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Abstract

We consider the problem of navigating a mobile node to the extremum of
a scalar field that is monitored by a wireless sensor network. Mobile nodes
can perform tasks as repairing the network or providing coverage of an area
where static nodes are not deployed. In particular, we are motivated by the
scenario of a festival, where the task is to monitor and manage crowds of
people. In this scenario, every participant is equipped with a sensor node in
the form of a wrist band. The devices form a wireless network, which allows
to monitor the density of the crowd. In cases of panic for example, we want
to navigate each attendee away from areas of extreme crowd densities where
dangerous phenomena may take place. Due to the high mobility, and low
cost and power constraints of the wristbands, no location information can be
used. We address this requirement by using gradient navigation methods.

In this thesis, we first detail the problem of location-free gradient navig-
ation and present solutions from various research fields. Most approaches
rely on taking unnatural paths for estimating the gradient. We demonstrate
that even in simple scenarios estimating the angle of the gradient does not
work. We then proceed to present a robust algorithm that always reaches
the goal, although at the expense of a 50% increase in distance traveled
compared to the euclidean distance. Finally, we present the results of an
actual implementation of our solution on a testbed of 100+ nodes. The nav-
igation algorithm is running on a smartphone, which communicates with the
attached mobile wireless sensor node via bluetooth, and directs its user to
the goal using the gradient broadcasted by the testbed nodes.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) comprise of miniature computers with lim-
ited processing power and one or more sensors, communicating with each
other wirelessly. These computers, often called nodes or motes, are inexpens-
ive, draw little power, and usually have little or no infrastructure. Their use
ranges form environmental monitoring [17] to smart buildings [20], and from
battlefield surveillance [5] to disaster relief applications [6].

An important characteristic of WSNs is their ability to form ad-hoc net-
works, if they are randomly deployed. Different tasks are then delegated to
various layers. The media access control (MAC) layer is responsible for when
a node will use the wireless channel, and in turn when it is going to sleep for
saving power. The nodes may be communicating in synchronous or asyn-
chronous mode, while the routing layer takes care of forwarding messages to
other nodes through the network. In cases of extreme node densities, gossip
protocols are used. When gossiping, the information is passed on like a virus
during an epidemic, with no need of a routing table.

WSN nodes have a lot of constraints. Their processing power is usually
limited, the range of their radios is short, and the storage capacity is restric-
ted. The most important constraint however, is that they run on a specific
amount of energy, usually provided by a battery. In order to maximize their
lifetime, they operate their components at a low duty cycle.

Nodes can be either static or mobile. Mobile nodes introduce new obstacles
but also provide many research questions, like localizing and navigating mo-
bile nodes within a wireless sensor network. Mobile nodes are actually static
nodes with the added ability to reposition and organize themselves in the
network.

In this thesis, we consider the problem of navigating a mobile node to the
extremum of a scalar field that is monitored by a wireless sensor network.
This scalar field may represent a sensed physical quantity such as temper-
ature, or a network characteristic such as node density. Figure 1.1 shows an
example of a navigation path in such a field.
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Figure 1.1: An example route to the peak of a scalar field. The vertical axis
represents the value at each point of the field while the horizontal axes the
coordinates of the nodes.

To better explain the motivation behind this work we provide three ex-
amples:

Environmental protection. Suppose that we want to detect the source
of a dangerous chemical spill that has just occurred. We deploy a
wireless sensor network in a uniform way, but without acquiring the
location of each node. This network provides the field measurements
for a mobile node that can autonomously navigate to the source and
take appropriate action.

Crowd management. Another practical scenario is that of monitoring
and managing crowds of people at concerts or festivals. In this scen-
ario, every participant is equipped with a sensor node in the form of a
wrist band. The devices form a wireless network, which allows to mon-
itor the density of the crowd. In cases of panic for example, we want
to navigate each attendee away from areas of extreme crowd densities
where dangerous phenomena may take place.

Indoor navigation. Localization and navigation indoors, is a topic of high
interest with many use cases. Imagine being navigated towards the
items on sale in a store. Estimote1 and iBeacon are two examples that
localize you by roughly estimating your distance to the goal. These
do not offer navigation and especially for larger spaces than a store
they do not suffice. By deploying a wireless sensor network indoors,
navigation can also be achieved in museums, offices, and malls.

1http://estimote.com/
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The common characteristic of these scenarios is the absence of location
information. In the first case we assume that we do not equip nodes with
localization hardware for cost reasons, and in the other two that the nodes
are either mobile or indoors, making location information very difficult to
acquire. Therefore, an algorithm for navigating scalar fields must be location
free. This in fact creates a major distinction between the topic of this thesis
and the classical navigation/path planning problem.

1.1 Problem Statement

The core research question of this thesis is:

How to navigate to the extremum of a scalar field monitored by
a wireless sensor network when no location information is avail-
able?

Although this problem is general, its solution differs depending on the
application requirements. For example, the gravity of choosing a safe nav-
igation path is based on whether the mobile entity is a robot or a person.
In this thesis, we focus on human entities because the research is supported
by the EWiDS project that aims at better understanding the use of wireless
sensor networks to monitor and manage crowds of people. This focus calls
for some extra requirements:

The path taken must be “natural”. Since we want to navigate hu-
mans, not robots or packets in a network, the steps of the algorithm have to
result in a “natural” path. A system that would make a user go in circles,
as many robotics algorithms do, would not be used by anyone.

Energy and cost constraints. The nodes provided to the attendees have
to be inexpensive and run on batteries for the whole duration of the festival,
which could span over more than three days. Using gps sensors for acquiring
location would in turn drain the battery and increase the cost of the sensor
node. High mobility is a factor that also plays a role in location estimation.
That is why we choose not to use any location information for the navigation.

Nonlinear Fields. We want to be able to reach our goal in any given
scalar field, independently of the characteristics of its gradient. This is in
contrast to related work, which has considered only simple scalar fields with
linear and concentric gradients, and fails when these constraints are lifted.
In Chapter 4 we define the characteristics of the field’s gradient and provide
examples for each different type of field.
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To summarize, the problem statement is:

How to navigate to the extremum of a scalar field monitored by
a wireless sensor network when no location information is avail-
able, such that the steps leading to the goal form a natural path
and success is independent of the field’s gradient characteristics.

This thesis addresses this problem in three steps:

• In Chapter 2, we detail the problem of location-free gradient navigation
and present solutions from various research fields. Then, we identify
two possible candidates that match our requirements.

• In Chapter 3, we examine algorithms from two categories that satisfy
the requirements about the path’s naturality and the gradient’s char-
acteristics. In Chapter 4, we show that algorithms based on estimating
the direction of the gradient demonstrate poor performance on non-
linear fields. We therefore present a simple alternative algorithm that
always reaches the goal at the expense of a 50% increase in distance
traveled compared to the euclidean.

