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Chapter 1

Introduction

“International trade has long been concerned with aggregated patterns -
what and how much countries trade with each others.” (Armenter & Koren,
2014, p. 2127) Trade from one country to any other can be categorized by
the country to which it is traded and of what type it is. This “categorical
nature” of the data is important, because “the number of observations is
low relative to the number of possible classifications” (Armenter & Koren,
2014, p. 2128). I model trade from on country to others by “the assignment
of observations to categories as balls falling into bins” (Armenter & Koren,
2014, p. 2128). The observation is a “discrete unit” of trade - the ball - and is
thrown into one of the bins, which represent “mutually exclusive categories”
(Armenter & Koren, 2014, p. 2128). The probability of a ball falling into a
bin is determined only by the size of the bin and the probability of a ball
hitting a particular trade type is the same over all countries. The model is
usefull, because it can be used to indentify theories when data is sparse and
tells “which statistics are driven by the sparsity [of the data ...] and those
that are not - and require a model to posit the correct joint distribution
across categories in order to reproduce the fact” (Armenter & Koren, 2014,
p. 2150).

However, the balls and bins model is not used just for modelling trade.
The model can be seen as “the classical methafor for the multinomal dis-
tribution” (Corrado, 2011) and it can be used for a goodness-of-fit test as
described by Ogay (2016, p. 25). This test is based on the range of the
multinomial distribution, which can be approximated by the range in the
balls and bins model! (Ogay, 2016, p. 39).

In chapter 3, I present a theorem by Wormald (1997) which I will apply
on the margins in the balls and bins model. The theorem itself is quite
general for random processes linked to random graph processes, and es-
tablishes “a connection between [random variables defined on the process]

Here, the range is the difference between the maximum amount of balls and the
minimum amount of balls in any bin.



and an associated differential equation or system of differential equations”
(Wormald, 1997, p. 3), of which the solutions approximate the actual value
of the random variables. The theorem is for some “sequence of random pro-
cesses indexed by n” (Wormald, 1997, p.3) (in this thesis n is the amount of
bins), for which one wants to know what happens when n — oo, and it turns
out that, given some particular paramters, the random variables are often
“sharply concentrated at almost any given time” (Wormald, 1995, p.1217)
near the solutions of the differential equation(s).

First, I prove the general theorem as presented by Wormald (1997, p.35,
theorem 5.1), which was written down compact and, to my mind, incom-
plete. I offer a version of the proof which shows percise bounds (which I use
for the applications) and proves all statements made by Wormald. More-
over, I update and replace some assumptions in the general version of the
theorem, and show that one assumption in original version of the theorem
(Wormald, 1995, p. 1219, theorem 1, 2) can be left out completely. The
complete proof is the most important part of the thesis.

Second, in chapter 4, I present two models that are close to the balls and
bins model. The connection to this model is new, as the theorem comes from
theory on random graph processes. The first model assumes that the bin-
sizes are all equal and the random variables on this process are the amount
of bins with [ balls after ¢ balls are thrown. The second model is a slight
modification of the balls and bins model, by changing the probability that
a particular bin is hit with some amount of balls at each discrete step in
time from ¢ to ¢t + 1 to something relative to the amount of balls in the bin
at time t. The random variables in this model are the amount of balls in
particular bins. The advantage of this model is that it can be used for any
(starting) distribution of bin sizes.

For both models, I show that the random variables meet the assumptions
of Wormald’s general theorem (the one as in (Wormald, 1997)) and then
describe the maximum, minimum and range distribution in terms of these
variables. The results obtained are usefull when the amount of balls thrown
is relatively small compared to the number of bins and when the number of
bins is quite large, because in those cases the variables are concentrated close
enough to the solutions in the differential equations with high probability.

Last, I offer future research possibilities that can be used to offer better
bounds for the concentration of the random variables, because it seems that
these could be found by either slightly modifying the models or the proof of
Wormald’s theorem.



Chapter 2

Mathematical Framework

This chapter lays down the most important definitions and theorems needed
to understand the work presented later-on. What is displayed below are as-
sumptions and definitions that I use, as to remove any ambiguity. For spe-
cific proofs and theorems, using the same definitions, I refer to the original
works (Wormald, 1995, and 1997).

2.1 Real Analysis

Real Analysis and probability theory are closely linked. To truly understand
probability, measure theory is needed . Therefore, I show the broader defini-
tions (of measure and measurable functions) before showing the probabilistic
ones (probability measure and random variable respectively).

Definition 2.1. A function f: D — R, D C R" is called lipschitz (contiu-
ous) on D in I°° with contstant L > 0 if

Fareesmn) = Fns )] < L max [ = i

for all (z1,...,2n), (y1,-..,yn) € D.

There is another definition of a function being lipschitz continuous, but
in the ! space. The results in theorem 3.3 and 3.1 are the same for both. For
the I* norm, change L maxi<j<y |2; —yi| to LY " | |z; —y;| in the definition
above.

For the following definitions, assume that €2 is some sample space.

Definition 2.2. A collection X of subsets of € is called o-algebra if
e QcX
o forevery Ac X, Q\ AeX.
o for every Ai,..., A,,...€ X, U Ay € X.



There also exist o-algebra’s generated by a set B C 2 (written as o(B)),
which is the smallest o-algebra containing B, where 22 is the powerset of
Q (which is, itself, a o-algebra when € is countable). By abuse of notation,
sometimes o(C) is written as the o-algebra generated by a set C' C 2. What
is meant is the o-algebra generated by {C'}.

Definition 2.3. Take ¥ a o-algebra®. A function p : ¥ — [0, 00] is called a
measure if

e for the emptyset ) € ¥, pu(0) =0,

o forall E1,...,E,,... € X pairwise disjoint,
w (U En) = ZM(En)
n=1 n=1

Definition 2.4. Let Q, E be some sets and X, A o-algebra’s on Q, FE re-
spectively. A function f : Q — E is called measurable if for every B € A,
f1(B)={x€Q: f(x)eB}eX.

Next to the abstract definitions above, this thesis often uses asymptotics,
for which the conventional big- and small O-notation is used.

Definition 2.5. Let f : N — R be some function. Define O(f(n)) as the
set that contains all functions g : N — R such that there exists some C' > 0
with

lg(n)| < C|f(n)],

and, if there exists some ngy such that f(n) # 0 for alln > ng, define o(f(n))
as the set that contains all functions g : N — R such that

tim 40 _ g

n—oo f(n)

Clearly, the notion of g being o(f(n)) is stronger than that of O(f(n)),
hence o(f(n)) C O(f(n)). Often I write g(n) = o(f(n)) for g(n) € o(f(n)),
as does Wormald (1995, p. 1219). Moreover, the notation of O and o is used
for n — oo and uniform over all other variables for which a function may be
defined in this thesis.

2.2 Probability Theory

In probability theory, often the 'universe’ worked in is denoted by the set
2, wich does not need to have any particular structure (Jacob & Protter,
2004, p. 3, 7). Intuitively, this is “the state space, [...] the set of all possible
outcomes” (Jacob & Protter, 2004, p. 3)

1Over Q, that is.



Definition 2.6. Let ¥ be some o-algebra on Q. The measure P : ¥ — [0, 1]
is a probability measure if P() = 1.

Often, (2,3, P) is called a probability triplet or probability space. Here,
3 is a og-algebra on €) and P a probability measure on .

Definition 2.7. A set A C Q is said to happen almost surely (a.s.) if
P(Q\A)=0

Lemma 2.1. Let (Q,%,P) be some probability triplet and B € ¥ such that
P(B) > 0. Define the conditional probability Pp : ¥ — [0, 1] by

Pp(A) = W?

then Pp is a well-defined probability measure.
Instead of Pg(A), most of the time the notation P(A|B) is used.

Proof. Because Y. is a o-algebra, it is closed under (countable) intersections.
Since 1 > P(B) > 0, and because AN B C B thus (by monotonicity of the
probability measure) P(A N B) < P(B), it must hold that

o< PANB)
hence Pg maps into [0, 1]. It is clear that Pg(2) = 1 and P (0)) = 0 because
P is a probability measure.

Last, take {A4;}7°, a pairwise disjoint family of sets in 3. Clearly, {A4; N
B}, is also a pairwise disjoing family of sets in ¥, hence indeed

Py (L_J1A> - P(lB)P (U(Ai mB)) _ P(IB);IP’(Ai NB) = ngmi).

i=1
Thus Pp is a well-defined probability measure on €2 with respect to X. [

Definition 2.8. Let (2, X,P) be a probability triplet and I an index set.
The set of evenst {A;}1, with A; € ¥ for each i is said to be (mutually)
independent if for every I C {1,2,...,n}

P (U Ai> =[P4

el i€l

Definition 2.9. Let (2,X,P) be some probability triplet and (E,A) some
state space. A random variable (r.v.) X is a measurable function X : Q — E
(with repsect to 3, \).



This definition of a random variable is sufficient to calculate P({w :
X(w) € B}) for all B € A, because these sets are elements of ¥, and P is
only defined on .

For each countable state-space, there exists some probability measure
defined on the whole g-algebra 2% which is ”characterized by its values on
the axioms: p, = P({w}),w € Q7 (Jacob & Protter, 2004, p. 22).

In the following, all random variables map into R and the o-algebra on
R is taken to be the Borel set B, which is the o-algebra generated by the
open subsets of R.

With the notion of probability triplets and random variables at hand,
I can start defining the expected value. For this, one needs to understand
the notion of a simple random variable. X :  — R is said to be simple? if
X =31 a1y, with a; € R and A; € ¥ such that {4;}?; is a partition of
Q.

Definition 2.10. The expected value of a simple random variable X : Q —
R is defined by

mm=§)£mn

Definition 2.11. Let X : Q@ — R be a positive random variable (that is,
X(w) >0 for allw € Q). Then the expected value of X is defined by

E[X] =sup{E[Y]:Y < X and Y a simple r.v.}

Notice that it is possible to have E[X] = co. For general definition of
expected values, one can write X = XT—X~, where X 7 (w) = max(0, X (w))
and X~ (w) = —min(0, X (w)). These are both positive random variables
(Jacob & Protter, 2004, p. 52).

Definition 2.12. A (general) random variable has finite expected value if
E[X*] < 0o and E[X | < oo and one writes

E[X] =EXT]-E[X].

If either E[X ] = 0o or E[X ] = oo (but not both), then E[X] is still defined
(as 0o or —oo respectively). If E[XT] = oo and E[X~] = co then X admits
no expected value.

Much general properties of this mapping from the space that contains all
integrable random variables (on (€2, X, P)) is known, such as that it is linear,
monotone, monotone convergence, Fatou’s lemma, Dominated Convergence,
etc. I leave these theorems out of this thesis, but they can be found in for
instance (Jacob & Protter, 2004, pp. 52-53) and (Rosenthal, 2006, pp.46-49,
103, 104). At any occurence of the use of a specific theorem, I refer to it in
this thesis.

214 : Q — [0,1] is the identy function on subsets A C ©, meaning that 14(w) = 1 if
weAand Ia(w) =0if we Q\ A




2.2.1 Conditional Expectation

For the notion of conditional expectation, one must understand the concept
of the £!- and L'-space. Given a probability triplet (2, %, P), £1(Q, X, P) is
the space with all (real) random variables with finite expected value of the
absolute value of the variables. The space L' (£2, ¥, P) is the set containing all
equivalence classes of real random variables where each class contains almost
surely equal random variables? that are in £'. Because almost surely equal
random variables have the same expected value, the space L' is used. By
abuse of notation, one often writes “take Y € L'(Q, X, P)”. What is meant
is: take a random variable Y in the equivalence class defined by Y in L.
(Jacob & Protter, 2004, p. 53)

Theorem 2.1. Let Y € LY(, X, P) and let G be a sub-o-algebra of ¥2. There
exists a unique element E[Y|G] of L*(Q, G, P) such that

E[Y X] = E[E[Y|G] X],
for all bounded G-measurable X, which satisfies
e IfY >0, then E[Y|G] > 0
e the map Y — E[Y|G] is linear.

The theorem above defines conditional expectation (on sub-c-algebra’s)
and comes right from (Jacob & Protter, 2004, see theorem 23.4, p.202),
where a proof can also be found. Furthermore, this conditional expectation
has most of the same properties of the expected value, under almost sure
equality, such as dominated convergence, Fatou’s lemma, monotone conver-
gence, etc.

Definition 2.13. Let X : Q@ — R be a general random variable and Y €
LY, X, P). The conditional expectation E[Y | X] is defined E[Y |o(X)], where
o(X) is the o-algebra generated by X, which is defined* by

o(X)={ACQ: X !(B)=A for some B € B}

2.2.2 Martingales

For the proof of the theorem of Wormald (1995), a martingale is created. Fix
some probability triplet (Q2, 3, P). A martingale is defined on an increasing®
sequence of sub-o-algebras (F;,)5, of . This is called a filtration.

3Two random variables X,Y are said to be almost equal if P({w : X (w) # Y(w)}) =0

“That this is indeed a g-algebra see theorem 8.1 by Jacob and Protter (2004). Moreover,
it can be extended to random variables X that map in R™ with respect to the borel-set
B".

5Meaning that F,, C Fn+1, for each n > 0.



Definition 2.14. Let T be some countable set, (2, X, P) a probability triplet
and (S, A) some measurable state-space. The function

X:TxQ—= S

such that X (t,w) : Q — S is, for each t € T, a random variable on the prob-
ability triplet is called a discrete-time random process. Often, it is written

as { X ber.

If T is countable, it is possible to look at the stochastic process X as the
function

X:Q— 5%,

where X; : Q — S is a random varialbe for each ¢t € T. If (S°°, A*°) is some
measurable state-space, then this itself defines a random variable.

Definition 2.15. A sequence of random variables {X,}5> (or a discrte-
time random process) is called a martingale if

(i) E[|X,|] < o0, for alln > 0.
(ii) Xy, is Fp-measurable for each n >0 and
(#ii) E[X,|Fm] = X, for all0 <m <mn

This definition follows the one by Jacob and Protter (2004, p. 211).
Moreover, if the equality in (iii) in the definition above is changed to <,
{Xn}22, is called a super-martingale and if it is changed to >, {X,,}72, is
called a sub-martingale.

2.2.3 Specifications and Conditional Probability

Most of the following lemma’s and claims are very simple corollaries of
standard theorems or definitions and therefore left out of the main text
in an attempt to minimize boredom of the reader.

Definition 2.16. Let {Y;}i>0 be a discrete time random process with t €
N> defined on some probability triplet (2,2, P). The history of {Yi}i>0 is
defined as

t

H=0(Xs,s<t)=0 (U{A C Q: X (B) €X for some B € B})
s=0

Notice that Hy is a filtration, because Hy C Hyyg.

Claim 2.1. Take n € N and let {Y;}1>0 be some discrete time random
process with t € N>o and Hy the history of the process. Let f : R?2 - R be

10



a lipschitz continuous function and define h as the function h : R — R that
maps x +— f (%, %), then

E[h(Ye)|Hiyj] = h(Yy),
for each j € N>q. .

Proof. Take i € N>g. Notice that since f is a continous map by assumption
and x +— 7 is also continous in z and for each n, it must hold that h(x) is
continous.

Furthermore, Y; is Hy-measurable and since Hy C Hyyq ... C Hyy; it also
holds that Y; is Hy,;-measurable. Take U € R open. Then h~1(U) is open by
continuity of h and by measurability of Yz, Y; 1 (h~1(U)) is Hy,-measurable.
In other words, h(Y;) is Hy4;-measurable and therefore,

E[h(Yy)|Heyi] = h(Y2)

by for instance theorem 25.3 in Probability Essentials (Jacob & Protter,
2004, p. 204). O

Notice that claim 2.1 is a ‘specification’ of a general composition of two
measurable functions. This is shown in, for instance and although through
an exercise, Principles of Real Analysis (Aliprantis & Burkinshaw, 1998).
As a last step, the proof uses a characterization of conditional expectation
which holds intuitively and luckely can be proven.

