several parameters of both ground and structure characteristics affect 

their interaction were investigated. More specifically, the first parameters considered were the 

pipelines’ diameter as well as their weight, resulting from their geometry and transported material. 

Next, the effect of the pipelines’ burial depth was considered and then, the effect of the soil’s initial 

stiffness. Finally, the effect of the dashpot coefficient was investigated for the multi degree of freedom 

models. A comparison between single and multi-degree of freedom solution results was also carried 

out. 

The results of this study were validated by comparison to previous research findings. Most results and 

conclusions were in complete agreement with the so far existing bibliography. However, what was 

found to be inaccurate was the previously determined dashpot coefficient for 110mm diameter 

pipelines and hence, these were left out of scope of study. 

 

 

 

 

 

  



vii 
 

  



viii 
 

Table of Contents 
1 Introduction .................................................................................................................................... 1 

1.1 Scope of Study......................................................................................................................... 1 

1.1.1 Background Information ................................................................................................. 1 

1.2 Problem Definition .................................................................................................................. 2 

1.3 Objective ................................................................................................................................. 2 

2 Literature Review ............................................................................................................................ 3 

2.1 What is Liquefaction ............................................................................................................... 3 

2.1.1 How Liquefaction Occurs ................................................................................................ 3 

2.1.2 Seepage Induced (Static) Liquefaction ............................................................................ 4 

2.1.3 Seismic (Dynamic) Liquefaction ...................................................................................... 4 

2.1.4 Wave induced liquefaction ............................................................................................. 6 

2.2 Liquefaction Related Phenomena ........................................................................................... 7 

2.2.1 Sand Boiling ..................................................................................................................... 7 

2.2.2 Lateral Spread ................................................................................................................. 8 

2.3 Liquefied Soil ........................................................................................................................... 9 

2.4 Liquefaction Potential ........................................................................................................... 10 

2.5 Liquefied Soil as a Non-Newtonian Fluid .............................................................................. 13 

2.6 Failure Mechanisms .............................................................................................................. 14 

2.6.1 Failure Mechanisms in Non-Liquefied Sand .................................................................. 14 

2.6.2 Failure Mechanisms in Liquefied Sand .......................................................................... 17 

2.6.3 Shallow and Deep Failure Approaches ......................................................................... 20 

2.7 Beam on Elastic Foundation Modelling ................................................................................ 21 

2.8 Rheological Models ............................................................................................................... 22 

2.8.1 The Maxwell Model ...................................................................................................... 24 

2.8.2 The Kelvin-Voigt Model ................................................................................................. 25 

2.9 P-y Curves.............................................................................................................................. 26 

2.10 Derivation of k and c ............................................................................................................. 28 

2.10.1 Derivation of the Spring Coefficient (k) ........................................................................ 28 

2.10.2 Derivation of the Dashpot Parameter (c) ...................................................................... 32 

2.11 Maximum Uplift and Prevention .......................................................................................... 33 

3 Conceptual Model ......................................................................................................................... 34 

3.1 Single Degree of Freedom ..................................................................................................... 34 

3.2 Multi Degree of Freedom ...................................................................................................... 35 

3.3 Derivation of the Spring Coefficient (k) and Dashpot Coefficient (c) ................................... 37 

3.4 Derivation of Parameters ...................................................................................................... 40 



ix 
 

4 Results and Discussion .................................................................................................................. 42 

4.1 Method Validation ................................................................................................................ 42 

4.2 Single Degree of Freedom ..................................................................................................... 44 

4.2.1 Initial Parameter Single Degree of Freedom and Validation ........................................ 44 

4.2.2 Influence of Burial Depth .............................................................................................. 48 

4.2.3 Influence of Soil Stiffness .............................................................................................. 51 

4.3 Multi Degree of Freedom ...................................................................................................... 55 

4.3.1 Initial Parameter Multi Degree of Freedom .................................................................. 55 

4.3.2 Influence of Burial Depth .............................................................................................. 58 

4.3.3 Influence of Soil Stiffness .............................................................................................. 61 

4.3.4 Influence of Dashpot Coefficient .................................................................................. 64 

5 Conclusions & Recommendations ................................................................................................ 68 

5.1 Conclusions ........................................................................................................................... 68 

5.2 Recommendations ................................................................................................................ 69 

Bibliography .......................................................................................................................................... 70 

Appendix A ............................................................................................................................................ 72 

Appendix B ............................................................................................................................................ 74 

 

 

  



x 
 

  



xi 
 

Table of Figures 
Figure 1.1: Geological morphology of the area (NAM) ........................................................................... 1 

Figure 2.1: Partially saturated soil (Knappett & Craig, 2012) ................................................................. 3 

Figure 2.2: Foundation failure due to liquefaction, Niigata 1964 (Knappett & Craig, 2012) .................. 5 

Figure 2.3: Wave induced liquefaction (Sumer et al., 1999) .................................................................. 6 

Figure 2.4: Flat cone sand volcano [John Tinsley, U.S Geological Survey] .............................................. 7 

Figure 2.5: Ground cracks [http://nisee.berkeley.edu] .......................................................................... 7 

Figure 2.6: Excess pore pressure relief mechanism (Yang & Elgamal, 2001) ......................................... 8 

Figure 2.7: Viscosity value results suggested by other researchers (Hwang et al., 2006) ...................... 9 

Figure 2.8: Types of tests and method of liquefaction to gain viscosity (Hwang et al., 2006) ............... 9 

Figure 2.9: SPT based liquefaction potential curves from processed case histories (Boulanger & Idriss, 

2014) ..................................................................................................................................................... 10 

Figure 2.10: CPT based liquefaction potential based on clean sand case histories (Boulanger & Idriss, 

2014) ..................................................................................................................................................... 11 

Figure 2.11: Example CRR correlations (Idriss & Boulanger, 2010) ...................................................... 12 

Figure 2.12: Schematic representation of unidirectional shear flow (Chhabra, 2010) ........................ 13 

Figure 2.13: Qualitive flow curves for different types of non-Newtonian fluids  (Chhabra, 2010) ...... 13 

Figure 2.14: Uplift mechanisms of buried pipes in sand: (a) Problem geometry; (b) sliding block with 

vertical slip surfaces; (s) sliding block with inclined slip surfaces; (d) flow around (Cheuk, White, & 

Bolton, 2008)......................................................................................................................................... 14 

Figure 2.15: Vertical movement profiles (Cheuk et al., 2008) .............................................................. 15 

Figure 2.16: : Load-displacement response (Cheuk et al., 2008) .......................................................... 15 

Figure 2.17: Pipe uplift test results (Cheuk et al., 2008) ....................................................................... 16 

Figure 2.18: Centrifuge apparatus (Cheuk et al., 2008) ........................................................................ 16 

Figure 2.19: Schematic diagram of forces during pipe uplift (B. Huang et al., 2014) ........................... 17 

Figure 2.20: Liquefaction occurrence outcome and input accelerations (B. Huang et al., 2014) ........ 18 

Figure 2.21: Uplifting displacement of pipeline at different burial depths (B. Huang et al., 2014) ..... 18 

Figure 2.22: Calculated and measured acceleration, velocity and displacement of pipeline (B. Huang 

et al., 2014) ........................................................................................................................................... 19 

Figure 2.23: Shear strain contours defining the failure surface around a vertically loaded pipeline in 

uniform cohesive soil during undrained conditions. (a) is at H/D = 0 and (b) at H/D = 2.5 which is 

sufficient for deep failure (Kouretzis et al., 2014) ................................................................................ 20 

Figure 2.24:Beam on Winkler foundation (Kacar, Tan, & Kaya, 2011) ................................................. 21 

Figure 2.25: Force-Displacement relationship, linear to the right and non-linear to the left (Chopra, 

1995) ..................................................................................................................................................... 22 

Figure 2.26: The elastic spring .............................................................................................................. 22 

Figure 2.27: The viscous damper .......................................................................................................... 23 

Figure 2.28: Damping response for a free vibration. a) Damper attached to a frame b) Acting forces c) 

F-u relationship (Chopra, 1995) ............................................................................................................ 23 

Figure 2.29: The Maxwell model ........................................................................................................... 24 

Figure 2.30:Creep recovery response of the Maxwell model (Kelly, 2015) .......................................... 24 

Figure 2.31: The Kelvin-Voigt model ..................................................................................................... 25 

Figure 2.32:Creeo recovery response for the Kelvin-Voigt model (Kelly, 2015)................................... 25 

Figure 2.33: Buried pipeline analysed with the Burger model (Faeli & Fakher, 2010) ......................... 26 

Figure 2.34: Response of Static and Dynamic p-y curves (Naggar & Bentley, 2000) ............................ 26 

Figure 2.35: P-y curve for liquefied soil (Dash et al., 2017) .................................................................. 27 

Figure 2.36: SPT blow-count used ......................................................................................................... 29 

file:///C:/Users/Padellis/Desktop/Corrections3/Thesis%20Final%20Draft%20TIGKAS%20Lysimachos%201984.docx%23_Toc535236887
file:///C:/Users/Padellis/Desktop/Corrections3/Thesis%20Final%20Draft%20TIGKAS%20Lysimachos%201984.docx%23_Toc535236888
file:///C:/Users/Padellis/Desktop/Corrections3/Thesis%20Final%20Draft%20TIGKAS%20Lysimachos%201984.docx%23_Toc535236899


xii 
 

Figure 2.37: To the left (a) upper and lower residual shear strength of soil and to the right (b) critical 

depth ratio for various relative density/angle of friction (Dash et al., 2017) ....................................... 30 

Figure 2.38: Post liquefaction stress strain relationships for liquefied soil (Dash et al., 2017) ............ 31 

Figure 2.39: The process of obtaining liquefied soil's p-y curves from stress-strain relationships. (a) 

Simplified stress-strain curve for liquefied soil, (b) linearly scaled p-y curve model for stress-strain 

model, and (c) smoothed p-y curve model.(Dash et al., 2017) ............................................................ 31 

Figure 2.40: Pipe diameter-viscous damper coefficient relationship (Horsten, 2016) ......................... 32 

Figure 2.41: Pipe in liquefied zone (O’Rourke & Liu, 2012) .................................................................. 33 

Figure 3.1: Single Degree of Freedom model used ............................................................................... 34 

Figure 3.2: Multi Degree of Freedom Model ........................................................................................ 35 

Figure 3.3: Local to global force relationship ........................................................................................ 36 

Figure 3.4: Example of liquefied soil's p-y curve produced in this study .............................................. 38 

Figure 3.5: Example of calculated horizontal modulus of subgrade reaction (k) for liquefied soil ...... 38 

Figure 4.1: Uplift displacement for the 110mm pipeline as presented in (Horsten, 2016) .................. 42 

Figure 4.2: Uplift displacement for the 160mm pipeline as presented in (Horsten, 2016) .................. 42 

Figure 4.3: Uplift displacement for the 200mm pipeline as presented in (Horsten, 2016) .................. 43 

Figure 4.4: Centrifuge pipe uplift results presented by (B. Huang et al., 2014) ................................... 43 

Figure 4.5: Uplift of gas filled pipelines................................................................................................. 44 

Figure 4.6: Uplift of air filled pipelines .................................................................................................. 45 

Figure 4.7: Uplift of oil filled pipeline.................................................................................................... 46 

Figure 4.8: Uplift of water filled pipeline .............................................................................................. 46 

Figure 4.9: Uplift of sludge filled pipeline ............................................................................................. 47 

Figure 4.10: Change of burial depth ..................................................................................................... 48 

Figure 4.11: 1.5m cover uplift of gas filled pipeline.............................................................................. 48 

Figure 4.12: 1.5m cover uplift of air filled pipeline ............................................................................... 49 

Figure 4.13:  1.5m cover uplift of gas filled pipeline ............................................................................. 49 

Figure 4.14: 1.5m cover uplift of water filled pipeline ......................................................................... 50 

Figure 4.15: 1.5m cover uplift of sludge filled pipeline ........................................................................ 50 

Figure 4.16: Stiffer soil uplift of gas filled pipeline ............................................................................... 51 

Figure 4.17: Stiffer soil uplift of air filled pipeline ................................................................................ 52 

Figure 4.18: Stiffer soil uplift of oil filled pipeline ................................................................................. 52 

Figure 4.19: Stiffer soil uplift of water filled pipeline ........................................................................... 53 

Figure 4.20: Stiffer soil uplift of sludge filled pipeline .......................................................................... 53 

Figure 4.21: Multi Degree of freedom uplift of gas filled pipeline ....................................................... 55 

Figure 4.22Multi Degree of freedom uplift of air filled pipeline .......................................................... 56 