• Finally, we present the results of an actual implementation of our
solution on a testbed of 100+ nodes in Chapter 5. The navigation
algorithm is running on a smartphone, which communicates with the
attached mobile wireless sensor node via bluetooth, and successfully
directs its user to the goal.

4



Chapter 2

Problem Setup and Related
Work

We begin by presenting the general navigation problem (Section 2.1), and
then we focus on gradient navigation and the corresponding related work
(Section 2.2).

2.1 Problem Setup

Let G = (V,E) be a network of n nodes over a two dimensional space.
Function P : V → R2 maps each node to a point x = (x1, x2), in R2.
A mobile node m starts from x0 = (x01, x

0
2) and at each step k, moves to

a new position according to some algorithm D({xk}) = xk+1. k is the
discrete time of each position in the trajectory {xk} = {x0, x1, .., xk} that
the mobile node follows. This trajectory is comprised of discrete steps such
that ||xk+1 − xk|| = a, where a is the step size.

Classic Navigation. The objective of classic navigation is to find the
algorithm D that will navigate the mobile node m to some point x∗ =
(x∗1, x

∗
2). One way of expressing this is

min
D

+∞∑
k=0

||D({xk})− x∗||. (2.1)

In robotics, this usually translates to path planning. The feasibility of
path planning is dependent on the ability to use or construct a map and
localize itself on it. Therefore, sensor localization is necessary when we
want to use classic path planning techniques such as automotive naviga-
tion systems. Localization is achieved by acquiring distance estimates from
neighbors and then with either triangulation or trilateration calculating the
position in space. This distance measurement can be obtained by using
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various methods: time of arrival (ToA), time difference of arrival (TDoA),
received signal strength (RSS), or frequency shift (Doppler effect). These are
all known and well studied methods that we cannot use due to special hard-
ware requirements (ToA, TDoA) or low accuracy (RSS). The most-known
system that uses TDoA is GPS [13], however power and cost constraints
prohibit its use.

Gradient Navigation. Faced with the inability to acquire P (m), we turn
to gradient navigation. Its objective is defined with respect to some function
f : R2 → R that describes a scalar field over the two dimensional space.
The scalar field described by f can be a physical process monitored by the
network or one of its properties, such as node density or traffic load. The
value of the scalar field at some node u is f(P (u)), for which we write in
shorthand f(u). We have to note that since the field is sampled at discrete
points in space, the mobile node will estimate its field value by averaging
the values of its neighbors

f(m) =

∑
u∼m f(u)

|u ∼ m|
, (2.2)

where u ∼ m are the nodes in the communication vicinity of the mobile
node m. This problem is often referred to as source seeking/localizing or
gradient climbing/descent. The objective of the navigation function D is

min
D
||∇f(D({xk}))||, (2.3)

where ∇f(x) is the gradient of f near x.
Note that in contrast to classic navigation, the goal is not a point in space

but rather a node u that has the highest value across the scalar field. We
terminate the algorithm D at time k, when the mobile node m enters the
communication vicinity of the goal node u. The requirements can also be
formulated in the following way:

• Node m is not aware of P (u ∼ m) or ∇f(m), but only of f(m).

• {xk} must be perceived as “natural” by a human being.

• D is independent of the characteristics of the scalar field (f ′′(m)).

2.2 Related Work

In the following section, we present the related work on gradient navigation.
Although a large body of work exists, mainly from the area of robotics, most
of it fails to meet the requirements of path naturality and field linearity.
Additionally, little emphasis has been given in implementing the methods
that are proposed. However, we identify two possible candidates that serve
as a basis for the solutions that we will present in Chapter 3.
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2.2.1 On-line Gradient Estimation

If the gradient, ∇f(m) can be estimated, gradient descent can be used.
Gradient descent methods require only local information, but can get stuck
at local optima [10, 11, 26]. Finding the local extremum of f is only a matter
of taking steps proportional to the negative of∇f(m). Since our requirement
is that we are unaware of the gradient, we look into the research that has
been done on on-line gradient estimation. The common paradigm of these
methods is to try to align the velocity vector of the mobile node with the
field’s gradient.

In order to successfully estimate the gradient by taking point measure-
ments, these must be at a distance from each other. Wireless sensor networks
can take advantage of the fact that nodes are at different locations to es-
timate the gradient of the field without changing their location [2, 4, 19].
However, the nodes must be aware of their neighbors’ location. Such a
requirement cannot be satisfied in our scenario.

Single node on-line estimation can be achieved by “dithering” the sensor
position while maneuvering. Twigg et al. consider using both RSS average
and gradient estimation to locate an RF source [23]. They propose to per-
turb the path of motion in order to achieve better RSS gradient estimates
and compare different strategies to realize that. In GUIDE [12], a WiFi
source is located using its RSSI and signal quality. In contrast to the pre-
vious scenario, the user is navigated by turning by constant angles based
on the gradient it is estimating at every step. The chosen angles result in a
path formed of triangles, which is not natural.

Sun et al. propose a power gradient guide that takes into account the last
N measurements of the signal in order to estimate the correct direction of
the signal power gradient. When N is small, the mobile node will turn faster
but will be more susceptible to noise and when it is large it will be more
reliable but change direction slowly [22]. In order to estimate the initial
direction and whenever the gradient’s estimation fails, a circle-like motion
is employed, which is not natural.

The work in [21, 29] is inspired by geometric laws. The law of cosines is
used to estimate the direction of the gradient. A model is used to estimate
the distance between the mobile node and a radio source, based on the RSSI
of the source’s signal. This estimated distance is used to calculate the angle
towards the radio source. This method actually estimates the direction of
the local gradient and then navigates the mobile node along it. The first
algorithm that we take into consideration is from this category. A more
detailed explanation is presented in Section 3.1.
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2.2.2 Biased Random Walk

The motion of bacteria in search for food, chemotaxis, has also inspired a
lot of researchers for solving the source-seeking problem. These methods are
very robust, but exhibit slow convergence and unnatural paths. In principle,
the goal is to assign a probability density for the nodes’ position whose max-
imum coincides with the maximum of the field. This is achieved by random
biased walk, where nodes switch between two distinct motions, tumble and
run [3].

In the run phase, the bacteria swims in the same direction at constant
velocity while in the tumble phase it rotates in place, in a way that its next
direction will be random. The duration of each run is not equal. It is de-
pendent on the concentration of the chemical substance. For example, the
chemical is food and the bacteria is attracted towards it. When the concen-
tration increases, the probability of a tumble phase is lower. In this way,
the lowest probability of a tumble phase will coincide with the maximum
for the sensed quantity.

