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Abstract
With the emergence of new communication standards like Fifth­Generation New Radio (5G NR), tech­
nologies are being developed to exploit millimeter­wave (mm­wave) frequency bands from 30­300GHz,
for their advantage of high bandwidth availability. Generation of carrier frequencies for these mm­wave
applications imposes a challenging specification of high spectral­purity on the frequency synthesizers.
Sub­sampling PLLs (SSPLLs) show a remarkable performance in terms of low­power and good spec­
tral purity, which are critical for such high­speed applications. However, due to their low lock­in range,
SSPLLs require the assistance of an additional frequency­tracking loop (FTL) for an improved lock­
ing performance. These FTLs conventionally employ either high power consuming frequency dividers,
or reference frequency multipliers. In this thesis, a novel implementation of an FTL which avoids the
usage of high­frequency dividers is proposed.

The proposed FTL uses three sub­Nyquist sampling rates, which are derived from three mutually
co­prime integers, for an unambiguous VCO frequency estimation which helps in frequency error cor­
rection. Consequently, the proposed FTL eliminates the need of sampling rates higher than the Nyquist
rate and the circuit limitations posed by such high sampling frequencies. The FTL employs a simple
amplifier, counter and look­up table based VCO frequency estimation procedure which avoids the need
of performing high complexity frequency estimation algorithms like Fast Fourier Transform (FFT). The
FTL also features a speed optimization algorithm which helps in achieving low frequency­locking times.

The proposed FTL is designed in the 40­nm CMOS technology, targeting an output frequency lock­
ing range of 9.8­12.2GHz. The post­layout simulations show that the FTL is able to coarsely lock to
any desired frequency in the wide­band locking range within an error of 3MHz, in less than 3 𝜇s at start­
up. Error injections as high as 1.5GHz are efficiently detected and corrected in less than 3 𝜇s as well.
The area consumed by the FTL is 0.35𝑚𝑚2 and the active area of the total chip is 1.09𝑚𝑚2 including
the decoupling capacitors. The FTL consumes a maximum power of 1.56mW when the PLL is in a
locked state. A comparison with other state­of­the­art frequency­tracking loops demonstrates its clear
advantage of wide­band frequency locking and low locking time, while consuming a similar amount of
power. Analytically, the proposed FTL also exhibits competence in scaling to mm­wave frequencies.
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1
Introduction

Internet of Things (IoT) is all set to take over the world as it slowly steps into our day­to­day lives in
the form of applications ranging from self­driving cars and smart health care systems to smart kitchen
appliances. It is doing so by connecting various physical devices to a vast network, and efficiently col­
lecting, and communicating data between them. With a prediction of billions of devices being connected
to such networks in the next couple of years, IoT is pushing the existing communication technologies
to their maximum capacity [1]. The advent of the fifth generation wireless technology (5G) presents
a promising future for IoT owing to the increased data rates, increased capacity, and reduced laten­
cies. This is achieved by moving into millimetre­wave (mm­Wave) frequency spectrum and exploiting
frequency bands between 30­300GHz.

Phase­Locked Loops (PLL) are at the heart of any wireless communication system. They are used
in frequency modulation and demodulation in transceivers, clock, and data recovery for noisy commu­
nication channels, and frequency synthesis for carrier frequency generation. The performance of these
PLLs plays a major role in realising the goals of the 5G standard. The phase noise requirement of the
PLLs has become quite stringent in order to meet the target error vector magnitude (EVM). To support
reliable low latency communications, the switching time i.e., the settling time of the PLLs, needs to be
fairly low. IoT, and similar battery­driven applications, have high demand for low power System­on­
Chip (SoC) devices [2] which pushes the PLLs to also be more power efficient. In this chapter, starting
with an introduction to PLLs, the trends of the current PLLs in these aspects are presented, which will
converge upon the motivation and objective of this project.

1.1. Phase­locked loops
APLL is a ubiquitous and critical circuit block in many applications like transceivers and data converters.
It is fundamentally a negative feedback circuit, which locks the output phase of an oscillator, which is
usually prone to PVT variations and high phase noise, to that of a precise and stable reference input
like a crystal oscillator to achieve a stable and low noise output clock. Second­order type­II PLLs have
always been technologically important and most of the applications employ this configuration. A typical
second­order type­II frequency synthesizer consists of a Voltage Controlled Oscillator (VCO), a phase
detector (PD), a charge pump (CP) or an operational transconductance amplifier (OTA), a low pass
filter (LPF), and a frequency divider in the feedback. This is shown in Figure 1.1.

1



1.1. Phase­locked loops 2

Figure 1.1: Block diagram of a conventional second order PLL with a feedback divider.

The open­loop transfer function of this circuit in the phase­domain can be given by

𝐺(𝑠) = 𝐾𝑑𝐾𝑣𝑐𝑜𝑍(𝑠)
𝑠 , (1.1)

where 𝐾𝑑 is the PD+CP gain, 𝐾𝑣𝑐𝑜 is the VCO gain, and Z(s) is the loop filter gain. Then the closed
loop phase­domain transfer function can be given by

𝐻(𝑠) = 𝜙𝑜𝑢𝑡(𝑠)
𝜙𝑖𝑛(𝑠)

= 𝐺(𝑠)
1 + 𝐺(𝑠)/𝑁 = 𝐾𝑑𝐾𝑣𝑐𝑜𝑍(𝑠)

𝑠 + 𝐾𝑑𝐾𝑣𝑐𝑜𝑍(𝑠)/𝑁
, (1.2)

where 𝜙𝑜𝑢𝑡 is the output phase, 𝜙𝑖𝑛 is the input phase, and N is the integer division factor. Most of the
high­gain systems take the below form [3].

𝐻(𝑠) = 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛

, (1.3)

where 𝜔𝑛 is the natural frequency and 𝜁 is the damping factor of the system, given by

𝜔𝑛 = √
𝐾𝑑𝐾𝑣𝑐𝑜
𝐶𝑝

; 𝜁 =
𝑅𝑝
2 √𝐾𝑑𝐾𝑣𝑐𝑜𝐶𝑝, (1.4)

when LPF gain is of the form Z(s) = 1+𝑠𝐶𝑝𝑅𝑝
𝑠𝐶𝑝

.
Some of the important attributes of a PLL are its frequency range, spectral purity, power consump­

tion, locking time, and area. The area is usually dominated by the large inductors used in the VCO,
while the power consumption is dominated by circuit blocks functioning at high frequency like the VCO
and the feedback divider. Design choices such as the loop bandwidth affect the settling time, phase
noise, and spur performances of the PLL. A higher bandwidth is desirable for faster settling time or
VCO noise suppression, where as a smaller bandwidth is desired for lower spurs and in­band noise
suppression. However, the maximum bandwidth is limited to 1/10𝑡ℎ of the reference frequency due to
stability limitations [4].

Different aspects of a PLL are important for different applications. With a surge in high­speed
applications, a good phase noise performance of PLLs has become critical. In recent times, the sub­
sampling PLLs (SSPLLs) have gained popularity for their advantage of high phase detector (PD) gain,
which helps in suppressing the phase noise of the PD and its following stages. In this architecture, the
oscillator output is directly sampled by the reference clock in the phase detector, as shown in Figure
1.2. Therefore, the high frequency divider in the feedback path is avoided, which in turn avoids its noise
and high power consumption.
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Figure 1.2: Type­II sub­sampling PLL.

While a clear advantage is seen in low in­band phase noise, the SSPLLs observe a degradation of
the reference spur, due to direct sampling of the VCO output. In the present architectures this problem
was resolved by employing various solutions like using an output buffer for isolation of VCO, or even
adding a dummy sampler [5] to compensate the VCO capacitance modulation. In [6], a very low power
charge­sampling PD (CSPD) is proposed, which is able to achieve a good reference spur performance
without the use of any high­frequency buffers.

Although sub­sampling PLLs exhibit a leading performance in spectral purity along with low power
consumption, they have a few setbacks which hinder their suitability in mm­Wave applications [7]. The
biggest limitation is their low acquisition, and lock­in range. The acquisition/capture range is the max­
imum frequency deviation of the free­running oscillator frequency from the desired locking frequency,
that the loop can correct and acquire a frequency lock from an unlocked state, and the lock­in range is
the maximum frequency deviation, from an initially unlocked state, that can be corrected and a locked
state is achieved without cycle slipping. As explained extensively in [3], the lock­in and acquisition
ranges depend largely on the PD and the LPF characteristics.

Lock­in Range in SSPLL:
The phase detector used in SSPLL is usually a sampling circuit where the VCO output of frequency
𝑓𝑣𝑐𝑜 is sub­sampled by the reference input of frequency 𝑓𝑟𝑒𝑓. When both the signals are considered to
be sinusoidal in nature, the PD output in an unlocked state can be written as

𝑉𝑠 = 𝐾𝑑𝑠𝑖𝑛(Δ𝜔 ⋅ 𝑡) + ℎ𝑖𝑔ℎ − 𝑓𝑟𝑒𝑞 𝑡𝑒𝑟𝑚𝑠, (1.5)

where Δ𝜔 = |𝑓𝑣𝑐𝑜 − 𝑁 ⋅ 𝑓𝑟𝑒𝑓| is the frequency deviation (can also be called the alias frequency). The
high­frequency terms are usually high enough to be filtered by the LPF. The filter output can then be
given by

𝑉𝑓 = 𝐾𝑑𝑠𝑖𝑛(Δ𝜔 ⋅ 𝑡) ⋅ 𝑍(Δ𝜔), (1.6)

where 𝑍(Δ𝜔) is the LPF gain at frequency Δ𝜔. As 𝑉𝑓 is the control signal to the VCO, the change in
VCO frequency can be given by

Δ𝜔𝑣𝑐𝑜 = 𝐾𝑣𝑐𝑜𝑉𝑓 = 𝐾𝑣𝑐𝑜𝐾𝑑𝑍(Δ𝜔)𝑠𝑖𝑛(Δ𝜔 ⋅ 𝑡). (1.7)

As can be seen from the above equation, the VCO frequency is modulated between [−𝐾𝑣𝑐𝑜𝐾𝑑𝑍(Δ𝜔),
𝐾𝑣𝑐𝑜𝐾𝑑𝑍(Δ𝜔)] around its free­running frequency. Therefore, the VCO can successfully lock to any de­
sired frequency that lies within this error range. Since the lock­in range Δ𝜔𝐿 is the maximum frequency
error that can be corrected without cycle slipping, it can be equated to the maximum achievable fre­
quency change in Eq. (1.7), which can be given as

Δ𝜔𝐿 = 𝐾𝑣𝑐𝑜𝐾𝑑𝑍(Δ𝜔). (1.8)

It is assumed that Δ𝜔𝐿 is always greater than the poles and zeroes of the LPF. Considering the given
assumption, for any kind of loop filter 𝑍(𝑠), the lock­in range for a PD with a sinusoidal characteristic
(shown in Eq. (1.6), is approximated in [3] as below,

Δ𝜔𝐿 = 2𝜁𝜔𝑛 . (1.9)

The lock­in range can be extended by employing a PD with a larger linear range (phase error vs output
voltage characteristics). For example, an XOR gate based PD, with a linear range of [−𝜋/2, 𝜋/2], has
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a lock­in range of 𝜋𝜁𝜔𝑛, whereas a Phase Frequency Detector (PFD), with a linear range of [−2𝜋, 2𝜋],
provides a lock­in range of 4𝜋𝜁𝜔𝑛 [3]. Since the PD, CP, and VCO gains are limited by the loop band­
width and stability, the lock­in ranges cannot be arbitrarily high. Hence, SSPLLs suffer from a low
lock­in range. A low lock­in range results in the PLL losing lock easily if there are any frequency distur­
bances larger than the lock­in range. SSPLLs also have a risk of locking to a different harmonic than
the desired one as the sampling circuit cannot differentiate between harmonics.

Therefore, for a robust locking, an additional frequency tracking loop (FTL) is needed. Conventional
FTLs (explained in the next section) make use of either high­frequency dividers or an additional cascade
input stage to increase the reference frequency. These solutions are usually power­hungry either due to
the components working at high frequencies or due to stringent phase noise requirements. A new FTL
approach that can perform the same task without the use of such high frequency blocks is necessary
and is the research interest of this thesis.

The general functions of an FTL are to estimate the VCO frequency, calculate the error from the
desired frequency, and tune the VCO to reach the target frequency. Out of all these functions, accurately
estimating the frequency is of prime importance. Sinusoidal signal frequency estimation conventionally
involves sampling of the signal and then performing Fast Fourier Transform (FFT) on the samples to
obtain the frequency information. This method requires very high sampling rates to satisfy Nyquist
criterion, which poses performance constraints on the circuit blocks like Analog­to­Digital converters
(ADCs) which work at such high frequencies. Additionally, performing FFT involves high computational
complexity. Multiple sub­Nyquist sampler based frequency estimation is a widely researched topic in
the fields of wide­band spectrum sensing and cognitive radio [8]. However, this method of frequency
sensing has not been implemented in PLLs yet. In this thesis, an FTL based on multiple sub­Nyquist
samplers is proposed and its performance is compared with the state­of­the­art FTLs to analyse its
efficiency.

1.2. Conventional Frequency tracking loops
This section describes a few conventional implementations of an FTL that are used as an aid to SSPLLs,
for faster and efficient frequency acquisition.

1.2.1. Frequency sweeping
One of the practical and common aided frequency acquisition techniques is by sweeping the VCO
control voltage [4],[9]. By applying a slow ramp to the VCO control voltage, the VCO output frequency
is swept and the loop locks when the VCO reaches close to the desired frequency, i.e., within the lock­in
range. To ensure that the frequency ramp is terminated after the PLL is locked, a closed feedback loop
with lock detection is necessary. The voltage/frequency ramp slope has an upper limit for a reliable
locking so that the ramp does not sweep past the locking point. This method is mostly useful in the
case of an initial acquisition. However, in the case of frequency unlock due to error injection, the entire
frequency tuning range needs to be swept again before getting relocked. Furthermore, the acquisition
time is also linearly proportional to the search range.

1.2.2. Frequency Tracking loops based on divider
The most typical solution to increase the lock­in range is to use closed­loop solutions [10] for frequency
tracing. Most of the conventional structures using a frequency tracking loop for wider locking/acquisition
range adopt a frequency divider/counter in combination with a phase frequency detector (PFD), as
shown in figures 1.3a, 1.3b, where they are either used in the PLL main loop feedback itself or in the
feedback of an auxiliary frequency tracking loop. As explained in [3], since PFD has a tristate output,
any loop filter that is used with PFD will act as a real integrator. Since a real integrator has an infinite
gain at DC (frequency = 0), the acquisition range theoretically becomes infinite. This means that the
PLL will always reach a locked state for arbitrarily large initial frequency deviations. However, practically
the acquisition range is limited to the VCO tuning range.
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(a)

(b)

Figure 1.3: (a) Type­II PLL with feedback divider, (b) Type­II Sub­sampling PLL with divider based
FTL.

Although an FTL using a divider and a PFD provides robust wide­band locking, it has a circuit block
(the divider) functioning at high VCO frequencies, which makes the loop very power consuming. [11]
used a frequency divider in the feedback circuit and has a similar structure as Fig. 1.3a, where the
power consumption of the divider for a VCO frequency of 6.3GHz is 1.1mW. Zhao Zhang, et al., [12]
implemented a 12­16GHz PLL with a divider­based FTL similar to 1.3b. The power consumption of the
divider circuit alone comes up to 1.5mW.

Furthermore, as PLLs move towards mm­wave applications, digital frequency dividers are limited
by circuit speed and consume large power. Alternatively, injection­locked Frequency Dividers (ILFD)
are used, which are essentially oscillators that are locked to VCO frequency and output a divided
frequency. Conventional ILFDs also have (1) limited locking range, (2) are susceptible to PVT variations
[13], and (3) expect high injection strength from the VCO [14]. Current Mode Logic (CML) dividers are
another type of dividers that are usually used at high frequencies which consume high static current.
Consequently, these blocks that need to operate at high frequencies lead to high power consumption,
reducing their suitability for low power applications.

1.2.3. Cascaded PLL structures
Cascaded PLL structures, shown in Figure 1.4, are another form of PLLs that aim to increase the
bandwidth of the main PLL stage such that their lock­in range can be extended. They employ a PLL in
the first stage to lock to an intermediate frequency (IF), which then serves as the reference frequency
to the subsequent stage. Since the reference frequency of the second stage is higher, the loop can
be stable for much higher bandwidths, leading to extended lock­in ranges. Since the high­frequency
dividers are avoided in the second stage and the dividers are only used in the first stage, which has a
relatively low frequency of operation, the power consumption is also reduced.

Figure 1.4: Cascaded PLL structure with a reference multiplier to achieve a high bandwidth.

However, this method has a few limitations. Firstly, the IF should be chosen high enough such that
the extended bandwidth covers the entire tuning range of the main PLL. Secondly, the output frequency
tuning range resolution is equal to its reference frequency in the case of an integer­N PLL. As the IF
increases, the frequency resolution reduces. Thirdly, there is a trade­off between the in­band phase
noise and the acquisition range because the phase noise of the first stage will be amplified by 𝑁22 factor
and larger bandwidths lead to higher in­band phase noise. As the phase noise constraint on this stage
becomes more stringent to meet the specifications, the power consumption will be also be increased.

Some structures use a gear shifting mechanism wherein during the locking period, they switch to a
higher reference frequency or to a different loop so that the loop parameters can be altered to achieve
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a larger lock­in range and faster settling [14]. However, the lock­in range is still limited to the higher
reference frequency and locking to only one frequency is possible.

In conclusion, we observe that most of the conventional FTLs used, have a disadvantage of high
power consumption because of either high­frequency circuit blocks or a strict phase noise constraint.
As the PLL output frequency is further increased into mm­Wave bands, the FTL power consumption
scales profusely, hence calling for a need of a new FTL architecture that avoids any high­frequency
and high power consuming blocks.

1.3. Need for a low settling time
Applications like 5G New Radio (NR) and Long­Term evolution (LTE) dynamically allocate resources
to users, to improve spectral efficiency and increase the system capacity. Additionally, in applications
like Bluetooth Low Energy (BLE) and Global Systems for Mobile communications (GSM), an effective
technique called frequency hopping is employed to avoid interference [15]. The frequency hopping
technique switches the carrier frequency of the signal to different channels in consecutive time intervals
in a pseudo­random order, as shown in the Figure 1.5. Consequently, the local oscillator should switch
to the desired frequency as soon as possible to not degrade the latency. The time available for the
local oscillator (LO) to switch from one centre frequency to another must be much less than the cyclic
prefix time in LTE standard (i.e., <5.2 𝜇s) [16].

Figure 1.5: Frequency hopping.

Furthermore, in many communication systems, resources are shared between users bymultiplexing
them. In the case of time­division multiplexing (TDM), different user signals are transmitted over a
single channel by multiplexing them over time. To reduce interference between different users, there
is a limit on the spurious emissions on the users that are not being transmitted (not transmitting = OFF
region), on the one being transmitted (transmitting = ON region) in a certain time duration. To ensure
low spurious emissions, the users in OFF region are turned OFF or put to low power mode. When they
start transmitting again, all the components like power amplifiers, and transceivers are powered ON
and the PLLs need to be settled to the correct frequency [17]. This transition duration (ON to OFF or
OFF to ON) is called the transient period. In the 3𝑟𝑑 Generation Partnership Project (3GPP) 5G NR
standard [18], this transient period is required to be 10 𝜇s, as shown in figure 1.6.
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Figure 1.6: Transmit ON/OFF transient time specification for 5G NR [18]
.

It is not easy to switch the PLL to a different frequency in one step due to non­linearity in the oscillator
gain. Since the oscillator frequency is usually controlled by switched capacitors and the frequency is
inversely proportional to the square root of the tank capacitance, the gain which is dependent on the
capacitance is not constant in the entire frequency range. Literature shows some methods where
the locking time is reduced by improving the linearity of VCO tank capacitances [7], or by externally
controlling the VCO free­running frequency to be as close to frequency code word (FCW) as possible
so that it locks immediately. However, a frequency tracking loop that can operate in the background
is necessary for a fast and efficient frequency switching. This project investigates the use of a speed
optimization algorithm for a fast settling performance in PLLs.

1.4. Objective
The motivation of this project is the need for a low­power frequency tracking loop with wide lock­
ing/acquisition range and low acquisition time. The obvious solution for reducing power consumption is
by avoiding blocks like frequency dividers which operate at high VCO frequencies. This thesis explores
the possibility of using multiple sub­Nyquist samplers to accurately estimate the frequency error, of any
magnitude, between the VCO frequency and the desired frequency. It targets an acquisition range of
2GHz and a locking time less than 5 𝜇s to have sufficient margin from the 5G transient requirements.

1.5. Thesis Organisation
An overview of this thesis report is given in this section. As an introduction to PLLs and the conventional
implementation is already given in the current chapter, the following chapters delve into the concept
and implementation of the proposed FTL. First, the possibility of using multiple sub­Nyquist samplers
for signal frequency estimation are explored studied with a mathematical approach in Chapter 2. Addi­
tionally, some supporting formulae have been derived, to estimate the frequency bandwidth in which an
unambiguous frequency estimation/reconstruction is possible for a given system of sampling frequen­
cies. Furthermore, depending on the possible circuit limitations, the optimum number of frequency
samplers and the limits on the sampling frequencies are obtained.

In Chapter 3, the block level implementation of the proposed FTL is presented and various specifi­
cations required for each analog block for a robust frequency locking are derived. Next, the circuit level
implementation of each of the analog sub­blocks in the FTL are explained in detail and their post­layout
performance is presented in Chapter 4. In chapter 5, a detailed description of the RTL implementation
of the FTL digital block, which houses the frequency estimation and the speed optimization algorithms,
is given. Finally, the locking and power performance results of the FTL are discussed in chapter 6 and
the report ends with a conclusion drawn upon these results.

1.6. Research Contributions
My research contributions through this thesis are summarized below.

• Proposed a new sub­Nyquist samplers based FTL, which can support wide­band acquisition
range and small locking time requirements.
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• Studied the theory of symmetric number systems to mathematically support the use of multiple
sub­Nyquist frequencies for frequency estimation and also proposed a further extension of this
theory to non­pairwise coprime frequencies, in Chapter 2.

• Derived the necessary mathematical formulae to calculate the dynamic range offered by a system
of sampling frequencies at a frequency band of interest, in Chapter 2.

• Implemented a frequency estimation technique, with dynamic speed and accuracy optimization,
explained in Chapters 3 and 5, which help in minimizing the locking time.

