Hydroplaning

Lubrication theory

Research question

Can we model hydroplaning fast and accurate using lubrication theory?

Research question

Can we model hydroplaning fast and accurate using lubrication theory?

Research question

Can we model hydroplaning fast and accurate using lubrication theory?

Fast?

Fast?

Fast?

I. Hydroplaning

- I. Hydroplaning
- II. Fluid Mechanics: Lubrication Theory

- I. Hydroplaning
- II. Fluid Mechanics: Lubrication Theory
- III. Solid Mechanics: Tire modelling

- I. Hydroplaning
- II. Fluid Mechanics: Lubrication Theory
- III. Solid Mechanics: Tire modelling
- IV. Fluid Structure interaction

- I. Hydroplaning
- II. Fluid Mechanics: Lubrication Theory
- III. Solid Mechanics: Tire modelling
- IV. Fluid Structure interaction
- V. Results

- I. Hydroplaning
- II. Fluid Mechanics: Lubrication Theory
- III. Solid Mechanics: Tire modelling
- IV. Fluid Structure interaction
- V. Results

Hydroplaning

Thursday, January 21, 2010

Hydroplaning

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

Thursday, January 21, 2010

5

• Footprint

Footprint

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

- Footprint
- Bow wave

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

- Footprint
- Bow wave
- Spin down

- Footprint
- Bow wave
- Spin down
- Loss of:

- Footprint
- Bow wave
- Spin down
- Loss of:
 - Traction

- Footprint
- Bow wave
- Spin down
- Loss of:

TUDelft

- Traction
- Directional control

• Fluid:

- Fluid:
 - Viscosity

- Fluid:
 - Viscosity
 - Inertia

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

- Fluid:
 - Viscosity
 - Inertia
- Tire:

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture
 - Pavement crown

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture
 - Pavement crown

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture
 - Pavement crown
- Vehicle:

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture
 - Pavement crown
- Vehicle:
 - Weight

Thursday, January 21, 2010

TUDelft

- Fluid:
 - Viscosity
 - Inertia
- Tire:
 - Tread design
 - Width
- Surface:
 - Texture
 - Pavement crown
- Vehicle:
 - Weight

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

Thursday, January 21, 2010

TUDelft

Operating parameters

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

Operating parameters

• Inflation pressure

Operating parameters

- Inflation pressure
- Vehicle velocity

Hydroplaning formula

$v = 6.36\sqrt{p}$

Vehicle velocity: $v in \frac{km}{hour}$

Tire pressure: p in kPa

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

Thursday, January 21, 2010

TUDelft

Dominant fluid effects

- Viscosity
- Inertia

Dominant fluid effects

- Viscosity
- Inertia

Full Dynamic Hydroplaning

 $F = \frac{\rho b V^2 R \lambda}{F}$

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

- Analytical
- FEM & FVM

- Analytical
- FEM & FVM
- CFD

- Analytical
- FEM & FVM
- CFD
- Lubrication theory

VII rapport 483A · 2003 Elastohydrodynamic aspects on the tyre-pavement contact at aquaplaning Peter Andrén Alexei Jolkin Swedish National Road and

Lubrication theory

I Hydroplaning - II Lubrication - III Tires - IV FSI - V Results

Lubrication theory

TUDelft

I Hydroplaning -

Thursday, January 21, 2010

II Lubrication - III Tires - IV FSI - V Results

Why?

Full 3D simulation

Pressure Velocity: x-,y-, z-direction

Why?

Full 3D simulation

Pressure Velocity: x-,y-, z-direction

I Hydroplaning -

II Lubrication - III Tires - IV FSI - V Results

Why?