Figure 4.23: Multi Degree of Freedom Uplift of Oil Filled Pipeline ....................................................... 56 

Figure 4.24: Multi Degree of Freedom Uplift of Water Filled Pipeline ................................................. 57 

Figure 4.25: Multi Degree of Freedom Uplift of Sludge Filled Pipeline ................................................ 57 

Figure 4.26: Multi degree of freedom uplift of 1.5m cover gas filled pipelines ................................... 58 

Figure 4.27: Multi degree of freedom uplift of 1.5m cover air filled pipelines .................................... 59 

Figure 4.28: Multi degree of freedom uplift of 1.5m cover oil filled pipelines ..................................... 59 

Figure 4.29: Multi degree of freedom uplift of 1.5m cover water filled pipelines ............................... 60 

Figure 4.30: Multi degree of freedom uplift of 1.5m cover sludge filled pipelines .............................. 60 

Figure 4.31: Stiffer soil multi degree of freedom uplift of gas filled pipelines ..................................... 61 

Figure 4.32: Stiffer soil multi degree of freedom uplift of air filled pipelines ...................................... 62 

Figure 4.33: Stiffer soil multi degree of freedom uplift of oil filled pipelines ....................................... 62 

Figure 4.34: Stiffer soil multi degree of freedom uplift of water filled pipelines ................................. 63 

Figure 4.35: Stiffer soil multi degree of freedom uplift of water filled pipelines ................................. 63 



xiii 
 

Figure 4.36: Multi degree of freedom uplift of gas filled pipelines with larger dashpot coefficients .. 64 

Figure 4.37: Multi degree of freedom uplift of air filled pipelines with larger dashpot coefficients ... 65 

Figure 4.38: Multi degree of freedom uplift of oil filled pipelines with larger dashpot coefficients ... 65 

Figure 4.39: Multi degree of freedom uplift of water filled pipelines with larger dashpot coefficients

 .............................................................................................................................................................. 66 

Figure 4.40: Multi degree of freedom uplift of sludge filled pipelines with larger dashpot coefficients

 .............................................................................................................................................................. 66 

Figure A.1: Commercially produced pipeline properties 1 (https://www.tiogapipe.com/) ................. 72 

Figure A.2: Commercially produced pipeline properties 2 (https://www.tiogapipe.com/) ................. 73 

Figure B.1: Normal SPT used to the left, SPT for stiffer ground profile to the right ............................. 74 

 



xiv 
 

  



xv 
 

Table of Tables 
Table 1.1: Rough comparison between tectonic and induced earthquakes .......................................... 1 

Table 2.1: Dashpot Coefficients ............................................................................................................ 32 

Table 3.1: Dashpot coefficients used .................................................................................................... 39 

Table 3.2: Input and output parameters of laboratory experiments ................................................... 39 

Table 3.3: Pipeline input weights .......................................................................................................... 40 

Table 3.4: Materials' relative densities ................................................................................................. 40 

Table 3.5: Derived Input parameters of initial investigation conditions .............................................. 40 

Table 3.6: Derived input parameters of pipeline bottom at 1.7m. ....................................................... 41 

Table 3.7: Derived input parameters of pipeline for stiffer ground conditions with bottom at 1.7m. 41 

Table 3.8: Overview of pipe uplift experiment parameters as used in (Horsten, 2016) ...................... 41 

Table 4.1: Single degree of freedom uplift of gas filled pipeline .......................................................... 44 

Table 4.2: Single degree of freedom uplift of air filled pipelines .......................................................... 45 

Table 4.3: Single degree of freedom uplift of oil filled pipelines .......................................................... 46 

Table 4.4: Single degree of freedom uplift of water filled pipelines .................................................... 46 

Table 4.5: Single degree of freedom uplift of sludge filled pipelines ................................................... 47 

Table 4.6: 1.5m cover uplift of gas filled pipeline ................................................................................. 48 

Table 4.7: 1.5m cover uplift of air filled pipeline .................................................................................. 49 

Table 4.8: 1.5m cover uplift of oil filled pipeline .................................................................................. 49 

Table 4.9: 1.5m cover uplift of water filled pipeline ............................................................................. 50 

Table 4.10: 1.5m cover uplift of sludge filled pipeline .......................................................................... 50 

Table 4.11: Stiffer soil uplift of gas filled pipeline ................................................................................. 51 

Table 4.12: Stiffer soil uplift of air filled pipeline .................................................................................. 52 

Table 4.13: Stiffer soil uplift of oil filled pipeline .................................................................................. 52 

Table 4.14: Stiffer soil uplift of water filled pipeline............................................................................. 53 

Table 4.15: Stiffer soil uplift of sludge filled pipeline ........................................................................... 53 

Table 4.16: Multi degree of freedom uplift of gas filled pipelines ....................................................... 55 

Table 4.17: Multi degree of freedom uplift of air filled pipelines......................................................... 56 

Table 4.18: Multi degree of freedom uplift of oil filled pipelines ......................................................... 56 

Table 4.19: Multi degree of freedom uplift of water filled pipelines ................................................... 57 

Table 4.20: Multi degree of freedom uplift of sludge filled pipelines .................................................. 57 

Table 4.21: Multi degree of freedom uplift of 1.5m cover gas filled pipelines .................................... 58 

Table 4.22: Multi degree of freedom uplift of 1.5m cover air filled pipelines...................................... 59 

Table 4.23: Multi degree of freedom uplift of 1.5m cover oil filled pipelines ...................................... 59 

Table 4.24: Multi degree of freedom uplift of 1.5m cover water filled pipelines ................................ 60 

Table 4.25: Multi degree of freedom uplift of 1.5m cover sludge filled pipelines ............................... 60 

Table 4.26: Stiffer soil multi degree of freedom uplift of gas filled pipelines ...................................... 61 

Table 4.27: Stiffer soil multi degree of freedom uplift of air filled pipelines ........................................ 62 

Table 4.28: Stiffer soil multi degree of freedom uplift of oil filled pipelines ........................................ 62 

Table 4.29: Stiffer soil multi degree of freedom uplift of water filled pipelines .................................. 63 

Table 4.30: Stiffer soil multi degree of freedom uplift of sludge filled pipelines ................................. 63 

Table 4.31: Multi degree of freedom uplift of gas filled pipelines with larger dashpot coefficients ... 64 

Table 4.32: Multi degree of freedom uplift of air filled pipelines with larger dashpot coefficients .... 65 

Table 4.33: Multi degree of freedom uplift of oil filled pipelines with larger dashpot coefficients ..... 65 

Table 4.34: Multi degree of freedom uplift of water filled pipelines with larger dashpot coefficients66 

Table 4.35: Multi degree of freedom uplift of sludge filled pipelines with larger dashpot coefficients

 .............................................................................................................................................................. 66 



xvi 
 

 

 



1 
 

1 Introduction 
 

1.1 Scope of Study 
 

1.1.1 Background Information 
In 1952, traces of gas were found in Lower Permian Sands from a well drilled in the area of Harkstede, 

Netherlands. After two previous failed attempts, the Dutch Petroleum Company (NAM) made its first 

successful drilling on July 22, 1959, followed by two more during the same year some kilometres apart 

from each other. The depth of the water-gas interface was found to be the same in all three cases and 

it was confirmed that the largest gas field in Europe, and tenth largest in the world, had been 

discovered with a total capacity of 2800 billion m³. 

 

Figure 1.1: Geological morphology of the area (NAM) 

Gas extraction started back in 1963 with a yearly production of 50 – 80 billion m³ and a significant 

created revenue. However, the extraction started to gradually reduce the gas pressure within the rock 

reservoir and create instabilities along fractured areas. The result was rock movement along fracture 

zones, which lead to generation of earthquakes. It is worth mentioning at this point how these 

earthquakes have been product of natural resources’ exploitation by humans and hence, they are 

referred to as induced earthquakes.  

Table 1.1: Rough comparison between tectonic and induced earthquakes 

Feature 
Tectonic 

Earthquake 
Groningen 

Induced Earthquake 

Epicentre (km) >20 2 

Duration (s) 10 – 60 ±2 

Frequency - Relatively High 

Moment Magnitude Scale 3.0 – 9.0 2.0 – 4.0 

Peak Accelerations Multiple 1 - 2 

 

On the other hand, tectonic earthquakes are a natural phenomenon of dynamic excitation resulting 

by, as the name suggests, movement of the earth’s tectonic plates. Tectonic and induced earthquakes 

are fundamentally different as demonstrated in table 1.1. 
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Furthermore, occurrence of these earthquakes has already caused damage on structures located in 

nearby urban environments. Some examples of these structures are foundations and pipelines where 

the latter are a multipurpose means of material transportation in order for fresh and waste water, as 

well as oil and gas to be distributed.  

When the vulnerability of buried pipelines against liquefaction is considered, it can be deduced how 

their failure can be the cause of soil and aquifer contamination with materials such as oil or chemicals 

which are being transported. In addition to this, such an event would produce great financial 

discomfort to the proprietor be held responsible for the restoration of the environment as well as 

their damaged network. 

Hence, a great lot of proprietors and suppliers would be interested in understanding how significant 

damage can be caused to their networks by liquefaction and its post-occurrence as well as 

construction ways which minimize the expected damage. 

 

1.2 Problem Definition 
Dynamic excitations can be imposed to a given ground domain by earthquakes, either imposed or 

tectonic ones. Given the appropriate ground profile and conditions, these excitations can cause 

liquefaction and as a result, pipe failure. Liquefaction is a phenomenon during which pore pressure 

within the soil’s skeleton faces such an increase that makes the ground completely lose its stability 

and behave similarly to the way that a viscous fluid would and is described in greater depth within this 

report. 

The point at which soil has reached a complete loss of stability i.e. an effective stress equal to zero, is 

the beginning of the post-liquefaction state while the ending point is when effective stress starts 

building up once again. 

The excess pore pressure present during these processes is proven to cause floatation, or uplift, of 

buried pipelines, which can get them reach significant deformations up to ground surface. Such 

deformations may vary from point to point and are called differential displacement. These 

deformations can cause failure of buried pipelines and create the need for a model which can 

realistically describe them to be created. 

However, the main limitation is the lack of information for accurate modelling to be achieved. 

 

1.3 Objective 
As induced earthquakes are not very likely to trigger liquefaction and its post state effects, the 

objective of this report is the creation of a multi-functional model which, identifies whether 

liquefaction occurrence is or is not expected.  

After that, expected deformations and pipe uplift during post-liquefaction can be calculated for a 

variety of cases through a fully automated algorithm and with main interest in the induced 

earthquakes of the Groningen area.  

Furthermore, the factors which play a role to the degree up to which pipe uplift occurs are going to 

be investigated and preventing mechanisms are going to be identified. 

Finally, it is worth mentioning that a very powerful and useful tool is going to be created which can 

help the production of pipeline force-displacement relationships for varying ground conditions. 
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2 Literature Review 
 

2.1 What is Liquefaction 
According to chapter 4 of “Eurocode 8: Design of structures for earthquake resistance Part 5: 

foundations, retaining structures and geotechnical aspects”, liquefaction is defined as “a decrease in 

the shear strength and/or stiffness caused by the increase in pore water pressures in saturated 

cohesionless materials during earthquake ground motion, such as to give rise to significant permanent 

deformations or even to a condition of near-zero effective stress in the soil”. It would be worth 

mentioning that static liquefaction is also possible and will be described in more detail later on. 

In this chapter, the previously stated definition will be discussed in further depth in order to gain 

better understanding of main points as to how and when the phenomenon of liquefaction occurs as 

well as what impact it might have on the soil mass and its surrounding structures.  

 

2.1.1 How Liquefaction Occurs 
The first thing that has to be specified as to when liquefaction is most likely to occur is the geological 

and water-table conditions (Sahoo, Reddy, & Sukhija, 2007). Furthermore, most prone to liquefaction 

are cohesionless soils which can be characterised by their loosely packed state and their fine grains. 

An additional requirement is that the soil mass of interest is saturated and, most commonly, at shallow 

depths. From the requirements listed above, it is becoming evident that the most susceptible to 

liquefaction kind of material is loosely packed coarse silt to fine sand and saturated as stated before 

(Y. Huang & Yu, 2013). However, recent studies suggest some peculiar cases of liquefaction. These will 

be discussed in greater depth at a following paragraph of this chapter. 

