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Chapter 1

Introduction

“International trade has long been concerned with aggregated patterns -
what and how much countries trade with each others.” (Armenter & Koren,
2014, p. 2127) Trade from one country to any other can be categorized by
the country to which it is traded and of what type it is. This “categorical
nature” of the data is important, because “the number of observations is
low relative to the number of possible classifications” (Armenter & Koren,
2014, p. 2128). I model trade from on country to others by “the assignment
of observations to categories as balls falling into bins” (Armenter & Koren,
2014, p. 2128). The observation is a “discrete unit” of trade - the ball - and is
thrown into one of the bins, which represent “mutually exclusive categories”
(Armenter & Koren, 2014, p. 2128). The probability of a ball falling into a
bin is determined only by the size of the bin and the probability of a ball
hitting a particular trade type is the same over all countries. The model is
usefull, because it can be used to indentify theories when data is sparse and
tells “which statistics are driven by the sparsity [of the data ...] and those
that are not - and require a model to posit the correct joint distribution
across categories in order to reproduce the fact” (Armenter & Koren, 2014,
p. 2150).

However, the balls and bins model is not used just for modelling trade.
The model can be seen as “the classical methafor for the multinomal dis-
tribution” (Corrado, 2011) and it can be used for a goodness-of-fit test as
described by Ogay (2016, p. 25). This test is based on the range of the
multinomial distribution, which can be approximated by the range in the
balls and bins model1 (Ogay, 2016, p. 39).

In chapter 3, I present a theorem by Wormald (1997) which I will apply
on the margins in the balls and bins model. The theorem itself is quite
general for random processes linked to random graph processes, and es-
tablishes “a connection between [random variables defined on the process]

1Here, the range is the di↵erence between the maximum amount of balls and the
minimum amount of balls in any bin.
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and an associated di↵erential equation or system of di↵erential equations”
(Wormald, 1997, p. 3), of which the solutions approximate the actual value
of the random variables. The theorem is for some “sequence of random pro-
cesses indexed by n”(Wormald, 1997, p.3) (in this thesis n is the amount of
bins), for which one wants to know what happens when n ! 1, and it turns
out that, given some particular paramters, the random variables are often
“sharply concentrated at almost any given time” (Wormald, 1995, p.1217)
near the solutions of the di↵erential equation(s).

First, I prove the general theorem as presented by Wormald (1997, p.35,
theorem 5.1), which was written down compact and, to my mind, incom-
plete. I o↵er a version of the proof which shows percise bounds (which I use
for the applications) and proves all statements made by Wormald. More-
over, I update and replace some assumptions in the general version of the
theorem, and show that one assumption in original version of the theorem
(Wormald, 1995, p. 1219, theorem 1, 2) can be left out completely. The
complete proof is the most important part of the thesis.

Second, in chapter 4, I present two models that are close to the balls and
bins model. The connection to this model is new, as the theorem comes from
theory on random graph processes. The first model assumes that the bin-
sizes are all equal and the random variables on this process are the amount
of bins with l balls after t balls are thrown. The second model is a slight
modification of the balls and bins model, by changing the probability that
a particular bin is hit with some amount of balls at each discrete step in
time from t to t+ 1 to something relative to the amount of balls in the bin
at time t. The random variables in this model are the amount of balls in
particular bins. The advantage of this model is that it can be used for any
(starting) distribution of bin sizes.

For both models, I show that the random variables meet the assumptions
of Wormald’s general theorem (the one as in (Wormald, 1997)) and then
describe the maximum, minimum and range distribution in terms of these
variables. The results obtained are usefull when the amount of balls thrown
is relatively small compared to the number of bins and when the number of
bins is quite large, because in those cases the variables are concentrated close
enough to the solutions in the di↵erential equations with high probability.

Last, I o↵er future research possibilities that can be used to o↵er better
bounds for the concentration of the random variables, because it seems that
these could be found by either slightly modifying the models or the proof of
Wormald’s theorem.
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Chapter 2

Mathematical Framework

This chapter lays down the most important definitions and theorems needed
to understand the work presented later-on. What is displayed below are as-
sumptions and definitions that I use, as to remove any ambiguity. For spe-
cific proofs and theorems, using the same definitions, I refer to the original
works (Wormald, 1995, and 1997).

2.1 Real Analysis

Real Analysis and probability theory are closely linked. To truly understand
probability, measure theory is needed . Therefore, I show the broader defini-
tions (of measure and measurable functions) before showing the probabilistic
ones (probability measure and random variable respectively).

Definition 2.1. A function f : D ! R, D ⇢ Rn is called lipschitz (contiu-
ous) on D in l1 with contstant L > 0 if

|f(x
1

, . . . , xn)� f(y
1

, . . . , yn)|  L max
1in

|xi � yi|

for all (x
1

, . . . , xn), (y1, . . . , yn) 2 D.

There is another definition of a function being lipschitz continuous, but
in the l1 space. The results in theorem 3.3 and 3.1 are the same for both. For
the l1 norm, change Lmax

1in |xi� yi| to L
Pn

i=1

|xi� yi| in the definition
above.

For the following definitions, assume that ⌦ is some sample space.

Definition 2.2. A collection ⌃ of subsets of ⌦ is called �-algebra if

• ⌦ 2 ⌃

• for every A 2 ⌃, ⌦ \A 2 ⌃.

• for every A
1

, . . . , An, . . . 2 ⌃,
S1

n=1

An 2 ⌃.
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There also exist �-algebra’s generated by a set B ⇢ 2⌦ (written as �(B)),
which is the smallest �-algebra containing B, where 2⌦ is the powerset of
⌦ (which is, itself, a �-algebra when ⌦ is countable). By abuse of notation,
sometimes �(C) is written as the �-algebra generated by a set C ⇢ ⌦. What
is meant is the �-algebra generated by {C}.

Definition 2.3. Take ⌃ a �-algebra1. A function µ : ⌃ ! [0,1] is called a
measure if

• for the emptyset ; 2 ⌃, µ(;) = 0,

• for all E
1

, . . . , En, . . . 2 ⌃ pairwise disjoint,

µ

 1
[

n=1

En

!

=
1
X

n=1

µ(En)

Definition 2.4. Let ⌦, E be some sets and ⌃,⇤ �-algebra’s on ⌦, E re-
spectively. A function f : ⌦ ! E is called measurable if for every B 2 ⇤,
f�1(B) = {x 2 ⌦ : f(x) 2 B} 2 ⌃.

Next to the abstract definitions above, this thesis often uses asymptotics,
for which the conventional big- and small O-notation is used.

Definition 2.5. Let f : N ! R be some function. Define O(f(n)) as the
set that contains all functions g : N ! R such that there exists some C > 0
with

|g(n)|  C|f(n)|,

and, if there exists some n
0

such that f(n) 6= 0 for all n � n
0

, define o(f(n))
as the set that contains all functions g : N ! R such that

lim
n!1

g(n)

f(n)
= 0

Clearly, the notion of g being o(f(n)) is stronger than that of O(f(n)),
hence o(f(n)) ⇢ O(f(n)). Often I write g(n) = o(f(n)) for g(n) 2 o(f(n)),
as does Wormald (1995, p. 1219). Moreover, the notation of O and o is used
for n ! 1 and uniform over all other variables for which a function may be
defined in this thesis.

2.2 Probability Theory

In probability theory, often the ’universe’ worked in is denoted by the set
⌦, wich does not need to have any particular structure (Jacob & Protter,
2004, p. 3, 7). Intuitively, this is “the state space, [...] the set of all possible
outcomes” (Jacob & Protter, 2004, p. 3)

1Over ⌦, that is.
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Definition 2.6. Let ⌃ be some �-algebra on ⌦. The measure P : ⌃ ! [0, 1]
is a probability measure if P(⌦) = 1.

Often, (⌦,⌃,P) is called a probability triplet or probability space. Here,
⌃ is a �-algebra on ⌦ and P a probability measure on ⌃.

Definition 2.7. A set A ⇢ ⌦ is said to happen almost surely (a.s.) if
P(⌦ \A) = 0

Lemma 2.1. Let (⌦,⌃,P) be some probability triplet and B 2 ⌃ such that
P(B) > 0. Define the conditional probability PB : ⌃ ! [0, 1] by

PB(A) =
P(A \B)

P(B)
,

then PB is a well-defined probability measure.

Instead of PB(A), most of the time the notation P(A|B) is used.

Proof. Because ⌃ is a �-algebra, it is closed under (countable) intersections.
Since 1 � P(B) > 0, and because A \ B ⇢ B thus (by monotonicity of the
probability measure) P(A \B)  P(B), it must hold that

0  P(A \B)

P(B)
 1,

hence PB maps into [0, 1]. It is clear that PB(⌦) = 1 and PB(;) = 0 because
P is a probability measure.

Last, take {Ai}1i=1

a pairwise disjoint family of sets in ⌃. Clearly, {Ai \
B}1i=1

is also a pairwise disjoing family of sets in ⌃, hence indeed

PB

 1
[

i=1

Ai

!

=
1

P(B)
P
 1
[

i=1

(Ai \B)

!

=
1

P(B)

1
X

i=1

P(Ai \B) =
1
X

i=1

PB(Ai).

Thus PB is a well-defined probability measure on ⌦ with respect to ⌃.

Definition 2.8. Let (⌦,⌃,P) be a probability triplet and I an index set.
The set of evenst {Ai}ni=1

with Ai 2 ⌃ for each i is said to be (mutually)
independent if for every I ⇢ {1, 2, . . . , n}

P
 

[

i2I
Ai

!

=
Y

i2I
P(Ai)

Definition 2.9. Let (⌦,⌃,P) be some probability triplet and (E,⇤) some
state space. A random variable (r.v.) X is a measurable function X : ⌦ ! E
(with repsect to ⌃,⇤).
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This definition of a random variable is su�cient to calculate P({! :
X(!) 2 B}) for all B 2 ⇤, because these sets are elements of ⌃, and P is
only defined on ⌃.

For each countable state-space, there exists some probability measure
defined on the whole �-algebra 2⌦ which is ”characterized by its values on
the axioms: p! = P({!}),! 2 ⌦” (Jacob & Protter, 2004, p. 22).

In the following, all random variables map into R and the �-algebra on
R is taken to be the Borel set B, which is the �-algebra generated by the
open subsets of R.

With the notion of probability triplets and random variables at hand,
I can start defining the expected value. For this, one needs to understand
the notion of a simple random variable. X : ⌦ ! R is said to be simple2 if
X =

Pn
i=1

ai1Ai with ai 2 R and Ai 2 ⌃ such that {Ai}ni=1

is a partition of
⌦.

Definition 2.10. The expected value of a simple random variable X : ⌦ !
R is defined by

E[X] =
n
X

i=1

aiP(Ai)

Definition 2.11. Let X : ⌦ ! R be a positive random variable (that is,
X(!) � 0 for all ! 2 ⌦). Then the expected value of X is defined by

E[X] = sup {E[Y ] : Y  X and Y a simple r.v.}

Notice that it is possible to have E[X] = 1. For general definition of
expected values, one can writeX = X+�X�, whereX+(!) = max(0, X(!))
and X�(!) = �min(0, X(!)). These are both positive random variables
(Jacob & Protter, 2004, p. 52).

Definition 2.12. A (general) random variable has finite expected value if
E[X+] < 1 and E[X�] < 1 and one writes

E[X] = E[X+]� E[X�].

If either E[X+] = 1 or E[X�] = 1 (but not both), then E[X] is still defined
(as 1 or �1 respectively). If E[X+] = 1 and E[X�] = 1 then X admits
no expected value.

Much general properties of this mapping from the space that contains all
integrable random variables (on (⌦,⌃,P)) is known, such as that it is linear,
monotone, monotone convergence, Fatou’s lemma, Dominated Convergence,
etc. I leave these theorems out of this thesis, but they can be found in for
instance (Jacob & Protter, 2004, pp. 52-53) and (Rosenthal, 2006, pp.46-49,
103, 104). At any occurence of the use of a specific theorem, I refer to it in
this thesis.

21A : ⌦ ! [0, 1] is the identy function on subsets A ⇢ ⌦, meaning that 1A(!) = 1 if
! 2 A and 1A(!) = 0 if ! 2 ⌦ \A.
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2.2.1 Conditional Expectation

For the notion of conditional expectation, one must understand the concept
of the L1- and L1-space. Given a probability triplet (⌦,⌃,P), L1(⌦,⌃,P) is
the space with all (real) random variables with finite expected value of the
absolute value of the variables. The space L1(⌦,⌃,P) is the set containing all
equivalence classes of real random variables where each class contains almost
surely equal random variables3 that are in L1. Because almost surely equal
random variables have the same expected value, the space L1 is used. By
abuse of notation, one often writes “take Y 2 L1(⌦,⌃,P)”. What is meant
is: take a random variable Y in the equivalence class defined by Y in L1.
(Jacob & Protter, 2004, p. 53)

Theorem 2.1. Let Y 2 L1(⌦,⌃,P) and let G be a sub-�-algebra of ⌃. There
exists a unique element E[Y |G] of L1(⌦,G,P) such that

E[Y X] = E[E[Y |G]X],

for all bounded G-measurable X, which satisfies

• If Y � 0, then E[Y |G] � 0

• the map Y 7! E[Y |G] is linear.

The theorem above defines conditional expectation (on sub-�-algebra’s)
and comes right from (Jacob & Protter, 2004, see theorem 23.4, p.202),
where a proof can also be found. Furthermore, this conditional expectation
has most of the same properties of the expected value, under almost sure
equality, such as dominated convergence, Fatou’s lemma, monotone conver-
gence, etc.

Definition 2.13. Let X : ⌦ ! R be a general random variable and Y 2
L1(⌦,⌃,P). The conditional expectation E[Y |X] is defined E[Y |�(X)], where
�(X) is the �-algebra generated by X, which is defined4 by

�(X) =
�

A ⇢ ⌦ : X�1(B) = A for some B 2 B
 

2.2.2 Martingales

For the proof of the theorem of Wormald (1995), a martingale is created. Fix
some probability triplet (⌦,⌃,P). A martingale is defined on an increasing5

sequence of sub-�-algebras (Fn)1n=0

of ⌃. This is called a filtration.

3Two random variables X,Y are said to be almost equal if P({w : X(!) 6= Y (!)}) = 0
4That this is indeed a �-algebra see theorem 8.1 by Jacob and Protter (2004). Moreover,

it can be extended to random variables X that map in Rn with respect to the borel-set
Bn.

5Meaning that Fn ⇢ Fn+1

, for each n � 0.
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Definition 2.14. Let T be some countable set, (⌦,⌃,P) a probability triplet
and (S,⇤) some measurable state-space. The function

X : T ⇥ ⌦ ! S

such that X(t,!) : ⌦ ! S is, for each t 2 T , a random variable on the prob-
ability triplet is called a discrete-time random process. Often, it is written
as {Xt}t2T .

If T is countable, it is possible to look at the stochastic process X as the
function

X : ⌦ ! S1,

where Xt : ⌦ ! S is a random varialbe for each t 2 T . If (S1,⇤1) is some
measurable state-space, then this itself defines a random variable.

Definition 2.15. A sequence of random variables {Xn}1n=0

(or a discrte-
time random process) is called a martingale if

(i) E[|Xn|] < 1, for all n � 0.

(ii) Xn is Fn-measurable for each n � 0 and

(iii) E[Xn|Fm] = Xm, for all 0  m  n

This definition follows the one by Jacob and Protter (2004, p. 211).
Moreover, if the equality in (iii) in the definition above is changed to ,
{Xn}1n=0

is called a super-martingale and if it is changed to �, {Xn}1n=0

is
called a sub-martingale.

2.2.3 Specifications and Conditional Probability

Most of the following lemma’s and claims are very simple corollaries of
standard theorems or definitions and therefore left out of the main text
in an attempt to minimize boredom of the reader.

Definition 2.16. Let {Yt}t�0

be a discrete time random process with t 2
N�0

defined on some probability triplet (⌦,⌃,P). The history of {Yt}t�0

is
defined as

Ht = �(Xs, s  t) = �

 

t
[

s=0

{A ⇢ ⌦ : Xs(B) 2 ⌃ for some B 2 B}
!

Notice that Ht is a filtration, because Ht ⇢ Ht+1

.

Claim 2.1. Take n 2 N and let {Yt}t�0

be some discrete time random
process with t 2 N�0

and Ht the history of the process. Let f : R2 ! R be

10



a lipschitz continuous function and define h as the function h : R ! R that
maps x 7! f

�

t
n ,

x
n

�

, then

E[h(Yt)|Ht+j ] = h(Yt),

for each j 2 N�0

. .

Proof. Take i 2 N�0

. Notice that since f is a continous map by assumption
and x 7! x

n is also continous in x and for each n, it must hold that h(x) is
continous.

Furthermore, Yt is Ht-measurable and since Ht ⇢ Ht+1

. . . ⇢ Ht+i it also
holds that Yt isHt+i-measurable. Take U 2 R open. Then h�1(U) is open by
continuity of h and by measurability of Yt, Y

�1

t (h�1(U)) is Ht+i-measurable.
In other words, h(Yt) is Ht+i-measurable and therefore,

E[h(Yt)|Ht+i] = h(Yt)

by for instance theorem 25.3 in Probability Essentials (Jacob & Protter,
2004, p. 204).

Notice that claim 2.1 is a ‘specification’ of a general composition of two
measurable functions. This is shown in, for instance and although through
an exercise, Principles of Real Analysis (Aliprantis & Burkinshaw, 1998).
As a last step, the proof uses a characterization of conditional expectation
which holds intuitively and luckely can be proven.

The following lemma I used is not written down this particular way most
of the time, but it is - to some extend - just the generalised Markov theorem.

Lemma 2.2. Let Y be a random variable, f : R ! R be a non-negative,
non-decreasing borel-measurable function and a � 0, then:

P(Y > a)  E[f(Y )]

f(a)

Proof. Since f is non-decreasing, it is clear that Y > a implies that f(Y ) �
f(a). Thus, by monotonicity of P, it must hold that6 P(Y > a)  P(f(Y ) �
f(a)). Now, notice that f � Y : ⌦ ! R is a non-negative random variable
(as f is borel-measurable, see for one the proof of claim 2.1) and f(a) � 0.