• A possibility to extend this FTL to mm­Wave frequencies is analysed in Chapter 7.



2
Sub­Nyquist Sampling for frequency

estimation
The process of locking a PLL to the desired frequency involves the estimation of the frequency error be­
tween the desired and the VCO frequencies, for which estimating the VCO frequency first is necessary.
Sinusoidal signal frequency estimation finds importance in numerous applications like communication,
radar, image analysis, power grid stability, and many more. Most of these applications expect an ac­
curate estimation of frequency from a finite number of noisy samples. Furthermore, some applications
require estimation of multiple sinusoidal signals in a spectrum, e.g. cognitive radio [8]. Most of these
applications use Fast Fourier Transform (FFT) based methods for frequency estimation, which require
the sampling rates to be higher than the Nyquist rate. Recent research suggests use of multiple sub­
Nyquist sampling frequencies to overcome the challenges posed by high sampling frequencies [19].

This chapter first introduces the conventional method of frequency estimation using sampling and
FFT. Second, the concept of modulo arithmetic is introduced and then the Chinese Remainder Theo­
rem (CRT) which lays a foundation to frequency estimation from sub­Nyquist frequencies is presented.
Thirdly, the existing literature (Symmetrical Number Systems (SNS) [20]) which proves that an un­
ambiguous frequency estimation from sub­Nyquist frequencies is possible under some conditions, is
discussed. Then the theory of SNS is further extended to apply for the scenarios of PLLs with finite tun­
ing range and with a frequency­tracking loop. Finally, these estimations are used to choose a sampling
frequency combination to be used in the frequency tracking loop for frequency estimation.

2.1. Sampling and FFT
Periodogram is a process conventionally used to calculate the power spectral density of a signal, which
is then analysed to estimate its frequency [21]. Consider a sinusoidal signal represented by x(t) as
shown in equation 2.1.

𝑥(𝑡) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝜃). (2.1)
where 𝑓0 is the unknown signal frequency, A is the complex amplitude, 𝜃 is the initial phase shift and t
is time. Figure 2.1 represents a procedure to estimate the input signal frequency using Discrete Fourier
Transform (DFT). The signal is first sampled by a sampling frequency of 𝑓𝑠 to discretize it, and then
converted to digital form by an Analog to Digital converter (ADC). Consider that N digital samples are
taken. These sampled values can be given by a vector 𝑋𝑘 = { 𝑋0, 𝑋1, 𝑋2, ....𝑋𝑁−1}, whose values are

𝑥[𝑘] = 𝑋𝑘 = 𝐴 ⋅ 𝑠𝑖𝑛(
2𝜋𝑘𝑓0
𝑓𝑠

+ 𝜃), (2.2)

where x[k] is the discrete representation of the signal x(t), k ∈ {0, 1, ...𝑁 − 1}, 𝑋𝑘 is the real sampled
value at instant 𝑘/𝑓𝑆, and 𝑓0 is the down­converted frequency. By Nyquist­Shannon theorem, 𝑓0 lies
between [0, 𝑓𝑠/2]. As explained in [22], the frequency of the signal in equation 2.1 can be uniquely
identified and reconstructed by sampling it and performing DFT on it.

9
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Figure 2.1: General block diagram of discrete frequency estimation method

Discrete Fourier Transform (DFT) converts the time domain sequence into a periodic sequence in
frequency domain. By taking an N­point DFT, the frequency range from 0­𝑓𝑠 or (−𝑓𝑠/2 to 𝑓𝑠) is divided
into N bins. The complex coefficients for an N­point DFT are given by

𝑋[𝑛] =
𝑁−1

∑
𝑘=0

𝑋𝑘 ⋅ 𝑒−𝑗(
2𝜋𝑘𝑛
𝑁 ), (2.3)

where 𝑛 ∈ {0, 1, ...𝑁 − 1}, and 𝑛/𝑁 is the normalized representation of the frequency bin that the
coefficient belongs to, and 𝑁𝑡ℎ bin is equal to the sampling frequency 𝑓𝑠. To find the power spectral
densities, the square of the complex coefficients magnitude is calculated by taking their conjugate
multiplication as shown below. 𝑛𝑡ℎ bin’s power is given by

𝑃[𝑛] = |𝑋[𝑛] ⋅ 𝑋
∗[𝑛]

𝑁2 |. (2.4)

If the signal period is an integer multiple of the sampling interval (𝑇0 = 𝑚𝑇𝑠), then it coincides with
the centres of one of the bins and there is one maximum tone visible in the power spectral density
between [0, −𝑓𝑠/2] that corresponds to 𝑓0. Thus by finding the peak in half of PSD vector 𝑃[𝑛], the
sinusoidal signal frequency can be estimated.

The limitations of this method are:

1. Calculation of DFT requires 𝑁2 complex multiplications which result in high computational and
storage complexity.

2. For an unambiguous estimation of a frequency 𝑓0, the minimum sampling frequency 𝑓𝑠 required
is 𝑓𝑠 >= 2∗𝑓0 as stated by Nyquist theorem. This requires functioning of the ADC at 𝑓𝑠 frequency
leading to high power consumption and reduced effective resolutions. This also poses constraints
on digital block speed requirements, and anti­aliasing filters.

3. A lower sampling frequency 𝑓0 < 𝑓𝑠 ≤ 2 ∗ 𝑓0 can be used for frequency estimation. However, it
then requires the generation of I (in­phase) and Q (Quadrature) phases for the estimation of the
signal’s complex value 𝑍𝑘 instead of the real value 𝑋𝑘, for a single side band down­conversion.
Then a range of [0 − 𝑓𝑠] can be utilized.

4. The frequency resolution with which the frequency can be estimated depends on the number of
samples taken (N) which directly affects the DFT computation complexity given by O(𝑁2). Fast
Fourier Transform (FFT) which is an improved algorithm needs O(𝑁 ⋅ 𝑙𝑜𝑔𝑁).

5. If the sampled frequency’s time period is not an integer multiple of sampling time period, then there
will be spectral leakage in PSD leading to reducedmagnitude of the tone at 𝑓0 and increased tones
at other frequencies.
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2.2. Sub­Nyquist Sampling and Frequency Estimation
According to Nyquist­Shannon sampling theorem, to unambiguiously reconstruct a signal with max­
imum frequency 𝑓𝑚𝑎𝑥 the sampling frequency should be at least equal to or greater than twice the
maximum frequency (𝑓𝑠 >= 2𝑓𝑚𝑎𝑥). When a sampling frequency 𝑓𝑠 does not meet the Nyquist criteria,
a phenomenon called aliasing occurs. When an analog signal is sampled at uniform time intervals
(𝑇𝑠 =

1
𝑓𝑠
) to make it discrete, the output is a discrete spectrum that is symmetrical about 𝑓𝑠/2 and peri­

odic for every 𝑓𝑠. This can be seen in figure 2.2. Let a real valued signal of frequency 𝑓 from Eq. (2.1)
be sampled by a sampling clock at time instants 𝑛𝑇𝑠 where n = {0,1,2,..}. The output in time domain
can be given by,

𝑥(𝑡) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝜋𝑓 ⋅ 𝑛𝑇𝑠) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝑛𝜋
𝑓
𝑓𝑠
),

𝑥(𝑡) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝑛𝜋𝑚𝑓𝑠 + Δ𝑓𝑓𝑠
) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝑛𝜋Δ𝑓𝑓𝑠

), (2.5)

where 𝑚 is an integer (𝑚𝑓𝑠 is an integer multiple closest to f since 𝑓 > 𝑓𝑠) and Δ𝑓 is the frequency
difference between f and 𝑚𝑓𝑠. Figure 2.2 shows the aliasing frequency 𝑓𝑎 = Δ𝑓 as a function of signal
frequency 𝑓 = 𝑓𝑖𝑛 as obtained form Eq. (2.5). This frequency response shows that for a given output
aliasing frequency 𝑓𝑥 there are numerous possibilities of 𝑓𝑖𝑛 that give the same response.

Figure 2.2: Sampling output vs input signal

In the past, several articles have been published proposing the use of multiple such sub­Nyquist
frequencies whose low frequency operation is exploited to reduce the limitations on high speed digital
circuits, filters and ADCs. The following sub­sections describe the mathematical theorems that support
this concept.

2.2.1. Chinese Remainder Theorem
Chinese Remainder Theorem (CRT) is a well known concept in cryptography [19]. Applications like
sensor networks use CRT to estimate frequency when there are multiple under­sampled signal wave­
forms. Necessary condition is that the input signal 𝑥(𝑡) should be a complex value signal rather than
a real value signal in order to make it a single sided spectrum and then the range from 0­𝑓𝑠 can be
utilized for a sampling frequency of 𝑓𝑠.

To understand the CRT, a mathematical function is introduced here.

Modulo function:
This function returns the remainder of an integer division. It is written as,

𝑎𝑟 = L mod m, (2.6)

such that 0 <= 𝑎𝑟 < 𝑚, where 𝐿 is the integer dividend, 𝑚 is the divisor (also called modulo) and 𝑎𝑟 is
the remainder. For any integers 𝐿,𝑚 there always exist a unique pair of integers ”𝑘”, ”𝑎𝑟” which can be
written as 𝑎𝑟 = L mod m and satisfy 𝐿 = 𝑘𝑚 + 𝑎𝑟. ”𝑎𝑟” is also called a ”residue”.
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If there are two integers b, c which are called ”congruent modulo 𝑚”, it is represented as,

b ≡ c mod m. (2.7)

It means that both 𝑏, 𝑐 have the same remainder when divided by 𝑚 and (c­b) is divisible by m [19].
Thus the integer N is always congruent to its remainder 𝑎𝑟 ≡ 𝑁 mod m or 𝑁 ≡ 𝑎𝑟 mod m. The transfer
function of a modulus function can be seen in figure 2.3 which is periodic with a period 𝑚.

Figure 2.3: Mod function transfer curve

3.2.2.1 Modulo Arthematic Identities
Somemodulo arithmetic identities are given below which help in understanding some derivations made
in further sections. For all positive integers a,b,c,d,k,m:
1. If a ≡ b mod m, and c ≡ d mod m, when 0<= b,d < m, then

𝑎 + 𝑐 ≡ (𝑏 + 𝑑) 𝑚𝑜𝑑 𝑚. (2.8)

𝑎 − 𝑐 ≡ (𝑏 − 𝑑) 𝑚𝑜𝑑 𝑚. (2.9)

𝑎 ⋅ 𝑐 ≡ (𝑏 ⋅ 𝑑) 𝑚𝑜𝑑 𝑚. (2.10)

2. If a ≡ b mod m, and for any integer k

𝑎 + 𝑘 ≡ (𝑏 + 𝑘) 𝑚𝑜𝑑 𝑚. (2.11)

𝑎 − 𝑘 ≡ (𝑏 − 𝑘) 𝑚𝑜𝑑 𝑚. (2.12)

𝑎 ⋅ 𝑘 ≡ (𝑏 ⋅ 𝑘) 𝑚𝑜𝑑 𝑚. (2.13)

𝑎𝑘 ≡ (𝑏𝑘) 𝑚𝑜𝑑 𝑚. (2.14)

3.
𝑎 𝑚𝑜𝑑 𝑚 + (−𝑎) 𝑚𝑜𝑑 𝑚 = 0. (2.15)

Let 𝑚𝑟 = { 𝑚1, 𝑚2, ..𝑚𝑝 } be p integers (p moduli) such that all are pairwise co­prime, which means
when each pair is considered, they have no common factors and their greatest common divisor (GCD)
is 1. Let N be any integer such that 𝑁 < 𝑁𝑚𝑎𝑥 where 𝑁𝑚𝑎𝑥 = 𝐿𝐶𝑀(𝑚1, 𝑚2, 𝑚3, ...𝑚𝑝). The Least com­
mon multiple (LCM) in case of coprime numbers is just their product (𝑁𝑚𝑎𝑥 = 𝑚1 ⋅ 𝑚2 ⋅ 𝑚3... ⋅ 𝑚𝑝) since
they have no common factors. The integer array of reminders can be given by 𝑛𝑟 = { 𝑎1, 𝑎2, ..𝑎𝑝 } where
𝑎𝑟 = N mod 𝑚𝑟 ∀𝑟 ∈ {1, 2...𝑝}.
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Theorem 1:
The Chinese Remainder theorem states that there is one and only one unique value of L in [0, 𝐿𝑚𝑎𝑥)
such that:

𝐿 𝑚𝑜𝑑 𝐿𝑚𝑎𝑥 −→ {𝑎1, 𝑎2, ..𝑎𝑝}. (2.16)
That is, if given the values of vectors 𝑛𝑟 and 𝑚𝑟, there is only one value of L in [0, 𝐿𝑚𝑎𝑥) that maps to
the residue vector 𝑎𝑟 and the value of L can be unambiguously determined. If there are two values 𝐿1
and 𝐿2 that satisfy the above condition, then 𝐿2 ≡ 𝐿1 mod 𝐿𝑚𝑎𝑥. Theorem 1 can also be explained in
terms of congruence ( equivalence or mapping) that there is only one integer L < 𝐿𝑚𝑎𝑥 which satisfies
the simultaneous linear congruence equations.

L ≡ 𝑎1 (mod 𝑚1),
L ≡ 𝑎2 (mod 𝑚2),

:
L ≡ 𝑎𝑝 (mod 𝑚𝑝).

[0, 𝐿𝑚𝑎𝑥) is called the dynamic range of the system of moduli { 𝑚1, 𝑚2, ..𝑚𝑝 }.
However, this theorem cannot be directly applied to our case since, as explained in Figure 2.2,

the sampling transfer curve of a real­valued signal is triangular in nature and symmetrical around 𝑓𝑠/2
unlike the modulus function which is saw­tooth in nature. Some applications use both I and Q phases
to convert the real values into complex values in which case the CRT works. However, it would involve
two sampling phases per sampling frequency, ADCs in each phase and then DFT to estimate the alias
frequency tones before the CRT can be applied.

2.2.2. Symmetrical Number Systems
Although CRT cannot be directly applied to alias frequency transfer curves, it still establishes a con­
cept that there exists a range of integers that can unambiguously reconstructed given a set of residues
that are periodic in nature. To alleviate the drawbacks of CRT method, studies have been done us­
ing Symmetrical number systems (SNS) to reconstruct frequencies using under­sampled signals. As
seen in Figure 2.2, if a DFT is taken on a under­sampled real valued sinusoidal signal, it gives out a
symmetrical response which fits into a symmetrical number system [20]. If the triangular response in
2.2 is expressed mathematically by Eq. (2.17) when𝑚 is the integer modulo equivalent to the sampling
frequency and ℎ is any integer equivalent to the signal frequency. Consider that 0 ≤ ℎ < 𝑚. The
aliasing frequency or the symmetrical number system (SNS) response can be given by

𝑎ℎ = 𝑚𝑖𝑛{ℎ,𝑚 − ℎ} = {
ℎ mod 𝑚, 0 ≤ ℎ ≤ ⌊𝑚2 ⌋

−ℎ mod 𝑚 = (𝑚 − ℎ) mod 𝑚, ⌊𝑚2 ⌋ < ℎ < 𝑚
(2.17)

where ⌊𝑥⌋ represents a floor function. Here 𝑎ℎ is called a symmetric residue and this function is periodic
with a period m which is represented as below for any integer value of n.

𝑎ℎ+𝑛𝑚 = 𝑎ℎ (2.18)

Eq. (2.17),(2.18) can also be written in congruence form as

ℎ ≡ {
(ℎ + 𝑛𝑚) mod 𝑚, 0 ≤ ℎ ≤ ⌊𝑚2 ⌋ ,

−(ℎ + 𝑛𝑚) mod 𝑚, ⌊𝑚2 ⌋ < ℎ < 𝑚.
(2.19)

Intuitively, it can be seen that when compared to the modulo transfer function Figure 2.3, the SNS
transfer function Figure 2.2 has more redundancy (since the negative frequency errors are also folded
back to the positive frequency errors). This means that, when p co­prime moduli {𝑚1, 𝑚2, ..𝑚𝑝} are
used to resolve an integer N uniquely, the dynamic range within which this is possible may be much
less compared to that found using CRT which is Π𝑝𝑟=0𝑚𝑟. [20] provides a derivation of this dynamic
range based on SNS which is explained in this sub­section.

Consider p pairwise co­prime moduli 𝑚𝑟 = {𝑚1, 𝑚2, ..𝑚𝑝} and let 𝐴ℎ be a column vector such that
for an integer ℎ,
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𝐴ℎ =
⎡
⎢
⎢
⎣

𝑎1ℎ
𝑎2ℎ
⋮
𝑎𝑝ℎ

⎤
⎥
⎥
⎦
,

where 𝑎1ℎ is the symmetrical residue of ℎ𝑚𝑜𝑑𝑚1 and so on. Then the dynamic range of the moduli set
𝑚𝑟, is the highest integer (K­1) that can be unambiguously reconstructed since all the column vectors
𝐴0, 𝐴1, ...𝐴𝐾−1 are unique. Let K be the first integer that causes ambiguity because 𝐴𝐾 = 𝐴ℎ where
0 ≤ ℎ < 𝐾. This is possible only if 𝑎𝐾 = 𝑎ℎ for all moduli 𝑚𝑟, which in turn is possible if and only if
ℎ ≡ ±(𝐾) mod 𝑚𝑟 ∀𝑚𝑟 ∈ {𝑚1, 𝑚2, ...𝑚𝑝}. It can also be represented as,

𝐴ℎ =
⎡
⎢
⎢
⎣

𝑎1ℎ
𝑎2ℎ
⋮
𝑎𝑝ℎ

⎤
⎥
⎥
⎦
= 𝐴𝐾 =

⎡
⎢
⎢
⎣

𝑎1𝐾
𝑎2𝐾
⋮
𝑎𝑝𝐾

⎤
⎥
⎥
⎦

Theorem 2: Let {𝑚1, 𝑚2, ..𝑚𝑝} be p pairwise co­prime moduli, then the dynamic range �̂� of this system
can be given by:

1. If one of the elements in vector 𝑚𝑟, say 𝑚1, is an even number, then

�̂� = 𝑚𝑖𝑛{𝑚12 Π
𝑗
𝑖=2𝑚𝑖 + Π

𝑝
𝑖=𝑗+1𝑚𝑖} (2.20)

for all values of j ∈ [1,p­1] and all permutations and combinations of 𝑚2, 𝑚3, ..𝑚𝑝.

2. If all moduli are odd numbers, then

�̂� = 𝑚𝑖𝑛{12Π
𝑗
𝑖=1𝑚𝑖 +

1
2Π

𝑝
𝑖=𝑗+1𝑚𝑖} (2.21)

for all values of j ∈ [1,p­1] and all permutations and combinations of 𝑚2, 𝑚3, ..𝑚𝑝.

To explain this with an example, let {𝑚1, 𝑚2, 𝑚3} = {11,13,17}, then the smallest integer that will cause
ambiguity in this system is given by

�̂� = 𝑚𝑖𝑛{𝑚12 +𝑚2 ⋅ 𝑚3,
𝑚2
2 +𝑚1 ⋅ 𝑚3,

𝑚3
2 +𝑚2 ⋅ 𝑚1} = min{135,101,91} = 91

Proof:
Consider that the ambiguity occurs at integer K since 𝐴𝐾 = 𝐴ℎ for 0 ≤ ℎ < 𝐾. Ambiguity occurs
because each vector element 𝑎𝑟𝐾 = 𝑎𝑟ℎ. This means, for each modulo 𝑚𝑟, (K­h) is either an integer
multiple of 𝑚𝑟 such that 𝐾 ≡ ℎ + 𝑛𝑟𝑚𝑟 ≡ ℎ ≡ 𝑎ℎ (mod 𝑚𝑟), or K folds back onto (­h mod 𝑚𝑟). Let
K=h+k , where ℎ ≥ 0, k > 0, then the above two conditions can be represented as below,

ℎ ≡ (ℎ + 𝑘)(𝑚𝑜𝑑 𝑚𝑖), 1 ≤ 𝑖 ≤ 𝑗, ∀ 𝑗 ≤ 𝑝, (2.22)

ℎ ≡ −(ℎ + 𝑘)(𝑚𝑜𝑑 𝑚𝑖), 𝑗 + 1 ≤ 𝑖 ≤ 𝑝. (2.23)

For 𝑗 moduli the same symmetric residue 𝑎ℎ is observed due to periodic occurrence and for the rest
𝑝 − 𝑗 moduli, same 𝑎ℎ is seen due to folding back onto −𝑎ℎ. The proof here forth can be divided into
two cases, (1) where one of the moduli is even, (2) All moduli are odd. Only the derivation of one even
modulo is explained since the second case also follows the same steps of derivation.

Proof of Theorem 2.1: Consider that 𝑚1 is an even number. For the equation (2.22) to be satis­
fied, k should be a multiple of each modulo 𝑚1, 𝑚2..𝑚𝑗 for any 𝑗 ≤ 𝑝. Since each of these moduli are
pairwise co­prime, the only way k is an integer multiple of all of them is when 𝑘 ≡ 0 𝑚𝑜𝑑 ∏𝑗𝑖=1𝑚𝑖 i.e.,
𝑘 = 𝑎.∏𝑗𝑖=1𝑚𝑖 where a is a positive integer, ∀𝑎 ∈ {1,2,3..} . Since 𝑚1 is even, k can be written as,

𝑘
2 =

𝑎𝑚1
2

𝑗

∏
𝑖=2

𝑚𝑖 . (2.24)
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For the remaining p­j moduli, considering equation 2.23, adding h on both sides and applying the
modulo identity 2.15 followed by identity 2.13, equation 2.23 can be brought to the form

2ℎ ≡ −𝑘 (𝑚𝑜𝑑 𝑚𝑖) => ℎ ≡ 𝑎ℎ ≡
−𝑘
2 (𝑚𝑜𝑑 𝑚𝑖), 𝑗 + 1 ≤ 𝑖 ≤ 𝑝. (2.25)

Since we considered that the p­j moduli are pairwise co­prime, from the CRT equation 2.16 solving
the set of linear congruences, there are multiple solutions of h,k for equation 2.25, such that for any
positive integer 𝑏,

ℎ − −𝑘2 = ℎ + 𝑘2 = 𝑏
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.26)

By adding k/2 on both sides and then substituting Eq. (2.24) in (2.26), we get the below solution.

