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Poor crown allows
pavement saturation.

The problem w ith this method is
that usually water can’t penetrate
beneath and through the shoulder’s
subsurface material. These imperme-
able shoulders keep water from
draining out of the roadway’s base. It
is trapped and weakens the roadway.

Assessing drainage
systems
A drainage system includes the

pavement and the water handling
system. They must be properly
designed, built, and maintained. 
The water handling system includes:
shoulders, ditches and culverts; curb,
gutter and storm sewer. When a road
fails, whether it’s concrete, asphalt or
gravel, inadequate drainage often is 
a major factor. 

Shoulders and embankments
damaged by heavy rain or floods can
allow water to stand on the road or
seep back into the base, saturating it.
Surface cracks allow water to pene-
trate and weaken the base. Poor
design can direct water back onto the
road or keep it from draining away.
Too much water remaining in the
surface, base, and subgrade combine
w ith traffic action to cause potholes,
cracks and pavement failure.

The basics of drainage are similar in
both rural and urban settings. Some
issues specific to certain drainage
elements are discussed separately.

Crown
The road surface should be crowned
so water w ill run off to the shoulders.
As a general rule, the center of the
road on paved surfaces should be 
21⁄ 2 inches higher than the shoulder, 
5 to 6 inches higher for gravel
surfaces. Shoulders should slope as
much or more than the road to keep
water moving to the ditches. For
example, a paved roadway w ith an 
11 foot lane and 4 foot shoulder
should have a total crown (from
centerline to outside edge of shoulder)
of not less than 4 inches.

Gravel roads need special attention
because they are more susceptible to
rain damage. They w ill need higher
crowns than paved surfaces to 
prevent the surface from absorbing
too much water, becoming saturated,
and not drying out. Traffic action on 
a saturated surface causes potholes
and ruts.

A good quality gravel surface
absorbs minimal amounts of water,
sheds the rest, and dries out quickly.
Poor drainage may be caused by
gravel w ith a poor gradation of
stones, sand and fines. You can
partially compensate for poor quality
gravel w ith a higher road crown.

Steep roads may also require higher
crowns since the water w ill tend to
flow down the road flooding traffic
lanes, rather than across the crown.

Shoulders
Shoulders extend the road surface,
directing water flow to the ditches if
they slope as much or more than the
crown. If they slope less, water w ill
build up during heavy rain at the join
between shoulder and road, flooding
traffic lanes. Make sure the shoulder
continues the road crown smoothly.

Springs or seepage areas w ill
require special treatment. You can use
french drains (rock filled trenches) or
perforated pipes to drain this sub-
surface water into ditches or streams.

One common method for construc-
ting gravel roads, the trench techni-
que, causes poor drainage. It involves
making a shallow excavation of just
the intended road surface, then filling
it w ith sub-base and base material.
The shoulders are not fully excavated
and the original soil is covered w ith a
thin layer of gravel.

Poor
shoulder
slope traps
water
against
pavement.

Lack of
shoulder
and ditch,
and poor
crown lead
to pavement
failure.
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Hydroplaning formula

v = 6.36 p
v in km

hour
p in kPa
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Navier-Stokes equations
Incompressible Newtonian fluid
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‘real’ tire
4.3. Problems with the tire model
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Figure 4.18: BMW Coarse

The tire model contains some additional compounds to what is described before:

Minibase A thin rubber layer between tread and reinforcement package with inter-
mediate stiffness softer than breaker package but stiffer than tread.

Begs The Breaker Ending Gum Strip, sometimes called GumStrip or Breaker Wedge:
prevents crack growth in breaker ending region.

