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Model Verification of a Satellite with Large Flexible

Appendages for Control System Design

Erwin Mooij∗ and Derek I. Gransden†

Delft University of Technology, Faculty of Aerospace Engineering,

Kluyverweg 1, 2629 HS Delft, The Netherlands

Power requirements of modern spacecraft compel large solar panels to fulfil functional
needs without resorting to, for example, nuclear systems. It is common practice to develop
a rigid-body control system to effect changes to the system state, that is, to manoeuvre
and re-orient the spacecraft, without considering solar panel flexible body mechanics. The
paper examines and compares the performance of a simple adaptive controller (SAC) and
a linear quadratic reguluator (LQR) controller for their ability to control the flexible mo-
tion of the solar panels with respect to manoeuvring operations and a potential impact
scenario. First the controller designs are explained, with details regarding the design of
the SAC and how it computes the reference model to compare the difference of the plant
state and commanded state. The linear three-dimensional structural beam model of the
flexible appendages is explained including the time integration, which is performed through
Newmark’s method. Some verification studies are performed: comparisons between a com-
mercial solver and the linear beam model are detailed, followed by a thorough investigation
of the performance of the SAC with respect to an LQR controller. Monte-Carlo simula-
tions provide a range of controller performance indices, which show that while the LQR
can outperform the unoptimised SAC, the SAC is more robust in controlling oscillatory
behaviour around the y-axis. Furthermore, with Monte-Carlo design optimisation, enabled
by the rapid solution of the flexible mechanics, the SAC can be improved to be competitive
with the LQR, and to exceed the performance of the LQR in control effort and oscillatory
behaviour, in particular with the pitch and yaw thrusters.

I. Introduction

Satellites that have missions at relative large distance from the Sun require large solar panels to fulfil
the power requirements without resorting to, for instance, nuclear means (Fig. 1). These solar panels have
a significant impact on the mass properties of the complete satellite and their flexibility interacts with the
dynamics of the system. However, smaller (and much lighter) satellites may also have large power demands.
A good example is the category of communications satellites, with, for instance, panel lengths of about 19
m for the next generation of Intelsat satellites (Intelsat 29e, launched early 2016, spans a total of 44 m),
or the total deployed length of 40.9 m of the HS-702 satellite bus of Hughes Space and Communications
Company. In addition, the perturbing environment around Earth may be more demanding on the attitude
control system, inducing a stronger interaction between flexible and rigid-body dynamics.

Previous research1,2, 3 focussed on the reorientation and associated attitude control of a rigid satellite
with two large, flexible solar panels, for which the complex attitude control system has been based on a simple
adaptive control algorithm. The rigid body-elastic body coupling in the simulation has been investigated
using a finite element description with Lagrange multipliers as force constraints. The coupled dynamics of
flexible and rigid bodies was observed to affect the efficacy and accuracy of the on-board controller. Due to
the high gains and its model-following properties, the controlled response of the system approached that of a
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Figure 1. Artist impression of Rosetta approaching comet 67P/Churyumov-Gerasimenko. Image: ESA

rigid body, albeit at the expense of a significant control effort. The complexity of this model and its associated
computational cost prevents an extensive tuning of the adaptive controller, leading to a sub-optimal design.

To support control-system design and to allow for extensive controllability analysis, the existing flexible
modeling is reviewed in terms of accuracy and simulation speed. For the current research, a simplified,
linearised model will be developed, and compared and verified with a commercial FEM code. In terms of
controller design, two principally different systems will be analysed, i.e., a simple state-feedback controller
with optimal gains (a so-called linear quadratic regulator) and the aforementioned simple adaptive controller.
It is stressed that neither controller will be optimised for performance. The current study is merely aimed at
setting up an efficient methodology with which controllers for (space) systems with flexibility can be designed
and analysed. Nonetheless, the controller performances will be compared and suggestions for improvement
given.

The remainder of this paper is organised as follows: Section II provides, after a brief background on
simple adaptive control, a detailed overview of the control-system design and the benchmark results for a
rigid satellite. Section III continues with a discussion on the theory and modelling aspects of flexible solar
panels. In Sec. IV, the developed structural model and associated simulator is verified, and the results for
a number of characteristic cases are given in Sec. V. Section VI concludes the paper and provides some
recommendations.

II. Control System Design

A. Simple Adaptive Control

The attitude-control system is developed using the concept of so-called simple adaptive control (SAC),4 and
is based on the principle of tracking the output of a reference model. Therefore, this system could also
be classified as a model reference adaptive control (MRAC) system, although a principal difference from
the original MRAC is that full state knowledge of the plant to be controlled is not required. A schematic
overview of a simple adaptive controller is shown in Fig. 2. The control law is given by

up(t) = Kr(t)r(t) (1)

where r(t) = [ey(t) xm(t) um]
T

and Kr(t) = [Ke(t) Kx(t) Ku(t)]. It can be seen that the model input um

and model state xm are required to form part of the input signal up to the plant. Moreover, the so-called
output error ey serves as a feedback quantity to form the third element that composes up. The three gains,
i.e., Kx, Ku and Ke, are adaptive.

To compute the adaptive gains, Kr is defined to be the sum of an integral and a proportional component:

Kr(t) = Ki(t) + Kp(t) (2)

with
K̇i(t) = eyr

T(t)Ti (3)
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Figure 2. Basic architecture of a Simple Adaptive Control algorithm.