Full 3D simulation

I Hydroplaning -

II Lubrication - III Tires - IV FSI - V Results

Why? Full 3D simulation Simplified

Simplified Reynolds model

Pressure

II Lubrication - III Tires - IV FSI - V Results

Thursday, January 21, 2010

I Hydroplaning -

TUDelft

Why? Full 3D simulation Simplified

Simplified Reynolds model

TUDelft

II Lubrication - III Tires - IV FSI - V Results

Thursday, January 21, 2010

I Hydroplaning -

Reynolds equation

Reynolds equation

- Reynolds equation
- Inertia correction

- Reynolds equation
- Inertia correction

I Hydroplaning -

TUDelft

II Lubrication - III Tires - IV FSI - V Results

- Reynolds equation
- Inertia correction

- Reynolds equation
- Inertia correction
- Inlet condition

- Reynolds equation
- Inertia correction
- Inlet condition

Navier-Stokes equations

Incompressible Newtonian fluid

Assume: thin film

Assume: thin film

Assume: no slip

Assume: no slip

Poiseuille

Assume: no slip

Poiseuille

Inertia correction

Inertia correction

Reynolds model (no inertia)

• Stagnation pressure

Bernoulli (1738)

Bernoulli (1738)

Bernoulli (1738)

Inlet condition

26

Tire modelling

Thursday, January 21, 2010

II Lubrication - III Tires - IV FSI - V Results

Tire modelling

III Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

Thursday, January 21, 2010

27

Tire construction

F

F

Ku = F

F

Ku = F $u = K^{-1}F$

'real' tire

'real' tire

Thursday, January 21, 2010

Thursday, January 21, 2010

• Contact penalty

- Contact penalty
- Time step reduction

III Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

- Contact penalty
- Time step reduction
- Mesh refinement

Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

- Contact penalty
- Time step reduction
- Mesh refinement
- Move road (in FSI)

Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

- Contact penalty
- Time step reduction
- Mesh refinement
- Move road (in FSI)

Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

Fluid Structure Interaction

III Tires - IV FSI - V Results

I Hydroplaning - II Lubrication -

Fluid Structure Interaction

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

IV FSI - V Results

Fluid structure interaction

Fluid structure interaction

50

Classical staggering

Classical staggering

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

39

V FSI - V Results

Thursday, January 21, 2010

39

V FSI - V Results

39

V FSI - V Results

I Hydroplaning - II Lubrication - III Tires

 h^{k}

I Hydroplaning - II Lubrication - III Tires

Thursday, January 21, 2010

- V Results

V FSI

Thursday, January 21, 2010

41

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

I Hydroplaning - II Lubrication - III Tires

Thursday, January 21, 2010

I Hydroplaning - II Lubrication - III Tires

Thursday, January 21, 2010

I Hydroplaning - II Lubrication - III Tires

Thursday, January 21, 2010

TUDelft

41

I Hydroplaning - II Lubrication - III Tires

Thursday, January 21, 2010

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

Results

)F NODES	•	356400	WIDTH :	168.00	mm	SSI	•	-25.77
)F ELEMENTS	•	332640	GROSSAREA:	108.43	cm^2	CL/SH	:	0.92
OF FREEDOM	•	2	NETAREA :	91.78	cm^2	N/G	•	0.85

)F NODES	•	356400	WIDTH :	168.00	mm	SSI	•	-25.77
)F ELEMENTS	•	332640	GROSSAREA:	108.43	cm^2	CL/SH	:	0.92
OF FREEDOM	•	2	NETAREA :	91.78	cm^2	N/G	•	0.85

Results: Benchmark

Results: Linear elastic tire

Results: 'real' tire

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Thursday, January 21, 2010

TUDelft

V Results

Results: 'real' tire

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Thursday, January 21, 2010

V Results

Results: 'real' tire

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Thursday, January 21, 2010

TUDelft

V Results

Footprint Reynolds + Bernoulli Benchmark

ŤUDelft

 I Hydroplaning - II Lubrication - III Tires - IV FSI

 V Results

Footprint Reynolds + Bernoulli Benchmark

V Results

TUDelft

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Footprint Reynolds + Bernoulli Benchmark

V Results

TUDelft

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Fast?

Fast?

• Benchmark: 24 - 48 hours / 16 CPU's

Fast?