Mesquita et al. propose a technique where the probability density of the
mobile node’s position is controlled in a way that not only the extremum
of the signal field is found, but its whole spacial profile [18]. In their work,
Optimotaxis, convergence is proven and through simulations, the successful
approach of both local and global extrema. Other positive points of this
work are the simplicity of the method and its low cost implementation as
well as its robustness to local extrema. However, the fact that the algorithm
results in a random, unnatural path and its slow convergence deem it unfit
for our scenario.

Wadhwa et al. propose an RSS-adapted optimotaxis to locate an RF
source [24]. To overcome the high spatial variation of RSS, they propose
various patterns of movement to better estimate the direction of the source.
Although convergence is significantly faster, these unnatural patterns once
again disqualify the use of this algorithm.

A memoryless robot, only taking point measurements has been proposed
by Y. Elor et al. to navigate to the extremum of a scalar field [9]. The lim-
itation of this work is that two robots that can sense their relative distance
are needed. Other related work in this category can be found in [1, 7, 15, 28]
although the common characteristic is the unnatural path not suitable for
human navigation.

The second algorithm that we take under consideration is a hybrid of on-
line gradient estimation and biased random walk (Section 3.2). The sign of
the gradient is estimated by moving on a straight line for sake of naturality,
and the direction is altered by turning by a fixed or random angle since the
direction of the gradient is not being estimated.

8



2.2.3 Data Routing Based

Another important category is based on the extensive work done for data
routing. The latter relies on navigating a mobile node m in the same way a
data packet would be routed through the network. The mobile node follows a
node-to-node path, until reaching the target node where f has an extremum.
Only local information is used since the location of the extremum is not
known. Node-to-node navigation is performed by estimating the distance to
each target node using simple hop-count.

In [27], four implementations of ad-hoc routing protocols are presented in
respect to driving mobile robots across the network. The focus of these is not
exceeding a certain packet loss ratio while keeping a delay boundary. After
a route has been found, the mobile node can be navigated node-by-node to
the goal.

Deshpande et al. propose creating a pseudo gradient centered on the node
closest to the target and then by using directional antennas navigate node-
by-node to the goal [8]. This gradient is created by flooding the network
in order for every node to establish a hop-count distance to the goal. The
mobile node then navigates to the closest node with the highest “pseudo
gradient” till it reaches the goal.

The approaches based on node-to-node navigation assume knowledge of P
or the ability to estimate it, which is against one of our main requirements.

9
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Chapter 3

Algorithms and Analysis

In the following chapter, we present three algorithms that meet the require-
ments of our problem. We begin with a geometry-inspired algorithm, which
we call the Cosine Law algorithm. In Section 3.2 we present two algorithms
that are based on a hybrid of biased random walk and on-line gradient es-
timation.

3.1 The Cosine Law Algorithm

The first algorithm that we take under consideration is inspired by the Law
of Cosines. Variations of this algorithm have been proposed for navigating
the gradient that an RF source creates [21, 29]. This algorithm is easily
explained through the example in Figure 3.1. The field is depicted with the
gray concentric disks. Their center, point N, is the RF source we want to
navigate to. Imagine that the mobile node is moving along line AB and it
is able to take measurements of this field at any given time. Without any
other information, a map, a compass or a GPS module, it cannot recognize
in which direction N lies.

The Law of Cosines relates the lengths of the sides of a triangle to the
cosine of one of its angles. This means that if the lengths of the 3 sides of a
triangle are known, we are capable of calculating its angles. In Figure 3.1,
a triangle is formed between points A, B and N. The distance between A
and B is known, because we know the number of steps that we took getting
there. If we can somehow acquire the length of sides AN and BN, we will be
able to calculate the angle θ that we have to turn in order to head straight
to N. But we also do not know if we have to turn θ or θ′, since these two
locations are mirrored. This is referred to as the “flipping problem”. That
is why we need to first randomly select one of the two, and then make sure
it was the correct one. If not, we step back and select its mirrored angle.

11



Figure 3.1: Cosine Law Algorithm angle calculation example. Imagine we
are moving in the direction the arrow is pointing at. Notice the triangle
being formed by points A,B and N. N is our goal in the center of the field
depicted with the gray disks. We want to calculate angle θ that will lead us
to N.

The angle θ is calculated with the following equation:

θ = arccos(
||xA − xN ||2 − ||xB − xN ||2 − ||xA − xB||2

2 · ||xA − xB|| · ||xB − xN ||
) (3.1)

These previous steps are summarized in the following pseudocode. They
can be applied to any gradient, like the one created by a wireless network
and its nodes in our case. In Figure 3.1, for example, A can be the position
of the mobile node that wants to reach the node at N, which is outside of
its communication range. The gradient that we use however is created over
the whole network.

Algorithm 3.1 Cosine Law Algorithm pseudocode.

init
pick a random direction
measure signal field . Equation 2.2

repeat
step forward
measure signal field
calculate angle θ . Equation 3.1
add θ to direction of movement
step forward
measure signal field
if values decrease then

step back
subtract 2θ from direction of movement

end if
until goal reached

12



3.1.1 Distance Estimation

In order to calculate θ, we need to estimate the distance to the goal node.
The method that we will choose has to use the field’s value as the only input.

The euclidean distance ||P (u) − P (v)|| of any two nodes u and v is un-
known. Nevertheless, we can approximate it using the first-order Taylor’s
expansion

f(v) = f(u) +∇f(u)||P (u)− P (v)||. (3.2)

The gradient in the vicinity of u is approximated by

∇f(u) =
max
z∼u

f(z)− f(u)

R
, (3.3)

where z ∼ u denotes that z and u are in communication proximity. The
distance between z and u is R, and r is the transmission radius of the nodes.
Given a monotonic field, we assume that E[R] = r because the node with
the maximum value of f is most probably at the edge of u’s transmission
vicinity. Observe that ∇f(u) depends on R and therefore is also a random
variable. Solving for ||P (u) − P (v)|| and taking the expectation for R, we
have the estimator

||P (u)− P (v)|| ≈ f(v)− f(u)

max
z∼u

f(z)− f(u)
r. (3.4)

However, the expectation of E[R] = r has to be validated. For this purpose
we have run simulations with various values of R to prove that our assump-
tion holds. Furthermore, we want to know what the error of this estimation
is and how it is affected by the field’s characteristics. In addition, we want
to know how this error affects the estimation of θ. These simulations and a
more detailed discussion will be presented in Section 4.3.