Kp(t) = ey(t)rT(t)Tp (4)

In Eqs. (3)-(4), the weighting matrices Tp and Ti are positive semi-definite and positive definite, respectively.
Note that the proportional-gain component has a direct influence on the transient tracking behaviour, but is
strictly speaking not required to enforce asymptotic tracking, as Tp can be zero. This is guaranteed by the
integral gain. To improve the transient response by only using an integral gain, a constant gain value can be
added to Ki. An advantage over the use of the proportional gain is that this constant value is independent of
ey, and is therefore non-zero even if ey is zero. In that case, the integral gain derived from Eq. (3) becomes

Ki(t) = Ki,0 +

t∫
0

K̇i(t)dt (5)

One way to improve the damping of the system is to include the error derivatives in the output error
vector. In that case, the error for output y becomes:

ey(t) = KT
y(ym(t)− yp(t)) + KT

ẏ(ẏm(t)− ẏp(t)) (6)

with KT
y and KT

ẏ being a proportional and derivative output gain, respectively. However, to avoid calcu-
lating the numerical derivative of the outputs and to tune the related gains in multiple-output systems, an
alternative expression for the output error may be used. Adjusting the output matrix by pre-multiplying it
with Kc, the optimal gain matrix from solving the Algebraic Riccati Equation for a closed-loop linearised
version of the plant, sufficient damping is commonly introduced in the system to have a proper response.5

The output error becomes in that case

ey = ym − yp = Kc (Cmxm(t)−Cp(xp, t)xp(t)) (7)

So far, an ideal environment has been considered. To cope with environmental disturbances that lead to
a persistent non-zero error and therefore to a continuous change in the integral gain Ki, a robust design can
be applied to adjust the integral gain and prevent it from reaching very high values. The integral term of
Eq. (3) is adjusted as follows:

K̇i = ey(t)rTTi − σiKi(t) (8)

Without the σi-term, Ki(t) is a perfect integrator and may steadily increase (and even diverge) whenever
perfect output-following is not possible. Including the σi-term, Ki(t) is obtained from a first-order filtering
of ey(t)rTTi and, therefore, cannot diverge, unless the output error diverges.
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B. Reference Model

The current application of SAC focuses on a satellite with two large solar panels,1,3 and has been schemat-
ically depicted in Fig. 3. Whereas an actual satellite consists of a rigid bus with two flexible solar panels,
the reference model for the controller is assumed to be a linearised, rigid satellite. This choice should make
it possible to obtain a more or less rigid-body response for an actual satellite if strict model following is
achieved.

The geometry and mass properties of the rigid satellite have been defined such that they match those
of a Rosetta-like satellite.3 The satellite body is a parallelepiped with a height of 2.8 m, and a rectangular
top and bottom cover of 2.1 m × 2.0 m. The mass of this body is 2,030 kg (dry mass plus current fuel;
fuel sloshing is not considered, though), assumed to be uniformly distributed, with a corresponding inertia
tensor of Ibus = diag(1991,1924,1364) kg m2. The two solar panels are represented by rectangular flat plates
of 14 m × 2.3 m, each having a mass of 40 kg and an inertia tensor of Ipanel = diag(18,653,671) kg m2,
referenced to the panel centre of mass, which is located at half the panel lengtha. In the current simulation
model, the panels are fixed to the satellite body with a stiff connection of 1 m, transferring forces and
moments at a point on the related wall, located halfway down the satellite bus. The inertia tensor for the
complete (rigid) system is IB = diag(2027,9746,9150) kg m2. The satellite’s position is currently of no im-
portance as neither the flight environment nor any coupling with the orbital motion is considered. Actuators
for this satellite include a set of reaction control system (RCS) thrusters, with maximum available moments
of MT = ±50 Nm around each axis.

Figure 3. Satellite Geometry.

The reference model consists of a linearised state-space model for the rotational motion of the satellite,
based on Euler angles for the attitude representationb, i.e.,

ẋm = Amxm(t) + Bmum(t) ym = Cmxm(t) (9)

with the model state and control vector given by

xm =
(
pm qm rm φm θm ψm

)T
um =

(
MTm,x MTm,y MTm,z

)T
and the model output vector ym defined by the reference-model related part of Eq. (7), i.e., ym =
KcCmxm(t). The above satellite model is stabilised by means of a linear quadratic regulator (LQR), i.e., a
linear state-feedback controller for which the gains, Kc, have been computed with optimal control theory.6 In-
put for the design of the LQR is the maximum allowable state deviation and the maximum control effort. The
applied numerical values are ∆pmax = ∆qmax = ∆rmax = 0.2◦/s and ∆φmax = ∆θmax = ∆ψmax = 0.5◦ for
the state variables, and ∆MTx,max = ∆MTy,max = ∆MTz,max = 50 Nm for each of the control parameters.
The low values for the angular-rate deviation should prevent actuator saturation, as the (heavy) satellite
might be slow to start rotating. The small values for the angle deviations, on the other hand, would lead to
slightly larger actuator commands such that the control will be “tighter”. In terms of gain values, the ones
associated with the angular rate carry more weight.

aThe tensor is defined with respect to a local panel frame, with the X-axis pointing outwards along the panel centre line,
the Y -axis parallel to the YB-axis, and the Z-axis being the right-handed complement.

bThe definition of the Euler angles is the 3-2-1 definition commonly used in the aerospace industry. The time-rate of change
is driven by the angular rate, representing the rotation of the body frame with respect to the inertial frame. The output of the
controller is thus a moment vector in the body frame. To interface with the structural model that is inertial-frame referenced,
appropriate transformation matrices are used to bring the control moment to the inertial frame, and, vice versa, the propagated
(pseudo) Euler angles to the 3-2-1 definition.
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C. Integrated System

The reference model is used in such a way that, when the commanded attitude changes, the effect is im-
mediately noticeable to the model, and the closer the reference model approaches the commanded attitude,
this effect will diminish. So rather than following the command, it will try to reduce the difference between
plant state and command. For example, when a one-degree step is applied to any of the attitude angles, the
corresponding model angle will develop a one-degree error that the stabilising LQR tries to reduce to zero.
Since the corrective control will be large when faced with this error, it provides a strong reference signal
to the adaptive controller. Any successive change in command will then be added as a differential error
with respect to the previous command. The advantage of this implementation is that a maximum transient
response is enforced right from the beginning, taking all information from the model into account. When the
plant state approaches the commanded value, and the model has returned to its nominal state, the driving
signal will be the output error, ey, and can be considered as a fine tuning of the response that removes the
steady-state error. An additional advantage is that when in steady state, the input signals from the model
are zero, and thus cannot result in jittering when a small output error occurs.

