Design of a Performance
Benchmarker for Fully

~ Distributed [aaS Clouds
Final Report

Mathematics and Computer Science

-
o)
3
p—
[
9]
£
S)
c
i
©
O
-
]
Q
w
Y
5]
=
®
i

Delft
e t University of
Technology

Challenge the future

Design of a Performance
Benchmarker for Fully Distributed
[aaS Clouds

Final Report
by

Mark H.J. Cilissen
Maarten van Elsas

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,
to be defended publically on Wednesday September 30th, 2015 at 14:00.

Project duration: July 6, 2015 — September 16, 2015
Project supervisors: Dr. ir. A. Tosup TU Delft

E. Feliksik, M.Sc. Nerdalize

M. de Meijer Nerdalize
Project coordinator: Dr. ir. M. Larson TU Delft

This thesis is confidential and cannot be made public until December 31st, 2016.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft & J|Nerdalize

http://repository.tudelft.nl/

Preface

This thesis is the conclusion and survival of our work done over the summer at Nerdalize, in the context
of the final Bachelor Project in Computer Science, TI3800. A mandatory course in the Computer Science
undergraduate program at Delft University of Technology, and usually the final project, it puts students
into a situation of solving real problems for real companies, while maintaining a requirement of academic
purpose. This unique combination leads to conflicting requirements from the company and university
stakeholders at times, which is up to the students to weigh and balance.

Over the course of this project we learned a lot about working in a team, having real product owner
interactions, dealing with real-life limitations and — most important of all — delivering a product that is
used in production environments. Our hope is that this thesis gives insight into our development and
thought process, endured difficulties and successes, and provides any potential future developers at
Nerdalize background, documentation, and pointers to future improvements for the final product from
this thesis.

Mark H.J. Cilissen

Maarten van Elsas
Delft, September 23, 2015

iii

Summary

Nerdalize B.V. is an infrastructure-as-a-service (IaaS) cloud provider aiming to offer substantially lower
prices than its competitors. In order to visualize its cost savings to customers and measure its own
systems against competitors in a cloud market reigned by opaque pricing models, it would like to utilize
an application benchmarker to give customers insight into the resource utilization and operation costs
of their applications among various cloud providers.

We have done research into the fields of cloud computing, benchmarking and the intersection
thereof, determined requirements for such a benchmarker, and assessed any existing solutions in the
field. We then chose Nerdalize’s internal prototype implementation as a suitable base to develop
a fully featured, production-ready application benchmarker. We identified five main design goals of
correctness, robustness, security, extensibility and maintainability.

We then analyzed and prioritized potential improvements and extensions to this prototype, and
implemented them in an agile-driven Extreme Programming (XP) development process. The main con-
tributions lie in designing and implementing a fully automated test suite and system, vastly improving
the accuracy and stability of the benchmarker, re-designing the deployment model from monolithic to
modularized and extensible, implementing support for provisioning to arbitrary Linux-based hosts, and
deployment of complex workload architectures.

We then experimentally verify the accuracy of the benchmarker, and assess that its deployment
overhead is very small to neglible, and run several tests against real-world cloud providers. The end
result of this project is a stable, well-tested, featured benchmarker application that is used in production
environments at Nerdalize.

Acknowledgements

We were helped by many people during the course of this project, but would like to thank some of
them specifically.

First and foremost, we would like to thank Eric Feliksik, Director of the Cloud Orchestra, and Mathijs
de Meijer, CTO, at Nerdalize for their patient guidance before, during and after the project, as well as
their constant feature feedback, allowing for a truly agile development process to happen. In particular,
we would like to thank Mr. Feliksik and Mr. Schoute, hardware engineer, for their off-hours guidance
in progressing in the company’s internal table football league.

Furthermore, we would like to thank our supervisor at Delft University of Technology, Dr. Alexandru
Iosup, for his clear requirement analysis upfront and invaluable thesis, project and process feedback.

Finally, we would like to thank everyone we interacted with during our stay at Nerdalize for their
unquestionable kindness, support and help, and finally allowing us to trial our thesis defense during
their usual socialization times.

vii

Table of Contents

Preface iii
Summary v
Acknowledgements vii
List of Illustrations xi
1 Introduction
2 Research Study on Cloud Benchmarking 3
2.1 OVEIVIEW .« v v v vt e i e 3
2.2 TheProblem. e e e 4
2.3 Background on Cloud Computing. o . v v v v v i v i vt et et e e)
2.4 Background on Benchmarking. o0 oL, 8
2.5 Challenges in Benchmarking Cloud Infrastructures 10
2.6 Existing Benchmarking Solutions.0 oo, 12
2.7 Design Goals L e e e e e e 14
2.8 Extensions to the Nerdalize Benchmarker 15
3 Design of a Cloud Benchmarker 19
3.1 OVEIVIEW . . & v v i v e 19
3.2 Design Challenges 0 i i i i e e e e e e e e e e 20
3.3 Prior System Architecture. Lo e 21
3.4 Architectural Changes. o i i i e e e e e e e e e e 22
3.5 Testing Environment. e e e 28
3.6 Final System Architecture e 29
4 Implementation of the Cloud Benchmarker 31
4.1 OVEIVIEW . v v v v v v v e i v e i e e e e e e e e e e e e e e e e e 31
4.2 Development Methodology e 32
4.3 Separating the Orchestrator 34
4.4 Improving Data Storage L e e e e e 34
4.5 Implementing Additional Provisioning Methods 35
4.6 Implementing Additional Deployment Methods 37
4.7 Setting Up a Testing Environment. 38
4.8 Portingto Python 3. e e 40
5 Experimental Testing of the Cloud Benchmarker 43
S.1 OVEIVIEW . . v v v v i i et e e e e e e e e e e e e e e e e 43
5.2 Code Quality i i e e e e e e 44
5.3 System Testing o e e e e e e e e e e e e e e 45
5.4 Measurement Overhead of the Benchmarker 45
5.5 Measurement ACCUTACY « - « « « v v v v v vt e i e e e e e e e e e e e e e e e e e 49
5.6 Benchmarking across Different Providers 49
5.7 Benchmarking Different Workloads across Different Zones. 51
5.8 Provisioning Time. 0 o e e e e e e e e e e e e e e e e e e 52
5.9 SUMMATY . . . v v v ot e e e e e e e e e e e e e e e e e e e 52
6 Qualitative Product Evaluation 53
0.1 OVEIVIEW v o i i e e e e e e e e e e e e e e e 33
6.2 Implemented EXtensions 0 i i i i i e e e e e e e e e e e e 54
6.3 Design Goals e e e e e e e e e e e e 55
6.4 Success Criteria o L e e e e e e e e e 56

ix

X Table of Contents
7 Process Evaluation and Recommendations 59
7.1 OVEIVIEW . . . o v o e 39
7.2 Development Process Evaluation, 59
7.3 Future Work and Recommendations 60
8 Conclusion 63
A Project Formulation from Nerdalize 65
1 Background e e e e e 65
2 Current Status L e e e e e e e e 65
3 Project Goal L e e e e e 65
B Software Improvement Group Code Evaluation 67
C Diagrams 69
D Raw Measurement Data 71
Information Sheet 79
Bibliography 81

List of Illustrations

Figures
2.1 A visual representation of the cloud architecture “pyramid”. 6
2.2 A schematic overview of the architecture of the Nerdalize Benchmarker.. 13
3.1 Overview of theexistingdatamodel.. 20
3.2 High-level overview of the prototype benchmarker architecture. 21
3.3 Overviewofthenewdatamodel. 23
3.4 Overview of the changes in the orchestrator deployment model. 24
3.5 The separation of the orchestration component.. 26
3.6 Overview of configuration architecture changes. 28
3.7 Overview of testing and deployment architecture. 29
3.8 Testing type hierarchy for automated tests. 29
3.9 High-level overview of re-architectured benchmarker. 30
4.1 Differences between example InfluxDB 0.8 and 0.9 queries. 35
4.2 Message format encoded in XML and JSON for comparison, pretty-printed and compacted. 36
4.3 Example Docker Compose YAML specification file, specifying three containers.. 38
4.4 Example 2to3 output. L. e e e e e e 40
4.5 Importing from multiple possible locationsinPython. 41
5.1 Pylint rating for the code base overtime. 44
5.2 Overhead test plan sequence diagram. i i i i i i i e e 46
5.3 Runtime of a 60-second sleep workload across various provisioning methods original
MEASUFEMENT. . v v 4 v et s et e e e e e e e e e e e e e s 47
5.4 Runtime of a prime workload across various provisioning methods re-run measurement. 48

5.5

5.6
5.7

Result of running the Psipred benchmark on a test server at Nerdalize with 16 physical

and 32 virtual cores. e e e e e e e e e e 49
Cost result of running the Psipred workload on different instances at different providers. 50
Runtime result of running the Psipred workload on different instances at different providers. 50

5.8 Runtime result of running the prime workload on n1-highcpu-2 instances in different GCE
ZONES. & v vt h e 51
5.9 Runtime result of running the raytracer workload on ni-highcpu-2 instances in different
GCE ZONES. . & v v i e 51
5.10 Provisioning time results on different providers in specificzones.. 52
C.1 Sequence diagram showing the running of a benchmark. 70

Xi

xii Table of Contents
Tables

2.1 Comparison of the features of the reviewed implementations. 13
2.2 Comparison of proposed extensions and their fulfillment of design goals. 17
2.3 Early list of prioritized and refined extensions, sorted by priority. 17
2.4 Overview of consulted Nerdalize personnel., 18
3.1 Comparison of the reviewed orchestrator communication techniques. 25
3.2 Division of the data sources between the separated applications. 26
3.3 Considered languages for implementing the orchestrator communication program. . . . 27
4.1 Initial and final overview of the used tools and software. 33
4.2 Module division between separated web application and orchestrator. 34
4.3 Orchestrator RESTfUl HTTP APIL. i i i it e e e e e e e e e e e e 34
4.4 Overview of HTTP client capabilities. i i, 35
4.5 Additions to the orchestrator API for custom provisioning. 36
4.6 Orchestrator & System under Test communication protocol. 37
4.7 Feature summary of tested CIsystems. i i i i it i i .. 40
5.1 Interesting metrics for overhead testing. 45
5.2 Tested workloads in overhead measurement. 46

5.3 Average overhead and standard deviation for each metric, compared to manual deploy-
ment original measurement. L e e e e 47

5.4 Average overhead and standard deviation for each metric, compared to manual deploy-
ment re-run measurement. L. L L e e e e e e e e 48
5.5 Provisioning time measured using Docker Machine on a computer in the LAN. 49
5.6 Different instances on which the Psipred workload hasbeenrun. 50
6.1 Final list of prioritized, refined and implemented extensions, sorted by priority. 54
6.2 Addressing of design goals from section 2.7 and their aspects from impemented extensions. 55
D.1 Original measurement results for manual provisioning. 72
D.2 Original measurement results for overhead using custom provisioning. 72
D.3 Original measurement results for overhead using Docker Machine provisioning. 73
D.4 Re-run measurement results for manual provisioning. 73
D.5 Re-run measurement results for overhead using custom provisioning. 74
D.6 Re-run measurement results for overhead using Docker Machine provisioning. 74
D.7 Measurement results for a Psipred workload on Azure. 75
D.8 Measurement results for a Psipred workload on Google Compute Engine. 76
D.9 Measurement results for a Psipred workload on Amazon EC2. 76
D.10 Measurement results of workload runtime on Google Compute Engine zones. 77

D.11 Measurement results for provisioning time. 77

Introduction

Nerdalize B.V. is a Delft-based technology startup that aims to provide infrastructure-as-a-service (IaaS)
cloud platform services for substantially lower prices than its competitors. It does this instead of cen-
tralizing servers in a data center and spending significant amounts on cooling, distributing its compute
nodes over houses, and using the generated heat to warm them. This allows for savings on operational
cost, which can be used to both offer a cheaper cloud service and free heating for home owners.

Nerdalize would like to visualize and contextualize its cost savings to cloud consumers. However,
pricing models in the cloud market are opaque, and providers work hard to keep their pricing algorithms
secret. Additionally, cloud infrastructures are heterogenous, and can scale up and down as needed
while influencing the price model, making predictionary cost analysis difficult. Finally, user applications
are heterogenous too, and analysis models that may work for a certain type of application may not
work for different types with different resource needs.

To this end, Nerdalize would like to utilize an application benchmarker: cloud consumers can supply
representative ‘slices’ of their application, and Nerdalize will use this benchmarker to run it across
several cloud providers, including itself. Resulting in them being able to provide insight into the resource
utilization and cost of this application across all these providers. This allows Nerdalize to engage in
client bonding and give real insight, backed by data, into the potential savings. Furthermore, Nerdalize
can use this application internally to measure if its own services are still competitive with regards to
other cloud providers, and possibly adjust its pricing model or hardware as a result.

Structure

Numerous cloud infrastructure benchmarker implementations already exist, but are unsuitable for run-
ning arbitrary user applications. This is expanded upon in chapter 2. Nerdalize already has an in-house
prototype implementation that, while very basic, is suitable for running arbitrary user applications, and
thus expansion upon. In chapter 2 we also investigate suitable improvements for the current prototype,
which is the main subject of this project.

In chapter 3, we discuss the main design contributions for implemented improvements, including
the overhaul of the deployment model, support for additional provisioning and deployment methods
and the setup of a fully automated testing environment.

We then discuss the main implementation challenges in chapter 4, including the implementation of
provisioning to arbitrary machines, improving the reporting accuracy and the numerous difficulties we
ran into when trying out various test automation environments.

In chapter 5, we describe the testing process, and how we approached testing in not simply a
qualitative approach, but also through performance and overhead metrics. In specific, we expand on
the testing of measurement accuracy and deployment overhead.

We evaluate whether or not we have met the design goals set out in chapter 2 and provide insight
into the development process in chapter 6. We also describe possible future improvements that could
be made to make the benchmarker even more widely-applicable and insightful.

Finally, in chapter 8 we conclude and summarize the process and answer the initial research ques-
tions posed at the start of the thesis.

Research Study on Cloud
Benchmarking

2.1. Overview

The first two weeks of this project have been fully devoted to research. We have done investigation into
the problem background and scope, existing literature on the matter, existing implementations which
may help in solving parts of the problem, project and infrastructure constraints and the feasibility of
both existing and novel solutions.

In section 2.2 we discuss and analyze the project problem statement. From here, the necessary
background information for the matter is discussed in the next three sections. In section 2.3 we give
an overview of the general basics and ideas behind the concept of "The Cloud”. We give necessary
background information on benchmarking in section 2.4. Finally in section 2.5, we discuss the specifics
and issues inherent to running benchmarks on cloud infrastructures.

Having discussed the necessary background information, section 2.6 moves on to describe the cur-
rent available solutions, and why we choose Nerdalize’s existing benchmarker as our base. During the
research phase, these solutions, together with Nerdalize's infrastructure, were analyzed and taken into
account while setting the design goals. We describe those goals in section 2.7. From the infrastructure
and literature analysis, we formed a number of possible extensions to the current infrastructure. Those
extensions, including the reasoning for including or rejecting them for this project, are listed in the final
section 2.8.

4 Research Study on Cloud Benchmarking

2.2. The Problem

To be able to solve a problem it must first be well-defined. In this section we sketch the
context in which the problem resides and give the problem definition. We then analyze
the problem to lay the foundation for the rest of this report.

2.2.1. Problem Definition

Nerdalize offers Compute as a Service with a competitor-based pricing model. This means Nerdalize
provides Infrastructure as a Service with an architecture that will be most attractive for CPU-intensive
batch jobs, at a cost lower than alternative cloud-providers.

The Nerdalize cloud architecture deploys 4 rack servers in a household. The households are inter-
connected with a VPN via using consumer-grade internet connectivity. Although this creates some new
infrastructural bottlenecks as compared to a centralized Data Center approach, Nerdalize will have an
advantage in terms of operational cost of the servers. This advantage in cost is used to offer a cheaper
service.

Customers want to easily compare the cost of running its compute batch jobs at different cloud
providers. However, the cloud market is opaque:

¢ Heterogeneous infrastructure: different virtualization technology, CPU, networking, and disk
types are used.

¢ Heterogeneous cost models: different prices and models for machine resource and time con-
sumption

¢ Heterogeneous computational jobs: different jobs have different performance profiles (resource
utilization and the influence of infrastructure on turnaround times).

A benchmark that uses a representative computational job — as defined by the customer — can
help the customer gain insight in the cost of its example job at various cloud platforms.

A first version of the benchmark system has been implemented in Python, using Docker to deploy
workloads on Cloud instances. Along with the workload a monitoring agent is deployed on the instance,
which reports resource utilization to the benchmark orchestrator. After the workload is finished, reports
are generated that show the resource utilization, runtime, amount of disk and network I/O performed,
and the associated cost. To calculate the cost, a cost model is implemented that is modeled per cloud
provider.

The goal of the project is to improve this benchmarker to be more generally useful for different
situations and circumstances.

2.2.2. Problem Analysis

Nerdalize is interested in a benchmarker for running customer-supplied applications on various Infrastructure-
as-a-Service (see section 2.3.5) providers. By obtaining the results of the various metrics, a cost model

for their clients can be derived for easy comparison. Nerdalize can use this cost model to undercut
their competitors and for internal reference, as their operational costs are lower due the nature of their
servers.

Interviews with employees show they currently have an existing benchmarker implementation de-
veloped in-house, but it is very basic and not quite suitable for production deployment yet. It is unclear
whether this is a suitable base to develop a more advanced benchmarker from, or if there exist bet-
ter current solutions to use. We will explore this in section 2.6. If no suitable base can be found,
developing the benchmarker from scratch is another option.

Vital to the implementation of the benchmarker is the ability to not just run predetermined bench-
mark suites with predetermined metrics, but arbitrary user applications, even if they misbehave. This
is an aspect that makes this a unique project worth extra consideration.

The requirements as set forth by Nerdalize lead to the formulation of the following research ques-
tions:

1. How can one measure the performance and cost difference of running an arbitrary application
across several cloud infrastructure providers, and different instance types within these providers?

2. How can one verify the accuracy of such a measurement tool?

2.3. Background on Cloud Computing 5

2.3. Background on Cloud Computing

In recent years, the usage of the term “"The Cloud” has become commonplace. Despite
the recent emergence of this trend, some of the concepts from cloud computing date back
to the ideas behind grid computing from the 1990s and earlier[1, 2]. In this section, we
make an attempt to give a narrower definition of the term “cloud computing”, as well as
an explanation of the basic concepts and how it differs from earlier paradigms.

2.3.1. Origins

Advocates of cloud computing promise a world in which computational and storage resources are
not typically owned by the vast majority of its consumers, but instead are centralized in massively
transparently scalable resources operated by third parties for rent[1]. The idea of such resources as
an utility is not new by any means: in the 1960s and 1970s mainframes were a very common method
to centralize computation for easy use by individuals who would otherwise have no access to such
resources. Mainframes are not an appropriate paradigm to compare cloud computing with.

One difference between cloud computing and mainframes is that the former allows the resources
to scale at will, thanks to advancements in virtualization technology: Foster et al. [2] define Cloud
Computing as “a large-scale distributed computing paradigm that is driven by economies of scale,
in which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage,
platforms, and services are delivered on demand to external customers over the Internet”. This clearly
differs from typical mainframe operations — in that while the resources appear centralized — they are
actually distributed over a large amount of virtualized machines. This allows for massive transparent
scaling benefits that mainframes do not offer.

An additional difference is that mainframes were often only accessible for individuals with the proper
credentials: university researchers or employees at large companies are the two most prominent ex-
amples of this. In contrast, following the definition given by Foster et al., any person with an accepted
payment method can order and utilize these resources.

2.3.2. The Grid and the Cluster

Because of these differences, it is perhaps more useful to find a different paradigm to compare cloud
computing to. Buyya et al. [1] propose a comparison of cloud computing with “grid computing”, which
they define as “a type of parallel and distributed system that enables the sharing, selection, and
aggregation of geographically distributed ‘autonomous’ resources dynamically at runtime depending
on their availability, capability, performance, cost, and users’ quality-of-service requirements”.

This paradigm draws more analogies to cloud computing, decentralizing the actual computational
resources. However, it does not take into account the appearance of the distributed resources as a sin-
gle unified resource. For this, Buyya et al. consider an additional comparison with “cluster computing”,
defined as “a type of parallel and distributed system, which consists of a collection of inter-connected
stand-alone computers working together as a single integrated computing resource’[3].

In fact, Foster et al. argue that the cloud computing paradigm evolved from grid computing, while
Buyya et al. argue that it finds its roots in both grid computing and cluster computing.

2.3.3. Economy of Scale

It would be incorrect to state that cloud computing is merely a combination of grid and cluster comput-
ing. An important aspect of cloud architectures, as noted by Buyya et al. [1], is the market interaction
with customers in order to be able to provide for more generalized needs.

As customers rely more on cloud computing to satisfy their resource requirements, the quality-of-
service (QoS) resource allocation models need to change in order to adapt to per-customer, per-job
and even in-job QoS requirement changes.

Instead of simply treating every resource aspect for every customer as equal, cloud providers need
to be able to dynamically adapt and scale their resources, to provide an optimal allocation at all times.
This is an important factor in the often-cited[4] high scalability of cloud architectures, a prominent
property which sets cloud computing apart from merely being a combination of grid and cluster com-
puting.

Research Study on Cloud Benchmarking

2.3.4. Automation

The other defining characteristic of cloud computing — as set forth by Wang et al. [5] — is the degree of
automation involved and the amount of influence by the consumer in the matter. Large cloud providers
offer programmatic interfaces (APIs)'?3, so provisioning and deployment of computing instances can
be fully automated. This provisioning is often instant and on-demand[5], with no manual intervention
required on either side[6].

2.3.

5. Service Architecture

Cloud computing architectures can vary in abstraction levels, in order to provide maximum flexibility.
Mell and Grance [7] describe the service architecture in three layers, shown as a hierarchical pyramid
in figure 2.1:

Level 1: Infrastructure-as-a-Service (IaaS)

The lowest level in cloud services. On this level, the physical resources such as processing power,
physical memory, long-term storage, networking et cetera are provided and abstracted by the
cloud provider. Examples include Amazon Elastic Compute Cloud (EC2) and Google Compute
Engine.