 

Figure 2.1: Partially saturated soil (Knappett & Craig, 2012) 

When discussing liquefaction, a distinction can be made between static, or seepage-induced 

liquefaction, and dynamic/seismic one. The common factor in both cases is the influence that seepage 

has on effective stress. More specifically, if a soil domain is considered, there would be water seeping 

through its pores. This water movement would cause viscous friction resulting in the production of 

frictional drag acting upon the solid particles of the soil’s grain skeleton. The resulting force would 

then be called seepage and combined with gravitational forces acting upon the soil mass is the 

resultant body force (Knappett & Craig, 2012). It is worth mentioning how this latter force governs the 

effective stress of the discussed domain where seepage takes place. 
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2.1.2 Seepage Induced (Static) Liquefaction 
First, seepage induced liquefaction will be discussed. In order for the occurrence of this phenomenon 

to be clarified, the concept of critical hydraulic gradient (icr) would have to be introduced. Where: 

 

 
𝑖𝑐𝑟 =

𝛾′

𝛾𝑤
=  

𝐺𝑠 − 1

1 + 𝑒
 

 

(2.1) 

 
  

And with:  

 γ’ being the effective unit weight 

 γw being the unit weight of water 

 Gs being the specific gravity 

 e being the void ratio 

According to (Knappett & Craig, 2012), the value for the critical hydraulic gradient is approximately 

1.0 for most soils and when the hydraulic gradient of the material is equal to icr, the effective stress 

acting on any plane will also be zero due to upward seepage forces cancelling out the gravitational 

ones. This would cause the contact forces between sand particles to be equal to zero as well and the 

sand itself to have no strength. At this state, it can be said that the soil is liquefied and now acts as a 

viscous fluid instead. If the critical hydraulic gradient is exceeded, the soil would appear boiling and 

particles would be moved upwards due to flow of water. Finally, it is worth mentioning that in clay 

materials, the hydraulic gradient reaching the critical value derived from the above equation may not 

necessarily lead to it liquefying. 

2.1.3 Seismic (Dynamic) Liquefaction 
In the previous case, of static liquefaction, it was explained that the soil liquefied due to seepage. This 

was because the seepage force would create higher, excess, pore water pressure which would reduce 

the effective stress within the soil to zero. However, it is possible that the pore water pressure of soil 

can be increased due to cyclic loading, imposed to the material by dynamic loading due to seismic 

activity. When soil is not densely packed and undergoes cyclic shearing, it tends to contract. This would 

cause the void ratio (e) to be reduced. As a result, if this happens rapidly, the water within the soil 

might not have enough time to escape the pores in which it is located. This event, along with the 

contraction mentioned before would once again create excess pore water pressure due to the 

incompressibility of water (Knappett & Craig, 2012). 

If a uniform soil layer with the water table at its upper surface is considered, the total stress will be 

given for any depth (z) by 

 σv = γsat*z                                            (2.2) 
   

However, the pore water pressure is formed by two different components, which are the hydrostatic 

pressure (us) that was present initially before the soil was loaded and the excess part (ue) which is 

imposed by the seismic motion’s dynamic load. After defining these parameters, the critical excess 

pore water pressure at the point in time when liquefaction starts occurring uel can be defined as 

follows: 

 u = σv                                                (2.3) 
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us + uel = γsat*z 

γw*z+uel = γsat*z 

 uel = γ’z                                                (2.4) 
 

The equation presented above demonstrates that in order for liquefaction to take place, the excess 

pore water pressure has to be reach the same value as the one of the initial effective stress that was 

existing in the ground prior to cyclic loading. 

 

Figure 2.2: Foundation failure due to liquefaction, Niigata 1964 (Knappett & Craig, 2012) 

Several factors can enhance the potential of dynamic liquefaction. Some of these factors are 

characteristics of a seismic event, such as its magnitude and the location of the epicentre. More 

specifically, the higher the magnitude and the closer the epicentre is to the area of interest, the higher 

the potential of liquefaction is (Y. Huang & Yu, 2013). According to (Knappett & Craig, 2012), if a datum 

is considered at the soil’s surface, the following is valid. 

 u = γw*(h + z)                                                (2.5) 
 

ℎ =  
𝛾𝑠𝑎𝑡−  𝛾𝑤

𝛾𝑤
∗ 𝑧 

 ℎ

𝑧
=  

𝛾′

𝛾𝑤
 (2.6) 

 

The previous expression demonstrates how there will be a positive hydraulic gradient between the 

surface and a point at depth z within the soil mass when liquefaction is triggered. In addition to this, 
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it can be observed that this expression is the same as the one of the critical hydraulic gradient 

mentioned previously for static liquefaction and in this case, combining what has been derived gives: 

 
𝑢𝑒𝑙 =  𝑖𝑐𝑟 ∗ 𝛾𝑤 ∗ 𝑧 =

𝛾𝑤 ∗ (𝐺𝑠 − 1)

1 + 𝑒
∗ 𝑧 

 
(2.7) 

It is also worth mentioning how soil near the top surface of a soil mass would present a lower density 

due to higher void ratio (e). Furthermore, during the event of an earthquake, the dynamic loading 

would, most of the time, travel from the earth’s crust towards the soil surface. The combination of 

these two factors would mean that liquefaction starts from the surface of a soil mass and continues 

up to a certain depth. Also, it is clear that the effective stress within a soil domain increases linearly 

with depth and hence, from what has been mentioned so far, it can be safely stated that along with 

increasing depth, the amount of excess pore pressure needed to trigger liquefaction also increases. 

Finally, the last equation concerning uel states how loose soils, which are characterised by higher 

values of pore pressure (e), would require lesser excess pore pressure than denser ones in order for 

liquefaction to be triggered (Knappett & Craig, 2012). 

Finally, (Chian, Tokimatsu, Asce, Phani, & Madabhushi, 2014) state the parameter of liquefaction ratio 

(ru) which is defined as the change of pore water pressure (Δu) divided by the initial vertical effective 

stress of the soil (σ’v) (ru = Δu/σ’v). It can be said that full liquefaction then is reached when ru = 1 and 

partial liquefaction is present when ru is less than one. 

 

2.1.4 Wave induced liquefaction 
(Sumer, Fredsøe, Christensen, & Lind, 1999) investigated floatation of buried pipelines in marine 

environments as can be seen in figure 2.3. Furthermore, dynamic stresses can be caused in the soil 

from waves. This investigation concluded how if a certain wave height is reached, excess pore water 

pressures can be accumulated and build up to full liquefaction.  

 

Figure 2.3: Wave induced liquefaction (Sumer et al., 1999) 

  



7 
 

 

2.2 Liquefaction Related Phenomena 
In the previous paragraph, it was discussed how boiling can occur if the corresponding critical hydraulic 

gradient is exceeded. However, this is not the only phenomenon that could be expected from 

liquefaction. Events such as ground cracks and lateral spread should be also expected. In the 

paragraphs bellow, the typical phenomena which correspond to liquefaction will be analysed, in order 

to gain a better understanding of how the ground is altered in the post-liquefaction state. 

2.2.1 Sand Boiling 
It has previously been described what sand boiling is as well as 

why and how this phenomenon occurs. However, some 

further discussion can take place about the boiling formations. 

Furthermore, the particles that move upwards are, most 

commonly, originating from shallow depths of the soil and can 

form elements of different shape and size during earthquakes. 

Based on how the liquefied soils eject through the upper 

layers, sand boiling formations can be classified in two 

different categories (Y. Huang & Yu, 2013). These categories 

differ mainly on the shape of the element’s formation as well 

as the way in which the material has reached ground surface. 

The first category includes flat cone sand volcanoes. The 

diameter of those structures may differ from few centimetres 

up to meters (Y. Huang & Yu, 2013). As for the second 

category, it includes soil particles which have reached ground 

surface through cracks, formed by the earthquake itself. These 

cracks usually expand for several meters in width and 

significantly less in depth and length. 

It is worth mentioning at this point how sand 

boiling acts as a relief mechanism for the ground 

that is undergoing liquefaction. As excess pore 

pressure is being generated, it might follow a 

path of least resistance and dissipate as shown 

in figure 2.6. More specifically, the 

inhomogeneity of soil properties can result to a 

different fluid extrusion rate and cause the fluid 

to migrate towards more pervious and/or lower 

pressure zones (Yang & Elgamal, 2001). Finally, 

the excess pore pressure relief offered by sand 

boiling acts as a mitigating measure for lateral 

spread that tends to occur due to liquefaction.  

Figure 2.4: Flat cone sand volcano [John 
Tinsley, U.S Geological Survey] 

Figure 2.5: Ground cracks [http://nisee.berkeley.edu] 
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Figure 2.6: Excess pore pressure relief mechanism (Yang & Elgamal, 2001) 

 

2.2.2 Lateral Spread 
In the case where sand boiling does not take place, lateral spreading is a potential hazard for the soil 

mass. Lateral spread consists of surficial soil blocks displacing horizontally, down a slope or towards a 

free surface along a shear zone, which was formed within the liquefied zone (Bartlett & Youd, 1995). 

It is clear, from what has been stated so far, that this horizontal displacement is made possible due to 

the decrease of the liquefied material’s shear strength to nearly zero. Lateral spread typically causes 

displacement that ranges from a few centimetres to several meters and can cause considerable 

damage to nearby structures. However, lateral deformation will in general create sand boiling for the 

interlayer water to escape (Yang & Elgamal, 2001). 
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2.3 Liquefied Soil 
The subject of soil masses, which have undergone liquefaction has been studied and discussed in 

various published scientific papers so far. Furthermore, liquefied sand behaves as a non-Newtonian 

fluid in which the viscosity appears to be decreasing with increasing shear strain rate [Hwang et al., 

2006]. It is worth mentioning how two approaches have been used in the liquefied soil’s behaviour, 

these are a viscous fluid and a pseudo-plastic fluid ones. (Hwang, Kim, Chung, & Kim, 2006) gathered 

a significant amount of previous experimental research and compared the results, plotted in a relative 

density (Dr) – viscosity space, as seen in figure 2.7. 

 

Figure 2.7: Viscosity value results suggested by other researchers (Hwang et al., 2006) 

The types of tests which lead to the results presented in this figure were analytically: 

Figure 2.8: Types of tests and method of liquefaction to gain viscosity (Hwang et al., 2006) 
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What can be observed in the figure and table presented above is how the relationship between 

viscosity and relative density of a liquefied soil remain constant, no matter the researcher or the 

experimental procedure selected each time. This relationship is that viscosity tends to increase with 

relative density. 

2.4 Liquefaction Potential 
A fundamental question raised at the beginning of every simulation, regarding this paper, is whether 

the soil and loading conditions are adequate to produce liquefaction. Furthermore, in everyday 

application of this problem, the first thing that would be done is specification of the ground’s 

liquefaction characteristic. This could be done by usage of the most commonly used ground 

investigation techniques, which are Standard Penetration Testing (SPT) and Cone Penetration Testing 

(CPT). 

 

Figure 2.9: SPT based liquefaction potential curves from processed case histories (Boulanger & Idriss, 2014) 

There have been countless efforts made by researchers so far in order for this problem to be solved. 

Furthermore, the development of SPT and CPT correlations began in Japan during the 1960s and 

progressed up to the landmark work of Seed et al. in 1984, which was set as a standard for engineering 

practise during the next two decades (Boulanger & Idriss, 2014). The most notable updates made in 

the SPT and CPT procedures upon this matter were the ones by Idriss and Boulanger and the 

comparison between the aforementioned studies can be seen in figures 2.9 & 2.10. 
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Figure 2.10: CPT based liquefaction potential based on clean sand case histories (Boulanger & Idriss, 2014) 

It is worth mentioning at this point how the Cyclic Stress Ratio (CSR) is one of the main parameters 

when investigating liquefaction potential. The (Boulanger & Idriss, 2014) method, which is their most 

up to date one, has been used as a reference solution within the scope of this study. 