The design parameters of the adaptive controller are the weighting matrices, Tp and Ti, the initial values
of the integral gain, Ki,0, and, as a safeguard against diverging output errors, the filter parameter, σi. Each
of the attitude angles will be controlled separately, because the satellite under consideration is relatively
heavy and slow to move and all three motion axes can be considered to be decoupled. This will simplify
the controller design. Despite the large number of design parameters, one can relatively easily establish a
baseline controller, and improve the performance by locally optimising the design. This can be done, for
instance, by numerical optimisation or by trial and error, depending on the experience of the designer. Tables
1-3 list the values of the applied design parameters.

As an example of the satellite’s response, commanded steps of φc = ψc = 1◦ and θc = -1◦ are executed
at t = 0 s, where the satellite with its solar panels is treated as a single, rigid body, and the dynamics is
evaluated using Euler’s equation of rotational motion. Two simulations are done, i.e., one with the LQR as
stabilising controller for the nonlinear satellite, and one with SAC (with the same stabilising LQR included
in the reference model). The results show that both the LQR and SAC provide a smooth and stable response.
Figure 4 shows the time history of the three Euler angles obtained with the adaptive controller. For both
φ and ψ it takes about 10 s to execute the command; the pitch response is a bit faster, even though this
axis is the more difficult one to control. In the lower part of the figure, the corresponding control moments
are plotted. As the controller is designed for accurate “pointing”, allowing only small errors after a brief
transient period, the thrusters are momentarily saturated. Once the satellite starts rotating, the thruster
moments quickly reduce.

In Fig. 5 the control errors are shown, i.e., the difference between the commanded and actual angles.
The LQR is a bit faster in X and Z direction, whereas the SAC is faster in Y . From the preliminary test

Table 1. Design parameters roll controller

Tp Ti Ki,0 σi

eφ 10 15 80 0.2

pm 10,000 20,000 100 0

φm 8,000 8,000 100 0

MTm,x 0.5 0.05 -1 0

Table 2. Design parameters pitch controller

Tp Ti Ki,0 σi

eθ 8 6 6 0.2

qm 10,000 10,000 0 0

θm 8,000 8,000 0 0

MTm,y 0.005 0.01 0 0

Table 3. Design parameters yaw controller

Tp Ti Ki,0 σi

eψ 10 15 100 0.2

rm 10,000 20,000 2 0

ψm 8,000 8,000 2 0

MTm,z 0.05 0.03 -1.5 0
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Figure 4. Rigid-body response for combined step commands (SAC).
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Figure 5. Control errors for both LQR and SAC (combined step commands).

results of the flexible-satellite response, it was found that θ is more difficult to control, so it is of interest
to see what control errors occur once the flexible panels are included. Those results will be presented and
discussed in Sec. V.

III. Satellite Structural Model

Work on articulated rigid body satellites with flexible multi-body appendages can be found, for instance,
in Ref. 7, where the authors treat two different approaches: a Newtonian mechanics rigid body method
and flexible motion treated with Lagrange equations and implemented with a finite element (plate) method.
Stability analyses have also been performed for a rigid satellite bus coupled with solar arrays.8 They show
that flexible panels do influence the stability margins of the satellite, but the choice of modelling techniques
may also influence its stability margins. Flexible solar arrays are commonly modelled as beams, or in a
finite element software to determine the mode shapes, and applied to the state-space as normalised co-
ordinates.9,10,11

In this work, the intention is to create a simplified structural model to replace the slower 3D hexahedral
model with constrained rigid body and elastic body mechanics used in previous research,2,3 which will be
compared in a future paper. With a faster model, a comparison between a simplified linear model and a
complex nonlinear model can be made to determine how the modelling technique influences the stability of
the spacecraft. A computationally fast model with simplified geometry can be used to tune the adaptive
controller and a more robust, more accurate but more computationally expensive, model can replace the
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Figure 6. Beam Geometry.

simplified model when performing system-wide verification and validation.
Therefore, a linear, two node-per-element, three-dimensional Euler-Bernoulli beam model replaces the

former to allow for fast sensitivity and controller verification with respect to variable geometric and material
properties. The beam model is separated into three physical parts: the flexible solar panels, a rigid-like link
that separates the solar panels from the satellite bus, and the satellite bus itself. The three parts are exactly
as described in Ref. 3; Figure 3 shows the global co-ordinate system and satellite geometry. However, in
place of the constrained mechanics of the previous work, a continuous beam model is presented such that the
satellite bus and links are represented together, without the use of Lagrange multipliers that may destabilise
the simulation.12

The beam model uses a set of Tait-Bryan angles as a directional cosine matrix for the orientation of
the deformed beam. In the initial configuration, the beam model is coincidental with the inertial X-axis.
Figure 6 shows a beam element with nodes 1 and 2, in the deformed configuration with respect to the inertial
co-ordinate system. (Note: the directional rotation angles do not, in general, correspond to the Euler angles
used for the controller. The transformation matrix is the multiplication of the rotation about the x-, y-,
and z-axes.) Elemental positive directions are initially assumed to be co-linear with the inertial co-ordinate
system.