Level 2a: Platform-as-a-Service (PaaS)

One level above IaaS, the user is provided with “development and administration”[6] platforms
that operate on top of the virtualized hardware resources. These may include programming
language environments and runtimes. Examples include Amazon Elastic Beanstalk and Google
App Engine.

Level 2b: Data-as-a-Service (DaaS)

In parallel with PaaS, data-as-a-service architectures provide the user with database and file
storage engines, which are typically accessed from IaaS or PaaS services. Examples include
Amazon Relational Database Service and Google BigQuery.

Level 3: Software-as-a-Service (SaaS)

The final and highest level in the “cloud architecture pyramid”, in software-as-a-service architec-
tures the provider runs a full software stack on top of the PaaS and DaaS layers. The management
of this application is the responsibility of the provider as a service to the user. This can optionally
be combined with lower layers of the pyramid to provide ready-made applications as part of a
larger system. Examples include Google Apps and Microsoft Office Online.

Figure 2.1: A visual representation of the cloud architecture “pyramid”.

Lhttp://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
2https://cloud.google.com/compute/docs/reference/latest/
3https://msdn.microsoft.com/en-us/Iibrary/azure/ee460799.aspx

2.3. Background on Cloud Computing 7

A higher level in this pyramid amounts to a higher amount of abstraction for the customer, but also
more limited possibilities in customization and self-deployment. The very lowest level abstracts only
the hardware, while the highest level abstracts away the entire application stack.

2.3.6. Deployment Architecture
Furthermore, cloud computing deployment models can differ. Mell and Grance [7] describe the possible
deployment models in terms of ownership of the infrastructure and accessibility by customers:

¢ Private cloud: The infrastructure for a cloud of this kind is privately managed, for exclusive use
by one or multiple entities. It may physically be located on or off organization premises, and can
either be managed and operated by the organization itself, a third party, or a combination.

o Community cloud: This infrastructure is publically managed, within a community, for exclusive
use by members. This community consists of members that have some kind of shared concern.
Like a private cloud, it may be physically located on or off community premises, and can be
managed and operated by either members of the community itself, a third party, or a combination.

¢ Public cloud: This infrastructure is available to the general public. It is managed and operated
by a business or government organization and is located on the premises of this provider.

¢ Hybrid cloud: This infrastructure is a composition of two distinct earlier-named infrastructures
that are still separate, but are joined together by a technology that allows for application and
data portability between these infrastructures.

8 Research Study on Cloud Benchmarking

2.4. Background on Benchmarking

Benchmarking a system is measuring and evaluating the performance and other “non-
functional characteristics” of a system, called the system under test (SUT)[8]. A tradi-
tional use for benchmarking is comparing various systems to each other by the use of a
special benchmarking application. Recently benchmarking has also seen prominence in
areas of system design and tuning[8]. In this section we will briefly discuss the basics of
benchmarking.

2.4.1. Utility
As stated in the introduction, a very common use of benchmarking is using a single or multiple workloads
and running it across different kinds of systems, in order to get an overview of the performance
characteristics of these systems. These workloads are often specifically designed to test certain aspects
one at a time.

Recently, benchmarking has also seen a rise in use in the areas of system design and optimization.
By periodically benchmarking an application on various configurations, it may be possible to weed out
performance bottlenecks early in resource-critical applications.

Following from these examples, benchmarking can essentially be divided in two purposes: find-
ing and comparing the performance characteristic for a variety of infrastructures, and finding similar
characteristics for a certain application. In both cases the ‘other’ factor is a known or fixed value.

2.4.2. Requirements

Designing a good benchmark can be a challenge. Folkerts et al. [9] describe requirements for a good
benchmark, collected from a number of sources but primarily from Gray [10]. These requirements are
divided into three categories:

« General requirements: A benchmark should have a tight target audience, be relevant, eco-
nomical and simple.

+ Implementation Requirements: A benchmark should be fair and portable, repeatable, real-
istic and comprehensive, and configurable.

* Workload Requirements: The workload for a benchmark should be representative, scalable,
and contain one or more metrics.

Balancing these requirements can be a challenging task, and even common well-used benchmarks
may do concessions in some aspects in favor of others.

2.4.3. Workloads
A workload is “the operational load to which the SUT is subjected”[8]. Two different kinds of workloads
can be distinguished: simple ones where a single application is combined with a job arrival process, and
complex workloads where multiple users potentially use different applications that are dissimilar[8].
An example of a simple workload is a bag of tasks (BoT), which is a set of tasks that are similar
but can be executed independently. An example of this is running a single application with different
parameters. BoTs are very common in scientific computing[11], for instance for the purpose of folding
proteins.
A complex workload on the other hand could be one user hosting a website and another one folding
proteins on the same system, or running multiple dissimilar bags of tasks at once.

2.4.4. Tasks
There are a number of approaches to individual benchmark tasks, each with their own advantages and
downsides. They will be briefly discussed in the following subsections.

Microbenchmarks

A microbenchmark analyzes a specific component or action of a system, like writing a value to memory
or performing a floating point operation. There are a few challenges in performing microbenchmarks:
the amount of time taken by a single one of these operations is so low that measuring it is impossible

2.4. Background on Benchmarking 9

on real systems. Instead, many identical operations are performed and the average time of a single
operation is measured.

This in turn introduces a new problem where compilers optimize the code, resulting in a unrepre-
sentative runtime per operation[12]. Some compilers allow turning off optimizations, but even then
the operating system may influence the benchmark by, for instance, caching a file into RAM when
performing a disk input/output benchmark.

Kernels

In a kernel benchmark, the most CPU-intensive part of an application is extracted and run indepen-
dently. Gray [10, Chapter 9] has shown that this is a valid approach by determining that, on average,
10% of the code uses 80% of the resources.

This method too has several downsides. Aside from also being subject to compiler optimizations,
only the CPU resource usage ‘decides’ the part of the application to extract. As a result, the kernel may
not be representative of the application for any metric but CPU usage. In addition, depending on the
application architecture, the process of kernel extraction may be non-trivial.

Applications

Another way to benchmark a SUT is to run the actual applications on it. If more information than simply
the running time is desired, the SUT can be monitored for all the required resource metrics while the
application is running. This method can result in a good estimate of the runtime if the application
runtime is consistent[8].

While accurate, this approach has the downside of requiring a full application install, with all possible
prerequisites. Moreover, the benchmark size and scale is barely flexible or non-flexible depending on
the application, and often requires a ‘full application run' to produce workable results. Finally, the
benchmarked applications can introduce side-effects upon being run, which would make repeated
running problematic.

In Nerdalize's problem, user applications is what they wish to run on their infrastructure, and what
we would need to benchmark to get the most accurate results. It is not possible to have repeated
runs of the same application in all cases, since user applications can, in the example case of scientific
computing software, grab their jobs from a centralized job server and ‘consume’ them. This would
make repeated runs of the same applications non-identical, since they may get different jobs with
different performance profiles.

2.4.5. Performance Prediction

The performance of an application on a SUT can be somewhat predicted. One way to do this is to
take the microbenchmarks of a system and make a vector out of these. Then the application itself is
profiled to make a characteristic vector of the application. This vector has a value for the application’s
relative use of all of the microbenchmark characteristics. By taking the dot product of an application
vector with a system vector and normalizing the result, an estimate of the runtime of the application
on different systems can be retrieved[12]. There are several challenges in vector based benchmarking.
It has to be assumed that the application can be accurately profiled, which is not always the case, for
instance because one decision branch is much more work than another. Additionally, a universal set of
operations to microbenchmark and a standardized way to measure them has to be devised.

Another common method of predicting performance is to take a similar application or workload and
assume the performance will be equivalent. For this purpose synthetic benchmarks are created in order
the characterize a group of applications or workloads.

Analogous to the vector method is measuring a benchmark on all systems and the application on
a single (consistent) one. Then the system vectors are approximated using a genetic algorithm [13].
The advantage of this method is that only a single benchmark needs to be run in order to be able
to characterize the system. For a fair number of different systems, same or similar benchmarks are
available.

10 Research Study on Cloud Benchmarking

2.5. Challenges in Benchmarking Cloud Infrastructures

The distributed and transparently scaling architecture of cloud computing makes it difficult
to directly apply common benchmarking knowledge and tools to cloud infrastructures. In
this section we will discuss some of the specific issues, along with potential solutions and
new techniques for result analysis and processing.

2.5.1. Transparent Scaling

Due to the transparent scaling property of cloud architectures as shown in section 2.3.3, it can be hard
to exactly figure out the bottlenecks of a cloud system. The supervising system may decide to utilize
more hardware on-the-fly to meet the computational demands of a benchmark, which makes finding
limits of a certain system hard or even impossible. A possible solution here would be to artificially limit
the bottleneck in the benchmark, in order to keep the benchmark economic[9].

Contrarily, the infrastructure may also decide to utilize less resources when the benchmark has just
started, or in a period of low computational demands. This ‘turn-around’ time between the start of more
intensive calculations and the up-scaling of the resources may also influence the result negatively[8]. A
possible approach to minimizing this issue would be to run the benchmark numerous times in succession
on the target system. This may eliminate the start-up scaling issues while maintaining the otherwise
realistic environment of a cloud system, where dynamic down- and upscaling is a matter that has to
be taken into account for benchmarking, as it will affect performance in the “real world"” too.

2.5.2. Consistency

The multi-tenant nature of cloud architectures discussed in section 2.3.1 leads to a consistency issue:
while transparent scaling strategies are utilized to minimize large performance hits, the current other
jobs processed by one or more cloud instances cause the performance of a benchmark to vary unpre-
dictably in most metrics[9, 14]. This is especially hurtful for comparative benchmarks, where small to
medium performance differences between providers might greatly influence the outcome.

A proposed solution involves running the benchmark multiple times over an extended period of
time, and comparing the different results from these runs. Iosup et al. [14] have observed that while
there is non-trivial performance variability, common cloud providers also have periods of stability. If
there is too much variability between measurements, it can be useful to do additional runs over an
extended period in order to rectify the discrepancy in the dataset.

This method can be combined with running the benchmark multiple times in parallel, so the in-
stances would be deployed over different (identical in configuration) hardware instances. This way an
unusual load on a specific system would not influence the measurement disproportionately.

2.5. Challenges in Benchmarking Cloud Infrastructures 11

2.5.3. Additional Metrics

The unique aspects of cloud architectures lend to some interesting new metrics that have to be taken
into account to get a good overview of the performance. The believed to be more important ones are
listed and briefly described.

Elasticity and Scalability

The aforementioned scaling property exhibited by cloud architectures may negatively affect existing
benchmark metrics, but measuring scalability and elasticity on their own is an interesting considera-
tion metric when benchmarking cloud architectures. For customers with applications whose resource
demands can fluctuate wildly, the capability of the infrastructure to scale on-demand and within rea-
sonable time is an important consideration[15]. Kossmann et al. [16] note that while cloud architec-
tures offer the illusion of ‘infinite scale’, this does not match with the practical architectures that cloud
providers deploy, thus it is an important metric.

Hwang et al. [15] offer some possible cloud performance models which include this metric, compar-
ing the different properties of various scaling methods, and show that scalability is directly proportional
to overall productivity, making it an important metric to include. However, their approach might be
considered too complicated and involved with domain knowledge for some.

Contrarily, Folkerts et al. [9] approach the issue by only modeling for an increase of application
instances per node, keeping benchmark analysis relatively simple. Deploying multiple instances of a
benchmark on the same node would be a good approach to give an approximation of the scalability
and elasticity of the target cloud architecture.

Deployment Latency

Another new potential metric in cloud architectures is the time it takes to deploy the application onto
the cloud infrastructure[11]. This deployment latency, while easily measurable, can give some valuable
insight into the performance of the supervising and orchestrating systems of the cloud provider. In
addition, being able to respond quickly to changing requirements is an important requirement in a lot
of applications. Take for instance a security vulnerability, where it is often desired to immediately patch
the application upon discovery. Every minute that an infrastructure takes to deploy a new version of
the application is a minute that a malicious attacker can use to exploit the vulnerability.

12 Research Study on Cloud Benchmarking

2.6. Existing Benchmarking Solutions

It is good engineering principle to not needlessly repeat any past work that has already
been researched and implemented. In this section, we will discuss some of the existing
solutions in this field , and their suitability for the problem analyzed in section 2.2 will be
addressed. Finally, a decision will be argued on whether to base the benchmarker for this
project or an existing solution, or to write it from scratch.

2.6.1. CloudCmp
CloudCmp is a cloud benchmarker and systematic comparator developed by Li et al. [17] with the
explicit purpose of allowing consumers to review and compare cloud services for their needs. Emphasis
is placed on three metrics: runtime, cost and deployment latency. The runtime metric determines how
much time it took to run a certain workload on each provider. The cost metric is the total monetary cost,
measured using a provider-specific cost model, required to run a certain workload on each provider.
Finally, the deployment latency metric refers to the delay in creating new instances: see section 2.5.3.
It uses a set of predefined workloads to measure various specific aspects of the supported providers.
Despite seeming very promising at first, it is considered unsuitable for the project goal since the in-
tention is to run user-supplied applications or kernels to get the most exact metrics for a specific client
situation (section 2.2.2). The flexibility to add benchmarks without adding new code to the bench-
marker application should be considered vital as a result, and CloudCmp can not offer this flexibility.
In addition, the project seems abandoned: the project website® is not available at time of writing,
and the project code repository® was last updated over three years ago, and never got past version
0.1.

2.6.2. Google PerfKit

Google PerfKit is a relatively new tool, open-sourced by Google [18]. It consists of PerfKit Benchmarker
and PerfKit Explorer. The former allows one to run actual benchmarks, while the latter performs
visualization of the results. It is cross-platform and has built-in support for all the common cloud
providers. The visualization is very user-friendly and allows for a historic metrics overview and export
of data.

However, it has the same main issue CloudCmp does: benchmark workloads are hardcoded into
the benchmarker, losing immense amounts of flexibility, which is not considered appropriate for this
project. The existing predefined benchmarks seem biased towards microbenchmarks that measure a
specific aspect of the system, and may be harder turn into a full application profile. This is especially
true as the workloads are grouped into existing synthetic benchmark suites, which are hard to adapt
to a specific application.

In addition, the only supported way to set up PerfKit Explorer is by using Google's own cloud
services. There seems to be no supported way of running the visualization system locally or on own
servers, which may be important for confidentiality of benchmark data.

2.6.3. Nerdalize Benchmarker

Nerdalize currently has a custom in-house benchmarker implementation. Its architecture is described
in figure 2.2. It is accessed through a web interface, denoted as the “FrontEnd’. It takes Docker®
containers and deploys them using Docker Machine’. Along with the container, a monitor is deployed
to keep track of several system metrics such as the CPU usage, runtime and bandwidth. The monitoring
data is sent to an InfluxDB® database. From the metrics data, a price approximate is calculated using
a provider-specific cost model.

The advantage is that this benchmarker actually measures specific applications and already imple-
ments Docker input, so that not only can any provider that supports Docker be measured, the bench-
marker itself can be run from any provider that supports Docker, although the cost model wouldn’t be
able to be applied.

“http://cloudcmp.net
>https://github.com/angl/cloudcmp
bhttps://www.docker.com
7https://docs.docker.com/machine
8https://influxdb.com/

2.6. Existing Benchmarking Solutions 13

amazon

webservices

monitoring user job

Grafana FrontEnd

Controller user deployme
applications

~——

N

ml Microsoft

Docker .- AZU <
lMamim
Benchmark deployment
Deployer \< EAIEHTE aalios

metrics

Benchmark
Runner

threaded
orchestrator

Resource
usage

aggregator
visualizer InfluxDB
(snapshot
maker)
5

_prfici ng Price Engine
info

Figure 2.2: A schematic overview of the architecture of the Nerdalize Benchmarker.

Table 2.1: Comparison of the features of the reviewed implementations.

Name
Last updated Implemented in Workload types
CloudCmp 2011-12-12 Java Only built-in suites
Google PerfKit 2015-09-10 Python Only built-in microbenchmarks
Nerdalize Benchmarker 2015-07-01 Python Docker-packaged user applications
Overhead (expected) Cost Model Automated Provisioning
CloudCmp Large AWS, GCE, Azure, RS
Google PerfKit Small None AWS, GCE, Azure, DO, RS
Nerdalize Benchmarker Small AWS, Azure

Provisioning key: AWS: Amazon Web Service, GCE: Google Compute Engine, RS: RackSpace, DO: Digital Ocean

However, there are some points for improvement, both functionality and design wise. The deploy-
ment is currently limited to Docker and Docker Machine for provisioning, and metrics reporting is not
very advanced yet. Moreover, its cost model is currently somewhat simple, albeit more advanced than
CloudCmp’s. However, it does seem specialized for specific applications and designed to be adaptable.

2.6.4. Conclusion
Having considered a few benchmarker implementations, we conclude that Nerdalize’s own benchmarker
is a suitable base to base further work on. We have summarized the features in table 2.1.

While being lacking in advanced features, its benchmarking philosophy is consistent with the aim
of this project, and Nerdalize has own in-house knowledge about its architecture, resulting in the
code base being easier to grasp, and modifications easier to make. We feel modifying the other
benchmarkers to fit the vision is a harder task, especially for their more complex and not simply
grasped code bases.

The project goal will thus consist of improving Nerdalize’s benchmarker to bring it up to speed on
the state-of-the-art features required by Nerdalize and its customers.

14 Research Study on Cloud Benchmarking

2.7. Design Goals

Having selected an implementation to base further work on, the principal design goals are
now decided upon and explained. These goals serve as the pillars for the implementation
and guide the design and re-design of the system. A primary design goal is identified, with
four additional goals being decided on as secondary goals.

Correctness

The primary aim is to get accurate measurements of the application metrics on the system under
test. It is important the code runs correctly in order to make sure that we do not get measurements
that are wrong. The most important measurement errors to avoid are those that only impact certain
cloud providers. It is more important that the comparison is accurate than that the actual values
are. Furthermore, the benchmarker should work for as many applications as possible, since they are

user-provided and thus not necessarily adaptable.

Robustness

The benchmarker deals with large-scale infrastruc-
tures and unpredictable user applications, so the
possibility of failure is very real and has to be
dealt with. It is very useful for both the con-
sumer and Nerdalize to be notified of any failures
that occurred while benchmarking, and if possible
given information on the cause. Furthermore, the
benchmarker has to be able to resume when a fail-
ure occurred if possible, so that a single failure can
not halt the entire benchmarking process. Failure
rates could finally be included as a provider metric.

Extensibility

The cloud market is still developing and varying.
New cloud providers are still emerging. The jobs
that are run and the way in which they can be
run are also continuously expanding. The ways
in which benchmarking in the cloud can be accu-
rately done are an ongoing research area and as
such, new methods can be expected. All of this
leads to the requirement of having an application
that is easily extensible, to be able to quickly and
easily adapt to changes.

Security

Since the workloads provided are from the con-
sumer, the biggest security concern is keeping
them safe and isolated, since they might contain
confidential or proprietary information. In addi-
tion, the credentials used to run jobs on different
cloud providers need to be kept safe and secure, to
prevent credential abuse leading to potential mon-
etary losses. It's of concern that the measure-
ments themselves are not influenced. Influence
could consist of other applications running on the
same system, or by forging measurement events.

Maintainability

Lastly, it is also important that our software in
maintainable. This includes a clear and well-
engineered benchmarker architecture, and build-
ing on supported technologies and frameworks.
Ones that still get bug fixes and community sup-
port, to keep development focused on the bench-
marker application proper. Finally, it should be
easy to verify that a code change does not intro-
duce any regressions, through for example auto-
mated testing and continuous deployment.

2.8. Extensions to the Nerdalize Benchmarker

15

2.8. Extensions to the Nerdalize Benchmarker

The Nerdalize benchmarker has been chosen as a base for this project implementation, but
it is basic and lacking in required functionality. In this section the possible extensions that
can be implemented to its code base are described, to make it fulfill and exceed the project
requirements. The proposed extensions have been discussed with the project employer,
and the selected ones will be implemented as part of this project.

2.8.1. Proposed Extensions

Measure Deployment Latency

As described in section 2.5.3, the deployment la-
tency is a useful and important metric for insight
into the provider infrastructure and rapid deploy-
ment possibilities. This extension is also relatively
trivial to implement.

Measure Elasticity

Elasticity as described in section 2.5.3 is a poten-
tial useful metric for determining the scale-up and
scale-down possibilities of the target cloud infras-
tructure. This provides useful insight into the dy-
namic possibilities.

Deploy Complex Architectures

Deploying application architectures that consist of
more than one container is currently not possi-
ble. Allowing for deployment of more complex
architectures using a description format for con-
tainers and their interdependencies would allow
for benchmarking more types of real user appli-
cations, that are not necessarily just a single ser-
vice. Docker Compose could be of use for this as
a standard format and deployment backend.

Deploy Cluster Architectures

Deploying application architectures over more
than one instance node is currently not possible.
Allowing applications to be run over a cluster of
nodes would allow for benchmarking more types
of scientific computing applications, where dis-
tributed computing is a more important common
architecture. Docker Swarm could be of use for
this to manage the deployment.

Extra Provisioning Methods

The current Nerdalize base benchmarker imple-
mentation can only deploy to the infrastructures
supported by Docker Machine”. The deployment
mechanism should be made generic and plug-
gable, so extending deployment to platforms not
supported by Docker Machine is possible and rel-
atively easy to implement. At least one extra de-
ployment method should be implemented.

9https://docs.docker.com/machine/#drivers

Extra Provisioning Platforms

Currently, deployment is only supported to a se-
lect few cloud platforms. This can be extended
to include more cloud providers, so they can be
added to the comparison to give the customer a
broader insight into the market. This is necessary
to be able to keep up with market changes and
emerging new providers. This involves not only
possible deployment methods as above, but also
updates to the cost model and authentication keys.
At least one extra deployment platform should be
implemented.

Extra Workload Formats

Instead of the customer having to provide a
Docker image, it should be possible to utilize differ-
ent deployment methods, such as AWS CloudFor-
mation. Certain common applications types could
also be allowed to be uploaded and automatically
deployed, in a Platform-as-a-Service (see 2.3.5)
fashion. The image input backend should be made
generic and pluggable, and at least one extra de-
ployment format should be implemented.