3.2 Biased Random Walk

As will be shown in Section 4.3, the Cosine Law algorithm performs poorly.
This is mainly due to the distance estimation Equation 3.4. In an effort to
find a more robust solution we turn to the category of biased random walk
algorithms.

The typical biased random walk comprises of two distinct phases. The
first, “run”, is when the bacteria swims in a fixed direction and the second,
“tumble”, when it changes direction. The rate at which these two phases
alternate is proportional to the concentration of the chemical substance the
bacteria wants to move towards to or away form. For example, if the bacteria
is moving towards the right direction it will tumble less frequently.

13



In our case, we create a hybrid algorithm based on random walk and
gradient estimation. Rather than trying to estimate the direction of the
gradient, we only care about its sign. As long as the sign is positive, which
means that we are moving towards our target, we are in the “run” phase and
will not change our direction. When we detect that the gradient is negative,
we “tumble” by choosing a random direction.

This algorithm was inspired by the natural steps a human being would
take if she was only aware of the field’s value. Maintain the direction while
the field values increase and try a new one when they decrease. The steps
are summarized in the following pseudocode:

Algorithm 3.2 Biased Random Walk pseudocode.

init
pick a random direction
measure signal field
repeat

step forward
measure signal field
while values increase do

forward step . run phase
measure signal field

end while
pick a random direction . tumble phase

until goal reached

This algorithm, although more robust than the Cosine Law algorithm, has
poor performance due to the random direction that we choose every time
the polled field values start decreasing. A benchmark in Section 4.2 will
demonstrate this poor performance. Furthermore, its naturality aspect is
low; for example, turning 180◦ would not be a choice a human would take.
However we will use this version as the baseline for a comparison with the
algorithm presented next.

3.2.1 The Constant Angle Algorithm

This section enhances the performance of the previous algorithm by answer-
ing the following question: What if we use a constant angle when we choose
to make a turn rather than a random one? What should this angle be?

A scenario of the Constant Angle algorithm, can be seen in Figure 3.2. If
the magnitude of the field is increasing while moving from point A to B, the
agent will continue in the same direction. After passing point B the mag-
nitude will start decreasing, so a new random direction will be chosen. We
can infer that if instead of a random direction we choose to make a 90◦ turn
we will be moving in a direction leading straight to the goal. This is because

14



Figure 3.2: Constant angle algorithm example. While moving in the direction
shown by the arrow, the field’s value will increase till we reach point B. After
that, we need to change our direction. Assuming concentric field iso-contours,
any line perpendicular to those will intersect the goal. That is the reason
why we choose to turn by 90◦. Due to the flipping problem, the direction of
the turn is random.

the magnitude will start decreasing at the point were the trajectory of the
mobile node is perpendicular to the gradient’s direction. If the magnitude
is again decreasing, this means that we are moving towards B” instead of
B’, so by turning 180◦ we reach the goal.

The steps of the algorithm are summarized in the following pseudocode:

Algorithm 3.3 Constant Angle Algorithm pseudocode.

init
pick a random direction
measure signal field
repeat

step forward
measure signal field
while values increase do

forward step . run phase
measure signal field

end while
turn 90◦

step forward
measure signal field . tumble phase
if values decrease then

turn 180
end if

until goal reached

15



We simulated the Constant Angle algorithm on fields of different con-
cavities and non-concentric gradients. In Chapter 4, we will show that the
Constant Angle algorithm outperforms the first two algorithms presented,
both in convergence time and success rate.
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Chapter 4

Algorithm Simulations

In this chapter, we present the validation and evaluation of the algorithms
presented in Chapter 3 through a series of simulations. But first, we present
the simulation tool and describe its setup in Section 4.1.

4.1 Simulation Environment

The simulation tool that was used is called Lapsang 1. It is a tool built
in JAVA by PhD students of the Embedded software group to enable fast
prototyping of distributed algorithms for mobile ad-hoc networks. These
algorithms usually scale up to thousands of nodes, but by using its very
intuitive visualization (see Figure 4.1), we can quickly verify their correct
implementation.

4.1.1 Properties and Setup

Motivated by the festival scenario, we have built our system and the al-
gorithms that we will use. This is the same reason why we want our sim-
ulation environment to resemble the festival’s network conditions as much
as possible. In festivals, an approximate density is 3-4 persons per m2. A
low power device, such as the wristband that each person wears, has an
average transmission radius of 1.5 - 2 meters. The average node degree for
this combination of transmission radius and density is approximately 30.

To replicate these conditions we use a simulation area that represents an
actual area of 100×100 meters, which we cover with 1000 nodes. Each node
has a transmission radius of 10 meters. This combination results in the same
average node degree of 30, as in the festival scenario.

1https://code.google.com/p/lapsang/
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Figure 4.1: A frame of a sample simulation. The green disc represents the
transmission vicinity of the goal node while the red triangle stands for the
mobile agent. The black line is the path traveled so far. All other nodes are
depicted using black dots and finally the signal field is visualized using blue
colored Voronoi cells.

We choose to model the communication between nodes using a unit disk
graph (UDG) and presume no packets are lost. These assumptions do not
hold in practice [31, 32], but provide us with the necessary simplification to
evaluate the given algorithms.

Our goal, as mentioned before, is to navigate a person to a predefined
node. This goal is considered reached when the person’s node is within the
transmission radius of the target node. The performance metric that we use
to evaluate the algorithms is the distance traveled until reaching the goal.
And since the starting point of every simulation is random, the relative
distance traveled is used.

Relative Distance Traveled =
Actual Distance Traveled

Euclidean Distance to Goal
(4.1)

4.1.2 Gradient Field Creation

One of the main contributions of this thesis is that we simulate the al-
gorithms on different kinds of signal fields. Therefore one of our objectives
is to understand how the characteristics of a field’s gradient are affecting
the performance of our algorithms. It will be shown in Sections 4.3 and
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4.4, that the type of the field is of great importance. We consider two field
properties; the concavity of the gradient and whether its iso-contours are
concentric. We begin our analysis with the first property.

Field Concavity. The second derivative of a function defines its concav-
ity. A function with a positive second derivative is called convex or concave
up. If the second derivative is negative, the function is called concave down.

In order to create a concave field, we first create a simple hop count
starting from the goal node, hc : V → R. This field is discretized in steps
of transmission radius length. Therefore, we use a smoothing algorithm
that basically assigns to each node the average value of its neighborhood.
An example of a smoothing distributed mechanism like this can be seen in
[16]. Apart from diffusing the information, the resulting field has one global
extremum. In this way we obtain a linear field l = smooth(hc) : V → R.
The final field we create is:

f = 1− lc, (4.2)

where c is the concavity factor. The resulting fields for a concavity factor
value of 0.25, 0.5, 1.0, 2.0 and 4.0 are presented in Figure 4.2. Before
commenting on them, we have to indicate that all functions that have a
maximum, are concave down in the area around that maximum. If we
exclude this area, the first two fields are concave up, the third has zero
concavity making it linear, and the last two are concave down.