Euler-Bernoulli beam models are common in finite element mechanics texts, although it is more difficult
to find three-dimensional beam models. For a three-dimensional development of a beam model, a reader is
referred to Refs. 13 and 14, as examples. To give an impression of the elemental mass and stiffness matrices,
the matrices are presented in their full form in Eqs. (10) and (11) in the beam element local coordinate
system:

me = ρAL



1
3 0 0 0 0 0 1

6 0 0 0 0 0
13
35 0 0 0 11L

210 0 9
70 0 0 0 − 13L

420
13
35 0 − 11L

210 0 0 0 9
70 0 13L

420 0
Iy+Iz

3A 0 0 0 0 0
Iy+Iz

6A 0 0
L2

105 0 0 0 − 13AL
420 0 − L2

140 0
L2

105 0 − 13L
420 0 0 0 − L2

140
1
3 0 0 0 0 0

13
35 0 0 0 − 11L

210
13
35 0 11L

210 0
Iy+Iz

3A 0 0
L2

105 0

sym. L2

105



(10)
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and

ke =
E

L



A 0 0 0 0 0 −A 0 0 0 0 0
12Iz

L2
0 0 0

6Iz

L
0 −

12Iz

L2
0 0 0

6Iz

L
12Iy

L2
0 −

6Iy

L
0 0 0 −

12Iy

L2
0 −

6Iy

L
0

GJ

E
0 0 0 0 0 −

GJ

E
0 0

4Iy 0 0 0
6Iy

L
0 2Iy 0

4Iz 0 −
6Iz

L
0 0 0 2Iz

A 0 0 0 0 0
12Iz

L2
0 0 0 −

6Iz

L
12Iy

L2
0

6Iy

L
0

GJ

E
0 0

4Iy 0

sym. 4Iz



(11)

where L is the element length, which is a function of the positions of the element nodes. In these equations,
E is the isotropic beam material Young’s modulus, G is the material shear modulus, A is the beam cross-
section area, Iy and Iz are the y- and z- second moments of area of the beam, J is its polar moment, and ρ
is the density of the beam element. Here it must be re-iterated that the beam element properties depend on
the location of the element with respect to the satellite, that is, the material and geometric properties listed
are consistent with the part of the satellite upon which the element exists. In other words, E, G, A, Iy, Iz,
J , and ρ depend on whether the element is part of the satellite bus, the connecting link, or the solar panels.

With the matrices from Eqs. (10) and (11), the global mass and stiffness matrices, M and K, are
assembled using the transformation

M = RTmeR (12)

K = RTkeR (13)

where

R =


r 0 0 0

r 0 0

r 0

sym. r

 (14)

and r is the product of the rotation matrices

r = X (θx)Y (θy)Z (θz) (15)

where X, Y, Z are intrinsic rotations. Therefore, once the nodal displacements have been calculated, the
internal (elemental) forces and moments can be recovered as

Fe = keRde (16)

The elemental force and displacement vectors are given as

Fe =
[
F

(1)
x F

(1)
y F

(1)
z M

(1)
x M

(1)
y M

(1)
z F

(2)
x F

(2)
y F

(2)
z M

(2)
x M

(2)
y M

(2)
z

]T
(17)

and

de =
[
x(1) y(1) z(1) θ

(1)
x θ

(1)
y θ

(1)
z x(2) y(2) z(2) θ

(2)
x θ

(2)
y θ

(2)
z

]T
(18)

where the superscript denotes the element nodal number.
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These matrices are assembled in the same manner as the solid body elastic mechanics, which will have
the generic form (since a damping ratio is not currently used):

Md̈ + Kd = F (19)

The time integration is done by Newmark’s method, which allows one to have second-order accuracy for a
spectral radius, ρ∞ = 1.0, and is stable under the conditions

γ ≥ 1

2
, β ≥ 1

4

(
γ +

1

2

)2

So, for each time step one can rewrite Eq. (19) as

Man+1 + Kdn+1 = F (tn+1) (20)

where according to Newmark’s method, updating the acceleration and velocity is given by,

an+1 = 1
β∆t2 (dn+1 − dn)− 1

β∆tvn −
1−2β

2β an

vn+1 = vn + γ∆tan+1 + (1− γ) ∆tan

}
(21)

Now that all unknowns can be described using only the unknown displacements, dn+1, by taking the Gateaux
derivative, and rearranging the terms so that the unknown displacements are on the left side of the equation,{

1

β∆t2
M + K

}
dn+1 =

1

β∆t2
Mdn +

1

β∆t
Mvn +

1− 2β

2β
Man + F (tn+1) (22)

Keffdyndn+1 = Feffdyn (tn+1) (23)

which is solved in the usual manner. With dn+1 known, one can solve for the unknown velocities and
accelerations using Eq. (21).

IV. Flexible Satellite Verification

Before applying the beam model to various attitude-control problems, and discussing the results of the
controllability analysis, the developed models and simulator are compared to a commerical model. This is
done both from a structural and an operational point of view.

To verify the linear Euler-Bernoulli beam model, a beam model is implemented in Dassault Systèmes
Abaqus R©. Both models, which will be referred to as the simplified model and the commercial model, are
created in the same manner: a connected set of elements representing the span of the satellite from the solar
panels, the connecting link, and the satellite bus, with the appropriate symmetry. Both models have 80
elements spanning each of the solar panels, each rigid link has 1 element, and the satellite bus consists of 2
elements, for a total of 164 elements and 990 degrees of freedom.