ℎ + 𝑘 = 𝑎𝑚1
2

𝑗

∏
𝑖=2

𝑚𝑖 + 𝑏
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.27)

To obtain the least integer value of ℎ + 𝑘, make a=1,b=1 and we get,

ℎ + 𝑘 = 𝑚1
2

𝑗

∏
𝑖=2

𝑚𝑖 +
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.28)

Proof of Theorem 2.2: In the case of all odd moduli, the derivation follows the same steps as the
previous case. The obtained estimation for ambiguity can be given by the below equation.

ℎ + 𝑘 = 𝑎
2

𝑗

∏
𝑖=1

𝑚𝑖 +
𝑏
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.29)

For 𝑘 to be even, both 𝑎 and 𝑏 should be even. Similarly, for the case of an odd 𝑘, the same solution
as equation 2.29 is obtained but for odd positive integers 𝑎 and 𝑏.

To obtain the least integer value of ℎ + 𝑘, make a=1, b=1 and we get,

ℎ + 𝑘 = 1
2

𝑗

∏
𝑖=1

𝑚𝑖 +
1
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.30)

The solution for every 𝑗 ∈ {2, .., 𝑝} and different permutations of 𝑚𝑟 in the order 2, 3, ..., 𝑝 in the
equation 2.27 and 2.29 causes an ambiguity in the system, but the minimum of all solutions is the
dynamic range of this system.

To summarize this sub­section, derivations of formulae to calculate the dynamic range of a system
of moduli, for which an unambiguous reconstruction is possible, are studied. The two assumptions
made in this derivation is that all the moduli are pairwise co­prime and the dynamic range always starts
from zero.

2.2.3. SNS with non­co­prime moduli and shifted Dynamic Range
The derivation of dynamic range provided in [20] is very advantageous in choosing the moduli in order
to cover the required frequency range. Yet, it does not answer two questions:

1. Can the frequency be unambiguously estimated if GCD of all the moduli is not 1, i.e., if they are
not co­prime?

2. What if the dynamic range does not start at zero but at an arbitrary integer S? Would a similar
dynamic range still hold true?
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Finding answers to these questions is necessary to make a few practical decisions such as using
integer­N PLLs for sampling frequency generation, which will be explained in Section 2.3.2.

Question 1: If GCD(𝑚1, 𝑚2, ...𝑚𝑝) > 1 (moduli are not pairwise co­prime)
From tests conducted in MATLAB, it is observed that, if the 𝑝 moduli 𝑚𝑟 ∈ 𝑚1, 𝑚2, 𝑚3...𝑚𝑝 have a GCD
of 𝑑 such that 𝜇𝑟 =

𝑚𝑟
𝑑 , and given that 𝜇1, 𝜇2...𝜇𝑝 are pairwise co­prime in nature, the dynamic range of

system 𝑚𝑟 can be given by
�̂�𝑑 = 𝑑 ⋅ �̂� (2.31)

where �̂� is the dynamic range derived from equations (2.27) and (2.29) for the system with moduli
𝜇1, 𝜇2...𝜇𝑝. The formula for dynamic range estimation may not work when the moduli have a GCD 1 but
not all of them are pairwise co­prime.

Question 2: If 0 is not the starting of the dynamic range
In the previous section, the dynamic range is estimated assuming that the starting point is 0. However,
in the case of an available frequency bandwidth [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] which does not start at DC, the dynamic
range needs to be much higher than 𝑓𝑚𝑎𝑥 in order to cover the bandwidth. This means choosing higher
or more number of sub­nyquist frequencies to achieve a high dynamic range. This section considers
that the dynamic range starts from an integer S that is not 0 and an approximate estimate of the upper
limit of dynamic range (DR) is made. This way, more moduli are not required to extend the DR but it
can just be shifted from [0, �̂�) to [𝑆, �̂�1) such that [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] ⊂ [𝑆, �̂�1).

Consider the SNS definition in equation 2.19. Let S be an integer such that [𝑆, �̂�−1] be the dynamic
range of the system where �̂� is the first integer that has ambiguity with an integer 𝑆 + ℎ. Consider that
�̂� = 𝑆 + ℎ + 𝑘 such that ℎ ≥ 0, 𝑘 > 0.

Let𝑚1, 𝑚2, ...𝑚𝑝 be pairwise co­prime integers and 𝑎ℎ be their symmetrical residue whose definition
is given by equation 2.17. Then the column vectors 𝐴𝑆+ℎ = 𝐴𝑆+ℎ+𝑘 when there is an ambiguity and
they are given by,

𝐴ℎ =
⎡
⎢
⎢
⎣

𝑎1𝑆+ℎ
𝑎2𝑆+ℎ
⋮

𝑎𝑝𝑆+ℎ

⎤
⎥
⎥
⎦
= 𝐴𝑆+ℎ+𝑘 =

⎡
⎢
⎢
⎣

𝑎1𝑆+ℎ+𝑘
𝑎2𝑆+ℎ+𝑘
⋮

𝑎𝑝𝑆+ℎ+𝑘

⎤
⎥
⎥
⎦

Theorem 3: Let 𝑚1, 𝑚2, ...𝑚𝑝 be p pairwise co­prime moduli, then the upper limit of the dynamic range
[𝑆, �̂�) of this system can be given by,

1. If one of the elements in vector 𝑚𝑟, say 𝑚1 is an even number

�̂� = 𝑚𝑖𝑛{𝑚12

𝑗

∏
𝑖=2

𝑚𝑖 + ⌈
𝑆 + ∏𝑗𝑖=1𝑚𝑖

2
∏𝑝𝑖=𝑗+1

⌉
𝑝

∏
𝑖=𝑗+1

𝑚𝑖}, (2.32)

for all values of j ∈ [1,p­1] and all permutations and combinations of 𝑚2, 𝑚3, ..𝑚𝑝.

2. If all moduli are odd numbers,

�̂� = 𝑚𝑖𝑛{{12Π
𝑗
𝑖=1𝑚𝑖 +

1
2⌈
2𝑆 + ∏𝑗𝑖=1𝑚𝑖
∏𝑝𝑖=𝑗+1

⌉Π𝑝𝑖=𝑗+1𝑚𝑖} , {Π
𝑗
𝑖=1𝑚𝑖 + ⌈

𝑆 + ∏𝑗𝑖=1𝑚𝑖
2

∏𝑝𝑖=𝑗+1
⌉Π𝑝𝑖=𝑗+1𝑚𝑖}}, (2.33)

for all values of j ∈ [1,p­1] and all permutations and combinations of 𝑚2, 𝑚3, ..𝑚𝑝 and odd or even
value of ceil function.

where ⌈𝑥⌉ implements the ceil function where a fractional number 𝑥 is rounded up to nearest integer.

Proof: Theorem 3
The derivation of this theorem is done similar to that of Theorem 2 with the only exception that the
starting value of the dynamic range is 𝑆 instead of 0. Hence here the derivation is done for only the
case of all odd moduli which can similarly be extended to even moduli. To reiterate, for the response
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of the system to have an ambiguity at an integer 𝑆 + ℎ + 𝑘 with an integer 𝑆 + ℎ, it should satisfy the
condition,

(𝑆 + ℎ) ≡ ±(𝑆 + ℎ + 𝑘) 𝑚𝑜𝑑 𝑚𝑖 , 𝑖 ∈ [1, 𝑝]. (2.34)

Consider that there are 𝑗 moduli that get the same symmetric residue due to a periodic response
and the rest of the moduli 𝑝−𝑗 see a negative symmetric residue as expressed in the below equations.

𝑆 + ℎ ≡ (𝑆 + ℎ + 𝑘)(𝑚𝑜𝑑 𝑚𝑖), 1 ≤ 𝑖 ≤ 𝑗, ∀𝑗 ≤ 𝑝, (2.35)

𝑆 + ℎ ≡ −(𝑆 + ℎ + 𝑘)(𝑚𝑜𝑑 𝑚𝑖), 𝑗 + 1 ≤ 𝑖 ≤ 𝑝. (2.36)

For the 𝑗 moduli in equation 2.35, the congruence condition is satisfied if and only if 𝑘 is an integer
multiple of ∏𝑗𝑖=1𝑚𝑖 ∀1 ≤ 𝑗 ≤ 𝑝 − 1. Then the integer k can be given by,

𝑘 = 𝑎
𝑗

∏
𝑖=1

𝑚𝑖 , 𝑎 ∈ {1, 2, ...}. (2.37)

Equation 2.36 can be solved using the modulo arthematic identities such that it is brought to the form,

(2(𝑆 + ℎ) + 𝑘) ≡ 0 𝑚𝑜𝑑 𝑚𝑖 , 𝑗 + 1 < 𝑖 < 𝑝. (2.38)

Since 𝑚𝑗+1, .., 𝑚𝑝 are pairwise coprime, the above equation has one and only one solution in every
∏𝑝𝑖=𝑗+1𝑚𝑖 .To solve this equation, two cases can be considered.

Case I: 𝑘 is an even number. Eq. (2.38) can be simplified as,

(𝑆 + ℎ) ≡ −𝑘2 𝑚𝑜𝑑 𝑚𝑖 , 𝑗 + 1 < 𝑖 < 𝑝. (2.39)

UsingChineseReminder Theorem, the above equation has one unique solution in the range [0,∏𝑝𝑖=𝑗+1𝑚𝑖)
and for every integer multiple of ∏𝑝𝑖=𝑗+1𝑚𝑖. Let 𝑏′ be the least integer that satisfies,

(𝑆 + ℎ) = −𝑘2 + 𝑏
′

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.40)

For the condition that 𝑘 > 0 to be true, 𝑎 > 0 and 𝑏′ should satisfy the below condition for ℎ >= 0

𝑏′
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 − 𝑆 −
𝑘
2 > 0 => 𝑏

′ >
𝑆 + 𝑘

2
∏𝑝𝑖=𝑗+1𝑚𝑖

. (2.41)

𝑏′ = ⌈
𝑆 + ∏𝑗𝑖=1𝑚𝑖

2
∏𝑝𝑖=𝑗+1𝑚𝑖

⌉. (2.42)

When 𝑘 is an even number. Let 𝑏 be an even integer,

𝑆 + ℎ + 𝑘 = 𝑘
2 +

𝑏
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.43)

Substituting 2.37,

𝑆 + ℎ + 𝑘 = 𝑎
2

𝑗

∏
𝑖=1

𝑚𝑖 +
𝑏
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.44)
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For 𝑘 to be even, 𝑎 should be an even integer and 𝑏 = 2(𝑏′ + �̃�) where �̃� ∈ {0, 1, ...}.

Case II: 𝑘 is an odd number. Let 𝑏′ be the least integer that can satisfy eq. 2.38

(2(𝑆 + ℎ) + 𝑘) = 𝑏′
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.45)

For the condition that 𝑘 > 0 is true, 𝑏 should satisfy the below condition, (by making ℎ = 0)

𝑏′
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 − 2𝑆 − 𝑘 > 0 => 𝑏′ >
2𝑆 + 𝑘
∏𝑝𝑖=𝑗+1𝑚𝑖

. (2.46)

𝑏′ = ⌈2𝑆 +
∏𝑗𝑖=1𝑚𝑖

∏𝑝𝑖=𝑗+1𝑚𝑖
⌉. (2.47)

When 𝑘 is an odd number. Let 𝑏 be an odd positive integer,

2(𝑆 + ℎ) + 2𝑘 = 𝑘 + 𝑏
𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.48)

𝑆 + ℎ + 𝑘 = 𝑘
2 +

𝑏
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.49)

Substituting 2.37,

𝑆 + ℎ + 𝑘 = 𝑎
2

𝑗

∏
𝑖=1

𝑚𝑖 +
𝑏
2

𝑝

∏
𝑖=𝑗+1

𝑚𝑖 . (2.50)

For 𝑘 to be odd, 𝑎 should be an odd positive integer and 𝑏 = (𝑏′+ �̃�) should be an odd positive integer
where �̃� ∈ {0, 1, ...}. The Dynamic range �̂� = 𝑆 + ℎ + 𝑘 can be given by the minimum values of the
equations 2.50, 2.44 for all values of 1 ≤ 𝑗 ≤ 𝑝 and all permutations of 𝑚1, 𝑚2, ...𝑚𝑝.

Example:
Let𝑚1 = 11, 𝑚2 = 15, 𝑚3 = 17. For a starting value of 0, the dynamic range �̂� = 𝑚𝑖𝑛{91, 101, 135} as
obtained from Theorem 2. But if the range starts from an integer 𝑆 = 180 i.e., [180, �̂�) then equations
(2.50), (2.44) are used. For 𝑘 even, 𝑎𝑚𝑖𝑛 = 2 and 𝑘 odd, 𝑎𝑚𝑖𝑛 = 1

�̂� = 𝑚𝑖𝑛{{11+(⌈180 + 11/215 × 17 ⌉+1)15×17, 15+(⌈180 + 15/211 × 17 ⌉+1)11×17, 17+(⌈180 + 17/215 × 11 ⌉)15×11},

{112 +
1
2(⌈
2 × 180 + 11
15 × 17 ⌉+1)15×17, 152 +

1
2(⌈
2 × 180 + 15
11 × 17 ⌉+1)11×17, 172 +

1
2(⌈
2 × 180 + 17
15 × 11 ⌉)15×11}}

�̂� = 𝑚𝑖𝑛{{266, 389, 347}, {388, 288, 256}}

The minimum value 256 is the value which causes the first ambiguity and hence the maximum value
of the dynamic range obtained is [180,255].

To summarize this sub­section, first, it was experimentally verified that if the moduli are derived
from pairwise co­prime integers, and all the moduli together have a GCD of 𝑑, then their dynamic
range is also 𝑑 times higher. Secondly, an approximate formula has been derived to calculate the
upper limit of the dynamic range of a system when its lower limit is not zero. It is observed that in such
cases, the dynamic range is very much dependent on the moduli combination and the starting limit.
These formulae when substituted with 𝑑 = 0 and 𝑆 = 0, reduced to the equations in the previous sub­
section. These derivations will be useful when adopting these methods for frequency reconstruction in
a frequency band.
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2.3. SNS for Frequency estimation in PLLs
The discussion thus far was purely mathematical, explained in terms of integers, residues and moduli.
However, in this section, an equivalence is drawn to the sampling system for a clear understanding.
Consider that there are 𝑝 samplers whose frequencies are given by a vector 𝑓𝑠𝑖 = {𝑓𝑠1, 𝑓𝑠2, ..𝑓𝑠𝑝}. Let
all these sampling frequencies be derived from a reference frequency 𝑓𝑟𝑒𝑓, by integer multiplication to
an arbitrary pairwise co­prime vector 𝜇𝑖 = {𝜇1, 𝜇2, ...𝜇𝑝} i.e., 𝑓𝑠𝑖 = 𝑓𝑟𝑒𝑓 ⋅ 𝜇𝑖 , ∀𝑖 ∈ [1, 𝑝]. Then, 𝑓𝑟𝑒𝑓 is the
GCD of the sampling system 𝑓𝑠𝑖. Consider a frequency band of interest [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥], in which we desire
an unambiguous frequency reconstruction. Then, the equivalence to SNS is as follows.

• Sampling frequencies 𝑓𝑠𝑖 are equivalent to moduli 𝑚𝑖.

• 𝑓𝑚𝑖𝑛 is equivalent to the starting of a dynamic range 𝑆.

• 𝑓𝑚𝑎𝑥 is the last integer which can be unambiguously reconstructed, i.e., �̂� − 1.

• 𝑓𝑟𝑒𝑓 is the GCD 𝑑 of the system.

From this equivalence, and combining the equations (2.31),(2.32),(2.33), the below formula can
be obtained, which gives the minimum frequency value that causes ambiguity when sampled by the
system 𝑓𝑠𝑖.

𝑓𝑚𝑎𝑥 + 1 =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑓𝑟𝑒𝑓 ⋅ 𝑚𝑖𝑛{
𝜇1
2

𝑗

∏
𝑖=2

𝜇𝑖 + ⌈
𝑆 + 0.5∏𝑗𝑖=1 𝜇𝑖

∏𝑝𝑖=𝑗+1
⌉

𝑝

∏
𝑖=𝑗+1

𝜇𝑖}, 𝜇1 = 𝑒𝑣𝑒𝑛, 1 ≤ 𝑗 ≤ 𝑝 − 1

𝑓𝑟𝑒𝑓 ⋅ 𝑚𝑖𝑛{{
1
2

𝑗

∏
𝑖=1

𝜇𝑖 +
1
2⌈
2𝑆 + ∏𝑗𝑖=1 𝜇𝑖
∏𝑝𝑖=𝑗+1

⌉
𝑝

∏
𝑖=𝑗+1

𝜇𝑖} ,

{
𝑗

∏
𝑖=1

𝜇𝑖 + ⌈
𝑆 + 0.5∏𝑗𝑖=1 𝜇𝑖

∏𝑝𝑖=𝑗+1
⌉

𝑝

∏
𝑖=𝑗+1

𝜇𝑖}}, ∀ 𝜇𝑖 = 𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑝 − 1.

(2.51)

Therefore, by choosing proper values for 𝑓𝑟𝑒𝑓 and 𝜇𝑖, the desired frequency dynamic range [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]
can be obtained.

The advantage of using sub­Nyquist samplers for frequency estimation is that, theoretically, the
same or a similar set of samplers can be used to estimate frequencies of similar dynamic range
(bandwidth), but at different absolute frequencies. For example, consider three co­prime moduli 𝜇1 =
10, 𝜇2 = 11, 𝜇3 = 13, and a reference frequency of 𝑓𝑟𝑒𝑓 = 50𝑀𝐻𝑧 which result in the sampling fre­
quency system of 𝑓𝑠1 = 500𝑀𝐻𝑧, 𝑓𝑠2 = 550𝑀𝐻𝑧, 𝑓𝑠3 = 650𝑀𝐻𝑧. The dynamic range depending
on different starting frequencies 𝑓𝑚𝑖𝑛 is shown in Table 2.2. The table evidently shows that a similar
bandwidth/ dynamic range can be obtained by the same set of sampling frequencies, even at very high
frequency bands. Therefore, theoretically its possible to estimate frequencies as high as and much
higher than 68GHz with the same set of sampling frequencies. It is to be noted that the possible fre­
quency ranges are very rigidly dependent on the sampling frequencies and any frequency slightly lower
or higher than the calculated dynamic range might result in ambiguity.

𝑓𝑚𝑖𝑛 𝑓𝑚𝑎𝑥 Bandwidth
0 3400MHz 3.4GHz

10.5GHz 13.55GHz 3.05GHz
30GHz 33.05GHz 3.05GHz
65.5GHz 68.8GHz 3.3GHz

Table 2.1: Calculated dynamic range of the sampling system (500,550,650MHz) in different
frequency bands.
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Frequency range (GHz) Sampling frequencies (MHz)
5­10 650, 725, 775
10­20 263, 271, 289
18­40 263, 321, 389

Table 2.2: Arbitrary sampling frequency combinations for common output frequency ranges.

2.3.1. Limitations of using sub­nyquist sampling and SNS
The only and the biggest limitation of frequency reconstruction using SNS, i.e., using symmetric residues
of moduli to reconstruct an integer is that, if there is a small error in the estimation of a single residue,
the reconstructed integer may have a huge error. This calls for accuracy as high as possible in residue
or alias frequency generation. This means, a perfectly monotonic and linear SNS curve similar to Figure
2.2. However, in reality, as will be explained in detail in Section 4.6, there will be some non­linearities
in circuit blocks that will introduce errors in the residue. This could further be worked around by allow­
ing an error margin in the digital processing where the VCO frequency will be reconstructed from the
residues.

2.3.2. Choosing Sub­Nyquist frequency Combinations
As proven in all the previous sections, an unambiguous reconstruction of the VCO frequency is possible
when more than one sub­Nyquist frequencies are used for sampling, thus alleviating the limitations
faced by high sampling rates. The choice to be made here is the number of sub­sampling frequencies
required and the combination of these frequencies. This choice depends on the following factors.

(1) Frequency range [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥].
(2) Low complexity in sampling frequency generation.
(3) Robustness of the system.

Number of samplers
As the number of sampling channels increase, the area and design overhead increases. However,
as the number of samplers increase, the sampling frequencies reduce which lead to lesser power
consumption. As the area overhead and the design complexity are a higher trade off than the power
consumption, the number of samplers need to be as low as possible. If 1 is the lowest number of
channels, then the sampling frequency needs to satisfy Nyquist criterion. Hence, starting from two
samplers, to obtain a dynamic range of 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛, the sum of the two frequencies should be greater
than the dynamic range as seen in Eq. (2.51). For example, consider a dynamic range requirement of
[0,𝑀] and two co­prime sampling frequencies 𝑓𝑠1, 𝑓𝑠2. Then the first ambiguity should be greater than
M, where M can be given by

𝑀 < {
𝑓𝑠1
2 + 𝑓𝑠2, 𝑓𝑠1 = 𝑒𝑣𝑒𝑛,
𝑓𝑠1
2 + 𝑓𝑠22 , 𝑓𝑠1, 𝑓𝑠2 = 𝑜𝑑𝑑.

(2.52)

In case𝑀 = 2000, then the best case sampling frequencies can be 1000,1501 such that (1000/2+1501
= 2001 > 2000). But by adding another sampler, the ambiguity equation becomes,

𝑀 < {
𝑓𝑠1
2 𝑓𝑠2 + 𝑓𝑠3, 𝑓𝑠1, 𝑓𝑠2 < 𝑓𝑠3; 𝑓𝑠1 = 𝑒𝑣𝑒𝑛,
𝑓𝑠1
2 𝑓𝑠2 +

𝑓𝑠3
2 , 𝑓𝑠1, 𝑓𝑠2 < 𝑓𝑠1, 𝑓𝑠𝑖 = 𝑜𝑑𝑑.

(2.53)

If the same case of𝑀 = 2000 is considered, 𝑓𝑠1 = 8, 𝑓𝑠2 = 125, 𝑓𝑠3 = 1501would be sufficient to achieve
unambiguous reconstruction. It is clearly evident that, adding another sampler reduces at least two of
the sampling frequencies by an order of magnitude in the best case. Hence using three samplers is
more desired than two. The sampling frequencies can be further reduced by using 4 or more samplers,
but the area overhead would be a greater trade off than the power saved. Three is believed to be an
optimum point between power and area trade off and hence three sampling frequencies are used in
this project.
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Combination of sampling frequencies
As seen from the Eq. 2.51, the combination of frequencies certainly depends on the starting frequency
𝑓𝑚𝑖𝑛. Secondly, these sampling frequencies should be equal to or be derived from a set of pairwise
co­prime integers.