0 0.5 10  0.5 1  

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Concavity factor 0.25.

0 0.5 10  0.5 1  

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Concavity factor 0.5.

0 0.5 10  0.5 1  

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

(c) Concavity factor 1.

0 0.5 10  0.5 1  

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

(d) Concavity factor 2.0.

0 0.5 10  0.5 1  

1

1

1

1

1

1

1

1

1

1

1

(e) Concavity factor 4.0.

Figure 4.2: Signal fields with varying concavity. The y axis is the field’s
value.
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Concentricity. As stated in the beginning of this section there is another
property of the signal field that we also take into consideration. All these
fields so far had concentric iso-contours. This is easily seen in Figure 4.3 for
the linear field.
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Figure 4.3: A field with concentric iso-contours.

The goal in gradient navigation is aligning the direction of movement
with the direction of the field’s gradient. All gradient estimation techniques
estimate the direction of the local gradient. If this direction is pointing
towards the goal in every point of the field, navigating to it is easier. In
practice, we cannot rely on a field property such as this for our algorithm to
work properly since naturally occurring fields usually have non-concentric
gradients.

In order to test a more complex field where the direction of the gradient
is not uniform, we use the superformula2 (Equation 4.3) to create a mask
for the linear field that will create steep ridges. The parameters used for the
formula are shown in Table 4.1, and the field itself in Figure 4.4a.

r(φ) =

∣∣∣∣∣∣
cos
(
mφ
4

)
a

∣∣∣∣∣∣
n2

+

∣∣∣∣∣∣
sin
(
mφ
4

)
b

∣∣∣∣∣∣
n3−

1
n1

(4.3)

a b m n1 n2 n3

0.1 0.61 12 41.5 34 4

Table 4.1: Superformula parameters

2http://en.wikipedia.org/wiki/Superformula
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Figure 4.4: Superformula mask applied on linear field. The ridges are evident
in subfigure (b). An algorithm that follows the gradient would have to first
“ascent” the ridge and then reach the center.

4.2 Algorithm Comparison

Before examining the algorithms in detail, we present a comparison between
the performance of the three algorithms presented in Chapter 3. The ob-
jective is to provide a high-level intuition on how each of them performs.
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Figure 4.5: Success rate (in green) and relative path length for the three
algorithms presented in Chapter 3. Using the linear field, ten runs of ten
random networks were simulated for each algorithm.

The value highlighted in green indicates the success rate of each algorithm.
As success rate we define the percentage of simulation runs where the mobile
node reached its goal over the overall runs. An unsuccessful run is a run
that resulted in navigating the mobile node out of bounds of the simulation
space.
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The Cosine Law algorithm has the worst performance, while demonstrat-
ing a very weak 49% success rate. In the following section we present and
discuss the reasons behind this poor performance. On the other hand, turn-
ing by a constant angle of 90◦ reduced the relative path length of the Biased
Random Walk algorithm by 25%. The last section of this chapter discusses
the simulations that were run for these two algorithms. We show that they
are robust, since field concavity or whether its iso-contours are concentric,
do not affect their performance.

4.3 Cosine Law Algorithm Simulations

In the following, we present the verification of the distance estimation equa-
tion 3.4 as well as of the assumption that E[R] ≈ r. We show that even
though this assumption is correct, the error of estimating the distance to
the goal is too high.Motivated by this poor performance, we investigate
whether an estimator exists for which the Cosine Law algorithm works. Our
results show that arrcos is very sensitive to small distance errors. This sug-
gests that it is unlikely that an estimator that would make the algorithm
work exists.

Approximation of E[R]. In order to verify that E[R] ≈ r, we run the
following simulation: we measure the actual distance of each of the 1000
nodes to the distance of their neighbor with the maximum field value. We use
the linear field and run the simulation ten times for six different transmission
radii.
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Figure 4.6: Median distance to neighbor with the maximum field value.
Using the linear field, ten random networks were simulated.

We notice that by assuming that the node with the maximum value is at
the edge of the transmission radius we are overestimating E[R]. In order
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Figure 4.7: Estimated distance to goal node error. The error is minimal for
E[R] = 12.5, which is equal to the transmission error.

to understand how much this overestimation affects the estimation of the
distance to the global extremum of the field we run the following simulation:
we set the transmission radius at 12.5 meters and calculate the absolute
error between the estimated and the euclidean distance from each of the
1000 nodes to the goal node. We use the linear field and approximate E[R]
with the six values as before. For each value, we ran the simulation on 100
different networks.

Figure 4.7 shows that the minimum median of the error is 6.5 meters,
when E[R] = r = 12.5 meters. This error can be attributed to the fact that
we use only the first order of the Taylor expansion and to the overestimation
of E[R] as we saw in Figure 4.6.

Although in practice we cannot know the exact distance between the
position of the mobile node and the node that has the maximum value in
its neighborhood, we do know it during simulations. In order to reduce
the error caused by the overestimation of E[R] = r, we will use the real
distance between the goal node and the mobile agent when using the distance
estimation Equation 3.4 for R, for the rest of our simulations.

Field concavity. A key requirement for the solution we seek is its indif-
ference to the concavity of the gradient of the signal. For the next series of
simulations, we estimate the distance of every node to the goal by using the
Taylor approximation once again. This time we use all the fields that were
presented in Subsection 4.1.2. Figure 4.8 displays the error for each of the
five fields, which is the absolute difference between the estimated distance
from each node and the actual to the goal node. Notice that for the field
with concavity factor 0.25, the median of the error is ≈ 100 meters. The
maximum possible distance from the goal node is equal to the radius of the
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Figure 4.8: Distance estimation error for five fields of different concavity.
We can see that for the nonlinear fields (Concavity factor 6= 1), the error
increases significantly. For convex fields we overestimate the distance while
we underestimate for concave fields.

circle that is circumscribed around the simulation space and has the goal
node as its center. This radius is

√
2 ∗ 100/2 ≈ 70 meters.

Angle estimation. Although the results of distance estimation are far
from satisfactory, calculating the desired angle θ using Equation 3.1 could
yield better results. That could be possible since the two erroneous distance
estimations, used in calculating θ, have high spatial relevance. To further
explain this, we need to understand how the Cosine Law algorithm actually
works. The angle θ is an estimation of the direction of the field’s local
gradient. The two points from where we estimate the distance to the goal
are more likely to have a similar local gradient and in turn a comparable
distance estimation error.