Both models have the same geometric and material properties, as shown in Table 4. In this table the
labels msp, mbus, and mlink refer to the masses of each of the solar panels, the satellite bus, and each of
the connecting links, respectively. The total mass of the satellite is given by mtot and the mass moments of
inertia Ixx, Iyy, and Izz are also for the entire satellite. Both models’ flexibility parameters are based upon
an estimated 1 Hz cantilever-beam first natural frequency. The natural frequencies of both models are listed
in Table 5.

Table 4. Mass properties of simplified model and commercial model

mtot msp mbus mlink Ixx Iyy Izz

kg kg kg kg kgm2 kgm2 kgm2

Simplified 2030 40 1950 0.1 2027 9746 9150

Commercial 2030 40 1950 0.1 2026 10036 9154
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Table 5. Natural frequencies of the simplified model and commercial model

1st 2nd 3rd 4th 5th 6th

Simplified [Hz] 1.029 2.653 6.395 7.858 17.86 18.79

Commercial [Hz] 1.029 1.925 6.394 6.867 17.86 18.12

% Difference 0.000 31.80 0.000 13.46 0.000 0.04

The differences in the natural frequencies can perhaps be explained by the default use of Timoshenko
elements (B32 elements) in Abaqus, although with a correction for the slenderness ratio, and the fact that the
commercial model uses fewer assumptions regarding the reduction in dimensionality of the physical system.
(For example, in the simplified model shear effects are neglected and bending loads do not contribute to the
extension or contraction of the beam.) It should be noted that the eigenmodes of the two models are identical
for symmetric modes and vary slightly (a larger slope of the satellite bus orientation in the Abaqus model) in
the anti-symmetric modes. Since the mass properties of the two models are nearly identical, varying by less
than 3% in the case of Iyy, it seems the main contribution for the differences of the natural frequencies arises
from the stiffnesses, and the stiffness of the Abaqus-generated model must be lower for anti-symmetric cases.
The effective Young’s moduli are chosen to be the same for each partition of the beam: the solar panels, the
connecting links, and the satellite bus; therefore, this must come from the additional contributions of a more
rigourous model in the commercial software. It would seem to support the fact that the rotations of the
satellite hub in the anti-symmetric modes are due to shear effects that are not considered in the simplified
model. (Additionally, the simplified model does not support large rotations, which limits the validity of the
model.) These effects are also apparent on the displacement of the longitudinal co-ordinate.

The Newmark parameters used in the simplified model are based on ρ∞ = 1.0, which means β = 0.25
and γ = 0.5, but the commercial model uses the defaults in the explicit-dynamic solver. There is a difference
in the time step between the two models: the simplified model uses a ∆t = 0.002 s (an order of magnitude
lower than the nominal control simulations), but the commercial model automatically calculates the time
step, which was found to be ∆t = 5 × 10−8 s. The stable time increment in Abaqus is quite small due
to the size of the elements and the wave speed of the material, and the fact that the solver is an explicit
procedure. Due to the implicit nature of the Newmark method, a larger step size can be used. (Structural
step size sensitivity was performed; a ∆t = 0.002 s was concluded to be sufficient when compared to finer
time discretisations.) Therefore, the computational time for both models is also not equivalent. To test the
simplified model, and to connect the research with a paper related to orbital control with low-momentum
impacts,15 an impact of an object with the spacecraft is simulated. Both models (simplified and commercial)
are run with an impact of 100 N, uncontrolled, in the z- and y-directions for a duration of 0.02 s and left to
drift for the remaining time up to 10 s, at which time the simulation ends.

The results of the impact simulation on the two models show some differences, in particular in the
starboard solar-panel edge displacement and velocity. These two indicators were chosen, because they give
the greatest deviation from the rigid body deflections and are also closely related to the values the controller
uses, which are the angles and angular velocities of the satellite bus. Figure 7 shows the tip displacements of
the starboard solar-panel edge as a function of time and the rigid-body tip displacement is included to show
what the rotational displacement would be in the case the stiffnesses were infinite. The final tip displacement
is compared in Table 6, with the rigid tip displacement given as well. Clearly, the rigid tip displacement is
not meant to be compared to the elastic body displacements; however, it is useful to see the effect of the
rigidity of the panels, given that the moments of inertia are greater in the y-direction than in the z-direction.

Figure 7 shows that there is an approximately constant discrepancy between the simplified model and
the commercial model, but otherwise the vibratory motion of the solar panels is reasonably well captured.
For each direction, the same period and amplitude of elastic motion is found for the flexible bodies, although
it is not clear for the y-direction. The x-axis displacement has a non-constant error due to the combined
effect of the additional displacement of the y- and z-axes. Figure 8 shows the starboard edge velocity
during the simulation time, and it is clear that the discrepancy in the displacement variables comes from the
differences in velocity. While the commercial-solver edge velocities oscillate around the rigid-body velocities,
the simplified model velocities are offset. This is particularly visible in vy, in which high-frequency but
small-amplitude vibrations dominate the elastic response. Table 6 summarises the differences between the
end-time tip displacements of both models.
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Figure 7. Starboard edge displacements of both
models and rigid body motion during impact and
drift phases of the simulation.
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Figure 8. Starboard edge velocity of both mod-
els and rigid body motion during impact and drift
phases of the simulation.

Table 6. Comparison of the tip displacement after 10 s of uncontrolled drift

dx dy dz

Simplified [Hz] -0.0475 0.605 0.629

Abaqus [Hz] -0.0177 0.547 0.537

% Difference 91.4 10.1 15.8

Despite the differences between the simplified model and the commercial software, it does indicate that
the simplified model reasonably calculates displacements that are on the correct order and it is computa-
tionally cheaper than a full three-dimensional continuum or commercial software model. For the remaining
verification simulations, the Newmark’s method parameters are adjusted to include some minor damping,
such that ρ∞ = 0.95, β = 0.263, and γ = 0.5256. These parameters are chosen to reduce the undesirable
numerical high frequency oscillations in the solution that cause the controller to over-correct and become
unstable. Additionally, the time step, ∆t = 0.02 s is used for the remaining simulations.