The remaining part follows from the (simplest) Markov-inequality, which
I will proof for the fun of it. Since f(Y ) is non-negative, one can see that
f(a)1{f(Y )�f(a)}  f(Y ). Now, by monotonicity of the expected value, it
holds that:

f(a)P(f(Y ) � f(a)) = E[f(a)1{f(Y )�f(a)}]  E[f(Y )]

which proves the lemma.

6Although equality is not necesarry for this proof, it can be easily shown (for, of course,
� instead of >)
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The following claim is fundamental for the proof of Azuma’s Lemma,
where the proof is left out. I add it here for convenience, since I, for one, do
not believe it to be trivial enough to be left out completely.

Claim 2.2. For each a � 0 and |x|  1 (in R), it holds that

eax  cosh(a) + x sinh(a)

Proof. The map y 7! eay is convex and because |x|  1, 1+x
2

2 [0, 1] and
thus 1� 1+x

2

= 1�x
2

, which gives us that

eax = exp

✓

a
1 + x

2
� a

1� x

2

◆

 1 + x

2
exp(a) +

1� x

2
exp(�a)

where the last term equals cosh(a) + x sinh(a)

For the proof, mainly for lemma 3.2 and 3.4 it is needed to look at
conditional probability on a sub-�-algebra. I o↵er the following definition.
To see that such a probability measure is well defined, I o↵er lemma 2.3.

Definition 2.17. Let (⌦,⌃,P) be a probability triplet and let G ⇢ ⌃ some
sub-�-algebra. Take A 2 ⌃. The conditional probability P(A|G) or PG(A) is
defined by

P(A|G) = E[1A|G]

Lemma 2.3. Let (⌦,⌃,P) be probability triplet and G ⇢ ⌃ a sub-�-algebra.
Then (⌦,⌃,PG) is, almost surely, a probability triplet with respect to P,
where PG(A) = P(A|G) for each A 2 ⌃.

The lemma above implies the lemma below and tells the intuition behind
conditional probability on �-algebra’s - why one can define them that way.

Proof. What I will prove is the following: (i) PG(⌦) = 1 a.s., (ii) 0 
PG(A)  1 a.s. for each A 2 ⌃ and (iii) for each collection {Ai, i 2 N} of
disjoint sets in ⌃ and A =

S1
i=1

Ai PG(A) =
P1

i=1

PG(Ai).
(i). Since ⌦ 2 G (by definition of �-algebra’s), the random variable 1

⌦

is
G-measurable. This implies that E[1

⌦

|G] = 1
⌦

a.s. (Jacob & Protter, 2004,
see for instance theorem 23.5, p. 204), so indeed PG(⌦) = 1 a.s.

(ii). Take A 2 ⌃. Since 0  1A  1 surely, it is also known by Jacob
and Protter (2004, theorem 23.5.a. p. 202) that 0  E[1A|G]  1.

(iii). Let {Ai : i � 1} be a collection of disjoint sets in ⌃. It is known
that

E
" 1
[

i=1

Ai

�

�

�

G
#

=
1
X

i=1

E[Ai|G],

a.s. by Lebesque’s dominated convergence theorem for conditional expecta-
tion (Jacob & Protter, 2004, theorem 23.8.c, p. 205).
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Lemma 2.4. Let (⌦,⌃,P) be a probability triplet and G ⇢ ⌃ a sub-�-algebra,
then for each A,B 2 ⌃ with PG(B) > 0,

PG(A) = PG(A|B)PG(B) + PG(A|Bc)PG(B
c)

almost surely, where PG(A) = E[1A|G].

Proof. This follows immidiately from the same theorem that proves this for
a regular probability measure, as

PG(A|B) =
PG(A \B)

PG(B)
,

almost surely.

Lemma 2.5. Let (⌦,⌃,P) be a probability triplet and G ⇢ ⌃ a sub-�-algebra.
Then for each A 2 ⌃,

P(A) = E[P(A|G)].

Proof. This is theorem 23.3.c. in Probability Essentials (Jacob & Protter,
2004) when noticing that P(A) = E[1A] and P(A|G) = E[1A|G].

13



Chapter 3

Wormald’s Theorem

The theorem of Wormald is stated below, but I proof it in a vast amount
of di↵erent lemma’s for readability purposes. First, I follow the proof by
Wormald (1997, theorem 5.1, p. 35). Later, I also state the original theorem
of Wormald (1995), as was published. The latter I proved first, but the
version below I used most, therefore it is presented here.

The structure in the proofs of both theorems is more or less the same, but
the details are so di↵erent that I found it impossible to present one proof
implicating both. Therefore, a proof of the orignal theorem of Wormald
(1995, theorem 1, 2 p. 1219) is added in the appendix (because I like it very
much). I explain the di↵erence after I state the original version (see theorem
3.3).

3.1 Preliminaries

Before the theorem can be stated, I must o↵er some general setting follow-
ing Wormald (1997). In the following, random processes are discrete time
processes. Take (⌦,⌃,P) a probability triplet, (S,⇤) some measurable space
and let Q be a process Q : N�0

⇥ ⌦ ! S, hence for each i 2 N�0

, Q(i, ·)
takes values in S and Q(i, ·) : ⌦ ! S is a random variable with respect to
(S,⇤) and is written as Qi.

Let {S(n)}n2N be a sequence of sets. Consider a sequence of random
processes {Q(n)}n2N on a sequence of probability triplets (⌦n,⌃n,Pn). Take

n 2 N and i 2 N�0

, then Q(n)
i is a random variable that maps ⌦n into S(n).

Take a 2 N and let 1  l  n. Define S(n)+ as the set of all ht =
(q

0

, q
1

, . . . , qt) such that qi 2 S(n) for each i and for t = 0, 1, 2, . . . and

function y(l)t : S(n)+ ! R and the random counterpart of y(l)t (ht) by Y (l)
t

(hence the function that maps (S(n))1 ! R via the histories of random
processes).

Last, let D ⇢ Ra+1 and define TD the stopping time for the variables
Y (1), . . . , Y (a) as

14



TD = min

(

t 2 N�0

:

 

t

n
,
Y (1)

t

n
, . . . ,

Y (a)
t

n

!

62 D

)

,

and so that TD is defined as 1 when there is no such t.

3.2 Theorem statement

Theorem 3.1. (As in (Wormald, 1997)) For 1  l  a, where a is fixed,
let yt : S(n)+ ! R and fl : Ra+1 ! R such that for some constant C

0

and

all l, |yl(ht)|  C
0

n for all ht 2 S(n)+ for all n. Let Y (l)
t denote the random

counterpart of yl(ht). Assume the following three conditions hold, where in
(ii) and (iii) D is some bounded, connected open set containing the closure
of

{(0, z
1

, . . . , za) : P(Y (l)
0

= zln, 1  l  a) 6= 0 for some n}

(i) (Boundedness hypothesis) For some functions � = �(n) � 1 and � =
�(n), the probability that

max
1la

|Y (l)
t+1

� Y (l)
t |  �

conditional upon Ht is at least 1� �(n) for t < TD.

(ii) (Trend hypothesis) For some function �
1

= �
1

(n) = o(1), for all l  a,
�

�

�

�

E[Y (l)
t+1

� Y (l)
t |Ht]� fl(

t
n ,

Y
(1)

t
n , . . . , Y

(a)
t
n )

�

�

�

�

 �
1

for t < TD

(iii) (Lipschitz hypothesis) Each function fl is continuous and satisfies a
Lipschitz condition, on

D \ {(t, z
1

, . . . , za) : t � 0}

with the same Lipschitz constant for each l.

Then the following are true.

(a) For (0, ẑ
1

, . . . , ẑa) 2 D the system of di↵erential equations

dzl
dx

= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in D for zl : R ! R passing through

zl(0) = ẑl,

for each 1  l  a and which extends to points arbitrarily close to the
boundary of D.

15



(b) Let � > �
1

+ C
0

n� with � = o(1). For a su�ciently large constant C,

with probability 1�O
⇣

n� + �
� exp

⇣

�n�3

�3

⌘⌘

,

Y (l)
t = nzl(

t
n) +O(�n)

uniformly over all 0  t  �n and for each l, where zl is the solution in

(a) with ẑl =
1

nY
(l)
0

, and � = �(n) is the supremum of those x to which
the solution can be extended before reaching within l1-dinstance C� of
the boundary of D.

3.3 Proof of Wormald’s theorem

I will prove the theorem by Wormald (1997) using di↵erent lemma’s, fi-
nally adding up to the full theorem. I must add that in the following, all
three main assumptions (i), (ii) and (iii) of central theorem hold, but I will
explicitely mention when they are used. I will not prove (a) as it is a well-
known result in Di↵erential Equations (Wormald, 1995), see for instance
Hurewiz (1958, p. 32, theorem 11 and 12) for a proof.

As a last remark before I start the proof, I need to say that at first, I

assume a = 1 (and l = 1 for that matter). For simplicity write Yt for Y
(l)
t ,

f for fl and z for zl.

3.3.1 Transformation to Martingale

Before I can start, the following claim - albeit it is almost trivial - is needed.
Define for all that follows, for � > �

1

as in (b):

w(n) =

⇠

n�(n)

�(n)

⇡

(3.1)

Claim 3.1. If �
� > n1/3, the probability in (b) is bounded above by one, and

thus trivial.

Proof. Suppose �
�  1

n1/3 . Then

exp

✓

�n�3

�3

◆

� exp

✓

�n
1

n

◆

=
1

e
.

Thus, �
� exp(�n�3

n3

)  n1/3e�1 ! 1 as n ! 1. Hence, indeed, the proba-
bility in (b) is unrestricted.

From this point forward, I can thus safely assume that �
n  n1/3. More-

over, assume that �(n) < 1 for all n, which is of no harm because �(n) =
o(1).
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Claim 3.2. Suppose � = 0. There exists some C > 0 such that if
�

t
n ,

Yt
n

�

2
D is at least at C�(n) distance from the boundary of D, then so is

⇣

t+k
n , Yt+k

n

⌘

for each 0  k < w(n)

Proof. Take
�

t
n ,

Yt
n

�

2 D such that it is of at least l1 distance C� from the
boundary (C will be determind later). Notice that, for some C 0 > 0

t+ w

n
� t

n


t+ n�
� + 1

n
� t

n
 C 0�(n),

because � � 1 and �
�  n1/3, thus 1

n  1

n2/3  �
�  �.

For the change in Yt notice that, by assumption that � = 0, it is at most
�

�

�

�

Yt+w

n
� Yt

n

�

�

�

�

 �w

n
 C 00�,

because �w  �+n� and �
�  n1/3, thus (by positiviy of �

1

and thus �), � 
�n1/3. I can conclude the above. Let ✏ > 0 and take C = max{C 0+✏, C 00+✏}.

By the above, and because D is connected and open,
⇣

t+w
n , Yt+w

n

⌘

cannot

be outside of D.

Lemma 3.1. Assume that, almost surely,

|Yt+k+1

� Yt+k|  �(n)

for all k or equivalently that � = 0 (I call this assumption (a1)). Take t � 0
and assume that

�

t
n ,

Yt
n

�

2 D is l1-distance at least C� from the boundary
of D (I call this assumption (a2)). Then there exists a function g(n) = O(�)
such that

Mk = Yt+k � Yt � kf

✓

t

n
,
Yt
n

◆

� kg(n)

is a supermartingale with respect to the �-algebra’s created by Ht, Ht+1

, . . . , Ht+w.

Notice that the map ! 7! f
⇣

t
n ,

Yt(!)
n

⌘

is Ht-measurable (see also claim

2.1), which will be used in the proof of this lemma.

Proof. First, I show that, for 0  k < w

E[Yt+k+1

� Yt+k|Ht+k] = f

✓

t+ k

n
,
Yt+k

n

◆

+O(�
1

)

= f

✓

t

n
,
Yt
n

◆

+O(�). (3.2)

The first equality follows directly from assumption (ii). For the second
equality, notice that k

n  �k
n (which trivially holds) as � � 1. Therefore,
�

�

�

�

t+ k

n
� t

n

�

�

�

�

 k�

n
.
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Moreover, by the assumption (a1), one gets

|Yt+k � Yt|  k�

by induction on assumption (i) in k. Hence, also

�

�

�

�

Yt+k

n
� Yt

n

�

�

�

�

 k�

n

and thus, by assumption (iii) - that f is Lipschitz-continous on D1,

�

�

�

�

f

✓

t+ k

n
,
Yt+k

n

◆

� f

✓

t

n
,
Yt
n

◆

�

�

�

�

 L
k�

n

As a last remark for part one, notice that k < w, hence

k�

n
 w�

n
 �+

�

n

✓

1 +
1

n1/3

◆

� = O(�)

Thus indeed, equation (3.2) holds.
This finishes the first part. In the second part, I prove that Mk is

indeed a supermartingale. Notice, at first, that the existence of a function
g(n) = O(�) follows directly from part one of this proof, as g(n) can be
taken such that

g(n) = max
0k<w(n)

⇢

�

�

�

�

E[Yt+k+1

� Yt+k|Ht+k]� f

✓

t

n
,
Yt
n

◆

�

�

�

�

�

Secondly, it follows that

E[Mk+1

|Ht+k] = E


Yt+k+1

� Yt � (k + 1)f

✓

t

n
,
Yt
n

◆

� (k + 1)g(n)
�

�

�

Ht+k

�

= E
h

Yt+k+1

� Yt+k

�

�

�

Ht+k

i

+ Yt+k � Yt

� (k + 1)f

✓

t

n
,
Yt
n

◆

� (k + 1)g(n)

 Yt+k � Yt � kf

✓

t

n
,
Yt
n

◆

� kg(n)

= Mk,

hence Mk is a super-martingale. The second equality here holds because
Yt, Yt+k and f

�

t
n ,

Yt
n

�

are Ht+k-measurable2 and the inequality follows from
part one of the proof and the choice of g(n). This shows the lemma.

1That these elements are indeed in D follows from claim 3.2
2This is made more specific by claim 2.1
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The choice of g(n) here is very helpfull in a later part of the proof. Of
course, chosing

g0(n) = max
0k<w(n)

⇢

E[Yt+k+1

� Yt+k|Ht+k]� f

✓

t

n
,
Yt
n

◆�

would su�ce in the proof of this lemma. The particular g(n) - as in the
proof of the lemma - has two nice properties, which is the reason for chosing
it here already: it is positive and it also lowerbounds E[Yt+k+1

�Yt+k|Ht+k].
This last property guarantees that one can also generate a submartingale
that looks a lot like the supermartingale Mk, which happens in lemma 3.5.

3.3.2 Azuma’s inequality

Next, I also need Azuma’s lemma or something closely related to it, which
o↵ers upper-bounds to ‘states’ in martingales that do not change too rapidly
over time. I will state it - and prove it - as below, following the work of
Wormald (1995)

Lemma 3.2. Let M
0

,M
1

, . . . be a supermartingale with respect to a sequence
of sub-�-algebra’s F

0

⇢ F
1

⇢ . . ., M
0

= 0 and F
0

empty3 and |Mi+1

�Mi| 
c always. Then for all ↵ > 0:

P(Mi � ↵c)  exp

✓

�↵2

2i

◆

A proof of a similar lemma is given by Shamir and Spencer (1987, p. 121,
Theorem 3) and, of course, Azuma (1967, p. 357). However, before I can
start proving the lemma of Azuma, I must state another lemma, which will
be usefull when proving that of Azuma. As a last remark, I closely follow
the proof of Azuma, although I rephrase some parts to fit the main theorem
better.

Lemma 3.3. Let G ⇢ F be a sub-�-algebra and Y a random variable with
|Y |  1 and E(Y |G)  0 (a.s.) Then, for each a � 0 it holds that

E[exp(aY )|G]  exp(a
2

2

) a.s.

Proof. Notice that for each a > 0, by claim 2.2, we find that (on whole ⌦),
using |Y |  1,

eaY  cosh(a) + Y sinh(a).

Therefore,
E[eaY |G]  cosh(a) + E[Y |G] sinh(a) a.s.

3That is, of course, F
0

= {;,⌦}. Here, it is used that F
0

is empty. It holds also if F
0

is not empty, but a conditional space (on F
0

) is used instead.
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by linearity of conditional expectation and by4 Jacob and Protter (2004, see
lemma 23.1, p. 201). Now since E[Y |G]  0 a.s. and sinh(a) � 0 for each
a � 0, it follows (read a.s. at each (in)equality)

E[eaY |G]  cosh(a) =
1
X

n=0

a2n

(2n)!


1
X

n=0

(a2)n

2nn!
= e

a2

2

using that (2n)! � 2nn!, which finishes the proof of this lemma.

With the lemma above known, I am able to prove Azuma’s lemma. To
do so, I show the conditions needed for lemma 3.3, then I start proving
Azuma’s lemma itself.

Proof of lemma 3.2. Let ↵ > 0. WriteM 0
i =

Mi
c for each i 2 N�0

and denote
Yi = M 0

i �M 0
i�1

for each 1  i. Clearly, |Yi|  1 and also

E[Yi|M 0
i�1

] = E


Mi

c
� Mi�1

c

�

�

�

M 0
i�1

�

=
E[Mi|M 0

i�1

]�Mi�1

c
 Mi�1

�Mi�1

c
= 0,

by linearity of conditional expectation and the fact that (Mi)i�0

(and there-
fore also (M 0

i)i�0

) is a supermartingale and notice that

E[exp(↵nM
0
n)] = E

⇥

exp(↵n (Yn +M 0
n�1

)
⇤

= E[exp(↵nYn) exp(
↵
nM

0
n�1

)]

= E[E[exp(↵nYn)|M
0
n�1

] exp(↵nM
0
n�1

)]

where the last equality holds by the definition of conditional expectation and
by ‘taking out what is known’5 (Jacob & Protter, 2004, see theorem 23.7
p. 204). By lemma 3.3, taking a = ↵

n , we find that E[exp(↵nYn)|M
0
n�1

] 
exp( ↵2

2n2

), so it holds that

E[exp(↵nM
0
n)]  exp

⇣

↵2

2n2

⌘

E[exp(↵nM
0
n�1

)].

Using the same arguments for n� 1, n� 2, . . . , 1 and the notion that M 0
0

=
M

0

c = 0, we thus get that

E[exp(↵nM
0
n)] 

n
Y

i=1

exp

✓

↵2

2n2

◆

E[exp(↵nM
0
0

)] = exp

✓

n↵2

2n2

◆

.