- Benchmark: 24 48 hours / 16 CPU's
- Interface method promising

Research question

Can we model hydroplaning fast and accurate using lubrication theory?

Can we model hydroplaning fast and accurate using lubrication theory?

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Thursday, January 21, 2010

V Results

Can we model hydroplaning fast and accurate using lubrication theory?

TUDelft

V Results

Can we model hydroplaning fast and accurate using lubrication theory?

I Hydroplaning - II Lubrication - III Tires - IV FSI -

Thursday, January 21, 2010

TUDelft

V Results

Can we model hydroplaning fast and accurate using lubrication theory?

Questions?

V Results

I Hydroplaning - II Lubrication - III Tires - IV FSI

Hydroplaning

Lubrication theory

Problem description

Problem description

Newton's 2nd Law

$F = m \cdot a$

 $\rho \frac{d}{dt}(\mathbf{v}(x, y, z, t)) = \mathbf{b}$

Infinitesimally small fluid element of fixed mass moving with the flow

$$\begin{split} \rho \frac{d}{dt} (\mathbf{v}(x, y, z, t)) &= \mathbf{b} \\ \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \mathbf{v}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{v}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{v}}{\partial z} \frac{dz}{dt} \right) &= \mathbf{b} \end{split}$$

Infinitesimally small fluid element of fixed mass moving with the flow

$$\begin{split} \rho \frac{d}{dt} (\mathbf{v}(x, y, z, t)) &= \mathbf{b} \\ \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \mathbf{v}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{v}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{v}}{\partial z} \frac{dz}{dt} \right) &= \mathbf{b} \\ \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= \mathbf{b} \end{split}$$

Infinitesimally small fluid element of fixed mass moving with the flow

$$\rho \frac{d}{dt} (\mathbf{v}(x, y, z, t)) = \mathbf{b}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \mathbf{v}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{v}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{v}}{\partial z} \frac{dz}{dt} \right) = \mathbf{b}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \mathbf{b}$$

Body forces $\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$

Body forces
$$\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$$

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{pmatrix} = - \begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix} + \begin{pmatrix} \sigma_{xx} + p & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} + p & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} + p \end{pmatrix} = -pI + \mathbb{T}$$

Body forces
$$\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$$

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{pmatrix} = -\begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix} + \begin{pmatrix} \sigma_{xx} + p & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} + p & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} + p \end{pmatrix} = -pI + \mathbb{T}$$

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial u_i} + \frac{\partial u_j}{\partial u_j} \right)$$

Bored?

- Existence
- Smoothness

II Lubrication - III Tires - IV FSI - V Results

I Hydroplaning

TUDelft

Bored?

Assume: no body force

Assume: no body force

Assume: μ constant

Conservation of momentum:

 $\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial^2 z}$ ∂p $\partial^2 v$ $\mu_{\overline{\partial^2 z}}$ $\overline{\partial y}$ $\frac{\partial p}{\partial z}$ = 0

Assume: μ constant

Conservation of momentum:

 $\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial^2 z}$ $\partial p _ u \partial^2 v$ $\frac{1}{\partial y} = \mu \frac{1}{\partial^2 z}$ $rac{\partial p}{\partial z}$ = 0 $0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$

Conservation of mass:

Thursday, January 21, 2010

I Hydroplaning

TUDelft

$$Continuity$$

$$u(x,z) = \frac{1}{2\mu} \frac{\partial p}{\partial x} (z^2 - hz) + \frac{U_2 - U_1}{h} z + U_1$$

$$v(x,z) = \frac{1}{2\mu} \frac{\partial p}{\partial y} (z^2 - hz) + \frac{V_2 - V_1}{h} z + V_1$$

$$0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

$$0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

$$\overrightarrow{U_1}$$

II Lubrication - III Tires - IV FSI - V Results

Squeeze

- Iterative scheme:
 - Solve the pressure
 - Determine velocity
 - Re-solve Reynolds, including inertia