Gstg This is usually called ToeGuard
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‘real’ tire

4. Tire modelling
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Figure 4.16: BMW Coarse revolved

The tire has a diameter of 315 mm and an inflation pressure of 2.2 bar. The model is
build up from 14 different materials:

Compound Type E ν K G
Breaker 1& 2 Hyper elastic - - 200 8,76

Apex Hyper elastic - - 200 15,6
Ply Hyper elastic - - 200 1,26

Liner Hyper elastic - - 200 0,96
Gstg Hyper elastic - - 200 0,86

Chafer Hyper elastic - - 200 2,76
Sidewall Hyper elastic - - 200 1,10
Miniskirt Hyper elastic - - 200 1,10

Tread Hyper elastic - - 200 2,6
Bead Elastic 40.000 0,3 - -
Begs Hyper elastic - - 200 6,08

Overlay Hyper elastic - - 200 5,48
Minibase Hyper elastic - - 200 2,18
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Abaqus - Matlab4. Tire modelling
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Figure 4.16: BMW Coarse revolved

The tire has a diameter of 315 mm and an inflation pressure of 2.2 bar. The model is
build up from 14 different materials:

Compound Type E ν K G
Breaker 1& 2 Hyper elastic - - 200 8,76

Apex Hyper elastic - - 200 15,6
Ply Hyper elastic - - 200 1,26

Liner Hyper elastic - - 200 0,96
Gstg Hyper elastic - - 200 0,86

Chafer Hyper elastic - - 200 2,76
Sidewall Hyper elastic - - 200 1,10
Miniskirt Hyper elastic - - 200 1,10

Tread Hyper elastic - - 200 2,6
Bead Elastic 40.000 0,3 - -
Begs Hyper elastic - - 200 6,08

Overlay Hyper elastic - - 200 5,48
Minibase Hyper elastic - - 200 2,18
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Fast?

• Benchmark: 24 - 48 hours / 16 CPU’s

• Interface method promising
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Research question

Can we model hydroplaning fast and 
accurate using lubrication theory?
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Newton’s 2nd Law

F = m ⋅a
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Moving control volume

4.4. Conservation of momentum 13

Figure 4.3: different forms of the continuity equation [11].

derivative can be taken inside the integral.

∫∫∫
V

D(ρdV )
Dt = 0 product-rule∫∫∫

V
Dρ
Dt dV +

∫∫∫
V ρD(dV )

Dt = 0 multiplicate by dV
dV = 1

∫∫∫
V

Dρ
Dt dV +

∫∫∫
V ρ

[
1

dV
D(dV )

Dt

]
dV = 0 equivalence 1

δV
D(δV )

Dt = ∇ · v
∫∫∫

V
Dρ
Dt dV +

∫∫∫
V ρ∇ · vdV = 0 (4.3)

∫∫∫
V

[
∂ρ
∂t + v · ∇ρ

]
dV +

∫∫∫
V ρ∇ · vdV = 0

∫∫∫
V

[
∂ρ
∂t + v · ∇ρ + ρ∇ · v

]
dV = 0 product-rule

∫∫∫
V

[
∂ρ
∂t + ∇ · (ρv)

]
dV = 0 divergence theorem

∫∫∫
V

∂ρ
∂t dV +

∫∫
S ρv · ndS = 0 v independent of t

∂
∂t

∫∫∫
V ρdV +

∫∫
S ρv · ndS = 0

The last equation corresponds with (4.1).

A proof of the divergence theorem
∫∫∫

V ∇ · vdV =
∫∫

S v · ndS,v ∈ R3 can be found in [18].

Along the deduction we encountered
∫∫∫

V

[
∂ρ
∂t + ∇ · (ρv)

]
dV = 0. Since the volume is arbitrarily drawn

in space, the only way for the integral to be equal to zero is if

∂ρ

∂t
+ ∇ · (ρv) = 0

which corresponds with (4.4).

The equivalence of (4.4) and (4.5) follows from application of the product and chain rules:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0

Dρ

Dt
+ +ρ∇ · v = 0.
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Figure 4.3: different forms of the continuity equation [11].
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Figure 4.3: different forms of the continuity equation [11].
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Body forces

3. Lubrication theory: Reynolds equation

fields such as gravity, magnetism, electric potential, which act on the entire mass within
the element. The surface forces are due to the stresses on the sides of the control surface,
observe the following element volume:
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Figure 3.2: Control volume with surface forces

The net force on the control volume is due to the gradient of these stresses, see figure
where this has been demonstrated for forces in the x-direction:
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Figure 3.3: Control volume with net forces
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Body forces
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Body forces
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Bored?