When the sampling frequencies are generated, it is preferable to derive them from a reference
clock using a PLL for a stable and low noise performance, rather than a free­running oscillator. When
all the frequencies are derived from a reference clock using an integer­N PLL, they automatically have
a 𝐺𝐶𝐷 = 𝑓𝑟𝑒𝑓, where 𝑓𝑟𝑒𝑓 is the reference clock frequency. As explained in the previous section, the
dynamic range depends on the pairwise co­prime moduli, and if 𝐺𝐶𝐷 > 1, the total dynamic range
is just a multiple of the dynamic range from co­prime integers. Alternatively, a 𝐺𝐶𝐷 of 1 can also be
achieved by using a fractional­N PLL. In this section, certain limits are set on the sampling frequencies
and the GCD for a robust frequency estimation.

Maximum sampling frequency:
The maximum sampling frequency is limited by three factors. First, as will be discussed in section 3.3,
the tolerable sampling clock jitter is limited by its frequency of sampling operation and as this fre­
quency increases, the jitter constraint on its generation circuit becomes very stringent. Second, the
non­linearities caused by jitter, spur, and amplifier gain, distort the aliasing transfer curve which leads
to an incorrect frequency estimation. The impact of these non­linearities is discussed in Section 4.3.
These non­linearities increase with the frequency of operation. Thirdly, as the sampling clock frequency
increases, the power consumption of all the blocks operating at that frequency also increases. Keeping
all these factors in mind, the maximum sampling frequency is limited to 1GHz.

Minimum sampling frequency:
Aswill be discussed in Chapter 3, the required dynamic range in the current application is [10𝐺𝐻𝑧, 12𝐺𝐻𝑧].
To have an extra margin, the a requirement of [9.3 𝐺𝐻𝑧, 12.7 𝐺𝐻𝑧] is assumed. To achieve such band­
widths, the sampling frequencies can be derived from very small co­prime numbers using high GCD,
or high co­prime numbers using small GCD. For example, the given range can be obtained by using,

Case­I: Co­prime numbers {11,15,17} with 𝑓𝑟𝑒𝑓 = 50𝑀𝐻𝑧 => 𝑓𝑠𝑖 = {550, 750, 850}𝑀𝐻𝑧,
Case­II: Co­prime numbers {263,271,289} with 𝑓𝑟𝑒𝑓 = 50𝑀𝐻𝑧 => 𝑓𝑠𝑖 = {263, 271, 289}𝑀𝐻𝑧.

The following comparisons between Case­I and Case­II are used to decide a limit on the minimum
sampling frequency.
Integer­N vs Fractional­N PLLs:
Firstly, Case­I sampling frequencies are almost double the frequencies of Case­II. The reference fre­
quency used is same, for a fair comparison. Having a high reference frequency is important for better
oscillator noise suppression.

Since in Case­II, the sampling frequencies are not integer multiples of 50MHz, a fractional­N PLL
needs to be used. Compared to integer­N PLLs, fractional­N PLLs have higher power and area over­
head because of extra blocks needed, like a Multi­Modulus Divider (MMDIV), Delta­Sigma modulator
(DSM) or a Digital­to­time converter (DTC), which implement a fractional­N operation. This also in­
creases the design complexity, which needs to be taken into consideration due to the limited time
avaliability. Additionally, due to quantization noise produced during a fractional­N operation, output
phase noise will be degraded. Furthermore, fractional­N PLLs give rise to fractional spurious tones, in
addition to reference spurs, which might be detrimental for a robust frequency estimation. Although,
Section 3.3 shows that lower sampling frequencies are allowed to have slightly higher jitter, the area,
power and design complexity are a higher trade off.

Linearity and Robustness: For frequencies in Case­I, due to periodicity, the same alias frequency
may occur 10­20 times in the given dynamic range. However, in Case­II, they might occur 20­40 times,
because of their high periodicity. This means, less error can be tolerated in alias frequency estimation,
in Case­II than in Case­I. In other words, smaller errors in alias frequencies result in larger errors in
VCO frequency estimation, in Case­II than in Case­I.

Furthermore, as will be explained in the Chapter 4, due to non­linearities in the sampling operation,
the area of monotonic and linear region in the sampling curve is also much lower than expected.
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Speed of Locking: In Case­I, the alias frequencies lie within 0 to 250­500MHz, where as in Case­II,
they lie within 0­150MHz. Hence Case­II needs more number of samples to determine all the aliasing
frequencies accurately than Case­I. This results in longer locking times in Case­II than in Case­I.

Reference Frequency: In integer­N PLLs, a higher reference frequency is desired as it allows a higher
bandwidth. A Higher bandwidth helps in better oscillator noise suppression, hence a low output jitter.
The available reference frequency to this design is a 100MHz crystal input (explained in Chapter 3). As
explained in Eq. (2.51), for a given dynamic range, a higher reference frequency leads to low co­prime
factors. By a trial and error method, it is found that there are no combinations of co­prime integers such
that all the sampling frequencies derived are less than 1GHz. Hence the second highest reference fre­
quency (50MHz) that can be derived from 100MHz, is used in this project.

Summary
Since the robustness of the system is extremely important for a proper locking operation, lower power
consumption is traded off with higher linearity and sampling frequencies higher than 500MHz are cho­
sen. However, due to sampling jitter limitation, the sampling frequencies are limited to 1GHz. A GCD
= reference clock frequency of 50MHz is chosen depending on the lowest co­prime integers possi­
ble. So the co­prime moduli can be calculated using Eq. (2.50), (2.44), such that the DR [𝑆1, 𝑆2] =
[9.3, 12.7]𝐺𝐻𝑧/50𝑀𝐻𝑧. Alternately a perl script was used which could compute the combinations of
sampling frequencies, such that the combinations of symmetric residues or the aliasing frequencies
are unique in the given DR.



3
Block Level Implementation

The main functions of an FTL can be divided into three parts ­ (1) Estimation of the VCO frequency
(𝑓𝑣𝑐𝑜), (2) computation of the error 𝐹𝑒𝑟𝑟 between the VCO frequency 𝑓𝑣𝑐𝑜 and the desired frequency
input code word 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and finally (3) application of an appropriate control signal to update the VCO
frequency to reduce this error. VCO frequency estimation, which is the most crucial function of an
FTL, is implemented using a combination of analog and digital sub­blocks. The functions (2) and (3)
can be easily performed in the digital domain. This chapter briefly discusses the overall block­level
implementation of the FTL, starting with the VCO frequency estimation step in the first section. Further
in the chapter, specifications for each of the analog sub­blocks are derived, which ensure the robust
functioning of the FTL.

3.1. Frequency Estimation
This thesis explores the idea of using multiple sub­Nyquist samplers for frequency estimation. These
sub­Nyquist samplers down­sample the VCO output signal to produce aliased signals. The first step of
VCO clock frequency estimation is the estimation of these different alias frequencies. The estimation
of an alias frequency can be divided into two steps.

(1) Generation of the aliasing signal.
(2) Processing the aliased signal in the analog and digital domain to estimate the frequency.

The block­level implementation of these operations is shown in Figures 3.1 and 3.2. The aliased
signal can be generated by performing a sampling operation on VCO output of frequency 𝑓𝑣𝑐𝑜 using a
sampling signal of frequency 𝑓𝑠. The sampling clock 𝑓𝑠 is derived from a reference clock by multiplying
with an integer 𝑁 using a frequency multiplier 𝑓𝑠 = 𝑁𝐹𝑟𝑒𝑓. An integer multiplication factor is used
because of the simplicity of the implementation of an integer­N multiplier. A fractional­N multiplication
factor can also be used, but they would introduce excessive phase noise due to additional quantization
noise and fractional spurious tones caused by the fractional operation. Besides, the design complexity
also increases.

Conventionally, frequency estimation of such alias signals is done using an FFT based approach
[22]. These methods typically involve discretization of the aliasing signal, converting it into digital form
using an ADCs, and then performing DFT/FFT or a similar algorithm to estimate the frequency. Alter­
natively, instead of discretization, the continuous signal is processed in this project to obtain the alias
frequency estimate in a simple manner, using rail­to­rail amplifiers and counters. As Figure 3.1 sug­
gests, the continuous­time alias signal is then amplified close to rail­to­rail by the amplifier, and then
converted into digital pulses using a Schmitt trigger. This digital signal (𝑉𝑑𝑖𝑔), is then sent to the digital
block for processing. The Schmitt trigger is mainly used to suppress any false pulses caused by the
noise in the system.

23
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Figure 3.1: Alias signal generation and conversion into digital pulses.

𝑉𝑑𝑖𝑔 toggles at an average frequency equal to the alias frequency. In the digital domain, this signal
is processed to estimate the absolute value of the alias frequency. Figure 3.2 shows a basic digital im­
plementation of a circuit that takes a single alias signal information and estimates the VCO frequency.
It is a three­step process.

Step 1:
Counting the number of pulses 𝑁 (or rising edges) of a digital signal of frequency 𝑓𝑑𝑖𝑔 in a time period
𝑇𝑝 (observation time). This is done by using a combination of a counter and a differentiator as shown in
Figure 3.2. The counter up­counts at every posedge of 𝑉𝑑𝑖𝑔, thereby storing the number of pulses that
have occurred starting from time 0. The differentiator calculates the difference between the counter
output at the 1𝑠𝑡 and the 𝑛𝑡ℎ clock edges of FTL clock 𝑐𝑙𝑘𝑓𝑡𝑙, which results in the effective number of
pulses counted in 𝑇𝑝. One observation time period 𝑇𝑝 consists of 𝑛 clock periods of 𝑐𝑙𝑘𝑓𝑡𝑙.

Step 2:
Calculating the absolute value of the alias frequency 𝑓𝑎 by scaling the count 𝑁 by 1

𝑇𝑝
. (i.e., 𝑓𝑎 =

𝑁
𝑇𝑝
).

Step 3:
Calculating the VCO frequency 𝑓𝑣𝑐𝑜 from 𝑓𝑎 using the equation

𝑓𝑣𝑐𝑜 = 𝑚 ⋅ 𝑓𝑠 + 𝑠 ⋅ 𝑓𝑎 , (3.1)

where 𝑚 is an integer such that 𝑚 ⋅ 𝑓𝑠 is the integer multiple of 𝑓𝑠 closest to 𝑓𝑣𝑐𝑜, and 𝑠 is the sign of the
alias frequency given by 𝑠 = 𝑠𝑖𝑔𝑛(𝑓𝑣𝑐𝑜 −𝑚 ⋅ 𝑓𝑠).

The last step of the process explained applies only for the case of a single sampling frequency
based frequency estimation and it requires the knowledge of 𝑚 and 𝑠 beforehand. The estimation of
frequency using three aliasing frequencies is explained thoroughly in Chapter 5.

Figure 3.2: Alias signal processing in the digital domain to estimate VCO frequency for a single
sub­Nyquist sampler.

3.2. Top level design
Figure 3.3 shows the complete top­level block diagram of the design. The figure shows a sub­sampling
PLL assisted by the proposed frequency tracking loop for frequency acquisition. The main PLL con­
sists of a high gain Dynamic­Amplifier­based Phase Detector (DAPD) which directly samples the VCO
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output, an operational transconductance amplifier (OTA) which converts the voltage from PD to cur­
rent, a low pass filter to convert the OTA output into VCO control voltage (𝑉𝑐), and an L­C VCO. This
PLL takes input from a 100MHz crystal oscillator. A reference buffer is used to convert the sinusoidal
reference clock into a square wave. Then, a pulse generator is used to generate a PD reference clock
with the required duty cycle 𝐷𝑟𝑒𝑓, which is used for VCO sampling in the PD. The VCO output 𝑉𝑣𝑐𝑜
(which is a differential signal in reality) is then amplified by an output buffer and given to a dividy­by­4
block to divide the frequency to a lower value that can be observed by a phase noise analyzer. This
PLL designed by Jiang Gong as presented in [23] has been taken as a basis for the design of the pro­
posed frequency­tracking loop. The expected frequency range of the VCO is 9.8­12.2GHz. The PLL
has a reference spur of ­78 dBc and an in­band phase noise of ­129 dBc/Hz at an offset of 1MHz. The
obtained lock­in range of the main PLL is 7MHz, up­to 3.5MHz on each side of the desired frequency.
The proposed FTL is expected to extend this lock­in range to >2.4GHz so that it can cover the entire
tuning range of the PLL.

Figure 3.3: Top level block diagram of an SSPLL with proposed FTL for a wider locking range.

The frequency­tracking loop is highlighted in blue in Figure 3.3. The functions of the FTL can be
divided into the following tasks:

1. Detecting if the PLL is unlocked.

2. Generating the alias pulses ­ {𝑉𝑑𝑖𝑔1, 𝑉𝑑𝑖𝑔2, 𝑉𝑑𝑖𝑔3}.
3. Estimation of current VCO frequency 𝑓𝑣𝑐𝑜 from the alias pulses.

4. Finding the frequency error between the VCO frequency and the desired frequency 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑. Here
𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is a digital input to the PLL.

5. Apply an equivalent control code to the VCO to change its frequency to the desired value.

The unlock detection circuit is used to detect any disturbances caused in the loop because of frequency
unlock. The output of this circuit is zero when no disturbance is present. However, when the PLL is
unlocked, frequency modulation occurring in the VCO manifest as ripples on the VCO control voltage,
which are amplified into digital pulses. The presence of these pulses indicates unlock and a signal is
sent to the digital block to switch control to the FTL.

As decided in the previous chapter, there are three sampling frequencies which are all multiples
of 50MHz. Hence, there will be three slices of alias signal generation blocks. Three digital signals
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𝑉𝑑𝑖𝑔1, 𝑉𝑑𝑖𝑔2, 𝑉𝑑𝑖𝑔3 representing the three aliasing frequencies are given as input to the digital blocks for
processing. These analog blocks are explained in detail in Chapter 4.

The frequency estimation and the following tasks are performed in the digital domain represented
by the digital block in figure 3.3. The digital processing is divided into alias frequency estimation
(𝑓𝑎1, 𝑓𝑎2, 𝑓𝑎3) followed by VCO frequency estimation, and frequency error calculation. Then depend­
ing on the frequency error, a control code is sent to VCO to update its frequency. The FTL is enabled
when a ”PLL Unlock” signal is received from the unlock­detect block in the main PLL. Additionally,
there is a coarse lock detection digital sub­block whose function is to observe 𝑓𝑒𝑟𝑟 and turn off the FTL
when the frequency error reaches below 3MHz (main PLL lock­in range) so that the main PLL can
take over. It can be treated as a dead­zone so that there aren’t two different loops controlling VCO at
the same time. Furthermore, a speed and accuracy optimization block is introduced in the feedback
so that the accuracy of 𝑓𝑣𝑐𝑜 estimation can be dynamically changed for an optimal locking time. All of
these blocks are discussed in detail in chapter 5.

Figure 3.4: Block level representation of tasks performed in the FTL digital block.

Figure 3.4 shows that there are 6 inputs to the digital block. To be precise, the FTL analog block
has 6 output signals, 2 corresponding to each sampling path. This is done as a work around to address
the non­linearities in the analog blocks, as will be explained in the Section 4.3.

3.3. Specifications
As explained in chapter 2, the property that allows an unambiguous reconstruction of the VCO fre­
quency is that the combination of all the alias frequencies is unique for each frequency in the bandwidth
of interest. However, even a slight error in either of the alias frequencies may result in large errors in
the estimated frequency. Hence, the digital algorithm used to estimate the VCO frequency requires
a very high accuracy in the alias frequency generation, as it needs a precise count value to correctly
calculate the VCO frequency. Thus, it poses stringent constraints on the performance of each of the
analog blocks used in alias frequency generation. To successfully implement the frequency estimation
block, the following attributes of analog blocks play a significant role.

1. RMS jitter of the sampling clock.

2. Amplifier gain and bandwidth.

In this section, the impact of these attributes on FTL functioning are estimated and hence their
specifications are derived. A few other performance attributes like the main VCO spur performance
due to additional sampling operations is also constrained so that the existing PLL performance is not
degraded.

3.3.1. Sampling clock jitter
The impact of sampling clock jitter on frequency estimation can be simplified and understood from
Figure 3.5. Consider that the VCO signal is being sampled at a frequency 𝑓𝑠 and the output is quantized
to either 0 or 1 depending on the sign of 𝑉𝑠, where 𝑉𝑠 is the sampled value. In an ideal case, at instant
𝑇𝑠, the sampled value is positive leading to a quantized value of 1. If the sampling clock has jitter
(represented by gray dotted lines), there is a limit on the amount of jitter the sampling clock can have
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before sampling results in a wrong decision, i.e., a negative value or 0 quantized output. This limit on
jitter can be derived as below.

Figure 3.5: Impact of clock jitter in a sampling operation.

𝑉𝑠 = sin(2𝜋(𝑓𝑣𝑐𝑜 + Δ𝑓)𝑇𝑠) = 𝑠𝑖𝑛(2𝜋
𝑓𝑣𝑐𝑜
𝑓𝑠

+ 2𝜋 Δ𝑓𝑓𝑠
) (𝑓0/𝑓𝑠=𝑖𝑛𝑡𝑒𝑔𝑒𝑟)−−−−−−−−−−−→ 𝑠𝑖𝑛(2𝜋 Δ𝑓𝑓𝑠

), (3.2)

where 𝑉𝑠 is the sampled voltage at instant 𝑇𝑠, 𝑇𝑠 = 1/𝑓𝑠, Δ𝑓 is the frequency error or the aliasing
frequency (|𝑓𝑣𝑐𝑜 − 𝑘 ∗ 𝑓𝑠|), and 𝑓𝑣𝑐𝑜 is the VCO frequency. As seen from this equation, 𝑉𝑠 will have a
positive value if Δ𝑓 is positive and vice­versa.

The above equation can be modified as shown in equation (3.3) to include sampling clock jitter. The
sampled voltage can then be give by

𝑉𝑠 = sin(2𝜋(𝑓𝑣𝑐𝑜 + Δ𝑓)(𝑇𝑠 − 𝑡𝑗)) = 𝑠𝑖𝑛(2𝜋
𝑓𝑣𝑐𝑜
𝑓𝑠

+ 2𝜋 Δ𝑓𝑓𝑠
− 2𝜋(𝑓𝑣𝑐𝑜 + Δ𝑓)𝑡𝑗)

(𝑓0/𝑓𝑠=𝑖𝑛𝑡𝑒𝑔𝑒𝑟)−−−−−−−−−−−→ 𝑠𝑖𝑛(2𝜋 Δ𝑓𝑓𝑠
− 2𝜋(𝑓𝑣𝑐𝑜 + Δ𝑓)𝑡𝑗),

(3.3)

where 𝑡𝑗 is the sampling clock jitter. There is a maximum jitter that can be allowed in Eq. (3.3), such
that 𝑉𝑠 still stays positive. Hence, we have

𝑡𝑗 <
Δ𝑓
𝑓𝑠

1
𝑓𝑣𝑐𝑜

. (3.4)

From Eq. (3.4), it can be deduced that the allowed jitter is directly proportional to the error/aliasing
frequency and hence low aliasing frequency signals are the most affected by jitter. Jitter tolerance
is also inversely proportional to the signal and the sampling clock frequencies, and hence for high
sampling frequency, less jitter can be tolerated. The jitter tolerance for different Δ𝑓 and 𝑓𝑠 values are
summarised in Table 3.1. Assuming that the maximum allowed jitter calculated using Eq. (3.4) is the
5𝜎 variance, then the target integrated jitter of the sampling clock should be 1𝜎. At low Δ𝑓, the jitter
tolerance is as low as 100­200 fs which is not a trivial specification to achieve. However, interestingly,
the jitter tolerance at higher Δ𝑓, which is close to 𝑓𝑠/4, is much higher showing that these frequencies
are very less affected by higher jitter. To alleviate the multiplier from a very strict jitter constraint, a jitter
of about 2 ps at a sampling frequency of 𝑓𝑠 = 1𝐺𝐻𝑧 is targeted, which is an achievable performance.
The incorrect pulses caused by jitter at Δ𝑓 close to 0 or 𝑓𝑠/2 should be taken care of in the digital
domain, which will be discussed in Section 5.1.

Aliasing frequency ( Δ𝑓) Sampling frequency (𝑓𝑠) Signal frequency (𝑓𝑣𝑐𝑜) 𝑡𝑗(5𝜎) 𝑡𝑗(1𝜎)
5MHz 1GHz 10GHz 500 fs 100 fs
5MHz 0.5GHz 10GHz 1ps 200 fs
5MHz 0.25GHz 10GHz 2ps 400 fs
100MHz 1GHz 10GHz 10ps 2 ps
100MHz 0.5GHz 10GHz 20ps 4 ps
70MHz 0.25GHz 10GHz 28ps 6 ps

Table 3.1: Jitter tolerance at different Δ𝑓 and 𝑓𝑠 values.
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3.3.2. Deterministic Jitter of Sampling clock
Similar to integrated jitter, excessive deterministic jitter results in a wrong pulse count. Deterministic
jitter is a result of the reference spur in frequency synthesizers. It can be given by

𝑗𝑠𝑝𝑢𝑟,𝑝𝑒𝑎𝑘 =
10

𝑠𝑝𝑢𝑟
20

𝜋𝑓𝑠
, (3.5)

where 𝑠𝑝𝑢𝑟 is the reference spurious tone in 𝑑𝐵𝑐 and 𝑓𝑠 is the output frequency [24]. This spur is
observed at an offset frequency of 𝑓𝑟𝑒𝑓 which is the reference frequency to the low frequency PLLs in
the FTL. From the above equation, it is evident that for a given spur level, if the output frequency is
lower, the deterministic jitter is higher. To limit the deterministic jitter to the same level as integrated
jitter, the deterministic jitter is targetted to be below 2ps as calculated in the previous section. Then
the expected reference spur should be better than ­50 dBc for a 500MHz sampling frequency.

3.3.3. VCO spur performance
Sampling operation can lead to a modulation of the load capacitance seen by the VCO tank. Figure 3.6
shows the act of sampling which connects and disconnects a sampling capacitance to the VCO tank
periodically. The frequency of oscillation of a VCO in normal conditions is given by

1
2𝜋√𝐿𝑡𝑎𝑛𝑘𝐶𝑡𝑎𝑛𝑘

.