The following lemma I used is not written down this particular way most
of the time, but it is - to some extend - just the generalised Markov theorem.

Lemma 2.2. Let Y be a random variable, f : R — R be a non-negative,
non-decreasing borel-measurable function and a > 0, then:

E[f(Y)]
f(a)

Proof. Since f is non-decreasing, it is clear that Y > a implies that f(Y) >
f(a). Thus, by monotonicity of P, it must hold that® P(Y > a) < P(f(Y) >
f(a)). Now, notice that f oY : @ — R is a non-negative random variable
(as f is borel-measurable, see for one the proof of claim 2.1) and f(a) > 0.

The remaining part follows from the (simplest) Markov-inequality, which
I will proof for the fun of it. Since f(Y') is non-negative, one can see that
F@) i svy>f@)y < f(Y). Now, by monotonicity of the expected value, it
holds that:

f@)P(f(Y) > f(a) = E[f(a)Lisvy>f@)y) < E[f(Y)]

which proves the lemma. ]

P(Y > a) <

5 Although equality is not necesarry for this proof, it can be easily shown (for, of course,
> instead of >)

11



The following claim is fundamental for the proof of Azuma’s Lemma,
where the proof is left out. I add it here for convenience, since I, for one, do
not believe it to be trivial enough to be left out completely.

Claim 2.2. For each a >0 and |z| <1 (in R), it holds that
e < cosh(a) + xsinh(a)

Proof. The map y — e® is convex and because |z| < 1, HT’” € [0,1] and

thus 1 — 132 = 152 which gives us that

exp(—a)

e“z—exp<a1+x— 1—:1:><1+{Jc l—=x

5 a— 5 exp(a) +

where the last term equals cosh(a) + z sinh(a) O

For the proof, mainly for lemma 3.2 and 3.4 it is needed to look at
conditional probability on a sub-c-algebra. I offer the following definition.
To see that such a probability measure is well defined, I offer lemma 2.3.

Definition 2.17. Let (Q,%,P) be a probability triplet and let G C X some
sub-o-algebra. Take A € X.. The conditional probability P(A|G) or Pg(A) is
defined by

P(A|9) = E[14]9]

Lemma 2.3. Let (2,2, P) be probability triplet and G C ¥ a sub-o-algebra.
Then (2,5, Pg) is, almost surely, a probability triplet with respect to P,
where Pg(A) = P(A|G) for each A € 3.

The lemma above implies the lemma below and tells the intuition behind
conditional probability on g-algebra’s - why one can define them that way.

Proof. What I will prove is the following: (i) Pg(2) = 1 a.s., (ii) 0 <
Pg(A) < 1 as. for each A € ¥ and (iii) for each collection {4;,7 € N} of
disjoint sets in ¥ and A = [J;2; 4; Pg(A) = > .2, Pg(4;).

(i). Since 2 € G (by definition of o-algebra’s), the random variable 1g is
G-measurable. This implies that E[1q|G] = 1 a.s. (Jacob & Protter, 2004,
see for instance theorem 23.5, p. 204), so indeed Pg(§2) =1 a.s.

(ii). Take A € 3. Since 0 < 14 < 1 surely, it is also known by Jacob
and Protter (2004, theorem 23.5.a. p. 202) that 0 < E[14]G] < 1.

(iii). Let {4; : 4 > 1} be a collection of disjoint sets in X. It is known

that
E|JAlg| =Y ElAg)
i=1 i=1
a.s. by Lebesque’s dominated convergence theorem for conditional expecta-
tion (Jacob & Protter, 2004, theorem 23.8.c, p. 205). O

12



Lemma 2.4. Let (0, %, P) be a probability triplet and G C ¥ a sub-o-algebra,
then for each A, B € ¥ with Pg(B) > 0,

Pg(A) = Pg(A|B)Pg(B) + Pg(A|B%)Pg(B°)
almost surely, where Pg(A) = E[14|G].

Proof. This follows immidiately from the same theorem that proves this for
a regular probability measure, as
Pg(A NB )
Pg(A|IB) = =5
Pg(B)
almost surely. O

Lemma 2.5. Let (2, X, P) be a probability triplet and G C ¥ a sub-o-algebra.
Then for each A € X3,
P(A) = E[P(A|G)].

Proof. This is theorem 23.3.c. in Probability Essentials (Jacob & Protter,
2004) when noticing that P(A) = E[1 4] and P(A|G) = E[14|G]. O

13



Chapter 3

Wormald’s Theorem

The theorem of Wormald is stated below, but I proof it in a vast amount
of different lemma’s for readability purposes. First, I follow the proof by
Wormald (1997, theorem 5.1, p. 35). Later, I also state the original theorem
of Wormald (1995), as was published. The latter I proved first, but the
version below I used most, therefore it is presented here.

The structure in the proofs of both theorems is more or less the same, but
the details are so different that I found it impossible to present one proof
implicating both. Therefore, a proof of the orignal theorem of Wormald
(1995, theorem 1, 2 p. 1219) is added in the appendix (because I like it very
much). T explain the difference after I state the original version (see theorem
3.3).

3.1 Preliminaries

Before the theorem can be stated, I must offer some general setting follow-
ing Wormald (1997). In the following, random processes are discrete time
processes. Take (£2, X, P) a probability triplet, (S, A) some measurable space
and let @ be a process @ : N> x © — S, hence for each i € N>¢, Q(4,)
takes values in S and Q(i,) : @ — S is a random variable with respect to
(S,A) and is written as Q;.

Let {S(™},cn be a sequence of sets. Consider a sequence of random
processes {Q™},en on a sequence of probability triplets (€, %,,P,,). Take
n € N and ¢ € N>q, then QZ(»n) is a random variable that maps €, into S,

Take @ € N and let 1 < [ < n. Define S+ as the set of all hy =
(q0;q1,---,q:) such that ¢ € S™ for each i and for t = 0,1,2,... and
function ygl) : S+ 5 R and the random counterpart of ygl)(ht) by Yt(l)
(hence the function that maps (S™)> — R via the histories of random
processes).

Last, let D C R%*! and define Tp the stopping time for the variables
YD, V(@ ag

14



Y(l) Y(a)
TD—min{t€N>0:<tvt7"‘7t &/D )
- n n n

and so that Tp is defined as co when there is no such ¢.

3.2 Theorem statement

Theorem 3.1. (As in (Wormald, 1997)) For 1 <1 < a, where a is fized,
let y; - ST = R and f; : R — R such that for some constant Cy and

all 1, [yy(he)| < Con for all hy € ST for alln. Let Y;(l) denote the random
counterpart of y;(hy). Assume the following three conditions hold, where in
(ii) and (iii) D is some bounded, connected open set containing the closure

of
{(0,21,...,2aq) : IP’(YO(I) =z, 1 <1 <a)#0 for some n}

(i) (Boundedness hypothesis) For some functions f = (n) > 1 and v =
~v(n), the probability that

max [~ v,0| <

1oy, e
conditional upon Hy is at least 1 —~y(n) fort < Tp.

(ii) (Trend hypothesis) For some function A1 = A1(n) = o(1), for alll < a,

(1) (a)
—Y 1) - fE L ) <y

n' m 2t o J| =

l
[y,

fort<Tp

(#ii) (Lipschitz hypothesis) Each function f; is continuous and satisfies a
Lipschitz condition, on

Dn{(t,z1,...,24) : t >0}
with the same Lipschitz constant for each .
Then the following are true.
(a) For (0,21,...,%2,) € D the system of differential equations

dz
dzx

has a unique solution in D for z; : R — R passing through

= filz,z1,...,24),l=1,...,a

2(0) = 2,

for each 1 <1 < a and which extends to points arbitrarily close to the
boundary of D.

15



(b) Let A > A\ + Cony with A = o(1). For a sufficiently large constant C,

with probability 1 — O (nv + f exp ( nﬁﬁg)),

Yt(l) =nz(L) 4+ O0(\n)

uniformly over all 0 < t < on and for each I, where z; is the solution in
(a) with 2, = %Yo(l), and o = o(n) is the supremum of those x to which
the solution can be extended before reaching within [°°-dinstance C\ of
the boundary of D.

3.3 Proof of Wormald’s theorem

I will prove the theorem by Wormald (1997) using different lemma’s, fi-
nally adding up to the full theorem. I must add that in the following, all
three main assumptions (i), (ii) and (iii) of central theorem hold, but I will
explicitely mention when they are used. I will not prove (a) as it is a well-
known result in Differential Equations (Wormald, 1995), see for instance
Hurewiz (1958, p. 32, theorem 11 and 12) for a proof.

As a last remark before I start the proof, I need to say that at first, I
assume a = 1 (and [ = 1 for that matter). For simplicity write Y; for Yt(l),
f for f; and z for z.

3.3.1 Transformation to Martingale

Before I can start, the following claim - albeit it is almost trivial - is needed.
Define for all that follows, for A > A; as in (b):

o [5]

Claim 3.1. Ifg > nl/3, the probability in (b) is bounded above by one, and
thus trivial.

Proof. Suppose % < n11/3~ Then

A . . 1
ex ex — ==
Thus, gexp(—ng—i) < n'/B3e=1 — 00 as n — co. Hence, indeed, the proba-

bility in (b) is unrestricted. ]

From this point forward, I can thus safely assume that g < n'/3. More-
over, assume that A(n) < 1 for all n, which is of no harm because A(n) =

o(1).

16



Claim 3.2. Suppose v = 0. There exists some C' > 0 such that if (%, Yt) €
D is at least at C\(n) distance from the boundary of D, then so is (%, -
for each 0 < k < w(n)

Proof. Take (i ﬁ) € D such that it is of at least [°° distance CA from the

n’mn

boundary (C will be determind later). Notice that, for some C’ > 0

" r ot 41y
Tw T o),
n

n n n

because f > 1 and g < n'/3, thus % < n21/3 < % <A

For the change in Y; notice that, by assumption that v = 0, it is at most

Yiw il o Bw  ony
n n n

because fw < f+n and g < n1/3, thus (by positiviy of A; and thus \), 8 <

An!/3. T can conclude the above. Let e > 0 and take C' = max{C’+¢, C"+¢}.

t+w }/H»w

By the above, and because D is connected and open, ( e,

be outside of D.

) cannot

Lemma 3.1. Assume that, almost surely,

[Yithe1 — Yier| < B(n)

for all k or equivalently that v = 0 (I call this assumption (al)). Take t > 0
and assume that (%, %) € D is [*°-distance at least CX\ from the boundary

of D (I call this assumption (a2)). Then there exists a function g(n) = O(\)
such that

t Y,
My, =Yipn — Yy — kf < t) — kg(n)
n’' n
is a supermartingale with respect to the o-algebra’s created by Hy, Hyy1, ..., Hitrp.
Notice that the map w +— f %, @) is Hy-measurable (see also claim

2.1), which will be used in the proof of this lemma.

Proof. First, I show that, for 0 < k < w

t+k Y,
ElYirks1 = YirHepr] = f (n7 tn+k> +O(A1)
_(t X
- (n n) + oM. (3.2)

The first equality follows directly from assumption (ii). For the second
equality, notice that % < % (which trivially holds) as 5 > 1. Therefore,

<M
n

t+k ¢t

n n

17



Moreover, by the assumption (al), one gets
Yirn — Y| < kB
by induction on assumption (i) in k. Hence, also

< kB

- n

Yier _ Y
n n

and thus, by assumption (iii) - that f is Lipschitz-continous on D!,

() (1) st

n nn n

As a last remark for part one, notice that k < w, hence

kﬁ wf B 1 _
e </\+<<1+ 1/3)>\—O(>\)

Thus indeed, equation (3.2) holds.

This finishes the first part. In the second part, I prove that M is
indeed a supermartingale. Notice, at first, that the existence of a function
g(n) = O(X) follows directly from part one of this proof, as g(n) can be
taken such that

t Yy
= E[Y; — Yokl Hek) — f | =, —
g9(n) OSII?<au)J{(n){‘ [Yitkt ik Herr) — f <n7 n)‘}
Secondly, it follows that
t Y
ElMyr1|Hipr] =B |Yisprn =Y = (k1) f | -, 5 ) = (b +1 ‘Ht-i-k

=E [Yt—l—k—i-l - Yt—i—k’Ht—&-k} +Yie — Y2

=+ 0f (£2) = e gto)

hence M} is a super-martingale. The second equality here holds because

Y:, Yiog and f (%, %) are H, j-measurable? and the inequality follows from

part one of the proof and the choice of g(n). This shows the lemma. O

!That these elements are indeed in D follows from claim 3.2
2This is made more specific by claim 2.1
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The choice of g(n) here is very helpfull in a later part of the proof. Of
course, chosing
t Y
/
n) = max ElY; — Y, r|H — - —
g'(n) 0§k<w(n){ Vi1 = Yigr| Heqr] f(n n)}

would suffice in the proof of this lemma. The particular g(n) - as in the
proof of the lemma, - has two nice properties, which is the reason for chosing
it here already: it is positive and it also lowerbounds E[Y;1x+1 — Yiir|Hivk]-
This last property guarantees that one can also generate a submartingale
that looks a lot like the supermartingale M}, which happens in lemma 3.5.

3.3.2 Azuma’s inequality

Next, I also need Azuma’s lemma or something closely related to it, which
offers upper-bounds to ‘states’ in martingales that do not change too rapidly
over time. I will state it - and prove it - as below, following the work of
Wormald (1995)

Lemma 3.2. Let My, M, ... be a supermartingale with respect to a sequence
of sub-o-algebra’s Fo C F1 C ..., My =0 and Fy empty’> and | M1 —M;| <
c always. Then for all a > 0:

o2
P(M; > ac) < exp (2)
i

A proof of a similar lemma is given by Shamir and Spencer (1987, p. 121,
Theorem 3) and, of course, Azuma (1967, p. 357). However, before I can
start proving the lemma of Azuma, I must state another lemma, which will
be usefull when proving that of Azuma. As a last remark, I closely follow
the proof of Azuma, although I rephrase some parts to fit the main theorem
better.

Lemma 3.3. Let G C F be a sub-o-algebra and Y a random variable with
Y| <1 and E(Y|G) <0 (a.s.) Then, for each a > 0 it holds that

Elexp(aY)|G] < exp(%) a.s.

Proof. Notice that for each a > 0, by claim 2.2, we find that (on whole ),
using |Y| <1,
e® < cosh(a) 4 Y sinh(a).

Therefore,
E[e?Y|G] < cosh(a) + E[Y|G] sinh(a) a.s.

3That is, of course, Fo = {, 2}. Here, it is used that Fy is empty. It holds also if Fo
is not empty, but a conditional space (on Fy) is used instead.
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by linearity of conditional expectation and by* Jacob and Protter (2004, see
lemma 23.1, p. 201). Now since E[Y|G] < 0 a.s. and sinh(a) > 0 for each
a > 0, it follows (read a.s. at each (in)equality)

v o0 a2n o (a2)n o2
Ele* |G] < cosh(a) = T;} o) < T;) Sl = €2
using that (2n)! > 2™n!, which finishes the proof of this lemma. O

With the lemma above known, I am able to prove Azuma’s lemma. To
do so, I show the conditions needed for lemma 3.3, then I start proving
Azuma’s lemma itself.