• Existence

• Smoothness
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Assume: no body force

0
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Assume: no body force

0
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Assume:    constant µ

Conservation of momentum:

59

3. Lubrication theory: Reynolds equation

∂p

∂x
= µ

(
∂2u

∂2x
+

∂2u

∂2y
+

∂2u

∂2z

)

∂p

∂y
= µ

(
∂2v

∂2x
+

∂2v

∂2y
+

∂2v

∂2z

)

∂p

∂z
= µ

(
∂2w

∂2x
+

∂2w

∂2y
+

∂2w

∂2z

)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

(3.33)

In line with assumption 5 on can further simplify as:

• w is small compared to u and v

• Variations of u and v in the directions of x and y are small compared to the
direction z

The end up with the following equations:

∂p

∂x
= µ

∂2u

∂2z
∂p

∂y
= µ

∂2v

∂2z
∂p

∂z
= 0

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

(3.34)

It is interesting to note that several authors, see for example [21], that start with the
thin film assumption and derive the Reynolds equation from there. Looking at equation
3.26 one can immediately drop the terms involving velocity gradients in x and y direc-
tion and also cancel the terms with w to directly obtain equation 3.34 without having to
introduce the assumption of incompressibility as Reynolds does.

To solve these equations boundary conditions are necessary, these are determined
with the assumption:

Assumption 7. No slip condition

To have the following boundary conditions:

u (z = 0) = U1

v (z = 0) = V1

u (z = h) = U2

v (z = h) = V2

w (y = h) = U2
∂h

∂x
+ V2

∂h

∂y
+

dh

dt

(3.35)

Two integrations of equation 3.34 results in:
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Assume:    constant µ

3. Lubrication theory: Reynolds equation
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It is interesting to note that several authors, see for example [21], that start with the
thin film assumption and derive the Reynolds equation from there. Looking at equation
3.26 one can immediately drop the terms involving velocity gradients in x and y direc-
tion and also cancel the terms with w to directly obtain equation 3.34 without having to
introduce the assumption of incompressibility as Reynolds does.

To solve these equations boundary conditions are necessary, these are determined
with the assumption:

Assumption 7. No slip condition

To have the following boundary conditions:

u (z = 0) = U1

v (z = 0) = V1

u (z = h) = U2

v (z = h) = V2

w (y = h) = U2
∂h
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dh
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Two integrations of equation 3.34 results in:
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Conservation of momentum:
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3. Lubrication theory: Reynolds equation

∂p

∂x
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In line with assumption 5 on can further simplify as:

• w is small compared to u and v

• Variations of u and v in the directions of x and y are small compared to the
direction z

The end up with the following equations:

∂p

∂x
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∂p
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∂2v

∂2z
∂p
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= 0

0 =
∂u
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+
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∂y
+

∂w
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(3.34)

It is interesting to note that several authors, see for example [21], that start with the
thin film assumption and derive the Reynolds equation from there. Looking at equation
3.26 one can immediately drop the terms involving velocity gradients in x and y direc-
tion and also cancel the terms with w to directly obtain equation 3.34 without having to
introduce the assumption of incompressibility as Reynolds does.

To solve these equations boundary conditions are necessary, these are determined
with the assumption:

Assumption 7. No slip condition

To have the following boundary conditions:

u (z = 0) = U1

v (z = 0) = V1

u (z = h) = U2

v (z = h) = V2

w (y = h) = U2
∂h

∂x
+ V2

∂h

∂y
+

dh

dt

(3.35)

Two integrations of equation 3.34 results in:
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Conservation of mass:
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Continuity

3. Lubrication theory: Reynolds equation

∂p
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∂u

∂x
+

∂v
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+

∂w
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It is interesting to note that several authors, see for example [21], that start with the
thin film assumption and derive the Reynolds equation from there. Looking at equation
3.26 one can immediately drop the terms involving velocity gradients in x and y direc-
tion and also cancel the terms with w to directly obtain equation 3.34 without having to
introduce the assumption of incompressibility as Reynolds does.