To test this hypothesis, we ran the following simulation: we followed a
random route that was comprised of steps of constant length taken at a
random direction every time. In this way, we can use each set of consecutive
points to estimate the angle using Equation 3.1. The distance between every
two points is constant, so we only need to estimate the distance of the two
points to the goal. As before, this simulation was run for the five fields of
different concavities. The absolute error is the difference in degrees of the
angle θ and the direction to the goal node.

Before commenting on the findings, we must note that due to the distance
estimation error, the resulting arguments for the arccos function were greater
than allowed. For this reason, they were clipped so that their absolute value
was less than one. Also, an angle error of above 180◦ has no meaning since
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we are randomly either adding or subtracting θ to our previous direction of
movement, so these values were also clipped to be in the range of 0-180◦.
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Figure 4.9: Angle θ estimation for five fields of different concavity. One
thousand estimations were performed for each different field, in ten different
networks. The error seems to not be affected by the concavity of the field
but is higher than desired.

Nevertheless, even after these interventions the results are disappointing.
Although the error seems not to be affected by the concavity of the field,
in reality it is random. The median is ≈ 40◦, and due to the poor success
rate of this algorithm (49%), shown in Figure 4.5, we deem the Cosine Law
algorithm a failure.

These poor results pushed us to look into the relation of the arccos func-
tion and its inputs. We investigate whether an estimator exists for which
the Cosine Law algorithm works. We will demonstrate with a simple Monte
Carlo simulation, that even a small distance estimation error to the target
N, as shown in Figure 3.1, can have significant effects on the calculation of θ.
We simulated 10000 triangles with two sides being significantly longer than
the third, representing the goal node being at a longer distance compared
to the distance between two consecutive steps the algorithm took. We then
added an estimation error on one of the two longer sides, expressed as a
percentage of the initial length. The difference between the two angle cal-
culations, one for the original triangle and one for the modified, is the error
shown in axis y.

The results in Figure 4.10a display a massive angle error for the triangle
where one of the long sides was just 10% longer or shorter. The spacial
relation between the two consecutive points in the navigation path though,
has a significant impact. In Figure 4.10b, we show that when the same
distance estimation error is applied to both sides of the triangle, the error

25



0

10

20

30

40

50

60

70

80

90

100

−10  −8  −6  −4  −2   0   2   4   6   8  10
Estimation error at one side [%]

A
rc

c
o

s
 c

a
lc

u
lt
io

n
 e

rr
o

r 
[°

]

(a) Distance estimation error at one side
of the triangle.
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(b) Distance estimation error at both
sides of the triangle.

Figure 4.10: Angle calculation error caused by distance estimation error of
either one or both sides of triangle of Figure 3.1.

is significantly lower. Our conclusion is that even when using a distance
estimator with under 10% error, calculating the angle of the gradient is not
possible using methods based on the arccos function and the law of the
cosines. We have to stress that in a real-life scenario all conditions and field
estimations are bound to be even worse due to assumptions that do not hold
in practice.

The inability to estimate the distance to the goal pushed us to look into
the algorithm presented next.

4.4 Constant Angle Algorithm Simulations

In the following, we present the results of the simulations run for the Con-
stant Angle algorithm. We show that its performance is not affected by
the field’s concavity or on whether its iso-contours are concentric. We also
demonstrate that a small step size results to less accumulated error. The
metric used for this section is the relative length of the path traveled until
entering the transmission radius of the goal node.

Field concavity. We start by evaluating the effect of field concavity on
the Constant Angle algorithm. As it is seen in the Figure 4.11, the linearity
of the gradient is of no importance. That is because the only important
factor is monotonicity. The algorithm only evaluates whether the values of
the field change, not the rate of change.
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of the field. We have run this simulation until reaching the goal 25 times for
each field, starting from ten random locations in the simulation area.

Step size. The next simulation was performed to showcase the relation
between step size and relative distance traveled to the goal. We chose the
smallest step size based on an average human stride length in a crowded
environment. This length is 30-40 cm, which translates to 2 m in the simu-
lation environment in the same fashion as the 2 m actual transmission radius
was translated to a 10 m transmission radius during simulations.
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Figure 4.12: Relative path traveled for five different step sizes on the linear
field. A smaller step size results in a shorter path to goal.
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We can attribute the increasing error over the increase in step size presen-
ted in Figure 4.12, to two factors. The first is the penalty that occurs at
every wrong decision. As stated in Subsection 3.2.1, whenever we choose to
turn, we do that in a random fashion. If our decision turns out to be wrong,
we need to step back and take a turn of 180◦. This penalty is proportional
to the step size.

The second factor is that a larger step size will often result in stepping
further from the 90◦ ideal point that will lead the mobile node straight to
the goal. Indeed, if the over-stepping is big enough, you might be forced to
“circle” the goal without ever reaching it. An example of this phenomenon
is shown in Figure 4.14.

Concentricity. As shown in Figure 4.3, the direction of the gradient of all
the fields tested so far was always towards the end goal. With the following
simulation, we show that the performance of the Constant Angle algorithm
is not affected when the iso-contours of the field are not concentric.

We use the field that we created using the superformula mask on the linear
field (see Figure 4.4a), and run the same simulation as before. A comparison
between Figure 4.12 and 4.13, indicates that the Constant Angle algorithm
is not affected by the superformula field. Due to randomness during the
simulation space creation, we notice that the performance of the Constant
Angle Algorithm is even better for some cases on the superformula field.
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Figure 4.13: Relative path traveled for five different step sizes on the linear
field and the superformula mask. The resulting relative path traveled is not
affected by the non-concentric iso-contours of this field.
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Overstep phenomenon. While running these simulations, an interesting
property of the algorithm was discovered. Any step size equal or greater than
the transmission radius may result in a route that will circle the goal and
never reach it. As you can see in Figure 4.14, each new position has a smaller
signal value than before so the decision taken is always taking a turn.

Figure 4.14: When the step size is equal to the transmission radius an inter-
esting phenomenon may appear. The mobile node will circle the goal without
reaching it.

A similar behavior can be noticed when we are on a steep ridge in the
non-concentric field. If the width of the ridge is comparable to the step size,
we can notice a similar infinite loop of the mobile node.

Figure 4.15: When the step size is comparable to the ridge width we may
observe the same phenomenon as before. An infinite loop.