Benchmarking Performance Variability

As noted in section 2.5.2, cloud benchmarking can
prove problematic for single measures, as perfor-
mance of cloud architecture can vary over time and
node. Additions to the benchmarker should be im-
plemented so that it can automatically run bench-
marks a number of times, possibly with a time de-
lay, and aggregate the results for more accurate
measurements.

Benchmarking Region Variability
Cloud providers offer different regions to deploy
to, to allow customers to pick an infrastructure
closest to their location. This can be useful for
network throughput to external systems, but also
for local laws and regulations regarding the privacy
and handling of sensitive data.

However, for some customers this difference is
not relevant. Since different regions have different
price models and often varying performance, it is

16

Research Study on Cloud Benchmarking

important for those consumers to take the differ-
ence between these regions into account in order
to find the most efficient fit for their application.

Multi-User Support

The base benchmarker interface is accessible by
uploading an application and having it bench-
marked. It would be more user-friendly if this in-
terface could be directly exposed to the users, and
allowing them to see benchmark results for them-
selves. Forms of account restriction are also im-
portant to implement, so that separate accounts
can be made that can only, for instance, view the
results of certain benchmarks.

Python 3 Re-architecture

The current chosen base benchmarker implemen-
tation is written in the Python 2 programming lan-
guage. While still being in support mode for at
least five more years[19], it is considered a devel-
opmental dead end and the official upgrade path
is Python 3[20].

Since Python 3 is a backwards-incompatible
upgrade[21], a part of the current codebase will
need to be refactored and changed to be Python 3
compatible in order to guarantee future compati-
bility and support.

Advanced Cost Model

The accuracy of the price prediction is dependent
on that of the price model. The current one does
not take factors such as long term usage and
cheaper prices for leftover capacity into account.
Long term pricing could be statically predicted. For
leftover capacity a cost model based on historic
data or fetching current pricing is required.

Resource-Cost Extrapolation
When benchmarking a bag of tasks, similar tasks
are run many times. For instance an application is

run many times with different parameters. These
parameters influence the runtime greatly. By sam-
pling from these parameters and applying statis-
tics, an estimate of the runtime of the entire bag
of tasks can be made. If the application differs
in more than just it’s input, we could also sample
from the different tasks to arrive at an estimate.

Improving Reporting

The current base benchmarker’s reporting is mea-
ger and shows no information at all when a failure
occurs. It is also not able to correlate data from
multiple benchmarking runs together, or show
runs on different infrastructures for a same work-
load together. Improving this reporting would
vastly improve the user experience, and contribute
to the ability to diagnose issues and log possible
security issues.

Improving Testing

The current implementation of the base bench-
marker has no form of automated testing. In order
to make sure everything works in the first place,
and that nothing is broken by refactoring and ex-
tension implementation, automated tests will need
to be added. This will bring familiarity with the
existing code base as a bonus. Mocking can be
used to simulate the cloud providers, so that no
expenses are made running these tests.

Continuous Integration / Deployment

In addition to writing automated tests, a mecha-
nism to run all tests on every commit and auto-
matically deploy the benchmarking system can be
put in place to guarantee the quality of the code
base continuously, even if developers neglect to
run tests themselves. It could also generate test
coverage statistics and run various code analysis
tools, and report on test failure, insufficient cover-
age or major issues identified by these tools.

An overview of how these extensions relate to the design goals is given in table 2.2. We believe
that implementing these extensions give a significant and sufficient improvement to the success of the

design goals.

2.8. Extensions to the Nerdalize Benchmarker 17

Table 2.2: Comparison of proposed extensions and their fulfillment of design goals.

Feature Correctness

Robustness Security Extensibility Maintainability

Deployment Latency

Complex Architectures
Cluster Architectures
Provisioning Methods

Provisioning Platforms

Workload Formats

Performance Variability

Elasticity

* X % %

Region Variability *

Multi-User Support

Cost Extrapolation

Python 3
Cost Model

Reporting
Testing
Cl/CcD

* K X X ¥

2.8.2. Chosen Extensions
After consulting the product owners (listed in table 2.4), the list of extensions was prioritized, and the
top items in the priority list were further refined as part of the agile process of backlog refinement.
This is visualized in table 2.3.

X X K X X
*

Table 2.3: Early list of prioritized and refined extensions, sorted by priority.

D O | Abstract Refined
Testing Improvement Write tests for code base for full coverage
Continuous Integration / Deployment Set up Strider and SonarQube,
integrate with existing services
* Python 3 Re-architecture Port existing code base to Python 3.3
* Development Setup Set-up easy deployment for existing benchmarker
Extra Provisioning Methods Implement provisioning through Apache Libcloud
Extra Provisioning Platforms Implement support for Google Cloud Engine
Benchmarking Region Variability Refactor code base and data model for regions
Complex Architecture Deployment
Extra Workload Formats
Deployment Latency Measurement
Reporting Improvement
* | Performance Variability Measurement
* | Multi-User Support
* | Advanced Cost Model
* | Elasticity Measurement
* | Cluster Architecture Deployment
b3

Resource-Cost Extrapolation

D: Development Process related
O: Optional

18 Research Study on Cloud Benchmarking

Emphasis was put on extensions that improve the development process in general, as described in
section ??. The top extensions in the priority list were formalized and refined, to give an appropriate
and concrete feature to work on.

Table 2.4: Overview of consulted Nerdalize personnel.
Role | Name Contact

Co-founder / CTO | Mathijs de Meijer Face-to-face meeting
Director of the Cloud Orchestra | Eric Feliksik Face-to-face meeting
|

Over the course of the project, numerous refinements were done for extensions lower on the list as
they rise, in consultation with the product owners and in accordance with an agile process. Priority was
given for development process-related goals, as they can massively improve the throughput of the rest
of the project. An extra goal called “"Development Setup” was added, to allow time for familiarization
with the code base and deployment.

A few goals were seen by the product owners as not important to the benchmarker, and thus were
marked as optional goals and placed at the bottom of the list, to be implemented when all the important
goals have been if there is time left.

Some extension ideas were added during the implementation phase, while others were eliminated
entirely. This is discussed in section 6.2.

Design of a Cloud Benchmarker

3.1. Overview

During the implementation of improvements on the existing benchmarker implementation, we have
done a significant amount of re-architecturing and re-factoring. In section 3.2 we lay out some of
the unique challenges in designing this system. In section 3.4 we describe the major changes and
improvements to this architecture, which is explained in section 3.3.

In addition, we set up a full deployment and testing environment. In section 3.5 we describe the
initial setup, the issues experienced with it, and the final testing and deployment architecture. We
conclude in section section 3.6 by showing the final system architecture, and how it corresponds better
to the stated design goals.

19

20 Design of a Cloud Benchmarker

3.2. Design Challenges

Instead of creating a fresh system and architecture from scratch, there was an existing design and an
existing system which we would base our efforts on. This brought a few unique challenges that each
require their own skill set to deal with:

» The existing architecture needed to be investigated and critically analyzed for a fit with any new
features.

» The existing architecture needed to be re-engineered in case of incompatibility with new features.

¢ Any re-architecturing or implemented features could not break the existing system, or introduce
severe regressions.

Another challenge, connected to the main one, is that the existing system was not well-documented
or tested. Identifying if a change broke something in the system, and whether that was acceptable,
would be a manual and laborious task. As such, changes had to be introduced with extra precision
with respect to the existing architecture, at least until a comprehensive test suite was written.

The system not being extensively used in production yet alleviated some of these concerns, as subtle
breakage that would only be notified after very intensive testing would not directly lead to issues that
affect the running of the system live. However, time gained in not having to worry too much about this
was definitely lost in trying to figure out the existing architecture of the system, and how it was all put
together. The lack of documentation and testing made this task even harder, and any changes still had
to be thoroughly manually checked in the initial stage of the project.

User

id int
username char(255) Dockerlmage
password char(255) . 7
email char(255) LH---04 id e
is_enabled bit
initials (O) char(255) UETW text
last_name (O) char(255) user_id (FK) |int
confirmed_at (O) datetime -
reset_password_token (O) | char(255) 1 Benchmark
1
i id int
+---0<
BenchmarkResult dockerimage_id (FK) | int
: X command text
id int .
ES
cloudproviderbenchmark_id (FK)| int 1
runtime (O) int 1
nmeath_oTlf_niq:I(\C/))(O) ::: CIoudProviderBenchmark}I:
network_out (O) int id int
disk_read_ops (O) int L bH-H -
disk_read_bytes (0) int benchmark_id (FK) | int
disk_write_ops (0) 8 instancetype char(255)
disk_write_bytes (0) int state smallint
total_cpu (0) int
visualization_url (O) int

Figure 3.1: Overview of the existing data model.

3.3. Prior System Architecture 21

3.3. Prior System Architecture

In this section, we describe the architecture of the system as received at the start of the project. It was
composed of a web application front-end, an orchestrator back-end, and two analyzers: a price engine
to calculate benchmark run prices for a given provider, and a resource usage aggregator to compile
the resource usage statistics into a pleasant report. The architecture is displayed in figure 3.2.

The web application was used by the end-user to upload images and start benchmarks, while the
orchestrator back-end was responsible for running the benchmarks. A PostgreSQL' relational database
system was used to store general data about users, images, benchmarks and aggregated results. The
data model of this database is shown in figure 3.1. An InfluxDB” 0.8 time series database system
was used to store and retrieve resource usage data from the system under test. Finally, a Grafana®
installation was used for the visualization of the aggregated data.

_ Y — PRICE

WEBAFP ENGINE

WORKLOAD
IMAGES

)

IRL PO S_GRESQL]

BEMNCHMARK
RUMMNER

COMNFIG l DOCKER L

RESOURCE
USAGE
AGGREGATOR

I

&

e

n

r/

/

[..

N

MACHINE

SYSTEM
UNDER TEST

Figure 3.2: High-level overview of the prototype benchmarker architecture.

A large part of the application logic was concentrated in the web application: it contained the full
database model objects used by the Object-Relational Mapper (ORM) also used in the other parts. Fur-
thermore, the majority of the logic for running benchmarks was tucked away in the ‘tasks’ submodule,
invoked by the orchestrator. This means that in practice, while being the front-end of the system, a
large part of the benchmarking system was directly dependent on the web application subsystem.

The web application front-end was responsible for being the user-facing part of the application,
and provide a simple interface for uploading images and starting benchmarks, as well as checking on
their status and results. To this end, it used the Flask® microframework, and the SQLAIchemy ORM
to abstract away the PostgreSQL database backend. It communicated with the other parts by directly
importing them: the benchmarker was a single process of which the control flow was orchestrated by
the web application.

The orchestration back-end was mostly responsible for determining how to provision the system
under test and deploy the workloads. This was hardcoded to use Docker Machine”. The provisioning
and deployment process took place by using shell scripts that invoked Docker Machine after manipulat-
ing certain given parameters. The Celery® task queue system was used to manage benchmarker runs
and have them be independent from the web application. For managing the benchmark, it invoked the
tasks stored in the web application package.

Each part of the benchmarker had its own configuration submodule, storing local settings relevant
to the subsystem.

Lhttp://www.postgresql.org/
2https://influxdb.com/
3http://grafana.org/
“http://flask.pocoo.org
Shttps://docs.docker.com/machine/
Shttp://www.celeryproject.org/

22 Design of a Cloud Benchmarker

3.4. Architectural Changes

Both for the objective of improving the development process, as well as implementing the required
extensions as described in section 2.8 and chapter 4, significant architectural changes were made to
better organize, decouple and modularize the benchmarker. In this section the architectural changes
to the system that were done as part of the project are described.

3.4.1. Data Model Re-design

We found the existing data model as shown in figure 3.1 limiting in numerous ways. For instance,
a benchmark could only be bound to a single image, which would give issues when modeling more
complex architecture deployments which require multiple images. Furthermore, we found the naming
of certain models odd and sometimes very unnecessarily specific (e.g. DockerImage for workload
images). Furthermore, ‘ownership’ of resources by a user was complicated: it always led back to which
image a benchmark used in order to indicate ownership. We implemented the following changes:

¢ Rename the models to have clearer and more generic names: DockerImage — Image; Cloud-
ProviderBenchmark — Run; BenchmarkResult —» Result.

e Turn the N:1 relationship of Benchmark to Image into a N:N relationship. This results in a bench-
mark being able to have multiple images, which is useful and necessary for complex architecture
deployment.

e Remove the command field from the Benchmark and add a new Workload model: this model
stores the actual workload a Benchmark will run and how it has to run it, including links to the
images. We therefor placed it in between the Benchmark and the Image models, severing the
original link between Benchmark and Image.

e Split up the instancetype field in Run to its proper components: provider, instance and
region. The field was formerly a composition of these three components, joined together by a
special delimiter character. Normalization practices prescribe that these should be separate fields,
as they are separate data components.

e Add a provision time field to Result, since we do want to measure provisioning time as well.

¢ Add useful fields to Image, such as the image ‘tag’ (used for Docker images), and the actual path
where the image is stored. This was previously calculated by the benchmarker application from
the image ID at various different points.

As result, figure 3.3, shows the new data model. While the changes, except for the Workload
introduction, are relatively minor in nature, they made the data model a lot more pleasant to work with
and reason about.

3.4.2. Deployment Model
The prototype implementation had a very simple deployment model, consisting of two steps: deploying
the workload, and running the workload. Furthermore, this was hard coded to use Docker Machine for
both steps, leading to only having support for the cloud providers supported by Docker Machine, and
Docker-packaged workloads. In this change, the deployment model was revisited and redesigned to
be modularized, pluggable and easily extensible.

The first step was to separate the deployment steps further to enable abstraction of different parts.
The deployment model was changed to have four steps:

¢ Provisioning: obtaining a machine from a cloud provider to run workloads on.

¢ Configuration: preparing the obtained machine for the workload type, for example by installing
required prerequisite software.

¢ Deployment: getting the workload resources and monitoring software on the machine.

e Running: running the workload and measuring resource utilization with the monitoring software.

3.4. Architectural Changes 23

Image

User id (FK) int
id int name text PO
H-0< tag char(255) i
username char(255) path char(255) 1
password char(255) user_id (FK) | int !
email char(255) '
:i,f;;ﬁb(l(e)? Ell'ltar(Z 55) Workload E Workloadlmages
last_name (O) char(255) id (FK) int ! id (FK) int
confirmed_at (O) datetime -H
reset_password_token (O) |char(255) type tinyint 5O---H workload_id | int
- command | char(10) image_id int
= :
Result | |
d oG E Benchmark
1 id (FK) int
run_id (FK) int -
runtime (0) int user_id (FK) int
max_memory (0) int workload_id (FK) | int
network_in (O) int
network_out (O) int Run T
disk_read_ops (O) int A
disk_read_bytes (0) |int id int
disk_write_ops (O) int | 41 --H-
disk_write_bytes (0) |int benchmark_id (FK) | int
total_cpu (O) int instancetype char(255)
visualization_url (O) |int state smallint

Figure 3.3: Overview of the new data model.

These four steps were then distributed over three pluggable deployment classes:

« Provisioner: perform the provisioning and deprovisioning steps.
¢ Configurator: perform the configuration and cleanup steps.

¢ Deployer: perform the deployment, run and cleanup steps.

Each class is also responsible for cleaning up the changes it has made. For a provisioner, this would
mean making sure the provisioned machine is also destroyed after the run is done. For a configurator,
this would mean removing any additional software it has installed. Finally, for a deployer, this would
mean cleaning up after the workload and removing the workload and monitoring software.

Each class implementation is fully independent and can be swapped out for another. This architec-
tural change allowed us to quickly and efficiently add support for new cloud providers and workload
formats without meddling in unrelated modules. An overview of the new architecture is depicted in
figure 3.4.

A model where the configurator and deployer were merged into one class was also considered,
but rejected because of dissimilar workload types requiring identical configuration, such as Docker and
Docker Compose workload types.

The second step was to implement automatic selection of the appropriate method for a given bench-
mark. Instead of a centralized place were this was decided, we opted for decentralized selection, where
every provisioning, configuration and deployment method can state if it supports the given benchmark
or not. The orchestrator then iterates over all methods and collects a supported combination. This
makes selection flexible and keeps support logic isolated in the method implementations.

Finally, the existing Docker Machine method had to be ported over to this new model. This is
discussed in section 4.5.

3.4.3. Orchestrator Separation

In the pre-existing implementation, the web application front-end and orchestrator back-end were
heavily coupled, with some orchestration functionality even being implemented within the web applica-
tion. In order to be able to guarantee stability and cleanly separate out different functionality, we would
have to split up the orchestrator and separate it entirely from the web application. This would allow

24 Design of a Cloud Benchmarker

SYSTEM
UNDER
TEST

PROVISIONS,
COMFIGURES,
DEPLOYS & RUNS PROVISIONER 1
!
i PROVISIONER 2 m"‘“@g
. ‘% PROVISIONER 3

E—— -
CHOOSES CONFIGURES SYSTEM
[——

ORCHESTRATOR ORCHESTRATOR | e UNDER

o, gyt
\ DEPLOYER 1 y

DEPLOYER 2
DEPLOYER 3

Figure 3.4: Overview of the changes in the orchestrator deployment model.

it to run independently from the web application as well, focusing on what it's good at: orchestrating
benchmarks.

As described in section 3.3, the prototype implementation contained four modules: the web appli-
cation, the orchestrator and two analyzers. The first step in separating the web application and the
orchestrator was deciding which analyzer(s) were needed by either, if any.

Inter-application Communication

In addition, the web application would still have to communicate with the orchestrator, for example
to inform it of a new benchmark being created. Previously this was done by directly importing the
orchestrator module, and calling its methods. However, with the orchestrator running in a separate
process or even container, a new way for the two to communicate would have to be devised. Some
methods we considered were:

* Sockets: Setting up a bi-directional pipe (socket) between the two processes and sending se-
rialized messages over this pipe. This has the pro of being bidirectional, where any party can
initiate a message, but a protocol would have to be invented and made stable. In addition, it
was uncertain how how well listening on a pipe would work with the HTTP server within the web
application.

» Database triggers: Sharing a database instance between the web application and the orches-
trator, and setting database triggers when new data was inserted. This way the orchestrator
would be able to directly respond to new data in the database, without directly needing a notifi-
cation from the web application. However, it could be the case that data was inserted into the
database that was not yet ready to be ran as benchmark. Furthermore, it would make analyzing
the communication between the orchestrator and web application very difficult and opaque, and
exactly how the database would call back to the orchestrator was hard to figure out, and possibly
not portable across database platforms.

o HTTP API: The orchestrator exposing a RESTful (as described by Fielding and Taylor [22]) HTTP
API. This would allow us to use a standard protocol to communicate, although the message
specifics and API would still have to be designed. Furthermore, because of this standardization
it would be easy to implement using any of the various HTTP libraries available, and would be
portable across any implementation of the orchestrator, being able to survive severe architectural
changes or rewrites.

After having considered our findings, summarized in table 3.1, we chose to implement communi-
cation as a RESTful HTTP APIL. From the requirements we determined that the web application only
ever needed to inform the orchestrator of events, so bi-directional message initiation was not needed.
A RESTful HTTP API made it easy to follow the communications between the web application and or-
chestrator, and was easy to implement using any of the various Python micro-frameworks available.

3.4. Architectural Changes 25

Table 3.1: Comparison of the reviewed orchestrator communication techniques.

Method | Portable Standardized Ease of Implementation Bidirectional

Socket Yes No Yes
Triggers No No Hard Yes
HTTP API Yes Easy No

Furthermore, we determined a HTTP orchestrator API would also be useful in the implementation of
custom provisioning, as described in section 3.4.4.

From analyzing the interactions between the web application module and the orchestrator module,
we determined the API had to make it possible to fulfill three tasks:

o Start a run: For a specific given run in a benchmark: provision, configure and deploy the
machine, and run the workload and resource analysis software.

» Retry a run: For a specific given run in a benchmark that failed: retry this run according to the
steps above.

e Cancel a run: For a specific given run in a benchmark: cancel the run and clean up all resources.

We deemed implementing starting, cancellation or retries for whole benchmarks as unimportant,
as it could be performed by performing the same action for all runs in that benchmark.

Allocation of Data Sources

Another important consideration was data sharing between the separated applications. We had to
decide on which of the data sources available to the benchmarker would be made available to which
application, and due the possibly concurrent usage of these sources data synchronization issues had
to be taken into account.

¢ Relational database: Containing the basic data structures for common models, such as users,
images, benchmarks and runs, this would be needed by both the web application and the orches-
trator. The web application could use the decided-upon communication protocol to transfer data
over to the orchestrator, but this would require deciding upon a (de)serialization protocol. This
was furthermore not needed, as the database was well-equipped to handle synchronization of
data and race conditions, following ACID[23][24] principles. We decided to make the database
available to both the web application and the orchestrator.

¢ Time series database: Containing the measurement data from a benchmark run, this would
be needed for the aggregation and processing of resource usage. In our new split-up design,
this was fully handled by the orchestrator, and the web application had no use for it. It was thus
only made available for the orchestrator.

* Workload images: Containing the actual data and applications that belonged to workloads, this
was needed by both the web application so users could upload images, and the orchestrator so
it could upload and run those images to the system under test. We saw no significant advantage
in using the communication protocol to transmit the images. Furthermore, as only the web
application produces new images, data synchronization issues are not relevant.

The decided-upon division of data sources is summed up in table 3.2. The architectural changes
from this features are visualized in figure 3.5.

3.4.4. Custom Provisioning

A big new feature in the benchmarker is being able to run workloads on any Linux host on which
commands can be manually run. Called ‘custom provisioning’, this allows running workloads on cloud
providers for which support has not been added yet, or own machines optionally behind network fire-
walls. This would greatly improve the extensibility of the benchmarker, not requiring any programming
changes to run workloads on new kinds of systems.

26 Design of a Cloud Benchmarker

Table 3.2: Division of the data sources between the separated applications.