To solve these equations boundary conditions are necessary, these are determined
with the assumption:

Assumption 7. No slip condition

To have the following boundary conditions:

u (z = 0) = U1

v (z = 0) = V1

u (z = h) = U2

v (z = h) = V2

w (y = h) = U2
∂h

∂x
+ V2

∂h

∂y
+

dh

dt

(3.35)

Two integrations of equation 3.34 results in:
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3.1. Inertia correction

∂p

∂x

1

2
z2 = µu + C1z + C2

∂p

∂y

1

2
z2 = µv + C3z + C4

(3.36)

Apply boundary conditions:

u (x, z) =
1

2µ

∂p

∂x

(
z2 − hz

)
+

U2 − U1

h
z + U1

v (x, z) =
1

2µ

∂p

∂y

(
z2 − hz

)
+

V2 − V1

h
z + V1

(3.37)

Substitute in equation 3.28 to obtain:

∂w

∂z
= − 1

2µ

[
∂

∂x

{
∂p

∂x

(
z2 − hz

)}
+

∂

∂y

{
∂p

∂y

(
z2 − hz

)}]

− ∂

∂x

[
U2 − U1

h
z + U1

]
− ∂

∂y

[
V2 − V1

h
z + V1

] (3.38)

Apply integration from z = 0 to z = h to obtain the 2D Reynolds equation

∂

∂x

(
h3

12µ

∂p

∂x

)
+

∂

∂y

(
h3

12µ

∂p

∂y

)
=

U1 + U2

2

∂h

∂x
+

V1 + V2

2

∂h

∂y
+

h

2

∂

∂x
(U1 + U2) +

h

2

∂

∂y
(V1 + V2) +

∂h

∂t

(3.39)

:
The right hand side terms are often described as the wedge effect ∂h

∂x , the stretch
effect ∂U

∂x and the squeeze effect ∂h
∂t

The wedge effect describes the sliding motion of a fluid in a converging or diverging
channel, the stretch affect captures the phenomenon of the change of length of the sur-
face as is the case with rubber and elastomer components. Finally the squeeze effect is
due to vertical motion of the surfaces.

3.1. Inertia correction

The inertia correction is seen often in squeeze problem where the Reynolds equation is
applied. First an example of a circular disc in squeeze is given to show the method and
the potential of the inertia correction, then the inertia corrections in sliding conditions
are given and a new approach is given for an inertia correction in a 2D sliding model.

3.1.1. Squeeze of a circular disc

The circular disc on flat has the following geometry:

29
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U2

∂h
∂t
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Reynolds equation

∇ ⋅
h3

12µ
∇p

⎛
⎝⎜

⎞
⎠⎟
= ∇ ⋅ Uh( ) + ∂h

∂t
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Squeeze

• Iterative scheme:

• Solve the pressure

• Determine velocity

• Re-solve Reynolds, including inertia

62

III

IV

II

I Hydroplaning -              II Lubrication - III Tires - IV FSI - V Results
Thursday, January 21, 2010



ρ uv
∂uv
∂x

+ wv
∂uv
∂z

⎛
⎝⎜

⎞
⎠⎟
= −

∂p
∂x

+ µ ∂2uc
∂z2

Sliding: iterative 1D
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ρ uv
∂uv
∂x

+ wv
∂uv
∂z

⎛
⎝⎜

⎞
⎠⎟
= −

∂p
∂x

+ µ ∂2uc
∂z2

Sliding: iterative 1D
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Sliding: Average 1D
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ρ 1
h

u
∂u
∂x

+ w
∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

0

h

∫ dz
⎛

⎝⎜
⎞

⎠⎟

  

= −
∂p
∂x

+ µ ∂2u
∂z2
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Sliding: Average 1D
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ρ 1
h

u
∂u
∂x

+ w
∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

0

h

∫ dz
⎛

⎝⎜
⎞

⎠⎟

  