4The lemma by Jacob and Protter (2004) holds when splitting any random variable
into Y = Y + � Y �, because Y is clearly integrable by the fact that |Y |  1.

5This action is legitimate as |M 0
n�1

| is clearly bounded above by n � 1. Therefore, it
and exp(↵

n
M 0

n�1

) are integrable. A same, yet easier, reasoning holds for exp(↵
n
Yn).
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Now notice that because x 7! exp(↵nx) is positive and non-decreasing (since
n,↵ � 0), the Markov-bound6 tells

P(M 0
n > ↵) 

E[exp(↵nM
0
n)]

exp(↵
2

n )


exp(n↵
2

2n2

)

exp(↵
2

n )
= exp

✓

�↵2

2n

◆

.

The only thing left to see to finish this proof is that the events {M 0
n > ↵}

and {Mn > ↵c} coincide. As n 2 N and ↵ > 0 were arbitrary, the lemma is
proven.

3.3.3 Concentration of Yt+w and Yt

Now that Azuma’s lemma is derived and I have shown that a variation
on assumption (i’), (ii) and (iii) implicitly transform di↵erences in Yt into
a martingale through a ‘clever’ trick, I can start showing concentration of
Yt. To do so, I state the following lemma - something that follows almost
immediately from Azuma’s lemma.

Within, conditional probability is used - which is not the case for Azuma’s
lemma. However, Ht needs to be ‘known’ for the creation of the martingale
M

0

,M
1

, . . . ,Mw as it is a martingale with respect to Ht, Ht+1

, . . . , Ht+w.
From this point on, I look at the space conditioned on the history up to
time t; the space conditioned on Ht.

Lemma 3.4. The assumptions of lemma 3.1 hold. M
0

,M
1

, . . . ,Mw as in
the proof of lemma 3.1, then

P
✓

Yt+w � Yt � wf

✓

t

n
,
Yt
n

◆

� wg(n) + �
p
2w�

�

�

�

Ht

◆

 exp(��)

(3.3)

for each ↵ > 0 and some  > 0.

Proof. This proof first shows that the supermartingaleM
0

,M
1

, . . . ,Mw su�es
the assumptions in Azuma’s lemma and then shows the actual result in the
lemma. To do so, notice that

|Mk+1

�Mk| =
�

�

�

�

Yt+k+1

� Yt+k � f

✓

t

n
,
Yt
n

◆

� g(n)

�

�

�

�

 |Yt+k+1

� Yt+k|+
�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�

 � +

�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�

for each k 2 {0, 1, . . . , w � 1}, which follows from the definition of Mk and
because of assumption (a1) in lemma 3.1. Moreover, because g(n) = O(�) it

6See for instance lemma 2.2
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certainly is also g(n) = O(1) and f is Lipschitz on D, continuous everywhere
and D is bounded, hence |f | is upperbounded by its maximum on7 D[ @D,
thus also at most f = O(1), and thus |g(n) + f

�

t
n ,

Yt
n

�

| = O(1).
Although the above holds, a more elegant8 approach to the bound can

be found using another property of f . Notice that, by choice of g(n), it
holds that there exists some C 0 > 0 such that

�C 0�  g(n)  C 0�,

and similarly, by assumption (ii),

��  E[Yt+1

� Yt|Ht]� f

✓

t

n
,
Yt
n

◆

 �

it thus follows that, by assumption (i) and (a1),

��� �  f

✓

t

n
,
Yt
n

◆

 �+ �.

This gives, again, that

�(C 0 + 1)�� �  f

✓

t

n
,
Yt
n

◆

+ g(n)  (C 0 + 1)�+ �,

thus, indeed, there exists some  > 0 such that � + |f( t
n ,

Yt
n ) + g(n)|  �

(because � = o(1) and � � 1). Hence

|Mk+1

�Mk|  �,

or in words that the super-martingale di↵erences are bounded above uni-
formly over k = 0, 1, . . . , w � 1. Last, one must see that

E[M
0

] = E[Yt � Yt � 0 · f( t
n ,

Yt
n )� 0 · g(n)] = 0.

This concludes part one of this proof, as the assumptions in lemma 3.2 are
met.

Now take c = � and ↵ =
p
2w�. From lemma 3.2 we get that

P(Mw � ↵c|Ht)  exp

✓

� ↵2

2w

◆

which is equivalent to

P
⇣

Mw � �
p
2w�

�

�

�

Ht

⌘

 exp

✓

��2w

2w

◆

= exp(��).

To finish the proof, notice that Mw = Yt+w �Yt�wf( t
n ,

Yt
n )�wg(n), hence

P (Mw � ↵c) = P
�

Yt+w � Yt � wf( t
n ,

Yt
n ) � wg(n) + ↵c|Ht

�

.

7Here, @D is the boundary of D, conform convential notation.
8Either of these approaches work for what is needed. Dependent on the particular use

of this theorem, both can be chosen to get the best possible value of .
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There are a few things left to do to derive at a main result on con-
centration. First, I state another lemma which tells something about the
concentration of Yt+w � Yt � wf( t

n ,
Yt
n ).

Lemma 3.5. Suppose again all assumptions in lemma 3.1 hold. Then

P
 

|Yt+w � Yt � wf( t
n ,

Yt
n )| � wg(n) + �

s

2wn
�3

�3

�

�

�

Ht

!

 2 exp

✓

�n
�3

�3

◆

Proof. The first part of this proof defines a submartingale (Kk)
w(n)
k=0

. Here,
I use the particular choice of g(n). Define

Kk = Yt+k � Yt � kf( t
n ,

Yt
n ) + kg(n).

This is a submartingale. To see so, notice that

E[Kk+1

|Ht+k] = E[Yt+k+1

� Yt+k|Ht+k]� (k + 1)f( t
n ,

Yt
n ) + (k + 1)g(n)

� Yt+k � Yt � kf( t
n ,

Yt
n ) + kg(n),

because �g(n)  E[Yt+k+1

� Yt+k|Ht+k] � f( t
n ,

Yt
n )  g(n) by definition of

g(n). Therefore E[Yt+k+1

�Yt+k|Ht+k] � f( t
n ,

Yt
n )� g(n). This finishes part

one of the proof.
Now, it follows that�Kk is a supermartingale. To see that the di↵erences

are bounded by the same bound as for the supermartingale (Mn)wn=0

, notice
that

|�Kk+1

+Kk| = |Kk+1

�Kk|  |Yt+k+1

� Yt+k � f( t
n ,

Yt
n ) + g(n)|

 |Yt+k+1

� Yt+k|+ |f( t
n ,

Yt
n )� g(n)|

 � + |f( t
n ,

Yt
n )� g(n)|.

By the proof of lemma 3.4, this is bounded above by9

|f( t
n ,

Yt
n )� g(n)|  (C 0 + 1)�+ �

hence
|�Kk+1

+Kk|  �

By lemma 3.2 it follows, taking ↵ =
p
2!� and c = � that10

P(Kw  �↵c|Ht) = P(�Kw > ↵c|Ht)  P(�Kw � ↵c|Ht)  exp(��).

This equivalent to

P
�

Yt+w � Yt � wf( t
n ,

Yt
n ) + wg(n)  �↵c |Ht

�

 exp(��).

9Here, it is possible to redefine the C
0

in lemma 3.4.
10See, for instance, lemma 3.4, or its proof.
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And clearly, it holds that

P(Yt+w � Yt + wf( t
n ,

Yt
n )  �wg(n)� ↵c|Ht)  exp(��)

Implying also

P(|Yt+w � Yt + wf( t
n ,

Yt
n )| � wg(n) + ↵c|Ht)  2 exp(��).

Now, the proof is almost finished. Take � = n�3

�3

and it is done.

3.3.4 Concentration of Yt � nz( t
n
)

The concentration of Yt�nz( t
n) - that what the theorem is all about - I show

in this section. I use a proof by induction, and to do so, I break this part
down into three lemma’s, of which I first state the ‘biggest’, but I prove this
last. The reason lies in the definitions and assumptions within the biggest
lemma. In all that follows, take

� = n
�3

�3

(3.4)

Lemma 3.6. Define ki = iw for i = 0, 1, . . . , i
0

, with i
0

= b�nw c, where w
as in equation 3.1 and � as in result (b) of theorem 3.1. Then it holds that

P
⇣

|Ykj � z(kjn )n| � Bj for some j  i
⌘

= O(ie��). (3.5)

with

Bj = Bw
⇣

�+
w

n

⌘

 

✓

1 +
Bw

n

◆j

� 1

!

n

Bw
,

for some B > 0.

I will prove this lemma by induction. To do so, let me introduce some
definitions for readability.

A
1

= Yki � z(kin )n

A
2

= Yki+1

� Yki

A
3

= z(kin )n� z(ki+1

n )n

Now that I have introduced the framework for inductive proof, it is time
to state two other lemma’s that will help me prove the main lemma (3.6) of
this section.

Lemma 3.7. There exists some B0 > 0 such that
�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

< B0w�

with probability 1 � O(e��), where w as in equation 3.1, � as in result (b)
of theorem 3.1 and � as in 3.4.
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Proof. Assume the induction hypothesis, equation 3.5. Note that

P
✓

�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

� B0w�
�

�

�

Hki

◆

= P
⇣

|Yki+1

� Yki � wf(kin ,
Yki
n )| � B0w�

�

�

�

Hki

⌘

.

Taking t = ki, and noticing that ki+1

�ki = w, one gets that this is equivalent
to

P
⇣

|Yt+w � Yt � wf( t
n ,

Yt
n )| � B0w�

�

�

�

Ht

⌘

. (3.6)

Notice that, in lemma 3.5, wg(n) = O(w�) by choice of g(n) and see fur-
thermore that

�

s

2wn
�3

�3

 �

s

2wn

⇠

n�

�

⇡

�2

�2

= 
p
2w� = O(w�),

hence there exists some B0 such that, by lemma 3.5 (because t = ki  i
0

w 
�n) the probability in equation 3.6 is upperbounded by 2e�� = O(e��).
Lemma 2.5 tells that, because Y = O(e��) implies that E[Y ] = O(e��), the
above also holds in the whole probability space, not just conditioned on Ht.
This shows that indeed,

�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

< B0w�

has probability 1�O(e��).

Lemma 3.8. Let z be a solution in (a), then there exists some B00 > 0 such
that

�

�

�

A
3

+ wz0
⇣

ki
n

⌘

�

�

�

 B00w2

n

with w as in equation 3.1.

Proof. A general approach11 would be to notice that, because z is contin-

uously di↵erentiable (on the desired domain), there exists a x 2
h

ki
n ,

ki+1

n

i

such that

z0(x) =
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

,

11Another approach, for di↵erent assumptions on f can be found in the notes on this
proof. It could be that, when assuming f to be analytic, for instance, a better bound can
be found.
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because again ki+1

n � ki
n = w

n by the Mean Value Theorem (Vuik, van Beek,
Vermolen, & van Kan, 2007). Hence,

�

�

�

�

�

�

z0
⇣

ki
n

⌘

�
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

�

�

�

�

�

�

=
�

�

�

z0
⇣

ki
n

⌘

� z0(x)
�

�

�

=
�

�

�

f
⇣

ki
n , z

⇣

ki
n

⌘⌘

� f(x, z(x))
�

�

�

 max
n

�

�

�

ki
n � x

�

�

�

,
�

�

�

z
⇣

ki
n

⌘

� z(x)
�

�

�

o

,

because f is lipschitz with constant L. This is, however, in case of the l1

norm lipschitz assumption, for the l1, just take the sum of the two. Next,
notice that

�

�

�

z(x)� z
⇣

ki
n

⌘

�

�

�

=

�

�

�

�

�

Z x

ki
n

f(t, z(t))dt

�

�

�

�

�


⇣

x� ki
n

⌘

max
t2[0,�(n)]

|f(t, z(t))|,

which is a value that f takes on the closed interval because it is continuous
by assumption12 and notice too that x � ki

n  w
n by choice of x. Hence,

indeed,
�

�

�

�

�

�

z0
⇣

ki
n

⌘

�
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

�

�

�

�

�

�

 Lmax

⇢

w,w max
t2[0,supn �(n)]

|f(t, z(t))|
�

 B00w,

for some B00 > 0. Last, notice that

�

�

�

A
3

+ wz0
⇣

ki
n

⌘

�

�

�

=

�

�

�

�

�

�

z0
⇣

ki
n

⌘

�
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

�

�

�

�

�

�

,

which finishes the proof of this lemma.

Now, it is time to prove lemma 3.6, as all the building blocks are present
to do so.

Proof of lemma 3.6. First, notice that z(0) = Y
0

n , hence the induction hy-
pothesis (equation 3.5) holds for n = 0. Second, it is helpful to see that

�

�

�

A
3

+ wf(kin ,
Yki
n )

�

�

�

=
�

�

�

A
3

+ wz0(kin )� wz0(kin ) + wf(kin )
�

�

�

.

From lemma 3.8 and the fact that z is a solution to (a) (i.e. that z0(x) =
f(x, z(x)) on D), it is known that13

�

�

�

A
3

+ wf(kin ,
Yki
n )

�

�

�

 B00w2

n
+
�

�

�

wf
⇣

ki
n , z(

ki
n )
⌘

� wf
⇣

ki
n ,

Yki
n

⌘

�

�

�

,

12Thus so is z(x). However, this bound seems to be quite abusive. Moreover, the actual
bound is given by some A � �(n) that is constant in n.

13Here, I use that ki
n

 � by choice of i
0

.
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for some (constant) C � 0. Now it is time to use - once more - the fact that
f is Lipschitz continuous. This implies that

�

�

�

f
⇣

ki
n , z(

ki
n )
⌘

� f
⇣

ki
n ,

Yki
n

⌘

�

�

�

 L

�

�

�

�

z(kin )�
Yki
n

�

�

�

�

,

for the lipschitz-constant L. Furthermore, the induction hypothesis (equa-
tion 3.5) o↵ers that |Yki � z(kin )n| < Bi with probability 1� O(ie��). This
shows that the following inequality holds,

�

�

�

f
⇣

ki
n , z(

ki
n )
⌘

� f
⇣

ki
n ,

Yki
n

⌘

�

�

�

 L
Bi

n
,

with probability 1�O(ie��). Hence I can deduce that

�

�

�

�

A
3

+ wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

 B00w2 +B00wBi

n
,

with probability 1�O(ie�) because L  B00 for sure by the proof in lemma
3.8

Now, let me move to the final part. To do so, notice that

|A
1

+A
2

+A
3

| =
�

�

�

Yki � z(kin )n+ Yki+1

� Yki + z(kin )n� z(ki+1

n )n
�

�

�

=
�

�

�

Yki+1

� z(ki+1

n )
�

�

�

.

Without further ado, lemma 3.7 and 3.8 o↵er the following upper bound14

when taking B = max{B0, B00}:

|A
1

+A
2

+A
3

|  |A
1

|+
�

�

�

A
2

� wf
⇣

ki
n ,

Yki
n

⌘

�

�

�

+
�

�

�

A
3

+ wf
⇣

ki
n ,

Yki
n

⌘

�

�

�

 Bi +Bw�+
Bw2 +BwBi

n
,

= Bw�+
Bw2

n
+

(Bw + n)Bi

n
= Bi+1

with probability at most (1�O(ie��)(1�O(e��)) = 1�O((i+1)e��). This
finishes the proof, as it shows the induction hypothesis, equation 3.5.

As this lemma is proven, I am ready to show that - given assumption
(a2) - the theorem of Wormald holds. This is exactly what the lemma below
tells.

Lemma 3.9. Given assumption (a1), (a2) and a = 1, (b) in theorem 3.3
holds.

14For a more heavy ‘calculation’, showing the last equality, see claim 3.3
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Proof. Take 0  t  �n and let i = b t
wc (then ki  t  ki+1

) and it is
known that

P
⇣

�

�

�

Yki � z
⇣

ki
n

⌘

�

�

�

 Bi

⌘

= 1�O(ie��),

by lemma 3.6. Furthermore, it is usefull to see that

Bi =
⇣

�+
w

n

⌘

 

✓

1 +
Bw

n

◆i

� 1

!

n = O(n�+ w)

Since i  b�(n)nw c, clearly i = O( nw ) since D is bounded (and thus also
bounded in its first element).

Now, notice that t � ki  w, hence the change in Y is upperbouned by
�w. The change in z is upperbounded by O(w) because

n
�

�

�

z
�

t
n

�

� z
⇣

ki
n

⌘

�

�

�

 n

Z t
n

ki
n

|f(x, z(x))|dx  n
w

n
max

x2[0,supn �(n)]
|f(x

1

, z(x
1

))|,

where x = (x
1

, . . . , xn) because z, f are continuous by assumption, by result
(a) and because D is bounded.

See, too, that w� = O(n�) and w = O(n�) because � is bounded below,
by definition of w and because n� ! 1 as n ! 1 since �

� � 1

n1/3 and thus

� � �
n1/3 � 1

n1/3 .

I can conclude from lemma 3.6 that, indeed, with probability 1�O( nwe
��),

�

�Yt � z
�

t
n

�

n
�

� = O(�n).

The last thing to notice is that n
w  �

� by definition of w, which finishes the
proof of this lemma.

3.3.5 Final generalisations

The final generalisation - that the scaled points ki
n and

Yki
n indeed are l1

distance at least C� away from the boundary - makes the proof complete
for � = 0. The last step is to go from � = 0 to arbitrary �. This shows that
the full theorem of Wormald (1997) holds, for a = 1, which is generalised
thereafter. To see this, I present the following lemma.

Lemma 3.10. All the points
⇣

ki
n ,

Yki
n

⌘

are at least l1 distance C 0� away

from the boundary of D, where ki = iw, i = 0, 1, . . . , i
0

, i
0

= b�nw c, for some
C 0 > 0 large enough with probability 1�O( nwe

��).

Proof. The induction hypothesis in lemma 3.5 is the main part of this gen-
eralizations.