Now, as far as the calculation process is concerned, the CSR ratio for a specific depth (z) has 

traditionally been expressed as 65% of the maximum cyclic shear stress ratio within a representative 

value. That is: 

 CSRM,σ’v =0.65*τmax /σ’v (2.8) 
 

Where τmax is the maximum shear stress imposed by the earthquake and σ’v is the vertical effective 

stress. It is worth mentioning, that as the CSR subscripts suggest, the result is calculated for a pre-

specified value of earthquake magnitude (M) and vertical stress (σ’v). The aforementioned percentage 

of 65% was suggested by Seed and Idriss in 1967 and has since then been used. Furthermore, the 

parameter τmax can be specified from dynamic response analyses, which should include a satisfactory 

amount of site characterisation parameters as well as dynamic acceleration time series (Boulanger & 

Idriss, 2014). If the amount of these parameters is not satisfied, the following formula can be used for 

the determination of SCR:  

 CSRM,σ’v = 0.65 (σv/σ’v)*(αmax/g)*rd (2.9) 

 

Where: σv is the total vertical stress at depth z, αmax/g is the maximum horizontal acceleration at 

ground surface and rd is a shear stress reduction factor accounting for the ground’s dynamic response 

(Boulanger & Idriss, 2014). As for the formulation of the remaining parameters: 

rd =exp[α(z) + β(z)*M] 

α(z) = -1.012 - 1.126 sin(z/11.73+5.133) 

β(z) = 0.106 + 0.118 sin(z/11.28 + 5.142) 
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The next step in the analysis of liquefaction potential is the determination of the Cyclic Resistance 

Ratio (CRR). (Boulanger & Idriss, 2014) propose that the value of CRR for a magnitude (M) of 7.5 and 

a stress (σ’v) is given from the relationship: 

 CRRM=7,5,σ’v=1 = CSRM,σ’v /(MSF * Kσ) (2.10) 

 

Figure 2.11: Example CRR correlations (Idriss & Boulanger, 2010) 

It is explained in  (Idriss & Boulanger, 2010) how the Magnitude Scaling Factor (MSF) represents a 

combination of dynamic ground motion and the behaviour of cohesionless soil for both CPT and SPT. 

This parameter is investigated in (Boulanger & Idriss, 2014) and found to be: 

 MSF = 6.9 * exp(-M/4) – 0.058 (2.11) 
 

Where M is the desired earthquake magnitude MSF must be equal or less than 1.8. It is interesting to 

note at this point that (Idriss & Boulanger, 2010) also found the following relationship to be valid for 

SPT tensing: 

 MSF = 17.84 * (M)-1.43 = (M/7.5)-1.43  (2.12) 
 

Finally, Kσ was introduced in (Boulanger & Idriss, 2014) as a factor which describes effective 

overburden stress as: 

 Kσ = 1 – Cd * ln (σ’v/Pa) (2.13) 
 

With Cd = 1 / (37.3 – 8.27(qc1Ncs)0.264) for CPT and Cd = 1 / (18.9 – 2.55 SQRT(N1)60cs) for SPT. 

Finally, the Factor of Safety (FS) for specified M and σ values can be described as FS = CRRM,σ’v / CSRM,σ’v. 
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2.5 Liquefied Soil as a Non-Newtonian Fluid 
It was mentioned before, how the behaviour of liquefied soil can best be described as the flow of a 

non-Newtonian fluid and thus, it is found beneficial for the difference between Newtonian and non-

Newtonian fluids to be described in order for better understanding of the material’s behaviour to be 

obtained.  

 

Figure 2.12: Schematic representation of unidirectional shear flow (Chhabra, 2010) 

The first category to be discussed is Newtonian fluids. According to (Chhabra, 2010) in simple shear, 

which is described in figure 2.12, a linear response between applied shear stress and shear rate is the 

main characteristic of a Newtonian fluid. That is: 

 σyx = F/A = η (yyx)’ (2.14) 
 

As for non-Newtonian fluids, according to (Chhabra, 2010), the simplest possible deviation from the 

Newtonian behaviour, is how the simple shear data ( σ – (y)’) does not pass from the axes origin (0, 0) 

and/or does not show a linear relationship between shear stress and shear rate. This relationship is 

very well described graphically in the following figure. 

 

Figure 2.13: Qualitive flow curves for different types of non-Newtonian fluids  (Chhabra, 2010) 
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2.6 Failure Mechanisms 
 

2.6.1 Failure Mechanisms in Non-Liquefied Sand 
As far as soil-structure interaction is concerned thus far, liquefaction can be the triggering cause of a 

given structure’s failure mechanisms. In this study, the structures of interest are buried pipelines and 

their most common failure mechanisms will be discussed. However, failure mechanisms in liquefied 

sand are more complex and will be discussed later on in this paper. 

In order to achieve better understanding of the uplift failure phenomenon itself, it was considered 

beneficial to analyse the general failure mechanisms before getting into further detail about how 

environmental parameters affect its development. However, this will be discussed in the course of 

this chapter. 

 

Figure 2.14: Uplift mechanisms of buried pipes in sand: (a) Problem geometry; (b) sliding block with vertical slip surfaces; (s) 
sliding block with inclined slip surfaces; (d) flow around (Cheuk, White, & Bolton, 2008) 

According to (Cheuk et al., 2008), in figure 2.14, the geometry of a buried pipe is defined in part (a). 

Following in (b), it is stated how the uplift mechanism involves a sliding block, which is bounded by a 

pair of shear bands. In (c) it can be seen how the inclination of the shear bands is similar to the one of 

the soil’s dilation angle, it is worth mentioning that (Berghe, Cathie, & Ballard, 2001) confirmed this 

mechanism through finite element analysis. Part (d) of the above figure presents a flow around 

mechanism which is typically encountered in very loose sand materials (Cheuk et al., 2008). However, 

it is possible that the flow around mechanism is observed in initially dense models beyond peak 

resistance (Cheuk et al., 2008). 
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(Cheuk et al., 2008) also discussed the influence of material properties on vertical displacement as 

well as the failure mechanism’s propagation. In figure 2.15, three cases are being presented. Figure 

(a) is at peak resistance, while (b) and (c) are post-peak and more specifically, (b) at 0.12D vertical 

displacement and (c) at 0.5D. As can be seen in all cases, the influence of the soil density upon 

vertical displacement is becoming more and more evident approaching ground surface. It can also 

be observed how the inclination of the shear zone is dependent on the material density. 

 

Figure 2.15: Vertical movement profiles (Cheuk et al., 2008) 

The same study also concluded how, during pipe uplift, four key stages can be identified for the 

deformation mechanism. These are: 

 

 Mobilization of peak resistance 

 Onset of infilling beneath the pipe invert 

 Post-peak shear band formation 

 Flow around 

 

It is worth mentioning that all of these stages are 

present in the above figure as well as how the effect of 

infilling is becoming clear at the soil-structure interface. 

Finally, the relationship between uplift resistance and 

vertical displacement was represented accordingly to 

the Figure 2.16, at right. 

 

 

 

  

Figure 2.16: : Load-displacement response (Cheuk et 
al., 2008) 
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Finally, in the following two figures, test results can are presented and compared. Furthermore, at left 

there is a centrifuge test particle image velocimetry (PIV) result presented, which was done by Chian 

et al in 2014 and at 1.5D. At right, Cheuk et al’s results can be seen from four different tests. It can be 

safely stated that the flow around mechanism is acting in all cases with slight geometrical alterations 

as all results can be well compared. 

 

Figure 2.17: Pipe uplift test results (Cheuk et al., 2008)  

In order for better visual understanding of the centrifuge tests held to be achieved, the apparatus 

which was used by Cheuk and colleagues is presented in figure 2.18. 

 

Figure 2.18: Centrifuge apparatus (Cheuk et al., 2008) 

  



17 
 

2.6.2  Failure Mechanisms in Liquefied Sand 
The uplift behaviour of pipelines buried in liquefied sand is a process which results due to multiple 

forces and presents a high dependency on the one of excess pore pressure .Furthermore, during uplift 

the pipeline is forced to move vertically upwards as a result of excess pore pressure dissipating in this 

direction.  

(B. Huang, Liu, Lin, & Ling, 2014) very well note how various factors have been thought to affect the 

extend up to which uplift will occur and after experimental research, it has been concluded that the 

ones which do so are burial depth, diameter, thickness and stiffness of the pipeline as well as type, 

liquefied area, stiffness and strength of the soil. It is also worth mentioning how the same study 

mentions that the most critical of the aforementioned factors are found to be the burial depth and 

diameter of the pipeline as well as the liquefied depth and stiffness of soil. As for the way in which the 

buoyancy force is most commonly calculated, that is: 

 Fbuoyancy = ρsat**g*V (2.15) 
 

Figure 2.19 presents the forces acting upon a buried pipeline during liquefaction induced by shaking 

in an experimental environment by (B. Huang et al., 2014). As can be seen, the failure mode adopted 

in this case is similar to the one of the sliding block, which is bounded by a pair of vertical share planes 

and was presented in figure 2.14 in the previous section of this report.  

 

Figure 2.19: Schematic diagram of forces during pipe uplift (B. Huang et al., 2014) 

The pipeline in the case presented here was not fixed, or provided a stabilizing force and hence, was 

able to move freely during experiments.  
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More specifically, the method of testing in this case was dynamic centrifuge with accelerations of 30g. 

Several accelerations were used as input for the dynamic excitation component of those tests and 

they are identified as figure 2.20 along with the observed outcomes of uplift occurring or not. 

 

Figure 2.20: Liquefaction occurrence outcome and input accelerations (B. Huang et al., 2014) 

As for the ground conditions used, the liquefiable soil was a common practice Fujian Sand with a mean 

diameter D50 = 0.16mm, uneven coefficient Cu = 1, curvature coefficient Cc = 0.95 and finally, minimum 

and maximum void ratio coefficients of emin = 0.62 and emax = 0.95. 

Samples were then created with a relative density Dr = 60% and tests were made. Figure 2.21 presents 

some of the results for different burial depths. 

 

Figure 2.21: Uplifting displacement of pipeline at different burial depths (B. Huang et al., 2014) 
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As far as the force analysis is concerned, the pipe flotation studied is described by the equation: 

 mpα = Fs+ΔWs - ∫ (𝛥𝑢₂ − 𝛥𝑢₁)𝑑𝐷
𝐷/2

−𝐷/2
 - ΔN (2.16) 

 

Where Ws is the effective weight of the soil on top of the pipe, u1 and u2 are pore pressures occurring 

around it. The parameter N, which was shown in the schematic force diagram in figure 2.19 is the 

support provided by the pipe’s underlying soil and has been eliminated as null during full liquefaction. 

Fs is a parameter which represents the frictional resistance provided to the pipe by the overlying soil. 

However, this parameter degrades during liquefaction and reaches 0 when the soil is fully liquefied. 

More specifically, this frictional resistance is specified in (B. Huang et al., 2014) as: 

 Fs = fp [(D/H)*(H/D + 0.5)2]*σ’HDL (2.17) 
 

Where fp is a parameter ranging between 0.4 and 0.6 for medium dense sand and σ’H is the effective 

vertical stress of the pipe’s overlying soil. 

 

 

Figure 2.22: Calculated and measured acceleration, velocity and displacement of pipeline (B. Huang et al., 2014) 

Finally, figure 2.22 presents the relationship between calculated and measured parameter results as 

well as a brief demonstration between parameter correlations.   
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2.6.3 Shallow and Deep Failure Approaches 
In their study  (Kouretzis, Krabbenhøft, Sheng, & Sloan, 2014) investigated the interaction effects of 

pipeline’s vertical movement. Furthermore, instead of treating this problem as per common design 

practise and having the interaction force estimated by a shallow footing’s bearing capacity theory, 

they assumed that the vertical behaviour mechanisms of a pipeline would be similar to circular pile’s 

loading lateral ones. This approach was validated with the help of the finite element limit analysis 

method and some of the conclusions will be briefly presented in this section. 

The most commonly used approach for the representation of a buried pipeline undergoing seismic 

loading is beam-nonlinear spring models, in which the pipeline is represented by beam elements while 

the reaction of the soil by non-linear springs and sliders in specified directions. However, (Kouretzis et 

al., 2014) very well notice an approach suggested by the established design guidelines of (ASCE-ALA, 

2005) and the state of practice (O’Rourke & Liu, 2012) which treat the problem of vertical pipeline 

loading as a resemblance of that of a shallow strip footing. More specifically, these papers suggest 

that the common equations for shallow footings’ bearing capacity are adequate to be used for the 

maximum force per unit length of the pipeline to be determined. That is: 

 Qd = NccD + Nqγ’HD + Nγγ(D/2)2 (2.18) 
 

Where D is the pipeline’s diameter, H is the depth up to the pipeline’s centreline, γ is the total unit 

weight of the soil, γ’ the effective one, c is cohesion and Nc, Nq and Nγ are common bearing capacity 

factors. 

 

Figure 2.23: Shear strain contours defining the failure surface around a vertically loaded pipeline in uniform cohesive soil 
during undrained conditions. (a) is at H/D = 0 and (b) at H/D = 2.5 which is sufficient for deep failure (Kouretzis et al., 2014) 

The theory is quite straightforward here and, as can be seen in figure 2.23, it is suggested that as the 

embedment depth (H) tends to zero, the pipeline is going to adopt the behaviour of a strip footing of 

width D.  
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However, when the embedment depth of the pipeline increases figure 2.23(b) a deep failure mode 

will be present where the maximum force to be developed on the pipeline will now be representative 

of the ultimate lateral bearing capacity of a horizontally loaded circular pile in uniform ground 

(Kouretzis et al., 2014). It is worth mentioning at this point how the latter is the case within the limits 

of this study as will be numerically presented later on. 