However, during the ON time of the switch, an extra capacitance 𝐶𝑚𝑜𝑑 is added to the tank and then
the frequency of oscillation changes to

1
2𝜋√𝐿𝑡𝑎𝑛𝑘(𝐶𝑡𝑎𝑛𝑘+𝐶𝑚𝑜𝑑)

,

for the duration of 𝐷 ⋅𝑇𝑠, where D is the duty cycle of ON time of the sampling clock. This modulation of
capacitance causes a modulation of frequency between the ON and OFF times of the sampling switch
which manifests as a reference/sampling spur. If a transmission gate or CMOS switch is used for
sampling, the sampling capacitance acts as the modulation capacitance. Additionally, charge injection
from the sampling switch and charge sharing between 𝐶𝑡𝑎𝑛𝑘 and 𝐶𝑚𝑜𝑑 can also lead to spurs. In case
a gated buffer is used between the switch and the VCO for isolation, because of its huge size, the
difference between its ON and OFF parasitic capacitance can be the cause of this spur.

Figure 3.6: Capacitance modulation causing spur on the VCO.

The spur caused due to this capacitance modulation can be given by

𝑆𝑝𝑢𝑟 = 𝑠𝑖𝑛(𝜋𝐷) 𝑁2𝜋
𝐶𝑚𝑜𝑑
𝐶𝑡𝑎𝑛𝑘

, (3.6)

where 𝑁 = 𝑓𝑣𝑐𝑜 ⋅ 𝑇𝑠 [5]. The main PLL that is taken as a base in this thesis has a good reference
spur performance of ­78 dBc. To avoid any degradation of the PLL performance, the spur due to the
additional sampling circuits in the proposed FTL is expected to be <­80 dBc.

3.3.4. Amplifier specifications
The amplifier is used to convert the analog aliasing signal to digital pulses so that it carries the accurate
frequency information. An amplifier with band­pass characteristics is suitable for this application as it
avoids any low­frequency noise or signal distortion. The bandwidth requirements are dependent on
two factors.
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1. The minimum frequency error between the desired and the VCO frequency that needs to be
accurately estimated sets the lower limit of the amplifier bandwidth. This depends on the main
PLL bandwidth: the lock­in range to be precise. The FTL needs to bring the frequency error under
the lock­in range limit such that the main PLL is able to lock instantaneously. The lock­in range
of the PLL considered in this case is 7MHz i.e., 3.5MHz on both sides of the desired frequency.
Therefore, the amplifier needs to amplify alias frequencies as low as 3MHz for sufficient error
resolution.

2. The maximum alias frequency that is produced by the sampling operation, which is 𝑓𝑠
2 , sets the

upper limit of the amplifier bandwidth, where 𝑓𝑠 is the sampling frequency. To have a flexibility in
choosing different sampling frequencies, the amplifier is required to have a tunable upper limit of
the bandwidth.

3.3.5. Frequency Multiplier range
As explained in Chapter 2, the desired sampling frequency combinations, that allow an unambiguous
frequency reconstruction, are all expected to lie within the range of 500MHz­1000MHz. The frequency
multiplier should have awide frequency tuning range, in order to have flexibility in choosing the sampling
frequencies. To be able to cover this frequency range in all PVT conditions, the frequency multiplier
should be able to support a frequency range of 400MHz to 1200MHz.



4
Analog block Design

This chapter discusses in detail the choice of architecture, the circuit design and post layout perfor­
mances of the reference divider, frequency multiplier, sampler, and the amplifier which constitute the
analog section of the FTL. Figure 4.1 represents a single slice of an alias signal generation circuit.

Figure 4.1: Block­level representation of analog alias signal generation in a single sampling path.

4.1. Frequency Multiplier
As explained in Chapter 3, the first step of frequency estimation is alias frequency generation, in which
the VCO signal is sampled using three chosen sampling frequencies. The sampling clocks are derived
from a 50𝑀𝐻𝑧 clock using an integer­N frequency synthesizer. This 50𝑀𝐻𝑧 reference clock is obtained
by dividing the crystal input frequency (also a reference clock to the main PLL), by a factor of 2. As
derived in the section 3.3, there is a constraint on the amount of jitter that can be tolerated on the
sampling clock. It is also explained in Section 2.3.2 that the sampling frequencies should lie within
0.5­1GHz, leading to a multiplication factor of 10­20. A frequency synthesizer is a preferable solution
to comply to the jitter requirement and the required multiplication factor.

4.1.1. Ring oscillator based type­I PLL
L­C oscillators and Ring oscillators (ROs) are two choices of oscillators available for frequency synthe­
sis. Ring oscillators are known to have a phase noise performance which is up to 20 dB worse than
LC oscillators. Since the jitter requirement on the sampling clock is in the order of pico­seconds, which
is not very stringent, a ring oscillator can be chosen over an LC­based VCO because it has a clear
advantage in area [25]. RO is also advantageous because it avoids any unwanted magnetic coupling
between the inductor and the main VCO inductor.

As specified in section 3.3, the chosen sampling frequencies of this FTL should lie within a 0.5­
1GHz range, making the frequency tuning range a wide­band requirement. A ring oscillator allows a
wider tuning range than LC oscillators, making it a perfect candidate for this application. In this sub­
section, the circuit design choices and post layout performances of a ring­oscillator­based frequency
multiplier are explained.

30
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Figure 4.2: Basic Single Ended N­stage RO structure.

Ring Oscillator Core
A ring oscillator core can bemade up of N stages of single­ended (SE), fully differential (FD) , or pseudo­
differential inverting delay cells. Single­ended ring oscillators have a good trade­off between power
and phase noise, and can be less power consuming since there are less static power losses (unlike
differential structures that use current mode logic (CML)), but they are susceptible to supply pushing
and degradation of phase noise due to parasitic coupling. Fully­differential structures are immune to
supply voltage noise, but have a bad trade off between power and phase noise, i.e., they have worse
phase noise than SE ROs for the same power consumption [26]. Pseudo­differential structures have
similarities with both single­ended and fully­differential structures. Similar to FD, it rejects common­
mode interference from other blocks, and also avoids any capacitive coupling between different nodes,
thus resulting in a better phase noise. However, it is still prone to supply pushing like SE structures.
Since in this application the phase noise requirement is quite relaxed and low power consumption is
also one of the main criteria of this design, a single­ended ring oscillator core is chosen.

The free running frequency of an SE RO shown in Figure 4.2 can be given by

𝑓𝑓𝑟𝑒𝑒 =
1

2𝑁𝑡𝑑
=
𝜇𝑒𝑓𝑓𝑊𝑒𝑓𝑓𝐶𝑜𝑥(𝑉𝐷𝐷/2 − 𝑉𝑇)

8𝜂𝑉𝐷𝐷𝐶𝑛𝑜𝑑𝑒𝑁𝐿
, (4.1)

where 𝑡𝑑 is the inverter stage propagation delay, 𝜇𝑒𝑓𝑓 , 𝐶𝑜𝑥 ,𝑊𝑒𝑓𝑓 , 𝐿 are the electron/hole mobility, gate
oxide capacitance, effective Width (sum of PMOS and NMOS widths) and length of the inverter tran­
sistors, 𝑉𝐷𝐷 is the supply voltage, N is the number of inverter stages, 𝜂 is a constant and 𝐶𝑛𝑜𝑑𝑒 is the
node capacitance on each stage [26]. 𝑓𝑓𝑟𝑒𝑒 can usually be controlled by the number of stages, supply
voltage, node capacitance, and size of the inverters. The device ratio (W/L) and the number of stages
N are usually used to set the centre frequency.

Phase noise (PN) of a free running SE RO, which is an important performance metric, can be given
by the Eq. (4.2), when seen at a frequency offset of Δ𝑓 from the oscillation frequency of 𝑓𝑜𝑠𝑐.

𝐿(Δ𝑓) = 16𝛾
3𝜂 ⋅ 𝑘𝑇𝑃 ⋅ (𝑓𝑜𝑠𝑐Δ𝑓 )

2, (4.2)

where 𝛾 is the transistor noise factor, kT is the thermal energy and P is the DC power consumption
[26]. The power consumption of an N stage SE RO can be given by below equation [26].

𝑃 = 𝑁𝐶𝑛𝑜𝑑𝑒𝑉2𝐷𝐷𝑓𝑜𝑠𝑐 . (4.3)
The number of stages are kept as a minimum of 3 in this design to keep the power consumption as

low as possible and additionally lower N means lesser number of noise sources. As seen in Eq. (4.2),
there is a direct trade off between power and PN for a given frequency of oscillation. Hence, the
ring oscillator core inverters are sized to achieve the required jitter of 2 ps @1GHz, as per the jitter
specifications, at the cost of increased power consumption. It can also be noted that the phase noise
increases quadratically with the frequency of oscillation for a given power consumption.

Wide­band frequency tuning for this SE RO can be done by modulating the node capacitance or
the supply voltage by using switched capacitors or supply switches, respectively. Using discrete digital
inputs for frequency tuning might result in low frequency resolution, but allows a wide tuning range.
On the contrary, a voltage controlled MOS varactor can be used for continuous tuning to avoid any
quantization error, but it is limited to a narrow tuning range. A combination of both is used in this design
for a good coarse and fine tuning, as will be explained further in this section.
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Frequency locking
Frequency locking to a reference is necessary to suppress the up­converted flicker noise of the oscillator
with a high pass transfer function and to cancel the accumulated phase noise caused by frequency
drifts. This can be done by an open loop method like injection locking, or using a negative feedback
loop with a phase detector and a low pass filter. Although injection locking PLLs are known to have a
very wide lock­in range and bandwidth with good in­band noise suppression, they suffer from a direct
trade off between deterministic jitter (reference spur) and phase noise [27]. A wide injection locking
pulse, which has a higher injection strength, reduces the the phase noise but increases the reference
spur, whereas a smaller pulse results in a lower spur but increases the phase noise [27]. The reference
spur also depends on how close the free running frequency is to the desired frequency, and it can be
given by

𝑆𝑝𝑢𝑟 = 20𝑙𝑜𝑔10(
|𝑓𝑒𝑟𝑟|
𝑓𝑟𝑒𝑓

) = 20𝑙𝑜𝑔10(
|𝑓𝑑𝑒𝑠 − 𝑓𝑓𝑟𝑒𝑒|

𝑓𝑟𝑒𝑓
), (4.4)

where 𝑓𝑓𝑟𝑒𝑒 is the free running oscillator frequency, 𝑓𝑟𝑒𝑓 is the reference frequency, 𝑓𝑑𝑒𝑠 is the desired
frequency and 𝑓𝑒𝑟𝑟 is the frequency error [27]. So for the specification of −50𝑑𝐵𝑐@500𝑀𝐻𝑧 and
𝑓𝑟𝑒𝑓 = 50𝑀𝐻𝑧, a high frequency resolution (or maximum frequency error 𝑓𝑒𝑟𝑟 ≤ 150𝑘𝐻𝑧) is required.
Additionally, any temperature based frequency drifts may increase the spur further.

Alternatively, if a simple type I sub­sampling PLL with a voltage­controlled ring oscillator core is
used, very fine frequency control resolutions are not required, as the voltage tuning takes care of fine
frequency tuning and hence reduces the spur levels quite a lot. As a downside, these type­I PLLs have
lesser bandwidth and consequently lesser lock­in range than injection locking PLLs. Considering the
trade­offs, since good noise and spur performances are necessary for proper functioning of the FTL, a
type­I PLL is chosen over the injection locking structures. Additionally, a type­I PLL is chosen over a
type­II PLL, for their wider loop bandwidth, locking range, stability [28] and ease of design.

(a) (b)

Figure 4.3: (a) Dynamic amplifier based charge sampling phase detector (DAPD) , (b) Circuit
implementation of DAPD.

Figure 4.3a shows the general idea of a dynamic amplifier­based phase detector (DAPD) and Fig­
ure 4.3b shows its circuit implementation, where the sampling capacitance is isolated from the oscillator
output by a 𝐺𝑚 stage (𝑀𝐼𝑁) and hence avoiding any spur induced in the VCO by sampling capacitance
modulation. Figure 4.4 shows the complete type­I PLL structure with fine and coarse voltage control,
and an output buffer. As seen in Figure 4.4, this type­I PLL does not include a low pass filter. However,
the charge sampling phase detector exhibits a 𝑠𝑖𝑛𝑐 type transfer function because of its windowed
integration operation, and additionally the sample and hold capacitors 𝐶𝑠 , 𝐶ℎ form a discrete­time low
pass filter, which introduces a pole in the transfer function. A detailed explanation of the working of
this circuit, and its advantages along with different phases of operation, is given in section 4.2, where
a similar circuit is used, but as a mixer. The output of this structure is a voltage, which is then given
to the varactors as a VCO control voltage, shown in Figure 4.4, which then modulates the free­running
frequency of the oscillator.

There are three phases of operation for the DAPD. In the sampling phase (𝜙𝑠 is ON), the input
voltage is converted to current, by the transistor 𝑀𝐼𝑁, which is used to discharge 𝐶𝑠 creating a voltage
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Figure 4.4: Ring oscillator based Type­I PLL with Dynamic amplifier based phase detector.

on it. This voltage is then re­sampled by 𝐶𝑟𝑠 in re­sample phase 𝜙𝑟𝑠. The third phase of operation is
the reset phase when the voltage of 𝐶𝑠 is reset to VDD. The voltage of sampling capacitor 𝐶𝑠 at node 𝑉𝑠
during the ON time of reference sampling clock 𝜙𝑠, considering that the VCO has a sinusoidal response
for simplicity, can be given by

𝑉𝑠 = ∫
0.5𝑇𝑜𝑛

−0.5𝑇𝑜𝑛

𝐺𝑚𝐴𝑟𝑜
𝐶𝑠

𝑠𝑖𝑛(𝜔𝑟𝑜𝑡 + 𝜙)𝑑𝑡 ⇒
2𝐺𝑚𝐴𝑟𝑜
𝜔𝑟𝑜𝐶𝑠

⋅ 𝑠𝑖𝑛(0.5𝜔𝑟𝑜𝑇𝑜𝑛) ⋅ 𝑠𝑖𝑛(𝜙), (4.5)

where 𝜔𝑟𝑜 is the RO frequency, 𝑇𝑜𝑛 is the ON time of 𝜙𝑠, 𝐺𝑚 is large signal gain of 𝑀𝐼𝑁, 𝐴𝑟𝑜 is the
amplitude of RO output, and 𝜙 is the phase difference between the reference clock and the RO output
[6]. The PD gain can then be given by

𝐾𝑝𝑑 =
𝑉𝑠
𝜙 = 2𝐺𝑚𝐴𝑟𝑜

𝜔𝑟𝑜𝐶𝑠
⋅ 𝑠𝑖𝑛(0.5𝜔𝑟𝑜𝑇𝑜𝑛) ⋅

𝑠𝑖𝑛(𝜙)
𝜙 . (4.6)

The factor 𝑠𝑖𝑛(𝜙)/𝜙 becomes 1 at very low values of 𝜙. It is seen in Eq. (4.6) that 𝐾𝑝𝑑 depends
on 𝑇𝑜𝑛 sinusoidally, and has a maximum value at 𝑇𝑜𝑛 = 0.5/𝜔𝑟𝑜. If RO output is a square wave,
then 𝐾𝑝𝑑 will depends on 𝑇𝑜𝑛 linearly, but has the same maximum value condition. The value of 𝐾𝑝𝑑
as observed in simulations lies within 0.1­0.3V/rad. The RO core with varactor exhibits a VCO gain
𝐾𝑉𝐶𝑂 = 30− 70𝑀𝐻𝑧/𝑉 . Since this is a type­I PLL, and it lacks an integrator, the phase error between
the reference and oscillator does not go to zero, but settles at a constant value proportional to the
control voltage.

Frequency Tuning
The RO free running frequency can be coarsely tuned by controlling the COARSE and the MED banks
digitally, as shown in Figure 4.4. As mentioned in the previous section, the frequency can be controlled
by changing the node capacitance or the supply voltages. From Eq. (4.1) and (4.3), it can be seen
that by increasing the node capacitance, the frequency can be reduced but the power consumption
will not reduce. On the other hand, by reducing the core supply rail voltage, both the frequency and
power consumption can be reduced. On the down side, because of the lower 𝑉𝐷𝐷, the voltage swing
reduces, and the jitter increases according to Eq. (4.2) at lower frequencies. However, that is less
of a disadvantage because as calculated in Eq. (3.4), higher jitter can be tolerated at lower sampling
frequencies. For the said reasons, a coarse frequency control using supply voltage control is employed.

In this design, the 4­bit COARSE and 3­bit MED control signals control the PMOS switches to tune
the internal supply voltage rail that supplies the RO core inverters. The internal supply control can vary
the RO frequency in the range of 400MHz to 1.2GHz, to allow sufficient margin for process, voltage
and temperature (PVT) variations. The MED bank has a resolution of 7MHz, which is not sufficient for
locking as the lock­in range is quite low for this type­I PLL.

For a finer resolution, in order to bring the RO close to locking frequency and improve the spur per­
formance, another PMOS switch with tunable input voltage 𝑉𝑑𝑎𝑐 is used. This voltage 𝑉𝑑𝑎𝑐 is controlled
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by a 5­bit R­2R ladder voltage digital to analog converter (DAC) circuit. In this design, the resistive DAC
(R­DAC) is only optimised for low power consumption, since it is not the dominant source of noise. The
linearity of R­DAC is not of prime importance as the R­DAC code is manually controlled, and also its
targeted resolution is around 300­400 kHz, which is sufficiently high to lie within the acquisition range
of the PLL.

As the first priority of this design is to verify the concept of the proposed FTL, the coarse tuning of the
RO is left as a manual tuning process. However, having a low lock­in range makes the synthesizer sus­
ceptible to loss of lock, due to frequency and temperature drifts. A divider based background frequency
tuning needs to be adopted in the future versions for robust locking to desired frequencies. Using a
feedback divider in these frequency synthesizers does not add a heavy penalty of power because of
their low (sub­GHz) frequency of operation.

Figure 4.5 shows the layout of the designed RO­based PLL along with its reference pulse generator.
The area of this layout is mostly dominated by decoupling capacitors placed on the internal core supply
rail, which are used to suppress the reference spur due to supply ripple. The second major area
consuming block is the R­DAC.

Figure 4.5: Ring oscillator based PLL top level layout.

4.1.2. Post­layout Simulations
Frequency Tuning Range
Table 4.1 below, shows the total tuning range of the ring oscillator, as obtained in the post layout sim­
ulations at different process corner and temperature limits. The COARSE bank has a resolution of
50MHz and the MED bank has a resolution of 7MHz. The R­DAC has a range of 9MHz and achieves
a resolution as low as 300 kHz. Since the COARSE bank alone cannot cover the entire tuning range,
two extra bits of control are added to select the required frequency range. During measurements, this
frequency tuning needs to be done manually at the start­up time.

Process Corner Temperature (∘C) Tuning Range (GHz)
TT 27 0.3 ­ 1.15
TT ­45 0.35 ­ 1.35
TT 125 0.25 ­ 1
FF 27 0.35 ­ 1.3
SS 27 0.25 ­ 1.05

Table 4.1: RO­based PLL tuning range at different temperatures and process corners.
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Phase noise performance
Figure 4.6a shows the output phase noise spectrum at 500MHz output frequency. This plot is a result
of a transient noise simulation on the post layout RO, which gives a similar response as the pnoise
simulation. The integrated jitter is calculated by integrating the PN plot from 1MHz to 250MHz, which
would be the minimum and maximum alias frequencies when 500MHz is the sampling frequency, and
hence is the bandwidth of interest. The minimum integration limit is also decided by the maximum ob­
servation time of the digital block during frequency estimation. The phase noise spectrum in Figure 4.6
results in an integrated jitter of 4𝑝𝑠 which is satisfying the required performance as derived in specifica­
tions 3.3. The plot exhibits a noise bandwidth of 10MHz. On the right is the phase noise performance
at 1GHz frequency which gives a 2𝑝𝑠 integrated jitter when integrated from 1MHz to 500MHz. The
integrated jitter calculated does not include the reference spur.

(a) (b)

Figure 4.6: (a) Phase noise spectrum @𝑓𝑜𝑠𝑐 = 500𝑀𝐻𝑧 (b) Phase noise spectrum
@𝑓𝑜𝑠𝑐 = 1000𝑀𝐻𝑧.

Reference Spur
The reference spur at 50𝑀𝐻𝑧 offset leads to a deterministic jitter at the RO output. A specification for
this spur is derived to be ­50 dBc for an output frequency of 500𝑀𝐻𝑧. As can be seen in Figure 4.7,
the spur performance at 500𝑀𝐻𝑧 is ­56 dBc which exceeds the specification.

Figure 4.7: Reference spur @𝑓𝑜𝑠𝑐 =500MHz.

Some of the causes of this reference spur are mentioned below.

1. Charge injection and re­sample switch leakage into 𝐶ℎ during reset phase 𝜙𝑟𝑠𝑡.

2. Coupling capacitance between re­sample switch clock and hold capacitor 𝐶ℎ causing clock feed­
through.
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3. Supply ripple caused by charging and discharging of large sampling capacitor 𝐶𝑠 of 480 fF in the
DAPD.

The total RMS jitter can be calculated by

𝑗𝑟𝑚𝑠 = 𝑠𝑞𝑟𝑡(𝑗2𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 + 𝑗2𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐). (4.7)

The RMS jitter calculated is 2.8 ps @ 1GHz and 4.5 ps @ 500MHz.
It is to be noted that the spur plots are the outputs of simulations run with all three ROs running in

parallel and locked to the same reference clock.

Lock­in Range
The lock­in range of the RO based PLL is estimated by sweeping the FINE and MED bank codes close
to a reference harmonic, and observing the range of free running frequencies that result in a lock to the
reference harmonic. The estimated lock­in range of the designed type­I sub­sampling PLL is limited
to a total of 5MHz. This makes the frequency synthesizer very susceptible to frequency drifts and
temperature variation during operation. The RO also has a risk of locking to an incorrect reference
harmonic due to the sub­sampling operation. Hence, it is desirable for future updates to include a
frequency divider in the feedback to dynamically tune the frequency of operation. Since the operating
frequencies are less than 1GHz, these dividers can still be power efficient.