Proof of lemma 3.2. Let o > 0. Write M/ = M’ for each ¢ € N>( and denote
Y; = M] — M]_, for each 1 <i. Clearly, |Yj| g 1 and also

M; M
Efvip] =B |2 - 2oy
_ ]E[Mi\Mz‘Ll] — M;— < My =M 0,
C C

by linearity of conditional expectation and the fact that (M;);>0 (and there-
fore also (M]);>0) is a supermartingale and notice that

Elexp(2M,,)] = E [exp(2(Y, + M;,_4)]
IE[eXp(gYn)eXP(g 7,1—1)]

= E[Elexp(2Y;,)|M,,_,] exp(2M],_;)]

where the last equality holds by the definition of conditional expectation and
by ‘taking out what is known’® (Jacob & Protter, 2004, see theorem 23.7
p. 204) By lemma 3.3, taking a = ¢, we find that E[exp(2Y,)|M]_;] <

exp(5-z ) s0 it holds that

Elexp(§My) < exp ( £ ) Elexp(§M;, 1))

Using the same arguments for n —1,n —2,...,1 and the notion that M{ =
MO = 0, we thus get that

, - a? , na?
E[exp(%Mn)] < il;[leXp <2n2> E[GXP(%MO)] = exp <2n2> .

“The lemma by Jacob and Protter (2004) holds when splitting any random variable
into Y = Y1 — Y7, because Y is clearly integrable by the fact that |Y| < 1.

5This action is legitimate as |M,,_,| is clearly bounded above by n — 1. Therefore, it
and exp(2M,,_;) are integrable. A same, yet easier, reasoning holds for exp(2Y5).
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Now notice that because x + exp($x) is positive and non-decreasing (since
n,a > 0), the Markov-bound® tells

E[exp(%M,’L)] - exp(;%;) ~ oxp (—oﬂ)

P(M] > a) <

- exp(%Q) o exp(%z) 2n
The only thing left to see to finish this proof is that the events {M, > a}
and {M,, > ac} coincide. As n € N and o > 0 were arbitrary, the lemma is

proven. ]

3.3.3 Concentration of Y;,,, and Y}

Now that Azuma’s lemma is derived and I have shown that a variation
on assumption (i’), (ii) and (iii) implicitly transform differences in Y; into
a martingale through a ‘clever’ trick, I can start showing concentration of
Y;. To do so, I state the following lemma - something that follows almost
immediately from Azuma’s lemma.

Within, conditional probability is used - which is not the case for Azuma’s
lemma. However, H; needs to be ‘known’ for the creation of the martingale
Moy, My, ..., M, as it is a martingale with respect to Hy, Heyq, ..., Hiqop.
From this point on, I look at the space conditioned on the history up to
time ¢; the space conditioned on H;.

Lemma 3.4. The assumptions of lemma 8.1 hold. My, My, ..., M, as in
the proof of lemma 3.1, then

Y) > wg(n) + /ﬁﬂ\/m‘Ht)

t Y
ot
n'n

P<mw—m—wf<

< exp(—9)

(3.3)

for each a > 0 and some Kk > 0.

Proof. This proof first shows that the supermartingale My, My, ..., M, suffies
the assumptions in Azuma’s lemma and then shows the actual result in the
lemma. To do so, notice that

| M1 — M| =

Yivkr1 = Yegr — f <n’ ) - g(n)‘

t
< Yignt1 — Yegn| + ‘f <n’ > +g(n)

<o 7 (520) 4 gto)

for each k € {0,1,...,w — 1}, which follows from the definition of M} and
because of assumption (al) in lemma 3.1. Moreover, because g(n) = O(\) it

6See for instance lemma 2.2
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certainly is also g(n) = O(1) and f is Lipschitz on D, continuous everywhere
and D is bounded, hence | f| is upperbounded by its maximum on” D UJD,
thus also at most f = O(1), and thus |g(n) + f (L, )| =0(1).

Although the above holds, a more elegant® approach to the bound can
be found using another property of f. Notice that, by choice of g(n), it
holds that there exists some C’ > 0 such that

—C'\ < g(n) <O\,

and similarly, by assumption (ii),
“A<EYi1 —Yi|He - f <7 ) <A
it thus follows that, by assumption (i) and (al),

-\ - 5<f( Y) <A+ 8.
This gives, again, that
—(C"+1)A=B< f <t 13) +g(n) < (C"+ 1A+ 8,
thus, indeed, there exists some x > 0 such that 8 + | f(L %) +g(n)| < kB
(because A = o(1) and 8 > 1). Hence
|My+1 — My| < kP,

or in words that the super-martingale differences are bounded above uni-
formly over Kk =0,1,...,w — 1. Last, one must see that

E[Mo] = E[Y; = Y; = 0- f(£,%) -0 g(n)] = 0.

This concludes part one of this proof, as the assumptions in lemma 3.2 are
met.
Now take ¢ = k8 and a = V2wd. From lemma 3.2 we get that

2
o
P(M, > aclH;) < exp <_2w>
which is equivalent to

P (M > ﬂﬁF‘Ht) <exp ( ;5211)) = exp(—9).

To finish the proof, notice that My, = Yiyo — Y — wf (L, Yt) wg(n), hence
P(My > ac) =P (Yipw — Vi —wf(L, 1) > wg(n) + ac|H,) .
O

"Here, OD is the boundary of D, conform convential notation.
8Either of these approaches work for what is needed. Dependent on the particular use
of this theorem, both can be chosen to get the best possible value of k.
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There are a few things left to do to derive at a main result on con-
centration. First, I state another lemma which tells something about the
concentration of Yy, — Y; —wf (L Yt)

Lemma 3.5. Suppose again all assumptions in lemma 3.1 hold. Then

P <|Yt+w — Y, —wf(E, ) = wg(n) + ﬁﬁ\/J’HJ = 2o ( 22)

Proof. The first part of this proof defines a submartingale (K k) win ) Here,
I use the particular choice of g(n). Define

Ki = Yorn = Yi = kf (5, 35) + kg(n).
This is a submartingale. To see so, notice that

E[Kii1|Hivk] = BYixr1 — Yorr Hipr] — (B + 1) f (5, 2) + (k4 1)g(n)
> Yoo — Yo = kf (£, 3) + kg(n),
because —g(n) < E[Yqpi1 — Yegr|Hir] — f(E, Yt) g(n) by definition of
g(n). Therefore E[Y;4pi1 — Yiyu|Hin] > f(L, Yt) g(n). This finishes part
one of the proof.
Now, it follows that — K}, is a supermartingale. To see that the differences

are bounded by the same bound as for the supermartingale (M,,)*_, notice
that

| = K1+ Ki| = [Kp1 = Ki| < |Yegrsr = Yoor — (£, 32) + g(n)]
< |Yerkir = Yokl + (5, 2) = g(n)]
<B+I1f(5. 35 —g(n)l.
By the proof of lemma 3.4, this is bounded above by”

[F(E5 35 —g(m)] < (C"+D)A+ 3

n’n

hence
| = Kjpy1 + Ki| < kB

By lemma 3.2 it follows, taking o = v/2wé and ¢ = xf that'®
P(K, < —ac|Hy) = P(—K,, > ac|Hy) < P(—Ky > ac|H;) < exp(—9).
This equivalent to

P (Yirw — Vi —wf(£, %) +wg(n) < —ac |Hy) < exp(—9).

9Here, it is possible to redefine the Cp in lemma 3.4.
10See, for instance, lemma 3.4, or its proof.
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And clearly, it holds that
P(Visw — Vi + wf(L, %) < —wg(n) — aclHy) < exp(—d)

Implying also
P(|Yerw — Yi + wf (5, 30| = wg(n) + aclH;) < 2exp(—4).

Now, the proof is almost finished. Take § = ng—z and it is done. O

3.3.4 Concentration of Y; — nz(%)

The concentration of ¥; —nz(%) - that what the theorem is all about - I show
in this section. I use a proof by induction, and to do so, I break this part
down into three lemma’s, of which I first state the ‘biggest’, but I prove this
last. The reason lies in the definitions and assumptions within the biggest
lemma. In all that follows, take
)\3

Lemma 3.6. Define k; = iw for i = 0,1,... 40, with io = | %" ], where w
as in equation 3.1 and o as in result (b) of theorem 3.1. Then it holds that

P (|ij - z(%ﬂ)n| > Bj for some j < z) = O(ie™?). (3.5)

B J
Bj:Bw(AJr%) ((1+:}> —1) %,

for some B > 0.

with

I will prove this lemma by induction. To do so, let me introduce some
definitions for readability.
Ay =Y, —2(5)m
Ay =Yp,, — Y,
ki ki
Az = z(F)n — z2(7H)n
Now that I have introduced the framework for inductive proof, it is time

to state two other lemma’s that will help me prove the main lemma (3.6) of
this section.

Lemma 3.7. There exists some B’ > 0 such that

ki Y.
A2_wf (’I‘L’lel)

with probability 1 — O(e™%), where w as in equation 3.1, X as in result (b)
of theorem 3.1 and § as in 3.4.

< B'w\
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Proof. Assume the induction hypothesis, equation 3.5. Note that

P < Ay —wf (kl Yk’)‘ > B'w)\‘Hki)

nn
:P<|Yk

Y
R wf(%, %” 2 B/wA‘Hki) :
Taking t = k;, and noticing that k; 11 —k; = w, one gets that this is equivalent
to
P(\Yter—Y;—wf(%,%ﬂ > B’w)\‘Ht>. (3.6)

Notice that, in lemma 3.5, wg(n) = O(wA) by choice of g(n) and see fur-

thermore that
A3 A A2

hence there exists some B’ such that, by lemma 3.5 (because t = k; < jgw <
on) the probability in equation 3.6 is upperbounded by 2¢=% = O(e™9).
Lemma 2.5 tells that, because Y = O(e~%) implies that E[Y] = O(e™°), the
above also holds in the whole probability space, not just conditioned on Hy.
This shows that indeed,

‘Ag—wf <n’ - )‘ < B'w)\

has probability 1 — O(e™?). O

Lemma 3.8. Let z be a solution in (a), then there exists some B"” > 0 such

that oo
B
v (3) <20
n

IN

with w as in equation 3.1.

Proof. A general approach!' would be to notice that, because z is contin-

uously differentiable (on the desired domain), there exists a x € [n, -

such that
()= (3
2 (x) =

1 Another approach, for different assumptions on f can be found in the notes on this
proof. It could be that, when assuming f to be analytic, for instance, a better bound can
be found.

)

Sl
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because again kl% — % = % by the Mean Value Theorem (Vuik, van Beek,

Vermolen, & van Kan, 2007). Hence,

o (g) B Z(kigl) _z(%)

n w

because f is lipschitz with constant L. This is, however, in case of the [*°
norm lipschitz assumption, for the I', just take the sum of the two. Next,
notice that

[2() - = (&)] = ‘ /:ﬂt,z(t))dt < (v—%) max [F(t2(0)]

[0,0(n)]

which is a value that f takes on the closed interval because it is continuous
by assumption'? and notice too that = — % < 7 by choice of z. Hence,

indeed,

kiv1) ki
2 <kl)—z< - ) Z(i> SLmaX{w,w max f(t,z(t))}SB”w,
te|

= 0,sup,, o(n)]

for some B” > 0. Last, notice that

e (3)] = (1) - L))

n w

which finishes the proof of this lemma. O

Now, it is time to prove lemma 3.6, as all the building blocks are present
to do so.

Proof of lemma 3.6. First, notice that z(0) = %, hence the induction hy-
pothesis (equation 3.5) holds for n = 0. Second, it is helpful to see that

Y.
’A3+wf(%v 7?)

= ‘Ag + wz'(%) - wz’(%) + wf(%)

From lemma 3.8 and the fact that z is a solution to (a) (i.e. that 2/(x) =
f(x,2(x)) on D), it is known that'?

B”w2 k. ks k. Yk
+lor (5 2(3) —wr (3.5)

12Thus so is z(x). However, this bound seems to be quite abusive. Moreover, the actual
bound is given by some A > o(n) that is constant in n.
13Here, I use that % < o by choice of igp.

Y.
|45 + (s, )

<

)
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for some (constant) C' > 0. Now it is time to use - once more - the fact that
f is Lipschitz continuous. This implies that

(o) 7 () < 2

for the lipschitz-constant L. Furthermore, the induction hypothesis (equa-
tion 3.5) offers that |Yy, — z( i)n| < B; with probability 1 — O(ie™?). This
shows that the following mequahty holds,

1 (5o0) -1 (5.2 < 22

with probability 1 — O(ie™%). Hence I can deduce that

Vi
n

b

() -

)

k; Y, B"w? + B"wB;
A3+wf< k)‘g w4+ wb;

n n

with probability 1 — O(ie®) because L < B” for sure by the proof in lemma
3.8
Now, let me move to the final part. To do so, notice that

Yiior — Vi, +2(5)n — 2 (Kt

n

A1+ Ay + Ag] = |V, — 2(E)n

‘Yk Sl

1+1 - (

Without further ado, lemma 3.7 and 3.8 offer the following upper bound!*

when taking B = max{B’, B"}:
i,
|A1+A2+A3|<|A1|+‘A2—wf( )‘ ‘A3+wf(4 )‘

Buw? + BwB,
gBi+Bw>\+7w + Wb
n

Buw? B B;
= Bw\ + v —l—( w+n)
n

=B

with probability at most (1—O(ie™?)(1—-0(e™®)) = 1 —O((i+1)e?). This
finishes the proof, as it shows the induction hypothesis, equation 3.5. O

As this lemma is proven, I am ready to show that - given assumption
(a2) - the theorem of Wormald holds. This is exactly what the lemma below
tells.

Lemma 3.9. Given assumption (al), (a2) and a = 1, (b) in theorem 3.3
holds.

1For a more heavy ‘calculation’, showing the last equality, see claim 3.3
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Proof. Take 0 < t < on and let ¢ = L%J (then k; <t < kijy1) and it is

known that
(‘Yk —z( )‘ <B) =1-0(ie™),

by lemma 3.6. Furthermore, it is usefull to see that

_ (A+%) <<1+B;U>i—1>n_0(m+w)

Since i < [U( =], clearly i = O(Z) since D is bounded (and thus also
bounded in its first element).

Now, notice that t — k; < w, hence the change in Y is upperbouned by
Bw. The change in z is upperbounded by O(w) because

nle () - z@J1<”/tuuw<»wz<nw max_ - |f(z1,2(x1))],

n z€l0,sup,, o(n)]

n

where © = (x1,...,2,) because z, f are continuous by assumption, by result
(a) and because D is bounded.
See, too, that wB = O(nA) and w = O(nA) because § is bounded below,

by deﬁnition of w and because n\A — oo as n — oo since % > ﬁ and thus
1
A> 1/3 > ISVER

I can conclude from lemma 3.6 that, indeed, with probability 1-O( e %),
¥ = (%) n| = O0w).

The last thing to notice is that 3» < g by definition of w, which finishes the
proof of this lemma. O

3.3.5 Final generalisations

The final generalisation - that the scaled points nl and 2% indeed are [
distance at least C'\ away from the boundary - makes the proof complete
for v = 0. The last step is to go from v = 0 to arbitrary . This shows that
the full theorem of Wormald (1997) holds, for a = 1, which is generalised
thereafter. To see this, I present the following lemma.

Lemma 3.10. All the points ( U Yki) are at least I*° distance C'\ away

n’ n
from the boundary of D, where k; = 1w, i = 0,1,... g, io = | %" ]|, for some
C’" > 0 large enough with probability 1 — O(%e"s).