Data Source Web Application Orchestrator
Relational Database Yes Yes
Time Series Database No Yes
Workload Images Yes Yes

:
WEBAPP / ~~_ /

ORCHESTRATOR WEBAPP ORCHESTRATOR
—_

PRICE ENGINE |::> PRICE HTTP API RESOURCE

ENGINE AGGREGATOR

RESOURCE

AGGREGATOR X /
L3
[RELATIONALDB} [IMAGES 1

Figure 3.5: The separation of the orchestration component.

Communication Program

A big factor considered in the design was ease of use: ideally running the entire workload would only
require a single command, with the orchestrator taking care of everything on the machine after that.
To this end we opted to have the single command consist of downloading and running a single program
that would communicate with the orchestrator to run the workload. The alternative of having the user
run a bunch of commands manually was found too cumbersome. Having decided this, we had to
consider an implementation language for this program, taking into account portability:

¢ Python: Considering the rest of the prototype implementation was written in Python too, this
would make the code base consistent. Python being a high-level language would make the script
trivial to write, too. However, we consider requiring a Python runtime to be installed on any
system we might want to test unreasonable.

e C: The de facto implementation language for Linux and other UNIX-like environments, C programs
can be expected to run everywhere once compiled. However, being a low-level language would
make implementation difficult. Furthermore, we would have to compile a different binary for
every target operating system workloads would be ran on.

¢ POSIX shell: The de facto scripting language for Linux and UNIX-like environments, guarded
by the POSIX[25] standard. If written carefully, programs written in this language are portable
across all POSIX compliant systems, and no further runtime except that mandated by POSIX is
required.

We summarized our findings in table 3.3. From our design considerations, we value portability and
lack of extra runtime requirement highly, as ideally as little as possible is required from the target system
under test. To this end, we decided to use POSIX shell to implement the communication program.

3.4. Architectural Changes 27

Table 3.3: Considered languages for implementing the orchestrator communication program.

Language | Difficulty Portable Needs Extra Runtime
Python High-level Yes Yes
C Low-level No
POSIX shell | High-level Yes No

Communication Protocol

Another consideration was the protocol used to communicate with the orchestrator. Since the system
under test may be behind network firewalls or Network Address Translation[26] (NAT), we can not
expect the orchestrator to be able to initiate connections to the system under test to send commands.
To solve this, the client should initiate a TCP connection, which can then be used by the server to ‘push’
new commands and data. A number of standardized and less-standardized protocols such as Reverse
HTTP[27] , WebSockets[28] and BOSH[29] were considered. The issue that we found at the time was
that these all required additional software or libraries on top of the relatively slim requirements we
had made for systems under test for custom provisioning. Furthermore, we did not need bidirectional
message initiation, as the orchestrator would only be sending commands to the system under test. As
a result, we devised a simpler protocol on top of HTTP:

1. Initiation phase: The system under test (client) opens a HTTP connection to the orchestrator
(server) and sends a POST request indicating its availability. The connection is kept open.

2. Messaging phase: The server is now free to start sending messages. These messages are sent
as HTTP responses, with the HTTP content body containing the message contents. Once the client
receives a message, it closes the HTTP connection, processes the message, and opens a new
HTTP connection again, sending its response (if any) as a HTTP POST request. The connection
is kept open and the server is now free to send a new message.

3. Termination phase: Once the server is done with the client, it simply sends a HTTP response
with a message telling the client to terminate. The client will close the connection and not open
a new connection again.

This protocol can be seen as a variant of Reverse HTTP, treating HTTP responses as requests,
and HTTP requests as responses, except for the initiation and termination messages. However, it
requires nothing more than a standard HTTP client on the system under test and a HTTP server on the
orchestrator. In line with keeping the requirements for the system under test minimal, we deem this a
good solution for our architecture. From section 3.4.3, the orchestrator had already gained a HTTP API
that could be used in the implementation of this. Furthermore, the system under test already needed
some way to retrieve the communication program from the orchestrator in the first place: HTTP was
deemed the most standardized protocol to do this, so the system under test would already require a
HTTP client.

3.4.5. Other changes
A lot of other, more modest changes to the design were made as well. In this section they will be all
briefly discussed.

Improving Logging

The prototype implementation received no kind of feedback from the orchestrator about the status of
a benchmark run, aside from a basic keyword like ‘running’, ‘finished’ or ‘error’. We opted to improve
logging of runs, not only to introduce clarity for the user, but also to make it easier to spot faults and
errors for the developer. In the new split-up architecture, we had to therefore decide upon a method
to transfer orchestrations logs to the web application. Because the orchestrator could not call back into
the web application, and because a database field was seen as excessive and unfit for a potentially
large log, we opted to share a data volume between the web application and the orchestrator. The
orchestrator could write its logs to simple files, and the web application could simply read those files
and show them in the web interface.

28 Design of a Cloud Benchmarker

Configuration Centralization
In the prototype implementation, each module had its own configuration submodule: see figure 3.2.
This proved cumbersome for the end-developer and system administrator, as finding out where exactly
a certain configuration value needed to be set could be time-consuming. Furthermore, certain config-
uration items were duplicated across the several submodules, so you had to be careful to modify the
right values at all points in the configuration.

A new design was put into action where all configuration was centralized in a single module, which
would then be accessed by all other modules. This merged configuration included among others private
keys, cloud provider credentials, cloud provider pricing information and file paths. The result of this

merge is shown in figure 3.6.
PRICE
WEBAPP ENGINE
— > (comne)

ORCHESTRATOR

PRICE

WEBAFFP ENGINE

RESOURCE
USAGE
AGGREGATOR

RESOURCE
USAGE
AGGREGATOR

CRCHESTRATOR

Figure 3.6: Overview of configuration architecture changes.

3.5. Testing Environment

Adopting the Extreme Programming methodology, a large focus was put on testing and quality as-
surance. However, the prototype implementation had no form of automatic testing whatsoever. This
means we had to set up an entire testing environment. In compliant with eXtreme Programming prac-
tices, we opted to go for frequent integration, as described by Booch et al. [30]. This avoids “integration
hell”, where integrating any changes from the developer’s testing branch back into the main branch or
a testing environment proves very cumbersome, because the branch has been isolated for so long.

Itis efficient for an agile team as opposed to its traditional counterpart, a dedicated quality assurance
(QA) phase. This is because it happens continuously, and thus consists of frequent but tiny changes
and fixes, as opposed to all needed changes being piled up at the end of a development phase. It
allows catching any integration mistakes early and fixing them as soon as possible. In this project, we
opted to go even further, using continuous integration (CI). This means that every developer merges
changes from the main branch into their feature repository on every new commit they make. This way,
problems due merge conflicts could be kept to a minimum.

An important good practice in frequent and continuous integration is continuous automated testing[30].
There was no such setup for the prototype implementation, so we devised an architecture for contin-
uous testing. It is shown in figure 3.7. Whenever a developer pushes a change to the code server, it
is automatically tested by the CI system using the code base’s unit and integration tests. When the
test run is finished, the developer is notified of the status using the team messaging system. This way,
a developer is very quickly notified if a change they made broke or changed features unintentionally,
and even developer branches can be kept stable.

Additionally, we opted to use continuous deployment (CD) as well: a revision of the main branch
that passed all tests would be automatically deployed to a testing environment for further manual
testing whenever appropriate. This way the product stakeholder would also have an immediate view
into the progress. When deciding on a new release to deploy to the production environment, one can
look at the releases that passed automated testing and can perform additional manual testing. It also
allows for faster feedback cycles from the product stakeholder, as they can directly see the product
working live in the testing environment.

3.6. Final System Architecture 29

CODE | NOTIFIES FN‘%'EJE'Q ﬁ:'JF?UP? DEPLOYS TESTING
RATIO =———=—=| ENVIRONMENT
SERVER SYSTEM {IF SUCCESSFULY
COMMITS (AFTER
CODE RUMNS MANUAL || MANUAL
TESTS TESTING) || DEPLOYMENT

NOTIFIES | TEAM |M NOTIFIES | CONTINUOUS PRODUCTION
INTEGRATION ENVIRONMENT
SYSTEM TEST RUMMNER

Figure 3.7: Overview of testing and deployment architecture.

For tests proper, we decided on three types of automated testing, each of which approached using
any of the two methods of white-box testing (testing with knowledge of inner parts of the system [31])
and black-box testing (testing without knowledge of inner parts of the system, only checking input and
visible output [31]):

¢ Unit testing: Testing the individual functionality of code units that work alone[31]. This would
be typically approached using white-box testing, since any effects might not be immediately
visible at the unit level. An example of this is testing if the price engine outputs the correct price,
given resource usage data for a certain provider.

« Integration testing: Testing the interactions between units of code[31]. This would be ap-
proached using a mix of white-box and black-box testing, but mostly black-box testing. An ex-
ample of this is that given resource usage data, the orchestrator successfully calls Grafana for
visualization of the data.

o System testing: Testing interactions of the user with the entire system[31]. This would be
approached using black-box testing. An example of this is running a complete benchmark through
the benchmarker and ensuring that a machine is provisioned, workloads are ran and results are
generated.

This hierarchy of tests is shown in figure 3.8. Other test types like user acceptance tests and
usability tests were left out because they were considered very hard to automate.

(SYSTEM TEST)

(INTEGRATION TEST) (INTEGRATION TEST)

(unmrest) (unirrest) (Cunmrest) (unirtest) (unmrest) (unmtest) (uNiTTesT)

Figure 3.8: Testing type hierarchy for automated tests.

3.6. Final System Architecture

In figure 3.9, we depict the design of the re-architectured benchmarker. We believe this new design
fits our original design goals as described in section 2.7 a lot better:

¢ It is more correct because of the implemented test suite that makes sure the code does what
it is supposed to, and the automated testing to ensure it keeps doing this. Additionally, the new
deployment model makes it easier to support more workload types and cloud providers, easily
increasing the number of applications supported by the benchmarker.

Design of a Cloud Benchmarker

« It is more robust because the orchestrator and web application are now fully independent,
separated applications: a mistake in one can not crash the other, and the split makes external
dependencies better organized.

It is more extensible because the deployment model has been changed to a pluggable archi-
tecture, where support for new cloud providers and workload formats can be trivially added.

¢ It is more secure because the new deployment model guarantees clean-up of potentially propri-
etary workload images, making sure no third party can access them even if the cloud provider’s
machine cleanup procedures are lacking. Furthermore, assigning a user to benchmarks in the
data model allows for better and easier access checking.

« It is more maintainable because both the internal and external architecture have been ab-
stracted and split up better, allowing for better understanding what a piece of code does and
easier swapping out of modules. Furthermore, the addition of a full test suite and automated
testing make finding regressions introduced by new changes a lot easier.

Ty Ty
[—— _ —
WEBAPF ORCHESTRATOR SYSTEM
C— =
o UMNDER TEST
\ WORKLOAD G
@ IMAGES @

PRICE e RESOURCE ciﬁ:{ J
i 3 — UsAGE
ENGINE !fi‘ POSTGRESQL | o7 | sccmeerron

L —
TS it

Figure 3.9: High-level overview of re-architectured benchmarker.

|

Implementation of the Cloud
Benchmarker

4.1. Overview

Being an agile project, the implementation of the benchmarker involved the bulk of the time spent
on the project, with the design being improved iteratively. In this chapter, implementation specifics
and difficulties are discussed for the more difficult parts of the project. First, we discuss the employed
development methodology and software in section 4.2. Then, in sections section 4.3, section 4.4,
section 4.5 and section 4.6, we discuss the implementation of some of the largest changes made from
the prototype. In section section 4.7 we discuss the setting up of the testing environment and the
associated difficulties. Finally, in section 4.8 we discuss the process of making the benchmarker both
Python 2 and Python 3 compatible.

31

32 Implementation of the Cloud Benchmarker

4.2. Development Methodology

Central to any development process is the methodologies used to turn the process into a streamlined
and effective one. Numerous methodologies, tools, and paradigms have been considered, and in this
section the findings will be presented.

4.2.1. Development Process

For the development period, eXtreme Programming (XP) was chosen as the agile development method-
ology. Agile principles have proven highly effective for small teams[32]. It allows teams to quickly adapt
to requirement changes and to rapidly get features up and running, which is especially useful in the rel-
atively short eight-week development period. The short sprints allows splitting up the implementation
of extensions effectively, and adopting a test-driven approach.

Sprints of two weeks were chosen, with flexible milestones for extensions set at the start of every
week. eXtreme Programming engineering paradigms such as test-first development, extensive code
review and simple code were seen as very beneficial to the overall engineering process.

Waterfall was considered as development methodology, but eventually rejected due its inflexibility
over the short development process, the requirement to specify full architectural changes up-front and
the lack of engineering guidelines. Scrum was a very debated addition, but was eventually also rejected
in favor of eXtreme Programming due the latter featuring shorter sprints and more flexibility within these
sprints, as well as a focus on good engineering principles, leading to a feeling of redundancy in adding
Scrum concepts.

4.2.2. Communication

The team communicated directly, being present at the Nerdalize office at YES!Delft every weekday.
Working hours from around 09:00 to around 17:00 were decided on, with some flexibility allowed as
long the weekly quotum of forty hours was met. A Trello' board was set up to keep track of tasks and
progress. Furthermore, Slack? was already used by Nerdalize as team communication tool.

Partial remote working was briefly proposed by Nerdalize, but quickly rejected because of the per-
ceived benefits of face-to-face communication and regular working hours.

We integrated with the rest of the Nerdalize development team by using Slack and face-to-face
communication, but we were the only two developers working on the benchmarker project. However,
other developers were more than willing to help think issues over or do dry user testing of the bench-
marker, for which we are very grateful. This aside, semi-regular stakeholder meetings with Eric Feliksik,
Director of the Cloud Orchestra, and Mathijs de Meijer, CTO, were had to discuss progress and refine
and reorder backlog items.

4.2.3. Source Control

Git®> was chosen as the source control system for this project. It provides distributed source control,
where everyone can work independently on their own feature and merge it later. Furthermore, the
existing benchmarker base source code was already hosted on a Git repository, making the transition
easy.

Subversion was also considered for this role, but rejected due its very centralized nature. Extensions
to the benchmarker base are in principle independent and can be implemented in parallel, but having to
push every change to a central repository can make this very hard. Mercurial was also considered, but
not chosen due to the developers’ unfamiliarity with it, and it not being perceived as having significant
advantages to Git.

4.2.4. Source Quality
It is important to keep an eye on the overall quality of the source code during the development process.
Source code should not only work, but also be well-organized, cleanly designed and maintainable (see
section 2.7). Two tools were chosen for continuous inspection of source code quality.

Pylint* was chosen as the tool that can be run locally and do quick checks on code quality while

Lhttps://trello.com
2https://slack.com
3https://git-scm.com
“http://www.pylint.org

4.2. Development Methodology 33

developing, using IDE integration mechanics. Alternatives such as Pyflakes and flake8 were considered,
but they were found to be lacking in metrics. A fast and lean tool like this allows for rapid checking
and improvement during the development of a feature, and catching errors before they are committed.
Since Python, the programming language used in the base implementation, is dynamically typed and
relies on runtime checks instead of compile-time ones, having a static analysis tool that runs periodically
in the IDE is very useful for catching issues early.

In addition to a quick local checker, a more elaborate architecture inspection tool was also required.
This tool would be run on every commit and output a full report on various metrics of source code
quality. It was decided to use SonarQube® due to its elaborate featureset and ability to be run on an
own server. Numerous alternatives like Kiuwan, Parasoft and Semmie were looked at, but they were
all commercial and proprietary tools, of which a potential purchase and evaluation was not within the
scope of this project. Another potential candidate was Yasca, but its analysis skills for Python source
code seemed limited, and integration with other systems was not implemented.

Table 4.1: Initial and final overview of the used tools and software.

Category ¥ Name Location
Source code management | Git https://git-scm.com
Source code hosting | Bitbucket https://bitbucket.org
Task management | Trello https://trello.com
Team communication | Slack https://slack.com
Continuous integration | Strider http://stridercd.com
Continuous deployment | Strider http://stridercd.com
Source code quality inspection | Pylint http://www.pylint.org
SonarQube http://www.sonarqube.org
Editor | Eclipse https://eclipse.org
Vim http://www.vim.org
Source code management | Git https://git-scm.com
Source code hosting | GitLab https://gitlab.com
Task management | Trello https://trello.com
Backlog board Office
Team communication | Slack https://slack.com
Continuous integration | GitLab CI https://gitlab.com
Continuous deployment | GitLab CI https://gitlab.com
Source code quality inspection | Pylint http://www.pylint.org
SonarQube http://www.sonarqube.org
Editor | PyCharm https://www.jetbrains.com/pycharm
Vim http://www.vim.org

4.2.5. Testing

A test-driven development (TDD) approach was chosen for this project. Being one of the key points
of eXtreme Programming, it allows the developers to quickly iterate over benchmarker features. Its
behavior-driven nature makes the implementation more likely to follow the design, as the behavior is
specified upfront and the implementation is continuously tested against this.

We set up a continuous integration (CI) server and configured it to automatically test every commit
against the test suite, and notify the developers if a test failed with these new changes. We initially
chose Strider® as the implementation of choice due its integration with Git services, customization,
ability to be self-hosted, and its pleasant user interface. However, we quickly ran into issues, as
described in section 4.7, and eventually opted to use GitLab CI instead. This was paired with a switch
to GitLab for source code hosting, being a prerequisite to use GitLab CI.

Shttp://sonarqube.org
Shttps://github.com/Strider-CD/strider

34 Implementation of the Cloud Benchmarker

We opted to utilize the feature branching model commonly combined with Git, where functionality
is separated into features. Features are worked on independently in isolated source code branches,
which are merged back into the main (‘master’) branch when they have been completed and tested.
The main branch should always be stable and contain a working a product: experimental features
should be merged into a special development (‘edge') branch when they have been completed.

4.3. Separating the Orchestrator

The orchestrator separation as described in section 3.4.3 was one of the heaviest changes implementation-
wise. Any and all links between the web application and the orchestrator had to be separated and
replaced with API calls. Furthermore, any shared resources had to be carefully factored out.

The prototype implementation was deployed using application containers via Docker Compose’. The
once-single container containing the entire application now had to be split up in two containers, one
for the web application and one for the orchestrator. The additional containers containing the relational
database and other data sources had to be re-linked to one or both of the new containers, according
to the layout in section 3.4.3. Furthermore, the code shared between the two new applications had to
be included in both containers. An overview of the code module division between the applications is
given in table 4.2.

Table 4.2: Module division between separated web application and orchestrator.

Module | Web Application Orchestrator

config *

models

price_engine

webapp
resource _usage aggregator
orchestrator

*

* X X X

We analyzed the interactions between the web application and the orchestrator, and designed an
orchestrator HTTP API, outlined in table 4.3. The web application would use this API to ‘kickstart’ an
operation in the orchestrator, which would give the web application feedback by updating the relevant
database entries with new information. The overall interaction when running a benchmark since the
separation of the orchestrator is displayed in figure C.1.

Table 4.3: Orchestrator RESTful HTTP API.

Endpoint HTTP Method | Input Description
|
/run POST ' id: RunID Run the benchmark run identified by id.
/retry POST ' id: RunID Retry the benchmark run identified by id.
/cancel POST ' id: RunID Cancel the benchmark run identified by id.
|

An issue we ran into is that in the testing environment, the application still had to be ran as one
container, or coverage information would not be recorded properly. As a result, we could not rely on
Docker’s hostname resolution to connect to the ‘orchestrator’ container, and had to add configuration
options to override the orchestrator’s address and port, and set these in the testing environment.

4.4. Improving Data Storage

The prototype implementation ran the collectd® system metric collection software on the system un-
der test, gathering data every ten seconds and sending it to the orchestrator’s InfluxDB® time series

7https://docs.docker.com/compose/
8http://collectd.org
Shttps://influxdb.com/

4.5. Implementing Additional Provisioning Methods 35

database. Data collection in this setup proved to be very failure-sensitive, occasionally dropping entire
collectd packets, or even worse, randomly locking up entirely, resetting any connection attempted to
it.

We approached this issue in two ways: first, we upgraded the aged InfluxDB 0.8 to InfluxDB 0.9,
greatly improving reliability and durability of the database engine. Sadly, InfluxDB 0.9 was in many
ways a rewrite: a lot of functionality was stripped out, moved or renamed. As such, a significant
amount of the benchmarker code that query InfluxDB had to be rewritten. Example query rewrites are
shown in figure 4.1.

0.8: SELECT DERIVATIVE(value) ROM "benchmark—1/disk—sda/disk_octets”
WHERE dsname='read ' GROUP BY time(10s) ORDER ASC;

0.9: SELECT DERIVATIVE(value) RROM ’'disk_read ' WHERE host = "benchmark-1"
AND instance = "sda” AND type = "disk_octets”;

0.8: SELECT MAX(value) RROM "benchmark—1/interface—ethQ/if_octets”
WHERE dshame="tx ’;
0.9: SELECT LAST(value) — FIRST(value) ROM ’interface_tx’
WHERE host = “benchmark—1" AND instance = "eth0” AND type ="if_octets”;

Figure 4.1: Differences between example InfluxDB 0.8 and 0.9 queries.

Additionally, we decreased the collectd statistic collection interval to one second, down from ten.
This would lead to increased network traffic, but a lot more accurate measurements. Now, the various
resource utilizations could be followed by the second, which proved very useful for applications with
quickly alternating processor usage patterns.

4.5. Implementing Additional Provisioning Methods

As part of extending the prototype to allow provisioning to more cloud services, two additional provi-
sioning backends were created. In this section we describe the implementation details and pitfalls we
ran into.

4.5.1. Custom Provisioning

The first additional provisioning method we implemented was one that allows the orchestrator to deploy
to any Linux host on which a command can be manually ran. We called this the ‘custom’ provisioning
backend, and implemented it first because it would allow us to test on any cloud provider, albeit with
some extra manual work of provisioning the machine and entering the command. As described in 3.4.4,
a long-polling HTTP API was chosen as the communication method of choice. This meant that a HTTP
client had to be installed on the server. Furthermore, TCP keep-alive support would be useful to detect
if the connection has dropped, especially in the case of long polling with significant amounts during
which no data is transferred. After doing a survey of client features, shown in table 4.4, we decided to
require the curl HTTP client to be installed on the machine. Luckily, this client comes pre-installed on
all the operating system images we encountered.

Table 4.4: Overview of HTTP client capabilities.