 

2.7 Beam on Elastic Foundation Modelling 
It was mentioned in the previous paragraph how the most common method of analysis for the 

problem of vibrations applied on a pipeline is the beam on non-linear spring modelling. In the 

following paragraphs, this type of models is to be explained in further detail. 

Several such models have been developed during the past which enable the representation of the 

given problem with different approaches. Namely, some of these are the Pasternak, Florenko-

Borodich, Rhines, Hetenyi, Kerr and finally, the Winkler models. It is worth mentioning how while the 

main approach remains the same in these models, small modifications have been applied to each one 

in order for inaccuracies to be minimized in given problems. The florenko-Borodich model for example, 

consists of Winkler elements, which are in continuous interaction by means of a thin elastic membrane 

under a constant tensile force T. 

 

Figure 2.24:Beam on Winkler foundation (Kacar, Tan, & Kaya, 2011) 

In remains one of the most fundamental and commonly used methods until today. The proposed 

model is capable of producing a linear algebraic relationship between a structure’s normal 

displacement and contact pressure. As can be seen in Figure 2.24, the Winkler model considers a beam 

or a pipeline as an Euler-Bernoulli beam resting on an elastic medium, represented by a set of 

independent soil springs.   

The main advantage of the Winkler model, which makes it used so commonly is its straightforward 

approach which enables representation of non-linear behaviour without the need of extended 

computational effort in comparison with the rest of the aforementioned models.  

It is worth mentioning at this point how primary consolidation of soil can be very well represented by 

such a system as the Winkler one due to its static nature. However, in some cases, the need of 

representation of more complex mechanisms acting upon a structure leads to creation of altered 

models and the addition of more sophisticated element systems. For example, such a mechanism is 

soft soil’s creep, a time-dependent mechanism which requires several additions and modifications to 

be introduced to the model in order for accurate representation to be achieved. 
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2.8 Rheological Models 
Viscoelasticity, as the name suggests, is the process in which a material behaves both elastically and 

viscously. As it is very well described in (Braja M. Das, 2011), ground response can be expressed this 

way. This is due to the different nature between the soil skeleton and the pore water in the case of a 

fully saturated material. A main characteristic of this material is how the loading and unloading curves 

do not coincide and the product resulting is a hysteresis loop. After this action is complete, there may 

or may not be permanent deformation of the material. 

In terms of force (f) and relative displacement (u), it is explained in (Chopra, 1995) how the force-

displacement relationship can be linear at small deformations or non-linear at larger ones, and this 

can be seen in figure 2.25. 

 

Figure 2.25: Force-Displacement relationship, linear to the right and non-linear to the left (Chopra, 1995) 

It can be deducted from what has been mentioned so far how the behaviour of this material is time 

dependent and hence, the need for a constitutive equation which includes time as a variable in 

addition to stress and strain is created (Braja M. Das, 2011). Various models have been created for the 

representation of this behaviour which include spring elements in order to express elastic behaviour 

and viscous dampers, also known as dashpots, to express viscous. These models are called rheological 

or mechanical models. 

 

Figure 2.26: The elastic spring 

It would be useful at this point for the main elements of these mechanical models to be stated. 

Furthermore, the first element is the elastic spring. The elastic spring reacts to applied force in 

accordance with the Hooke’s law and is sometimes referred to as Hooke element (Chopra, 1995). This 

law states how a force (F) needed to displace the spring by some distance (u) is: 

 F = k*u (2.19) 
 

Where k is a property of the spring and is characteristic of its stiffness. 
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 Now, it makes sense how the terms of force (f) and displacement (u) can be translated to stress (σ) 

and strain (ε) respectively when a rigid material is concerned. This is done by the relationships: 

 σ = F/A (2.20) 
 ε = Δx/x (2.21) 

 

Which mean that stress is equal to applied force over the area (A) within which it is applied and strain 

is the change in dimension (Δx) over the original value (x) of it. 

The next element to be discussed is the dashpot one. According to  (Chopra, 1995) the process by 

which a free, or forced, vibration diminishes in amplitude is called damping. Furthermore, it can be 

understood how in real life applications various different mechanisms take part in this dissipation of 

energy, some of which may be acting simultaneously. Furthermore, using of dashpot is very common 

for the experimental representation of real events.  

 

Figure 2.27: The viscous damper 

As it is presented in figure 2.27, the relationship between applied force (f) and displacement (u) in 

this case is: 

 F = c*(u)’ (2.22) 
 

Where in this equation, the constant c represents the viscous damping coefficient and (u)’ the first 

derivative of displacement, which is velocity. The question which arises now is, how the viscous 

damper can satisfactorily represent all the complex energy dissipation mechanisms, which as stated 

before may be acting at the same time. The answer to this by (Chopra, 1995) is that a parameter (c) is 

selected so that the vibrational energy it dissipates is equivalent to the energy dissipated in all the 

present damping mechanisms combined. This idealised coefficient of the actual mechanisms is then 

called equivalent viscous damping. 

 

Figure 2.28: Damping response for a free vibration. a) Damper attached to a frame b) Acting forces c) F-u relationship (Chopra, 
1995) 
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It is worth mentioning at this point how for some applications, such as dynamic excitations, it is nearly 

impossible to theoretically create a damping coefficient that is capable of representing reality. Instead, 

the most common way is that the coefficient is determined through experimental procedures. 

Finally, the spring and dashpot elements can either be connected in series, i.e. one after the other as 

well as in parallel, i.e. one next to the other. A characteristic example of a system connected in series 

is the Maxwell model and the Kelvin-Voigt model one for parallel connection. These two are some of 

the most commonly used systems and will be explained in the section below. 

2.8.1 The Maxwell Model 
The Maxwell model is composed of a spring and a dashpot connected to each other in series. 

According to (Jóźwiak, Orczykowska, & Dziubiński, 2015), the total stress in this system is equal to the 

stress acting on both elements while the total strain is equal to the sum of the corresponding one for 

each element: 

 σt = σs = σd (2.23) 
 εt = εs + εd (2.24) 

Where for both stress (σ) and strain (ε) from now on the notation (s) will stand for spring and (d) for 

dashpot. 

 

Figure 2.29: The Maxwell model 

As (López-Guerra & Solares, 2014) states, the Maxwell model is known to successfully describe stress 

relaxation, which is the time-dependent drop in stress under a constant strain. However, this model 

is incapable of describing creep mechanisms, where creep is the process of time-dependent strain 

relaxation under a constant stress and this can be seen in the figure 2.30. The main disadvantage 

because of this is how during unloading, the sample experiences elastic recovery which is due to the 

spring element and proportional to the energy stored in it. However, there is no viscous recovery, as 

the dashpot has no mechanism to travel back to its original position (López-Guerra & Solares, 2014). 

 

Figure 2.30:Creep recovery response of the Maxwell model (Kelly, 2015) 
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2.8.2 The Kelvin-Voigt Model 
The next model to be discussed is the Kelvin-Voigt one. This model consists of two elements, a spring 

and a dashpot, connected to each other in parallel. In this case, the total stress of the system is equal 

to the sum of the two separate stresses acting upon the corresponding elements of the spring and 

dashpot. As for the strain, it is equal to the strain acting on both elements. This can be expressed as: 

 
εt = εs = εd 

(2.25) 
 

 σt = σs + σd (2.26) 

 

Figure 2.31: The Kelvin-Voigt model 

(López-Guerra & Solares, 2014) conclude that this model is able to achieve the opposite of the Maxwell 

one in terms of performance for creep and stress relaxation. More specifically, it is found that this 

model is able to describe creep compliance but incapable of describing stress relaxation. 

 

Figure 2.32:Creeo recovery response for the Kelvin-Voigt model (Kelly, 2015) 

The two elements are connected in parallel and the system lucks a free spring, that is able to 

accommodate immediate force applied to it. This is because the only spring in the model experiences 

compression until the parallel dashpot starts to yield and hence, there is no immediate spring 

response (López-Guerra & Solares, 2014). 
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An example of a model with an added independent spring and dashpot is the burger model presented 

in figure 2.33 as developed at the University of Tehran. 

 

Figure 2.33: Buried pipeline analysed with the Burger model (Faeli & Fakher, 2010) 

 

2.9 P-y Curves 
P-y curves are the graphical representations of a buried structure’s interaction with the soil, where (p) 

is the soil resistance and (y) is the relative displacement. In practice, the creation of p-y curves is often 

carried out by means of the Beam on Non-linear Winkler Foundation method (Dash, Rouholamin, 

Lombardi, & Bhattacharya, 2017). In this method, lateral interaction between the soil and the buried 

structure is investigated as a set of non-linear springs.  

 

Figure 2.34: Response of Static and Dynamic p-y curves (Naggar & Bentley, 2000) 
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The shape of a p-y curve might differ for the state of loading. More specifically, (Dash et al., 2017) 

describe the typical shape of a non-liquefied soil’s p-y curve as a convex curve with initial stiff slope 

which gradually reduces with soil-structure relative displacement, as demonstrated in figure 2.35. 

(Hededal & Klinkvort, 2010) Explain how these curves were originally created as the non-linear relation 

between lateral movement (y) and soil response (p) in terms of non-linear monotonic loading by 

Matock and his co-workers in the 1950s. This was done by back calculation of a series of conducted 

tests. Later on, in the 1970s, further cyclic tests were carried out by Matock on buried piles. These 

tests revealed a general trend for the ultimate capacity of the piles to drop compared to the 

monotonic case.  

 

Figure 2.35: P-y curve for liquefied soil (Dash et al., 2017)  

 

These curves have been very commonly used in practice so far. However, as (Dash et al., 2017) very 

well explains, new studies have proved that the p-y curve for liquefied soil has a different shape than 

the aforementioned ones. That is an upward concave with near-zero initial stiffness up to a certain 

displacement, which is created due to the loss of contact between soil particles in liquefied soil. 

Beyond this point, the stiffness increases as a result of the soil particles’ rearranging as shown in 

figure 2.35. 
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2.10 Derivation of k and c 
One of the most important aspects of this study was the determination of the spring and dashpot 

coefficients. Furthermore, these two coefficients are vital for the investigation of such a model, as 

they are playing a major role in achieving a realistic representation of the system’s response. More 

specifically, the spring coefficient (k) was specified by usage of the most relevant and up to date 

studies while the dashpot coefficient (c) had to be adopted from previous studies, as described in the 

following paragraphs. 

 

2.10.1 Derivation of the Spring Coefficient (k) 
The determination of the spring’s coefficient, which will also be referred to as modulus of subgrade 

reaction, was found to be a great challenge within the framework of this project. Furthermore, in 

order for the elastic spring coefficient to be determined in a realistic manner, the construction of a p-

y curve for liquefied soil was needed.  

Furthermore, it was mentioned how in the case of liquefied soil the shape of the p-y curve is an upward 

concave. This starts with a near to zero initial stiffness, up until it reaches a certain displacement. This 

near-zero tendency of the material can be explained by the loss of contact between soil particles in 

liquefied soil. Beyond this point, a stiffness increase is observed as soil particles begin to re-arrange 

and create the re-development of effective stress. The aforementioned shape is shown in figure 2.35 

as was developed by (Dash et al., 2017). The method of (Dash et al., 2017) was used in this study as it 

was found to be one of the most up to date and accurate techniques. 

 

(Dash et al., 2017) divide the process of creation for the p-y curves in four major steps. These include: 

1. Evaluation the soil’s parameters by usage of the SPT bore log 

2. Considerations of the structure’s geometry 

3. Construction of a simplified liquefied soil stress-strain curve 

4. Generation of the p-y curve with respect to the stress-strain one mentioned in step 3. 

More specifically, the variation of SPT value (N) is the first thing which needs to be considered. In this 

case, this was done by representation of an SPT test  presented by (Dash et al., 2017) and as can be 

seen in figure 2.36. It is worth mentioning how for the liquefiable layer, an average relative density of 

40% was kept with values of 30-40% in the top layer, such as the ones in (Horsten, 2016). 
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Figure 2.36: SPT blow-count used 

Several soil parameters have to be derived from the blow count value (N). These are corrected SPT 

value (N1), the relative density (Dr) the critical state stress ratio (Mc) and the residual strength of 

liquefied soil (Mc). These parameters can be estimated by laboratory testing as well as standard 

correlations used in literature. Taking into consideration the absence of laboratory testing in this case, 

the theoretical correlations, which were gathered from various literature pieces by (Dash et al., 2017) 

were considered. 