= −
∂p
∂x

+ µ ∂2u
∂z2

Independent of  z

Thursday, January 21, 2010



Sliding: Iterative & Average 2D

ρ 1
h

Du
Dt

dz
0

h

∫
⎛

⎝⎜
⎞

⎠⎟
= −

∂p
∂x

+ µ ∂2u
∂z2

ρ 1
h

Dv
Dt

dz
0

h

∫
⎛

⎝⎜
⎞

⎠⎟
= −

∂p
∂y

+ µ ∂2v
∂z2

∂p
∂z

= 0
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∂p
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+ µ ∂2u
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ρ 1
h

Dv
Dt

dz
0

h

∫
⎛

⎝⎜
⎞

⎠⎟
= −

∂p
∂y

+ µ ∂2v
∂z2

∂p
∂z
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Sliding: Iterative & Average 2D
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Inlet condition

• Stagnation pressure

• Energy & Momentum correction

• Converges to zero

p =
1
2
ρv2
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Fill rate
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Fill rate

68
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5.3. Fill rate model

5.3. Fill rate model
Since the previously outlined models assumed fully flooded conditions an extension is
needed to deal with starved lubrication where not the entire wheel is flooded with water,
as is usually the case of a tire rolling on a wet road. A cavitation model is applied
that allows the calculation of the position of the inlet which in essence is a reformation
boundary. A reformation boundary is a boundary where the transition from cavitated to
full film occurs. See figure:
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II

• Section II: Fluid dynamics: Lubrication theory

– Navier Stokes

– Reynolds

∗ Inertia in the fluid film

∗ Inertia in the inlet

∗ Fill rate

• Section III: Solid Mechanics: Tire modelling

– Linear elastic half space model

– Hyper elastic finite element model

• Section IV: Fluid Structure Interaction

– Classical staggering

– Interface Quasi Newton method

– Coupling ABAQUS to Matlab

The model adapted here has been developed from a cavitation model [24] and intro-
duces the new variable, the film fraction: f . In the full film area the film fraction is
equal to one such that the Reynolds equation as before appears. Assume the Reynolds
equation takes the following form:

∇ ·
(
−h3

12µ
f∇p + Ūhf

)
= 0 (5.107)

Apply a variable transformation, introducing a new variable ξ, where in the full film
area:

p = ξ (5.108)

And in the cavitated area, the film fraction is given by:

f = 1 + cfξ (5.109)

Where cf is to be determined from continuity on the reformation boundary. Write the
expressions using a boolean operator between parentheses:

p = (ξ ≥ 0) ξ (5.110)

f = 1 + (ξ < 0) cfξ (5.111)

The Reynolds equation becomes:

∇ ·
(
−h3

12µ
(ξ ≥ 0) (1 + (ξ < 0) cfξ)∇ξ + Ūh (1 + (ξ < 0) cfξ)

)
= 0 (5.112)
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p = ξ  for  ξ ≥ 0
f = 1 for  ξ ≥ 0
f = 1+ cfξ  for  ξ < 0
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Models

• Elastic half space

• Abaqus/Explicit model

• ‘real’ tire
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Elastic half space4. Tire modelling

Elastic body

Half space!

1" !

half space" "
!

#

Figure 4.2: Half-space approximation

Influence matrix Exact expression for the influence matrix in the half-space area
are determined by Boussinesq [24] and Cerruti. The deformation is then defined by:

w (x, y) =
2

πE ′

∞∫

−∞

∞∫

−∞

p (x′, y′)√
(x− x′)2 + (y − y′)2

dx′dy′ (4.1)

Discrete influence matrix The discrete elastic deformation is then given by:

w (xi, yj) = wi,j ≈
2

πE ′

nx∑

k=1

ny∑

l=1

Dijklpkl (4.2)

Where the influence coefficients are found from:

Dijkl =

∫ ∫
1√

(x− x′)2 + (y − y′)2
dx′dy′ (4.3)

An analytical solution for this integral is given by Love [25]:
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R=40mm