Client | TCP Keep-Alive HTTP POST Long Polling Typically Pre-installed

curl'? Yes Yes Yes Yes

GNU wget!! No Yes
BusyBox wget'? No No No No
HTTPie!> No Yes Yes No

The orchestrator HTTP API was extended to add the required endpoints for custom provisioning.
These endpoints are relatively simple and shown in table 4.5. The /util endpoint is where the client

36 Implementation of the Cloud Benchmarker

<?xml version="1.0" encoding="utf-8"?>

<message>
<type>command</type>
<command>docker pull maartenve/prime</command>
<quiet>false</quiet>

</message>

<?xml version="1.0" encoding="utf-8”?><message><type>command</type><command>docker
pull maartenve/prime</command><quiet>false</quiet></message>

"type’: ’'command’,
"command’ : ’"docker pull maartenve/prime’,
"quiet’: false,

}

{"type’ :’ command’,’command’ :’docker pull maartenve/prime’,’quiet’:false}

Figure 4.2: Message format encoded in XML and JSON for comparison, pretty-printed and compacted.

can download the custom provisioning client software from, and in a later provisioning stage, also the
workload images.

Table 4.5: Additions to the orchestrator API for custom provisioning.

Endpoint Method | Description & Arguments

/communicate POST Communicate with orchestrator to perform benchmark.

token: A security token identifying the machine.

result: The response to the orchestrator message, or the initiation message.
/util/<name> GET Retrieve supplemental benchmark software and data.

name: The identifier of the software or data to fetch.

While HTTP provides a suitable transport layer for messages, a message format had to be devised.
We decided to use a custom protocol formatted in JSON[33], due its ubiquity among web developers
and wide support, as well as its relative brevity compared to, for instance, XML documents. We compare
these two formats by example in figure 4.2.

The contents of the JSON-formatted messages were a simple JSON-object-encapsulated key-value
protocol, the type of which identified by the type entry. An overview of all message types is given in
table 4.6.

As described in 3.4.4, the protocol consists of messages by the server and responses by the client.
Initially, we ran into issues while deploying to Microsoft Azure machines, because they come pre-
shipped with a firewall that disconnects any TCP connection after four minutes of inactivity. Some of
our workloads took longer than four minutes to run, and thus would get cut off. We solved this by
decreasing the TCP keep-alive timeout between the client and the orchestrator to two minutes, sending
empty packets to prevent the firewall from disconnecting the connection.

4.5.2. Libcloud
In order to be able to provision to Google Compute Engine and several other providers unsupported
by Docker Machine, we implemented a provisioning backend using Apache Libcloud'®. Touting “the
avoidance of vendor lock-ins” and “using the same API to talk to multiple providers”, it claims to support
over thirty cloud providers[34].

During the implementation of the Libcloud backend, it became obvious that its provisioning model
differed from the benchmarker’s: instead of providing a procedural API to talk to the provisioned
machine in real time, all operations to be executed on the machine have to be supplied beforehand.

14https://libcloud.apache.org/

4.6. Implementing Additional Deployment Methods 37

Table 4.6: Orchestrator & System under Test communication protocol.

Type | Description & Arguments

Client Messages
started | Indication to the orchestrator that the client is available.

<no arguments>

ok | Server command was executed successfully with no further info.

<no arguments>

error | Server command failed to execute.

message: The error message

result | The result of the command executed by a command message.

code: The exit code of the executed command

output: The output of the command, unless quiet was true.

error: The error output of the command.

file | The contents of the requested file by a get message.

data: File contents

Server Messages
command | Execute a command in the shell.

command: The command to execute

quiet: Whether or not to return the command output

download | Download a file over HTTP.

url: The URL to download from.

path: The file path to save in.

get | Upload the contents of a file.

path: File path to upload

destroy | Benchmark run is over, end and clean up this script.

<no arguments>

Libcloud being incompatible with the usual model used for orchestration, we had to think of a work-
around to make Libcloud fit in, as this was not a model we found suitable to change the orchestrator
to. Eventually, we came up with a solution: re-use part of the custom provisioning method described
in section 4.5.1, so we can give a single command beforehand to Libcloud: the command normally
used to download and launch the custom provisioning script on a machine. With this solution, the
custom provisioning method can handle the usual provisioning operations and fit in properly with the
benchmarker’s orchestration model.

Another issue we ran into was that while claiming to support the same API across multiple providers,
in reality the API documentation and implementation did not match, in various ways across various
providers. For instance, a “deployment” operation, giving the specific set of operations that have
be performed after the machine has been provisioned, is documented to be specified as a list of
instantiated objects of classes from the 1ibcloud.compute.deployment module. However, for the
Google Compute Engine provider, the Driver.deploy machine () method took no such argument:
instead, it took the filename of a POSIX shell script to execute on the machine.

To solve this issue, we split up the provisioning implementations for each provider supported by
Libcloud that we could test. Formerly one generic method, it was now split into small dedicated
methods, each taking care of the individual derivations from the standard API by Libcloud’s driver
implementations.

4.6. Implementing Additional Deployment Methods

In addition to support for more providers, we also added support for more workload types. The
prototype implementation only supported Docker. While an easy and standardized way to package
applications for universal deployment, it does not scale well for more complex deployment architec-
tures that involve multiple services interacting with each other. To this end, we implemented Docker

38 Implementation of the Cloud Benchmarker

Compose'> workload support.

Docker Compose is an application that uses Docker to orchestrate container dependencies and
inter-links. Containers are specified using declarative YAML[35] specification files; refer to figure 4.3
for an example.

postgresql:
image: sameersbn/postgresql:9.4-3
environment:
— DB_USER=gitlab_ci
— DB_PASS=password
— DB_NAME=gitlab_ci_production
volumes:
— /[srv/docker/gitlab—ci/postgresql:/var/lib/postgresql

redis:
image: sameersbn/redis: latest
volumes:
— /[srv/docker/gitlab—ci/redis:/var/lib/redis

Ci:
image: sameersbn/gitlab—-ci:7.14.3
links:
— redis:redisio
— postgresql: postgresql
ports:
— "10081:80"
volumes:
— /srv/docker/gitlab—ci/gitlab—ci:/home/ gitlab_ci/data

Figure 4.3: Example Docker Compose YAML specification file, specifying three containers..

In other to differentiate between different workload types, a t ype field was added to the Workload
database model. This is a free-text string that could be used by deployment methods to determine if
they support the given workload format. Furthermore, a method to store the YAML specification had
to be devised. Luckily, there was already a field for storing a workload specification of some kind: for
Docker workloads, the command field was used to specify the command required to start the container.
We re-purposed this field to store workload specifications in.

With the required database changes done, a Deployer subclass was implemented. One issue
was that Docker Compose specification files, unlike regular Docker workloads, may refer to images
that do not exist on the orchestrator yet, like external public images used for supplementary services
like PostgreSQL. Furthermore, the specification files can contain certain ‘dangerous’ stanzas that might
provide a user with more privileges than strictly desirable.

To solve both of these issues at once, we implemented a simple Docker Compose YAML parser in the
orchestrator, which validates the specification against these bad stanzas, and looks up any container
images specified within to see if they are stored on the orchestrator for that user. If so, they will be
uploaded and loaded into the system under test. Any non-existing images specified will be fetched
from public repositories on the system under test.

4.7. Setting Up a Testing Environment

Because the prototype was completely untested and a general testing environment was not yet in place
at Nerdalize, an environment had to be designed and created. Several options were considered and
tested, and we will describe our experiences with each in this section. The environment had to be able
to run tests on each new Git changes, and be able to create and run Docker containers, as this was
what we used to test and deploy the benchmarker.

5https://docs.docker.com/compose/

4.7. Setting Up a Testing Environment 39

4.7.1. Strider

Our initial choice of testing environment was Strider'®, a continuous integration and delivery system
written in Javascript. We initially chose it for its seeming flexibility and attractive interface, despite
being a relatively new software package. Initial setup was easy, and it seemed to respond fine to Git
changes.

However, after adding Docker integration via its built-in plug-in system, fetching new changes from
the Git server suddenly started breaking. It seemed the Docker plug-in interfered with the Git module,
so that the Git module tried to run some commands locally on the server, and some in the Docker
application container, breaking the test procedure.

A bug was filed in Strider’s bug tracker, but this turned out to be a deep dependency issue that
was not trivially solvable. Since both Git and Docker support were vital to our project and testing
procedure, we set out to find an alternative to Strider for our needs. Our next candidate was an
established, well-known solution in the automated testing world: Jenkins.

4.7.2. Jenkins

Being unable to use Strider for our needs, we set out to try an established solution, the Java-based
Jenkins'/ automated testing system. It too had Git and Docker integration, as well as support for a lot
of different programming languages and testing software.

Having learned from our experience with Strider, we tested the Docker integration first. It seemed
to work, but was limited in its possibilities: it could only run the tested software in an already existing
application container, instead of creating a container from the software code base first.

As the automated instructions for creating a container were contained within the software repository
for the benchmarker, this meant it could not test the application proper within the testing container
designed for it. This meant we could not properly test the benchmarker, and fixing this would require a
rewrite of Jenkin’s Docker plug-in. This made Jenkins unsuitable for our needs as well, and we moved
on to the final candidate on our shortlist: GitLab CI.

4.7.3. GitLab CI

GitLab CI'® is a relatively new player in the continuous integration market, a spin-off project from
the GitLab'® source code management system. While very promising in features and interface, it was
initially lower in our candidate list due to requiring a GitLab installation where the source code is hosted
for its integration. However, after the unsuccessful experiences with the other two systems, we decided
to try it out.

GitLab CI's method of determining how to run tests was different from both Strider and Jenkins:
where the latter two required language and deployment-specific plugins, GitLab CI allows one to simply
specify the commands they needed to run in a declarative file called .gitlab-ci.yml in the code
base. Aside from being very flexible, this had the additional advantage of changes to the testing
procedure being recorded as part of your source code history, so that older versions can be re-tested
just as easily when the procedure has changed.

While GitLab CI also had Docker integration, this was similarly inflexible to Jenkins's, and we ended
up not significantly using up. In contrast, the simple declarative file contained all that was needed to
run the tests in a very straight-forward way, using Docker manually. This also allowed us to trivially
add SonarQube integration, despite no such plug-in existing for GitLab CI.

4.7.4. Conclusion
Our experiences with the three automated testing systems we tested are summarized in table 4.7.
We settled on GitLab CI due it being the only continuous integration suite that could fulfill our three
requirements: Git integration, Docker integration and SonarQube integration. It achieved this thanks
to its flexible testing procedure configuration.

We did have to move the source code hosting to a custom GitLab instance, however. This ended
up being beneficial as well, as it provided us with easy issue and milestone tracking, and in-line code

6http://stridercd.com
17https://jenkins-ci.org/
18https://about.gitlab.com/gitlab-ci/
19https://about.gitlab.com/features/

40 Implementation of the Cloud Benchmarker

reviews.

Table 4.7: Feature summary of tested CI systems.

Software | Open Source Git Integration Docker Integration SonarQube integration

Strider * *
Jenkins *
GitLab CI * * *

4.8. Porting to Python 3

As part of portability and support improvements to the orchestrator, we decided it had to be ported
to Python 3, a source-incompatible successor to the original programming language used, Python
(afterwards referred to as Python 2). Because some of the deployments of the benchmarker may still
run on non-Python 3-compatible environments, the source code had to be kept compatible with Python
2 as well. Thus, we set out to create a code base compatible with both Python 2 and 3.

We decided on an approach of first porting to Python 3, then fixing what is broken under Python
2. Because we already had the prototype running under Python 2, spotting breakages under Python
2 would be easier than under Python 3, where a breakage might potentially be due changed Python 3
semantics.

We started by using a conversion tool included with Python 3, 2to3. This tool performs, as much
as possible, an automated conversion of Python 2 source code to Python 3, and indicates issues that
were not automatically convertible. Example partial output of this tool is shown in figure 4.4. While
far from being a perfect tool, it provided us with a good base to start the porting efforts from. After
manually addressing the non-convertible segments, we did multiple full syntax check runs over the
source code base with Python 3 to confirm at least the source code syntax was conformant.

RefactoringTool: Refactored src/config/provider_information/__init__.py
-- src/config/provider_information/__init__.py (original)
+++ src/config/provider_information/__init__.py (refactored)
@@ -40,7 +40,7 @@
try:
with open(path.join(CURRENT_PATH, '{}.yml'.format(provider))) as f:

data = ordered_load(f)
for key, region in data['regions’'].items():
for key, region in list(data['regions'].items()):
yield (key, region)
except IOError:
logger.warning('Could not find %s.yml, no information for %s available.', provider, provider)
@@ -76,7 +76,7 @@

Figure 4.4: Example 2to3 output.

After this initial conversion, we started automatically and manually testing the new source code
to ensure semantics hadn’t changed. This caught quite a few issues that were left unaddressed by
2to3. For instance, a text string and raw binary data had the essential same type in Python 2: str.
In Python 3, this was split up into the bytes and str types, and so at certain points in the source
code semantic decision had to be made about what kind of data was being handled.

With the port to Python 3 complete, we began the reverse process to see what functionality was
broken in Python 2 by the changes. This was mostly painless, as a lot of the changes made were
backwards-compatible. The most significant change was the change of some standard library locations,
requiring us to accommodate both possible locations. The approach we took is shown in figure 4.5.

4.8. Porting to Python 3

41

First:
from pipes import quote

Now:
try:
Python 3 location.
from shlex import quote
except ImportError:
Python 2 location.
from pipes import quote

Figure 4.5: Importing from multiple possible locations in Python.

Experimental Testing of the Cloud
Benchmarker

5.1. Overview

During the course of the project, we have continuously kept track of the quality of the code base and its
functioning. We detail the measurements we used for code quality in section 5.2. section 5.3 expands
on our testing methodology.

When creating a measurement tool, making sure the overhead of said tool doesn't drastically in-
fluence the metrics is important. In section 5.4 we describe our measurement of the overhead of the
benchmarker.

We have also performed some experiments on cloud providers to demonstrate that the benchmarker
is capable of performing these. We compare different providers for a single workload in section 5.6.
Additionally, we run multiple workloads on different zones of the same provider in section 5.7, to show
that these zones have performance differences. Finally, we compare the provisioning time of different
providers in section 5.8. Full measurement data for all experiments can be found in chapter D.

43

44 Testing

Pylint code rating

-
=]

Rating (0-10)

[T TR (T T O = s O I =

0 50 100 150 200 250 300 350

Commit 1D

Figure 5.1: Pylint rating for the code base over time.

5.2. Code Quality

In order to measure the quality of our code we have used three tools: SonarQube’, PEP8” and Pylint®.
For SonarQube, we used the default configuration with all warnings enabled. For PEP8 we ignored
certain whitespace rules, as the implications of these rules seem irrelevant to us and we do not agree
with the aesthetic impact of these rules. In Pylint, we ignored several rules:

¢ The rules for enforcing variable name style contained too much false positives, such as the case
of assigning a class object to a variable.

e The rules forbidding wildcard imports, as this was used in the configuration module to allow local
override of configuration variables.

 The rules forbidding relative imports. Relative imports do not break anything in Python 2 and are
actually mandatory in Python 3, so we had to use those for compliance.

e The rules forbidding unused arguments. The provisioning and deployment classes had to follow
a strict API contract, and subclasses would not always use the arguments given to them. This
was normal and to be expected.

¢ Finally, the rules forbidding too broad exception catch clauses. In certain parts of the orchestrator,
we do not know nor care about the kind of exception that was thrown, but we know something
went wrong in the run regardless and do not want to crash the entire orchestrator, but cleanly
terminate the run.

We use all three of these tools because in part they do different things and we consider the overlap
useful. None of these tools are perfect and one might catch what the others miss. For instance, all
three check code style, but only Pylint and SonarQube delve deeper into code semantic analysis

Pylint assigns a rating to the code based on the amount of violations that are present. Throughout
the project, this rating has fluctuated. In figure 5.1 it is apparent that special focus was put on the
code quality after commit 250, after several features were already implemented. It is also clear that
the code quality has increased significantly from where the prototype was at.

Lhttp://www.sonarqube.org/

2https://pypi.python.org/pypi/pep8
3http://www.pylint.org/

5.3. System Testing 45

5.3. System Testing

We have performed a myriad of different tests on the benchmarker during development. For automated
testing, we created unit tests for the appropriate modules, integration tests for multiple modules and
system tests to check if the entire system processes are integrated properly.

At the start of the project we would run all of these tests for every commit. However, they have
significant disadvantages: cost and time. Some tests actively provisioned a machine at a cloud provider
to make sure provisioning works. Before the implementation of the custom provisioning method, this
was the only way to test that running a benchmarked worked at all. Aside from the obvious cost issue,
this would lead to several minutes added to our test time. After we completed the custom provisioning
method, we switched to running the tests locally on the CI server, so that at least the non-provisioning
parts of the benchmarker can be tested quickly and for free. We still run the (automated) provisioning
tests with instances in the cloud when we are testing manually or for a stable release.

A consequence of not running provisioning tests to cloud providers on every commit was that the
test coverage for these runs was not representative. Without these tests, the coverage percentage
would remain hovering around 80% total system coverage. However, running with the costly tests
included, it would jump to 90 to 95% coverage. While we could use the every-commit coverage to
track increases and decreases in coverage, it was sadly not useful anymore as an absolute indicator.

Not all testing has been automated. For instance, the trade-off for GUI testing would involve a
lot of time upfront for automated testing, but relatively little time for testing it manually. Especially
considering that developing new features usually always involves interacting with the GUI. For features,
the relevant GUI parts are tested manually and for stable releases, all features in the GUI are tested.

5.4. Measurement Overhead of the Benchmarker

When benchmarking, our aim is to measure how an application performs on a system under test.
Unfortunately, the benchmarker itself incurs resource usage on the system under test. The deployment
of the workload and the monitoring of the resources used by the system under test are considered
separately. For the deployment of the benchmark we use our custom implementation, which we'll refer
to as the deployment tool, and Docker Machine. Since the Libcloud deployment method is heavily based
on the custom deployment, we assume these to be equal. For the monitoring of the resources we use
the collectd” monitoring program, which we will refer to s the measuring tool. In our benchmarker, we
are interested in the metrics displayed in table 5.1.

Table 5.1: Interesting metrics for overhead testing.

Metric Unit Description

Provision time | seconds (s) | The duration from requesting a machine to having access to it.
CPU time | seconds (s) | The duration of the test.
CPU load jiffies The amount of total CPU consumed by the test.

Memory usage bytes The memory usage over the time of the test.
Disk read/write operations - The amount of disk read and write operations performed.

Disk read/write bytes bytes The amount of bytes moved by disk operations.
Network in/out packets - The amount network packets sent and received.
Network in/out bytes bytes The amount of bytes moved by network packets.

The most important of these metrics are the runtime and the network output, because they are the
main cost drivers for cloud computation in current common cloud provider cost models.

We formulate a hypothesis for the test plan: “The overhead of the deployment system with regards
to these metrics does not depend on the content of the benchmark”,

We expect this because the deployment tool simply performs some operations before and after the
workload has been run. We do not know the inner workings of Docker Machine but we expect it has
been implemented in a similar way. The operations are the same for every benchmark of the same
format and as such should not be influenced by the workload itself.

“https://collectd.org/

46 Testing

5.4.1. Test Plan

We will run Docker-based workloads, and assume that Docker is already installed on the system under
test such that no configuration is necessary. The installation of Docker as done by the deployment
tool is done in the same as a manual installation would be. The same applies to Docker Machine. We
perform these tests on a physical computer located on-premises. This is preferred to deploying to the
cloud, because cloud providers might allocate different resources to different machines between runs,
or workloads with different usage patterns.

Table 5.2: Tested workloads in overhead measurement.

Workload | Image Parameters Systems
A Sleeping 60 seconds All
B Sleeping 180 seconds All
C Prime calculation Eight cores, numerical range 100-80,000,000. All

For the actual test we ran the workloads depicted in table 5.2. We ran each of these workloads
three times across every method. We defined the benchmarker’s overhead as the amount of resources
the deployment method uses on top of running the workload manually. From the different duration
of the ‘sleep’ workloads we could easily derive whether the overhead of the benchmarker is runtime-
dependent or not. From the comparison between the sleep workload and the prime workload we could
derive whether the overhead depends on the system load.

Of course, our measuring tool has some overhead as well. Unfortunately, the operating system
does perform additional other operations during our workloads. Because of the difficulties involved in
measuring our measurement tool, this is left out of scope.

For our manual run, we launched a monitoring container and a workload container. The former
consisted of a collectd image sending the monitoring data to our InfluxDB time series database. We did
this rather than storing the data locally so that we could measure the network overhead of the bench-
marker. On the system under test we performed the sequence of operations depicted in figure 5.2.

REGISTER START TIME

FETCH START T START
WORKLOAD MONITOR #> WORKLOAD
AND MONITOR CONTAINER AND WAIT

REGISTER
FAILURE —_—
FAILURE i @ STOP TIME

REMOVE STOP
FIN <= WORKLOAD MONITOR
AND MONITOR CONTAINER

Figure 5.2: Overhead test plan sequence diagram.

The time measurements takes place after starting the monitor and before stopping it, because
starting and stopping the monitor image also incurs overhead.

For the deployment tool and Docker Machine, the runs are orchestrated from a virtual machine
on the same local network. This means that in these tests the network latency is also included in
the runtime. The monitor image is not stopped until the system under test communicates to the
orchestrator that the workload is done. The orchestrator then sends a stop command for the monitor.
This results in some more data being sent by the monitor and some measurement inaccuracy. This
inaccuracy increases as the network latency increases. Because the workload has stopped running at

5.4. Measurement Overhead of the Benchmarker 47

this point, the amount of resources used should be limited. We do not explore the effects of increased
network latency.

The tests have been run on a laptop running Ubuntu® 14.04 with the graphical user interface
disabled. This is not ideal as there were still some background processes running. However, these
should not interfere in any significant measure with the runtime and network out.

5.4.2. First Run Results

Table 5.3: Average overhead and standard deviation for each metric, compared to manual deployment original measurement.