 It is worth mentioning at this point how great importance was given at the shallower depth of the SPT 

presented above as the burial depth of the pipeline considered was at the range of 0.5m-2m. 

 

More specifically, the first value derived was the corrected for overburden pressure SPT value (N1). 

For sandy soils, this is possible with application of the formula: 

 N1 = (N/SQRT(p’ini/98) (2.27) 
 

With pini being the initial effective overburden pressure. The next parameter mentioned was the soil’s 

relative density Dr. This parameter was considered as a function of the aforementioned N1 as: 

 Dr = SQRT(N1/CD) (2.28) 
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Where CD =(9/(emax - emin))1.7 and at the absence of specified void ratios can be taken as 20 for sands 

with fines, 70 for gravelly sand and in this case, as 41 for clean sands. Moving on to the critical state 

stress ratio (Mc): 

 Mc = [(6sinφcs)/(3-sinφcs)] (2.29) 
 

In this case, φcs is the soil’s critical state angle and when this is not available from laboratory results, 

the correlation φcs = 28o +15Dr can be used. 

What can be defined as residual shear strength (su) of liquefied soil is the mobilized shear strength at 

large deformations after liquefaction has occurred. The upper and lower bound values can be used 

for the worst case scenario of lateral soil-structure interaction to be described. These values are 

presented in figure 2.37 and it is worth mentioning that the upper bound ones were used within the 

limits of this study. 

 

Figure 2.37: To the left (a) upper and lower residual shear strength of soil and to the right (b) critical depth ratio for various 
relative density/angle of friction (Dash et al., 2017) 

Figure 2.37 also demonstrates a parameter which has not been mentioned so far. This is the critical 

ratio (β) which has been adapted from the 2010 API methods of practice. Furthermore, this parameter 

takes into consideration the structure’s depth and diameter ratio in order for a boundary value, which 

distinguishes between shallow and deep depth to be created. More specifically, for a specified point 

at a depth (h) and for a structure’s diameter (D), if the ratio h/D is greater than (β), then deep depth 

applies and vice versa. 
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Proceeding to the construction of the liquefied soil’s simplified stress-strain curve, four main 

parameters were used. These were the take-off strain (yto), initial shear modulus (G1), critical state 

shear modulus (G2) and the ultimate shear strength τmax.  The relationships used for the investigation 

of these parameters as well as a shape example for such a simplified stress strain relationship are 

presented in figure 2.38. 

 

Figure 2.38: Post liquefaction stress strain relationships for liquefied soil (Dash et al., 2017) 

It is worth mentioning at this point how τmax(d) is correspondent of the minimum and non-negative 

pore water pressure in post liquefaction shearing and τmax(s) is the soil’s residual strength at shallow 

depths. In addition to this, (Dash et al., 2017) explains that the relationships of (G2) and (yto) were 

formulated by extensive element testing by a great lot of researchers. It is also explained how in the 

absence of experimental testing, these empirical relationships are safe to be used for the 

determination of stress-strain parameters. Finally, it is worth noting that the aforementioned 

relationships are based on soil relative densities ranging 20-80% and may not be extrapolated beyond 

or above these ranges. 

Once the simplified stress-strain relationship has been established, scaling is used for the creation of 

the corresponding p-y curve. Furthermore, these scaling factors are Ms and Ns and figure 2.39 shows 

a schematic representation of this process. 

 

Figure 2.39: The process of obtaining liquefied soil's p-y curves from stress-strain relationships. (a) Simplified stress-strain 
curve for liquefied soil, (b) linearly scaled p-y curve model for stress-strain model, and (c) smoothed p-y curve model.(Dash 

et al., 2017) 
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2.10.2 Derivation of the Dashpot Parameter (c) 
It was described, earlier on, in this chapter how it is most common for the coefficients of viscous 

dampers to be specified by means of physical modelling. It was then explained how all the complex 

energy dissipation mechanisms acting upon the system are nearly impossible to be satisfactorily 

expressed in a theoretical manner. It was also explained how a single value can be derived, which 

describes all those dissipation mechanisms combined. This was called equivalent damping. 

In this case, (Horsten, 2016) investigated the phenomenon of pipe uplift in liquefied soil by means of 

physical modelling. Furthermore, several parameters were determined within this study, among 

which was a dashpot coefficient which was capable of adequately representing uplift behaviour. Three 

ways were used for this problem to be approached. These were a combination of physical modelling, 

a quasi-static analysis and Abaqus modelling. 

 

Figure 2.40: Pipe diameter-viscous damper coefficient relationship (Horsten, 2016) 

Figure 2.40 describes how this study concluded in realistic dashpot coefficients related to pipe 

diameter and uplift force. Furthermore, a linear fit was applied with direct relation between the 

diameter of the pipe used and the coefficient. More specifically, it was concluded that: 

Table 2.1: Dashpot Coefficients 

Pipe Diameter (mm) Dashpot Coefficient (kN*s/m) 

110 25 

160 100 

200 600 

 

Finally, these values were used for the computer modelling investigation, which was conducted within 

this study. 
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2.11 Maximum Uplift and Prevention 
(O’Rourke & Liu, 2012) very well explain in their book how the content of a pipeline may affect its 

uplift potential. Furthermore, pipelines carrying liquids are not as likely as gas filled ones to experience 

uplift due to post-liquefaction effects because of their larger weight. However, the ones containing 

lighter materials, such as gas, are more susceptible to this phenomenon and thus, several commonly 

carried elements will be tested in this report. 

A theoretical manner of analysis is suggested in the same report which states that the uplifting force 

per unit length can be calculated as: 

 Puplift = (πD²/4) *(γsoil – γcontents) - πDγpipe (2.30) 
 

Where (Puplift) is the uplifting force, D the pipe’s diameter and γsoil, γcontents and γpipe the unit weights of 

the soil, pipe’s contents and pipe’s material respectively. 

 

Figure 2.41: Pipe in liquefied zone (O’Rourke & Liu, 2012) 

In addition to this, (O’Rourke & Liu, 2012) also suggest an equation capable of theoretically 

determining the expected maximum uplift displacement (δmax) and/or the spacing of restrains, such 

as piles, where  large uplift is essential to be prevented. This equation is: 

 Aδmax
3 + 16*I*δmax – (16PupliftWs

4)/(Eπ5) (2.31) 
 

Where, as shown in figure 2.41 A is the pipe’s cross sectional area, Ws the pile’s spacing, I the second 

moment of inertia and E the Young’s Modulus. 

Finally, the peak pipe strain can also be calculated from: 

 εmax = ±(π2δmaxD)/Ws
2 + (π2δmax

2)/4Ws
2 (2.32) 
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3 Conceptual Model 
 

As has already been mentioned, the scope of this study is the investigation of buried pipelines’ soil-

structure interaction in liquefied soil by means of modern, computer simulation techniques. 

Furthermore, the approach adopted was a spring and dashpot modelling technique, which was used 

for the development of a single degree of freedom model. The term “degrees of freedom” is very well 

described by (Chopra, 1995) as the number of independent displacements required in order to express 

the displaced positions of all the masses relative to their original position. 

3.1 Single Degree of Freedom 
The first model created was a system that included a mass, and a Kelvin-Voigt element attached to its 

bottom side as shown in figure 3.1. It is worth mentioning at this point how the mass of this system 

was representative of the pipeline, filled with several different elements as will be discussed in the 

results’ section. It can be seen from the formation of this system that the pipeline has only one degree 

of freedom, which is its displacement on the vertical axis during excitation. 

 

Figure 3.1: Single Degree of Freedom model used 

Several things were required in order for this model to be expanded into an algorithm capable of 

representing a given parameter problem accurately. Furthermore, the most essential part was the 

formation of a constitutive equation for a pipeline allowed to move freely. This became possible by 

combination of the rheological models explained so far along with their characterising equations. 

More specifically, for the system described in figure 3.1, that equation was found to be: 

 F(t) = m(u)’’ + c(u)’ + ku (3.1) 
 

Where (m) is mass, (u) is displacement and (c) and (k) the dashpot and spring coefficients respectively. 
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Dividing this by m, gives: 

(u)’’ = F(t)/m – c(u)’/m – ku 

Which forms a differential equation that is solvable by the ODE45 solver in matlab. As for the uplift 

force, it was considered to be a wave in the form of F(t) = F0*sin(ωt) and in an appropriate number of 

cycles for each case considered upon which maximum uplift has occurred. 

However, much more research was needed in order for k and c parameters, capable of representing 

soil-structure interaction during the complex phenomenon of post-liquefaction.  

 

3.2 Multi Degree of Freedom 
As for the next model, it was a multi degree of freedom one. More specifically, this system consisted 

of two degrees of freedom, horizontal and vertical displacement. As can be seen in figure 3.2, this 

model consisted of two Kelvin-Voigt elements at the bottom and right hand side of the pipeline mass. 

 

Figure 3.2: Multi Degree of Freedom Model 

Once again, a constitutive equation had to be formed for the two degree of freedom model. This was 

proved to be a more challenging task in the case of the multi degree of freedom case due to the fact 

that the model parameters were now referred upon two different axes. Furthermore, a suitable 

solution was required, which would be able to correlate the x and y axes local coordinates with the 

respective global ones, which describe the combined force and displacement acting upon the 

investigated mass.  
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Likewise with the first model, a force relevant relationship was found suitable. More specifically, the 

two acting forces act on the same model point, the pipeline mass, and lay on the x and y axes 

respectively. Hence, a right angle between the two force vectors is present and vector addition 

becomes possible in accordance with the Pythagorean Theorem as: 

 
𝑅 =  √𝐹𝑥² + 𝐹𝑦² (3.2) 

 

Where (Fx) and (Fy) are the forces acting on the horizontal and vertical planes respectively and (R), 

which is also going to be refed to as F, is their resulting force as can be seen in part (a) of figure 3.3. 

 

Figure 3.3: Local to global force relationship 

Breaking all of these factors down, the following are valid: 

F(t) = m(u)’’ + c(u)’ + ku 

Fx(t) = m(u)’’ + cx(u)’ + kxu 

Fy(t) = m(u)’’ + cy(u)’ + kyu 

It is worth mentioning at this point how the direction of Fx and Fy was expected to change from positive 

to negative and vice versa as can be seen in parts (b) and (c) of figure 3.3. Naturally, this would also 

cause their resulting force’s direction to change accordingly. However, on contrary to direction, the 

magnitude of all acting vectors would not be affected. 

The combination of what has been mentioned so far leads to the formation of: 

 
𝑚(𝑢)′′ + 𝑐(𝑢)′ + 𝑘𝑢 =  √𝐹𝑥(𝑡)2 + 𝐹𝑦(𝑡)² (3.3) 

 

Which can be reformed to a solvable nonlinear second order differential equation as: 

 (𝑢)′′ = (√𝐹𝑥(𝑡)2 + 𝐹𝑦(𝑡)2 − 𝑐(𝑢)′ − 𝑘𝑢)/𝑚 (3.4) 

 

In order for the force directions to be taken into consideration each time, the magnitude of the 

squared forces was considered with either positive or negative orientation and complex number 

solutions were obtained from the ODE45 solvable reformation: 

 (𝑢)′′ = (√𝐹𝑥(𝑡) ∗ |𝐹𝑥(𝑡)| + 𝐹𝑦(𝑡) ∗ |𝐹𝑦(𝑡)| − 𝑐(𝑢)′ − 𝑘𝑢)/𝑚 (3.5) 
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3.3 Derivation of the Spring Coefficient (k) and Dashpot Coefficient (c) 
As for the derivation of the spring coefficient (k), the method followed was the one proposed by (Dash 

et al., 2017) and as explained in chapter 2.10.1. (Dash et al., 2017) published a practical method of p-

y curve construction for liquefied soils. It is worth mentioning how the proposed method is directly 

dependent to the given soil profile and has as a starting point the usage of SPT derived ground 

parameters. Hence, this allowed the usage of multiple SPT data inputs in order for the effect that 

ground parameters, such as stiffness, have on the results to be determined. 

The evaluation of soil parameters from bore-log data has already been explained in section 2.10.1 of 

this report. Furthermore, in this section the way in which the required p-y curves were constructed as 

well as the way in which the horizontal and lateral spring coefficients were derived is explained. More 

specifically, the following set of equations is used in order for the ultimate lateral resistance and 

displacement to be evaluated: 

1. The scaling factor Ns is found to be Ns = 11.94 for a rough interface and Ns = 9.2 for a smooth 

interface. The latter was found to be valid in terms of this study as it is taking into 

consideration pipelines made out of steel. 