In both cases however, this problem can be easily corrected by adding
randomness to each step or just by using an angle 6= 90◦. This behavior can
only be noticed while simulating the scenario, since in practice the field value
of the mobile node varies over time. The mobile node calculates the field’s
value by averaging the values of its neighbors (Equation 2.2), and because
of non-deterministic wireless links dropping packets at random, this value
will be a function of time as well as space. Another factor is the error added
by assuming that the step size is constant. In practice, we can measure the
step size only by using the inertia measurement unit of the mobile phone.
In addition, the angle the user has to turn is also dictated by the phone.
These procedures are also estimations that entail error.
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Chapter 5

Experimental Evaluation

This chapter presents an implementation of the Constant Angle algorithm
on a testbed of 108 nodes. We start by explaining the system architecture
in Section 5.1. Then, in Section 5.2, we describe the necessary engineering
steps taken to ensure the algorithm’s proper evaluation and present the
results of the implementation.

5.1 System Architecture

A realistic experiment for the crowd management scenario would require all
the nodes of the network to be mobile. However, constructing a controlled
experiment with mobility is very difficult. For this reason, we used a testbed
of 108 nodes as the sensor network hosting the field that the user has to
navigate on.

5.1.1 Testbed

The testbed, which is referred to as The Rack [25], is a wireless sensor
network consisting of 108 SOWNet GNode nodes. The GNode G301 is
comprised of a TI MSP430F2418 microcontroller and a TI CC1101 packet
radio chip operating at 868 MHz. Each GNode has a backbone network
connection to a PC Engine Alix.1D. A testbed server connects to the Alix
to collect serial output and debugging data, and to program the nodes.

As shown in Figure 5.1, The Rack is deployed on the ceiling of our office
building at TU Delft. On this floor plan, we can see that each room has
either four or eight nodes on its ceiling, indicated by the black dots. However
their exact location was not known, which was a problem since we wanted
to assign specific values to each one in order to create a signal field with
precisely defined characteristics.

To solve this, we created a sniffer node that sensed the incoming packets
from the nearby nodes. We then used the number of messages as well as the
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Figure 5.1: Floor plan of our offices at TU Delft. Black dots represent the
nodes installed on the ceiling.

RSSI value of each message to localize each sensor node. This allowed us to
visualize the connectivity graph as well as any field we created.

After roughly localizing the nodes at corners of the ceiling of each room,
the connectivity graph for a transmission power of -20dBm was created as
shown in Figure 5.2. We chose this tx power in order to achieve the same
node density as our scenario and simulations. The average node degree
was approximately 30. Note that each link was considered active when the
packet reception rate was greater than 0.3.

Figure 5.2: Active links for -20dBm transmission power and packet reception
rate ≥ 0.3.

The nodes were programmed with the Contiki operating system to simply
broadcast a preset value. In Figure 5.3 we show the field that we created
using these preset values by varying the greyscale intensity.

Figure 5.3: Value visualization on testbed nodes.
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5.1.2 Navigation Algorithm Interface

In our experiment, a user is navigated to the goal by following the instruc-
tions on her smartphone. The latter is equipped with bluetooth for the
communication needs with the sensor network.

In the beginning, we considered using MyriaNode v3.2 nodes to build
the sensor network. In order to connect a smartphone with them we inter-
faced them with a nRF8001 Bluetooth Low Energy radio. An application
to demonstrate this connection was developed for the iOS platform, which
would connect to the node and receive data from an on-board accelerometer.
Based on this data, the color of the background was changed in real time and
other values such as temperature and RSSI were displayed (Figure 5.4b).

Due to lack of time, we decided to use the already existing testbed at
TU Delft instead of setting up a new one with the MyriaNed nodes. Since
equipping 108 nodes with BLE radios would be neither fast nor cheap, we
used an extra GNode as the mobile node. The connection to the smarthpone
was realized using a legacy bluetooth radio. However, iOS does not provide
access to the legacy bluetooth stack, so we had to create our GUI on the
android platform. For practicality and a power source, the node and the
bluetooth-to-serial board were attached to the phone’s battery. The num-
ber highlighted in green in Figure 5.4d, shows the value of the field using
a weighted moving average. The value on its right is the unfiltered one.
Finally, the list below them displays packet information. In particular, for
each sender, the id, RSSI and number of packets received during the last
second.

(a) MyriaNode
V3.2 & nrf8001.

(b) iPhone demo
application.

(c) Gnode and
bluetooth radio.

(d) Graphical in-
terface on Android.

Figure 5.4: Two testbed-smartphone interfaces were built. On the left, one
using Bluetooth Low energy and iOS and on the right, one using Legacy
bluetooth and Android.
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5.2 Experiments

The goal of the experiments is to prove that the Constant Angle Algorithm
can navigate a user to the peak of an artificial gradient. Unfortunately, we
are confined by the experiment setup: due to the existence of walls between
the rooms, one cannot move about freely. The only possible pathways are
along the 80 meter corridor as seen in Figure 5.1 and going in and out of
rooms. Therefore, the goal of each experiment is to navigate a person that
is walking along the corridor to a predefined room.

Field creation. The goal so far was to reach the communication radius
of the target node. Since that would be achievable just by walking in the
corridor, we created a static field with the maximum being on the edge of a
room as shown in Figure 5.5.

Figure 5.5: Visualization of the final field used for the experiment. Notice
that the peak is at the outer side of the room highlighted in green.

Field sensing. The first noticeable phenomenon is that f is not a func-
tion of only space, but also of time. This is because in practice the commu-
nication model on sensor nodes reveals various spatial and temporal radio
irregularities [31, 32]. This subsequently causes the delivery rate to drop to
about 68% on a real testbed [14]. Furthermore, the relative position of the
sensor node in regard with the smartphone as well as its orientation signific-
antly alters its packet reception rate. We noticed this phenomenon during
the experiments. Its magnitude depends on the relative angle between the
mobile node’s antenna and the static ones’. To mitigate this problem, we
carried the experiments in a way the mobile node had a constant direction.

We perform the following experiment to demonstrate the difficulty in de-
termining the field value: we walk the floor’s corridor lenghtwise at a con-
stant speed of 1m/s while logging all received packets. The received packets
comprise the raw signal, which is plotted against time in Figure 5.3 together
with the output of two filters. The first is a moving average filter that has
a window of 5 seconds that averages one packet for every unique packet id.
The second is a weighted moving average filter that averages all packets in
the same 5 second window, regardless of the number of occurrences of the
same packet id. The mobile node receives packets from nodes with different
values sequentially, which appears as noise on the plot.
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Figure 5.6: Raw and filtered signal. The take away message here is that we
are interested in acquiring a signal with only two monotonic parts. Since the
mobile node’s speed is 1m/s, the x axis is also the position in meters on the
map in Figure 5.1.

What we are actually interested in, is the monotonicity of the field. Figure
5.6 shows that the output of the moving average, and the weighted moving
average has fewer higher frequency components. The weight of each value
is the number of packets received in a window frame. How big should the
averaging window be though? If we increase it, we risk adding a lot of delay.
This will mean that we might miss the ideal point of turning. However, we
have to note that, since the UDG model is a crude approximation, a 90◦

turn does not guarantee a direct route to the goal anyway.