4.2. Sampling circuit
Sampling is the second step of alias frequency generation. This circuit sub­samples the VCO signal
directly by the RO output clocks to produce an alias signal which lies within 0­𝑓𝑠/2, where 𝑓𝑠 is the
sampling frequency. When the sampling clock directly samples the VCO signal, it can introduce high
spurious tones at the VCO output. These spurs occur at multiples of sampling clock frequency around
the locked VCO frequency. In conventional pass gate or CMOS switch­based sampling structures, this
can be caused due to

1. Charge injection into VCO tank from sampling switch,

2. Capacitance modulation of VCO tank due to addition and removal of sampling capacitance de­
pending on sampling clock,

3. Sampling clock feed through [6].

One of the conventional ways to reduce these spurs is by using a buffer to isolate VCO signals from
the sampling capacitance to avoid capacitance modulation, but this is a power and area consuming
solution. Alternatively the spur can also be reduced by reducing the sampling clock duty cycle (𝐷𝑟𝑒𝑓)
such that the capacitance modulation is quite small, as can be gathered from Eq. (3.6). However, this
requires the sampling transient response to be very fast (high bandwidth) to capture the correct VCO
signal value, which means the sampling switch needs to be quite large (for low ON resistance), which
in turn increases the clock feed­through and charge injection.

To avoid the above­mentioned issues, a charge­sampling­based phase detector (CSPD) is pro­
posed in [6], where instead of sampling voltage, charge is sampled onto the sampling capacitance.
Since the VCO is isolated from the sampling capacitor by a small 𝐺𝑚 cell, the spurs due to sampling at
the output of VCO are greatly suppressed. On the downside, the continuous charging and discharging
of the sampling capacitance, during OFF and ON times of sampling clock, led to sampling spurs at the
PD output. This was resolved in their subsequent design [23] based on a dynamic­amplifier operation,
where the sampling capacitor voltage is re­sampled and held on a re­sampling capacitance while the
sampling capacitance is reset to VDD. Since the re­sampled voltage does not get reset, there is no
periodic charging/discharging operation on this node, so the PD output spur is quite suppressed. The
dynamic­amplifier­based structure is selected for the sampling operation in this design for the reasons
summarized below.

1. The VCO signal is isolated from the sampling capacitance and hence does not see much modu­
lation capacitance, leading to a low spur [6].
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2. Low sampler power consumption as the dynamic charging and discharging operation is limited
to the small sampling capacitance.

3. Low spur at the output of the structure due to re­sampling.

The dynamic­amplifier­based phase detector (DAPD), whose structure is shown in Figure 4.8a, is
chosen to perform the sampling operation. This DAPD acts as a charge sampling sub­sampling mixer
rather than a PD in this block. Although a single phase of VCO was sufficient to find the alias frequency,
this differential structure is employed to have a load balance on both phases of differential VCO output.
However, only one of the output phases is used for further processing.

(a)
(b)

Figure 4.8: (a) Dynamic Amplifier based Sampler, (b)Phases of Sampling operation.

This structure has three phases of operation, which are explained below, and their clock phases
are shown in Figure 4.8b.
Phase 1: Sampling phase 𝜙𝑠: VCO voltage is converted to current by 𝑀1, 𝑀2 transistors, which act as
𝐺𝑚 stages, and this current discharges 𝐶𝑠 for 𝑇𝑜𝑛 time, creating a voltage 𝑉𝑠 on 𝐶𝑠.
Phase 2: Re­sampling phase 𝜙𝑟𝑠: Switch 𝑆1 is turned off and switches 𝑆2 are turned ON. During the
ON phase of 𝜙𝑟𝑠, 𝐶𝑠 voltage is re­sampled onto 𝐶𝑟𝑠. 𝐶𝑟𝑠 voltage is held until next re­sample cycle.
Phase 3: Reset phase 𝜙𝑟𝑠𝑡: Only switches 𝑆3 are ON, 𝐶𝑠 voltage is reset to VDD, so that 𝑀1, 𝑀2 can
start up instantaneously in the next sampling operation. The reset operation and the 𝑇𝑜𝑛 duration make
sure that the common­mode voltage is maintained at around 800mV.

The transfer function of this DA based sampler can be derived by observing its equivalence to the
charge­sampling­based mixer followed by a voltage sampler shown in Figure 4.9.

Figure 4.9: DA based sampler divided into charge sampling sinc function (blue) and voltage sampling
discrete low­pass function (red).

In the above figure, the voltage input 𝑉𝑖𝑛 is converted into current 𝐼𝑖𝑛 by the 𝐺𝑚 stage. This current
charges the capacitance 𝐶𝑠 during phase 𝜙𝑠. The voltage on 𝐶𝑠 can be given by,

𝑉𝑠 =
1
𝐶𝑠
∫
𝑛𝑇𝑠+𝑇𝑜𝑛

𝑛𝑇𝑠
𝐼𝑖𝑛𝑑𝑡 =

𝐺𝑚
𝐶𝑠
∫
𝑛𝑇𝑠+𝑇𝑜𝑛

𝑛𝑇𝑠
𝑉𝑖𝑛𝑑𝑡, (4.8)
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where 𝐺𝑚 is the trans­conductance of 𝑀1, 𝑀2, 𝑇𝑟𝑒𝑓 is the time period of the sampling clock and 𝑛 is
an integer. If 𝐶ℎ is ignored for the moment, during 𝜙𝑟𝑠, 𝑉𝑜𝑢𝑡 = 𝑉𝑠 and later 𝑉𝑠 is reset to 0 (or VDD in
our case, which can be treated equivalently). Then the transfer function from 𝑉𝑖𝑛 to 𝑉𝑜𝑢𝑡 considering all
three phases can be given by

ℎ(𝑡) = 𝑉𝑜𝑢𝑡[𝑛]
𝑉𝑖𝑛(𝑡)

= 𝐺𝑚𝑇𝑜𝑛
𝐶𝑠

𝑟𝑒𝑐𝑡(𝑡 − 𝑇𝑜𝑛/2𝑇𝑜𝑛
), (4.9)

where 𝑟𝑒𝑐𝑡(𝑡/𝑇) is the function of a square pulse in the time domain. This can be expressed in fre­
quency domain and the 𝑟𝑒𝑐𝑡 function translates into a 𝑠𝑖𝑛𝑐 function.

|𝐻(𝑓)| = 𝐺𝑚𝑇𝑜𝑛
𝐶𝑠

| 𝑠𝑖𝑛(𝜋𝑓𝑇𝑜𝑛)𝜋𝑓𝑇𝑜𝑛
|. (4.10)

It is to be noted that at this point the frequency of the output is equal to 𝑓𝑜𝑢𝑡 = |𝑓𝑖𝑛 −𝑚 ⋅ 𝑓𝑠| because of
the conversion from continuous to discrete­time , where 𝑚 is an integer. Now considering both 𝐶𝑠 and
𝐶ℎ, the voltage sampling circuit presents a discrete­time low pass transfer as below.

𝐻2(𝑧) =
𝑉𝑜𝑢𝑡[𝑧]
𝑉𝑠[𝑧]

=
1 − 𝐶ℎ

𝐶ℎ+𝐶𝑠
1 − 𝐶ℎ

𝐶ℎ+𝐶𝑠
𝑍−1

𝑍−
𝑇𝑜𝑛
𝑇𝑠 , (4.11)

where 𝑍−
𝑇𝑜𝑛
𝑇𝑠 represents the delay in the system. The total sampler output is then given by

𝑉𝑜𝑢𝑡[𝑧] =
𝐺𝑚𝑇𝑜𝑛
𝐶𝑠

𝑠𝑖𝑛(𝜋𝑓𝑇𝑜𝑛)
𝜋𝑓𝑇𝑜𝑛

1 − 𝐶ℎ
𝐶ℎ+𝐶𝑠

1 − 𝐶ℎ
𝐶ℎ+𝐶𝑠

𝑍−1
𝑍−

𝑇𝑜𝑛
𝑇𝑠 𝑉𝑖𝑛 . (4.12)

A low value of 𝐶𝑠 is desirable for a higher gain, but a higher 𝐶𝑠 is desirable for lower noise and spur.
𝑇𝑜𝑛 less than or equal to half of VCO signal period allows a higher gain.

The sampler output common­mode voltage is maintained at 0.8V such that the 𝑓𝑠 spur is limited.
As the sampler output voltage swing increases, the spur amplitude also increases. The spur is caused
because of two reasons. First, due to clock feed­through of the re­sample clock to 𝐶ℎ due to coupling
capacitance of the switch 𝑆2. Second, leakage of the sample node voltage into re­sample node by
leakage of the re­sample switch in the reset phase. Therefore, if the magnitude of voltage reset on 𝑉𝑠 is
large, then the spur is also large. The spur manifests as a periodic voltage bump on the output signal
whose width is equivalent to the reset phase clock. There is a trade­off between the linearity and spur
caused by the re­sampling switch. The non­linear ON resistance of the re­sampling switch may cause
distortion in the output voltage of the sampler. To reduce the distortion, the switch needs to be large
enough to reduce its ON­resistance. However, a larger switch leads to a larger clock feed­through due
to increased coupling capacitance. The sampler voltage gain is observed to be around 0.3.

4.3. Amplification circuit
As derived in the specifications section 3.3, the amplifier should be able to amplify the alias frequency
signals between 3MHz (maximum lock­in range of the main PLL) and 𝑓𝑠/2 where 𝑓𝑠 is the sampling
frequency. The signal needs to be amplified by at least a factor of 100 to convert them into rail­to­rail
digital pulses, making the necessary gain >40 dB. Considering the sampler gain (0.3), the required
gain increases by a few more dB. The necessary gain is obtained from simulations by observing the
minimum amplitude of alias signals.

The architecture chosen for the amplifier is a multi­stage self­biased inverter­based amplifier. A
differential amplifier is not used here for two reasons. One of the important non­linearities that needs
to be removed is the sampling spur which is not a common­mode phenomenon. On the contrary, it can
be detrimental, as explained further. The voltage bump at the output of the sampler (as mentioned at
the end of previous section), which leads to a spur at the sampling frequency, is the sampled voltage­
dependent. For example, in one sampling cycle, if the differential voltages of the sampling nodes are
𝑉𝑠𝑝, 𝑉𝑠𝑛 such that 𝑉𝑠𝑝 > 𝑉𝑠𝑛, then in the reset phase, the voltage reset magnitudes will be 𝑉𝐷𝐷 − 𝑉𝑠𝑝 <
𝑉𝐷𝐷 − 𝑉𝑠𝑛. Since the ”n” phase reset is of larger magnitude, it induces a higher spur (due to leakage)
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than the ”p” phase, into the re­sampling node. Since the spur caused on both the phases is unequal, it
will be treated as a differential signal and amplified by the differential amplifier, hence causing unwanted
pulses at the amplifier output. Additionally, a differential amplifier is also more power­consuming than
a single­ended amplifier because of the operating frequencies of around 500MHz.
A few other nonlinearities in the sampling system need to be taken care of while designing the amplifier.
They are explained below.

Non­linearities at low alias frequencies

(a)

(b) (c)

Figure 4.10: Sampler output wave and its rail­to­rail digital output signal at low alias frequencies for
the cases of (a) no non­linearities, (b) jitter on sampling clock, (c) spurs at sampling frequency, at

𝑓𝑠 = 1𝐺𝐻𝑧, 𝑓𝑎𝑙𝑖𝑎𝑠 = 5𝑀𝐻𝑧.
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The two major non­linearities observed at low alias frequencies are caused by (1) jitter and (2) spurs at
the sampling frequency. Both of these effects cause extra unwanted pulses at the maximum slope re­
gions of the alias signal. Figure 4.10a shows the expected output when no non­linearities are present.
It was already established in section 3 that jitter affects the low­frequency alias signals the most.

It can be seen in Figure 4.10b that the presence of jitter adds additional pulses at the threshold
crossing of the signal. Since the jitter performance of the ring oscillators is limited by the power perfor­
mance, these jitter­caused pulses need to be taken care of either in the digital block or in the amplifier
itself. Additionally, as seen in Figure 4.10c, the 𝑓𝑠 spurs caused by the clock feed­through and re­
sample switch leakage during the sampling operation are also amplified around the inverter threshold
crossing and lead to extra output transitions.

Non­linearities at high alias frequencies
On the contrary to low alias frequencies, any non­idealities at high alias frequencies result in missing
output pulses, which lead to incorrect frequency estimation. These non­idealities are most impactful
when the alias frequencies get close to 𝑓𝑠/2. One of the effects is due to jitter, as shown in Figure 4.11a,
as the signal amplitude at the sampling instant becomes so small. The other effect is caused by insuffi­
cient gain at high frequencies where the low amplitude pulses of the signal are not amplified, leading to
periodically missing pulse counts. Apart from these, the high­frequency alias signals are also impacted
by the spurs at the sampling frequency.

(a) (b)

Figure 4.11: Sampler output wave and its rail­to­rail digital output signal at high alias frequencies for
the cases of (a) jitter on sampling clock, (b) Insufficient gain at 𝑓𝑠/2, @𝑓𝑠 = 1𝐺𝐻𝑧, 𝑓𝑎𝑙𝑖𝑎𝑠 = 490𝑀𝐻𝑧.

Proposed Solution
By having high gain at high alias frequencies, the missing pulses due to insufficient can be corrected to
an extent. Insufficient gain at 𝑓𝑠/2 cannot be fully compensated because the alias signal amplitudes go
extremely low, because of the amplitude modulation as seen from the sampler output in Figure 4.11a.
and becomes comparable to noise and increasing the gain further increases the impact of jitter too.
Additionally, this amplitude envelope contains information of the alias frequency which can be lost be­
cause of excessive gain. Furthermore, by increasing the gain at high frequencies, the risk of amplifying
spurs at 𝐹𝑠 increases too. To avoid these spurs, a notch filter tuned to filter these spurs is needed.
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Nevertheless, the missing pulses due to jitter cannot be compensated in the analog domain and have
to be compensated digitally, as will be explained in Section 5.1.

Just contrary to the high­frequency signals, the low alias frequencies observe non­idealities due to
high gain at high frequencies. High­frequency Jitter and sampling spurs (due to clock feed­through and
switch leakage) cause extra pulses and hence need to be suppressed by having a fairly low gain at high
frequencies. In summary, low gain at high frequencies causes non­linearities at high alias frequencies,
and high gain at high frequencies cause non­linearities at low frequencies.

This can be resolved by having two amplifiers in parallel where one amplifier has high gain at high
frequencies and the other has sufficient gain at low frequencies and low gain at high frequencies. This
solution creates only a small power overhead because the low frequency amplifier power consumption
will be much lower than that of the high­frequency amplifier.

The final design structure is shown in Figure 4.12, where the sampler output is given to two am­
plifiers. Figure 4.12b shows the single­stage low­frequency (LF) amplifier which suppresses the high­
frequency spurs and jitter and hence gives an accurate pulse train at the output, 𝐹𝑑𝑖𝑔,𝑙𝑜𝑤, for low fre­
quencies. Figure 4.12c shows the structure of high­frequency (HF) amplifier. It is a multi­stage amplifier
to satisfy the high gain requirement. The second stage of this amplifier has a tunable notch filter for sup­
pression of the spur at 𝐹𝑠. Both the high and low­frequency amplifiers have tunable load capacitances
at the output of each stage for bandwidth control.

(a) (b)

(c)

Figure 4.12: Amplifier implementation with (a) sampler and amplifier block level representation, (b)
Low­frequency amplifier, (c) High­frequency amplifier.

Notch filter:
Bandstop filters are generally formed by connecting a low pass filter and a high pass filter in parallel. A
twin T­network notch filter is employed in the high gain amplifier to suppress spurs caused by sampling
because of its simplicity in design and usage of only passive components. The R­C­R path creates the
low pass filter and the C­R­C path creates the high pass filter, which when combined gives a notch at
the center frequency.

The centre frequency of the notch filter in Figure 4.12c can be given by the below equations,

⎧
⎪

⎨
⎪
⎩

𝑓0 =
1
2𝜋
√( 2
𝐶1𝐶2𝑅22

)
2
,

𝑓0 =
1
2𝜋
√( 1
𝐶21𝑅1(2𝑅2)

)
2
.
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Figure 4.13: Amplifier alias frequency generation transfer curves (a) with only one amplifier, (b) with
two amplifiers.

The resistor 𝑅1 and capacitor 𝐶1 are made tunable to cover notches at different sampling frequencies
and also support the PVT variations and mismatches in the passive components.

Figure 4.13 shows the expected single­amplifier and two­amplifier frequency responses for a given
sampling frequency 𝑓𝑠. On the X­axis is the VCO frequency (𝑓𝑣𝑐𝑜) and on Y­axis is the number of pulses
counted in a long time period 𝑇𝑝, which should be proportional to the alias frequency |𝐹𝑣𝑐𝑜 − 𝑁 ⋅ 𝐹𝑠|.
The blue lines show the expected response, which is linear and monotonically dependent on 𝑓𝑣𝑐𝑜. The
orange line in Figure 4.13 (a) which would be the performance of a single amplifier circuit, including
all the low and high alias frequency non­linearities, resulting in non­monotonicities. On the right is the
proposed performance, where the low­alias frequency non­linearities are completely suppressed by
the LF amplifier and the high alias frequency non­linearities are mostly suppressed by HF amplifier.

Post Layout Simulation Results

Figure 4.14: Amplifier alias frequency generation transfer curve.

Figure 4.14 shows the layout of a single sampling frequency slice, which has the sampling and amplifi­
cation circuits along with the sampler’s pulse generator. As can be seen, the sampler, the low­frequency
amplifier, and the high­frequency amplifier are placed serially such that there is not a very high routing
parasitic load on the sampler output.

The post­layout AC simulations in Figure 4.15 show the gain plots of high­frequency and low­frequency
amplifiers. The high frequency amplifier has a high gain of upto 50 dB and it amplifies signals between
the bandwidth 10MHz ­ 𝑓𝑠/2 which is 400MHz in this case. It does not need to amplify signals as
low as 1­3MHz since the low frequency amplifier compensates for it. The plot also shows a notch,
approximately around 𝑓𝑠, whose attenuation is observed to be sufficient to suppress the spurs caused
by sampling.

On the right is the low­frequency amplifier. The maximum gain of this amplifier is 20­25 dB and it
amplifies signals between 1MHz and 100MHz. It has low gain at higher alias frequencies, enough to
suppress the high frequency jitter and spurious tones. Such low gain is sufficient for low alias signals
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as they already have an amplitude of 300­400mV, unlike the HF signals, which have amplitudes as low
as tens of mV.

Figure 4.15: Amplifier AC response for high­frequency (left) and low­frequency (right) amplifiers.

4.4. Reference Divider
Since the chosen sub­Nyquist sampling frequencies for the FTL are not integer multiples of the given
reference frequency of 100MHz, a reference divider is employed. A simple frequency divide­by­two
operation can be implemented by a D­flip flop with negative feedback as given in Figure 4.16a. This
frequency divider operates at 50MHz which is a very low frequency and its power consumption is not
significant. The only relevant performance metric of this divider is its jitter. Since the phase noise of
the reference clock of the frequency synthesizer PLL will be amplified by 𝑁2 at the output of multiplier,
the phase noise requirement of the divider is stringent. From the ring oscillator performance in section
4.1.2, its in­band phase noise is ­114 dBc/Hz, seen in Figure 4.6b. For the reference divider to not
degrade this in­band phase noise, the targeted phase noise of the divider is at least 10 dB less than
that, and also considering the 𝑁2 factor, for a maximum RO frequency 1GHz (N = 20), it should be <
­151dBc/Hz. A True Single­Phase Clock (TSPC) flip flop (Figure 4.16b) based divide­by­2 reference
divider is employed. These types of digital flip­flops are usually employed in high­frequency dividers,
but here they are employed due to their simplicity and also since a differential signal is not required.

(a) (b)

Figure 4.16: (a) Divide by 2 implementation with a D­flip flip (b) TSPC D­flip flop.

Figure 4.17 shows the post layout phase noise performance of divider, which is much better than
the expected phase noise and the power consumption is around 10 𝜇Wwhich is not very high because
of the low­frequency operation.



4.5. Pulse Generators 44

Figure 4.17: Phase noise performance of Reference divider.

4.5. Pulse Generators
There are two sets of pulse generators needed in the proposed FTL architecture. One set is used
to generate the reference pulses of the ring oscillator PLL PD and the other is for the generation of
sampling clock pulses. Both pulse generators have pulse width and noise constraints.

For the ring oscillator’s reference pulse generator, since it lies in the reference path, its noise contri­
bution should be quite low as it will be amplified by a factor of 𝑁2 by the PLL where 𝑁 is the frequency
multiplication factor. Since it is operating at 50MHz frequency, it is an easy specification to achieve.
For the RO in the PLL’s DAPD, to have the maximum gain, the sampling pulse width needs to be
1/(2𝑓𝑠) where 𝑓𝑠 is the RO output frequency.

For the VCO signal sampler, the thermal noise of the pulse generator adds to the sampling clock
jitter, so it has to be less than the ring oscillator phase noise to have a negligible impact. These pulse
generators are one of the most power­hungry blocks since they need to be low jitter and have high
operating frequency of up to 1GHz.

4.6. FTL Top Level Layout
Figure 4.18 shows the top­level layout of all the analog blocks in the frequency tracking loop ­ frequency
divider, ring oscillator based frequency multipliers, pulse generators, samplers and the amplification
blocks. The total area of just the analog blocks of FTL is 560 𝜇𝑚 × 460𝜇𝑚. Ring oscillators are the
blocks that consume most area, since they employ decoupling capacitors on the RO core’s internal
supply rail to suppress the reference spur caused by internal supply ripples. The rest of the decoupling
capacitors are for themain supply voltage. There is also an output multiplexer, which allows observation
of all the RO and amplifier outputs during measurements, for calibration purposes.

Post Layout Simulation Results
As explained in chapter 3, the function of the analog blocks in this FTL is the generation of an alias
signal and converting it into a pulse train which carries the information of the alias frequency. Hence,
the final output of this block is three digital signals toggling at their respective alias frequencies. The
robustness of frequency estimation depends on the linearity of the output of these analog blocks.

This section presents the post­layout simulation results of one sampling frequency slice, which
consists of a frequency multiplier, a sampler and an amplifier block. For a constant sampling frequency
of 𝑓𝑠, the input VCO frequency is swept (within the main PLL tuning range) such that the output alias
frequency ranges from 0 to 𝑓𝑠/2. The output pulses are then counted for a long period of 1 𝜇𝑠. The
output count is a direct indication of the average alias frequency.

Figure 4.19a shows the average alias frequencies of the HF and LF amplifier outputs when the
sampling frequency is 1GHz and Figure 4.19b shows that of 500MHz. These transfer functions are
the result of transient noise simulations which include the effects of all non­idealities like jitter and
insufficient gain. The sampling clock of 1GHz has an RMS jitter of 2.8 ps and the 500MHz clock has
4.5 ps, which were estimated from Figure 4.6. The low frequency alias signal has an accurate response
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Figure 4.18: FTL analog layout

(a) (b)

Figure 4.19: Aliasing signal transfer function from 0 to 𝑓𝑠/2 for (a) 𝑓𝑠 = 1𝐺𝐻𝑧 (b) 𝑓𝑠 = 500𝑀𝐻𝑧.
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up to 100­150MHz and the higher alias frequencies are suppressed along with the high frequency jitter
and spur, which is seen at both sampling frequencies. On the other hand, at both sampling frequencies,
the high frequency alias signal has an accurate response above a minimum of 25MHz, below which
the high frequency jitter causes unwanted pulse count.