Proof. The induction hypothesis in lemma 3.5 is the main part of this gen-
eralizations.
By choice of k;, that is k; < on, % < o, hence z % is at least [

distance C'A away from the boundary by definition of o (and for each i, the
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distance between % and the boundary of D is already upperbounded by o

hence trivial). Let © = (21, 22) € D, then

n

(3) =20

And the probability that

Yoo (I“Z)’ > Bi (3.7)
n

n n
for any i < iy is O(ige™). Hence

Yy,
n

>|er-Z

n

— X2 2 (C — C()))\,
for some Cy for which B; < CgAn for each n and each 0 < i < iy, with
probability 1 — O(%e"s). Hence, chosing C' so that it is at least bigger than
Cy, offers a suitable lowerbound. Define C' = C — Cy. Here C is defined, or
at least lower-bounded.

Last, it must be noted that there exists some n such that (0, %) eD
and because D is open and containing the closure of this point!®, there must

exist some n such that this point is far enoug away from the boundary, since
A=o(1). O

Notice that this does not change the result, because the events for which
equation 3.7 holds is equivalent to the events in lemma 3.6 and thus does not
change the probability there (because it could be included in the induction
hypothesis).

Lemma 3.11. Let v an arbitrary function in n, then (b) still follows.

I will offer a proof of this statement in line with the theorem as proven by
(Wormald, 1997, p. 38) here, which uses the assumption that |Y(¢)| < Con
for some Cy > 0 and all . There is another approach, which can be found in
the notes on this proof and which I use to proof Wormald’s original theorem
(Wormald, 1995). The other approach does not assume |Y (t)| < Con, but
restricts v to some extend.

Proof. There are two cases, the elements of €, for which |Y;1; — Y| <
and those that are not. Condition all steps for the bounds of the martingale
(lemma 3.5 and 3.4) on the event that the inequality |Y;+1 — Y;| < B holds.

This changes the difference between the expected change and f (%, %)
as in lemma 3.1 by at most Cyn~y, hence

t Y k
ElYitrt1 — Yign| Hipr] = f ( t) +0 (/\1 + Cony + 6) .

n' n n

5This holds for all 1 < [ < a
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Take for Aj in the rest of the proof A\ + Cyny and the result follows, with
probability 1 — O(n+y), because the probability that any of the martingale-
differences is not bounded above by £f is at most ony (because 0 < ¢t < on).
Substracting this, indeed

Y; = nz(L) + O(An)

with probability 1 — O (n’y + gexp (—ng—i)), where A > A1 + Cyn~y which
is exactly result (b) for a = 1. O

The last thing that is left to be shown is that the proof works exactly
the same for a # 1, hence for arbitrary a € N.

Lemma 3.12. For a > 1, the result (b) still follows.

Proof. To see this, notice that the probability of

p ((j Ai) <SP,
i=1 i=1

by definition of a probability measure and thus the probability that any of
the events {|Y;(k;) — z(k;j/n)n| > B;} occur (in 1) is upperbounded by the
sum of the probability of either event occuring, hence by O(aie™®) in lemma
3.6. Hence, change the induction hypothesis to

P (‘Yk(j) —2 (%) n‘ > Bj for some j < z) = O(aie™®),

for all 1 <1 < a. Checking for ¢ + 1, one just has to check for each variable,
hence adding the probabilities that it does not fail. This shows the induction
and thus the proof, because a is constant by choice.!'6 Last, it changes the
probability that maxj<;<, [Yi(t + 1) — Yi(¢)| < S does not hold by at most
a, hence this probability becomes any = O(ny) when a is constant!”. So
indeed result (b) follows. O

3.3.6 Notes on proof

The following claim is a tedious. I left it out of the proof, because it just
makes everything less readable.

Claim 3.3. For B;, B defined as in the proof of lemma 3.6, it holds that

Buw? (B B:
Byt = Bux 4 BY- 4 (Butn)B;
n

n

8Chosing a = a(n), lemma 4.1 also follows
174 = a(n) implies lemma 4.1
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for all i + 1 < iy, where

H

w=|—1,

B

(which is equivalent to the definition of w in equation 3.1).

Proof. By definition of B;, it holds that

Bu? | (Bw+n)B;

Bw +
n n
Bw? (Bw +n) Buw? Buw\ ¢ n
—<Bw)\+ ” >+ - (Bw)\+)\> ((1+T) —1)%
- <Bw)\+w> <1+(1+B“’)’—1+” <<1+w> 1 )
n n Bw n
w? Bw\"’ n n
— (Burx+ 2% ) [ (1+2¢ (1 7)77
( WAt n ><( + n) JrBw Bw)
2 it+1
:<Bw+w> ((HBw> _1>n
n n Bw
which equals B;11. ]

Claim 3.4. Let f be analytic on at least D U 9D, then

et (5) -0(2)
Proof. By the most simple formula to calculate the first derivative (see for
instance Vuik et al. (2007, see theorem 3.2.1, p. 26)):

#(%)-
w = 17, for some constant C' > 0. This implies that

|A3+wz'(’;"')gcwg—0(w2>.

n n

s|F

n

)

A() - (%) ~o(¥) s%

3

because

This finishes the proof of this lemma. The upperbound is thus given by
the maximum of 2”(¢) for 0 < t < on, which exists and is bounded by
assumption on f. O

Another approach to the theorem

Many of the first lemma’s assume that v = 0. However, this need not be,
as is shown in lemma 3.11. However, there is another approach, for which
just some other restriction on + is needed.
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Theorem 3.2. Updating assumption (i) by
P (IYers = il > B(n)|Hz) =1,

for eacht <Tp, v =0 (W), and §(n) = ng—z (which is equivalent to
the definition of § in equation 3.4). It holds that for some t > 0 for which
assumption (a2) holds,

P(|Yirw — Y = wf (5, 3)| = wy(n) + £Bv2w|Hy) < 2 exp(—0)

and thus also result (a) and (b), where (b) can be updated such that A > A\
is chosen, or where v =0 in result (b).

Proof. First, let me define a few sets for readability. For 0 < k < w and
particular ¢ as assumed in the lemma,

By =A{w : [Yisntr — Yiqn| < B}
and B = '_y By. Last, write
A={ws Virw = Yi = wf (L, %)] > wg(n) + n8v2w0 )}

Look at B¢, the complement of B, and notice that certainly P(B¢|H;) <
O(exp(—0)), because
w—1
P(BH,) < 3 P(BSIH))
k=0

and P(Bg|Hy) = O (CXpr(L_é)) by definition. Moreover, w < n + 1, hence one
gets that indeed, P(B¢|H;) = O(exp(—0)). This also shows that P(B|H;) =
1 — O(exp(—9)).

Now, write Py, () = P(-|H;) for simplicity (and notice that this, on itself,
is a probability measure)!®. By a simple property of probability measures
(for instance proven by Jacob and Protter (2004, see theorem 3.4, p. 17)),
it holds that™®

P, (A) =Pn, (A|B)PHt (B) + Pg, (A‘BC)PHt(BC)

and since Py, (A|B€) < 1 (by the most trivial upperbound for the probability
measure) and Pg, (A|B) < 2exp(—¢) by lemma 3.5, we have that

Py, (4) = Olexp(~6))(1 — O(exp(8)) + O(exp(~5)).
This shows exactly that P(A|H;) = O(exp(—9)). O

18See lemma 2.3 for a justification.

9Here, it is used implicitely that Pg, (B) # 0 a.s. (this is trivial, because v < 1 can be
assumed) and Py, (B°) # 0 a.s. also holds, because otherwise this whole lemma can be
neglected.
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Hereby, I can end the section on generalizing assumption (al), that v =
0. This leaves the option to dive into the next part of the proof, where the

concentration of Y;1,, — Y; is converted to the concentration of ¥; — nz( %)
It leaves the assumption that |Y'(t)| < Con untouched, while the result still
follows.

For the original theorem of Wormald (1995), this result follows always

(even for (i’)), hence that theorem can always be updated.

3.4 Original version of Wormald’s Theorem

As I started out proving the theorem of Wormald, I did so by it’s old theorem
as displayed below. This is the original theorem by Wormald Wormald
(1995, Theorem 1 and 2, p. 1219). All further definitions remain the same.

Theorem 3.3 (Wormald). Let a be fized. For1 <1< a, define y® : ST —
R and f; : R — R, such that for some constant C and all l, |y;(hs)| < Cn
for all hy € S; and for alln. Suppose also that for some function m = m(n):

(i) there is a constant C' such that for all t < m and all l,
l l
D/t() *Yt()‘ <
always.

(ii) for alll and uniformly over t < m,

(1) (a)
! ! tY, Y,
E[thg»)l - Y;f()‘Ht] = fl (na tT)" B ;) +O(1)

always.

(#ii) for each l, the function f; is continous and satisfies a Lipschitz condi-
tion on D, where D is some bounded, connected, open set containing
the intersection of {(t, 2, ..., 2(9)) .t > 0} with

{0,200, ..., 2@ (v} = 2Un,1 <1< a) #0 for some n}

Then
(a) For (0,2, ...,20) € D the system of differential equations

d
ﬁ:fl($721,...,za)7 lzl,...,a,

dx
has a unique solution in D for z; : R — R with
21(0) = 20, I=1,....a,

and which extends to points arbitrarily close to the boundary of D
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(b) Almost surely,
v = na(L) + o(n)

uniformly over 0 < t < min{on,m} and for each I, where z/(t) is a

O]
solution in (a) with 2, = YOT and o = o(n) is the supremum of those s
to which the solution can be extended.

Moreover, the assumption in (i’) can be weakened to what is stated
below. The above is written down for simplicity, but what follows is what I
prove.

Theorem 3.4 (Weakening of (i)). Theorem 3.3 also holds if condition (i)
s weakened to:

(i’) for some functions w = w(n) and A\ = \(n) with A*log(n) < w < "2/\/3

and A — 00 as n — oo, for all I uniformly and for all t < m:

PQE&—&$>> — o(n?),

_vw ‘H
A24/log(n) !
always on .

The exact proof can be found in Appendix A, which follows the same
structure as the proof of theorem 3.1 to a large extend, but the details are
different. Because I started out proving this theorem, and not theorem 3.1,
the text is more or less the same. This is the reason it is in the appendix.
Moreover, as noted in theorem 3.2, the assumption of |Y(¢)| < Cyn can be
left out in this theorem, due to my way of proving it.

3.4.1 Difference between the two versions of Wormald’s the-
orem

The difference between this original version (Wormald, 1995) and the general
version (Wormald, 1997) are found in the first assumption (assumption (i)
or (’)). In the original version (1995), the difference in the processes Y;(l) are
restricted for each [ to a specific bound, with fixed asymptical probability.
In the generalised version, the maximal difference in the processes Yt(l) is
upperbounded by something that is at least 1 (8(n)) with probability v(n),
where § and v have very little restrictions.

This echoes in the result of the second part of the theorem, that tells how

close Y;(l) lies to nz(L) and with what probability. In the original version
(1995), the probability of that Y;(l) equals nz(L1) + o(n) is given by 1 —o(1).
In the generalised version, this becomes Yt(l) equals nz; (L) + O(An) with a
probability that depends on the particular choice of A and on v and f.
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Chapter 4

A Balls and Bins Model of
Trade

Balls and bins can be seen as the “classical methafor for the multinomial
distribution” (Corrado, 2011, p. 349). In the most simple model, I look at
n bins of equal size, which are empty at ¢ = 0. At each (discrete) step in
time of length one, a ball is thrown into one of the bins - either with equal
probability or in the general case proportional to the size of the bin.

This model can, for instance, describe trade flow from one country to all
others. In the model, there are n country-trade pairs, which are represented
by the bins. Each ball represents a unit of trade. When more balls are
thrown, this models the event that there is more trade.

The natural questions that arize are the margins within this model.

e How many bins are empty after m balls are thrown?
e What is the maximum amount of balls in a bin?

e How many bins are there of any particular amount of balls?

All questions above are random variables defined on a histories. The sections
below show that each of them satisfies the assumptions in theorem 3.3 or
theorem 3.1.

It also raises the question of how the balls and bins model can be de-
scribed mathematically. To do so, I present two different approaches. The
first looks at the number of bins with a certain amount of balls. The second
looks at the number of balls in a particular bin.

For the everything that follows, another lemma, - an extension of Wormald’s
theorem - is needed.

Lemma 4.1. (as the note on theorem 5.1 by Wormald (1997)) Let all as-
sumptions and definitions in theorem 3.1 hold, but change a € N to a is
a function in n, then result (a) remains the same and result (b) must be
updated to:
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Let A > A\ + Cony with A = o(1). For a sufficiently large C, with

probability
af A3
1-0 (cm’y + - P (—nﬂ3>> ,

Yt(l) = nzl(%) + O(\n), uniformly for 0 < t < on and for each 1 < | <

a(n), where z;(x) is the solution in (a) of theorem 3.1 with 2 = %Yo(l) and
o = o(n) is the supremum of those x to which the solution can be extended
before reaching within [*° distance CA of the boundry of D.

Proof. See lemma 3.12. O

4.1 Ball’s point of view

This model describes trade flow from one country to all others, based on
one very unrealistic assumption: trade between the country and each other
country has equal probability.

As in the section above, the choice of a depends on n. This time, denote
Y;(t) the amount of bins with [ balls. If there is a maximum amount of
balls thrown (say cn for some! ¢ > 0), then 0 < [ < a(n) = en. Moreover,
[Yi(t +1) = Y;(¢)| <1, as a ball can drop

(i) into a bin with [ balls and Y;(t 4+ 1) — Y;(¢) = —1,
(ii) into a bin with [ — 1 balls, giving Y;(¢ +1) — Yi(t) = 1 or
(iii) into another bin, offering Y;(t + 1) = Yj(¢)

The expected difference can be denoted as

Y (t Y1 (t
E[Y(t+ 1) - vi(p| ] = ~ )y 1O,
n n
for | > 1 and as E[Yy(t + 1) — Yo(t)|Hy] = fYOT(t). This is equivalent to
defining
t Yo(t) You(£)\  Yi(t)  Yioa(t)
fl ) PR - + ’
n’n n n n
for 1 <1 < e¢n and fo(%, Yorft), el Ycz(t)) = Yon(t). This offers already every

requirement for Wormald’s theorem?. To see so, define (n) = 1 and y(n) =
0, A1(n) =0 = o(1). Then maxg<;<q(n) |Yi(t+1)=Yi(t)| < B with probability
1 —~ and

it - i) - i (£ 20, 220 <

!Take |cn] in case cn ¢ N in all that follows.
2See, again, theorem 3.1
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at least as long as t < Tp, with D(n) defined as
D(n) = {XEch+2 t—e<m<cte for 0<i<en},

for some € > 0, where x = (20, Z1,...,Teni1).>

4.1.1 Requirements for Wormald’s theorem

Wormald’s theorem rests on solving the system of differential equations given
by
dz (z)
dz
for each 0 <[ < ¢n, on the open, connected set D, passing through z;(0) =
1Y7(0). This is equivalent to solving

= filz, 20,21, .., Zen),

D (e
dz ()

éx = zo(z) — 21() (4.1)
dz%x(:v) = ch—l(x) - ch(‘r)

passing through 2zp(0) = 1 and %/(0) = 0 for 1 < I < ¢n. Notice that if
Yen(t) > 0 for some t, then there are cn balls in some bin and thus there
must be ¢n balls thrown, implying that one might change the last line in
(4.1) to dz%x(m) = 2Zen—1(z). I do not do this.

The solutions to (4.1) are given by z(z) = %le’x for each 0 <1 < ¢n.
This offers the following corollary.

Corollary 4.1. For each A\(n) > 0 with A = o(1), it holds that

tl

_t

Yi(t)

with probability

1-0 (; exp (—n/\g)) ,

uniformly for 0 <t < on and for each 0 <1 < cn where o(n) as before.