 $0 = -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 u_c}{\partial z^2}$

 $\rho\left(u_{v}\frac{\partial u_{v}}{\partial x}+w_{v}\frac{\partial u_{v}}{\partial z}\right)=-\frac{\partial p}{\partial x}+\mu\frac{\partial^{2} u_{c}}{\partial z^{2}}$

$$\overbrace{\rho\left(\frac{1}{h}\int_{0}^{h}\left(u\frac{\partial u}{\partial x}+w\frac{\partial u}{\partial z}\right)dz\right)}^{h}=-\frac{\partial p}{\partial x}+\mu\frac{\partial^{2} u}{\partial z^{2}}$$

Independent of
$$Z$$

 $\rho\left(\frac{1}{h}\int_{0}^{h}\left(u\frac{\partial u}{\partial x}+w\frac{\partial u}{\partial z}\right)dz\right) = -\frac{\partial p}{\partial x}+\mu\frac{\partial^{2} u}{\partial z^{2}}$

Sliding: Iterative & Average 2D

Lubrication - III Tires - IV FSI - V Results

I Hydroplaning

TUDelft

65

Sliding: Iterative & Average 2D

TUDelft

Thursday, January 21, 2010

I Hydroplaning

Inlet condition

• Stagnation pressure

$$p = \frac{1}{2}\rho v^2$$

- Energy & Momentum correction
 - Converges to zero

Fill rate

$$\nabla \cdot \left(\frac{-h^3}{12\mu}f\nabla p + \bar{U}hf\right) = 0$$

$$p = \xi \text{ for } \xi \ge 0$$

$$f = 1 \text{ for } \xi \ge 0$$

$$f = 1 + c_f \xi \text{ for } \xi < 0$$

Models

- Elastic half space
- Abaqus/Explicit model
 - 'real' tire

Thursday, January 21, 2010

Elastic half space

• Influence matrix:

$$w(x_i, y_j) = w_{i,j} \approx \frac{2}{\pi E'} \sum_{k=1}^{n_x} \sum_{l=1}^{n_y} D_{ijkl} p_{kl}$$

$$D_{ijkl} = \int \int \frac{1}{\sqrt{(x - x')^2 + (y - y')^2}} dx' dy'$$

Elastic half space

Problem: oscillations

Eigenmodes?

Step: Step-1 Mode 9: Value = 7.93518E+06 Freq = 448.33 (cycles/time) Primary Var: U, Magnitude Deformed Var: U Deformation Scale Factor: +7.999e+00

Monolithic vs. Partitioned

Monolithic vs. Partitioned

Monolithic vs. Partitioned

Thursday, January 21, 2010

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

TUDelft

85

Mesh mapping

Thursday, January 21, 2010

• Mesh mapping

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

• Mesh mapping

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

• Mesh mapping

I Hydroplaning - II Lubrication - III Tires -

Thursday, January 21, 2010

TUDe

Results

• Elastic half space:

Speed [km/h]	Reynolds	+ Bernoulli	+ Energy	+ Momentum	Fill	CEL	FV
		inlet	correction	correction	rate		
50	3,14	25,56	3,14	3,14	3,05	33	16,36
60	3,77	36,09	3,77	3,77	3,55	48	33,93
70	4,39	48,45	4,39	4,39	4,12	64	46,66

• Grosch wheel:

Speed [km/h]	Normal load [N]	Water layer [mm]	Reynolds + Bernoulli inlet
50	214	5	30,80
15	100	3	3,50

• 'real' tire:

Speed [km/h]	Normal load [N]	Water layer [mm]	Reynolds + Bernoulli inlet	FV
90	3924	3	2200	2000

Results: Grosch wheel

Results: Grosch wheel

Results: Grosch wheel

Recommendations

- Reynolds equation
 - Inlet condition
 - Fill rate
- Tire model
 - Contact algorithm
- Fluid structure interaction
 - Interface quasi Newton

I Hydroplaning - II Lubrication - III Tires - IV FSI

JDelft