At high alias frequencies close to 𝑓𝑠/2 = 500𝑀𝐻𝑧, the 1GHz simulation shows somemissing pulses
which leads to a decrease in the average frequency. The observed frequency error at 𝑓𝑠/2 is almost
50MHz which is high enough to cause wrong VCO frequency estimation. However, increasing the gain
of the amplifier further to reduce these missing pulses has a trade­off with extra jitter caused pulses
at low frequencies. The characteristics of these missing pulses in smaller durations are observed and
an error correction algorithm is employed in the digital block to compensate for this error (explained
in section 5.1). Interestingly, for lower sampling frequencies, the non­linearities due to missing pulses
are non­existent or at least not very prominent, making the lower sampling frequencies a better choice.
The noise of the amplifier seems to have a negligible effect compared to the sampling clock jitter.



5
RTL Implementation

The frequency tracking loop is a digitally intensive circuit since the alias signal processing and frequency
estimation are done in the digital domain. This chapter gives an overview of the Register­Transfer Level
(RTL) implementation of different functions of the digital block. The digital block is designed keeping in
mind a low locking time, low complexity, and high robustness.

Figure 5.1: Top­level block diagram of digital block in FTL.

The digital block receives a high and a low­frequency aliasing signal per sampling slice, in the form
of digital pulses, from their respective amplifier blocks. It then processes these signals to estimate the
current VCO frequency and apply an appropriate control signal to the VCO to update the frequency.
Figure 5.1 shows the complete top­level block diagram of the FTL digital module. The digital block has
five functions and each of the sub­blocks performs one task. These tasks are enumerated below.

1. Alias frequency estimation: The alias signals from the analog environment, which are in the
form of a digital pulse train, are converted into digital codes equal to the absolute value of their
respective alias frequencies (𝑓𝑎𝑖 ∀ 𝑖 = 1, 2, 3).

2. VCO frequency estimation: By processing the three alias frequency values, a digital word 𝑓𝑣𝑐𝑜
corresponding to the VCO frequency is generated.

3. VCO control: The difference between the input control word 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and 𝑓𝑣𝑐𝑜 is calculated and
an appropriate control code is sent to the VCO, if the FTL is ON.

4. Speed and accuracy optimization: Depending on the frequency error 𝐹𝑒𝑟𝑟, the speed and the
accuracy of 𝑓𝑣𝑐𝑜 estimation are dynamically updated.

5. Lock­Unlock Detection: Depending on 𝐹𝑒𝑟𝑟 and the external signal PLL Unlock, the FTL is turned
ON/OFF.

47
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All the digital sub­blocks work synchronously with a global clock of 100MHz, which is the same as
the PLL reference clock. Each of these blocks is explained in detail in the following sections.

5.1. Alias Frequency estimation
As explained in Chapter 3, the aliasing frequency generation generally involves two steps of operation:
(1) Counting the number of rising edges of the aliasing signal, (2) Scaling the count to full scale to
calculate the aliasing frequency. As described in section 4.3, there are a few non­idealities in the
sampling and amplification blocks that are difficult to fix in the analog domain, and hence, lead to errors
in the count values. However, these non­idealities can be addressed in the digital domain by adding
an extra sub­block for count error correction.

Phase 1: Pulse Counting
The counter is a 9 bit synchronous counter that up­counts by 1 each time there is a rising edge of
the aliasing signal, which acts as a clock to the counter. Since the counter belongs to the aliasing
signal clock domain and the rest of the digital block belongs to the FTL clock domain, the counter
is asynchronous with respect to 𝑐𝑙𝑘𝑓𝑡𝑙. This asynchronous behaviour can lead to metastability if the
counter output does not meet the setup and hold time requirements of its following block. To avoid this
problem, the output of this counter is sampled at every FTL clock edge to make it synchronous with
the FTL’s 100MHz clock using two serial registers. Two registers are used to make sure that even if
the first register faces any meta­stability, the second register still captures a stable value so that it will
not affect the operations of the following blocks. This registered value is then differentiated to find the
pulse count 𝑁 in 10 ns observation time, which is the clock period of 𝑐𝑙𝑘𝑓𝑡𝑙. These operations are done
in the ”Counter and Differentiator” block shown in Figure 5.2.

Figure 5.2: Alias signal pulse counter and differentiator.

There are two counter/differentiator structures in each for each sampling frequency path, as shown
in Figure 5.3. One counter corresponds to the high­frequency amplifier output and the other to the
low­frequency amplifier output. Their outputs are collected in the error correction block. The functions
of the error correction block are two­fold.

1. To choose between the correct count value between the high­frequency and low­frequency alias
pulse counts 𝑁ℎ𝑖𝑔ℎ , 𝑁𝑙𝑜𝑤.

2. In the case of a high­frequency alias signal, as explained in Section 4.3, there will be missing
pulses in the signal due to limited gain and jitter. The missing pulse count needs to be compen­
sated by this block.

The output of the error correction block is 𝑁80𝑛𝑠 which is the effective pulse count of the alias signal
in 80 ns (significance of this number is explained in the next sub­section). Detailed functioning of this
block is explained further in this chapter.

Phase 2: Frequency Scaling
The frequency information carried by the alias signal pulse train can be extracted by observing the
number of rising edges occurring in a certain time period 𝑇𝑝. If the frequency of the aliasing signal is
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Figure 5.3: Alias frequency estimation using high and low amplifier signal pulses.

𝑓𝑎, its time period on average is 𝑇𝑎 = 1/𝑓𝑎. Therefore, in a period 𝑇𝑝, if there are 𝑁 periods of 𝑇𝑎 i.e.,
𝑇𝑝 = 𝑁 ⋅ 𝑇𝑎, then there should be 𝑁 pulses of aliasing signal in 𝑇𝑝. So the aliasing signal frequency can
be reverse calculated as

𝑓𝑎 =
𝑁
𝑇𝑝
=> 𝑁 = 𝑇𝑝 ⋅ 𝑓𝑎 . (5.1)

The accuracy with which 𝑓𝑎 can be calculated depends on the observation time 𝑇𝑝. For example,
if there is 1 rising edge of the aliasing signal in 10 ns, it could correspond to a minimum of 1Hz or
a maximum of 200MHz depending on the phase of the signal. However, the estimated frequency is
always 100MHz from Eq. (5.1). Hence, there will be an estimation error of ±100𝑀𝐻𝑧 = ±1/𝑇𝑝.

As explained in Chapter 2, the three aliasing frequencies 𝑓𝑎1, 𝑓𝑎2, 𝑓𝑎3 should be three integers whose
combination must be unique so that the actual value of 𝑓𝑣𝑐𝑜 is estimated unambiguously. Literature
suggests that the amount of error in alias frequency estimation that can be tolerated is dependent on
the GCD [19]. As the chosen GCD of sampling frequencies is 50MHz in this project, when the value
of 𝑓𝑎 is rounded off to a multiple of 1/𝑇𝑝, from simulations it is observed that a 𝑇𝑝 of minimum 40ns
is needed for an unambiguous reconstruction of 𝑓𝑣𝑐𝑜. 40 ns is equivalent to 4 ⋅ 𝑇𝑓𝑡𝑙, where 𝑇𝑓𝑡𝑙 is the
FTL clock period. Additionally, as will be explained in the next section of the error correction block, to
compensate for the non­linearities in the sampling block, the minimum value of 𝑇𝑝 required is 8 ⋅ 𝑇𝑓𝑡𝑙.
There are two factors that play a role in choosing the value of 𝑇𝑝.

1. Accuracy of 𝐹𝑒𝑟𝑟 estimation: If the frequency error 𝐹𝑒𝑟𝑟 between the VCO frequency 𝑓𝑣𝑐𝑜 and
the desired frequency 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝐹𝑒𝑟𝑟 = |𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑓𝑣𝑐𝑜| >> 1/𝑇𝑝, then the magnitude of estimation
error in 𝐹𝑒𝑟𝑟 will be negligible compared to 𝐹𝑒𝑟𝑟. In such a case, this accuracy is sufficient. As
𝐹𝑒𝑟𝑟 reduces, there is a need to estimate 𝑓𝑎 more accurately for proper locking. The minimum
frequency error that needs to be estimated by the FTL is 3MHz, so the maximum observation
time that is needed can be 32 𝑐𝑙𝑘𝑓𝑡𝑙 cycles => 32 ⋅ 𝑇𝑓𝑡𝑙 = 320𝑛𝑠.

2. Speed of Locking: The objective of this FTL is to acquire a frequency lock in the least amount
of time. However, the value of 𝑇𝑝 cannot be arbitrarily low as it is limited by robust frequency
reconstruction and circuit non­linearities. As the minimum 𝑇𝑝 is limited by robust estimation of
𝑓𝑣𝑐𝑜, the minimum is 8𝑇𝑓𝑡𝑙 = 80𝑛𝑠.

To observe the number of pulses in 𝑇𝑝 duration an accumulator is used, which adds all the pulse
counts for 𝑛 consecutive values of error correction block output 𝑁80𝑛𝑠, as shown in Figure 5.3, where
𝑇𝑝 = 𝑛 ⋅ 8 ⋅ 𝑇𝑓𝑡𝑙. This value of 𝑇𝑝 can be modulated by varying the value of 𝑛 as required. The value
𝑛 is controlled by the speed and accuracy optimization block. After every successful VCO frequency
estimation, the accumulator is reset to 0.
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Error correction:
The first function of the error correction block, which is choosing between 𝑁ℎ𝑖𝑔ℎ , 𝑁𝑙𝑜𝑤 is a simple op­
eration done by observing both high and low count values and comparing them to a threshold 𝑁𝑡ℎ.
High count 𝑁ℎ𝑖𝑔ℎ is selected if 𝑁ℎ𝑖𝑔ℎ >> 𝑁𝑡ℎ, and low count 𝑁𝑙𝑜𝑤 is selected if 0 << 𝑁𝑙𝑜𝑤 ≤ 𝑁𝑡ℎ and
𝑁ℎ𝑖𝑔ℎ ≤ 𝑁𝑡ℎ.

The second function, which is the error correction, is used only in the case of high alias frequency
signals which are very close to 𝑓𝑠/2. As the low­frequency amplifier does not amplify these frequencies,
𝑁ℎ𝑖𝑔ℎ, which is >> 𝑁𝑡ℎ, is always picked. This count may have errors as observed in Section 4.6, due
to missing pulses. These missing pulses are analyzed more carefully to provide a workaround. As seen
in Figure 5.4, during certain durations, due to the amplitude envelope of the alias signal, the peaks are
not amplified to be rail­to­rail pulses. The workaround implemented here is to divide the observation
period into windows similar to the Figure 5.4, and add extra counts for windows where the pulses are
missing. It is explained with an example below.

Figure 5.4: Counting pulses in the windows and compensating for the missing window.

For example, consider the case when 𝑓𝑠 = 1𝐺𝐻𝑧, 𝑓𝑎 = 490𝑀𝐻𝑧 and the observation period is
40 ns, which is equivalent to 4 cycles of 𝑐𝑙𝑘𝑓𝑡𝑙(= 100𝑀𝐻𝑧). Ideally, the pulse count for this aliasing
frequency in a 40 ns window should be 19­20, which would be approximately 5 pulses per 10 ns. By
dividing the observation period into 4 parts, as shown in Figure 5.4, it can be seen that there would be
zones where the pulse count requirement is not met, but in all other zones, it is met. If the algorithm
can understand this discrepancy, the missing pulse error can be corrected.
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Figure 5.5: RTL implementation of error correction block.

Figure 5.5 shows the RTL implementation of the error correction block. First, the high­counter pulse
counts are compared with the maximum pulse count per 10 ns, for 8 consecutive 𝑐𝑙𝑘𝑓𝑡𝑙 cycles. For a
given sampling frequency 𝑓𝑠, the maximum pulse count per 10 ns can be given by ROUND(𝑓𝑠∗10∗10−9).
If the number of times the maximum count is observed (𝐶𝑚𝑎𝑥) is greater than a threshold value 𝐶𝑡ℎ,
then the alias frequency is automatically rounded off to 𝑓𝑠/2. This way, the error in 𝑓𝑎 estimation will
lie within a 25MHz error range. The value of 𝐶𝑚𝑎𝑥 and 𝐶𝑡ℎ should be decided depending on 𝑓𝑠 and by
observing the amplifier outputs.

5.2. VCO Frequency estimation
This is the most important part of the frequency sensing algorithm and it needs to be robust. Some
direct ways to do this are solving many simultaneous congruence equations to estimate the frequency
or using large look­up tables that have a one­to­one mapping of the alias frequency combination to the
corresponding signal frequency. The second method has two shortcomings:
(1) It requires a high amount of memory to store all the combinations,
(2) It does not account for any noise or non­linearities in the system, which may lead to errors in the
alias frequency estimation. This consequently leads to large errors in VCO frequency estimations.
Solving the simultaneous congruences involves solving simultaneous equations of the form:

𝑓𝑣𝑐𝑜 = 𝑚1 ⋅ 𝑓𝑠1 + 𝑠1 ⋅ 𝑓𝑎1,
𝑓𝑣𝑐𝑜 = 𝑚2 ⋅ 𝑓𝑠2 + 𝑠2 ⋅ 𝑓𝑎2,
𝑓𝑣𝑐𝑜 = 𝑚3 ⋅ 𝑓𝑠3 + 𝑠3 ⋅ 𝑓𝑎3,

where, 𝑓𝑣𝑐𝑜 is the VCO signal frequency, 𝑓𝑠𝑖 = {𝑓𝑠1, 𝑓𝑠2, 𝑓𝑠3} are the three sampling frequencies, 𝑓𝑎𝑖
= {𝑓𝑎1, 𝑓𝑎2, 𝑓𝑎3} are the observed alias frequencies, 𝑚1, 𝑚2, 𝑚3 are the integers (where 𝑚𝑖 ⋅ 𝑓𝑠𝑖 is the
integer multiple of sampling frequency 𝑓𝑠𝑖 which is closest to the VCO frequency), and 𝑠1, 𝑠2, 𝑠3 give
the sign of the alias frequencies and their value lies in {1,­1}. The limitation of these equations is that
there are 6 known values ­ 𝑓𝑠𝑖 and 𝑓𝑎𝑖, and 7 unknown values ­ 𝑓𝑣𝑐𝑜 , 𝑚𝑖 , 𝑠𝑖. Fortunately, for a given VCO
frequency range [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥], there are only a limited number of possibilities for𝑚𝑖, for each i. However,
if there are 𝑥, 𝑦, 𝑧 integer multiples possible for 𝑓𝑠1, 𝑓𝑠2, 𝑓𝑠3 respectively, in [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥], then there will be
2𝑥 + 2𝑦 + 2𝑧 equations to be solved, and 𝑥 ⋅ 𝑦 ⋅ 𝑧 comparisons to be made, which is a high number of
multiplications, additions and comparisons to be performed. In the end, only one set of three equations
unambiguously estimates the correct VCO frequency.

To reduce the number of equations to be solved, the VCO frequency can be divided into zones as
shown in Figure 5.6. First, the frequency zones are divided based on the frequency integer multiple and
then by the alias frequency sign. Furthermore, these zones can be divided into sub­zones which have
unique combinations of the vector {𝑚1, 𝑚2, 𝑚3, 𝑠1, 𝑠2, 𝑠3}. In Figure 5.6, one of such zones is highlighted
in green. A look­up table can be created with these unique combinations of m’s and s’s along with
the information of the maximum and minimum possible frequency values of each alias signal in that
zone. By just comparing the alias frequency estimated in the previous section with the minimum and
maximum limits of all the zones, the current VCO frequency can be narrowed down to 3­4 zones (1 in
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the best case). That leaves us with 3*(no. of zones shortlisted) equations to be solved. While solving
these few sets, one of the sets will give an unambiguous result to the above simultaneous equations
and hence the VCO frequency is estimated.

Figure 5.6: Division of VCO frequency into zones depending on unique combinations of sampling
frequency multiples, and alias frequency signs.

The next priority is to robustly estimate the frequency. In ideal conditions, when the three simulta­
neous equations are solved, the output of all three equations should be exactly equal to 𝑓𝑣𝑐𝑜. However,
due to various non­linearities like voltage noise, jitter, and insufficient amplifier gain, the pulse count
may be inaccurate which leads to an error in 𝑓𝑎 estimation. Moreover, the estimated alias frequencies
may have a rounding error depending on the observation time which controls the frequency accuracy.
Taking these into account, an error margin of 25MHz between these estimated frequencies is allowed.
Having a high GCD between 𝑓𝑠1, 𝑓𝑠2, 𝑓𝑠3, allows a higher error margin [19]. Finally, the condition that
needs to be satisfied for successful estimation of 𝑓𝑣𝑐𝑜 is given as

𝑓𝑣𝑐𝑜,1 = 𝑚1 ⋅ 𝑓𝑠1 + 𝑠1 ⋅ 𝑓𝑎1,
𝑓𝑣𝑐𝑜,2 = 𝑚2 ⋅ 𝑓𝑠2 + 𝑠2 ⋅ 𝑓𝑎2,
𝑓𝑣𝑐𝑜,3 = 𝑚3 ⋅ 𝑓𝑠3 + 𝑠3 ⋅ 𝑓𝑎3,

{|𝑓𝑣𝑐𝑜,1 − 𝑓𝑣𝑐𝑜,2|, |𝑓𝑣𝑐𝑜,2 − 𝑓𝑣𝑐𝑜,3|, |𝑓𝑣𝑐𝑜,3 − 𝑓𝑣𝑐𝑜,1|} ≤ 25MHz.

The next obstacle in this process is when the VCO approaches the desired frequency, i.e., the
error 𝑓𝑣𝑐𝑜 −𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑 becomes much less than 25MHz. The observation time is increased for increased
accuracy. Eventually, when the VCO is locked to 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑, the aliasing frequencies 𝑓𝑎𝑖 do not go to
zero, since 𝐹𝑑𝑒𝑠𝑖𝑟𝑒𝑑 may not be an integer multiple of 𝑓𝑠𝑖, for any 𝑖. At the locking point, if any one of the
aliasing frequencies lies close to its Nyquist rate, there may be a rounding error of 25MHz introduced
by the error correction algorithm. In that case, the accuracy requirement for small 𝐹𝑒𝑟𝑟 is not met. This
may result in an incorrect estimation of 𝐹𝑒𝑟𝑟 which leads to difficulty in locking.

To avoid these rounding errors, 𝑓𝑣𝑐𝑜 estimation for 𝐹𝑒𝑟𝑟 <25MHz will be done by considering only
one of the sampling frequency paths, such that its alias frequency at VCO locking point lies close to
𝑓𝑠/4, where the impact of non­linearities is very low. This ensures that the aliasing signals are accurate
and therefore the estimated 𝑓𝑣𝑐𝑜 and 𝐹𝑒𝑟𝑟 are also accurate. The frequency estimation also becomes
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easy when there is a prior knowledge of which single frequency 𝑓𝑠𝑖 to be used during locking, and the
zone in which the desired frequency lies in (i.e., knowing values of𝑚𝑖 , 𝑠𝑖 to solve 𝑓𝑣𝑐𝑜 = 𝑚𝑖 ⋅𝑓𝑠𝑖+𝑠𝑖 ⋅𝑓𝑎𝑖).

5.3. Speed and Accuracy Optimisation
As explained in Section 5.1, the observation time can be modulated to optimize the frequency esti­
mation accuracy or the locking time. The dynamic modulation of observation time 𝑇𝑝 for increased
accuracy can be simply explained by the flow chart in Figure 5.7.

Figure 5.7: One frequency estimation cycle with dynamic 𝑇𝑝 modulation.

The flow chart represents the operation flow from the start to the end of one frequency estimation
cycle. Every frequency estimation cycle starts with a minimum observation time, i.e., 𝑛 = 1. This
setting continues to be used as long as the VCO frequency is found and the accuracy of 𝐹𝑒𝑟𝑟 estimation
is sufficient. Sometimes using the minimum observation time setting, because of insufficient accuracy,
either no correct estimate of VCO frequency is found or more than one frequency is found, causing
ambiguity. In such cases, the observation time is increased for more accuracy (𝑛 is incremented). On
the other hand, the observation time is also increased if the frequency is found, but the accuracy of 𝐹𝑒𝑟𝑟
is not sufficient. This goes on until either the frequency is found successfully or maximum observation
time is reached. In both cases, the observation time is set to the minimum again. Thus, the speed
and accuracy optimization algorithm ensures fast locking by dynamically updating the minimum time
required to accurately estimate a frequency error.

5.4. Lock and Unlock Detection circuit
The functions of this block are (1) to detect lock at the end of coarse locking procedure, and (2) to detect
the loss of lock by observing the presence of large errors between 𝑓𝑣𝑐𝑜 and 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and the external
input PLL Unlock from the main PLL unlock­detect block.
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Lock Detection:
The FTL during the locking process brings the PLL close to the desired frequency within a frequency
error of 3MHz. This settling error is sufficient since the main PLL itself has a lock­in range >= 3MHz
and any errors less than that can be corrected by the main PLL. When the frequency error 𝐹𝑒𝑟𝑟 detected
by the FTL falls below 3MHz, the FTL waits for an additional 320 ns (equivalent to 32 FTL clock cycles)
to confirm that the error is below 3MHz, and stops updating the VCO control codes by declaring that
the PLL is coarsely locked. The main PLL takes over the fine locking after the FTL is locked. The main
PLL is ON all the time. Since the lock­in range of the PLL loop is much smaller than FTL resolution, any
frequencymodulation caused by themain PLL during coarse locking has no effect on the FTL operation.