Combined Overhead for Custom Docker
each Deployment Method Machine

Average Standard Average Standard

Deviation Deviation

Runtime (s) 1.56 2.38 2.33 1.15
Max memory used (Byte) 9055345.78 24568962.97 -12273436.44 23987835.98
Network out (Byte) 23864.56 80052.75 43763.78 91603.45
Network in (Byte) 102.56 235.15 163.11 531.74
Disk read operations -109.6 566.5 -110.9 566.5
Disk write operations 1478.7 3036.5 1388.2 3469.4
Disk read (Byte) -453290.7 2320756.6 -458752.0 2320650.6
Disk write (Byte) 278226716.4 157110972.6 172975900.4 268633417.4
Total cpu (jiffies) 528.11 626.95 192.78 453.65

Measured Runtime of Sleep (60s)

0 10 20 30 40 50 60 70
Runtime (s)

Figure 5.3: Runtime of a 60-second sleep workload across various provisioning methods original measurement.

As can be seen in table 5.3, the overhead of the runtime is rather large. This is mostly due to the
results of the ‘sleep’ benchmark as depicted in figure 5.3. However, we derive this overhead to be
constant, seeing as longer benchmarks have the same or less absolute overhead.

On the other hand, the overhead of the memory usage is limited, within a couple of dozen MiB. The
overhead in network out is even more constrained, being under one MiB.

For the disk operations, the background processes have introduced so much noise we can not say
anything conclusive about this.

Shttp://www.ubuntu.com

48 Testing

5.4.3. Second Run Results

Because of the overhead on the measurement of the runtime, we adjusted the way in which this
was measured in the orchestrator, putting the measurement point closer to the actual deployment.
Accordingly, we ran these tests again to see to which degree this has improved. The results of this
re-run are shown in table 5.4.

Table 5.4: Average overhead and standard deviation for each metric, compared to manual deployment re-run measurement.

Combined Overhead for each Custom Docker
Deployment Method Machine

Average Standard Average Standard

Deviation Deviation

Runtime (s) -1.22 1.83 -0.67 1.83
Max memory used (Byte) -13322012.44 8563068.51 -14346467.56 6401454.84
Network out (Byte) 1390.67 29542.26 11917.67 60851.47
Network in (Byte) 111.89 702.61 169.67 696.60
Disk read operations -0.7 9.0 0.0 8.3
Disk write operations -742.4 5049.3 -696.0 4278.4
Disk read (Byte) -9102.2 52026.2 -6371.6 50053.9
Disk write (Byte) 187862584.9 293713378.5 102311708.4 168806883.6
Total cpu (jiffies) -674.67 889.25 -747.00 810.60

Measured Runtime of Prime

Manual

Custom

Docker Machine

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Runtime (s)
Figure 5.4: Runtime of a prime workload across various provisioning methods re-run measurement.

From this, it shows that the runtime is now shorter using our deployment methods. This is mainly
caused by the runtime on manual deployment being very long. This might be due to a variety of
external factors. For instance, the system temperature at the start of the test may cause the CPU
not to be turbo boosted, degrading its performance. The runtime of prime on the earlier manual run
was a consistent 24 seconds, to which the results of our deployment tools are very close. From these
tests we can conclude that now our measurement of the runtime is more accurate with no significant
difference to manual deployment.

5.4.4. Provisioning Overhead

We have also measured the overhead of provisioning to a local computer using Docker Machine. The
measured provisioning time is depicted in table 5.5. The overhead is on average seventeen seconds,
which is a significant time, but as shown in section 5.8 still smaller than the inter-provider differences.

5.5. Measurement Accuracy 49

Table 5.5: Provisioning time measured using Docker Machine on a computer in the LAN.

Provisioning Average Standard

time(s) (s) Deviation(s)
17 17 1
16
18

5.5. Measurement Accuracy

While performing initial testing, it turned out that several measurements were not interpreted correctly
in the prototype. One main reason for this was mistaking absolute values that only keep increasing for
values that represent a differential between two points in time.

In addition, the CPU counters were read out without specifying which exact counter type to read.
As such the difference between two different types of CPU counters measurements would be taken,
i.e. the system CPU time counter and the user CPU time counter. The benchmarker now uses the
difference between the user CPU time counters, as this metric indicates the amount of jiffies used by
the user-space workload most accurately.

Another interesting inaccuracy in the measurements was causes by the disk measurements. In
Linux and UNIX-like systems, drives have a name and partitions on that drive are denoted by that
name followed by a number. For example, a drive sda with partitions sdal and sda2. The prototype
implementation summed all partition values and the disk value together. This resulted in the disk
measurements being twice the actual value.

5.6. Benchmarking across Different Providers

In order to show that the benchmarker can in fact compare providers we make a case study. We
compare the cost and runtime of a ‘Psipred’ workload on different instance types of the three main cloud
providers: GCE, Amazon EC2 and Azure. This test setup is depicted in table 5.6. We choose Pispred
because it folds 5000 proteins. Protein folding is not a dependent process, making it conveniently
parallelizable.

Runtime of the Psipred Workload by Threads

32 Threads |

16 Threads

0 20 40 60 80 100 120

Runtime (s)

Figure 5.5: Result of running the Psipred benchmark on a test server at Nerdalize with 16 physical and 32 virtual cores.

First, we determined whether running a number of threads equal to the amount of virtual or physical
cores would be more effective. As can be seen in figure 5.5 the workload is finished faster when run
with a number of threads equal to the amount of virtual cores. For each provider we have chosen four
instances: the two smallest instances of the two instance types most suited for CPU-heavy purposes.
Examples of instance types are Google Compute Engine *high compute’, Azure ‘Ax" and Amazon ‘c4’.
Instances within these types tend to scale linearly in their resources such as the amount of virtual cores

50

Testing

or memory available. Our chosen instances all have this characteristic, as depicted in in table 5.6. Our
hypotheses is that the workload will cost the same to run on the chosen instances of the same instance

type.

5.6.

Table 5.6: Different instances on which the Psipred workload has been run.

Provider Instance

GCE nil-standard-1
nil-standard-2
nl1-highcpu-2

nl-highcpu-4

D1
D2

Azure

Al
A2

EC2 c4.large

c4.xlarge
c3.large

c3.xlarge

1. Results

Cores Memory (GB)

1 3.75
7.5

2
2 18
4 3.6

3.5

1.75
3.5

N BN P

3.75
7.5

3.75
7.5

AN AN

As can be seen in figure 5.6, the costs for each instance type are within the standard deviation of
eachother, with the exception of Google Compute Engine’s ni-standard. We note that n1-standard-2
took the same amount of time as n1-highcpu-2, as can be seen in figure 5.7. We expect that the CPUs
in both instances are the same and that n1-standard-2 simply has more memory. The memory usage
for all of the runs was under 500 MiB, so we can determine that this extra memory remains unused.
This workload is cheapest to run on the Google Compute Engine’s n1-highcpu instance type, although
Amazon’s EC2 instances are not far off. To run it on Azure, on the other hand would cost more than
twice as much. With this, we have shown that we can use the benchmarker to get a price comparison
for our workload.

GCE Azure

cz

Cost of the Psipred Workload

AL (Standard) |
A2 (standard) [
DL
D2 [—-
ni-standard-1 [H
ni-standard-2 |
nl-highcpu-2 T
nl-highcpu-4 [
c4.large NN
ca.xlarge [ENGE—
c3large [N
c3xiarge (NG
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.0

Total Cost ($)

Figure 5.6: Cost result of running the Psipred workload on

different instances at different providers.

Azure

GCE

Runtime of the Psipred Workload

A1 (Standard) |
A2 (Standard) [N
D1 I
D2 |
nl-standard-1 T
ni-standard-2 [
nl-highcpu-2 [N
nl-highcpu-4 [T
cd.large NS —
cd.xlarge [N
c3.large NG
c3.xlarge [N
o] 500 1000 1500

2000 2500

Runtime (s)

Figure 5.7: Runtime result of running the Psipred workload on

different instances at different providers.

5.7. Benchmarking Different Workloads across Different Zones 51

5.7. Benchmarking Different Workloads across Different Zones

Google Compute Engine has an interesting approach to handling multiple generations of processors.
Rather than creating a new instance type, they use the same in a different zone with the same pricing
5. The newer generations processors have slightly lower clockspeeds, Sandy Bridge runs at 2.6GHz,
Ivy Bridge at 2.5GHz and Haswell at 2.3GHz /.

We expect that this will lead to performance differences in running different workloads. Some
workloads will benefit more from a new architecture than others. In order to verify this we run two
workloads on each of the zones in europe-westl. The first is an image that computes prime numbers,
the second is a raytracer. Because the cost is identical for these instances in different zones, we only
consider the runtime. All tests have been run on nl-highcpu-2 instances.

Runtime of Prime

In different zones

—
o

4

a

ge—

-

c

— =

[=]

20 40 60 80 100 120

Runtime (s)

Figure 5.8: Runtime result of running the prime workload on n1-highcpu-2 instances in different GCE zones.

Runtime of Raytracer

In different zones

europe-west1-b _
o
E
=8
5 oo |
5
L]
[

[=]

50 100 150 200 250 300

Runtime (s)

Figure 5.9: Runtime result of running the raytracer workload on n1-highcpu-2 instances in different GCE zones.

5.7.1. Results

As can be seen in figure 5.8, zone B takes significantly longer to finish the prime workload. Zone C
and D perform about the same, although the variance of D is significantly larger. For the raytracer on
the other hand, as can be seen in figure 5.9, zone B and C are very close in performance and zone D
again finishes the workload the fastest on average, with the highest variance. From these results we
conclude that there can be significant performance differences between zones on different workloads.

6https://cloud.google.com/compute/docs/zones
7https://cloud.google.com/compute/docs/machine-types

52 Testing

5.8. Provisioning Time

Another interesting factor in cloud computing is the provisioning time, or it takes before the machine
you are provisioning is available. During the last phase of our project we have measured this time
for the instances we have provisioned. For Azure and Amazon EC2, we chose Docker Machine as the
provisioning method. For Google Compute Engine, we Libcloud. We have measured the overhead of
Docker Machine in section 5.4.4. As such, we have added this overhead to the lower bound of the
error bar. Libcloud has not been measured in a similar way. However, Google Compute Engine is by
far the fastest in provisioning, even with Libcloud’s overhead. Because we have done experiments on
different Google Compute Engine zones, we have data concerning the provisioning time on different
zones. As can be seen from figure 5.10 the difference between zones is very small. Amazon EC2 takes
over three times as long and Azure takes over fifteen times as long.

Provisioning Time of Different Providers

For a specific zone/region

vest Europe.

europe-westl-p H

EC2 Azure

GCE

europe-westl-c H

europe-westl-d H

0 100 200 300 400 500 600 T00 800

Provisioning Time(s)

Figure 5.10: Provisioning time results on different providers in specific zones.

This experiment shows that by far, Google Compute Engine is the fastest in provisioning a machine,
somewhat closely followed by Amazon EC2, with Azure coming in last.

5.9. Summary

Using these test plans, we have not only done interesting experiments on various cloud providers in the
wild, but also shown the effectiveness of the final benchmarker implementation in being able to create
these measurements. We have compared providers and their instance types, CPU generations across
fixed- and floating-point benchmarks, and provisioning times. We have also measured the deployment
overhead of the benchmarker and have shown it to be insignificant.

Qualitative Product Evaluation

6.1. Overview

In this section, we look back on the final implementation of the benchmarker and verify it complies
with the stated goals in chapter 2 and chapter 3. First, we list the extensions that we implemented in
section 6.2. In section 6.3, we then match up those extensions with the design goals as specified in
section 2.7. Finally, we formulate and discuss the success criteria for this project in section 6.4, and
determine whether or not according to them this project was successful.

53

54

Qualitative Product Evaluation

6.2. Implemented Extensions
In this section we evaluate whether the given extensions were successfully implemented. The exten-
sions we refined and implemented are shown in table 6.1. This differs from the initial list in table 2.3
by a few points:

¢ Certain extensions are moved up or down in priority. This is a result of the stakeholder priorities

changing during the agile development process.

* New extensions have been added. During the development process, new ideas and priorities

arose, and after meetings with the stakeholder they were added to the list.

¢ Almost all extensions are refined. This was the result of regular stakeholder meetings.

Table 6.1: Final list of prioritized, refined and implemented extensions, sorted by priority.

1 § Abstract Refined

1 5.3 Testing Improvement Write tests for code base for full coverage

2 3.5, Continuous Integration, Set up GitLab, GitLab CI (see section 4.7) and

4.7 Continuous Deployment SonarQube, integrate with existing services

3% 48 Python 3 Re-architecture Port existing code base to Python 3.3

4 * Development Setup Set up easy deployment for existing benchmarker
using Docker Compose.

5| * 3.4.3, | Orchestrator Split Isolate orchestrator to separate container,

4.3 split from web application.

6 * 3.45 | Centralize Configuration Move split-up configuration modules to one central
configuration module, convert end-user or
machine-editable to YAML format.

7% 44 Measurement Accuracy Upgrade InfluxDB to 0.9,
improve and tweak collectd configuration.

8| * 45 Extra Provisioning Methods Implement provisioning through Apache Libcloud

9 * 45 Extra Provisioning Platforms Implement support for Google Cloud Engine

10 | * 45 Custom Provisioning Platforms Implement support for deploying to any Linux host

11 | * Benchmarking Region Variability Refactor code base and data model to support
comparing regions

12 | * 46 Complex Architecture Support Implement support for Docker Compose workloads

13| * 46 Extra Workload Formats Implement support for Docker Compose workloads

14 | * 3.4.1 | Latency Measurement Measure the latency in provisioning a machine

15 | * 3.4.5 | Reporting Improvement Provide more detailed status information steps:
add *provisioning’ and ‘configuring’ steps; show
complete benchmark run log in web application.

16 | * Production Setup Set up production environment for the benchmarker.

17 | * Performance Variability Allow running the same benchmark at a later time
and comparing the results.

18 Multi-User Support Implement client accounts so that clients
can run their applications themselves.

19 Advanced Cost Model Implement automatic price updates

20 Cluster Architecture Deployment Implement support for using Docker Swarm.

21 Resource-Cost Extrapolation Implement linear scaling prediction of price with

size of application, relative to tested application.

I: Implemented; §: Discussed in paragraph

6.3. Design Goals 55

For the sake of brevity, not all implemented extensions were described in chapter 3 and chapter 4.
Only the ones with significant design and/or implementation impact were chosen to be expanded upon,
as a lot of features were relatively simple to design and implement.

Comparing to the initial list in section 2.8, we ended up implementing more than initially envisioned.
All of these additional extensions were a result of priorities and desires of the stakeholder changing
over the development process, and the team adapting the schedule and sprint planning to it.

Having implemented more than the initial schedule planned for, and after discussion with the stake-
holder, we have confirmed that all extensions required for a minimum viable product (MVP) were
implemented.

6.3. Design Goals

Now, we relate the implemented extensions to the design goals and aspects laid out in section 2.7.

Table 6.2: Addressing of design goals from section 2.7 and their aspects from impemented extensions.

Design Goal | Aspect Addressed in extension
Accuracy Measurement Accuracy, Latency Measurement
Compatibility Extra Provisioning Methods, Platforms,
Correctness
Extra Workload Formats
Error detection Testing Improvement, Continuous Integration,

Continuous Deployment

Robustness Error hanQIlng Orches_trator Split
Error logging Reporting Improvement
— Provider support Extra Provisioning Methods, Platforms
Extensibility Workload support Extra Workload Formats

Workload confidentiality | Orchestrator Split
Security Credential confidentiality | Centralize Configuration
Measurement integrity

Support Python 3 Re-architecture, Development Setup,
.. o Production Setup
Maintainability Testing Testing Improvement, Continuous Integration,

Continuous Deployment, Development Setup

As seen in the overview in 6.2, all aspects of all design goals have been addressed, except for one,
most in more than one way. Measurement integrity has been left unaddressed in any new extensions
partially due the fact that local integrity was already guaranteed by the use of containerized applications,
running fully isolated from other processes on the host operating system.

We now evaluate the success of meeting the design goals individually:

1. Correctness: Vast improvements have been made to the measurement accuracy of the bench-
marker, both in terms of the number of metrics as the accuracy of these individual metrics. In
addition, automated testing has lead to a far greater rate of error detection within the bench-
marker, and the orchestrator split has made error handling easier and more robust. We evaluate
this design goal as met.

2. Robustness: Automated testing has made breakage in changes to the code base far easier
to detect, analyze and correct. Furthermore, the orchestrator split properly isolates the vital

56 Qualitative Product Evaluation

apparatus of the benchmarker, the orchestration mechanism, from the user-facing part, making
sure they can not influence each other beyond strict API bounds. In addition, the benchmark
run logging provides detailed logs in case something does go wrong, for analysis by the users or
developers. We evaluate this design goal as met.

3. Extensibility: Having made large improvements to the orchestration architecture of the bench-
marker, it is now fully pluggable with a separation between provisioning, configuration, and de-
ployment. This separation made it far easier to implement the two extra provisioning methods,
custom provisioning and Libcloud provisioning, and extra workload format, Docker Compose for
complex workload architectures. We evaluate this design goal as met.

4. Security: With the orchestrator isolation and configuration centralization, the handling of cloud
provider credentials is now a lot more secure, and the new orchestrator architecture ensures
that customer workloads get properly cleaned up, no matter what happens. This prevents sen-
sitive data from leaking. Although we were not able to implement more measures for ensuring
measurement integrity, we still evaluate this design goal as met.

5. Maintainability: With an automated testing environment, an easy-to-deploy development envi-
ronment and a working production environment, the benchmarker has become significantly more
mature and easy to develop and test for. The Python 3 port has ensured the underlying software
will remain supported for the years to come. We evaluate this design goal too as met.

We conclude that all the design goals that we initially laid out in section 2.7 have been met, and
that the implementation of them was successful.

6.4. Success Criteria

Finally, with the required extensions implemented and the formulated design goals met, we take a
closer look at the success criteria for each three involved parties, and see if they have been met.

e Students: For us, the success criteria involves meeting all the stated design goals and being
able to leave Nerdalize behind with a working production-level implementation of the bench-
marker they described in the initial assignment. As shown by section 6.3, and the fact that the
benchmarker is running in production internally at Nerdalize, we feel our success criteria have
been widely met.

¢ Nerdalize: From meetings with the stakeholders at Nerdalize, we learned Nerdalize’s success
criteria involved the implementation of the desired functionality within the project timeframe.
As shown by section 6.2, all desired extensions, and more that have come into play during the
development phase, have been implemented. As such, we consider Nerdalize's success criteria
met.

» TU Delft: The university requires an academic component to the project, as well as the students
undergoing a full development process, from start to finish. The learning objectives as stated in
the project manual’ are as follows:

1. The students can carry out an entire software development cycle with success, from re-
searching solutions through testing the product, in a team of developers addressing a real-
world problem. We consider this learning objective met, as described in this thesis.

2. The students can effectively, in collaboration with a coach and a client, choose a development
strategy and execute a development process according to that strategy We consider this
learning objective met, as described in this thesis and evidenced by he final product.

3. The students can establish the necessary quality requirements for a product and carry out
the tests necessary to determine that the product fulfills those requirements. We consider
this learning objective met, as described in chapter 2, chapter 5 and chapter 6 in this thesis.

Lhttps://homepage.tudelft.nl/q22t4/Resources/GeneralGuideTUDelftCSBachelorProject.pdf

6.4. Success Criteria 57

4. The students can present a complete and convincing explanation of the development process
and the product results. We also consider the learning objective met, as described in this
thesis.

From meetings with Dr. Iosup, our university supervisor, we learned of additional success criteria:

1. Being able to demonstrate that the benchmarker is flexible and can provision to multiple
cloud services. This criterion has been met, as described in section 4.5 and the tests in
section 5.6.

2. Being able to demonstrate that the benchmarker is flexible and can work with multiple
workload formats. This criterion has been met, as described in section 4.5 and the tests in
section 5.7.

3. Being able run a workload supplied by Nerdalize representing one of their customer’s appli-
cations, to prove effectiveness of the benchmarker in Nerdalize’s domain. This benchmark
has been ran internally in Nerdalize and is not further discussed in this report for customer
privacy and integrity reasons. This criterion has thus been met.

We consider TU Delft’s success criteria met in all aspects.

We can conclude that all success criteria from all parties involved have been met, and that the
project as such can be called a success.

Process Evaluation and
Recommendations

7.1. Overview

In this final chapter, we will discuss and evaluate the development process, highlighting strong and weak
points experienced during this project, in terms of development methodology, product management and
personal communication. We will finish with providing pointers for future developers with information
about potential future features on the benchmarker project.

7.2. Development Process Evaluation

In this section we will expand on the various highs and lows of various process aspects that we en-
countered in this project.

7.2.1. Development Methodology

During the development phase Extreme Programming (XP) and agile principles, as described in sec-
tion 4.2 were followed. This generally provided us with a well-working and effective process, but
occasionally did lead to issues.

Agile principles allowed us to quickly adapt to the client’s changing needs or requirements. For
instance, a few weeks in into the project Nerdalize received a customer they wished to benchmark
an application from, for which the benchmarker was not yet ready. Agile and Extreme Programming
principles of backlog reordering and iterative refinement allowed us to switch our focus to the parts of
the benchmarker that contained the features that said client needed to benchmark their application,
and as such Nerdalize ended up successfully benchmarking the client application in time.

Furthermore, the good usage of a backlog board together with GitLab for issue tracking allowed
us to keep focus on the work ahead of us, instead of getting drowned in details and potential new
features. The sprint milestones kept us motivated to get a feature or product increment done by the
deadlines. However, considering the size of some of the changes we have done in the project, we
feel that sprints of one week may have been too short, even for a project as short of this one. We
often ended up moving features to the next sprint because they could not be completed in time, and
felt rushed. In hindsight, we feel that two week sprints may have worked a lot better in giving us the
breathing room required to implement large features.

In addition, due the increased focus by the short sprints, we often ended up focusing on imple-
menting the features high on the backlog and the to-do board, but not spending enough time refining
the features lower in priority. This resulted eventually in having badly-defined features at the top of the
backlog, having to waste time scheduling an appointment with the stakeholder to refine these. More
attention to this on our part will be needed for this in the future, but near the end of the project we
felt that we had found a good balance between refinement and implementation.