To exemplify the performance of the simplified flexible beam model coupled with the controller, a rotation
of 1◦ about the body x- and z-axes, and a negative 1◦ about the body y-axis is performed. The controller
operates at a frequency of 50 Hz, which will be explained later in this subsection. Figures 9 and 10 show the
solar-panel edge displacement and velocities in the global (inertial) frame of reference. The response of the
flexible bodies is controlled in under 10 s, after which the velocities of the tips are approximately zero.

Figure 11 shows the relative displacement of the panels with respect to the satellite bus, which is also
rotating, at the time when the deformation in the z-direction is greatest. This occurs at t = 0.18 s. The δx,
δy, and δz refer to the deformation displacement, which is the difference of the total displacement and the
rigid body rotation. Figure 12 shows the time history of the deformation in the z-direction. The oscillations
of the deformation are quickly counteracted by the controller, although there is a small steady-state error
that corresponds to less than 10% the accepted pointing accuracy requirement.

The final verification step addresses some numerical issues. The simplified, flexible model will be com-
pared against the rigid-satellite simulator that was developed earlier.3 That model is non-linear using the
Euler equations to describe the rotational dynamics, and in its current configuration the Runge-Kutta (RK)
fourth-order integration method, such that the system can be considered to be a continuous system. The
controllers are discretised and sampled at discrete times. The adaptive integral gains are propagated with
finite-difference equations, equal to an Euler integration.
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board solar-panel edges.
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Figure 12. Starboard solar-panel edge deformation relative to the satellite bus.

The simplified, flexible model, on the other hand, is in total a discretised model, and propagated with
Newmark’s method, effectively a single time-step method. Also in this case, the controllers are discretised,
which means that the complete system is based on two sequential single-step integrations. Whereas in the
previous research the controllers operated at 25 Hz, in the current paper this frequency has been doubled to
match the integration step size of the flexible model, simply to avoid (numerical) oscillatory behaviour that
was observed at lower controller frequencies. Ongoing work is aimed at reprogramming the propagation of
the structural model using a RK integrator.
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Figure 13. Verification: difference between the rigid and the stiff/flexible satellite (combined step commands).

To test the setup, the combined step commands are simulated both with the rigid-satellite and the
flexible-satellite simulator, in combination with the adaptive controller. However, the flexible satellite has
been made very stiff by multiplying the Young’s modulus, E, and shear modulus, G, of satellite bus and
panels with a factor of 100. In this way an approximated rigid satellite is obtained. Preliminary simulations
showed, however, that there were some numerical issues especially related to ψ, which could not be removed
by decreasing the step size and/or increasing the controller frequency. Lowering the number of structural
elements from 80 to 10, reduced the “numerical stiffness” of the problem and a proper response was obtained.

In Fig. 13 the difference between the two responses for the Euler angles and the control moments are
shown. The angle differences are small at all times and smoothly reduce to zero. The control moments
show somewhat larger errors, or rather discrete jumps. However, these are easily explained by the nature
of the response test. The commanded step functions require an almost instantaneous maximum control
effort, because the controller is designed for accurate pointing. Even a shift of a single control sample (∆t
= 0.02 s) will show as a large error. Inspecting the individual moment curves, though, shows an identical
behaviour. Therefore, it can be concluded that in a limit configuration the flexible system behaves as a rigid
body. It seems justified to state that this model can be used for controllability study on a variety of satellite
configurations.

V. Results

This section presents the applicability of the developed simulation environment and contains the dual
objective of performing controllability studies and/or to propose a (re-)design attitude controllers for satellites
with flexible appendages. An extensive verification process confirming the applicability of the simulator was
discussed in the previous Sec. IV. Section V.A provides some background on controller-performance analysis,
which is successively done in the following Sec. V.B. Whereas in that section the focus is on controller
robustness when the satellite properties change without changing the controller, Sec. V.C addresses the
influence of controller design on the performance of a nominal satellite configuration.

A. Performance Analysis

The performance of a controller can be derived from several defined objective function(s). For the current
control-system design, one may look at the minimum state deviation of the satellite (or the plant) with
respect to the guidance commands.c Another objective in the design could be to minimise the control effort
that is required to influence the plant’s behaviour. For the current satellite-control problem, these two
objectives can be expressed as the integrated Euler-angle deviation and the integrated thruster activity (the
total amount of fuel, or, equivalently, the required control moments), given by:

cBesides the deviation from the command, the difference with respect to the corresponding reference-model state could also
be used, assuming that the best control system will enforce an exact model following on the plant.
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dashed line is the controller command.
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Figure 15. Actuator commands and cumulative standard deviation: nominal (left), off-nominal (middle), and
unstable (right).

∑
φerr

=

t∫
0

|φc(t)− φp(t)|dt
∑
θerr

=

t∫
0

|θc(t)− θp(t)|dt φ
∑
ψerr

=

t∫
0

|ψc(t)− ψp(t)|dt (24)

∑
MT,x

=

t∫
0

|MT,x(t)|dt
∑
MT,y

=

t∫
0

|MT,y(t)|dt
∑
MT,z

=

t∫
0

|MT,z(t)|dt (25)

A graphic representation of the above metrics is shown in Fig. 14, represented by the grey areas, for a
step command in the pitch angle when thruster control is used to follow this command. It is obvious that
both individual areas should be as small as possible for optimal controller performance, which means they
can be used to evaluate different controller designs. In the given example,

∑
θerr

= 1.738◦ s and
∑
MT,y

= 523.3

Nm s. Note that for the sake of this example the controller performance has been significantly downgraded
(large pitch-rate gain for a satellite with very flexible solar panels).