2. Ms, the strain scaling factor is used for the introduction of liquefaction to the p-y curves and 

is equal to Ms = 1.87 for fully liquefied soil. 

3. The initial lateral resistance, which corresponds to take off strain is p1 = Ns 1.25ytoG1D 

4. The initial lateral displacement, which corresponds to take off strain is y1 = 1.25ytoD/Ms 

5. The ultimate lateral resistance is pu = Ns τmax D 

6. The ultimate lateral displacement yu =[1.25yto + (τmax – G11.25yto)/G2] * D/Ms 

7. Finally, (Dash et al., 2017) concluded that in order for a p-y curve model to be created, that is 

capable of a pragmatic post-liquefaction soil behaviour representation and can be used in 

numerical analysis, one more step has to be carried out. This is how the p-y curve derived in 

the previous steps has to be smoothened at its transition points by means of weighting 

factors, which were: 

 

 

(3.6) 

 

And: 

 

(3.7) 

           

Where a y= 0 corresponds to A = 0 and for any y different than zero, A = 1. 

Following this process, the p-y curve presented in figure 3.4 is an example of the ones created with 

respect to this study. 
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Figure 3.4: Example of liquefied soil's p-y curve produced in this study 

 

After the corresponding p-y curve was created, the modulus of subgrade reaction also had to be 

determined. Furthermore, according to (Naggar & Bentley, 2000) and NEN3650-1 the horizontal 

modulus of subgrade reaction (k) can be determined as the tangent value produced by the p-y curves 

and corresponding to pu/y. This coefficient is graphically represented in figure 3.5 and represents the 

transition from elastic to viscous behaviour of the post-liquefied material.  

 

Figure 3.5: Example of calculated horizontal modulus of subgrade reaction (k) for liquefied soil 

It is worth mentioning how this plays a major role in the numerical simulation of the liquefied 

material’s behaviour and the corresponding transition between the pipe’s uplift and settlement 

followed. 
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Finally, the modulus of subgrade reaction presented thus far was valid for the lateral case and had to 

be re-formed in order for it to be used in vertical situations as well. This was made possible by the 

comment of (Deltares, 2016) which states that kh = 0.7kv,bottom , where kv,bottom is the vertical modulus 

of subgrade reaction at the bottom point of the pipeline considered. 

It is also worth mentioning at this point how the p-y curves as well as the modulus of subgrade reaction 

were independently derived for each investigation by means of a fully computer automated manner. 

As for the dashpot coefficients, it was explained in section 2.10.2 how the values derived by (Horsten, 

2016) were used as: 

Table 3.1: Dashpot coefficients used 

Pipe Diameter (mm) Dashpot Coefficient (kN*s/m) 

110 25 

160 100 

200 600 

 

These coefficients resulted by usage, in a series of physical modelling experiment, and are dependent 

to the following ground and geometry conditions. These conditions were also taken into account for 

the investigations presented in this paper. 

Table 3.2: Input and output parameters of laboratory experiments 

Experiment Length 
(mm) 

Diameter 
(mm) 

Thickness 
(mm) 

Cover 
(mm) 

Relative 
Density 

(%) 

Uplift 
Force 

(kN/m) 

Uplift 
Displacement 

(mm) 

1 3000 110 3.05 300 20-40 154 225 

2 3000 160 4.78 400 20-40 355 130 

3 3000 200 6.35 500 20-40 558 70 

 

Finally, it is worth mentioning at this point how the total uplift of the pipe was measured for a unit 

allowed to move freely. 
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3.4 Derivation of Parameters 
The derivation of several input parameters has been explained so far. More specifically, the problem 

geometry has been described, as well as the dashpot coefficients used. In addition to these, the 

process by which the spring coefficient was derived each time has been explained. However, there are 

yet several parameters which were considered and in the following paragraphs, the derivation of 

these is going to be explained. 

First of all, the weights used for the different pipelines, they were considered with respect to the 

available market catalogue by the producer company “Tioga” as: 

Table 3.3: Pipeline input weights 

Diameter (mm) Weight (kg/m) 

110 8.37 

160 19.3 

200 33.3 

 

The aforementioned pipelines were considered for both the single and multi-degree of freedom 

models to be filled with several different materials which are most commonly transported by pipeline 

infrastructure. The weight of those materials could be calculated and added to the weight of the 

pipelines themselves by the corresponding material relative density and the already available 

occupied space by them. The relative densities used in each case were: 

Table 3.4: Materials' relative densities 

Material Air Gas Oil Water Sludge 

Density 
(kg/m³) 

1.2 0 900 1000 1600 

 

It would be worth mentioning at this point how a full liquefaction state is considered already at the 

beginning of the analyses and hence, the liquefaction time is not taken into consideration. 

Next, it was mentioned in clause 2.6.2 how several factors are critical to the extent that uplift due to 

liquefaction is likely to occur such as pipe diameter, burial depth and soil stiffness. These factors, along 

with various others, are going to be investigated in the following sections. However, it would be 

beneficial for some of the parameters used in these varied parameter investigations to be explained 

at this point of the report. First of all, the initial pipe diameters, weights and burial depths have already 

been determined. However, here are some of the varied ground parameters used and derived by the 

aforementioned methods with the help of SPTs created to represent the given ground conditions: 

Table 3.5: Derived Input parameters of initial investigation conditions 

Diameter (mm) Depth (m) 
SPT Blow-count 

N 
Critical Ratio β 

Upper Residual 
Strength Su (kPa) 

110 0.41 0.7 14 10 

160 0.56 0.9 14 12 

200 0.7 1.1 14 15 
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Next, several analyses were conducted in order for the effect of burial depth to be investigated. 

Furthermore, in each case, the pipeline was resting at a depth of 1.7m, which means that the cover 

was in all cases approximately 1.5m. 

Table 3.6: Derived input parameters of pipeline bottom at 1.7m. 

Diameter (mm) Depth (m) 
SPT Blow-count 

N 
Critical Ratio β 

Upper Residual 
Strength Su (kPa) 

110 1.7 4 17 30 

160 1.7 4 17 30 

200 1.7 4 17 30 

 

Following, in terms of ground conditions, an input set of parameters was derived in such a way, that 

is would be capable of representing a stiffer ground domain than before, for a cover depth again of 

approximately 1.5m. 

Table 3.7: Derived input parameters of pipeline for stiffer ground conditions with bottom at 1.7m. 

Diameter (mm) Depth (m) 
SPT Blow-count 

N 
Critical Ratio β 

Upper Residual 
Strength Su (kPa) 

110 1.7 5 18 42 

160 1.7 5 18 42 

200 1.7 5 18 42 

 

Finally, it was considered beneficial at this point for an overview of the parameters used by (Horsten, 

2016) to be included for them to be compared to the ones listed above and used within the framework 

of this study and hence, a parameter validation to be made. 

Table 3.8: Overview of pipe uplift experiment parameters as used in (Horsten, 2016) 
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4 Results and Discussion 
 

4.1 Method Validation 
First of all, the topic of this research is a trending topic of geotechnical engineering for which, limited 

research material is available and even less results have been published so far. Furthermore, it was 

found appropriate that the validation of the method used in this study is done by results produced 

experimentally on this subject by (Horsten, 2016). Furthermore, in this section, the relevant results 

are presented. Finally, it has to be noted that the total uplift at the 3m point were considered as far 

as the results derived from this study are concerned. 

 

Figure 4.1: Uplift displacement for the 110mm pipeline as presented in (Horsten, 2016) 

 

Figure 4.2: Uplift displacement for the 160mm pipeline as presented in (Horsten, 2016) 
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Figure 4.3: Uplift displacement for the 200mm pipeline as presented in (Horsten, 2016) 

In addition to the results presented by (Horsten, 2016), validation of what is going to be presented in 

the following paragraphs can be done by once again recalling the centrifuge experiments conducted 

by (B. Huang et al., 2014) which were mentioned in the literature review of this report. Furthermore, 

in this study, aluminium pipes, reportedly meant to transport oil and gas, were tested with a relative 

density of 2.7g/cm³, a length of 390mm and inner and outer diameters of 36 and 40mm respectively. 

 

Figure 4.4: Centrifuge pipe uplift results presented by (B. Huang et al., 2014) 
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4.2 Single Degree of Freedom 
The main interest of this chapter is the results produced by the first, single degree of freedom, model. 

Furthermore, analyses were run for the aforementioned input geometries and parameters in order 

for the influence of weight, diameter, burial depth and soil stiffness upon pipe uplift to be investigated. 

 

4.2.1 Initial Parameter Single Degree of Freedom and Validation 
The first investigation, which was carried out, was the one that had as input parameters a selection of 

data identical to the one used in the physical modelling experiments of (Horsten, 2016), as were 

presented in the tables of part 3.4.  

As can be seen in figures bellow, the maximum observed uplift displacement in each case was: 

 

Table 4.1: Single degree of freedom uplift of gas filled pipeline 

Diameter (mm) 110 160 200 

Maximum Uplift (mm) 138 130 76 

 

 

Figure 4.5: Uplift of gas filled pipelines 
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Table 4.2: Single degree of freedom uplift of air filled pipelines 

Diameter (mm) 110 160 200 

Maximum Uplift (mm) 138 130 76 

 

 

Figure 4.6: Uplift of air filled pipelines 

Although the uplift values are comparable to the ones presented by (Horsten, 2016) for the cases of 

the 160mm and 200mm pipelines, the 110mm diameter ones do not follow the trend. This was 

observed in all analyses held and it was concluded that the dashpot coefficient in the 110mm 

diameter case was not accurate. Furthermore, these pipelines were left outside the scope of this 

study and investigation continued for the remaining two. 
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.As for oil filled pipelines, maximum uplift was: 

Table 4.3: Single degree of freedom uplift of oil filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 80 56 

 

 

Figure 4.7: Uplift of oil filled pipeline 

Next, pipelines carrying water were tested and their maximum uplift was found to be: 

Table 4.4: Single degree of freedom uplift of water filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 76  54 

 

 

Figure 4.8: Uplift of water filled pipeline 
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Finally, maximum uplift of sludge filled pipelines was found to be: 

Table 4.5: Single degree of freedom uplift of sludge filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 62 47 

 

 

Figure 4.9: Uplift of sludge filled pipeline 

What is concluded from the aforementioned results is the validation of several statements that have 

been made so far. These are: 

 The results for the air/gas filled pipeline are almost identical between them and show a good 

fit as compared to the ones presented by (Horsten, 2016) 

 The diameter of the pipeline is confirmed to be a critical affecting factor to uplift due to 

liquefaction and more specifically, larger diameters lead to lower uplift results. 

 Last, but not least, it is observed that the weight of the pipeline due to the containing material 

greatly affects the extent to which uplift occurs. The relationship of this is, as expected, how 

larger weight leads to less uplift. 

What has not yet been clarified is the extent to which burial depth and soil stiffness affect uplift. 

However, these will be investigated in greater depth later on in this report. 
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4.2.2 Influence of Burial Depth 
As it has already been mentioned several times thus far in this report, one of the main influence factors 

to the pipeline’s produced uplift is the burial depth. Furthermore, in this part, the pipeline cover 

considered was approximately 1.5m in all cases and as for the model considered, that was the single 

degree of freedom one.  

 

Figure 4.10: Change of burial depth 

The produced results were: 

Table 4.6: 1.5m cover uplift of gas filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 117 71 

 

 

Figure 4.11: 1.5m cover uplift of gas filled pipeline 
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Table 4.7: 1.5m cover uplift of air filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 117 71 

 

 

Figure 4.12: 1.5m cover uplift of air filled pipeline 

 

Table 4.8: 1.5m cover uplift of oil filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 72 52 

 

 

Figure 4.13:  1.5m cover uplift of gas filled pipeline 
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Table 4.9: 1.5m cover uplift of water filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 68 50 

 

 

Figure 4.14: 1.5m cover uplift of water filled pipeline 

 

Table 4.10: 1.5m cover uplift of sludge filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 55 43 

 

 

Figure 4.15: 1.5m cover uplift of sludge filled pipeline 
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Where what can be concluded from the results presented in this section is: 

 As was expected, the larger cover/burial depth of 1.5m results to less resulting uplift as 

compared to the shallower depths presented before. 

 The diameter and weight relationships with produced uplift are yet again present. 

 Larger pipeline burial depths can be proved useful as a prevention technique against pipelines’ 

failure due to uplift, as they are found to reduce the magnitude of uplift occurring. 