59

60 Process Evaluation and Recommendations

7.2.2. Source Code Management and Testing

Git proved to be a great and competent source code management tool, being very adept in handling
code base conflicts and merging different code versions together. Its decentralized nature also helped
us work in other places occasionally, where no internet or no access to the internal GitLab server was
available.

Due our decision to work using feature branches in Git, and the tendency to work on big features in
parallel, we sometimes found our code bases had diverged too much, and had to be manually merged
and fixed up. This wasted some precious time, and could have been avoided by integrating from each
other’s branches more often, instead of just from the main code branch.

The automated tests proved to be very helpful in automatically catching various kinds of breakage
and bugs introduced by our changes. However, the continuous integration server proved occassionally
unstable, and would fail tests for no reason, or lose internet connectivity. This resulted in wasted time
attempting to restart and fix the test server that could have been spent designing and implementing
features.

Furthermore, the initial setup took a significant chunks of the first three weeks to get right, while
doing research and exploring the inherited code base. However, Nerdalize has now showed interested
in applying the system to their development process in general, so we have made another lasting
contribution to the development environment within Nerdalize, which is definitely a very positive con-
sequence.

7.2.3. Communication

Most communication within the team ended up being by face-to-face communication or Slack. Not
much effort was spent keeping the Trello board up-to-date, as the office provided us with a real-life
backlog board. As described in section 7.2.1, communication with the stakeholder was occasionally
less frequent than it should have been, leading to not only a lack of feature refinement on our part,
but also a potential frustration on their part for not being kept up to date on the process. We have
definitely learned from this experience and found a working balance near the end of the project.

Due the rather unique situation of this project taking place over the summer holidays, communi-
cation with our university supervisor, Dr. Iosup, was also less frequent than ideal. Compounded with
some miscommunication, this led to just a few real-life meetings taking place over the course of the
project. Fortunately, Dr. Iosup was able to take this up very well and nevertheless was able to pro-
vide us with very useful feedback on the requirements, product, process and thesis. We would like to
thank him again for being so accommodating in this situation, and have learned that direct face-to-face
contact is not always necessary to provide useful insights.

7.3. Future Work and Recommendations

We expect that the benchmarker implementation will succeed us, and while we feel like a lot was
done during the course of this project, it is of course not finished. As this implementation is used in
production, we would like to provide a few pointers and subjects for future work for Nerdalize and any
other developers continuing this project in the future.

7.3.1. Multi-User Support

Currently, the benchmarker still relies on a single ‘administrator’-level user account to upload images
and start benchmarks. While the database structure and all internal structures are made with multi-
user support in mind, actual user management is not yet fully implemented. Implementing this would
give the potential advantage of customers being able to run their applications directly, without requiring
Nerdalize intervention. This could optionally be paired with a privilege system, restricting what the user
can and cannot do.

7.3.2. System under Test Self-Destruction

When the orchestrator itself suddenly crashes, machines at the cloud providers it is currently bench-
marking are never shut down and can incur significant costs. While the current implementation ships
with a helper script that can automatically locate and destroy any running benchmark systems at all
supported providers, except custom-provisioned ones, a far nicer approach would be to install a self-
destruct timer on the system under test, where it automatically shuts itself down or terminates itself,

7.3. Future Work and Recommendations 61

using some internal API call to the cloud provider, if it does not receive any data from the orchestrator
over a certain period of time.

7.3.3. Automatic Pricing Updates

With the configuration centralization feature, several file formats were rewritten to declaratively contain
cloud provider pricing information in machine-writable configuration files. One nice feature would be
a background process that automatically fetches the latest prices from the various cloud providers
and updates their configuration files with this information. This would decrease the chance of pricing
information generated by benchmarking runs being inaccurate or seen as misleading, as well as remove
a maintenance burden from the developers.

Conclusion

While cloud computing is becoming more and more ubiquitous, insight into the market is still difficult
to come by, due to opaque hardware architectures and pricing models. Existing benchmarking were
not sufficient to gain accurate information on specific user applications, as they were solely targeted
at existing, predefined benchmarking suites testing a variety of predefined metrics. In the consumer
world, requirements shift quickly and vary wildly, and being able to test user applications was an
absolute requirement for Nerdalize.

It was clear from the first meeting on that this was project was not ordinary and would involve a fair
amount of research into existing academic and commercial solutions. From this research it would have
to be decided whether to build on an existing implementation or design a benchmarker from scratch.
Having chosen an existing prototype to build on, additional challenges laid ahead in re-architecturing
the existing design, instead of starting from a clean slate.

We can now answer the research questions posed in the start of this thesis, in section 2.2:

1. How can one measure the performance and cost difference of running an arbitrary

application across several cloud infrastructure providers, and different instance types
within these providers?
For arbitrary user applications that can be packaged as Docker containers or Docker Compose
infrastructures, we developed a benchmarker from an existing prototype that is able to accurately
assess resource usage patterns and pricing information for applications. We have analyzed the
desired architectural improvements and implemented the most desirable reachable within the
project time frame, chief among which modularization of the deployment architecture, accuracy
and overhead improvements, a fully automated testing suite and environment, provisioning to
any custom Linux-based machine and deployment of complex workload architectures.

2. How can one verify the accuracy of such a measurement tool?
For validation of the benchmarker design, numerous automated and manual tests have been
performed, comparing benchmarker-deployed applications to manually deployed applications,
across several cloud infrastructure providers and system types. These tests showed that the
benchmarker can measure application performance while not degrading it significantly. Further-
more, measurement data has been obtained from a real-life application running over several
zones, indicating a hardware difference between zones for certain cloud providers.

The end result of this thesis is a benchmarker application that Nerdalize can run in production
environments, for assessing their strategic position in the wildly growing cloud market, but also as a
sales tool to customers in order to visualize their pricing benefit and be able to back it up by actual
data, and analyze how applications can potentially be ran more efficiently.

63

Project Formulation from Nerdalize

1. Background

Nerdalize offers Compute as a Service with a
competitor-based pricing model. This means
Nerdalize provides Infrastructure as a Service with
an architecture that will be most attractive for CPU-
intensive batch jobs, at a cost lower than alterna-
tive cloud-providers.

The Nerdalize cloud architecture deploys 4 rack
servers in a household. The households are inter-
connected with a VPN via using consumer-grade
internet connectivity. Although this creates some
new infrastructural bottle-necks as compared to a
centralized Data Center approach, Nerdalize will
have an advantage in terms of operational cost of
the servers. This advantage in cost is used to offer
a cheaper service.

Customers want to easily compare the cost of
running its compute batch jobs at different cloud
providers. However, the cloud market is opaque:

» Heterogeneous infrastructure: different vir-
tualization technology, CPU, networking,
and disk types are used.

¢ Heterogeneous cost models: different prices
and models for machine resource and time
consumption

» Heterogeneous computational jobs: differ-
ent jobs have different performance profiles
(resource utilization and the influence of in-
frastructure on turnaround times).

A benchmark that uses a representative com-
putational job, as defined by the customer, can
help the customer gain insight in the cost of its
example job at various cloud platforms. Given a
batch job provided by a customer, the Nerdalize
benchmarker runs the job on the specified cloud
platforms and instances (including Nerdalize), re-
porting:

e The resource utilization of the job (CPU,
memory, network, disk)

e Turnaround time of the job, per cloud
provider

» The associated costs, per cloud provider, dif-
ferentiated per resource (CPU, data transfer,

L)

2. Current Status

A first version of the benchmark system has been
implemented in Python, using Docker to deploy
workloads on Cloud instances. Along with the
workload a monitoring agent is deployed on the
instance, which reports resource utilization to the
benchmark orchestrator. After the workload is fin-
ished, reports are generated that show the re-
source utilization, runtime, amount of disk and
network I/O performed, and the associated cost.
To calculate the cost, a cost model is implemented
that is modeled per cloud provider.

3. Project Goal

The goal of the project is to improve this bench-
marker to be more generally useful for different
situations and circumstances. The initial steps are
envisioned are:

1. Studying of benchmarking challenges from
literature, and existing solutions to those
challenges (e.g. the theory and implemen-
tation for the publication by Iosup et al).

2. Assessing the current Benchmarker in terms
of functionality and implementation quality
(both strengths and weaknesses).

3. Assessing requirements for extensions to the
benchmarker and validating them.

65

66

Project Formulation from Nerdalize

After the students reported on the above,
Nerdalize uses the advice of students and univer-
sity supervisor to select the improvements, after
which the following steps will take place:

1. Development and implementation of the
decided-upon requirements into a proto-
type. This is not necessarily a linear per-
improvement process, as multiple improve-
ments may be developed and implemented
concurrently.

2. Validation of the decided-upon design and
implementation, internally from peer review
and experimental evaluation, as well as at
the end of the project at SIG.

Some examples of possible improvements in-
clude:

e Generally improve/refactor the code base,
where necessary to extend it properly.

¢ Allow for deploying more complex job archi-
tectures (e.g. multiple Docker containers,
using Docker Compose).

e Allow running jobs over multiple machines
(i.e. a cluster).

e Allow for deployment on more additional
cloud providers.

e Create more advanced reporting mecha-
nisms (e.g. resources to be monitored).

¢ Benchmark variability of results, over time.
e Implement a login/multi-user backend.

e Implement a cost approximation/extrapola-
tion method: when running a benchmark on
one instance, use the results of previous jobs
and the cost model to estimate the price/run-
time on instances.

Alongside work on the prototype implementa-
tion of these improvements, a report is expected
to be written over the course of the project. The
contents of this report will be subject to a defense
at the end of the project. In addition, the proto-
type codebase will be subject to a evaluation by
the Software Improvement Group (SIG). Time will
be allotted to ensure enough work can be spent
on writing the report and preparing the codebase
for SIG evaluation.

Software Improvement Group Code
Evaluation

First Evaluation

De code van het systeem scoort bijna 4 sterren op ons onderhoudbaarheidsmodel, wat betekent
dat de code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores
voor Unit Interfacing en Unit Size.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemid-
deld aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek
aan abstractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het
aanroepen van de methode en in de meeste gevallen ook tot langere en complexere methoden.

In jullie code valt op dat jullie een aantal implementaties van supports methods () hebben
die allemaal 5 parameters nodig hebben, die in de meeste gevallen helemaal niet gebruikt worden.
Je zou dit op een aantal manieren kunnen aanpakken, bijvoorbeeld: - introduceer een parameter-
object die duidelijk maakt dat deze velden bij elkaar horen - zoek de kleinste deler voor parameters
die nodig zijn, en verwijder de overige parameters - een logger geef je meestal niet als parameter
mee, daar zou je eerder een constante verwachten

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes
zijn meestal aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar
aparte methodes.

Jullie scoren hier al redelijk goed, maar er zijn nog een paar punten waarop verdere
verbetering mogelijk is. Kijk bijvoorbeeld eens naar print graph() in visualize.py oOf
get resource usage () in aggregator.py. Deze methodes bestaan eigenlijk uit een aantal
deelmethodes die verschillende dingen doen. Het is aan te raden kritisch te kijken naar de langere
methodes binnen dit systeem en deze waar mogelijk op te splitsen.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te
behouden tijdens de rest van de ontwikkelfase.

De aanwezigheid van test-code is ook veelbelovend, hopelijk zal het volume van de test-code
ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

— Dennis Bijlsma, Software Improvement Group

67

68 Software Improvement Group Code Evaluation

Response

We see and appreciate the concerns for the Unit Size issues in the resource usage aggregator. The
function that aggregates all resources is one big chunk of code, that could be easily split up in handling
different aspects of the aggregation, for different metrics. As a result of refactoring this code, we also
deduplicated and rewrote a large chunk of the surrounding code in the resource usage aggregator, so
that everything factored together a lot more nicely.

Furthermore, we also split up the other large function in the code base,
orchestrator.tasks.run benchmark (), to separate the running of the workload and result pro-
cessing. Using Pylint and SonarQube, we were not able to find any other significantly large functions
in the code base.

For Unit Interfacing, we were somewhat skeptical. The given example does not receive five pa-
rameters, but four: in Python, self or c1s is a mandatory method parameter that would normally be
implicit in other languages, like this in Java or C++. Nevertheless, we see the concern for the other
four parameters, and refactored the orchestrator to collect the provisioning, configuration and deploy-
ment method into a orchestrator.strategy.OrchestrationStrategy object. This could be
simply passed around, representing the orchestration strategy for a given run.

We searched for other instances of methods with a large amount of parameters, and found one
stand-out: orchestration.provisioning.Provisioner.supports machine (cls, logger,
provider, instance, region). However, seeing as provider, instance and region are later
grouped together into a models.Run object and this is the only method call where they are sep-
arated, we did not consider it worth refactoring for.

Second Evaluation

In de tweede upload zien we dat zowel de omvang van het systeem als de score voor onder-
houdbaarheid ongeveer gelijk zijn gebleven. Jullie zitten dus nog steeds op 4 sterren.

Bij de deelscores voor Unit Size en Unit Interfacing, die tijdens de analyse van de eerste upload
als verbeterpunt zijn aangemerkt, zien we dat jullie de door ons genoemde voorbeelden hebben
verbeterd. De stijging in score is echter niet heel groot, aangezien jullie deze refactorings niet
structureel hebben doorgevoerd.

Een positief punt is dat jullie gedupliceerde code hebben opgeruimd, terwijl we dit bij de eerste
upload niet als verbeterpunt hadden genoemd. Jullie hebben dit dus zelf gevonden en verbeterd.

Tot slot is het goed om te zien dat de kleine stijging in de hoeveelheid productiecode samen
gaat met een bijbehorende stijging in de testcode.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn
meegenomen in het ontwikkeltraject.

— Dennis Bijlsma, Software Improvement Group

69

C

Diagrams

Diagrams

70

interaction running a benchmark on container level _

view_result

InfluxDB

-

hmark

&-

get_ben

User Webapp PostgreSQL Grafana Orchestrator
create_benchmark - insert_benchmark _ !
[mmmmmm e ._|_ run_benchmark ! . !

Cloud Provider _

get_measurements

' graph e

.......... 1

-
\

Instance |
m : create»

Grrsresnnnnsnns s e L _
configure_instance _
* > i
I heveerereeeerennnnnes _l_ "
run workload L
loop A
[m
measurement data |
deprovision_instance . L

- >

«destroy»

Figure C.1: Sequence diagram showing the running of a benchmark.

D

Raw Measurement Data

71

72

Raws Measurement Data

Workload
Prime

Sleep

Sleep 180

Workload
Prime

Sleep

Sleep 180

Table D.1: Original measurement results for manual provisioning.

Manual
Run 1 Run 2 Run 3 Average Standard Deviation
Runtime (s) 24.0 24.0 24.0 24.0 0.0
Max memory used (Byte) = 381648896.0 382595072.0 380129280.0 381457749.3 1243959.5
Network out (Byte) 211926.0 201367.0 198464.0 203919.0 7084.6
Network in (Byte) 5109.0 5001.0 5001.0 5037.0 62.4
Disk read operations 8.0 0.0 0.0 2.7 4.6
Disk write operations 38.0 1940.0 2072.0 1350.0 1138.1
Disk read (Byte) 73728.0 0.0 0.0 24576.0 42566.9
Disk write (Byte) 6987776.0 10633216.0 11329536.0 9650176.0 2331843.8
Total cpu (jiffies) 18247.0 17584.0 17575.0 17802.0 385.4
Runtime (s) 60.0 61.0 60.0 60.3 0.6
Max memory used (Byte) = 351674368.0 378482688.0 380092416.0 370083157.3 15962783.3
Network out (Byte) 565881.0 565398.0 567114.0 566131.0 884.9
Network in (Byte) 5250.0 5250.0 5250.0 5250.0 0.0
Disk read operations 8.0 6.0 988.0 334.0 566.4
Disk write operations 5282.0 3452.0 3680.0 4138.0 997.3
Disk read (Byte) 32768.0 24576.0 4046848.0 1368064.0 2319898.6
Disk write (Byte) 135913472.0 28860416.0 19570688.0 61448192.0 64655883.0
Total cpu (jiffies) 69.0 75.0 94.0 79.3 131
Runtime (s) 181.0 180.0 181.0 180.7 0.6
Max memory used (Byte) 352600064.0 384507904.0 380694528.0 372600832.0 17425799.8
Network out (Byte) 1834759.0 1715174.0 1715206.0 1755046.3 69033.2
Network in (Byte) 5874.0 5977.0 5790.0 5880.3 93.7
Disk read operations 16.0 0.0 12.0 9.3 8.3
Disk write operations 12814.0 8434.0 10056.0 10434.7 2214.4
Disk read (Byte) 65536.0 0.0 49152.0 38229.3 34106.0
Disk write (Byte) 71106560.0 47300608.0 56008704.0 58138624.0 12045051.1
Total cpu (jiffies) 240.0 67.0 92.0 133.0 93.5

Table D.2: Original measurement results for overhead using custom provisioning.

Custom
Run 1 Run 2 Run 3 Average Standard Deviation
Runtime (s) 26.0 26.0 25.0 25.7 0.6
Max memory used (Byte) = 391802880.0 390434816.0 397836288.0 393357994.7 3938176.4
Network out (Byte) 257392.0 267843.0 254324.0 259853.0 7087.5
Network in (Byte) 4959.0 5109.0 5043.0 5037.0 75.2
Disk read operations 10.0 12.0 4.0 8.7 4.2
Disk write operations 2040.0 1294.0 1980.0 17713 414.5
Disk read (Byte) 40960.0 49152.0 16384.0 35498.7 17053.0
Disk write (Byte) 569024512.0 425041920.0 549019648.0 514362026.7 77997498.3
Total cpu (jiffies) 19299.0 19710.0 18750.0 19253.0 481.7
Runtime (s) 61.0 65.0 64.0 63.3 21
Max memory used (Byte) = 370278400.0 379322368.0 378937344.0 376179370.7 5114015.2
Network out (Byte) 578465.0 610615.0 654770.0 614616.7 38309.6
Network in (Byte) 5476.0 5823.0 5715.0 5671.3 177.6
Disk read operations 2.0 0.0 2.0 1.3 1.2
Disk write operations 2486.0 4466.0 3844.0 3598.7 10125
Disk read (Byte) 8192.0 0.0 8192.0 5461.3 4729.7
Disk write (Byte) 23846912.0 230563840.0 230621184.0 161677312.0 119364631.3
Total cpu (jiffies) 98.0 124.0 139.0 120.3 20.7
Runtime (s) 181.0 180.0 181.0 180.7 0.6
Max memory used (Byte) = 383373312.0 380801024.0 381136896.0 381770410.7 1398274.7
Network out (Byte) 1730345.0 1723110.0 1713206.0 1722220.3 8604.1
Network in (Byte) 5684.0 5790.0 5826.0 5766.7 73.8
Disk read operations 12.0 10.0 0.0 7.3 6.4
Disk write operations 14254.0 14704.0 16008.0 14988.7 911.0
Disk read (Byte) 49152.0 40960.0 0.0 30037.3 26333.6
Disk write (Byte) 284975104.0 285442048.0 293216256.0 287877802.7 4629127.6

Total cpu (iffies) 160.0 257.0 259.0 225.3 56.6

Raws Measurement Data

73

Table D.3: Original measurement results for overhead using Docker Machine provisioning.

Workload
Prime

Sleep

Sleep 180

Prime

Sleep

Sleep 180

Docker Machine

Run1 Run 2
Runtime (s} 24.0 24.0
Max memory used (Byte) 382291968.0 380932096.0
Network out (Byte) 243928.0 250269.0
Network in (Byte) 4632.0 5127.0
Disk read operations 0.0 0.0
Disk write operations 2614.0 54.0
Disk read (Byte) 0.0 0.0
Disk write (Byte) 455221248.0 1138688.0
Total cpu (jiffies) 17906.0 18175.0
Runtime (s) 66.0 66.0
Max memory used (Byte) 349863936.0 351350784.0
Network out (Byte) 620124.0 619192.0
Network in (Byte) 5923.0 5865.0
Disk read operations 6.0 0.0
Disk write operations 7118.0 5774.0
Disk read (Byte) 24576.0 0.0
Disk write (Byte) 232316928.0 222756864.0
Total cpu (jiffies) 206.0 165.0
Runtime (s) 181.0 182.0
Max memory used (Byte) 3525345628.0 352063488.0
Network out (Byte) 1788944.0 1729409.0
Network in (Byte) 6034.0 5475.0
Disk read operations 12.0 4.0
Disk write operations 14212.0 13616.0
Disk read (Byte) 49152.0 16384.0
Disk write (Byte) 273522688.0 269467648.0
Total cou (iiffies) 336.0 293.0

Run 3
25.0
383533056.0
247875.0
5277.0
2.0
70.0
8192.0
7725056.0
18323.0

66.0
356872192.0
620617.0
5548.0

6.0

4478.0
24576.0
223395840.0
136.0

182.0
352522240.0
1848805.0
6089.0

10.0

12326.0
40960.0
258949120.0
238.0

Average
24.3
382252373.3
247357.3
5012.0
0.7
912.7
2730.7
154694997.3
18134.7

66.0
352695637.3
619977.7
5778.7

4.0

5790.0
16384.0
226156544.0
169.0

181.7
352373418.7
1789052.7
5866.0

8.7

13384.7
35498.7
267313152.0
289.0

Table D.4: Re-run measurement results for manual provisioning.