Proof. This follows from everything that is stated above, theorem 3.1 and
lemma 4.1. O

3In case ¢ > 0 but not in N, just take |cn] and look at the case where |cn| balls are
thrown, hence D(n) is defined for elements in R*™ + 2,
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1/3

This corollary tells for instance that if one choses A\ = (ﬂ%g(”)) , then
there exists some Cy > 0 such that
! t

t _1
Yi(t) - T

< Cplog(n)'/3n?/?

with probability
1

=0 ()

Corollary 4.2. Let Yy(t) denote the amount of empty bins at time t. There
exists a Cy > 0 such that

1
1/3,,2/3\ _
< Colog(n)!/n2%) =1 -0 (L )

Take for example ¢ = 4 and n = 500. This yields the following plot
(figure 4.1) for nz/(c), where [ is the variable.

P (‘Yo(t) —ne

100

Figure 4.1: The solutions to the differential equations yielded by Wormald’s
theorem for different values of [, in x = c.

Another example can be found in figure 4.2, where different values for
n are displayed, given that Cyp = 0.01,¢ = 30. This figure shows that

n=100
n=200
n=300

n=400
101 n=500

01

Figure 4.2: The solutions to the differential equations yielded by Wormald’s
theorem for different values of [, in z = ¢ and plotted for different n, plus
the respective “error” for each n.

there is some area about which the theorem does tell a lot (or at least
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something), but also a vast area for which it is hard to say things about
the maximum or minimum. With high probability, the maximum does not
lay within the bigger bulge, in the example the bulge ends at approximately
[ = 40, hence the maximum should be bigger than 40. However, it is hard
to differentiate between for instance [ = 50 and [ = 60, because the solution
to the differential equations yielded by Wormald’s theorem are close to zero
and the “error” interval remains the same over all [.

Two problems arise. First, what is Cy? This is very important, because
if for instance Cy = 1 and ¢ = 30, the moment that the solution to the
differential equations minus the error term becomes bigger than zero, lies
somewhere between n = 10% and n = 107, while for Cy = 0.01 and ¢ = 30,
this happens for all n € N. Second, what determines the spread, hence
which values determine lowerbounds to the maximum and upperbounds to
the minimum?

4.1.2 Bounds for the maximum and minimum

The above offers upper bounds in probability for the amount of bins with [
balls. With this information, it is possible to find bounds for the maximum
amount of balls in a bin. Define M,, as the maximum amount of balls when
there are n bins and cn balls thrown. Notice that, for Kk =0,1...,¢cn

P(M,, > k) = P(Yi(cn) > 1, for some k <1 < cn).

See also that the event | J;*,{Y; > 1} is not necesarrily a union of indepen-
dent sets, but the basic probability laws (Jacob & Protter, 2004, p. 8) do
offer the inequality

P(M,, > k) > P(Yi(cn) > 1).

Figure 4.3 shows the upper- and lowerbound (that has the probability as in
Wormald’s theorem) for Y;(cn) at different values of . This figure, together

40

10 20 30 40 sl 60 70

i

Figure 4.3: Upper- and lowerbounds given by Wormald’s theorem for Y;(cn)
at different values of [, given n = 500, ¢ = 30 and Cy = 0.03.

with figure 4.2 suggests that with high probability, the theorem of Wormald
offers upper and lowerbounds for the minimum and maximum respectively.
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Theorem 4.1. Let ¢ > 0, then M,, > h(n) with probability 1—O (

where h(n) is the greatest integer solution in I to

1
n2/3 log(n)1/3 );

! < (1 + Colog(n)'/3n2/3)ec
T2

Q

)

o~

n

if such a solution exists, and h(n) = 0 otherwise. Moreover, for each | € N
there exists an N; € N such that h(n) > 1 for each n > N.

1/3
Proof. Let ¢ > 0. Chose again \ = (21%5(")) . Let Cy > 0 such that

l

!
Yi(cn) € Cl—'ne_c — Colog(n)'/*n?/3, ClTne_C + Cplog(n)'/3n?/3

with probability at least 1 — for each 1 < [ < en and some

(&
n2/3 1Dg1(n)1/3 )
Cy > 0. This is possible by corollary 4.1. Define g(n) = n — log(n)'/3n?/3,
then g(n) — oo as n — oo. This implies that there exists an N; € N, such
that for each n > N
A
ﬁe_cn — Colog(n)/3n?3 > 1,
hence for each n > Nj, the probability that the maximum is greater than [
has at least probability
Cq
l1l—- .
n?/3log(n)!/3

For each [, this is dependent on ¢. Hence indeed, M,, > h(n) with the asked
probability, where h(n) is the either 0 or the greatest integer solution in [ to

¢ (14 Cplog(n)/3n?/3)ec

- > .

! n
That there exists an N; € N for each [ such that h(n) > [ follows from the
choice of N; above. This finishes the proof of the theorem. O

Notice that theorem 4.1 also holds for the minimum, although it must
be slightly adjusted. This is formulated in the following corollary.

Corollary 4.3. Take ¢ > 0. Let m,, define the minimum amount of balls
in any bin after cn balls are thrown, then m, < h(n) with probability 1 —

0 (Wg(n)m) , where ﬁ(n) is the smallest integer solution in | (greater or

equal to 0) to
d - (1 + Colog(n)'/3n2/3)ec
il n ’

or fl(n) = cn if no solution exists. Moreover, for each | € N>q there exists
an N; € N such that h(n) <1 for all n > Nj.
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Proof. The proof is completely analogous to the proof of theorem 4.1. [

Another remark on the theorem is about some knowledge on Y;(cn).
Because, for each ¢, Y;(¢) maps in N, the theorem can actually be updated
to [ being the greatest integer solution to

ci Colog(n)/3n?/3ec
l! n ’

because if one knows that Y;(en) > 0 with probability p, then Y;(cn) > 1,
with probability p.

4.1.3 The Range Distribution

Next to the maximum and the minimum alone, there is also the range dis-
tribution. The range in n, after c¢n balls are thrown, is defined as M, — m,,,
hence one is interested in P(M,, —m,, > k) for each 1 < k < cn. It is helpfull
to rewrite k = Iy — (I3 — k), for some k <11 < ¢n. Then, one might look at
the events {M,, > I3} and {m,, <[y — k}. Last, notice that

P(Mn—mnzk):P<U{Mn2i}ﬂ{mn§i—k}>

i=k
>P({M, > L} N{m, <l —k}).

Hence, finding an appropriate /3 may be enough to find good bounds for the
range distribution. If the events {M,, > l;} and {m,, <l — k} are almost
independent or can be expressed in terms of each other, the last part of the
equation can be solved to find viable bounds.

4.1.4 Estimating Cj

In the following, notice that the bound Cj can be chosen independently of A.
Hence, a rescaling of A by some function Ay (and the probability accordingly)
can always result in \p(n) = g—é)\(n) In what follows, when I say “chose Cj
equal to 2” I mean: chose C{, = = and take some rescaled \o(n) such that
for the A(n) chosen:

Coro = CHA(n).

It is thus necesarry to know what Cj is, because the last part of asymp-
totic in the probability is rescaled by the power of 1/C§.
To do so, notice that the function f as used for this model is

filzo,z1,. .., Ten) = 21 — Ty,

for 2 <1 < ¢en and fi(xo,21,...,%en) = —ax1. This implies that f; is
Lipschitz with constant L = 1.
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Lemma 4.2. The value of B as in lemma 3.6 is (for this model) the maxi-
mum of
max{4v2 + 1,2¢ + 2¢ + 1}

Proof. See lemma 3.1 for g(n) = O(X\) < GA(n). The particular bound on
G is given by: G = L = 1, because A\; = 0 and thus

’f (” bR k>> / (; Yff))' <17 < am),

because w = [%’\1 and A(n) < 1 can be assumed. In this particular model,
L = 1. Hence, g(n) as in lemma 3.1 has the property g(n) < LA(n). This
means that, as in lemma 3.5,

wg(n) + kV2wa < LwA(n) + kS wnﬁj
< LwA(n) + k64 | 2w { 5)\-‘ 22

= (L + V2x)wA(n).

Moreover, an upperbound on & is determied by (see lemma 3.4):

ﬁ+'f<t Yt) +gn)| < B+ (L+DA+A

<B+L)B

This means that B’ = L +v/2(3+ L) = 3v/2+ L(v/2+ 1). In this particular
model, that is equivalent to B’ = 4v/2 + 1, which finishes part 1.

For the second part, notice that each element in D is upperbounded
by ¢ + € for some ¢ > 0, hence by definition of o(n) it must hold that
(t,z1(t), z2(t), ..., zen(t)) € D, which implies that

[fi(t, 21(8), - za()] = | = 211 (F) + 20(t)] < 2¢+ 2e,

hence the maximum of |f;| for ¢ < sup,, o(n) is also upperbounded by this.
Thus indeed
B = max{4v2 + 1,2¢ + 2¢ + 1},

by definition of B. O

Lemma 4.3. Suppose* o(n) = O(1) and Cy as in 4.3 is upperbounded
universally over all t < on by

for some A > 0, which is well-defined.
“That o(n) is O(1) follows from the fact that D is bounded in each element.
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Proof. T will first show that the bound is well-defined and then that it is in
fact a bound. Notice that, rewriting a,, = %%, it holds that

Buw L%j 1 oBan,
1+ — < (14—
n an

Moreover, there exists some A > 0 such that o(n) < A for all n. Thus, also,

L%Lj an\ A-B
(5 = () )
n an

Notice that the limit of the inner part is e as a, — co as n — oco. Thus,
indeed, the supremum exists.
For the second part, take i = | £ | and rewrite

B; = (An+ w) <<1+T>i—1>.

Notice that w < 2An by definition of w and assumption that w > n2/3 (else
the probability in the theorem is unbounded, hence always satisfied). So,

indeed,
B [
B; < 38up{<1 n w) - 1} An,
n n

by part one of this proof. That the bound for Cy holds, is because the change
from k; to ¢ the change in Y and z is at most w8 < 2An, hence, indeed

Co < 3eMB — 1.
O

Corollary 4.4. Because D is upperbounded in its first element by c + ¢, it
follows that
CO é 3€CB+€B _ 1’

with B = max{4v/2 4+ 1,2c + 2¢ + 1}.

Figure 4.4 shows how Cj evolves as ¢ grows.

4.1.5 Results

Let n be the number of bins, ¢n the number of balls throw into the bins and
Y;(t) is the amount of bins with [ balls. C{ is a bound chosen, such that

!

Yi(en) — %e_c < Chlog(n)1/3n?/3, (4.2)
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Figure 4.4: Upperbound on Cj for different c.

See figure 4.6 for realisations of the model for different n and some fixed
¢, where the bound as in 4.2 is plotted for C{; = 0.15. Figure 4.5 shows
histograms for the number of bins with 5 balls to get a basic understanding
of the model. The combination of both figures shows that the bound as in
4.3 can probably be made better, because the amount of realisations outside
of the bound (as plotted) was less than 1 percent. Moreover, corollary 4.1
offers that for very large n, the probability is bounded below by something
that gets arbitrary close to 1 as n grows, for any Cf,.

Maximum

For the maximum, the probability (in ¢n) that it is bigger than h(n) as
in theorem 4.1 has the same probability as Y; — %e’c falling outside the
bound Cf, log(n)Y/3n?/3 as seen in figures 4.5 and 4.6. See figure 4.7 that
plots realisations of the maximum for different values of ¢, together with the
lowerbound h(n). Moreover, the probability that M; > h(n) grows arbitrary
close to 1 as n grows by theorem 4.1.

Range

For the range, notice that the probability that Yy(¢) > 0 is very small,
because the probability that one particular bin gets hit with no ball at a

step in time is 1 — % Thys the probability that it gets no balls after cn

throws becomes
1\ 1
n e¢

as n — 0o. Moreover, by corollary 4.3, there exists some N; € N such that
ﬁ(n) < [ for each 0 < [ < ¢n for n > N, hence the minimum becomes
upperbounded by 0. This implies that, although for some ¢ large and n
small, the minimum is lowerbounded by something more than 0, but when
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Figure 4.5: Realisations (100 in each sub-figure) of an equiprobable model,
with n. = 500, 1000, 1500, 4000 respectively, with (a continuous extensions of
the) upper- and lowerbound plotted. In all figures, Cfy = 0.15 and ¢ = 5.

n grows, it is often upperbounded by 0 with high probability. This implies
that the range distribution is often equivalent to the maximum distribution.
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Figure 4.6: Histograms of the number of bins with 5 balls (100 in each figure)
of an equiprobable model, with n = 500, 1000, 1500, 4000 respectively, here
c=29.
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Figure 4.7: Realisations (100 for each value of ¢) of an equiprobable model,
with n = 500, 1500 respectively, with (a continuous extensions of the) lower-
bound plotted. In all figures, Cy = 0.15.
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4.2 Model with different bin sizes: a growing num-
ber of balls

A more sophisticated version of the balls and bins model, is one where the
probability of a ball hitting two particular bins has different probability.
Denote Y;(t) the amount of balls in bin [ at time ¢. Again, it is asked to
model this. Before, I modelled this directly. This time, I shift the process
of balls entering bins, as is written down below. At the end, I shift it back.

First, take a distribution (7y,...,m,) € R™ such that m; > 0 for each
1 <i<mnand > m = 1. Second, take some function N(n).5. Third,
define a random process Y;(t) for 1 <[ < n, with ¥;(0) = N, with the
property

Bt +1) - vi() = 00,

In this model, ¢ is linked to the amount of balls thrown, but not equal to
it. This is no problem, because the distribution after cn balls are thrown is
asked. This can be achieved by defining D properly, hence only looking at
ST Yi(t) < en 4 N, or at Yi(t) < en for each I and t5. T model Yi(t) =
Yi(t) — N7 The results using this model are shown in the sections below.

4.2.1 Wormald’s theorem applied

This section contains the results of Wormald’s theorem, where I chose some
elements specifically. These results are stated as a theorem, proven after-
wards. The section below compares it with reality.

Theorem 4.2. Let Yj(t) be defined as above and take some ¢ > 0, A(n) > 0
with A = o(1) and B(n) such that

max [Vt +1) = Yi(t)] < B(n)

with probability 1, then it holds that.

P (‘ffl(t) — Nm(et/™ - 1)] -0 (nA(n))) —1-0 (2 exp (—”A(”)g» :

B(n)?

Proof. First, take f; (t n) ,Y"—(t)) = 4 A1(n) =0, y(n) = 0 and

n’> n n n

a(n) = n. Let B(n) > 1 undefined, as the particular process will define what

1<i

max |Yi(t + 1) — Yi()
<n

For example: N(n) = cn

51n this case, the restriction on the total amount of balls can be looked at later, specif-
ically because it does not necesarrily happen that there are exactly N balls thrown after
some t. Which bin get’s balls then?
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is exactly. Clearly, it holds that

E[Yi(t+1) = Vi) ] - fi (£, 29, . 203 < 3 (n)

n’ n n
with probability 1 — v(n). Secondly, the solutions to

dz(x)
dz

- Zl(x)a

going through z(0) = 1 N are given by z(z) = %Nﬂ'le’”. From Wormald’s

T n
theorem and lemma 4.1, it follows that

P (‘Yl(t) — Nmet/"| =0 (n/\(n))) =1-0 (AZL) exp (— 7?((7:;23)) .

Changing Y;(t) = Y;(t) + Nm, the theorem follows. O

Notice that the choice of A determines largely what is in both asymptotics
O(+). Moreover, Nm; becomes a multiplier of the amount of balls in each bin
as time passes. When many balls are thrown, f’l(t) comes relatively close to
Yi(t).