 

4.2.3 Influence of Soil Stiffness 
It was discussed in chapter 2 of this report how the last of the listed main factors, which influence a 

pipe’s uplift was the soil’s stiffness. For this analysis, a cover of approximately 1.5m was again 

considered but now with a stiffer soil’s ground properties. The way with which this was made possible 

was a change to the input SPT N parameter with a larger one. Furthermore, the selection of the 

parameter was done with manual fit such that a relative density of 60% was now considered and 

corresponded by an N equal to 5.  

The values which resulted were: 

Table 4.11: Stiffer soil uplift of gas filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 107 66 

 

 

Figure 4.16: Stiffer soil uplift of gas filled pipeline 
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Table 4.12: Stiffer soil uplift of air filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 107 66 

 

 

Figure 4.17: Stiffer soil uplift of air filled pipeline 

 

Table 4.13: Stiffer soil uplift of oil filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 65 48 

 

 

Figure 4.18: Stiffer soil uplift of oil filled pipeline 
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Table 4.14: Stiffer soil uplift of water filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 62 47 

 

 

Figure 4.19: Stiffer soil uplift of water filled pipeline 

 

 

Table 4.15: Stiffer soil uplift of sludge filled pipeline 

Diameter (mm) 160 200 

Maximum Uplift (mm) 50 40 

 

 

Figure 4.20: Stiffer soil uplift of sludge filled pipeline 
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Several conclusions could again be derived from these results, which summed up are: 

 How stiffer soil conditions result in lower uplift values, just as expected. 

 The trends of pipeline diameter and weight versus produced uplift remain constant. 

 Stiffer ground conditions can serve as a prevention technique against pipeline’s uplift due to 

liquefaction. 
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4.3 Multi Degree of Freedom 
 

4.3.1 Initial Parameter Multi Degree of Freedom 
The second section of this investigation involved a multi degree of freedom model. More specifically, 

as was explained in chapter 3, two degrees of freedom were considered, horizontal and vertical. A few 

things, which are worth to be mentioned here are how the vertical uplift force remained the same as 

described in the previous model while the horizontal fraction was considered as one tenth of the first. 

This ratio concluded that the direction of the resulting vector of force is located at 5.65o on the vertical 

axis and hence, the previously derived values for the single degree of freedom model were used. 

In this case, the resulting values of uplift were as follows: 

Table 4.16: Multi degree of freedom uplift of gas filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 202 101 

 

 

Figure 4.21: Multi Degree of freedom uplift of gas filled pipeline 

It is worth mentioning at this point that, as was described in chapter 3 of this report, the solution of 

this model now lies in the complex number field, while the single degree of freedom one lied in the 

real one. Thus, in order for a direct comparison to be made between the two, the imaginary part of 

the two degree of freedom solution is ignored. The result of the aforementioned factor was 

exaggerated uplift values, as can be seen in figure 4.21.  
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Table 4.17: Multi degree of freedom uplift of air filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 202 101 

 

 

Figure 4.22Multi Degree of freedom uplift of air filled pipeline 

 

Table 4.18: Multi degree of freedom uplift of oil filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 127 82 

 

 

Figure 4.23: Multi Degree of Freedom Uplift of Oil Filled Pipeline 
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Table 4.19: Multi degree of freedom uplift of water filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 118 81 

 

 

Figure 4.24: Multi Degree of Freedom Uplift of Water Filled Pipeline 

 

Table 4.20: Multi degree of freedom uplift of sludge filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 98 71 

 

 

Figure 4.25: Multi Degree of Freedom Uplift of Sludge Filled Pipeline 
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Several things were concluded from the aforementioned results. These are: 

 The confirmation of the relationships between produced uplift and the diameter of the 

pipeline, as well as its total weight. 

 The time step at which maximum uplift is reached is larger than the one of the single degree 

of freedom solution. 

 Production of exaggerated values due to the nature of the solution. 

 

 

4.3.2 Influence of Burial Depth 
Once again, the influence of burial depth was investigated as for the single degree of freedom model. 

Furthermore, the pipeline is placed to rest at a bottom point of 1.7m depth, while the cover at all 

times is approximately 1.5m. 

 

Table 4.21: Multi degree of freedom uplift of 1.5m cover gas filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 189 93 

 

 

Figure 4.26: Multi degree of freedom uplift of 1.5m cover gas filled pipelines 
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Table 4.22: Multi degree of freedom uplift of 1.5m cover air filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 189 93 

 

 

Figure 4.27: Multi degree of freedom uplift of 1.5m cover air filled pipelines 

Table 4.23: Multi degree of freedom uplift of 1.5m cover oil filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 119 76 

 

 

Figure 4.28: Multi degree of freedom uplift of 1.5m cover oil filled pipelines 
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Table 4.24: Multi degree of freedom uplift of 1.5m cover water filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 112 74 

 

 

Figure 4.29: Multi degree of freedom uplift of 1.5m cover water filled pipelines 

 

Table 4.25: Multi degree of freedom uplift of 1.5m cover sludge filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 90 66 

 

 

Figure 4.30: Multi degree of freedom uplift of 1.5m cover sludge filled pipelines 
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Once again, several conclusions can be derived from the results presented in this section. 

 First of all, the general trend is once again in agreement with the one derived from the 

respective single degree of freedom analysis where larger burial depth was found to lead to 

smaller values of pipe uplift. 

 The effect of weight and diameter is yet again present in the aforementioned results. 

 The point at which maximum uplift was observed was larger than the one of the single degree 

of freedom model. 

 Exaggerated results are presented due to the complex field number nature of the solution. 

 

4.3.3 Influence of Soil Stiffness 
Next, the influence of the soil’s stiffness was investigated for the case of the multi-degree of freedom 

model and compared to the corresponding values of the single degree of freedom model. As was the 

case in the investigation of the latter, the pipelines are placed to rest at a bottom point of 1.7m depth, 

with an approximate cover depth of 1.5m. However, in this case the soil’s input parameters are the 

ones explained before for stiff conditions. Furthermore, the findings were:  

 

Table 4.26: Stiffer soil multi degree of freedom uplift of gas filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 167 83 

 

 

Figure 4.31: Stiffer soil multi degree of freedom uplift of gas filled pipelines 
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Table 4.27: Stiffer soil multi degree of freedom uplift of air filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 167 83 

 

 

Figure 4.32: Stiffer soil multi degree of freedom uplift of air filled pipelines 

 

Table 4.28: Stiffer soil multi degree of freedom uplift of oil filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 106 68 

 

 

Figure 4.33: Stiffer soil multi degree of freedom uplift of oil filled pipelines 
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Table 4.29: Stiffer soil multi degree of freedom uplift of water filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 102 66 

 

 

Figure 4.34: Stiffer soil multi degree of freedom uplift of water filled pipelines 

 

Table 4.30: Stiffer soil multi degree of freedom uplift of sludge filled pipelines 

Diameter (mm) 160 200 

Maximum Uplift (mm) 85 59 

 

 

Figure 4.35: Stiffer soil multi degree of freedom uplift of water filled pipelines 
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The conclusions which can be derived from the results presented in this section are as follows: 

 Once again, just like in the single degree of freedom model, stiffer soil conditions lead to lower 

uplift values and the trend remains in agreement with the previous relevant results presented 

so far. 

 The effect of pipeline weight and diameter is yet again the same as the previous studies. 

 Maximum uplift is observed at a time step larger than the single degree of freedom model but 

comparable to the previous one of the multi-degree of freedom investigations. 

 Exaggerated results are once again present. 

 

4.3.4 Influence of Dashpot Coefficient 
The dashpot coefficient expresses a resistance to an applied force. It can then be derived how with 

the addition of an extra force, corresponding dashpot coefficients and their effect on the produced 

results also have to be investigated. This was made possible by linear fit between the initial parameter 

results of both models. More specifically, the values which were found to be appropriate for the 160 

and 200mm diameter pipelines were 300 and 900 kN*s/m respectively. The results were as follows in 

this chapter. 

Table 4.31: Multi degree of freedom uplift of gas filled pipelines with larger dashpot coefficients 

Diameter (mm) 160 200 

Maximum Uplift (mm) 123 74 
 

 

Figure 4.36: Multi degree of freedom uplift of gas filled pipelines with larger dashpot coefficients 
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Table 4.32: Multi degree of freedom uplift of air filled pipelines with larger dashpot coefficients 

Diameter (mm) 160 200 

Maximum Uplift (mm) 123 74 

 

 

Figure 4.37: Multi degree of freedom uplift of air filled pipelines with larger dashpot coefficients 

 

Table 4.33: Multi degree of freedom uplift of oil filled pipelines with larger dashpot coefficients 

Diameter (mm) 160 200 

Maximum Uplift (mm) 95 65 

 

 

Figure 4.38: Multi degree of freedom uplift of oil filled pipelines with larger dashpot coefficients 
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Table 4.34: Multi degree of freedom uplift of water filled pipelines with larger dashpot coefficients 

Diameter (mm) 160 200 

Maximum Uplift (mm) 93 64 

 

 

Figure 4.39: Multi degree of freedom uplift of water filled pipelines with larger dashpot coefficients 

 

Table 4.35: Multi degree of freedom uplift of sludge filled pipelines with larger dashpot coefficients 

Diameter (mm) 160 200 

Maximum Uplift (mm) 81 57 

 

 

Figure 4.40: Multi degree of freedom uplift of sludge filled pipelines with larger dashpot coefficients 
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The conclusions of this section are: 

 Larger dashpot coefficients tend to produce more realistic results, when compared with all 

the previous corresponding findings derived in this report as well as the ones presented from 

previous investigations. 

 The point at which maximum uplift is observed is yet again in accordance to the one of the 

multi-degree of freedom model and not the single degree of freedom one. 

 The general trends of diameter and weight effects once again remain constant. 
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5 Conclusions & Recommendations 

5.1 Conclusions 
 

Summing up, the following can be deduced from this report: 

 Beam-Spring models with Kelvin-Voigt spring and dashpot are an appropriate means of 

predicting post liquefaction pipelines’ displacement. 

 The post-liquefaction p-y curve method produced by (Dash et al., 2017) is confirmed to yield 

satisfactory results. 

 Larger pipe diameter tends to produce smaller uplift results. 

 Pipelines with greater self or total weight are expected to show lower uplift values. 

 The burial depth of the investigated pipelines was also an affecting factor. More specifically, 

pipelines placed under larger covers were found to be less uplifted than the ones buried 

shallower in both single and multi-degree of freedom models. 

 The soil stiffness was also found to play a great part in the degree at which post-liquefaction 

uplift is present. Furthermore, less uplift was found to occur for pipelines buried in stiffer 

ground conditions for both models. 

 The pipe models in this report can be used for the production of soil-structure interaction 

analysis between post-liquefied ground and pipelines when the appropriate input parameters 

are available. 
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5.2 Recommendations 
Some recommendations are stated in this part, concerning real life applications of this report’s 

findings as well as propositions for future research. 

 Use of heavier pipelines, with larger diameter and thickness is recommended when the given 

ground profile suggests that liquefaction is a possible hazard. It would be worth mentioning 

how the difference in price between 160 and 200mm pipelines varies from 5.5 to 20 euro per 

running meter, depending on the selected steel grade, with the 200mm ones being more 

expensive.  

 Soil densification, by means of compaction is found to be a great prevention mechanism 

against pipe failure due to uplift phenomena which result from liquefaction and post-

liquefaction. In terms of cost, that would have to be calculated project-specific as the required 

type of machinery as well as the required renting time would vary depending on the project’s 

magnitude and conditions. Furthermore, a cost analysis between compaction and larger 

diameter pipelines is recommended for the most efficient solution to be determined. 

 It is also recommended that when pipelines are to be placed in grounds prone to liquefaction 

the burial depth should be considered. More specifically, a larger burial depth can be used as 

a preventive mechanism against failure due to uplift in cases of critical displacement. 

 It is suggested that more preventive techniques are investigated in the future, such as the use 

of piles under pipelines and their effect against uplift. 

 Experimental procedures could be used for further investigation of damping coefficients in 

liquefied and post-liquefied soil-structure interaction conditions.  More specifically, a 

relationship between single and multi-degree of freedom condition dashpots could be 

established as well as a standard table of practise for both single and multi-degree of freedom 

models. 
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Appendix A 
 

 

Figure A.1: Commercially produced pipeline properties 1 (https://www.tiogapipe.com/) 
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Figure A.2: Commercially produced pipeline properties 2 (https://www.tiogapipe.com/) 
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Appendix B 
 

 

Figure B.1: Normal SPT used to the left, SPT for stiffer ground profile to the right 