By choice of ki, that is ki  �n, ki
n  �, hence z

⇣

ki
n

⌘

is at least l1

distance C� away from the boundary by definition of � (and for each i, the
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distance between ki
n and the boundary of D is already upperbounded by �

hence trivial). Let x = (x
1

, x
2

) 2 @D, then
�

�

�

z
⇣

ki
n

⌘

� x
2

�

�

�

� C�

And the probability that
�

�

�

�

Yki
n

� z

✓

ki
n

◆

�

�

�

�

� Bi

n
(3.7)

for any i  i
0

is O(i
0

e��). Hence
�

�

�

�

Yki
n

� x
2

�

�

�

�

�
�

�

�

�

C�� Bi

n

�

�

�

�

� (C � C
0

)�,

for some C
0

for which Bi  C
0

�n for each n and each 0  i  i
0

, with
probability 1�O( nwe

��). Hence, chosing C so that it is at least bigger than
C
0

, o↵ers a suitable lowerbound. Define C 0 = C �C
0

. Here C is defined, or
at least lower-bounded.

Last, it must be noted that there exists some n such that
�

0, Y0

n

�

2 D
and because D is open and containing the closure of this point15, there must
exist some n such that this point is far enoug away from the boundary, since
� = o(1).

Notice that this does not change the result, because the events for which
equation 3.7 holds is equivalent to the events in lemma 3.6 and thus does not
change the probability there (because it could be included in the induction
hypothesis).

Lemma 3.11. Let � an arbitrary function in n, then (b) still follows.

I will o↵er a proof of this statement in line with the theorem as proven by
(Wormald, 1997, p. 38) here, which uses the assumption that |Y (t)|  C

0

n
for some C

0

> 0 and all t. There is another approach, which can be found in
the notes on this proof and which I use to proof Wormald’s original theorem
(Wormald, 1995). The other approach does not assume |Y (t)|  C

0

n, but
restricts � to some extend.

Proof. There are two cases, the elements of ⌦n for which |Yt+1

� Yt|  �
and those that are not. Condition all steps for the bounds of the martingale
(lemma 3.5 and 3.4) on the event that the inequality |Yt+1

� Yt|  � holds.
This changes the di↵erence between the expected change and f

�

t
n ,

Yt
n

�

as in lemma 3.1 by at most C
0

n�, hence

E[Yt+k+1

� Yt+k|Ht+k] = f

✓

t

n
,
Yt
n

◆

+O

✓

�
1

+ C
0

n� +
k�

n

◆

.

15This holds for all 1  l  a
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Take for �
1

in the rest of the proof �
1

+ C
0

n� and the result follows, with
probability 1 � O(n�), because the probability that any of the martingale-
di↵erences is not bounded above by � is at most �n� (because 0  t  �n).
Substracting this, indeed

Yt = nz( t
n) +O(�n)

with probability 1� O
⇣

n� + �
� exp

⇣

�n�3

�3

⌘⌘

, where � > �
1

+ C
0

n� which

is exactly result (b) for a = 1.

The last thing that is left to be shown is that the proof works exactly
the same for a 6= 1, hence for arbitrary a 2 N.

Lemma 3.12. For a > 1, the result (b) still follows.

Proof. To see this, notice that the probability of

P
 

n
[

i=1

Ai

!


n
X

i=1

P(Ai),

by definition of a probability measure and thus the probability that any of
the events {|Yl(kj) � z(kj/n)n| > Bj} occur (in l) is upperbounded by the
sum of the probability of either event occuring, hence by O(aie�↵) in lemma
3.6. Hence, change the induction hypothesis to

P
⇣

�

�

�

Y (t)
kj

� z
⇣

kj
n

⌘

n
�

�

�

> Bj for some j  i
⌘

= O(aie��),

for all 1  l  a. Checking for i+1, one just has to check for each variable,
hence adding the probabilities that it does not fail. This shows the induction
and thus the proof, because a is constant by choice.16 Last, it changes the
probability that max

1la |Yl(t + 1) � Yl(t)|  � does not hold by at most
a, hence this probability becomes an� = O(n�) when a is constant17. So
indeed result (b) follows.

3.3.6 Notes on proof

The following claim is a tedious. I left it out of the proof, because it just
makes everything less readable.

Claim 3.3. For Bi, B defined as in the proof of lemma 3.6, it holds that

Bi+1

= Bw�+
Bw2

n
+

(Bw + n)Bi

n
16Chosing a = a(n), lemma 4.1 also follows
17a = a(n) implies lemma 4.1
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for all i+ 1  i
0

, where

w =

⇠

n�

�

⇡

,

(which is equivalent to the definition of w in equation 3.1).

Proof. By definition of Bi, it holds that

Bw�+
Bw2

n
+

(Bw + n)Bi

n

=

✓

Bw�+
Bw2

n

◆

+
(Bw + n)

n

✓
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Bw2
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⇣
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1 + Bw
n

�i � 1
⌘ n

Bw

=

✓
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Bw2

n

◆

 

1 +
�

1 + Bw
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�i � 1 +
n

Bw

 

✓

1 +
Bw
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� 1

!!

=

✓

Bw�+
Bw2

n

◆

 

✓

1 +
Bw

n

◆i
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1 +
n

Bw

⌘

� n

Bw

!

=

✓

Bw�+
Bw2

n

◆

 

✓

1 +
Bw

n

◆i+1

� 1

!

n

Bw

which equals Bi+1

.

Claim 3.4. Let f be analytic on at least D [ @D, then
�

�

�

A
3

+ wz0
⇣

ki
n

⌘

�

�

�

= O
⇣

w2

n

⌘

Proof. By the most simple formula to calculate the first derivative (see for
instance Vuik et al. (2007, see theorem 3.2.1, p. 26)):

�

�

�

�

�

�

z0
⇣

ki
n

⌘

�
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

�

�

�

�

�

�

= O
⇣w

n

⌘

 Cw

n
,

because ki+1

�ki
n = w

n , for some constant C > 0. This implies that

|A
3

+ wz0
⇣

ki
n

⌘

|  Cw2

n
= O

✓

w2

n

◆

.

This finishes the proof of this lemma. The upperbound is thus given by
the maximum of z00(t) for 0  t  �n, which exists and is bounded by
assumption on f .

Another approach to the theorem

Many of the first lemma’s assume that � = 0. However, this need not be,
as is shown in lemma 3.11. However, there is another approach, for which
just some other restriction on � is needed.
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Theorem 3.2. Updating assumption (i) by

P
⇣

|Yt+1

� Yt| > �(n)
�

�

�

Ht

⌘

= �,

for each t < TD, � = O
⇣

exp(��)
n

⌘

, and �(n) = n�3

�3

(which is equivalent to

the definition of � in equation 3.4). It holds that for some t � 0 for which
assumption (a2) holds,

P(|Yt+w � Yt � wf( t
n ,

Yt
n )| � wg(n) + �

p
2w�|Ht)  2 exp(��)

and thus also result (a) and (b), where (b) can be updated such that � > �
1

is chosen, or where � = 0 in result (b).

Proof. First, let me define a few sets for readability. For 0  k < w and
particular t as assumed in the lemma,

Bk = {! : |Yt+k+1

� Yt+k|  �}

and B =
Tw�1

k=0

Bk. Last, write

A =
n

! : |Yt+w � Yt � wf( t
n ,

Yt
n )| � wg(n) + �

p
2w�

o

Look at Bc, the complement of B, and notice that certainly P(Bc|Ht) 
O(exp(��)), because

P(Bc|Ht) 
w�1

X

k=0

P(Bc
n|Ht)

and P(Bc
k|Ht) = O

⇣

exp(��)
n

⌘

by definition. Moreover, w  n+ 1, hence one

gets that indeed, P(Bc|Ht) = O(exp(��)). This also shows that P(B|Ht) =
1�O(exp(��)).

Now, write PHt(·) = P(·|Ht) for simplicity (and notice that this, on itself,
is a probability measure)18. By a simple property of probability measures
(for instance proven by Jacob and Protter (2004, see theorem 3.4, p. 17)),
it holds that19

PHt(A) = PHt(A|B)PHt(B) + PHt(A|Bc)PHt(B
c)

and since PHt(A|Bc)  1 (by the most trivial upperbound for the probability
measure) and PHt(A|B)  2 exp(��) by lemma 3.5, we have that

PHt(A) = O(exp(��))(1�O(exp(��)) +O(exp(��)).

This shows exactly that P(A|Ht) = O(exp(��)).

18See lemma 2.3 for a justification.
19Here, it is used implicitely that PHt(B) 6= 0 a.s. (this is trivial, because � < 1 can be

assumed) and PHt(B
c) 6= 0 a.s. also holds, because otherwise this whole lemma can be

neglected.
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Hereby, I can end the section on generalizing assumption (a1), that � =
0. This leaves the option to dive into the next part of the proof, where the
concentration of Yt+w � Yt is converted to the concentration of Yt � nz( t

n).
It leaves the assumption that |Y (t)| < C

0

n untouched, while the result still
follows.

For the original theorem of Wormald (1995), this result follows always
(even for (i’)), hence that theorem can always be updated.

3.4 Original version of Wormald’s Theorem

As I started out proving the theorem of Wormald, I did so by it’s old theorem
as displayed below. This is the original theorem by Wormald Wormald
(1995, Theorem 1 and 2, p. 1219). All further definitions remain the same.

Theorem 3.3 (Wormald). Let a be fixed. For 1  l  a, define y(l) : S+

n !
R and fl : Ra+1 ! R, such that for some constant C and all l, |yl(ht)| < Cn
for all ht 2 S+

n and for all n. Suppose also that for some function m = m(n):

(i) there is a constant C 0 such that for all t < m and all l,

|Y (l)
t � Y (l)

t | < C 0

always.

(ii) for all l and uniformly over t < m,

E[Y (l)
t+1

� Y (l)
t |Ht] = fl

 

t

n
,
Y (1)

t

n
, . . . ,

Y (a)
t

n

!

+ o(1)

always.

(iii) for each l, the function fl is continous and satisfies a Lipschitz condi-
tion on D, where D is some bounded, connected, open set containing
the intersection of {(t, z(1), . . . , z(a)) : t � 0} with

{(0, z(1), . . . , z(a)) : P(Y l
0

= z(l)n, 1  l  a) 6= 0 for some n}

Then

(a) For (0, ẑ(1), . . . , ẑ(l)) 2 D the system of di↵erential equations

dzl
dx

= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in D for zl : R ! R with

zl(0) = ẑ(l), l = 1, . . . , a,

and which extends to points arbitrarily close to the boundary of D
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(b) Almost surely,

Y (l)
t = nzl(

t
n) + o(n)

uniformly over 0  t  min{�n,m} and for each l, where zl(t) is a

solution in (a) with ẑl =
Y

(l)
0

n and � = �(n) is the supremum of those s
to which the solution can be extended.

Moreover, the assumption in (i’) can be weakened to what is stated
below. The above is written down for simplicity, but what follows is what I
prove.

Theorem 3.4 (Weakening of (i)). Theorem 3.3 also holds if condition (i)
is weakened to:

(i’) for some functions w = w(n) and � = �(n) with �4 log(n) < w < n2/3

�
and � ! 1 as n ! 1, for all l uniformly and for all t < m:

P
 

|Y (l)
t+1

� Y (l)
t | >

p
w

�2

p

log(n)

�

�

�

Ht

!

= o(n�3),

always on ⌦n.

The exact proof can be found in Appendix A, which follows the same
structure as the proof of theorem 3.1 to a large extend, but the details are
di↵erent. Because I started out proving this theorem, and not theorem 3.1,
the text is more or less the same. This is the reason it is in the appendix.
Moreover, as noted in theorem 3.2, the assumption of |Y (t)|  C

0

n can be
left out in this theorem, due to my way of proving it.

3.4.1 Di↵erence between the two versions of Wormald’s the-
orem

The di↵erence between this original version (Wormald, 1995) and the general
version (Wormald, 1997) are found in the first assumption (assumption (i)

or (i’)). In the original version (1995), the di↵erence in the processes Y (l)
t are

restricted for each l to a specific bound, with fixed asymptical probability.

In the generalised version, the maximal di↵erence in the processes Y (l)
t is

upperbounded by something that is at least 1 (�(n)) with probability �(n),
where � and � have very little restrictions.

This echoes in the result of the second part of the theorem, that tells how

close Y (l)
t lies to nzl(

t
n) and with what probability. In the original version

(1995), the probability of that Y (l)
t equals nzl(

t
n)+ o(n) is given by 1� o(1).

In the generalised version, this becomes Y (l)
t equals nzl(

t
n) + O(�n) with a

probability that depends on the particular choice of � and on � and �.
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Chapter 4

A Balls and Bins Model of
Trade

Balls and bins can be seen as the “classical methafor for the multinomial
distribution” (Corrado, 2011, p. 349). In the most simple model, I look at
n bins of equal size, which are empty at t = 0. At each (discrete) step in
time of length one, a ball is thrown into one of the bins - either with equal
probability or in the general case proportional to the size of the bin.

This model can, for instance, describe trade flow from one country to all
others. In the model, there are n country-trade pairs, which are represented
by the bins. Each ball represents a unit of trade. When more balls are
thrown, this models the event that there is more trade.

The natural questions that arize are the margins within this model.

• How many bins are empty after m balls are thrown?

• What is the maximum amount of balls in a bin?

• How many bins are there of any particular amount of balls?

All questions above are random variables defined on a histories. The sections
below show that each of them satisfies the assumptions in theorem 3.3 or
theorem 3.1.

It also raises the question of how the balls and bins model can be de-
scribed mathematically. To do so, I present two di↵erent approaches. The
first looks at the number of bins with a certain amount of balls. The second
looks at the number of balls in a particular bin.

For the everything that follows, another lemma - an extension of Wormald’s
theorem - is needed.

Lemma 4.1. (as the note on theorem 5.1 by Wormald (1997)) Let all as-
sumptions and definitions in theorem 3.1 hold, but change a 2 N to a is
a function in n, then result (a) remains the same and result (b) must be
updated to:
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Let � > �
1

+ C
0

n� with � = o(1). For a su�ciently large C, with
probability

1�O

✓

an� +
a�

�
exp

✓

�n
�3

�3

◆◆

,

Y (l)
t = nzl(

t
n) + O(�n), uniformly for 0  t  �n and for each 1  l 

a(n), where zl(x) is the solution in (a) of theorem 3.1 with ẑl =
1

nY
(l)
0

and
� = �(n) is the supremum of those x to which the solution can be extended
before reaching within l1 distance C� of the boundry of D.

Proof. See lemma 3.12.

4.1 Ball’s point of view

This model describes trade flow from one country to all others, based on
one very unrealistic assumption: trade between the country and each other
country has equal probability.

As in the section above, the choice of a depends on n. This time, denote
Yl(t) the amount of bins with l balls. If there is a maximum amount of
balls thrown (say cn for some1 c > 0), then 0  l  a(n) = cn. Moreover,
|Yl(t+ 1)� Yl(t)|  1, as a ball can drop

(i) into a bin with l balls and Yl(t+ 1)� Yl(t) = �1,

(ii) into a bin with l � 1 balls, giving Yl(t+ 1)� Yl(t) = 1 or

(iii) into another bin, o↵ering Yl(t+ 1) = Yl(t)

The expected di↵erence can be denoted as

E[Yl(t+ 1)� Yl(t)|Ht] = �Yl(t)

n
+

Yl�1

(t)

n
,

for l � 1 and as E[Y
0

(t + 1) � Y
0

(t)|Ht] = �Y
0

(t)
n . This is equivalent to

defining

fl

✓

t

n
,
Y
0

(t)

n
, . . . ,

Ycn(t)

n

◆

= �Yl(t)

n
+

Yl�1

(t)

n
,

for 1  l  cn and f
0

( t
n ,

Y
0

(t)
n , . . . , Ycn(t)

n ) = Y
0

(t)
n . This o↵ers already every

requirement for Wormald’s theorem2. To see so, define �(n) = 1 and �(n) =
0, �

1

(n) = 0 = o(1). Then max
0la(n) |Yl(t+1)�Yl(t)|  � with probability

1� � and
�

�

�

�

E[Yl(t+ 1)� Yl(t)|Ht]� fl

✓

t

n
,
Y
0

(t)

n
, . . . ,

Ycn(t)

n

◆

�

�

�

�

 �
1

1Take bcnc in case cn 62 N in all that follows.
2See, again, theorem 3.1
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at least as long as t  TD, with D(n) defined as

D(n) =
�

x 2 Rcn+2 : �✏ < xi < c+ ✏, for 0  i  cn
 

,

for some ✏ > 0, where x = (x
0

, x
1

, . . . , xcn+1

).3

4.1.1 Requirements for Wormald’s theorem

Wormald’s theorem rests on solving the system of di↵erential equations given
by

dzl(x)

dx
= fl(x, z0, z1, . . . , zcn),

for each 0  l  cn, on the open, connected set D, passing through zl(0) =
1

nYl(0). This is equivalent to solving

dz
0

(x)

dx
= �z

0

(x)

dz
1

(x)

dx
= z

0

(x)� z
1

(x)

...

dzcn(x)

dx
= zcn�1

(x)� zcn(x)

(4.1)

passing through z
0

(0) = 1 and zl(0) = 0 for 1  l  cn. Notice that if
Ycn(t) > 0 for some t, then there are cn balls in some bin and thus there
must be cn balls thrown, implying that one might change the last line in
(4.1) to dzcn(x)

dx = zcn�1

(x). I do not do this.

The solutions to (4.1) are given by zl(x) =
xl

l! e
�x for each 0  l  cn.

This o↵ers the following corollary.

Corollary 4.1. For each �(n) > 0 with � = o(1), it holds that

Yl(t) =
tl

nl�1l!
e�

t
n +O(�n)

with probability

1�O
⇣n

�
exp

�

�n�3

�

⌘

,

uniformly for 0  t  �n and for each 0  l  cn where �(n) as before.

Proof. This follows from everything that is stated above, theorem 3.1 and
lemma 4.1.

3In case c > 0 but not in N, just take bcnc and look at the case where bcnc balls are
thrown, hence D(n) is defined for elements in Rbcnc + 2.
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This corollary tells for instance that if one choses � =
⇣

2 log(n)
n

⌘

1/3
, then

there exists some C
0

> 0 such that
�

�

�

�

Yl(t)�
tl

nl�1l!
e�

t
n

�

�

�

�

 C
0

log(n)1/3n2/3

with probability

1�O

✓

1

n2/3 log(n)1/3

◆

.