Moreover, a definition of D is needed. Let € > 0. Define D(n) as

N
{XGRn1—6<fE0<C<1+ (n)>+6,—e<xi<c<1+N(n))+e}7
cn

cn

where x = (z9,%1,...,2n), then D is clearly bounded in each element as
long as N(n) = O(n).

The Model

This section is paritioned in three parts. First, I present a way to find a
process that follows all assumptions above. Second, I use this process to
show what the theorem tells. Third, I compare these results to realizations
of a balls and bins model with different bin sizes.

Claim 4.1. Let g : N — [0,00) a function in n. Any process Yi(t) (t =
0,1,2,...), defined such that (almost surely)

P(Yi(t+1) = Yi(t) = g (n) |[H;) = n}Z((Q)
and »
PUYi-+1) = Yit) =0l =1 - X0,

with the property that 72&)) € [0,1] and such that Y;(0) = m; is a process that

is suitable for theorem 4.2, with f(n) = max{g(n),1}.
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Proof. Let Y;(t) as in the claim. Notice that

Yi(t Yi(t
() g(n)= (o)

ng (n) n

Moreover, Y(t) is positive (it can only grow as t grows) and Y;(0) = N(n)m
by definition. The implication on 3(n) follows directly from the assumptions
in theorem 4.2. O

E[Y;(t +1) = Yi(t)|Hy] =

Corollary 4.5. The process Yi(t) defined by Y;(0) = N(n)m and with

_ _ Y@
P (Yl(t +1)-Yi(t) = QC‘Ht> = Sen
or Yi(t +1) — Yi(t) = 0 otherwise can be used for theorem 4.2, under the
assumption that Yi(t) < en+ N(n) for all l and all relevant t. This implies
that B(n) = max{2c, 1}.

The model as presented in the corollary above is the one I will use in what
follows. A different choice of g would, after all, not make any difference on
the results, since Wormald’s theorem does not use the specific distribution
of change in the process.

See figures 4.8 and 4.9 for specific examples. Here, I chose for the first
eight bins to have m; = 21% (1 <i < 8) and all other bins equal probability,

hence 7; = ﬁ — ﬁ ;3.:1 w5, 9 <1 < n. Last, I took N = cn.

Figure 4.8: Realisations (100 in each sub-figure) of the model with n = 500
and ¢ = 3. The left figure is the amount of balls per bin for the first 13 bins,
the right picture is a histogram of the amount of balls in the first bin (with
m = 1/4) .

4.2.2 Bounds for the maximum and minimum

Contrary to the equiprobable model, the model for different sizes looks at
the amount of balls in the bins - not the amount of bins with a certain
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Figure 4.9: Realisations (100 in each sub-figure) of the model with n = 1000
and ¢ = 3. The left figure is the amount of balls per bin for the first 13 bins,
the right picture is a histogram of the amount of balls in the first bin (with

™ = 1/4).

collection of balls. Define M; = maxj<;<p Yi(t) and m; = minj<;<, Yi(t),
then

n

P(M, > k) =P (U{Yl > k}) and P(my <k)=P <0{Yl(t) < k}) .

=1 =1

All that follows, is done for the maximum. Clearly, the same holds for the
minimum.

Claim 4.2. Under the assumption that Yi(t)’s (in i) are independent for
each t, it holds that

n

1= J[Pvi(t) < k) =P(M; > k) < iP(Yl(t) > k),
=1 =1

for each k.

Proof. The second inequality holds by the subadditivity of any probability
measure, when noticing that P(M; > k) = P(UJL,{Y; > k}). This also
implies that

n
P(M; > k) = 1-11»((]{3@ gk}) ,
1=1
hence by independence of Y;’s, the claim follows. O

Explicit forms

All following results are based on two assumptions. The first is that, for
all relevant ¢ and k, the sets {Y1(t) < k},{Ya(t) < k},...,{Ya(t) < k} are
independent. Another result is that ¢y = log(2)n lets z(t¢/n) be an element
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of D." The theorem below is a general one, which can be applied to find
different kind of bounds.

Theorem 4.3. Take ng € N and k > 0. Let N(n) be a function such that
Y;(0) = N(n)m for each 1 <1 < n. Take I C {1,2,...,n} and find, for
each l € I, \; such that

N(n)met’™ — Conhy(n) > k,
for each n > ng. Then

2110 (o 4)).

lel

for some Cy, Cy > 0.

Another variation of this theorem is presented below, which offers worse
bounds for the maximum distribution but ‘costs’ less to calculate (because
for each 1 <1 < n, or a subset thereof, \; must be determined, however more
[ can be found for which the bound holds). The proof for both theorems is
almost identical.

Theorem 4.4. Let I C {1,2,...,n}, then

P <Mt > min {N(n)me%} - Com\(n)) _1-0 ((n)\ﬁ(g) o (_ngz>>|1> |

for each A(n) =0(1), A>0 andt < on

Proof. Let A =0(1), t < on. For each [ € I, it holds by theorem 4.2 that

<Gt <10 (o ()

P ()Yl(t) — N(n)met/?

which implies that

P (Yi(t) > N(myme/" — CoA(n)) =1 - O ("f(gg) exp <—ngz>> ,

Notice that mine; {N(n)me*/™} < N(n)me!/™. The result follows by the
fact that P(B) +P(Q2\ B) = 1, by independence (assumption) of the Y;(t)’s
and by claim 4.2. 0

"This is due to the fact that z(%f) = cmeos@n/n — 9 hence it is away from the
boundry of D

51



4.2.3 The range distribution

Next to a maximum and minimum distribution, there is also the range
distribution. Define R; the range at time ¢. Notice that, for each k£ > 0,
{R; > k} = {My — my > k}. There exists some k < I3 < N(n) + cn such
that®

P(Rt > ]{3) > P({Mt > ll} N {mt <l — ]{3}) ~ P(Mt > ll)]P’(mt <l — k‘)

Finding an appripriate /1 can be done by using theorem 4.4 to lowerbound
probabilities on the events {M; > [;} and {m; < l; — k} for multiple [ (or
all, if needed). Then, the last step is to just take the maximal multiplied
probability as the lowerbound. This is not the best possible bound, but just
a bound presented here as an example.

4.2.4 Bounding Cj.

Rephrasing theorem 4.2 to: there exists some Cpy > 0 such that

< Co)\(n)> =1-0 <”f exp <— Ag)) (4.3)

P (‘Yl(t) ~ N(n)met/ "

As by theorem 3.1, but mostly the proof of it, Cy can be determined (or
some bound on Cp). When looking at the function defined by

filz1, 2, ..., Tng1) = Tit1,

for 1 <1 < n, it clearly holds that

Ifilzi, .. xng) = filyrs - Ung1)| = @i — yisa| < 1- | Jnax lzi — il

hence f; is lipschitz continuous? with lipschitz constant L = 1 (however D
is defined) and as long as D is bounded.

See lemma ... for the fact that B” can be determined by L, because f is
clearly differentiable in this case.

Lemma 4.4. The value of B as in lemma 3.6, is the mazimum of
max{3v2 + L(vV2+1),L(3c + 1)}

Proof. For the first element of the maximum, see lemma 4.2.

8That the approximation holds is not trivial, as the maximum and minimum are clearly
dependent.

In the I*° space, as in (Wormald, 1997, p. 34), but also in the I* space with the same
constant.
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A the maximum on D, for z(t) (and thus f(t, z1(t), ..., 2,(t))) is given
by
N(n)
n

z(t) = men < 3c,

because z(t) is at least [*° distance C'A away from the boundry and ¢ is
upperbounded by o(n) such that z(¢) is away from that boundry by as-
sumption. Hence, indeed,

B = max{2V2 + L(2V2 + 1), L(3c + 1)},
because of the definition of B. OJ

Corollary 4.6. For model 1, it follows, by lemma 4.3, that because D is
bounded in its first element by A = 2c,

CO S eQCB _ 1,
with B = max{4v/2 +1,3¢c + 1}.

A better result than the corollary above is also possible, if more is known
about the particular choice of A\, B and . Moreover, if Cy(t) is a function
in ¢, the bound can also be optimized (for ¢ much smaller than o(n)n).

4.2.5 Results

It is important to see that Cy exists for arbitrary A > 0. Hence, it is possible
to just rescale A by 1/Cp and get the results. It, of course, does change the
probability in (b) correspondingly. T do not do reshifts to Y here, because
it does not alter the results (besides some basic shift).

Bins

For the following results, chose A such that A(n)Cy = % Furthermore, let
= 22% forl<i<8andm = ﬁ — %_8 ?:1 m;. For the amount of balls
in particular bins - the random variables for which the process is defined
- I offer figures 4.10 and 4.11 The first shows realisations of the model for
different n and c¢ fixed (and shows the result for the first four bins). The
second shows realisations of the model for different ¢ and fixed n. Each also
displayes the solution of the function z(£)n and the error-bound around this
defined by A. Last, ¢ is chosen to be log(2)n, as for this ¢ it is sure that each
2(L) = em2 < 2.

The probabilities that Y; lays within the bound are of the order given by
theorem 3.1. The exact bound, however, depends on Cy and Cy. It is possi-
ble to find universal bounds; bounds that are the same for all bins. However,

it is also possible to look at the theorem defined for one bin at a time. This
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Figure 4.10: Realisations (100 for each value of n) of the model, for ¢ = 5
and the first 4 bins.

might offer better bounds for bins that are smaller. For larger bins, the ex-
pected difference and the upperbound on the difference are (certainly near
the end of the process) quite large.

Moreover for small bins, v could be chosen differently. If, for instance,
m(n) = O(1/n?**€) for some € > 0, the upperbound B(n) = 2c can be
replaced by 8(n) = 1, which might offer a better probability (certainly for
small n).

Maximum

The method as described above (with N(n) = cn) for arbitrary bin-size

distributions works fine to describe how the maximum behaves as long as

there exist bins for which 7;((:)) — 00 as N — oo because in this case

N (n)met/™ — ConA(n) — oo, as n — oo,

Hence, for each k > 0, there exists some n for which the maximum grows
above k with probability 1 — O (% exp (—ng—g)) Moreover, for some arbi-
trary m;(n), define

N(n)me™ — ConA(n) = k(n),
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Figure 4.11: Realisations (100 for each value of ¢) of the model, for n = 500
and the first 4 bins.

then M; > k(n) with probability 1 — O %exp (—né—i)) This is a little
less restricted than the above, because k(n) might have some finite limit as
n — oo.

For the maximum, the distribution as used for the bins above is not very
interesting, as it is clear that (from a certain point forward) the maximum
is going to be determined only by the first bin with very high probability.
For instance, when n = 300 or larger, this seems to happen (see figure 4.10).

I show it for another distribution, namely one that has m; = % for1 <i<
4 and is equiprobable for the remaining part. See figure 4.12 for realisations

of the first bin (for different n and c), with A(n) = 5%y

QCOnOAS .
It is, however, nice to notice that one might define A\j(n) = m
and get the same (order of) probability for the maximum being larger than

S — A1(n)n. See figure 4.13 for some realisations showing this bound.

Range

When there exist bins with the property that 7; is lowerbounded in n, then
the maximum is determined by those [, as can be seen in theorem 4.4.
Moreover, as n gets larger, there must always exist bins for which m;(n) — 0
as n — 0o. The bins with the smallest m; determine the minimum. Suppose
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Figure 4.12: Realisations (100 for each value of n, ¢ respectively) of the first
bin.
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Figure 4.13: Realisations (100 for each value of n,c respectively) of the
maximum.

that there are bins that have

1 en 1
P(Y;(1) — Y;(0) = 2¢|Hy) = —— = —
(Yi(1) = Y1(0) = 2¢|Ho) = —5— = o,
which offers that, when log(2)n steps in time are taken, the probability that

Y; gets no balls at all becomes

. 1 log(2)n . 1
2n V2’

as n — oo. In such cases, with other words, the probability that a particular
bin gets no balls becomes very large. Of course, one might argue a rescaling
of the time in terms of ¢ must happen, for intsance through ¢ = log(2c)n.
In this case Cy would have to change because z; must be somewhere inside
D for this ¢, which it is not (yet). However, the probability of the bin not
being hit would still be é as n — oo. Rescaling ¢ in n is not possible,
because that would violate the boundedness of D.
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Thus, the minimum is (for ¢ not too large, and n not too small) with
high probability determined by N(n) = c¢n in the models above. This im-
plies that, certainly in the models above, the range is determined by the
maximum.

In case of small n, the model described by Wormald does not offer good
bounds. In case of large ¢, it also does not, because this influences the bound
of D to a large extend (therefore) also C (hence the probability). Of course,
this could be fixed by taking n (very) large as well.

o7



Chapter 5

Conclusions and Future
Research

Let a,n € N arbitrary and if {Y;(l)}fio is a random process (dependent on n)
for each 1 <1 < a, theorem 3.1 as by Wormald (1997) is used to show that if
the difference of a random process in time, scaled by %, can be described by
sufficiently smooth function f;, the value of the process at time ¢ is close to
something determined only by the system of differential equations implied
by the functions fi,..., f,, with a probability that grows as n grows and
can get arbitrary close to 1 as n grows for some processes.

I offered a proof of the theorem that follows the lines set out by Wormald
(1995), but his proof is short and, to my belief, incomplete. I made it specific
and proved his statements my own way, providing particular bounds that
are used to find results later on.

Moreover, T updated the original version of his theorem (Wormald, 1995),
and later also the generelized one (Wormald, 1997), by proving one part in a
different way. This changes the assumptions in the generalised version and
leaves one assumption unused in the original version, without changing the
result, see theorem 3.2 and lemma A.4.

I applied the theorem on two different examples, both variations of the
balls and bins model.

Let n denote the amount of bins and take cn as the amount of balls
thrown into those bins, where one ball is thrown at a step in time, hitting
either of the n bins with equal probability. If one descibes the amount of
bins with [ balls for 1 <1 < ¢n as Yt(l) , this is a random process dependent
on n that satisfies the assumptions in theorem 3.1. See corollary 4.1 that
shows how YC(,? is concentrated. This can be used to show that the maximum
amount of balls in any particular bin after cn balls are thrown is bigger than
a particular function in n, with a probability that can get arbitrary close to
1 as n grows, see theorem 4.1. Moreover, I conclude that (as long as ¢ is
relatively small compared to n), the range is determined by the maximum
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with high probability and the minimum amount of balls in any bin is 0 with
high probability.

Let n again be the amount of bins,lbut at each time ¢, bin 1 < i <n
gets hit with ¢ balls with probability %, where Yt(l) is the amount of balls
in bin [ at time ¢, with a starting distribution given by YO(Z) = m(n), and
Yoy mi(n) =1, m(n) > 0 for each 1 < i < n and each n. In this case, again
Y;(l) is a random variable (for each ¢t > 0) that satisfies the assumptions
in Wormald’s theorem (theorem 3.1). Again, I use this to describe the
distribution of the maximum amount of balls in any particular bin after
ty € N steps in time are taken and show that the maximum is greater than
a particular function in n with a probability that gets arbitrary close to 1 as
n grows, for some starting distributions m;(n). I note, again, that the range
is determined by the maximum (for ¢ not too large), because the minimum
amount of balls in a bin is 0 with high probability.

5.1 Future Research

5.1.1 Equiprobable model

There are different ways to get better results. I present one possibility. Look
at the variables Y;(t) that are defined by

This already implies that the upperbound for Y;(¢) < en can be updated to
be Yl(t) < n. Hence, the upperbound on D for all variables that are not ¢
can be modified to be upperbounded by 1+ € instead of ¢ + €. The rest of
the process remains

E(Vi(t +1) — i(t)| Hy) = 1220 4 ¥

and the function f remains the same. This results in the fact that Cy can be
upperbounded by e?8 —1, where! B = 41/24-1, because also t < n instead of
t < cn (however, this implies that for the original process, some information
gets lost). Moreover, e?B — 1 is still somewhere between 10° and 10°, but it
does not grow as ¢ grows. For a slightly better bound see the section below.