In the Constant Angle algorithm, the decision to make a turn is solely
dependent on the monotonicity of the field. When we are traversing a scalar
field that has one global maximum, the value of the field increases monoton-
ically until reaching the maximum point of this trajectory and then decreases
monotonically. Take for example the experiment in Figure 5.6. In the ab-
sence of noise, the signal has only maximum, which is the global maximum.
We define as a false positive any local maxima in the signal, since they would
trigger a turn action. In Figure 5.7, we plot the false positives over window
size for 5 runs of the previous experiment. The filter used is the weighted
moving average. We can deduce that a window size of 4 seconds is enough
to filter out most of the false positives without adding a lot of delay. This
however is true for only the particular walking speed and node transmission
power.
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Figure 5.7: False Positives vs Window Size. A window size of 4 seconds is
enough to filter out most of the false positives.

Results. The goal of the experiment is to navigate to the room highlighted
in green, as shown in Figure 5.8a. The signal that is being plotted next to
it is the filtered field measurements. The weighted moving average filter
was used, with a window of 5 seconds. In order to simulate the same step
size as before, we do the same calculation as in Section 4.4. To achieve an
average node degree of 30, the transmission radius of the nodes was set to
approximately 20 meters. The minimum step size of the algorithm for this
transmission radius is 3 meters. We have to note here, that the termination
criterion of the original algorithm was for the mobile node to enter the
communication vicinity of the goal node. This is achievable by just walking
along the corridor. The new termination criterion is thus more demanding.

We run the same experiment 10 times, always starting from the area in
front of the elevators, as shown in Figure 5.8a. We reached the target 8 times,
the other 2 overshot and entered the next room. The average false positives
for these runs was 3.2. Next, we present two characteristic examples of
navigation to the target room, one where the first turn decision was correct
and one that was wrong. In both cases, the goal was reached successfully.

In the first example, shown in Figure 5.8, the turn action was decided
at point A, where the averaged field value started decreasing. Apart from
the delay added by the filter, stopping and turning in place is slower than
walking at 1m/s. That is why although the user chose the right direction,
the field values started increasing only after two steps of the algorithm as is
shown in Figure 5.8. Point C is then reached after another step.
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Figure 5.8: First experiment.

We noticed the same delay when the user chose the wrong room in the
second example. In Figure 5.9, the user first turned towards the room
opposite the target, but as soon as the field value decreased even more, she
turned again towards the target room. The field value started increasing
after two steps as before due to the same delay.
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Figure 5.9: Second experiment, wrong initial decision.

Although we demonstrate that the Constant Angle algorithm achieves its
goal, we have to point out that this scenario was different from the target
scenario of the festival in various ways. The inability to choose a random
direction and walk about freely is restricting, as well as the fact that the field
and the WSN were static. On the other hand the termination criterion was
a lot more demanding than the one during simulations, and the irregularities
of wireless links indoors are far greater than outdoors.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

The core research question of this thesis was how to navigate to the ex-
tremum of a scalar field monitored by a wireless sensor network when no
location information is available. Additionally, we identified two necessary
requirements for out motivating scenario of crowd management at festivals:
the steps that lead an attendee to the goal have to form a natural path, and
the algorithm has to be independent of the field’s gradient characteristics.

Although a large body of work exists, mainly from the area of robotics,
none of these solutions can handle the nonlinear fields following a natural
path. Demonstrating this was our first contribution. We proposed a simple
algorithm for that, which we call Cosine Law algorithm, that uses a Taylor’s
expansion to estimate the distance to the goal. Through simulations we
performed, we showed that estimating distance is possible, but exhibits poor
performance on nonlinear fields. Estimating the angle of the gradient was
shown to be very difficult even under ideal conditions.

Our second contribution was tackling the problem using an even simpler
algorithm, which we call the Constant Angle algorithm. This algorithm does
not try to estimate the angle of the gradient, rather only its sign. Whenever
this becomes negative, a constant angle will be added to the direction of
movement to correct it. Through simulations we demonstrated that it always
reaches the goal while displaying only a 50% increase in distance traveled to
the goal in comparison to the euclidean.

However, simulations and real life differ greatly. Our third and most
important contribution was the implementation of the Constant Angle al-
gorithm on real hardware. We designed a demonstrator, where a person
had to be navigated to a room of our floor, where a wireless sensor network
testbed exists. This experiment exhibited mobility, and the same network
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density as in the simulations. We showed that in practice, due to radio
irregularities, the scalar field is described by a function of not only space,
but also time. Before following any navigation steps, noise caused by these
irregularities had to be filtered. We used a weighted moving average filter
taking the number of recent packets from each node as its weight. This
way we managed to remove the noise, and use the signal to navigate to the
correct room.

The take away message of this thesis is that estimating the gradient’s angle
on nonlinear fields while following natural paths is unfeasible. However,
navigating to the extremum of a scalar field in a location-free way, following
a natural path, independently of the characteristics of the field is possible,
while only adding a small distance overhead.

6.2 Future Work

The problem we investigated is complex and can be approached in many
different ways. We have identified numerous points that need improvement.

• Noise filtering at the smartphone side. State of the art filter that
exploit the movement of the user can improve the accuracy. We can
use other metrics if they are available from the hardware such as the
RSSI of packets to choose the best links.

• Added noise during simulations. In order to clearly understand the ef-
fects of the field’s characteristics on the performance of the algorithms
we chose not to add any noise to the field during simulations. This is
a required step towards improving the quality of this work.

• Experiment setup. An experimental evaluation using a testbed that
would not interfere with the motion of the mobile node will allow
for a better understanding of the algorithm in a scenario similar to
the festival. If the experiment took place outdoors, the localization
hardware of the phone could be used to provide the ground truth for
the motion of the mobile node.

• Antenna directionality. During the experiments, we noticed large vari-
ations of packet reception rate depending on the angle of the mobile
node in relation to the static ones. In the festival scenario, the antenna
on the nodes should be as omni-directional as possible.

• Signal attenuation. Although the radio we used operates at 868 MHz,
there was some signal attenuation due to the user’s body. This can be
exploited for locating an RF source using one’s body as a directional
antenna as in [30]. For higher frequency radios, this phenomenon will
have a greater impact.
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• Mobility. Due to radio irregularities we had to filter a static signal field
measured by a static network. How well will the navigation algorithm
we propose perform on scalar fields created by highly mobile sensor
networks? We want to investigate this by testing on either a mobile
testbed or a time-varying field.
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