Corollary 4.2. Let Y
0

(t) denote the amount of empty bins at time t. There
exists a C

0

> 0 such that

P
⇣

�

�

�

Y
0

(t)� ne�
t
n

�

�

�

 C
0

log(n)1/3n2/3
⌘

= 1�O

✓

1

n2/3 log(n)1/3

◆

Take for example c = 4 and n = 500. This yields the following plot
(figure 4.1) for nzl(c), where l is the variable.

Figure 4.1: The solutions to the di↵erential equations yielded by Wormald’s
theorem for di↵erent values of l, in x = c.

Another example can be found in figure 4.2, where di↵erent values for
n are displayed, given that C

0

= 0.01, c = 30. This figure shows that

Figure 4.2: The solutions to the di↵erential equations yielded by Wormald’s
theorem for di↵erent values of l, in x = c and plotted for di↵erent n, plus
the respective “error” for each n.

.

there is some area about which the theorem does tell a lot (or at least
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something), but also a vast area for which it is hard to say things about
the maximum or minimum. With high probability, the maximum does not
lay within the bigger bulge, in the example the bulge ends at approximately
l = 40, hence the maximum should be bigger than 40. However, it is hard
to di↵erentiate between for instance l = 50 and l = 60, because the solution
to the di↵erential equations yielded by Wormald’s theorem are close to zero
and the “error” interval remains the same over all l.

Two problems arise. First, what is C
0

? This is very important, because
if for instance C

0

= 1 and c = 30, the moment that the solution to the
di↵erential equations minus the error term becomes bigger than zero, lies
somewhere between n = 106 and n = 107, while for C

0

= 0.01 and c = 30,
this happens for all n 2 N. Second, what determines the spread, hence
which values determine lowerbounds to the maximum and upperbounds to
the minimum?

4.1.2 Bounds for the maximum and minimum

The above o↵ers upper bounds in probability for the amount of bins with l
balls. With this information, it is possible to find bounds for the maximum
amount of balls in a bin. Define Mn as the maximum amount of balls when
there are n bins and cn balls thrown. Notice that, for k = 0, 1 . . . , cn

P(Mn � k) = P(Yl(cn) � 1, for some k  l  cn).

See also that the event
Scn

i=k{Yi � 1} is not necesarrily a union of indepen-
dent sets, but the basic probability laws (Jacob & Protter, 2004, p. 8) do
o↵er the inequality

P(Mn � k) � P(Yk(cn) � 1).

Figure 4.3 shows the upper- and lowerbound (that has the probability as in
Wormald’s theorem) for Yl(cn) at di↵erent values of l. This figure, together

Figure 4.3: Upper- and lowerbounds given by Wormald’s theorem for Yl(cn)
at di↵erent values of l, given n = 500, c = 30 and C

0

= 0.03.
.

with figure 4.2 suggests that with high probability, the theorem of Wormald
o↵ers upper and lowerbounds for the minimum and maximum respectively.
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Theorem 4.1. Let c > 0, then Mn � h(n) with probability 1�O
⇣

1

n2/3
log(n)1/3

⌘

,

where h(n) is the greatest integer solution in l to

cl

l!
� (1 + C

0

log(n)1/3n2/3)ec

n
,

if such a solution exists, and h(n) = 0 otherwise. Moreover, for each l 2 N
there exists an Nl 2 N such that h(n) � l for each n � N .

Proof. Let c > 0. Chose again � =
⇣

2 log(n)
n

⌘

1/3
. Let C

0

> 0 such that

Yl(cn) 2


cln

l!
e�c � C

0

log(n)1/3n2/3,
cln

l!
e�c + C

0

log(n)1/3n2/3

�

with probability at least 1 � C
1

n2/3
log(n)1/3

, for each 1  l  cn and some

C
1

> 0. This is possible by corollary 4.1. Define g(n) = n � log(n)1/3n2/3,
then g(n) ! 1 as n ! 1. This implies that there exists an Nl 2 N, such
that for each n � Nl

cl

l!
e�cn� C

0

log(n)1/3n2/3 � 1,

hence for each n � Nl, the probability that the maximum is greater than l
has at least probability

1� C
1

n2/3 log(n)1/3
.

For each l, this is dependent on c. Hence indeed, Mn � h(n) with the asked
probability, where h(n) is the either 0 or the greatest integer solution in l to

cl

l!
>

(1 + C
0

log(n)1/3n2/3)ec

n
.

That there exists an Nl 2 N for each l such that h(n) > l follows from the
choice of Nl above. This finishes the proof of the theorem.

Notice that theorem 4.1 also holds for the minimum, although it must
be slightly adjusted. This is formulated in the following corollary.

Corollary 4.3. Take c > 0. Let mn define the minimum amount of balls
in any bin after cn balls are thrown, then mn  ĥ(n) with probability 1 �
O
⇣

1

n2/3
log(n)1/3

⌘

, where ĥ(n) is the smallest integer solution in l (greater or

equal to 0) to

cl

l!
>

(1 + C
0

log(n)1/3n2/3)ec

n
,

or ĥ(n) = cn if no solution exists. Moreover, for each l 2 N�0

there exists
an Nl 2 N such that ĥ(n)  l for all n � Nl.
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Proof. The proof is completely analogous to the proof of theorem 4.1.

Another remark on the theorem is about some knowledge on Yl(cn).
Because, for each t, Yl(t) maps in N, the theorem can actually be updated
to l being the greatest integer solution to

cl

l!
>

C
0

log(n)1/3n2/3ec

n
,

because if one knows that Yl(cn) > 0 with probability p, then Yl(cn) � 1,
with probability p.

4.1.3 The Range Distribution

Next to the maximum and the minimum alone, there is also the range dis-
tribution. The range in n, after cn balls are thrown, is defined as Mn �mn,
hence one is interested in P(Mn�mn � k) for each 1  k  cn. It is helpfull
to rewrite k = l

1

� (l
1

� k), for some k  l
1

 cn. Then, one might look at
the events {Mn � l

1

} and {mn  l
1

� k}. Last, notice that

P(Mn �mn � k) = P
 

cn
[

i=k

{Mn � i} \ {mn  i� k}
!

� P
�

{Mn � l
1

} \ {mn  l
1

� k}
�

.

Hence, finding an appropriate l
1

may be enough to find good bounds for the
range distribution. If the events {Mn � l

1

} and {mn  l
1

� k} are almost
independent or can be expressed in terms of each other, the last part of the
equation can be solved to find viable bounds.

4.1.4 Estimating C
0

In the following, notice that the bound C
0

can be chosen independently of �.
Hence, a rescaling of � by some function �

0

(and the probability accordingly)

can always result in �
0

(n) =
C0

0

C
0

�(n). In what follows, when I say “chose C
0

equal to x” I mean: chose C 0
0

= x and take some rescaled �
0

(n) such that
for the �(n) chosen:

C
0

�
0

= C 0
0

�(n).

It is thus necesarry to know what C
0

is, because the last part of asymp-
totic in the probability is rescaled by the power of 1/C3

0

.
To do so, notice that the function f as used for this model is

fl(x0, x1, . . . , xcn) = xl�1

� xl,

for 2  l  cn and f
1

(x
0

, x
1

, . . . , xcn) = �x
1

. This implies that fl is
Lipschitz with constant L = 1.

41



Lemma 4.2. The value of B as in lemma 3.6 is (for this model) the maxi-
mum of

max{4
p
2 + 1, 2c+ 2✏+ 1}

Proof. See lemma 3.1 for g(n) = O(�)  G�(n). The particular bound on
G is given by: G = L = 1, because �

1

= 0 and thus
�

�

�

�

f

✓

t+ k

n
,
Y (t+ k)

n

◆

� f

✓

t

k
,
Y (t)

n

◆

�

�

�

�

 L
w�

n
 L�(n),

because w = dn�� e and �(n) < 1 can be assumed. In this particular model,
L = 1. Hence, g(n) as in lemma 3.1 has the property g(n)  L�(n). This
means that, as in lemma 3.5,

wg(n) + �
p
2w↵  Lw�(n) + �

s

2w
n�3

�3

 Lw�(n) + �

s

2w

⇠

n�

�

⇡

�2

�2

= (L+
p
2)w�(n).

Moreover, an upperbound on  is determied by (see lemma 3.4):

� +

�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�

 � + (L+ 1)�+ �

 (3 + L)�

This means that B0 = L+
p
2(3+L) = 3

p
2+L(

p
2+ 1). In this particular

model, that is equivalent to B0 = 4
p
2 + 1, which finishes part 1.

For the second part, notice that each element in D is upperbounded
by c + ✏ for some ✏ > 0, hence by definition of �(n) it must hold that
(t, z

1

(t), z
2

(t), . . . , zcn(t)) 2 D, which implies that

|fl(t, z1(t), . . . , zn(t))| = |� zl�1

(t) + zl(t)|  2c+ 2✏,

hence the maximum of |fl| for t  supn �(n) is also upperbounded by this.
Thus indeed

B = max{4
p
2 + 1, 2c+ 2✏+ 1},

by definition of B.

Lemma 4.3. Suppose4 �(n) = O(1) and C
0

as in 4.3 is upperbounded
universally over all t  �n by

C
0

 3 sup
n

(

✓

1 +
Bw

n

◆b�nw c
)

� 1  3eA·B � 1,

for some A > 0, which is well-defined.
4That �(n) is O(1) follows from the fact that D is bounded in each element.
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Proof. I will first show that the bound is well-defined and then that it is in
fact a bound. Notice that, rewriting an = 1

B
n
w , it holds that

✓

1 +
Bw

n

◆b�nw c

✓

1 +
1

an

◆�Ban

Moreover, there exists some A > 0 such that �(n)  A for all n. Thus, also,

✓

1 +
Bw

n

◆b�nw c

✓✓

1 +
1

an

◆an◆A·B
.

Notice that the limit of the inner part is e as an ! 1 as n ! 1. Thus,
indeed, the supremum exists.

For the second part, take i = b t
wc and rewrite

Bi = (�n+ w)

 

✓

1 +
Bw

n

◆i

� 1

!

.

Notice that w  2�n by definition of w and assumption that w � n2/3 (else
the probability in the theorem is unbounded, hence always satisfied). So,
indeed,

Bi  3 sup
n

(

✓

1 +
Bw

n

◆i

� 1

)

�n,

by part one of this proof. That the bound for C
0

holds, is because the change
from ki to t the change in Y and z is at most w�  2�n, hence, indeed

C
0

 3eA·B � 1.

Corollary 4.4. Because D is upperbounded in its first element by c+ ✏, it
follows that

C
0

 3ecB+✏B � 1,

with B = max{4
p
2 + 1, 2c+ 2✏+ 1}.

Figure 4.4 shows how C
0

evolves as c grows.

4.1.5 Results

Let n be the number of bins, cn the number of balls throw into the bins and
Yl(t) is the amount of bins with l balls. C 0

0

is a bound chosen, such that

�

�

�

�

Yl(cn)�
cl

l!
e�c

�

�

�

�

 C 0
0

log(n)1/3n2/3, (4.2)
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Figure 4.4: Upperbound on C
0

for di↵erent c.

See figure 4.6 for realisations of the model for di↵erent n and some fixed
c, where the bound as in 4.2 is plotted for C 0

0

= 0.15. Figure 4.5 shows
histograms for the number of bins with 5 balls to get a basic understanding
of the model. The combination of both figures shows that the bound as in
4.3 can probably be made better, because the amount of realisations outside
of the bound (as plotted) was less than 1 percent. Moreover, corollary 4.1
o↵ers that for very large n, the probability is bounded below by something
that gets arbitrary close to 1 as n grows, for any C 0

0

.

Maximum

For the maximum, the probability (in cn) that it is bigger than h(n) as

in theorem 4.1 has the same probability as Yl � cl

l! e
�c falling outside the

bound C 0
0

log(n)1/3n2/3, as seen in figures 4.5 and 4.6. See figure 4.7 that
plots realisations of the maximum for di↵erent values of c, together with the
lowerbound h(n). Moreover, the probability that Mt � h(n) grows arbitrary
close to 1 as n grows by theorem 4.1.

Range

For the range, notice that the probability that Y
0

(t) > 0 is very small,
because the probability that one particular bin gets hit with no ball at a
step in time is 1 � 1

n . Thys the probability that it gets no balls after cn
throws becomes

✓

1� 1

n

◆cn

! 1

ec

as n ! 1. Moreover, by corollary 4.3, there exists some Nl 2 N such that
ĥ(n)  l for each 0  l  cn for n � Nl, hence the minimum becomes
upperbounded by 0. This implies that, although for some c large and n
small, the minimum is lowerbounded by something more than 0, but when
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(a) (b)

(c) (d)

Figure 4.5: Realisations (100 in each sub-figure) of an equiprobable model,
with n = 500, 1000, 1500, 4000 respectively, with (a continuous extensions of
the) upper- and lowerbound plotted. In all figures, C 0

0

= 0.15 and c = 5.

n grows, it is often upperbounded by 0 with high probability. This implies
that the range distribution is often equivalent to the maximum distribution.
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(a) (b)

(c) (d)

Figure 4.6: Histograms of the number of bins with 5 balls (100 in each figure)
of an equiprobable model, with n = 500, 1000, 1500, 4000 respectively, here
c = 5.

(a) (b)

Figure 4.7: Realisations (100 for each value of c) of an equiprobable model,
with n = 500, 1500 respectively, with (a continuous extensions of the) lower-
bound plotted. In all figures, C

0

= 0.15.
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4.2 Model with di↵erent bin sizes: a growing num-
ber of balls

A more sophisticated version of the balls and bins model, is one where the
probability of a ball hitting two particular bins has di↵erent probability.
Denote Ỹl(t) the amount of balls in bin l at time t. Again, it is asked to
model this. Before, I modelled this directly. This time, I shift the process
of balls entering bins, as is written down below. At the end, I shift it back.

First, take a distribution (⇡
1

, . . . ,⇡n) 2 Rn such that ⇡i > 0 for each
1  i  n and

Pn
i=1

⇡i = 1. Second, take some function N(n).5. Third,
define a random process Yl(t) for 1  l  n, with Yl(0) = N⇡l, with the
property

E[Yl(t+ 1)� Yl(t)|Ht] =
Yl(t)

n
.

In this model, t is linked to the amount of balls thrown, but not equal to
it. This is no problem, because the distribution after cn balls are thrown is
asked. This can be achieved by defining D properly, hence only looking at
Pn

l=1

Yl(t)  cn + N , or at Yl(t)  cn for each l and t6. I model Ỹl(t) =
Yl(t)�N⇡l. The results using this model are shown in the sections below.

4.2.1 Wormald’s theorem applied

This section contains the results of Wormald’s theorem, where I chose some
elements specifically. These results are stated as a theorem, proven after-
wards. The section below compares it with reality.

Theorem 4.2. Let Ỹl(t) be defined as above and take some c > 0, �(n) > 0
with � = o(1) and �(n) such that

max
1ln

|Yl(t+ 1)� Yl(t)|  �(n)

with probability 1, then it holds that.

P
⇣

�

�

�

Ỹl(t)�N⇡l(e
t/n � 1)

�

�

�

= O (n�(n))
⌘

= 1�O

✓

n

�
exp

✓

�n�(n)3

�(n)3

◆◆

,

Proof. First, take fl
⇣

t
n ,

Y
1

(t)
n , . . . , Yn(t)

n

⌘

= Yl(t)
n , �

1

(n) = 0, �(n) = 0 and

a(n) = n. Let �(n) � 1 undefined, as the particular process will define what

max
1ln

|Yl(t+ 1)� Yl(t)|

5For example: N(n) = cn
6In this case, the restriction on the total amount of balls can be looked at later, specif-

ically because it does not necesarrily happen that there are exactly N balls thrown after
some t. Which bin get’s balls then?
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is exactly. Clearly, it holds that
�

�

�

E[Yl(t+ 1)� Yl(t)|Ht]� fl
⇣

t
n ,

Y
1

(t)
n , . . . , Yn(t)

n

⌘

�

�

�

 �
1

(n)

with probability 1� �(n). Secondly, the solutions to

dzl(x)

dx
= zl(x),

going through zl(0) =
1

nN⇡l are given by zl(x) =
1

nN⇡lex. From Wormald’s
theorem and lemma 4.1, it follows that

P
⇣

�

�

�

Yl(t)�N⇡le
t/n

�

�

�

= O (n�(n))
⌘

= 1�O

✓

n

�(n)
exp

✓

�n�(n)3

�(n)3

◆◆

.

Changing Yl(t) = Ỹl(t) +N⇡l, the theorem follows.

Notice that the choice of � determines largely what is in both asymptotics
O(·). Moreover, N⇡l becomes a multiplier of the amount of balls in each bin
as time passes. When many balls are thrown, Ỹl(t) comes relatively close to
Yl(t).

Moreover, a definition of D is needed. Let ✏ > 0. Define D(n) as

⇢

x 2 Rn : �✏ < x
0

< c

✓

1 +
N(n)

cn

◆

+ ✏,�✏ < xi < c
⇣

1 + N(n)
cn

⌘

+ ✏

�

,

where x = (x
0

, x
1

, . . . , xn), then D is clearly bounded in each element as
long as N(n) = O(n).

The Model

This section is paritioned in three parts. First, I present a way to find a
process that follows all assumptions above. Second, I use this process to
show what the theorem tells. Third, I compare these results to realizations
of a balls and bins model with di↵erent bin sizes.

Claim 4.1. Let g : N ! [0,1) a function in n. Any process Yl(t) (t =
0, 1, 2, . . .), defined such that (almost surely)

P(Yl(t+ 1)� Yl(t) = g (n) |Ht) =
Yl(t)

ng (n)

and

P(Yl(t+ 1)� Yl(t) = 0|Ht) = 1� Yl(t)

ng (n)

with the property that Yl(t)
ng(n) 2 [0, 1] and such that Yl(0) = ⇡l is a process that

is suitable for theorem 4.2, with �(n) = max{g(n), 1}.
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Proof. Let Yl(t) as in the claim. Notice that

E[Yl(t+ 1)� Yl(t)|Ht] =
Yl(t)

ng (n)
g (n) =

Yl(t)

n
.

Moreover, Yl(t) is positive (it can only grow as t grows) and Yl(0) = N(n)⇡l
by definition. The implication on �(n) follows directly from the assumptions
in theorem 4.2.