5.1.2 Regular model

In case of small m;(n) in the model for different bin-sizes, the reason the
upperbound on Cj is very unfortunate (see figure 4.4, noting that Cj in
this model is even “worse”) because it grows very quick in ¢. This is pos-
sibly because, certainly near the end of the process, “the expected changes

1See lemma 4.2 and 4.3
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are much smaller than the [...] upperbound on their maximum change”
(Wormald, 1997, p.66). Although Wormald notes this for a deletion oper-
ation in graphs, it also holds for this process. Thus, there might be some
rescaling possible, or one could “use different martingale inequality”, replac-
ing the one by Azuma (Wormald, 1997).

Similar to the equiprobable model, I present one possibility. Look at the
variables Y;(t) that are defined by

. Y (t)
Yi(t) =
() = —_
Again, Cy can be upperbounded by €28 — 1, where B = 41/2 + 1, this is still
quite large.
This bound is partly implied by the Lipschitz constant for f. If the
process is updated, this can be changed. Look at

(Tt + 1) = i(t) = 20) = 10,

)

which offers

A

BIFi(r-+1)  ¥ilH) He] = w20,

hence an update in the function f;, being now

filzo, x1, ..., xn) = K2y

This shows that the lipschitz constant of f; becomes k. However, before
approximately the same amount of balls are thrown, the time also has to be
rescaled; by %

The bound for B can be updated using the knowledge that

B+ |f (t,w,...,y"(t)>

<B+rR(1+ ),
n’ n n

by definition of f; and defining g(n) = x%. In part one of lemma 4.2, this
implies that B’ can be updated to equal v/2 + (2 + \/5)/1 Noticing that
2(t) = m(n)e® must be upperbounded by 2 + € to remain in D at all, it
holds that t must be upperbounded by at least

t < inf { min {log (2+E> }} i,
n>no | 1<i<n mi(n) K

for some ng. The exact result different for each distribution 7. Defining A
as the bound above, multiplied by &, the total bound becomes

1 A
%§3£A&4:3wp<f%¢2+W§+%@>—hﬂ%m<+2+¢%—L
K

K
If k gets bigger, then the lipschitz constant gets worse, but the effect is
(apparently) less than the rescaling of time.
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Appendix A

Proof original theorem of
Wormald

The theorem of Wormald is stated below, but proven in a vast amount
of different lemma’s for readability purposes. Here, I follow the proof by
Wormald (1995).

A.1 Proof of Wormald’s theorem

I will prove the theorem by Wormald (1995) using different lemma’s, finally
adding up to the full theorem. I must add that in the following, all three
main assumptions (i’), (ii) and (iii) of central theorem hold, but I will ex-
plicitely mention when they are used. Assume the result in (a) holds (given
the assumptions in the theorem, that is), which is a well-known result for
ordinary differential equations, as noted by Wormald (1995), see for instance
Hurewiz (1958, p.32, theorem 11 and 12). As a last remark before T start
the proof, I need to say that at first, I assume a = 1 and [ = 1 for that
matter.

A.1.1 Transformation to Martingale

Before I can start, the following claim - albeit it is almost trivial - is needed.
Claim A.1l. Let each (s,z) € R? with P(Ys, = 2zn) # 0 for some sn =
0,1,2,...,m(n) in D, then (%,%) € D for each 0 < k < w(n) and
0 <t <m(n)—w(n), where w(n) as in assumption (i’) and m(n) as in the
general assumptions.

Proof. Let 0 < k < w(n) and 0 < ¢t < m(n) — w(n). Take s = % and
z = % Notice that sn = ¢t + k < m(n) — w(n) + w(n) = m(n). Then
P(Yiir = Yiyr) # 0 trivially, hence (%, M) € D on the whole space (i.e.

n

for each w fixed). O]
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One can aruge that the assumptions in this claim are largely overdone.
I still use them, because it is used in the original proof of the main theorem
(Wormald, 1995) and since it will become handy when getting deeper in the
proof. Now, it is time to state the first lemma.

Lemma A.1. Assume that, always,

Vw

Y -Y; < ="
| t+k+1 t-‘rk‘ — )\QIOg(n)

for all k (I call this assumption (al)) and each (s,z) € R? with P(Yy, =
zn) # 0 for some sn=0,1,2,...,m(n) is in D (I call this assumption (a2))
and 0 <t <m —w. Then there exists a function g(n) = o(1) such that

t Y,
My =Yoo = ¥~k (£,35) = ky(n)
n' n
is a sumpermartingale with respect to the o-algebra’s generated by Hy, ..., Hyiyp,.
Notice that the map w — f (%, @) is H;-measurable (see also claim

2.1), which will be used in the proof of this lemma. Last remark on the
lemma, redefining F; = o(Hyy;) would fit the definition of martingales,
however it would make one lose a feeling of what is actually being using.

Proof. First, I show that, for 0 < k < w

t+k Y
EYitk+1 — Yigr|Hevr] = f <n’ tn+k> +o(1)

—f <t, Yt) +o(1). (A1)

n n

The first equality follows directly from assumption (ii). For the second
equality, notice that k = o(n) (which trivially holds) as k < w < @ and
A — 00 as n — oo. Therefore,

t+k ¢

n n

=o0(1).

Moreover, by the assumption in Lemma A.1, one gets

_Vw
A2\/log(n)

n2/3n1/3

S -
A\7/2, /log(n)
n

T2 log(n)

[Yirr — Vi < K

= o(n),
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since A — 0o as n — oo (thus also A\7/2,/log(n) — oo). Without further

ado, it must now hold that:

Yigr Yo
n n

=o0(1)

and thus, by assumption (iii) - that f is Lipschitz-continous on D!,

’f(t—&-k”m> f(t7Y;5>
n n n' n

Thus indeed, equation (A.1) holds.

This finishes the first part. In the second part, I prove that My is
indeed a supermartingale. Notice, at first, that the existence of a function
g(n) = o(1) follows directly from part one of this proof, as g(n) can be taken
such that

g(n) = max {‘E[YHICH — Yok Heyk] = f <t Yt) ‘}

)
0<k<w(n) n n

Secondly, it follows that

B[l Hisd] = B [Yionsa = ¥i— (64 0f (£ ) = 6+ Do) | i

=E [Yt+k+1 - Yt+k’Ht+k} + Y — Y
t 5

~ k4 0f (13 = e glo)

t Y,
<Y —-Yi—kf (n’ 7;) —kg(n)
:Mkrv

hence M} is a super-martingale. The second equality here holds because

Y:, Yiig and f (% ﬁ) are H;p-measurable? and the inequality follows from

’'n

part one of the proof and the choice of g(n). This shows the lemma. O

The choice of g(n) here is very helpfull in a later part of the proof. Of
course, chosing

g'(n) = piBX, {E[Y;f+k+1 — Yirn|Herr) — f (;7 ?)}
would suffice in the proof of this lemma. The particular g(n) - as in the
proof of the lemma - has two nice properties, which is the reason for chosing
it here already: it is positive and it also lowerbounds E[Y; k11— Yy k| Hyogl-
This last property guarantees that one can also generate a submartingale
that looks a lot like the supermartingale My, which happens in lemma A.3.

!That these elements are indeed in D follows from claim A.1
2This is made more specific by claim 2.1
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A.1.2 Azuma’s inequality

The statements on Azum’as lemma are identical to the proof of theorem 3.1.

A.1.3 Concentration of Y;,, and Y}

Now that Azuma’s lemma is derived and I have shown that a variation
on assumption (i’), (ii) and (iii) implicitly transform differences in Y; into
a martingale through a ‘clever’ trick, I can start showing concentration of
Y;. To do so, I state the following lemma - something that follows almost
immediately from Azuma’s lemma.

Within, conditional probability is used - which is not the case for Azuma’s
lemma. However, H; needs to be ‘known’ for the creation of the martingale
Moy, My, ..., M, as it is a martingale with respect to Hy, Hyyq, ..., Hiqop.
From this point on, I look at the space conditioned on the history up to
time ¢; the space conditioned on H;.

Lemma A.2. The assumptions of lemma A.1 hold. My, M, ..., M, as in
the proof of lemma A.1, then

tY; CO\[UW
P{Yipw - Yi—wf|—,— ) 2w
< trw — Yt f<n n) g(n) + rg ‘ (A2)
< exp(—?%)
for each v > 0 and some Cy > 0.

Proof. This proof first shows that the supermartingale My, My, ..., M, suffies
the assumptions in Azuma’s lemma and then shows the actual result in the
lemma. To do so, notice that

| M1 — My| =

t Y,
Yitkt1 =Yg — f (n’ t) —g(n)

tY;
< |Yigry1 — Yt+k|+‘f< nt> +g(n)

< A?\/\{OET(”) + ‘f (;f) +9(n)

for each k € {0,1,...,w — 1}, which follows from the definition of M} and
because of assumption (al) in lemma A.1. Furthermore, by assumption (i’),

it is known that
VI N /log(n) _
A2y/log(n) — A2y/log(n)

Since ’E[Yt+k+1 — Y| Hevr) — f (t Yt)’ = 0(1) by the proof in lemma A.1.

n’n
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By choice of g(n) = o(1), it thus follows that?

() o) =

for some Cy > 1. Hence, one can deduce that

Cor/w
A2, /log(n)’

or in words that the super-martingale differences are bounded above uni-
formly over Kk =0,1,...,w — 1. Last, one must see that

| M1 — My| <

E[Mo] = E[Y; = Y; — 0 f(3.3}) = 0-g(n)] = 0.

This concludes part one of this proof, as the assumptions in lemma 3.2 are
met.
Now take ¢ =~ _ and o = vV 2w. From lemma 3.2 we get that

Ay/log(n)
o?
P(M,, > ac|H;) < exp (_Qw>

which is equivalent to

P (M > 2w J%’Ht> < exp <—;j02w) = exp(—7?).

To finish the proof, notice that My, = Yiyo — Y: — wf (L, ) wg(n), hence

P(My > ac) =P (YVipw — Vi —wf(Z, %) > wyg(n) + aclHy) .
O

There are a few things left to do to derive at a main result on con-
centration. First, I state another lemma which tells something about the
concentration of Y; 1, —Y; —wf(; t Yt)

Lemma A.3. Suppose again all assumptions in lemma A.1 hold. Then

P ([Yirw = Vi = wf(L, )] = w(g(n) + 3)|H;) = o(n™)

3The particular choice of Cy is not very important, as it is just a constant, while the
lemma says something that holds for every v. Moreover, it holds because by the statement
above, Y% __ s not in o(1).

A2, /log(n)
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w(n )

Proof. The first part of this proof creates a submartingale (K] k) Here,

I use the particular choice of g(n). Define
Ky =Y, — Y — kf (L, X)) + kg(n).
This is a submartingale. To see so, notice that

E(Kyt1|Hern] = EYVisnt1 — Yook Hewr) — (b + 1) f(L,2) + (k + 1)g(n)
> Yigr — Vi — kf(L,2) + kg(n),

because —g(n) < E[Y;ip+1 — Yir|Hepr] — f(L,2) < g(n) by definition of
g(n). Therefore E[Y; j11 — Yiyr|Hirr] > f(L, Y‘) g(n). This finishes part
one of the proof.

Now, it follows that — K}, is a supermartingale. To see that the differences
are bounded by the same bound as for the supermartingale (M,)¥_,, notice
that

| = Kip1 + K| = |Kis1 — Ki| < Yigngr — Yo — f(£,22) + g(n))
< |Yighs1 — Yt+k‘+|f(t Yt)*g(nﬂ

th— n)l.
< e ) o)

By the proof of lemme A.2, this is bounded above by*

(Co — DyVw
A2,/log(n)

C
= K + K| < —C0V®

~ A%2y/log(n)

By lemma 3.2 it follows, taking o = vv/2w and ¢ = —CovW_ hath

A24/log(n)
P(K, < —ac|H;) = P(—K,, > ac|H;) < P(—K,, > ac|H;) < exp(—?).

(5,35 —g(n)] <

hence

This equivalent to
P (YHw Y, —wf %, %) +wg(n) < —ac |Ht) < exp(—7?).
And clearly, it holds that

P(Yerw = Ve +wf(f,35) < —wg(n) — aclHy) < exp(—?)

4Here, it is possible to redefine the Cp in lemma A.2.
5See, for instance, lemma A.2, or its proof.
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Which implies that also:

P(|Yipw — Vi + wf(L, 1) > wg(n) + ac/H;) < 2exp(—7?).

log(n) then

Now, the proof is almost finished. Take v = A Cor3

22

A?log(n _
exp(—%) = exp (=235 ) = expliog(n 1))
0

22
1

hence exp(—v?) = (5)@ Because A — 0o as n — 00, one also gets A2 — oo

as n — 00, so indeed exp(—v2) = o(n~!). I can thus conclude that, indeed,

P(|Yerw — Ye — wf (5, 35| 2 wlg(n) + 3)|He) = o(n™),

because by the choice of +, it holds that

Covw _w
ac-’yf NEORDS

This finishes the proof. O

A.1.4 Generalizing the assumptions

Thus far, all proofs rest on one main assuption (al): that is |Yiigp+1 —
Yi1k| is bounded for all k. However, this is not in line with assumption (i’)
of the main theorem. Therefore, I have to show that the lemma’s above,
mainly lemma A.2 and A.3, all hold even while assuming something over all
“relevant k7 (Wormald, 1995, p. 1222).

This - I believe - comes down to very ‘basic’ probability theory. One can
condition the events before on the k’s for which assumption (al) and then
look at the probability that a k is indeed such a k. It turns out this does not
influence the asymptotic order of the probability I am looking for, which is
shown in the lemma below.

Lemma A.4. Given assumption (i’), i.e.

P(ml—m >

Vw -3
—————|H; | =0o(n™?),
A2y/log(n ‘ ! (™)
for each t < m, always on y, it (still) holds that, for t < m —w,

P(|Yirw — Y —wf (£, 32)] > w(g(n) + 3)|Hi) = o(n™").

Proof. First, let me define a few sets for readability. For 0 < k < w and
t < m — w, write

By = {W Yk — Yiqa| <
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and B = ﬂ}é’;ol By,. Last, write

A= {w: Vo = Ye = wf (5,30 = wlgn) + 5)}

Look at B¢, the complement of B, and notice that certainly P(B¢|H;) =
o(n=?), because

P(BC|H,) < Z]P’ B¢|Hy)

and P(B{|H;) = o(n~3) by definition. Moreover, w < 2 T hence one gets
that indeed, P(B¢|H;) = o(n~2). This also shows that P(B|H;) = 1—o(n~2).

Now, write Py, () = P(-|H;) for simplicity (and notice that this, on itself,
is a probability measure)6. By a simple property of probability measures
(for instance proven by Jacob and Protter (2004, see theorem 3.4, p. 17)),
it holds that

Pr,(A) = Pu, (A|B)Pu,(B) + P, (A|B°)Pr, (B°)

and since Py, (A|B€) < 1 (by the most trivial upperbound for the probability
measure) and Pg, (A|B) = o(n™!) by lemma A.3, we have that

Py, (A) = o(n™1)(1 = o(n™?)) + o(n"?).
This shows exactly that P(A|H;) = o(n™1). O
Hereby, I can end the section on generalizing assumption (al). This

leaves the option to dive into the next part of the proof, where the concen-
tration of Yy, — Y; is converted to the concentration of Y; — nz(%)

A.1.5 Concentration of ¥; — nz(%)

The concentration of Y; —nz(%) - that what the theorem is all about - I show
in this section. I use a proof by induction, and to do so, I break this part
down into three lemma’s, of which I first state the ‘biggest’, but I prove this
last. The reason lies in the definitions and assumptions within the biggest
lemma.