Unlock Detection:
Unlock is usually triggered because of two conditions. First is when the unlock detection circuit in the
main PLL sends an unlock signal PLL Unlock. During an unlocked state, the phase detector in the
main PLL acts as amixer whose output is an aliasing signal with a frequency 𝑓𝑣𝑐𝑜−𝑚⋅𝑓𝑟𝑒𝑓, where𝑚⋅𝑓𝑟𝑒𝑓
is the integer multiple of the reference frequency closest to the VCO frequency. Consequently, the LPF
output also oscillates at the same frequency. In a locked state, the frequency error in the main loop
reduces to zero. Hence, there are no oscillations present at the LPF output. Therefore, by amplifying
these oscillations into digital pulses and counting these pulses, the presence of a frequency error can be
detected. If there are pulses observed in 5 consecutive observation times of 320 ns each, then the FTL
assumes the PLL is unlocked and starts the locking process. This additional unlock detection circuit is
necessary because the three sampling loops do not reach a zero aliasing signal after locking, and they
may easily trigger an error/unlock detection with low frequency errors due to noise and non­linearities.

The 5 consecutive 𝑇𝑝 cycles can be considered similar to a dead­zone between the FTL and main
PLL operation.

5.5. Verilog Simulation Results
The following simulations are run to test the functionality of the RTL. These simulations use ideal Ver­
ilogA VCO, ideal sampling clock signals, and ideal VerilogA model of the sampling and amplification
blocks for simplicity. Figure 5.8 shows the locking of the FTL to different desired frequencies in the VCO
tuning range, when an arbitrary sampling frequency combination of 550MHz, 750MHz, and 850MHz is
chosen. Although this simulation does not include any non­linearities of the analog blocks, it shows the
efficiency of locking in the presence of rounding errors that occur in alias frequency estimation blocks.
It is seen that the VCO is able to lock to the desired frequency within 2.5 𝜇𝑠. In the 12GHz locking path,
it is seen that there is an incorrect frequency estimation in one cycle, which occasionally happens in
coarse locking (𝐹𝑒𝑟𝑟 > 100MHz), when the observation time is very low. However, the loop can quickly
recover after such an error since it is still in fast locking mode. Such incorrect frequency estimations
rarely happen when the observation times are increased for much finer locking.
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Figure 5.8: Frequency locking with ideal VCO and ideal FTL.

Figure 5.9: Modulation of the observation time (𝑇𝑝) for more accuracy in VCO frequency estimation.

Figure 5.9 shows how the observation time is modulated depending on the frequency error 𝐹𝑒𝑟𝑟. It is
seen that the observation time 𝑇𝑝 starts from aminimum of 80 ns. When the frequency error drops below
1/𝑇𝑝, then 𝑇𝑝 is doubled to increase the accuracy. 𝑇𝑝 is modulated from fast to slow in every frequency
estimation cycle. The 40 ns waiting time represented in Figure 5.9 is usually the time allocated for the
VCO and the FTL analog blocks to settle, once the VCO frequency is updated.



6
Post Layout simulation Results

This chapter presents the post­layout performance of the proposed FTL designed in 40­nm CMOS
technology. The simulation results of the locking process are presented in the first section. The next
section discusses the break up of the power consumption of each block in the frequency tracking loop.
The final section gives a comparison of this design with the state­of­the­art structures.

Figure 6.1: Complete chip top level layout.

The proposed sub­Nyquist sampling­based FTL is designed in TSMC LP 40­nm CMOS process.

56
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Figure 6.1 shows the complete top­level layout of the chip. The other blocks in the main PLL like VCO,
OTA, loop filter, reference buffer, 100MHz pulse generators, test buffer, and the charge sampling phase
detector are all reused from an existing design made at TU Delft to save time. A buffer is added at the
VCO output in order to have sufficient drive strength to drive the FTL sampler inputs and the load posed
by the routing parasitics.

Separate supplies are provided for the VCO, test buffer, FTL analog, digital, OTA, and reference
buffer combined with PD. The OTA, the reference path, and the FTL analog block share the same on­
chip ground and IO ground. The digital block has its own chip ground and IO ground. The VCO and
the test buffer share the same IO ground. The total chip area excluding the IO ring and including the
decoupling capacitors is 980 um x 1115um. The total chip area is dominated by decoupling capacitors
which are useful to suppress the ripple caused by the bondwire inductances. The total area occupied by
the FTL alone is 0.35mm2, 560 𝜇𝑚 x 460 𝜇𝑚 for analog, and 330 𝜇𝑚 x 280 𝜇𝑚 for the digital block. The
digital block is quite large because of the large look­up table needed for the VCO frequency estimation.

6.1. Frequency locking
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Figure 6.2: FTL coarse locking process for initial acquisition and error injection.

The performance of the designed FTL is tested at a TT (typical­typical) process corner with a nominal
temperature of 27 ∘𝐶, by coarsely locking the PLL to different frequencies in the VCO frequency range.
The FTL analog blocks used in these simulations are extracted from their layouts to consider all the
layout and routing parasitics. A Verilog model of the digital block is used instead of its large schematic
model to reduce the load on the simulator. For simplicity of simulations, a VerilogA model of the main
PLL VCO is used, which replicates the L­C characteristics and the non­linear VCO gain. The FTL and
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the main PLL use 1.1V supply. The effects of bondwire inductances are also included in the simulation
setup. The sampling clock jitter, as measured in Section 4.1.2, is also presented in these simulations.

Figure 6.2 shows the locking performance of the proposed FTL, aiding a PLL, when the digital input
for the desired frequency is 10GHz. An arbitrary sampling frequency combination of 500MHz,750MHz,
850MHz, is used for the frequency estimation. These frequencies are derived from a set of pairwise
co­prime integers 11, 15, 17, and a GCD of 50MHz. As they all lie within 0.5­1GHz range, they satisfy
all the conditions mentioned in Section 2.3.2.

The first half of the image shows the initial acquisition of the PLL at the start­up. The FTL is able
to successfully lock to the desired frequency of 10GHz within a short time <3 𝜇𝑠, owing to its robust
frequency estimation and dynamic speed & accuracy optimization technique. The zoomed­in figure
shows that the PLL is coarsely locked by the FTL within 3MHz error and the fine locking is taken care
by the main PLL. The main PLL loop is not turned off during the FTL locking process so that when the
PLL is within the lock­in range, it can acquire lock instantaneously. It is evident that the main PLL being
ON during the FTL locking process does not hinder the FTL’s performance. However, the FTL being
ON during fine locking process of the main PLL might lead to the loss of lock, hence the FTL’s output
is frozen and the FTL is put in a standby mode when the main PLL takes over. Thanks to the high
and low­frequency amplifiers, and the error correction algorithm, the digital block is able to estimate
the VCO frequency accurately in the presence of sampling clock jitter and other non­linearities.

After 3.5 𝜇𝑠, an error greater than 1GHz is injected by switching the VCO settings to a farther value.
The FTL, which is still sampling the VCO frequency in the background, is able to detect the large error
within a small amount of time and start the locking process. The lock is re­acquired within 3 𝜇𝑠. One
weakness of this digital block is that, even for error injections as low as 5MHz, the time to re­lock is still
as high as 2.5­3 𝜇𝑠. The delay in the acquisition is caused because the FTL turns ON only if the error
is consistently present for 5 consecutive observation times. This is done to avoid any false lock failure
detection due to noise. Since the observation time for small errors is very high for a better accuracy,
the relocking process is slow at lower error injections.

6.2. Impact of FTL on PLL performance
Since the FTL controls the VCO only during the coarse locking phase, and is on standby mode during
the locked phase, it does not contribute to the in­band phase noise of the PLL. Additionally, since a
buffer was added between the VCO and the FTL due to large routing loads, the VCO is completely
isolated from the FTL. Hence the spurious tones that could have been caused due to sampling are also
avoided. The phase noise and spur performance of the PLL is shown in the below result.

Figure 6.3: Frequency spectrum at main PLL output of 10GHz.
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Figure 6.3 shows the frequency spectrum of the VCO output when the PLL is locked to 10GHz.
The spectrum shows reference spurs of ­81.7 dBc at 100MHz offset from 10GHz. It can be seen that
the reference spur is the worst spur observed in the spectrum. Any spurs caused by the sampling
frequencies should appear at their integer multiples around 10GHz. Since the chosen frequencies are
550, 750 and 850MHz, the spurs should occur at 9.9GHz, 9.75GHz and 10.2GHz respectively. As
seen from the spectrum, any spurs at these frequencies are much lower than the reference spur.

6.3. FTL Power consumption
In this section, the worst­case power consumption of the FTL at steady state (after locking) is analyzed.
The contribution of all the analog and digital blocks in the FTL to its total power consumption is individ­
ually presented in the Table 6.1. In this measurement, all the sampling frequencies are set to 1GHz,
which is the maximum allowed sampling frequency in this project. This frequency is chosen as it leads
to the maximum power consumption in most of the analog circuit blocks, and allows a critical analysis
of the FTL’s power efficiency. During the actual functioning of the FTL, depending on the choice of
sampling frequencies, the total power consumption may reduce by 300­400 𝜇W.

Table 6.1: Power consumption of individual blocks in the FTL.

Block Power consumption (𝜇W)
@1GHz No of blocks Total power (𝜇W)

(3 ON)
Total power (𝜇W)

(1 ON)
Ring Oscillator 200 3x 600 600

RO pulse generators 30 3x 90 90
Sampler 20 3x 60 20
Amplifier 100 3x 300 100

SA Pulse generators 100 3x 300 100
Reference divider 10 1x 10 10

Digital block
(after locking) <= 200 1x 200 200

Total FTL 1560 1020

Table 6.1 summarizes the power breakdown of the individual FTL blocks during the steady­state
after the locking process is complete. During the locking process, the analog circuit blocks consume a
similar power but the digital block power consumption increases to a few mW.

Figure 6.4: FTL Power consumption split up.
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As can be gathered from Figure 6.4, and from Table 6.1, the major contributors of high power con­
sumption are the ring oscillators, due to their high frequency and low phase noise operation. The blocks
that consume the next highest amount of power are the amplifier chain and the sampling pulse genera­
tor circuits. The pulse generators are sized to add very little jitter to the high­frequency sampling clock
and hence consume more power. Similarly, the high­gain requirement and high frequency of operation
lead to high power consumption in the amplifiers.

Table 6.1 also shows a scenario when two of the three sampling slices are turned off after the locking
process is complete, to save power. The remaining one slice may not be sufficient for frequency locking,
but it can be used to observe any frequency unlock and turn on the other slices for locking. However,
only the pulse generators and amplifiers can be turned off, as the ring oscillators need to be calibrated
each time they are turned off and on. Since there is no support for automatic calibration of ROs in
this design, they cannot be turned off after locking. Nevertheless, by turning off two loops, the power
consumption of the FTL can be reduced by 30% of the total.

The digital blocks consume only 200 𝜇W after the locking operation is complete, which corresponds
to the clock switching. During the locking process, it consumes much higher power (around a 2mW)
due to the large look up table comparisons, which are avoided after locking.

The total PLL has a power consumption of 6.4mW, with the VCO and oscillator output buffer to­
gether consuming 4mW. The reference buffer, reference pulse generators and CSPD of the main PLL
consume up to 0.7mW and the OTA uses 0.07mW. The power of the test buffer is not included in the
total power. The FTL consumes almost 25% of the total power consumption, making it the second
most power­consuming block after the VCO.

6.4. Area and power comparison with State­of­the­art FTLs
The performance summary of the proposed FTL based onmultiple sub­Nyquist samplers is presented in
Table 6.2. Additionally, a performance comparison with other state­of­the­art PLLs and their frequency­
locking aids is also reported. Some of the structures summarised in the table lie within a similar fre­
quency range as this project, while the others function at a mm­Wave frequency. These high frequency
architectures are considered in order to compare the impact of frequency scaling. The performance is
compared in the aspects of acquisition range, power consumption, area and locking time.

Table 6.2: Performance comparison of State­of­the­Art PLLs.

JSSC’20
[29]

JSSC’20
[12]

ISSCC’20
[30]

Yonc Chen
[31]

JSSC’20
[10]

TMTT’21
[14]

This
project

Technology
(CMOS) 28 nm 40nm 65nm 65nm 65nm 65nm 40nm

Reference
frequency (MHz) 500 200 50 103 100 100 100

Frequency
range (GHz) 12.8­15.2 12­16.0 12­14.5 24.6­29.2 20­25.6𝑎 40.5 9.8­12.8

FTL type Divider +
BBPD Div+PFD

Freq
correction

loop

Div +
dynamic
PFD­CP

Div+
PFD

Reference
multiplier

Multiple
sub­Nyquist

FTL
Frequency step 1GHz NA 90MHz NA NA <450MHz >1GHz
Settling time (𝜇𝑠) 18.5 NA 0.7 NA NA NA 3
Chip power (mW) 19.8 7.2 6.7 10.6 49.5𝑏 8.8 6.4
FTL power (mW) 1𝑐 1.55 0.15 4.14𝑑 5.6𝑒 2.76𝑓 1.56𝑔
Chip areaℎ (𝑚𝑚2) 0.17 0.234 0.23 0.26 0.58 0.6 1.09
a Frequency range of the first stage.
b Total power including other ILFMs.
c Calculated from power of divider and BBPD.
d Calculated using power of divider and PD­FD + V/I.
e Calculated using power of divider and PFD+CP.
f Power of reference multiplier.
g Worst case power consumption.
h Total active area.
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Acquisition Range:
The acquisition range of the proposed FTL successfully covers the entire tuning range of the main PLL
which is 2.4GHz. However, it is strictly limited to the dynamic range of the chosen sampling frequen­
cies. Nevertheless, there is a flexibility in choosing these frequencies, and hence the locking range can
be increased at the cost of other trade­offs. The FTL in [30] exhibits a very low power consumption, but
the locking range is limited to a total of 170MHz. The FTLs in [12], [31], and [10] use divider and PFD
for frequency acquisition. As described in Chapter 1, the advantage of having dividers in the feedback
along with a PFD is that they give unlimited acquisition range and the locking process is robust. In [29],
an FTL based on feedback divider is employed, but a bang­bang PD is used instead of a PFD. Their
measurement results show an efficient acquisition for a frequency hop of up to 1GHz. Hao Wang, et
al., [14] used a reference multiplier to increase the speed and range of locking. Although the power
consumption is slightly better than dividers at mmWave frequencies, this architecture only locks to a
fixed frequency and its lock­in range is limited to a maximum of 450MHz on each side.

Power Consumption:
Zhao Zhang, et al., [12] employ a conventional FTL based on divider and phase­frequency detector
(PFD) and the FTL has a similar power consumption as the proposed FTL. The most power consuming
block of their FTL is their injection locking dividers which consume 1.3mW. Santiccioli, et al., [29] also
used an FTL based on divider, but their power consumption is the best among the compared FTLs in­
cluding the proposed FTL. However, their chip is designed in a smaller technology than the rest, giving
them an added advantage of lower power consumption.

As the frequency of operation increases to mm­Wave range, the power consumption of dividers
scales more than linearly. [31] and [10] use high frequency dividers for frequency acquisition and the
total power consumption of the FTL is dominated by these dividers. The power consumption of the
reference multiplier in [14] is better than the dividers at mmWave frequencies. However, the design
has no flexibility in the locking range.

Area Overhead:
Coming to the area overhead, the proposed FTL has the highest area overhead compared to all other
FTLs, owing to the large look­up tables used in the digital block and usage of multiple PLLs. Even
when the area of the decoupling capacitors is ignored, the area of the FTL is limited by the number of
sampling paths. As the PLLs move to much higher frequencies, the size of the VCO keeps reducing but
the area of the proposed FTL scales only with the number of sampling paths, making it less compliant
to area scaling. In some cases of FTLs using ILFD, the area consumed by ILFDs may be higher than
the VCO itself due to a larger inductor area [32].

Locking Time:
The locking time performance is the best in the proposed FTL, when compared to other FTLs, because
it uses a speed optimization algorithm to quickly reduce large errors. The achieved locking time also
satisfies the transient time limits of 5G NR as mentioned in Chapter 1.

In summary, the proposed FTL achieves a better locking time, higher area overhead and moderate
power consumption compared to FTLs of a similar frequency range. The prospect of scaling it to higher
frequency ranges is discussed in the recommendations section 7.1.3.



7
Conclusion

Sub­sampling PLLs have been the top performers in the regime of high speed applications owing to
their low­power and low phase noise performance. However, they are hindered by their low lock­in
range, making them susceptible to loss of frequency lock due to PVT variations, and error injections.
The objective of this thesis is to provide a solution that can improve the acquisition performance of the
PLLs, while avoiding the high power­consuming blocks like high­frequency dividers. This thesis ex­
plores a novel idea of a frequency tracking loop, that uses multiple sub­Nyquist samplers for frequency
estimation, which has not been used before in the domain of PLL. The possibility of an unambiguous
frequency estimation using three sub­Nyquist frequencies has been mathematically proven in Chapter
2. Additionally, formulae have been derived to calculate the maximum frequency bandwidth in which an
unambiguous frequency estimation is possible for a given system of sampling frequencies. In Chapter
5, a speed and accuracy optimization algorithm has also been proposed, which improves the locking
time of the FTL.

As a proof of concept, an FTL targeting a frequency tuning range of 9.8­12.2GHz, is designed
in 40­nm CMOS technology. A system of three sampling frequencies (0.5, 0.75 and 0.85GHz ) is
chosen such that they are derived from a set of pairwise co­prime integers and a reference frequency
of 50MHz. This system of samplers can support a bandwidth of 9GHz­12.8GHz. The designed FTL
shows promising results in post­layout simulations, by locking to the desired frequency within 3 𝜇s time
while consuming a maximum power of 1.56mW. It is able to successfully cover a large locking range
of 2GHz and correct frequency error injections as high as 1.5GHz within 3 𝜇s. The area overhead
caused by the FTL is 0.35mm2. While having a similar power consumption as conventional FTLs that
employ high­frequency dividers, the proposed FTL uses a comparatively higher area because of the
huge digital blocks, and a large number of analog blocks. However, it is worth investigating the use of
this FTL at much higher frequency bands to exploit its advantage of not using high­frequency dividers.

7.1. Future Work
7.1.1. Acquisition range of Ring­oscillator based frequency multipliers in FTL
As the current version of the proposed FTL is meant to be a proof of concept, the RO­based PLLs
used to generate the sampling frequencies in this FTL, are designed to have the required phase­noise
performance for a robust VCO frequency estimation. However, they are limited to a manual coarse
frequency tuning. These RO PLLs, which do not have an additional frequency acquisition aid, have a
risk of locking to any harmonic of the reference 50MHz rather than the desired frequency and always
need a manual tuning at the start up. The lock­in range of these PLLs is also quite low, making them
very susceptible to frequency drifts caused by small changes in temperature.

Therefore, in the future versions it is desirable to use a feedback divider based frequency aid for
coarse tuning and frequency tracking of these low­frequency PLLs, for a robust and autonomous func­
tioning of the FTL. The power and area overhead of these dividers can be quite low because of their
sub­GHz frequency of operation.
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7.1.2. Power Optimization
This project has focused on simplicity of design for sampling frequency generation and hence integer­N
PLLs were preferred for low design complexity as well as to avoid extra spur and phase noise that might
be introduced by a fractional­N operation. However, Section 3.3 suggests that the jitter can be relaxed
at lower sampling rates. Additionally, the simulation results in Section 4.6 show that the non­linearities
at high aliasing frequencies are less dominant at lower sampling rates. Therefore, if sampling rates are
reduced to below 500MHz, the power consumption of the FTL may be reduced to half of the current
consumption. However, the increase in the design complexity of the digital block and the power and
area overhead caused by circuit blocks for fractional­N operation need to be taken into consideration.
Furthermore, the low locking time may need to be sacrificed.

7.1.3. Scaling the FTL to higher frequencies
The true potential of the concept of this FTL lies in scaling it to higher frequency ranges. As mentioned
in section 2.3.2, it is theoretically possible to use three sampling frequencies under 300MHz to un­
ambiguously estimate frequencies > 25GHz and for large dynamic ranges. To analyze the practicality
of this FTL at mm­Wave frequencies, consider that similar frequencies as the current FTL (550MHz,
750MHz, 850MHz) are used for a VCO output frequency of 30GHz. Using the Eq (3.4), it can be cal­
culated that the sampling clock jitter requirement then becomes three times tighter than the current PLL
(running at 10GHz). From Eq (4.2), to achieve a 3 times better jitter, the ring oscillator power should
be increased by 9 times. However, the power consumption of the rest of the blocks like the sampler,
the amplifier, and the digital block will remain similar.

Alternatively, in the case of high VCO frequencies, the sampling frequencies can be scaled down to
keep the jitter requirement constant (according to Eq (3.4)). For example, a jitter of < 2 ps is necessary
for both cases of 𝑓𝑣𝑐𝑜 = 10𝐺𝐻𝑧, 𝑓𝑠 = 1𝐺𝐻𝑧 and 𝑓𝑣𝑐𝑜 = 30𝐺𝐻𝑧, 𝑓𝑠 = 0.33𝐺𝐻𝑧. When an RO­based
PLL is used for sampling frequency generation, the same RMS jitter performance can be achieved at
both sampling frequencies, given that the power consumption remains constant. As the ring oscillator
core consumes 200 𝜇W at 1GHz output to produce 2 ps integrated jitter, to produce the same jitter for
the same power consumption at 330MHz, the PLL should have a Figure of Merit (FoM) of ­241 dBc,
where the FoM is given by

𝐹𝑜𝑀 = 20 × 𝑙𝑜𝑔10(
𝑗𝑖𝑡𝑡𝑒𝑟
1𝑠 ) + 10 × 𝑙𝑜𝑔10(

𝑝𝑜𝑤𝑒𝑟
1𝑚𝑊 ). (7.1)

Therefore, to not have a huge increase in power consumption for higher VCO frequencies, the only
solution is to explore sampling frequencies with higher co­prime factors and lesser GCD, which leads
to usage of fractional­N PLL. This can impact in the below ways.

1. A fractional­N PLL in the place of an integer­N PLL will add additional jitter caused by Delta­Sigma
Modulator (DSM) quantization noise and fractional spur. The power and noise performance of
ring oscillator based fractional­N PLL at such low frequencies needs to be studied.

2. The locking time may be degraded because there is a minimum observation time requirement
for an unambiguous frequency reconstruction. Furthermore, if all the alias frequencies lie under
150MHz (because of lowered sampling rates), then the observation time increases drastically,
for accurate estimation of frequency.

3. Lower sampling frequencies also have higher computation complexity because of high periodicity
in their alias frequency spectrum, leading to higher number of equations to be solved. A more
robust algorithm needs to be created which can perform accurate frequency estimation with less
complexity.

4. Moving to higher frequencies and new technologies, as the VCOs become very small, this FTL
will become the dominant source of area consumption.

Nevertheless, with a slight sacrifice of power consumption and increased locking times, the pro­
posed FTL shows potential in scaling to higher frequencies of operation.
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