Corollary 4.5. The process Yl(t) defined by Yl(0) = N(n)⇡l and with

P
⇣

Yl(t+ 1)� Yl(t) = 2c
�

�

�

Ht

⌘

=
Yl(t)

2cn
,

or Yl(t + 1) � Yl(t) = 0 otherwise can be used for theorem 4.2, under the
assumption that Yl(t)  cn+N(n) for all l and all relevant t. This implies
that �(n) = max{2c, 1}.

The model as presented in the corollary above is the one I will use in what
follows. A di↵erent choice of g would, after all, not make any di↵erence on
the results, since Wormald’s theorem does not use the specific distribution
of change in the process.

See figures 4.8 and 4.9 for specific examples. Here, I chose for the first
eight bins to have ⇡i =

1

2

i+1

(1  i  8) and all other bins equal probability,

hence ⇡i =
1

n�8

� 1

n�8

P

8

j=1

⇡j , 9  i  n. Last, I took N = cn.

(a) (b)

Figure 4.8: Realisations (100 in each sub-figure) of the model with n = 500
and c = 3. The left figure is the amount of balls per bin for the first 13 bins,
the right picture is a histogram of the amount of balls in the first bin (with
⇡
1

= 1/4).

4.2.2 Bounds for the maximum and minimum

Contrary to the equiprobable model, the model for di↵erent sizes looks at
the amount of balls in the bins - not the amount of bins with a certain
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(a) (b)

Figure 4.9: Realisations (100 in each sub-figure) of the model with n = 1000
and c = 3. The left figure is the amount of balls per bin for the first 13 bins,
the right picture is a histogram of the amount of balls in the first bin (with
⇡
1

= 1/4).

collection of balls. Define Mt = max
1ln Yl(t) and mt = min

1ln Yl(t),
then

P(Mt � k) = P
 

n
[

l=1

{Yl � k}
!

and P(mt  k) = P
 

n
[

l=1

{Yl(t)  k}
!

.

All that follows, is done for the maximum. Clearly, the same holds for the
minimum.

Claim 4.2. Under the assumption that Yi(t)’s (in i) are independent for
each t, it holds that

1�
n
Y

l=1

P(Yl(t)  k) = P(Mt > k) 
n
X

l=1

P(Yl(t) > k),

for each k.

Proof. The second inequality holds by the subadditivity of any probability
measure, when noticing that P(Mt > k) = P (

Sn
l=1

{Yl > k}) . This also
implies that

P(Mt > k) = 1� P
 

n
\

l=1

{Yl  k}
!

,

hence by independence of Yl’s, the claim follows.

Explicit forms

All following results are based on two assumptions. The first is that, for
all relevant t and k, the sets {Y

1

(t)  k}, {Y
2

(t)  k}, . . . , {Yn(t)  k} are
independent. Another result is that tf = log(2)n lets z(tf/n) be an element
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of D.7 The theorem below is a general one, which can be applied to find
di↵erent kind of bounds.

Theorem 4.3. Take n
0

2 N and k > 0. Let N(n) be a function such that
Yl(0) = N(n)⇡l for each 1  l  n. Take I ⇢ {1, 2, . . . , n} and find, for
each l 2 I, �l such that

N(n)⇡le
t/n � C

0

n�l(n) > k,

for each n � n
0

. Then

P(Mt > k) � 1�
Y

l2I
C
1

✓

n�(n)

�l(n)
exp

✓

�n�l(n)3

8c3

◆◆

,

for some C
0

, C
1

> 0.

Another variation of this theorem is presented below, which o↵ers worse
bounds for the maximum distribution but ‘costs’ less to calculate (because
for each 1  l  n, or a subset thereof, �l must be determined, however more
l can be found for which the bound holds). The proof for both theorems is
almost identical.

Theorem 4.4. Let I ⇢ {1, 2, . . . , n}, then

P
✓

Mt > min
l2I

n

N(n)⇡le
t
n

o

� C
0

n�(n)

◆

= 1�O

 

✓

n�(n)

�(n)
exp

✓

�n
�3

�3

◆◆|I|!

,

for each �(n) = o(1), � > 0 and t  �n

Proof. Let � = o(1), t  �n. For each l 2 I, it holds by theorem 4.2 that

P
⇣

�

�

�

Yl(t)�N(n)⇡le
t/n

�

�

�

 C
0

�(n)
⌘

= 1�O

✓

n�(n)

�(n)
exp

✓

�n
�3

�3

◆◆

,

which implies that

P
⇣

Yl(t) � N(n)⇡le
t/n � C

0

�(n)
⌘

= 1�O

✓

n�(n)

�(n)
exp

✓

�n
�3

�3

◆◆

,

Notice that minl2I
�

N(n)⇡let/n
 

 N(n)⇡let/n. The result follows by the
fact that P(B) + P(⌦ \B) = 1, by independence (assumption) of the Yl(t)’s
and by claim 4.2.

7This is due to the fact that z(
tf
n
) = c⇡le

log(2)n/n = c⇡l2 hence it is away from the
boundry of D
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4.2.3 The range distribution

Next to a maximum and minimum distribution, there is also the range
distribution. Define Rt the range at time t. Notice that, for each k > 0,
{Rt > k} = {Mt � mt > k}. There exists some k  l

1

 N(n) + cn such
that8

P(Rt > k) � P({Mt > l
1

} \ {mt  l
1

� k}) ⇡ P(Mt > l
1

)P(mt  l
1

� k).

Finding an appripriate l
1

can be done by using theorem 4.4 to lowerbound
probabilities on the events {Mt > l

1

} and {mt < l
1

� k} for multiple l
1

(or
all, if needed). Then, the last step is to just take the maximal multiplied
probability as the lowerbound. This is not the best possible bound, but just
a bound presented here as an example.

4.2.4 Bounding C
0

.

Rephrasing theorem 4.2 to: there exists some C
0

> 0 such that

P
⇣

�

�

�

Yl(t)�N(n)⇡le
t/n

�

�

�

 C
0

�(n)
⌘

= 1�O

✓

n�

�
exp

✓

�n
�3

�3

◆◆

(4.3)

.
As by theorem 3.1, but mostly the proof of it, C

0

can be determined (or
some bound on C

0

). When looking at the function defined by

fi(x1, x2, . . . , xn+1

) = xi+1

,

for 1  i  n, it clearly holds that

|fi(x1, . . . , xn+1

)� fi(y1, . . . , yn+1

)| = |xi+1

� yi+1

|  1 · max
1in+1

|xi � yi|,

hence fi is lipschitz continuous9 with lipschitz constant L = 1 (however D
is defined) and as long as D is bounded.

See lemma ... for the fact that B00 can be determined by L, because f is
clearly di↵erentiable in this case.

Lemma 4.4. The value of B as in lemma 3.6, is the maximum of

max{3
p
2 + L(

p
2 + 1), L(3c+ 1)}

Proof. For the first element of the maximum, see lemma 4.2.

8That the approximation holds is not trivial, as the maximum and minimum are clearly
dependent.

9In the l1 space, as in (Wormald, 1997, p. 34), but also in the l1 space with the same
constant.
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A the maximum on D, for zl(t) (and thus fl(t, z1(t), . . . , zn(t))) is given
by

zl(t) =
N(n)

n
⇡le

t
n  3c,

because zl(t) is at least l1 distance C� away from the boundry and t is
upperbounded by �(n) such that zl(t) is away from that boundry by as-
sumption. Hence, indeed,

B = max{2
p
2 + L(2

p
2 + 1), L(3c+ 1)},

because of the definition of B.

Corollary 4.6. For model 1, it follows, by lemma 4.3, that because D is
bounded in its first element by A = 2c,

C
0

 e2cB � 1,

with B = max{4
p
2 + 1, 3c+ 1}.

A better result than the corollary above is also possible, if more is known
about the particular choice of �, B and �. Moreover, if C

0

(t) is a function
in t, the bound can also be optimized (for t much smaller than �(n)n).

4.2.5 Results

It is important to see that C
0

exists for arbitrary � > 0. Hence, it is possible
to just rescale � by 1/C

0

and get the results. It, of course, does change the
probability in (b) correspondingly. I do not do reshifts to Ỹ here, because
it does not alter the results (besides some basic shift).

Bins

For the following results, chose � such that �(n)C
0

= c0.8

n0.3 . Furthermore, let

⇡i =
1

2

i+1

for 1  i  8 and ⇡i =
1

n�8

� 1

n�8

P

8

i=1

⇡i. For the amount of balls
in particular bins - the random variables for which the process is defined
- I o↵er figures 4.10 and 4.11 The first shows realisations of the model for
di↵erent n and c fixed (and shows the result for the first four bins). The
second shows realisations of the model for di↵erent c and fixed n. Each also
displayes the solution of the function z( t

n)n and the error-bound around this
defined by �. Last, t is chosen to be log(2)n, as for this t it is sure that each
zl(

t
n) = c⇡l2  2c.
The probabilities that Yl lays within the bound are of the order given by

theorem 3.1. The exact bound, however, depends on C
0

and C
1

. It is possi-
ble to find universal bounds; bounds that are the same for all bins. However,
it is also possible to look at the theorem defined for one bin at a time. This
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(a) (b)

(c) (d)

Figure 4.10: Realisations (100 for each value of n) of the model, for c = 5
and the first 4 bins.

might o↵er better bounds for bins that are smaller. For larger bins, the ex-
pected di↵erence and the upperbound on the di↵erence are (certainly near
the end of the process) quite large.

Moreover for small bins, � could be chosen di↵erently. If, for instance,
⇡l(n) = O(1/n2+✏) for some ✏ > 0, the upperbound �(n) = 2c can be
replaced by �(n) = 1, which might o↵er a better probability (certainly for
small n).

Maximum

The method as described above (with N(n) = cn) for arbitrary bin-size
distributions works fine to describe how the maximum behaves as long as
there exist bins for which ⇡l(n)

�(n) ! 1 as n ! 1 because in this case

N(n)⇡le
t/n � C

0

n�(n) ! 1, as n ! 1,

Hence, for each k > 0, there exists some n for which the maximum grows

above k with probability 1�O
⇣

n�
� exp

⇣

�n�3

�3

⌘⌘

. Moreover, for some arbi-

trary ⇡l(n), define

N(n)⇡le
t/n � C

0

n�(n) = k(n),
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(a) (b)

(c) (d)

Figure 4.11: Realisations (100 for each value of c) of the model, for n = 500
and the first 4 bins.

then Mt > k(n) with probability 1 � O
⇣

n�
� exp

⇣

�n�3

�3

⌘⌘

. This is a little

less restricted than the above, because k(n) might have some finite limit as
n ! 1.

For the maximum, the distribution as used for the bins above is not very
interesting, as it is clear that (from a certain point forward) the maximum
is going to be determined only by the first bin with very high probability.
For instance, when n = 300 or larger, this seems to happen (see figure 4.10).

I show it for another distribution, namely one that has ⇡i =
1

8

for 1  i 
4 and is equiprobable for the remaining part. See figure 4.12 for realisations
of the first bin (for di↵erent n and c), with �(n) = c0.8

2C
0

n0.3 .

It is, however, nice to notice that one might define �
1

(n) = 1

4

1/3�(n)

and get the same (order of) probability for the maximum being larger than
cn
2

� �
1

(n)n. See figure 4.13 for some realisations showing this bound.

Range

When there exist bins with the property that ⇡l is lowerbounded in n, then
the maximum is determined by those l, as can be seen in theorem 4.4.
Moreover, as n gets larger, there must always exist bins for which ⇡l(n) ! 0
as n ! 1. The bins with the smallest ⇡l determine the minimum. Suppose
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(a) (b)

Figure 4.12: Realisations (100 for each value of n, c respectively) of the first
bin.

(a) (b)

Figure 4.13: Realisations (100 for each value of n, c respectively) of the
maximum.

that there are bins that have

P(Yl(1)� Yl(0) = 2c|H
0

) =
1

n

cn

2cn
=

1

2n
,

which o↵ers that, when log(2)n steps in time are taken, the probability that
Yl gets no balls at all becomes

✓

1� 1

2n

◆

log(2)n

! 1p
2
,

as n ! 1. In such cases, with other words, the probability that a particular
bin gets no balls becomes very large. Of course, one might argue a rescaling
of the time in terms of c must happen, for intsance through t = log(2c)n.
In this case C

0

would have to change because zl must be somewhere inside
D for this t, which it is not (yet). However, the probability of the bin not
being hit would still be 1p

2c
as n ! 1. Rescaling t in n is not possible,

because that would violate the boundedness of D.
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Thus, the minimum is (for c not too large, and n not too small) with
high probability determined by N(n) = cn in the models above. This im-
plies that, certainly in the models above, the range is determined by the
maximum.

In case of small n, the model described by Wormald does not o↵er good
bounds. In case of large c, it also does not, because this influences the bound
of D to a large extend (therefore) also C

0

(hence the probability). Of course,
this could be fixed by taking n (very) large as well.
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Chapter 5

Conclusions and Future
Research

Let a, n 2 N arbitrary and if {Y (l)
t }1t=0

is a random process (dependent on n)
for each 1  l  a, theorem 3.1 as by Wormald (1997) is used to show that if
the di↵erence of a random process in time, scaled by 1

n , can be described by
su�ciently smooth function fl, the value of the process at time t is close to
something determined only by the system of di↵erential equations implied
by the functions f

1

, . . . , fa, with a probability that grows as n grows and
can get arbitrary close to 1 as n grows for some processes.

I o↵ered a proof of the theorem that follows the lines set out by Wormald
(1995), but his proof is short and, to my belief, incomplete. I made it specific
and proved his statements my own way, providing particular bounds that
are used to find results later on.

Moreover, I updated the original version of his theorem (Wormald, 1995),
and later also the generelized one (Wormald, 1997), by proving one part in a
di↵erent way. This changes the assumptions in the generalised version and
leaves one assumption unused in the original version, without changing the
result, see theorem 3.2 and lemma A.4.

I applied the theorem on two di↵erent examples, both variations of the
balls and bins model.

Let n denote the amount of bins and take cn as the amount of balls
thrown into those bins, where one ball is thrown at a step in time, hitting
either of the n bins with equal probability. If one descibes the amount of

bins with l balls for 1  l  cn as Y (l)
t , this is a random process dependent

on n that satisfies the assumptions in theorem 3.1. See corollary 4.1 that

shows how Y (l)
cn is concentrated. This can be used to show that the maximum

amount of balls in any particular bin after cn balls are thrown is bigger than
a particular function in n, with a probability that can get arbitrary close to
1 as n grows, see theorem 4.1. Moreover, I conclude that (as long as c is
relatively small compared to n), the range is determined by the maximum
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with high probability and the minimum amount of balls in any bin is 0 with
high probability.

Let n again be the amount of bins, but at each time t, bin 1  i  n

gets hit with c balls with probability Y
(l)
t
2cn , where Y (l)

t is the amount of balls

in bin l at time t, with a starting distribution given by Y (l)
0

= ⇡l(n), and
Pn

i=1

⇡i(n) = 1, ⇡i(n) � 0 for each 1  i  n and each n. In this case, again

Y (l)
t is a random variable (for each t � 0) that satisfies the assumptions

in Wormald’s theorem (theorem 3.1). Again, I use this to describe the
distribution of the maximum amount of balls in any particular bin after
tf 2 N steps in time are taken and show that the maximum is greater than
a particular function in n with a probability that gets arbitrary close to 1 as
n grows, for some starting distributions ⇡l(n). I note, again, that the range
is determined by the maximum (for tf not too large), because the minimum
amount of balls in a bin is 0 with high probability.

5.1 Future Research

5.1.1 Equiprobable model

There are di↵erent ways to get better results. I present one possibility. Look
at the variables Ŷl(t) that are defined by

Ŷl(t) =
Yl(t)

c
,

This already implies that the upperbound for Yl(t)  cn can be updated to
be Ŷl(t)  n. Hence, the upperbound on D for all variables that are not t
can be modified to be upperbounded by 1 + ✏ instead of c + ✏. The rest of
the process remains

E(Ŷl(t+ 1)� Ŷl(t)|Ht) =
ˆYl�1

(t)
n +

ˆYl(t)
n

and the function f remains the same. This results in the fact that C
0

can be
upperbounded by e2B�1, where1 B = 4

p
2+1, because also t  n instead of

t  cn (however, this implies that for the original process, some information
gets lost). Moreover, e2B � 1 is still somewhere between 105 and 106, but it
does not grow as c grows. For a slightly better bound see the section below.

5.1.2 Regular model

In case of small ⇡l(n) in the model for di↵erent bin-sizes, the reason the
upperbound on C

0

is very unfortunate (see figure 4.4, noting that C
0

in
this model is even “worse”) because it grows very quick in c. This is pos-
sibly because, certainly near the end of the process, “the expected changes

1See lemma 4.2 and 4.3
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are much smaller than the [...] upperbound on their maximum change”
(Wormald, 1997, p.66). Although Wormald notes this for a deletion oper-
ation in graphs, it also holds for this process. Thus, there might be some
rescaling possible, or one could “use di↵erent martingale inequality”, replac-
ing the one by Azuma (Wormald, 1997).

Similar to the equiprobable model, I present one possibility. Look at the
variables Ŷl(t) that are defined by

Ŷl(t) =
Yl(t)

c
,

Again, C
0

can be upperbounded by e2B � 1, where B = 4
p
2+1, this is still

quite large.
This bound is partly implied by the Lipschitz constant for f . If the

process is updated, this can be changed. Look at

P(Ŷl(t+ 1)� Ŷl(t) = 2) =
Ŷl(t)

2n
,

which o↵ers

E[Ŷl(t+ 1)� ˆYl(t)|Ht] = 
Ŷl(t)

n
,

hence an update in the function fl, being now

fl(x0, x1, . . . , xn) = xl.

This shows that the lipschitz constant of fl becomes . However, before
approximately the same amount of balls are thrown, the time also has to be
rescaled; by 1

 .
The bound for B can be updated using the knowledge that

� +

�

�

�

�

�

fl

 

t

n
,
Ŷ
1

(t)

n
, . . . ,

Ŷn(t)

n

!