Lemma A.5. Define k; = iw fori=0,1,... 149, with ig = min{[ 2], [ 2|},
where m,w, o as in the assumptions of the theorem ((i’), (ii), (iii)). Then,
for some function Ay = A1(n) = 0o as n — oo, it holds that

P(|Yy, — 2(5)n| = By) = o(}). (A.3)

with

o ) iy

for some B > 0.

6See lemma 2.3
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I will prove this lemma by induction. To do so, let me introduce some
definitions for readability.

_ ki
A=Y, — Z(W)n
AQ = Yki+1 — Yki
ki ki
Az = z(7)n — 2(=H)n
Now that I have introduced the framework for inductive proof, it is time

to state two other lemma’s that will help me prove main lemma (A.5) of
this section.

Lemma A.6. There exists a function A\1(n) with Ay — 00 as n — 0o, such
that Ly
()
n’' n A1
with probability 1 — o(n™1).

Proof. Assume the induction hypothesis, equation A.3. Notice that g(n) —
0 as n — oo by choice of g(n) = o(1), because the latter implies that

limy, a0 @ = 0. This makes the choice of A\; possible, as letting it be
defined ,
A(n) = ——,
g(n) + 5

where \ as before. This grows to oo because g(n) — 0 and % — 0asn — 0.
Now see that

k‘i Y. w
P (s () |2 50)

=P ([Vioy = Vi — wf (5, 75)] > wig(n) + })|Hy,)

Taking t = k;, and noticing that k; 11 —k; = w, one gets that this is equivalent
to
P (Yirw = Yi = wf(£,2)] = wlg(n) + )| H)

By lemma A.3 (because t = k; < ipw < m) this is o(n™1). Lemma 2.5 tells
that, because Y = o(n~!) implies that E[Y] = o(n™1!), the above also holds
in the whole probability space, not just conditioned on H;. This shows that

indeed,
. Ve
Ay —wf <k’kz>' <Y
n’' n A1

has probability 1 — o(n™1). O

Lemma A.7. Let z be a solution in (a), then

M3Hw(gﬂzo(f)
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Proof. By the most simple formula to calculate the first derivative (see for
instance Vuik et al. (2007, see theorem 3.2.1, p. 26)):

n

e OE

o(5)- = (5) -

because % = % for some constant C' > 0. This implies that

. C 2 2
s (3)12 5 =0 ().
7

This finishes the proof of this lemma.
A general approach would be to notice that, because z is continuously

differentiable (on the desired domain), there exists a z € [%, k’n—“} such that
() (3
) =

ki _ .
— 7+ = % by the Mean Value Theorem (Vuik et al., 2007).

b

2 (x

B3IS

s kiga
because again —*
Hence,

because f is lipschitz with constant L. This is, however, in case of the [!
norm lipschitz assumption, for the [*°, just take the max of the two. Next,
notice that

z2(x) — 2z (Z) = /; f(t, z(t))dt < (x — kl) max__ f(t, 2(t)),

n J tef0,0(n)n]

which is a value that f takes on the closed interval because it is continuous

by assumption® and notice too that x — % < 4 by choice of x. Hence,

"Or, in fact, it does not. It must be noted that z(z) is differentiable almost everywhere
(with respect to the lebesque measure, that is) because the D C R™! is open and f :
D — R is Lipschitz, see for instance Heinonen (2005, p. 18). This also offers the bound
for C; it is upperbounded by L, the lipschitz constant of f. Thus, under assumption that
f is analytic, the proof up to this point holds.

8Thus so is z(z). However, this bound seems to be quite abusive.
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indeed,

Z(i;)_z(kn)”(’fz) ~o(%)=0(Y).

where the exact bound depends on the assumption on f. ]

Now, it is time to prove lemma A.5, as all the building blocks are present
to do so.

Proof of lemma A.5. First, notice that z(0) = %, hence the induction hy-
pothesis (equation A.3) holds for n = 0. Second, it is helpful to see that

’A3+wf(%, Y )| = ‘A3+wz'(%) — w2 (5 4 wf(E

From lemma A.7 and the fact that z is a solution to (a) (i.e. that 2/(z) =
f(z,z(x)) on D), it is known that?

< 9o (3a(8) —uf (5. 2).

for some (constant) C' > 0. Now it is time to use - once more - the fact that
f is Lipschitz continuous. This implies that

(o) =1 ()| < 2

for some constant L > 0. Furthermore, the induction hypothesis (equation
A.3) offers that |V}, — 2(%)n| < B; with probability 1 — o(£). This shows
the following inequality holds

Y, B;
() s (28] 52
n
with probability 1 — o(£). Hence I can deduce that

kY, Bw? + BwB;
‘As-h f( T’Z)‘Sw nwla

)A3+wf( o)

Yy,
)_7

n

2(5

b

s\@

for n sufficiently large, with probability 1 — 0(%) and some B > 0 constant
(this is the part where I take B).
Now, let me move to the final part. To do so, notice that
A1+ Az + Ag] = [V, = 2(5)n + Vi, = Y, + 2(8)n — 2(8)n

ok

=[x

1+1 - (

9Here I use that & < o by choice of igp.
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Without further ado, lemma A.6 and A.7 offer the following upperbound!?

A1+ Ag + Ag] < |Ax] + [ Ag —wf (5,280 |+ 4 + wr (B, 20))

n’ n mon
SBi+E+Bw2+BU)Bi,
)\1 n
w  Buw? Bw + n)B;
+ —l—( )

A1 n n

= B

with probability at most (1 — o(%))(1 — o(%)) = 1 — o(*t}). This finishes
the proof, as it shows the induction hypothesis, equation A.3. O

As this lemma is proven, I am ready to show that - given assumption
(a2) - the theorem of Wormald holds. This is exactly what the lemma below
tells.

Lemma A.8. Given assumption (a2) and a =1, (b) in theorem 3.3 holds.

Proof. By lemma A.5, it is know that for ¢t = k; and i = 0,...,4 with ig
as before, (b) is satisfied almost surely, because Yy, — nz( %)| < B; almost
surely in £2,, because

P(|Yy, — 2(5)n| < B;) =1 —o(})

n
and i < 49 < n, hence
P(|Y, — z(%)n| < B;)=1-o0(1).

Furthermore, it is usefull to see that

Bi_ (1 w\( L (  Bu\ 1)
n \MB n Bw n Bw

as n — oo because w < "2/\/3, which implies that B; = o(n).

Last, it is known by (i’) that with high probability (1 — o(n™%)), the
changes in Y; between k; and k;y; are at most

wy\/w < n
A2y/log(n) — \2/7\/log(n)

|Yk - Yki| <

=o(n)

41
So indeed, almost surely,
Y= Z(%)n + O(”))

which finishes the proof of this lemma and - only assuming (a2) - almost the
proof of theorem 3.3. 0

10For a more heavy ‘calculation’, showing the last equality, see claim 3.3
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A.1.6 Final generalization

The final generalization - that the assumption on the points that D contains
is too strong - makes the proof complete. This shows that the full theorem
of Wormald (1995) holds. To see this, I present the following lemma.

Lemma A.9. Suppose assumption (a2) does not hold, then one still gets
(b) in theorem 3.3 for a = 1.

Proof. Take ¢ > 0 and define D’(¢€) as the set that contains all points (s, z) €
D that have at least € distance to the boundry of D, denoted as 0D, in the
z-direction, i.e.

D'(e) = {(s,2) € D : A(s,2) N D = (0},

where A.(s,z) = {(s,x) € D:z—€e <z < z+ ¢} Redefine ¢’ as o, but now
for D'.

Let n € N and take ¢ > L

\7/2, flog(n)
lemma A.5, one can add that (%, %) is in D’(e). Assuming (al) also
provides that

In the induction hypothesis of

— Y},

k3

1
= \7/2/log(n)

k; i . ks Y;
Moreover, =+ < %% < ¢/, hence indeed (%1, %1) does not leave D'(e),

41

5

n

given (al).

Moreover, the conditioning on relevant k& (i.e. conditioning on (al)), as
in lemma 77 gives the same probability, hence the result in that lemma
remains when not assuming (a2).

Last, notice that (0, X2) € D’(e) for some n large enough, because X2 = 2,
and D is open, hence the induction here and in lemma A.5 hold, even for
this D’(e).

Notice, furthermore, that e can be chosen as close to 0 as one wants (for
n large enough, that is), so one can get arbitrarily close to on (as o'n goes to
on as n grows)'l. One can conclude that (b) holds, even without assuming
(a2). O

The last thing that is left to be shown is that the proof works exactly
the same for a # 1. To see this, notice that the probability of

p ((j Ai) <3 P4,
i=1 =1

by basic probability law and thus the probability that any of the events
{1Yi(k;) — z(ki/n)n| > B;} occur (in I) is upperbounded by the sum of the

probability of either event occuring, hence by o(a;) in lemma A.5.

" This shows that, the theorem holds for 0 < ¢t < min{on, m} and not only for 0 < ¢ <
min{o'n, m}.

74



Appendix B

Python Code

B.1 Simple Model

import random

import matplotlib.pyplot as plt

from math import factorial , exp, log, gamma
import numpy as np

import seaborn as sns

def get_max_bound(n, c_range, C0):
ans_list = [0]xlen(c_-range)
for i in range(len(c_range)):
for 1 in range(int(c_-range[i]), int(nxc_range]|
i])):
if c_range[i]xx1/gamma(l + 1) > (COxlog(n)
% (1./3)*nx*x%(2./3))*exp(c_range[i])/n:
ans_list [i] =1
else:
break

return ans_list

def drop_ball(l, n):
]l [random.randint (0, n — 1)] +=1
return 1
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for i in x:
ans.append (float (¢)*xi /(gamma(i + 1))*xexp(—c)*
n)

return ans

def bound_probability (n, ¢, CO0):
N = 100

count_out = [0]«N

x = range(1l, int(cxn) + 1)

z = f(x, ¢, n)

lovvfar —][i — COxlog (n)*x(1./3)*(nxx(2./3)) for i
upper :][i + COxlog(n)**(1./3)*(n*xx(2./3)) for i

for i in range(N):
1 = [0]*n
for j in range(l, int(c*n) + 1):
1 = drop-ball(l, n)
print len (1)
for k in range(len(1l)):
if 1[k] > upper[k] or 1[k] < lower[k]:

count_out[i] += 1

return float (sum(count_out))/len(count_out)

def max_distribution(n, ¢, CO0):

m= [0]x100
for j in range(100):
1 = [0]*n
rtot = [0]*int (cx*n)

for i in range(1l, int(c*n)+1):
1 = drop_ball(l, n)

for i in range(0, len(1)):
rtot [1][1]] +=1

# finding the mazimum
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for i in range(len(rtot)):
if rtot[i] > m[j]:
mlj] =i

return m

def equiprobable(n, c, CO0):

sns.set(style="darkgrid”)
15 = ]

for j in range(100):
1 = [0]*n
rtot = [0]*int (cx*n)
for i in range(1l, int(c*n)+1):
1 = drop-ball(l, n)

for i in range(0, len(1)):
rtot [1[1]] +=1

1.5 .append(rtot [5])
plt.plot(rtot, ’ro’, alpha=0.3)

x = np.arange (0, 80, 0.2)
z = f(x, ¢, n)
z_lower = [i — COxlog(n)*x*(1./3)*nx*%x(2./3) for i
in z]
z_upper = [i + COxlog(n)=*x*(1./3)*n*x(2./3) for i
in z
]

plt.plot(x, z_lower)

plt.plot(x, z_upper)

plt.xlabel ("17)

plt.ylabel ("Number._of_bins_with_.l_balls”)
plt.axis ([0, 14, 0, 230])

plt .show ()

plt.ylabel ("Number._.of_observations”)
plt.xlabel (”Number_of_bins_with_5_balls”)
plt.hist (1.5)

plt .show ()
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def

def

if

plot_max (n, C0):
sns.set(style="darkgrid’)
for ¢ in [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,
5.5, 6]:
plt .plot ([¢]*100, max_distribution(n, ¢, C0),
'o’, alpha=0.1)

¢ = [0.5 + x/20. for x in range(2x55 + 1)]
bound = get_max_bound(n, c, CO0)
plt.xlabel(’c”)

plt.ylabel (’Observations._for.the_maximum’)
plt.plot(c, bound, ’'r’, label="Bound’)
plt.legend ()

plt .show ()

main () :

n = 1500

c =35

CO = 0.15

plot_max (n, CO)

# equiprobable(n, ¢, CO)

# plt.hist(maz_distribution(n, ¢, C0))
plt .show ()

__name__ =— ’__main__":
main ()

B.2 Different bin-size model

from math import log, exp, sqrt
import random

def

distribute_balls (beginds, n, ¢, max_time, time=
False):
bins = beginds [:]
total = 0
t =20
while t < max_time:
t =1
for i in range(len(bins)):
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def

def

x = random.random ()

if x < float(bins[i])/(2%c*n):
bins [i] 4+= 2xc
total += 2xc

if not time:
return bins
else:
return bins, time

bin_i_distribution (beginds, n, ¢, max_time,

rel_ num, i):

777 returns the amounts of balls in bin i, given

begin distribution (beginds), n, ¢ and the
number of realisations

(rel_num)”””

bin_i = []

times = []

t =20

if i > n:
return "Range.Error.in.’bin_i_distribution ’:.i

.=.{0}_>_n” .format (i)

for j in range(rel.num):
b, t = distribute_balls(beginds, n, c,
max_time, time=True)
bin_i.append(b[i])
times.append (t)

return bin_i, t

distribution (beginds, n, ¢, rel.num, xxoptions):

" returns for each element in which (mazx, min,
range, zero) the given wvalues in a list of
rel_num realisations.

Give type and it returns maz for maxr, min for min,
range for range and maz, min, range for all (
or leaving it out).”””

maxs = |[]

mins = []

ranges = |[]

for j in range(rel_num):
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def

def

def

def

def

max_time = log(2)x*n

dist = distribute_balls(beginds, n, c,
max_time, time=False)

maxs . append (max( dist ) )

mins . append (min( dist))

ranges .append (max(dist) — min(dist))

if options.get(’type’) = ’max’:
return maxs

if options.get(’type’) = ’'min’
return mins

if options.get(’type’) = ’'range’:
return ranges

if options.get(’type’) = ’all’:

return maxs, mins, ranges

return maxs, mins, ranges

equiprobable_begin_ds(n, c¢):
return [float(c)]*n

special _ds(n, c¢):

over = cxn — (c*n/4. + c*xn/8. 4+ cxn/16. + c*n/32.
+ cxn/64. + cxn/128. + cxn/264. + c*n/512.)

return [cxn/4., c*n/8., cxn/16., cxn/32., c*n/64.,
cxn/128., cxn/264., cxn/512.] + [over/(n — 8)
J«(n - 8)

special_ds_2(n, c¢):

over = cxn — (cxn/2.)
return [cxn /8., c*n/8., cxn /8., c¢xn/8.] + [over/(n
— 4)]x(n — 4)

bound_constant (c¢):
return cxx(0.8) /2

sol(n, ¢, 1):
return special_ds_2(n, c)[i]*2

80



def sol max(n, ¢, I):
min_val = cx*n
for i in I:
if special ds_2(n, ¢)[i] < min_val:
min_val = special_ds_2(n, c¢)[i]

return min_valx*2

def lamb(n):
return 1/(nxx0.3)
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