Manual

Run 1
Runtime (s) 25
Max memory used (Byte) | 382562304
Network out (Byte) 226929
Network in (Byte) 5109

Disk read operations 2

Disk write operations 5386
Disk read (Byte) 8192
Disk write (Byte) 306143232
Total CPU (jiffies) 19172
Runtime (s) 60
Max memory used (Byte) | 381612032
Network out (Byte) 563308
Network in (Byte) 5358

Disk read operations 2

Disk write operations 4676
Disk read (Byte) 8192
Disk write (Byte) 25444352
Total CPU (jiffies) 77
Runtime (s) 181
Max memory used (Byte) 383184896
Network out (Byte) 1706519
Network in (Byte) 5790

Disk read operations 14

Disk write operations 10218
Disk read (Byte) 65536
Disk write (Byte) 54648832
Total CPU (iiffies) 247

Run 2

Run 3 Average
27 28 26.67
380743680 383254528 382186837.33
228783 242007 232573.00
3898 5001 4669.33
4 0 2.00
2396 1524 3102.00
65536 0 24576.00
22036480 11001856 113060522.67
19975 20778 19975.00
61 60 60.33
381730816 382836736 382059861.33
562859 563273 563146.67
5292 5250 5300.00
2 8 4.00
3638 2494 3602.67
8192 32768 16384.00
22167552 16154624 21255509.33
106 91 91.33
180 180 180.33
379015168 378597376 380265813.33
1703278 1708055 1705950.67
5898 5958 5882.00
6 12 10.67
16358 12156 12910.67
24576 49152 46421.33
88670208 66789376 70036138.67
124 238 203.00

Standard Deviation
0.6
1300932.0
3202.0
337.5
1.2
1473.4
4729.7
260284201.5
211.4

0.0
3692612.3
723.7
201.9

35
1320.1
14189.0
5344606.7
35.2

0.6
268478.1
59698.1
339.7

4.2

964.0
17053.0
7521875.5
49.1

Standard Deviation

1.53
1296850.35
822251
670.17

2.00

2025.48
35708.10
167305529.54
803.00

0.58
675409.58
249.74
54.44

3.46
1091.43
14188.96
4711541.99
1450

0.58
2536615.91
2438.68
85.14

4.16
3138.80
20616.08
17241508.26
68.56

74

Raws Measurement Data

Prime

Sleep

Sleep 180

Table D.5: Re-run measurement results for overhead using custom provisioning.

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (jiffies)

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (jiffies)

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (jiffies)

Custom

Run 1 Run 2 Run 3 Average
23 24 24 23.67
380043264 393572352 393318400 388978005.33
206645 210860 223056 213520.33
5109 4959 5001 5023.00
0 8 0 2.67
1520 1568 1666 1584.67
0 32768 0 10922.67
11239424 420798464 430653440 287563776.00
17562 17910 18302 17924.67
60 60 60 60.00
356556800 358572032 354922496 356683776.00
568432 615111 569738 584427.00
5108 5250 5292 5216.67
2 0 2 1.33
4042 3454 4878 4124.67
8192 0 8192 5461.33
214130688 214228992 221347840 216569173.33
53 80 99 77.33
180 180 180 180.00
357748736 360198144 358707200 358884693.33
1703127 1711976 1708582 1707895.00
5856 6106 5880 5947.33
6 10 16 10.67
8620 14886 11530 11678.67
24576 40960 65536 43690.67
235528192 284975104 270917632 263806976.00
180 254 296 243.33

Standard Deviation

0.6
7738754.74
852281
77.38

4.62

74.41
18918.61
239354633.90
370.22

0.00
1828078.34
26581.15
96.42

1.15

715.59
4729.65
4138738.61
23.12

0.00
1234312.68
4464.32
137.93

5.03

313564
20616.08
25478821.56
58.73

Table D.6: Re-run measurement results for overhead using Docker Machine provisioning.

Prime

Sleep

Sleep 180

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (jiffies)

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (jiffies)

Runtime (s)

Max memory used (Byte)
Network out (Byte)
Network in (Byte)

Disk read operations
Disk write operations
Disk read (Byte)

Disk write (Byte)

Total CPU (iiffies)

Docker-Machine
Run 1
23
391249920
217702
5079
6
234
24576
4128768
17744

61
346832896
569299
5448

0

5244

0
235642880
50

181
361402368
1710388
5916

12

14578
49152
288186368
308

Run 2
23
396562432
221498
4959
4
248
16384
10813440
17690

61
346537984
571177
5458

8

3714
32768
223297536
92

181
355627008
1711230
6048

6

13200
24576
279019520
163

Run 3
24
396431360
224284
5049
0
234
0
4079616
17764

61
353103872
571721
5250

6

3586
24576
221519872
59

181
356671488
1814971
5874

8

11544
32768
267173888
215

Average
23.33
394747904.00
221161.33
5029.00
3.33
238.67
13653.33
6340608.00
17732.67

61.00
348824917.33
570732.33
5385.33

4.67

4181.33
19114.67
226820096.00
67.00

181.00
357900288.00
1745529.67
5946.00

8.67

13107.33
35498.67
278126592.00
228.67

Standard Deviation
0.58
3030051.82
3303.89
62.45
3.06
8.08
12513.49
3873664.10
38.28

0.00
3708616.06
1270.75
11731
4.16
92252
17053.01
7692279.28
22.11

0.00
307752463
60139.43
90.80

3.06

1519.12
12513.49
10534660.38
73.46

Raws Measurement Data

75

Table D.7: Measurement results for a Psipred workload on Azure.

Provider
Instance

Run 1

Run 2

Run 3

Average

Standard deviation

Instance

Run 1

Run 2

Run 3

Average

Standard deviation

Instance

Run 1

Run 2

Run 3

Average

Standard deviation

Instance

Run 1

Run 2

Run 3

Average

Standard deviation

Azure

D1

Runtime (s)
1612.000000
1629.000000
1700.000000
1647.000000

46.679760

D2
Runtime (s)
850.000000
829.000000
829.000000
836.000000
12.124356

Al (Standard)
Runtime (s)
2617.000000
2484.000000
2463.000000
2521.333333
83.512474

A2 (Standard)
Runtime (s)
1215.000000
1478.000000
1241.000000
1311.333333
144.921818

Region

West Europe

Instance Cost ($) Network Out Cost ($) Total Cost ($)

0.042091
0.042535
0.044389
0.043005
0.001219

0.000763
0.000764
0.000767
0.000765
0.000002

0.042854
0.043299
0.045156
0.043770
0.001221

Instance Cost ($) Network Out Cost ($) Total Cost ($)

0.044389
0.043292
0.043292
0.043658
0.000633

0.000361
0.000404
0.000405
0.000390
0.000025

0.044749
0.043696
0.043697
0.044047
0.000608

Instance Cost () Network Out Cost () Total Cost ($)

0.043617
0.041400
0.041050
0.042022
0.001392

0.001189
0.001112
0.001105
0.001135
0.000046

0.044805
0.042512
0.042155
0.043158
0.001438

Instance Cost ($) Network Out Cost ($) Total Cost ($)

0.040500
0.049267
0.041367
0.043711
0.004831

0.000597
0.000719
0.000604
0.000640
0.000069

0.041097
0.049986
0.041971
0.044351
0.004899

Raws Measurement Data

Table D.8: Measurement results for a Psipred workload on Google Compute Engine.

Provider GCE Region europe-westl-c
Instance nl-highcpu-2

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 866.000000 0.020207 0.000436 0.020642
Run 2 858.000000 0.020020 0.000523 0.020543
Run 3 878.000000 0.020487 0.000473 0.020960
Average 867.333333 0.020238 0.000477 0.020715
Standard deviation 10.066446 0.000235 0.000044 0.000218
Instance nl-highcpu-4

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 411.000000 0.019180 0.000273 0.019453
Run 2 428.000000 0.019973 0.000279 0.020253
Run 3 418.000000 0.019507 0.000277 0.019784
Average 419.000000 0.019553 0.000277 0.019830
Standard deviation 8.544004 0.000399 0.000003 0.000402
Instance nl-standard-1

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 1187.000000 0.018135 0.000549 0.018684
Run 2 1141.000000 0.017432 0.000549 0.017981
Run 3 1126.000000 0.017203 0.000536 0.017739
Average 1151.333333 0.017590 0.000545 0.018135
Standard deviation 31.785741 0.000486 0.000008 0.000491
Instance nl-standard-2

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run1 870.000000 0.026583 0.000459 0.027042
Run 2 851.000000 0.026003 0.000442 0.026445
Run 3 866.000000 0.026461 0.000439 0.026900
Average 862.333333 0.026349 0.000446 0.026796
Standard deviation 10.016653 0.000306 0.000011 0.000312

Table D.9: Measurement results for a Psipred workload on Amazon EC2.

Provider Amazon Region eu-west-1
Instance c3.large

Runtime (s) Instance Cost ($) Network Out Cost (%) Total Cost ($)
Run 1 819.000000 0.027300 0.000422 0.027722
Run 2 816.000000 0.027200 0.000418 0.027618
Run 3 819.000000 0.027300 0.000425 0.027725
Average §18.000000 0.027267 0.000422 0.027689
Standard deviation 1.732051 0.000058 0.000003 0.000061
Instance c3.xlarge

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 401.000000 0.026622 0.000254 0.026876
Run 2 397.000000 0.026356 0.000261 0.026618
Run 3 401.000000 0.026622 0.000255 0.026877
Average 399.666667 0.026533 0.000257 0.026790
Standard deviation 2.309401 0.000153 0.000004 0.000149
Instance cd.large

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 654.000000 0.022708 0.000296 0.023005
Run 2 655.000000 0.022743 0.000300 0.023043
Run 3 822.000000 0.028542 0.000334 0.028876
Average 710.333333 0.024664 0.000310 0.024975
Standard deviation 96.707463 0.003358 0.000021 0.003379
Instance c4.xlarge

Runtime (s) Instance Cost ($) Network Out Cost ($) Total Cost ($)
Run 1 321.000000 0.022381 0.000185 0.022566
Run 2 318.000000 0.022172 0.000186 0.022358
Run 3 320.000000 0.022311 0.000187 0.022498
Average 319.666667 0.022288 0.000186 0.022474

Standard deviation 1.527525 0.000107 0.000001 0.000106

Raws Measurement Data

77

Table D.10: Measurement results of workload runtime on Google Compute Engine zones.

Workload
Provider
Instance

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Provider
Zone
Provisioning Time (s)

Average (s)
Standard Deviation (s)

Prime
GCE
nl-highcpu-2

europe-westl-b
Runtime (s)
100.00
99.00
99.00
99.33
0.58

europe-westl-c
Runtime (s)
67.00
67.00
66.00
66.67
0.58

europe-westl-d
Runtime (s)
74.00
60.00
63.00
65.67
7.37

Workload
Provider
Instance

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Region

Run 1

Run 2

Run 3

Average

Standard deviation

Table D.11: Measurement results for provisioning time.

Amazon EC2 Azure
West Europe europe-westl-b europe-westl-c europe-westl-d

eu-west-1
182
182
187
183
210
173
168
183
177
180
163
178
172

179.85
11.31

701
709
700
756
704
753
681
632
718
674
675
805
682

706.92
44.14

Raytracer
GCE
nl-highcpu-2

europe-westl-b
Runtime (s)
270.00
274.00
278.00
274.00
4.00

europe-westl-c
Runtime (s)
271.00
270.00
267.00
269.33
2.08

europe-westl-d
Runtime (s)
230.00
239.00
282.00
250.33
27.79

38 46 35
36 46 42
47 46 35
45 38 45
38 40 35
45 50 35
47 40
37 47

a4

a4

a4

47

38

38

35

45

38

45

45
41.50 42.79 39.25
4.68 4.29 4.98

Information Sheet

Design of a Performance Benchmarker for

Fully Distributed Infrastructure-as-a-Service Clouds
A bachelor project by Nerdalize, defended on September 30th, 2015.

Plot

Nerdalize B.V. is an infrastructure-as-a-service (IaaS) cloud provider aiming to offer substantially lower
prices than its competitors. In order to visualize its cost savings to customers and measure its own
systems against competitors in a cloud market reigned by opaque pricing models, it would like to utilize
an application benchmarker to give customers insight into the resource utilization and operation costs
of their applications among various cloud providers.

We have done research into the fields of cloud computing, benchmarking and the intersection
thereof, determined requirements for such a benchmarker, and assessed any existing solutions in the
field. We then chose Nerdalize’s internal prototype implementation as a suitable base to develop a
fully featured, production-ready application benchmarker from. We identified five main design goals of
correctness, robustness, security, extensibility and maintainability.

We then analyzed and prioritized potential improvements and extensions to this prototype, and
implemented them in an agile-driven Extreme Programming (XP) development process. The main con-
tributions lie in designing and implementing a fully automated test suite and system, vastly improving
the accuracy and stability of the benchmarker, re-designing the deployment model from monolithic to
modularized and extensible, implementing support for provisioning to arbitrary Linux-based hosts, and
deployment of complex workload architectures.

We have experimentally verified the accuracy of the benchmarker, and assessed that its deployment
overhead is very small to neglible. Moreover, we have pitted various cloud providers against each other
in the arena, and tested them on metrics such as provisioning latency, runtime costs, CPU performance
and much more.

The end result of this process is a stable, well-tested, featured benchmarker application that is used
in production environments at Nerdalize.

Starring

Mark Cilissen <m.h.j.cilissen@student.tudelft.nl> as orchestration engineer,
API manager and software porter.

Maarten van Elsas <m.vanelsas@student.tudelft.nl> as database engineer,
resource analyst and testing manager.

With Special Appearances By

Dr. ir. Alexandru Iosup <a.iosup@tudelft.nl> as university supervisor.
Dr. ir. Martha Larson <m.a.larson@tudelft.nl> as project supervisor.
Eric Feliksik, MSc <e.feliksik@nerdalize.com> as company supervisor.
Mathijs de Meijer <m.demeijer@nerdalize.com> as company supervisor.

Coming Soon to a Repository Near You...

The final report for this project can be found at: http://repository.tudelft.nl/.

A
TUDelft &= |[Nerdalize

http://repository.tudelft.nl/

Bibliography

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation
Computer Systems 25, 599 (2009).

[2] I Foster, Y. Zhao, 1. Raicu, and S. Lu, Cloud computing and grid computing 360-degree compared,
in Grid Computing Environments Workshop, 2008. GCE'08 (IEEE, 2008) pp. 1-10.

[3] R. Buyya, High Performance Cluster Computing: Architectures and Systems, Vol. 1 (Prentice Hall,
Upper SaddleRiver, NJ, USA, 1999).

[4] J. Caceres, L. Vaquero, L. Rodero-Merino, A. Polo, and J. Hierro, Service scalability over the cloud,
in Handbook of Cloud Computing (Springer US, 2010) pp. 357-377.

[5] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu, Cloud computing: A
perspective study, New Generation Computing 28, 137 (2010).

[6] Q. Hassan, Demystifying cloud computing, CrossTalk, The Journal of Defense Software Engineer-
ing 24, 16 (2011).

[7] P. M. Mell and T. Grance, SP 800-145. The NIST Definition of Cloud Computing, Tech. Rep.
(Gaithersburg, MD, United States, 2011).

[8] A. Iosup, R. Prodan, and D. Epema, IaaS cloud benchmarking: Approaches, challenges, and
experience, in Cloud Computing for Data-Intensive Applications (Springer New York, 2014) pp.
83-104.

[9] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun, Benchmarking in the
cloud: What it should, can, and cannot be, in Selected Topics in Performance Evaluation and
Benchmarking, Lecture Notes in Computer Science, Vol. 7755 (Springer Berlin Heidelberg, 2013)
pp. 173—-188.

[10] J. Gray, Benchmark Handbook: For Database and Transaction Processing Systems (Morgan Kauf-
mann Publishers Inc., 1992).

[11] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H. Epema, Performance
analysis of cloud computing services for many-tasks scientific computing, Parallel and Distributed
Systems, IEEE Transactions on 22, 931 (2011).

[12] X. Zhang, Application-specific benchmarking, Ph.D. thesis, Harvard University Cambridge, Mas-
sachusetts (2001).

[13] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor, and X. Wu, Performance
projection of HPC applications using SPEC CFP2006 benchmarks, in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on (2009) pp. 1-12.

[14] A. Iosup, N. Yigitbasi, and D. Epema, On the performance variability of production cloud services,
in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on
(IEEE, 2011) pp. 104-113.

[15] K. Hwang, X. Bai, Y. Shi, M. Li, W. Chen, and Y. Wu, Cloud performance modeling and benchmark
evaluation of elastic scaling strategies, 1EEE Transactions on Parallel and Distributed Systems
(2015), 10.1109/TPDS.2015.2398438.

[16] D. Kossmann, T. Kraska, and S. Loesing, An evaluation of alternative architectures for transaction
processing in the cloud, in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data (ACM, 2010) pp. 579-590.

81

http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dl.acm.org/citation.cfm?id=520257
http://dx.doi.org/10.1007/978-1-4419-6524-0_15
http://dx.doi.org/ 10.1007/s00354-008-0081-5
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/978-1-4939-1905-5_4
http://dx.doi.org/ 10.1007/978-3-642-36727-4_12
http://dx.doi.org/ 10.1007/978-3-642-36727-4_12
http://dx.doi.org/10.1145/181840.1044953
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/IPDPS.2009.5161057
http://dx.doi.org/10.1109/IPDPS.2009.5161057
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/TPDS.2015.2398438
http://dx.doi.org/10.1109/TPDS.2015.2398438
http://dx.doi.org/10.1145/1807167.1807231
http://dx.doi.org/10.1145/1807167.1807231

82 Bibliography

[17] A. Li, X. Yang, S. Kandula, and M. Zhang, CloudCmp: Comparing public cloud providers, in
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC 10 (2010)
pp. 1-14.

[18] Google, New open source tools for measuring cloud performance, (retrieved 2015-07-15),
http://googlecloudplatform.blogspot.nl/2015/02/new-open-source-tools—
for-measuring-cloud-performance.html.

[19] B. Peterson, PEP 0373 — Python 2.7 release schedule, (retrieved on 2015-07-14),
https://www.python.org/dev/peps/pep-0373/.

[20] B. Warsaw, PEP 0404 — Python 2.8 un-release schedule, (retrieved on 2015-07-14),
https://www.python.org/dev/peps/pep-0404/.

[21] G. van Rossum, PEP 3000 — Python 3000, (retrieved on 2015-07-14),
https://www.python.org/dev/peps/pep-3000/.

[22] R. T. Fielding and R. N. Taylor, Principled design of the modern web architecture, in Proceedings
of the 22Nd International Conference on Software Engineering, ICSE ‘00 (ACM, New York, NY,
USA, 2000) pp. 407-416.

[23] 1. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, 1st ed. (Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1992).

[24] T. Haerder and A. Reuter, Principles of transaction-oriented database recovery, ACM Comput. Surv.
15, 287 (1983).

[25] IEEE Standard for Information Technology - Portable Operating System Interface (POSIX) Base
Specifications, Issue 7, IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) (2008),
10.1109/IEEESTD.2008.4694976.

[26] P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT) Terminology and Considera-
tions, RFC 2663 (1999).

[27] M. Lentczner, Reverse HTTP, RFC draft-lentczner-rhttp-00 (2009).
[28] I. Fette and A. Melnikov, The Websocket Protocol, RFC 6455 (2011).

[29] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout, and W. Tilanus, Bidirectional-streams
Over Synchronous HTTP (BOSH), XEP 0124 (2003).

[30] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, and K. A. Houston, Object-
oriented Analysis and Design with Applications, Third Edition (Pearson Education, 2007).

[31] British Computer Society Specialist Interest Group in Software Testing, Glossary of Software Test-
ing Terms, British Standard 7925-1 (1998).

[32] L. Rising and N. Janoff, The scrum software development process for small teams, Software, IEEE
17, 26 (2000).

[33] Ecma International, The JSON Data Interchange Format, ECMA 404 (2013).

[34] Apache Foundation, Apache Libcloud homepage, (retrieved on 2015-09-22),
https://libcloud.apache.org/.

[35] O. Ben-Kiki, C. Evans, and I. dot Net, YAML Ain’t Markup Language (YAML™) Version 1.2, Tech.
Rep. (2009).

http://dx.doi.org/10.1145/1879141.1879143
http://googlecloudplatform.blogspot.nl/2015/02/new-open-source-tools-for-measuring-cloud-performance.html
http://googlecloudplatform.blogspot.nl/2015/02/new-open-source-tools-for-measuring-cloud-performance.html
http://googlecloudplatform.blogspot.nl/2015/02/new-open-source-tools-for-measuring-cloud-performance.html
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0404/
https://www.python.org/dev/peps/pep-0404/
https://www.python.org/dev/peps/pep-3000/
https://www.python.org/dev/peps/pep-3000/
http://dx.doi.org/ 10.1145/337180.337228
http://dx.doi.org/ 10.1145/337180.337228
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1109/IEEESTD.2008.4694976
http://dx.doi.org/10.1109/IEEESTD.2008.4694976
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/draft-lentczner-rhttp-00
https://tools.ietf.org/html/rfc6455
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0124.html
http://dx.doi.org/10.1145/1402521.1413138
http://dx.doi.org/10.1145/1402521.1413138
http://shop.bsigroup.com/ProductDetail/?pid=000000000001448014
http://shop.bsigroup.com/ProductDetail/?pid=000000000001448014
http://dx.doi.org/ 10.1109/52.854065
http://dx.doi.org/ 10.1109/52.854065
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://libcloud.apache.org/
https://libcloud.apache.org/
http://yaml.org/spec/1.2/spec.html

	Preface
	Summary
	Acknowledgements
	List of Illustrations
	Introduction
	Research Study on Cloud Benchmarking
	Overview
	The Problem
	Background on Cloud Computing
	Background on Benchmarking
	Challenges in Benchmarking Cloud Infrastructures
	Existing Benchmarking Solutions
	Design Goals
	Extensions to the Nerdalize Benchmarker

	Design of a Cloud Benchmarker
	Overview
	Design Challenges
	Prior System Architecture
	Architectural Changes
	Testing Environment
	Final System Architecture

	Implementation of the Cloud Benchmarker
	Overview
	Development Methodology
	Separating the Orchestrator
	Improving Data Storage
	Implementing Additional Provisioning Methods
	Implementing Additional Deployment Methods
	Setting Up a Testing Environment
	Porting to Python 3

	Experimental Testing of the Cloud Benchmarker
	Overview
	Code Quality
	System Testing
	Measurement Overhead of the Benchmarker
	Measurement Accuracy
	Benchmarking across Different Providers
	Benchmarking Different Workloads across Different Zones
	Provisioning Time
	Summary

	Qualitative Product Evaluation
	Overview
	Implemented Extensions
	Design Goals
	Success Criteria

	Process Evaluation and Recommendations
	Overview
	Development Process Evaluation
	Future Work and Recommendations

	Conclusion
	Project Formulation from Nerdalize
	Background
	Current Status
	Project Goal

	Software Improvement Group Code Evaluation
	Diagrams
	Raw Measurement Data
	Information Sheet
	Bibliography