�

�

�

�

�

 � + (1 + w
n ),

by definition of fl and defining g(n) = w
n . In part one of lemma 4.2, this

implies that B0 can be updated to equal
p
2 + (2 +

p
2). Noticing that

z(t) = ⇡l(n)et must be upperbounded by 2 + ✏ to remain in D at all, it
holds that t must be upperbounded by at least

t  inf
n�n

0

⇢

min
1ln

⇢

log

✓

2 + ✏

⇡l(n)

◆��

1


,

for some n
0

. The exact result di↵erent for each distribution ⇡. Defining A
as the bound above, multiplied by , the total bound becomes

C
0

 3e
1


A·B�1 = 3 exp

✓

1


A
⇣p

2 + (
p
2 + 2)

⌘

◆

�1 = 3 exp

✓

A


+ 2 +

p
2

◆

�1.

If  gets bigger, then the lipschitz constant gets worse, but the e↵ect is
(apparently) less than the rescaling of time.
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Appendix A

Proof original theorem of
Wormald

The theorem of Wormald is stated below, but proven in a vast amount
of di↵erent lemma’s for readability purposes. Here, I follow the proof by
Wormald (1995).

A.1 Proof of Wormald’s theorem

I will prove the theorem by Wormald (1995) using di↵erent lemma’s, finally
adding up to the full theorem. I must add that in the following, all three
main assumptions (i’), (ii) and (iii) of central theorem hold, but I will ex-
plicitely mention when they are used. Assume the result in (a) holds (given
the assumptions in the theorem, that is), which is a well-known result for
ordinary di↵erential equations, as noted by Wormald (1995), see for instance
Hurewiz (1958, p.32, theorem 11 and 12). As a last remark before I start
the proof, I need to say that at first, I assume a = 1 and l = 1 for that
matter.

A.1.1 Transformation to Martingale

Before I can start, the following claim - albeit it is almost trivial - is needed.

Claim A.1. Let each (s, z) 2 R2 with P(Ysn = zn) 6= 0 for some sn =

0, 1, 2, . . . ,m(n) in D, then
⇣

t+k
n , Yt+k

n

⌘

2 D for each 0  k  w(n) and

0  t  m(n)�w(n), where w(n) as in assumption (i’) and m(n) as in the
general assumptions.

Proof. Let 0  k  w(n) and 0  t  m(n) � w(n). Take s = t+k
n and

z = Yt+k

n . Notice that sn = t + k  m(n) � w(n) + w(n) = m(n). Then

P(Yt+k = Yt+k) 6= 0 trivially, hence
⇣

t+k
n , Yt+k

n

⌘

2 D on the whole space (i.e.

for each ! fixed).
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One can aruge that the assumptions in this claim are largely overdone.
I still use them, because it is used in the original proof of the main theorem
(Wormald, 1995) and since it will become handy when getting deeper in the
proof. Now, it is time to state the first lemma.

Lemma A.1. Assume that, always,

|Yt+k+1

� Yt+k| 
p
w

�2 log(n)

for all k (I call this assumption (a1)) and each (s, z) 2 R2 with P(Ysn =
zn) 6= 0 for some sn = 0, 1, 2, . . . ,m(n) is in D (I call this assumption (a2))
and 0  t  m� w. Then there exists a function g(n) = o(1) such that

Mk = Yt+k � Yt � kf

✓

t

n
,
Yt
n

◆

� kg(n)

is a sumpermartingale with respect to the �-algebra’s generated by Ht, . . . , Ht+w.

Notice that the map ! 7! f
⇣

t
n ,

Yt(!)
n

⌘

is Ht-measurable (see also claim

2.1), which will be used in the proof of this lemma. Last remark on the
lemma, redefining Fi = �(Ht+i) would fit the definition of martingales,
however it would make one lose a feeling of what is actually being using.

Proof. First, I show that, for 0  k < w

E[Yt+k+1

� Yt+k|Ht+k] = f

✓

t+ k

n
,
Yt+k

n

◆

+ o(1)

= f

✓

t

n
,
Yt
n

◆

+ o(1). (A.1)

The first equality follows directly from assumption (ii). For the second

equality, notice that k = o(n) (which trivially holds) as k < w  n2/3

� and
� ! 1 as n ! 1. Therefore,

�

�

�

�

t+ k

n
� t

n

�

�

�

�

= o(1).

Moreover, by the assumption in Lemma A.1, one gets

|Yt+k � Yt|  k

p
w

�2

p

log(n)

 n2/3n1/3

�7/2
p

log(n)

=
n

�7/2
p

log(n)
= o(n),
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since � ! 1 as n ! 1 (thus also �7/2
p

log(n) ! 1). Without further
ado, it must now hold that:

�

�

�

�

Yt+k

n
� Yt

n

�

�

�

�

= o(1)

and thus, by assumption (iii) - that f is Lipschitz-continous on D1,
�

�

�

�

f

✓

t+ k

n
,
Yt+k

n

◆

� f

✓

t

n
,
Yt
n

◆

�

�

�

�

= o(1)

Thus indeed, equation (A.1) holds.
This finishes the first part. In the second part, I prove that Mk is

indeed a supermartingale. Notice, at first, that the existence of a function
g(n) = o(1) follows directly from part one of this proof, as g(n) can be taken
such that

g(n) = max
0k<w(n)

⇢

�

�

�

�

E[Yt+k+1

� Yt+k|Ht+k]� f

✓

t

n
,
Yt
n

◆

�

�

�

�

�

Secondly, it follows that

E[Mk+1

|Ht+k] = E


Yt+k+1

� Yt � (k + 1)f

✓

t

n
,
Yt
n

◆

� (k + 1)g(n)
�

�

�

Ht+k

�

= E
h

Yt+k+1

� Yt+k

�

�

�

Ht+k

i

+ Yt+k � Yt

� (k + 1)f

✓

t

n
,
Yt
n

◆

� (k + 1)g(n)

 Yt+k � Yt � kf

✓

t

n
,
Yt
n

◆

� kg(n)

= Mk,

hence Mk is a super-martingale. The second equality here holds because
Yt, Yt+k and f

�

t
n ,

Yt
n

�

are Ht+k-measurable2 and the inequality follows from
part one of the proof and the choice of g(n). This shows the lemma.

The choice of g(n) here is very helpfull in a later part of the proof. Of
course, chosing

g0(n) = max
0k<w(n)

⇢

E[Yt+k+1

� Yt+k|Ht+k]� f

✓

t

n
,
Yt
n

◆�

would su�ce in the proof of this lemma. The particular g(n) - as in the
proof of the lemma - has two nice properties, which is the reason for chosing
it here already: it is positive and it also lowerbounds E[Yt+k+1

�Yt+k|Ht+k].
This last property guarantees that one can also generate a submartingale
that looks a lot like the supermartingale Mk, which happens in lemma A.3.

1That these elements are indeed in D follows from claim A.1
2This is made more specific by claim 2.1
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A.1.2 Azuma’s inequality

The statements on Azum’as lemma are identical to the proof of theorem 3.1.

A.1.3 Concentration of Yt+w and Yt

Now that Azuma’s lemma is derived and I have shown that a variation
on assumption (i’), (ii) and (iii) implicitly transform di↵erences in Yt into
a martingale through a ‘clever’ trick, I can start showing concentration of
Yt. To do so, I state the following lemma - something that follows almost
immediately from Azuma’s lemma.

Within, conditional probability is used - which is not the case for Azuma’s
lemma. However, Ht needs to be ‘known’ for the creation of the martingale
M

0

,M
1

, . . . ,Mw as it is a martingale with respect to Ht, Ht+1

, . . . , Ht+w.
From this point on, I look at the space conditioned on the history up to
time t; the space conditioned on Ht.

Lemma A.2. The assumptions of lemma A.1 hold. M
0

,M
1

, . . . ,Mw as in
the proof of lemma A.1, then

P
 

Yt+w � Yt � wf

✓

t

n
,
Yt
n

◆

� wg(n) +
C
0

p
2w�

�2

p

log(n)

�

�

�

Ht

!

 exp(��2)

(A.2)

for each � > 0 and some C
0

> 0.

Proof. This proof first shows that the supermartingaleM
0

,M
1

, . . . ,Mw su�es
the assumptions in Azuma’s lemma and then shows the actual result in the
lemma. To do so, notice that

|Mk+1

�Mk| =
�

�

�

�

Yt+k+1

� Yt+k � f

✓

t

n
,
Yt
n

◆

� g(n)

�

�

�

�

 |Yt+k+1

� Yt+k|+
�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�


p
w

�2

p

log(n)
+

�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�

for each k 2 {0, 1, . . . , w � 1}, which follows from the definition of Mk and
because of assumption (a1) in lemma A.1. Furthermore, by assumption (i’),
it is known that p

w

�2

p

log(n)
�

�2

p

log(n)

�2

p

log(n)
= 1

Since
�

�E[Yt+k+1

� Yt+k|Ht+k]� f
�

t
n ,

Yt
n

�

�

� = o(1) by the proof in lemma A.1.
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By choice of g(n) = o(1), it thus follows that3

�

�

�

�

f

✓

t

n
,
Yt
n

◆

+ g(n)

�

�

�

�

 (C
0

� 1)
p
w

�2

p

log(n)

for some C
0

> 1. Hence, one can deduce that

|Mk+1

�Mk| 
C
0

p
w

�2

p

log(n)
,

or in words that the super-martingale di↵erences are bounded above uni-
formly over k = 0, 1, . . . , w � 1. Last, one must see that

E[M
0

] = E[Yt � Yt � 0 · f( t
n ,

Yt
n )� 0 · g(n)] = 0.

This concludes part one of this proof, as the assumptions in lemma 3.2 are
met.

Now take c = C
0

p
w

�
p

log(n)
and ↵ = �

p
2w. From lemma 3.2 we get that

P(Mw � ↵c|Ht)  exp

✓

� ↵2

2w

◆

which is equivalent to

P
 

Mw � �
p
2w

C
0

p
w

�2

p

log(n)

�

�

�

Ht

!

 exp

✓

��22w

2w

◆

= exp(��2).

To finish the proof, notice that Mw = Yt+w �Yt�wf( t
n ,

Yt
n )�wg(n), hence

P (Mw � ↵c) = P
�

Yt+w � Yt � wf( t
n ,

Yt
n ) � wg(n) + ↵c|Ht

�

.

There are a few things left to do to derive at a main result on con-
centration. First, I state another lemma which tells something about the
concentration of Yt+w � Yt � wf( t

n ,
Yt
n ).

Lemma A.3. Suppose again all assumptions in lemma A.1 hold. Then

P
⇣

|Yt+w � Yt � wf( t
n ,

Yt
n )| � w(g(n) + 1

�)
�

�

�

Ht

⌘

= o(n�1)

3The particular choice of C
0

is not very important, as it is just a constant, while the
lemma says something that holds for every �. Moreover, it holds because by the statement
above,

p
w

�2
p

log(n)

is not in o(1).
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Proof. The first part of this proof creates a submartingale (Kk)
w(n)
k=0

. Here,
I use the particular choice of g(n). Define

Kk = Yt+k � Yt � kf( t
n ,

Yt
n ) + kg(n).

This is a submartingale. To see so, notice that

E[Kk+1

|Ht+k] = E[Yt+k+1

� Yt+k|Ht+k]� (k + 1)f( t
n ,

Yt
n ) + (k + 1)g(n)

� Yt+k � Yt � kf( t
n ,

Yt
n ) + kg(n),

because �g(n)  E[Yt+k+1

� Yt+k|Ht+k] � f( t
n ,

Yt
n )  g(n) by definition of

g(n). Therefore E[Yt+k+1

�Yt+k|Ht+k] � f( t
n ,

Yt
n )� g(n). This finishes part

one of the proof.
Now, it follows that�Kk is a supermartingale. To see that the di↵erences

are bounded by the same bound as for the supermartingale (Mn)wn=0

, notice
that

|�Kk+1

+Kk| = |Kk+1

�Kk|  |Yt+k+1

� Yt+k � f( t
n ,

Yt
n ) + g(n)|

 |Yt+k+1

� Yt+k|+ |f( t
n ,

Yt
n )� g(n)|


p
w

�2

p

log(n)
+ |f( t

n ,
Yt
n )� g(n)|.

By the proof of lemme A.2, this is bounded above by4

|f( t
n ,

Yt
n )� g(n)|  (C

0

� 1)
p
w

�2

p

log(n)

hence

|�Kk+1

+Kk| 
C
0

p
w

�2

p

log(n)

By lemma 3.2 it follows, taking ↵ = �
p
2! and c = C

0

p
w

�2

p
log(n)

that5

P(Kw  �↵c|Ht) = P(�Kw > ↵c|Ht)  P(�Kw � ↵c|Ht)  exp(��2).

This equivalent to

P
�

Yt+w � Yt � wf( t
n ,

Yt
n ) + wg(n)  �↵c |Ht

�

 exp(��2).

And clearly, it holds that

P(Yt+w � Yt + wf( t
n ,

Yt
n )  �wg(n)� ↵c|Ht)  exp(��2)

4Here, it is possible to redefine the C
0

in lemma A.2.
5See, for instance, lemma A.2, or its proof.
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Which implies that also:

P(|Yt+w � Yt + wf( t
n ,

Yt
n )| � wg(n) + ↵c|Ht)  2 exp(��2).

Now, the proof is almost finished. Take � =
�
p

log(n)

C
0

p
2

, then

exp(��2) = exp

✓

��2 log(n)

2C2

0

◆

= exp(log(n�1))
�2

2C2

0

hence exp(��2) = ( 1n)
�2

2C2

0 . Because � ! 1 as n ! 1, one also gets �2 ! 1
as n ! 1, so indeed exp(��2) = o(n�1). I can thus conclude that, indeed,

P(|Yt+w � Yt � wf( t
n ,

Yt
n )| � w(g(n) + 1

�)|Ht) = o(n�1),

because by the choice of �, it holds that

↵c = �
p
2w

C
0

p
w

�2

p

log(n)
=

w

�
.

This finishes the proof.

A.1.4 Generalizing the assumptions

Thus far, all proofs rest on one main assuption (a1): that is |Yt+k+1

�
Yt+k| is bounded for all k. However, this is not in line with assumption (i’)
of the main theorem. Therefore, I have to show that the lemma’s above,
mainly lemma A.2 and A.3, all hold even while assuming something over all
“relevant k” (Wormald, 1995, p. 1222).

This - I believe - comes down to very ‘basic’ probability theory. One can
condition the events before on the k’s for which assumption (a1) and then
look at the probability that a k is indeed such a k. It turns out this does not
influence the asymptotic order of the probability I am looking for, which is
shown in the lemma below.

Lemma A.4. Given assumption (i’), i.e.

P
 

|Yt+1

� Yt| >
p
w

�2

p

log(n)

�

�

�

Ht

!

= o(n�3),

for each t < m, always on ⌦n, it (still) holds that, for t  m� w,

P(|Yt+w � Yt � wf( t
n ,

Yt
n )| � w(g(n) + 1

�)|Ht) = o(n�1).

Proof. First, let me define a few sets for readability. For 0  k < w and
t  m� w, write

Bk =

(

! : |Yt+k+1

� Yt+k| 
p
w

�2

p

log(n)

)
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and B =
Tw�1

k=0

Bk. Last, write

A =
�

! : |Yt+w � Yt � wf( t
n ,

Yt
n )| � w(g(n) + 1

�)
 

Look at Bc, the complement of B, and notice that certainly P(Bc|Ht) =
o(n�2), because

P(Bc|Ht) 
w�1

X

k=0

P(Bc
n|Ht)

and P(Bc
k|Ht) = o(n�3) by definition. Moreover, w  n2/3

� , hence one gets
that indeed, P(Bc|Ht) = o(n�2). This also shows that P(B|Ht) = 1�o(n�2).

Now, write PHt(·) = P(·|Ht) for simplicity (and notice that this, on itself,
is a probability measure)6. By a simple property of probability measures
(for instance proven by Jacob and Protter (2004, see theorem 3.4, p. 17)),
it holds that

PHt(A) = PHt(A|B)PHt(B) + PHt(A|Bc)PHt(B
c)

and since PHt(A|Bc)  1 (by the most trivial upperbound for the probability
measure) and PHt(A|B) = o(n�1) by lemma A.3, we have that

PHt(A) = o(n�1)(1� o(n�2)) + o(n�2).

This shows exactly that P(A|Ht) = o(n�1).

Hereby, I can end the section on generalizing assumption (a1). This
leaves the option to dive into the next part of the proof, where the concen-
tration of Yt+w � Yt is converted to the concentration of Yt � nz( t

n).

A.1.5 Concentration of Yt � nz( t
n
)

The concentration of Yt�nz( t
n) - that what the theorem is all about - I show

in this section. I use a proof by induction, and to do so, I break this part
down into three lemma’s, of which I first state the ‘biggest’, but I prove this
last. The reason lies in the definitions and assumptions within the biggest
lemma.

Lemma A.5. Define ki = iw for i = 0, 1, . . . , i
0

, with i
0

= min{bmw c, b�nw c},
where m,w,� as in the assumptions of the theorem ((i’), (ii), (iii)). Then,
for some function �

1

= �
1

(n) ! 1 as n ! 1, it holds that

P(|Yki � z(kin )n| � Bi) = o( i
n). (A.3)

with

Bi =

⇣

w
�
1

+ Bw2

n

⌘

�

(1 + Bw
n )i � 1

�

n

Bw
,

for some B > 0.

6See lemma 2.3
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I will prove this lemma by induction. To do so, let me introduce some
definitions for readability.

A
1

= Yki � z(kin )n

A
2

= Yki+1

� Yki

A
3

= z(kin )n� z(ki+1

n )n

Now that I have introduced the framework for inductive proof, it is time
to state two other lemma’s that will help me prove main lemma (A.5) of
this section.

Lemma A.6. There exists a function �
1

(n) with �
1

! 1 as n ! 1, such
that

�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

<
w

�
1

with probability 1� o(n�1).

Proof. Assume the induction hypothesis, equation A.3. Notice that g(n) !
0 as n ! 1 by choice of g(n) = o(1), because the latter implies that

limn!1
g(n)
1

= 0. This makes the choice of �
1

possible, as letting it be
defined

�
1

(n) =
1

g(n) + 1

�

,

where � as before. This grows to 1 because g(n) ! 0 and 1

� ! 0 as n ! 1.
Now see that

P
✓

�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

� w

�
1

�

�

�

Hki

◆

= P
⇣

|Yki+1

� Yki � wf(kin ,
Yki
n )| � w(g(n) + 1

�)
�

�

�

Hki

⌘

.