20 mm

4 mm

4 mm

Grosch wheel
4. Tire modelling

The wheel is modelled with a finite element model in Abaqus Explicit, version 6.8.2
and newer, see figure:
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Figure 4.3: Grosch wheel

The model is built up using 3D quadrilateral elements, consisting of 8 nodes. Two
material models have been used, both neo-hookean, with the following parameters:

• model 1:
– Bulk modulus: 200 MPa
– Shear modulus: 2 MPa

• model 2:
– Bulk modulus: 200 MPa
– Shear modulus: 1 MPa

A Grosch wheel model with a cavity of 10 mm wide and 10 mm high was also tested
as well as a Grosch wheel without a groove.
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Problem: oscillations
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Problem: Energy
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Monolithic vs. Partitioned
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Monolithic vs. Partitioned
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Figure 4.2: Half-space approximation

Influence matrix Exact expression for the influence matrix in the half-space area
are determined by Boussinesq [24] and Cerruti. The deformation is then defined by:

w (x, y) =
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p (x′, y′)√
(x− x′)2 + (y − y′)2
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Discrete influence matrix The discrete elastic deformation is then given by:

w (xi, yj) = wi,j ≈
2

πE ′

nx∑

k=1

ny∑

l=1

Dijklpkl (4.2)

Where the influence coefficients are found from:

Dijkl =

∫ ∫
1√

(x− x′)2 + (y − y′)2
dx′dy′ (4.3)

An analytical solution for this integral is given by Love [25]:
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Abaqus - Matlab
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Abaqus - Matlab
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Abaqus - Matlab

• Mesh mapping
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Abaqus - Matlab
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Results
• Elastic half space:

• Grosch wheel:

• ‘real’ tire:

6. Results

Figure 6.5: Lift Force

The average values of the lift forces are:
Speed [km/h] FlowVision

50 16,36
60 33,93
70 46,66

The total comparison becomes:
Speed [km/h] Reynolds + Bernoulli + Energy + Momentum Fill CEL FV

inlet correction correction rate
50 3,14 25,56 3,14 3,14 3,05 33 16,36
60 3,77 36,09 3,77 3,77 3,55 48 33,93
70 4,39 48,45 4,39 4,39 4,12 64 46,66

One can see that both the energy correction on the inlet pressure and the momentum
correction on the inlet pressure convergence to the same value as the Reynolds model
without the stagnation pressure at the inlet. Also the inlet pressure from the Bernoulli
equation seems to be a necessary condition and is therefore implemented in the next
models where the Reynolds model is coupled to the ABAQUS model through the user
subroutines.

Finally the interface quasi Newton method is compared, this results in the same values
but converges faster, it uses half the amount of iterations needed compared to the other
staggered scheme.
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6.3. Grosch wheel, Coupled Matlab with Abaqus

6.3. Grosch wheel, Coupled Matlab with Abaqus

For the Grosch wheel coupled to the Matlab engine only the wheel without the groove
gave stable results, the wheel with cavity was only used to test the stability of dry rolling
and the wheel with the groove gave unstable results due to the mesh mapping issues. The
two different compounds that have been used resulted in no difference for the lift force.

The Grosch wheel without groove, solved with ABAQUS and coupled to the Matlab
engine gave the following results, using a stagnation pressure at the inlet:

Speed [km/h] Normal load [N] Water layer [mm] Reynolds + Bernoulli inlet
50 214 5 30,80
15 100 3 3,50

The results have to interpreted with care, the lift force has been averaged over a period
of rolling of 1 second, in which the lift force is oscillating due to the oscillations of the
wheel which were already present in the dry rolling.

6.4. real tire

For the real tire model the following results were obtained:

Table 3: Real tire

Speed [km/h] Normal load [N] Water layer [mm] Reynolds + Bernoulli inlet FV
90 3924 3 2200 2000

Next to the lift force also the footprint shape is compared:
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Results: Grosch wheel
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Recommendations

• Reynolds equation

• Inlet condition

• Fill rate

• Tire model

• Contact algorithm

• Fluid structure interaction

• Interface quasi Newton
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