Taking t = ki, and noticing that ki+1

�ki = w, one gets that this is equivalent
to

P
⇣

|Yt+w � Yt � wf( t
n ,

Yt
n )| � w(g(n) + 1

�)
�

�

�

Ht

⌘

.

By lemma A.3 (because t = ki  i
0

w  m) this is o(n�1). Lemma 2.5 tells
that, because Y = o(n�1) implies that E[Y ] = o(n�1), the above also holds
in the whole probability space, not just conditioned on Ht. This shows that
indeed,

�

�

�

�

A
2

� wf

✓

ki
n
,
Yki
n

◆

�

�

�

�

<
w

�
1

has probability 1� o(n�1).

Lemma A.7. Let z be a solution in (a), then

�

�

�

A
3

+ wz0
⇣

ki
n

⌘

�

�

�

= O

✓

w2

n

◆
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Proof. By the most simple formula to calculate the first derivative (see for
instance Vuik et al. (2007, see theorem 3.2.1, p. 26)):

�

�

�

�

�

�

z0
✓

ki
n

◆

�
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

�

�

�

�

�

�

= O
⇣w

n

⌘

 Cw

n
,

because ki+1

�ki
n = w

n , for some constant C > 0. This implies that

|A
3

+ wz0
⇣

ki
n

⌘

|  Cw2

n
= O

✓

w2

n

◆

.

This finishes the proof of this lemma.7

A general approach would be to notice that, because z is continuously

di↵erentiable (on the desired domain), there exists a x 2
h

ki
n ,

ki+1

n

i

such that

z0(x) =
z
⇣

ki+1

n

⌘

� z
⇣

ki
n

⌘

w
n

,

because again ki+1

n � ki
n = w

n by the Mean Value Theorem (Vuik et al., 2007).
Hence,

�
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�

�

�

�

z0
✓

ki
n

◆

�
z
⇣

ki+1

n

⌘

� z
⇣
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⌘

w
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�

�

�

�
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�
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�

z0
✓

ki
n

◆

� z0(x)

�

�

�

�

=

�

�

�

�

f

✓

ki
n
, z

✓

ki
n

◆◆

� f(x, z(x))

�

�

�

�

 L

✓

�

�

�

�

ki
n

� x

�

�

�

�

+

�

�

�

�

z

✓

ki
n

◆

� z(x)

�

�

�

�

◆

,

because f is lipschitz with constant L. This is, however, in case of the l1

norm lipschitz assumption, for the l1, just take the max of the two. Next,
notice that

z(x)� z

✓

ki
n

◆

=

Z x

ki
n

f(t, z(t))dt 
✓

x� ki
n

◆

max
t2[0,�(n)n]

f(t, z(t)),

which is a value that f takes on the closed interval because it is continuous
by assumption8 and notice too that x � ki

n  w
n by choice of x. Hence,

7Or, in fact, it does not. It must be noted that z(x) is di↵erentiable almost everywhere
(with respect to the lebesque measure, that is) because the D ⇢ Rn+1 is open and f :
D ! R is Lipschitz, see for instance Heinonen (2005, p. 18). This also o↵ers the bound
for C; it is upperbounded by L, the lipschitz constant of f . Thus, under assumption that
f is analytic, the proof up to this point holds.

8Thus so is z(x). However, this bound seems to be quite abusive.
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indeed,
�

�

�

�

�

�

z0
✓

ki
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◆

�
z
⇣

ki+1

n

⌘

� z
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ki
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⌘

w
n

�

�

�

�

�

�

= O
⇣w

n

⌘

= O
⇣w

n

⌘

,

where the exact bound depends on the assumption on f .

Now, it is time to prove lemma A.5, as all the building blocks are present
to do so.

Proof of lemma A.5. First, notice that z(0) = Y
0

n , hence the induction hy-
pothesis (equation A.3) holds for n = 0. Second, it is helpful to see that

�

�

�

A
3

+ wf(kin ,
Yki
n )

�

�

�

=
�

�

�

A
3

+ wz0(kin )� wz0(kin ) + wf(kin )
�

�

�

.

From lemma A.7 and the fact that z is a solution to (a) (i.e. that z0(x) =
f(x, z(x)) on D), it is known that9
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A
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Yki
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ki
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⌘

�

�

�

,

for some (constant) C � 0. Now it is time to use - once more - the fact that
f is Lipschitz continuous. This implies that

�

�

�

f
⇣
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⌘
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⌘
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z(kin )�
Yki
n

�

�

�

�

,

for some constant L � 0. Furthermore, the induction hypothesis (equation
A.3) o↵ers that |Yki � z(kin )n| < Bi with probability 1 � o( i

n). This shows
the following inequality holds,

�
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f
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⌘

� f
⇣

ki
n ,

Yki
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⌘

�

�

�

 L
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n
,

with probability 1� o( i
n). Hence I can deduce that
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�

 Bw2 +BwBi

n
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for n su�ciently large, with probability 1� o( i
n) and some B > 0 constant

(this is the part where I take B).
Now, let me move to the final part. To do so, notice that

|A
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+A
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+A
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.

9Here, I use that ki
n

 � by choice of i
0

.
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Without further ado, lemma A.6 and A.7 o↵er the following upperbound10
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�
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w

�
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+
Bw2 +BwBi

n
,

=
w

�
1

+
Bw2

n
+

(Bw + n)Bi

n

= Bi+1

with probability at most (1 � o( i
n))(1 � o( 1n)) = 1 � o( i+1

n ). This finishes
the proof, as it shows the induction hypothesis, equation A.3.

As this lemma is proven, I am ready to show that - given assumption
(a2) - the theorem of Wormald holds. This is exactly what the lemma below
tells.

Lemma A.8. Given assumption (a2) and a = 1, (b) in theorem 3.3 holds.

Proof. By lemma A.5, it is know that for t = ki and i = 0, . . . , i
0

with i
0

as before, (b) is satisfied almost surely, because |Yki � nz(kin )| < Bi almost
surely in ⌦n, because

P(|Yki � z(kin )n| < Bi) = 1� o( i
n)

and i  i
0

< n, hence

P(|Yki � z(kin )n| < Bi) = 1� o(1).

Furthermore, it is usefull to see that

Bi

n
=

✓

1

�
1

B
+

w

n

◆

 

1

Bw

✓

1 +
Bw

n

◆i

+
1

Bw

!

! 0

as n ! 1 because w  n2/3

� , which implies that Bi = o(n).
Last, it is known by (i’) that with high probability (1 � o(n�3)), the

changes in Yt between ki and ki+1

are at most

|Yki+1

� Yki | 
w
p
w

�2

p

log(n)
 n

�2/7
p

log(n)
= o(n)

So indeed, almost surely,

Yt = z( t
n)n+ o(n),

which finishes the proof of this lemma and - only assuming (a2) - almost the
proof of theorem 3.3.

10For a more heavy ‘calculation’, showing the last equality, see claim 3.3
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A.1.6 Final generalization

The final generalization - that the assumption on the points that D contains
is too strong - makes the proof complete. This shows that the full theorem
of Wormald (1995) holds. To see this, I present the following lemma.

Lemma A.9. Suppose assumption (a2) does not hold, then one still gets
(b) in theorem 3.3 for a = 1.

Proof. Take ✏ > 0 and define D0(✏) as the set that contains all points (s, z) 2
D that have at least ✏ distance to the boundry of D, denoted as @D, in the
z-direction, i.e.

D0(✏) = {(s, z) 2 D : A✏(s, z) \ @D = ;},

where A✏(s, z) = {(s, x) 2 D : z � ✏ < x < z + ✏} Redefine �0 as �, but now
for D0.

Let n 2 N and take ✏ > 1

�7/2
p

log(n)
. In the induction hypothesis of

lemma A.5, one can add that
⇣

Yki
n , kin

⌘

is in D0(✏). Assuming (a1) also

provides that
�

�

�

�

Yki+1

� Yki
n

�

�

�

�

 1

�7/2
p

log(n)

Moreover, ki+1

n  i
0

w
n  �0, hence indeed

⇣

ki+1

n , Yi+1

n

⌘

does not leave D0(✏),

given (a1).
Moreover, the conditioning on relevant k (i.e. conditioning on (a1)), as

in lemma ?? gives the same probability, hence the result in that lemma
remains when not assuming (a2).

Last, notice that (0, Y0

n ) 2 D0(✏) for some n large enough, because Y
0

n = ẑ
0

and D is open, hence the induction here and in lemma A.5 hold, even for
this D0(✏).

Notice, furthermore, that ✏ can be chosen as close to 0 as one wants (for
n large enough, that is), so one can get arbitrarily close to �n (as �0n goes to
�n as n grows)11. One can conclude that (b) holds, even without assuming
(a2).

The last thing that is left to be shown is that the proof works exactly
the same for a 6= 1. To see this, notice that the probability of

P
 

n
[

i=1

Ai

!


n
X

i=1

P(Ai),

by basic probability law and thus the probability that any of the events
{|Yl(ki) � z(ki/n)n| > Bi} occur (in l) is upperbounded by the sum of the
probability of either event occuring, hence by o(a i

n) in lemma A.5.

11This shows that, the theorem holds for 0  t  min{�n,m} and not only for 0  t 
min{�0n,m}.
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Appendix B

Python Code

B.1 Simple Model

import random
import matp lo t l i b . pyplot as p l t
from math import f a c t o r i a l , exp , log , gamma
import numpy as np
import seaborn as sns

def get max bound (n , c range , C0) :
a n s l i s t = [ 0 ] ⇤ len ( c range )
for i in range ( len ( c range ) ) :

for l in range ( int ( c range [ i ] ) , int (n⇤ c range [
i ] ) ) :
i f c range [ i ]⇤⇤ l /gamma( l + 1) > (C0⇤ l og (n)

⇤⇤ ( 1 . /3 ) ⇤n ⇤⇤ ( 2 . /3 ) ) ⇤exp ( c range [ i ] ) /n :
a n s l i s t [ i ] = l

else :
break

return a n s l i s t

def d rop ba l l ( l , n ) :
l [ random . rand int (0 , n � 1) ] += 1
return l

def f (x , c , n ) :
ans = [ ]
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for i in x :
ans . append ( f loat ( c ) ⇤⇤ i /(gamma( i + 1) ) ⇤exp(�c ) ⇤

n)

return ans

def bound probab i l i ty (n , c , C0) :
N = 100
count out = [ 0 ] ⇤N
x = range (1 , int ( c⇤n) + 1)
z = f (x , c , n )
lower = [ i � C0⇤ l og (n) ⇤⇤ ( 1 . /3 ) ⇤(n ⇤⇤ ( 2 . /3 ) ) for i

in z ]
upper = [ i + C0⇤ l og (n) ⇤⇤ ( 1 . /3 ) ⇤(n ⇤⇤ ( 2 . /3 ) ) for i

in z ]

for i in range (N) :
l = [ 0 ] ⇤ n
for j in range (1 , int ( c⇤n) + 1) :

l = d rop ba l l ( l , n )

print len ( l )
for k in range ( len ( l ) ) :

i f l [ k ] > upper [ k ] or l [ k ] < lower [ k ] :
count out [ i ] += 1

return f loat (sum( count out ) ) / len ( count out )

def max d i s t r ibu t i on (n , c , C0) :
m = [0 ]⇤100
for j in range (100) :

l = [ 0 ] ⇤ n
r t o t = [ 0 ] ⇤ int ( c⇤n)
for i in range (1 , int ( c⇤n)+1) :

l = d rop ba l l ( l , n )

for i in range (0 , len ( l ) ) :

r t o t [ l [ i ] ] += 1

# f ind i n g the maximum
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for i in range ( len ( r t o t ) ) :
i f r t o t [ i ] > m[ j ] :

m[ j ] = i

return m

def equ iprobab le (n , c , C0) :

sns . set ( s t y l e=” darkgr id ” )
l 5 = [ ]

for j in range (100) :
l = [ 0 ] ⇤ n
r t o t = [ 0 ] ⇤ int ( c⇤n)
for i in range (1 , int ( c⇤n)+1) :

l = d rop ba l l ( l , n )

for i in range (0 , len ( l ) ) :
r t o t [ l [ i ] ] += 1

l 5 . append ( r t o t [ 5 ] )
p l t . p l o t ( r tot , ’ ro ’ , alpha =0.3)

x = np . arange (0 , 80 , 0 . 2 )
z = f (x , c , n )
z l ower = [ i � C0⇤ l og (n) ⇤⇤ ( 1 . /3 ) ⇤n ⇤⇤ ( 2 . /3 ) for i

in z ]
z upper = [ i + C0⇤ l og (n) ⇤⇤ ( 1 . /3 ) ⇤n ⇤⇤ ( 2 . /3 ) for i

in z ]

p l t . p l o t (x , z l ower )
p l t . p l o t (x , z upper )
p l t . x l ab e l ( ” l ” )
p l t . y l ab e l ( ”Number o f b ins with l b a l l s ” )
p l t . ax i s ( [ 0 , 14 , 0 , 230 ] )
p l t . show ( )

p l t . y l ab e l ( ”Number o f ob s e rva t i on s ” )
p l t . x l ab e l ( ”Number o f b ins with 5 b a l l s ” )
p l t . h i s t ( l 5 )
p l t . show ( )
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def plot max (n , C0) :
sns . set ( s t y l e=’ darkgr id ’ )
for c in [ 0 . 5 , 1 , 1 . 5 , 2 , 2 . 5 , 3 , 3 . 5 , 4 , 4 . 5 , 5 ,

5 . 5 , 6 ] :
p l t . p l o t ( [ c ]⇤100 , max d i s t r ibu t i on (n , c , C0) ,

’ o ’ , alpha =0.1)

c = [ 0 . 5 + x /20 . for x in range (2⇤55 + 1) ]
bound = get max bound (n , c , C0)
p l t . x l ab e l ( ’ c ’ )
p l t . y l ab e l ( ’ Observat ions f o r the maximum ’ )
p l t . p l o t ( c , bound , ’ r ’ , l a b e l=’Bound ’ )
p l t . l egend ( )

p l t . show ( )

def main ( ) :
n = 1500
c = 5
C0 = 0.15
plot max (n , C0)
# equ i p ro bab l e (n , c , C0)
# p l t . h i s t ( max d i s t r i b u t i on (n , c , C0) )
p l t . show ( )

i f name == ’ ma in ’ :
main ( )

B.2 Di↵erent bin-size model

from math import log , exp , s q r t
import random

def d i s t r i b u t e b a l l s ( beginds , n , c , max time , time=
False ) :
b ins = beginds [ : ]
t o t a l = 0
t = 0
while t < max time :

t += 1
for i in range ( len ( b ins ) ) :
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x = random . random ( )
i f x < f loat ( b ins [ i ] ) /(2⇤ c⇤n) :

b ins [ i ] += 2⇤ c
t o t a l += 2⇤ c

i f not time :
return bins

else :
return bins , time

def b i n i d i s t r i b u t i o n ( beginds , n , c , max time ,
rel num , i ) :
””” re turns the amounts o f b a l l s in b in i , g i ven

beg in d i s t r i b u t i o n ( beg inds ) , n , c and the
number o f r e a l i s a t i o n s

( rel num ) ”””
b i n i = [ ]
t imes = [ ]
t = 0
i f i > n :

return ”Range Error in ’ b i n i d i s t r i b u t i o n ’ : i
= {0} > n” . format ( i )

for j in range ( rel num ) :
b , t = d i s t r i b u t e b a l l s ( beginds , n , c ,

max time , time=True )
b i n i . append (b [ i ] )
t imes . append ( t )

return b in i , t

def d i s t r i b u t i o n ( beginds , n , c , rel num , ⇤⇤ opt ions ) :
””” re turns f o r each element in which (max , min ,

range , zero ) the g iven va l u e s in a l i s t o f
rel num r e a l i s a t i o n s .

Give type and i t r e tu rns max f o r max , min f o r min ,
range f o r range and max , min , range f o r a l l (

or l e a v i n g i t out ) . ”””
maxs = [ ]
mins = [ ]
ranges = [ ]
for j in range ( rel num ) :
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max time = log (2 ) ⇤n
d i s t = d i s t r i b u t e b a l l s ( beginds , n , c ,

max time , time=False )
maxs . append (max( d i s t ) )
mins . append (min( d i s t ) )
ranges . append (max( d i s t ) � min( d i s t ) )

i f opt ions . get ( ’ type ’ ) == ’max ’ :
return maxs

i f opt ions . get ( ’ type ’ ) == ’min ’ :
return mins

i f opt ions . get ( ’ type ’ ) == ’ range ’ :
return ranges

i f opt ions . get ( ’ type ’ ) == ’ a l l ’ :
return maxs , mins , ranges

return maxs , mins , ranges

def equ ip robab l e beg in d s (n , c ) :
return [ f loat ( c ) ]⇤n

def s p e c i a l d s (n , c ) :
over = c⇤n � ( c⇤n/4 . + c⇤n/8 . + c⇤n/16 . + c⇤n/32 .

+ c⇤n/64 . + c⇤n/128 . + c⇤n/264 . + c⇤n/512 . )
return [ c⇤n /4 . , c⇤n /8 . , c⇤n/16 . , c⇤n/32 . , c⇤n/64 . ,

c⇤n/128 . , c⇤n/264 . , c⇤n /512 . ] + [ over /(n � 8)
] ⇤ ( n � 8)

def s p e c i a l d s 2 (n , c ) :
over = c⇤n � ( c⇤n /2 . )
return [ c⇤n /8 . , c⇤n /8 . , c⇤n /8 . , c⇤n / 8 . ] + [ over /(n

� 4) ] ⇤ ( n � 4)

def bound constant ( c ) :
return c ⇤⇤ ( 0 . 8 ) /2

def s o l (n , c , i ) :
return s p e c i a l d s 2 (n , c ) [ i ]⇤2
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def sol max (n , c , I ) :
min val = c⇤n
for i in I :

i f s p e c i a l d s 2 (n , c ) [ i ] < min val :
min val = s p e c i a l d s 2 (n , c ) [ i ]

return min val ⇤2

def lamb (n) :
return 1/(n ⇤⇤0 . 3 )
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