To detect oscillations or otherwise discrete changes in the controls, the cumulative moving standard
deviation can be used. For a subset j of ns out of a total of N samples of an arbitrary control signal u,
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the moving mean is defined as ȳj = 1
ns

j+ns−1∑
i=j

ui. Here, j will run from j = 1+ns/2 to N -ns/2, so each

subsequent subset will shift by only one sample. Let the squared deviation from this mean be defined as
su,j = (uj+ns/2 − ȳj)2, which represents the value at the midpoint of subset j. The cumulative standard
deviation, Fu, for subset j is then

Fuj
=

√√√√ 1

N − ns − 1

j∑
k=1

sk (26)

Figure 15 gives three examples of the behaviour of the pitch thrusters, given the step command of
θc = 1◦. In the left two figures the pitch thruster activity is shown for the nominal response. Due to the
discrete change in attitude command, the pitch thrusters exhibit a large jump in required control moment.
This discrete jump contributes to a sudden increase in FMT,y

. The corresponding (grey) surface under

the curve,
∑

FMT,y

=
t∫

0

FMT,y
(t)dt, is a performance measure for these jumps, and should be as small as

possible for smoother controls. For an off-nominal design case (the one shown in Fig. 14), where the
controller performance has purposely been made worse, saturation periods can be discerned, as well as
some low-frequency oscillations. Both effects result in a significant increase of

∑
FMT,y

, although the effect of

low-frequency oscillations is not that easy to spot. When in doubt, this criterion should be re-evaluated
with different subset sample sizes, ns. Finally, in the right-most two plots, the downgraded controller can
no longer properly steer the satellite, and the actuator is rapidly oscillating between the minimum and
maximum thrust values. These high-frequency oscillations are shown as a steady increase of FMT,y

.
From these results it is obvious that by comparing the numerical values of

∑
FMT,y

, conclusions can be drawn

towards the control behaviour, even though it paints a global picture only. For the examples shown, these
values are

∑
FMT,y

= 23.1 Nm s, 113.2 Nm s and 191.1 Nm s, respectively. It may be clear that the gradient of

FMT,y
is indicative of local oscillations. It is stressed, though, that the two parameters are indicative only,

because both the choice of sample interval and the progression of the mean control value have an effect on
the actual values. However, these performance metrics can serve their purpose in an automated procedure
to optimise the control-system design.d

To link the controller performance to the flexible dynamics, an integrated panel deflection can be defined,
or alternatively, the integrated motion of a single point (e.g., the panel tip). Focussing on the former, the
(absolute) motion of all structural nodes can be tracked over time, and similar to the performance indices
defined earlier, three indices can be defined:

∑
ux

=

t∫
0

L∫
0

|ux(x)|dxdt
∑
uy

=

t∫
0

L∫
0

|uy(x)|dxdt
∑
uz

=

t∫
0

L∫
0

|uz(x)|dxdt (27)

where u(x) is representing the (three-dimensional) displacement of a single node, the inner integral represent-
ing the total, absolute displacement of all nodes in the panel, and the outer integral determining the effect
for the duration of the simulation. The subscripts x, y, and z indicate that the three vector components of
the displacement vector are treated separately.

dThat this is a useful criterion to include is shown by the following. Even though the thrusters are rapidly firing, the step
response of θ is relatively smooth. Because the satellite is quite heavy (and inert), the rapidly switching bang-bang control
will not result in a wild variation of θ; only the pitch rate exhibits a similar oscillation, albeit with small amplitude. So, if one
would look at the control error only,

∑
θerr

= 2.769◦ s for the nominal case, and
∑
θerr

= 3.060◦ s for the oscillatory case, which

is not significantly different. The integrated control effort is different, though:
∑
MT,y

= 85.9 Nm s (nominal) versus 402.7 Nm s

(oscillatory). But, perhaps surprisingly, the second, off-nominal case has
∑
MT,y

= 523.3 Nm s, which is the highest of the three

cases considered. Therefore, proper analysis of multiple aspects is recommended.
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B. Controller Robustness

In general, the control-system design is started for a nominal system and mission, and once a satisfactory
response performance is obtained the sensitivity to external perturbations is studied, as well as the uncertain-
ties in the design parameters. And, depending on the level of fidelity of the analysis models used, modelling
errors should be taken into account as well. Of course, given the perturbations the control system should
still meet the requirements, in other words it should be robust, otherwise the control engineer would have
a full-time job simply redesigning the controller every time the system design changes or new requirements
about the perturbations come to light.

The potential advantage of adaptive control is that when a satellite design changes, its controller does
not have to be redesigned without sacrificing performance and/or stability. Of course, these design changes
should be within limits, one can think of, for instance, changes in mass properties and the “amount” of
flexibility in the system. In this section the results of a sensitivity analysis after varying a number of the
satellite’s parameters are presented, a typical example of having a fast simulator at one’s disposal during
the conceptual design. The design-parameter variations have been selected quite arbitrarily, and are chosen
to be large enough to have a noticeable effect. The following parameters are considered, given as a range
around the nominal value:

(a) solar-panel geometry:

1. length, Lsp = 14 ± 4 m (∆ = 30%)

2. width, bsp = 2.3 ± 1.15 m (∆ = 50%)

3. thickness, tsp = 0.03 ± 0.015 m (∆ = 50%)

(b) solar-panel mass and material:

4. mass, msp = 40 ± 20 kg (∆ = 50%)

5. Young’s modulus, Esp = (70±35)·109 N/m2 (∆ = 50%)

6. Shear modulus, Gsp = (27±13.5)·109 N/m2 (∆ = 50%)

(d) satellite-bus geometry:

7. length, Lbus = 2 ± 1 m (∆ = 50%)

8. width, bbus = 2.1 ± 0.42 m (∆ = 20%)

9. height, hbus = 2.8 ± 0.56 m (∆ = 20%)

10. link length, Llink = 1.0 ± 0.5 m (∆ = 50%)

(d) satellite-bus mass and material:

11. mass, mbus = 1,950 ± 380 kg (∆ = 20%)

12. Young’s modulus, Ebus = (70±21)·109 N/m2 (∆ = 30%)

13. Shear modulus, Gbus = (29±8.7)·109 N/m2 (∆ = 30%)

From the above parameters, several system parameters are derived, most notably the cross-sectional area,
A, the area and polar moments, Iyy, Izz, and J , and the average density, ρ:

Asp = bsptsp Iyy,sp =
1

12
bspt

3
sp Izz,sp =

1

12
b3sptsp

Jsp = Iyy,sp + Izz,sp ρsp =
msp

AspLsp

(28)

Abus = bbushbus Iyy,bus =
1

12
bbush

3
bus Izz,bus =

1

12
b3bushbus

Jbus = Iyy,bus + Izz,bus ρbus =
mbus

AbusLbus

(29)

These parameters, as well as the material properties, E and G, enter the matrices Eqs. (10) and (11), at the
appropriate places for the elements associated with solar panel, satellite bus, and link.
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The controller analysis is centred around a single manoeuvre, i.e., combined step commands of φc = ψc
= 1◦ and θc = -1◦ executed at t = 0 s, identical to the one discussed in Sec. II.C. The adaptive-controller
response for a rigid satellite is shown in Fig. 4. Figure 5, on the other hand, shows the control errors for
both controllers, i.e., the LQR and the SAC. The nominal response of both controllers for a satellite with
flexible panels is quite similar to the one for the rigid satellite, and will not be shown again. However, to
have a baseline performance, the following values of the performance indices discussed in the previous section
are found, first for the SAC and in between brackets for the LQR. It is noted that the controller designs are
those as discussed in Secs. II.B and II.C for the LQR and SAC, respectively.

• Control error:
∑
φerr

= 2.96 (2.71)◦ s,
∑
θerr

= 2.71 (2.73)◦ s,
∑
ψerr

= 3.10 (2.79)◦ s.

The integrated control errors are relatively small and comparable for both controllers, with slightly
smaller values for the LQR (apart from θerr). Characteristic for the SAC is that, if not properly tuned,
the controller is a bit slower to start, but shows a more stable response in the long run. With the
right set of weights, the LQR is known for its rapid and smooth transient response for the nominal
configuration it is designed for.

• Control effort:
∑
MT,x

= 29.9 (24.5) Nm s,
∑
MT,y

= 79.2 (86.6) Nm s,
∑
MT,z

= 89.2 (86.1) Nm s.

Both controllers saturate when the step is applied, but for φc and ψc the LQR uses less fuel to reach
steady state. This is not true for θc, though, where the SAC is more efficient. During preliminary runs
it was found that the y-axis is more difficult to control, and the SAC seems to be (marginally) better
prepared for this task.

• Oscillatory behaviour:
∑

FMT,x

= 25.4 (18.2) Nm s,
∑

FMT,y

= 16.2 (26.9) Nm s,
∑

FMT,z

= 46.7 (18.6) Nm s.

Even though there are somewhat larger differences, the response is comparable. This performance
index is also affected by a discrete change in control moment – as discussed previously – and the SAC
shows more discrete changes, because of the larger gains. Despite that, for the y-axis it performs
smoother than the LQR, which may indicate that the y-axis is posing more of a problem to the LQR
than the x- and z-axes.

• Integrated panel deflection:
∑
ux

= 0.087 (0.087) m s,
∑
uy

= 2.601 (2.650) m s,
∑
uz

= 2.685 (2.660) m s.

The integrated deflection is quite an abstract parameter that may be difficult to interpret. This is
a measure of sustained duration away from an initial (or desired) position, also known as absement.
It will be used for a relative comparison between the configurations rather than an absolute one.
Typically, a larger value means more motion of the solar panel, possibly induced by discrete jumps in
the control moments. Therefore, one desires a small value for absement also, although, it is possible
for the satellite bus to be controlled with non-constant absement through the symmetric motion of the
solar panels. For the nominal configuration, both SAC and LQR show more or less the same flexible
behaviour.

Now that the baseline performance has been established, a Monte-Carlo batch of simulations is performed.
For a total of 500 satellite configurations, the 13 design parameters are sampled according to a uniform
distribution. Each configuration is simulated with both the SAC and the LQR (with an identical random
sequence of design parameters, such that the performance can be compared), and the performance indices
are evaluated per run. In Figs. 16 through 20 the resulting histograms are shown, in relation to the nominal
configuration. These will now be briefly discussed.

Figure 16 shows the control error (or integrated state deviation). In spite of the large variation in design
parameters, both controllers do an excellent job to keep the control error limited and centred around the
nominal performance. The LQR exhibits superior performance in that respect, with not only a smaller error,
but also with less variation. The slightly larger error for the SAC (between 10-15%) has been explained before
and the same reasoning holds now. Concerning the y-rotation and the fact that this axis is more difficult to
control, the results are acceptable. The SAC has a larger variation than the LQR, with in absolute sense
some smaller and some larger errors than the LQR. Concluding, for this particular manoeuvre the controller
performance is good.

The control effort (Fig. 17), on the other hand, suggests greater differences. The x-thruster activity is
similar for both controllers and centred around the nominal configuration (which is about 20% larger for
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the SAC), albeit the LQR has an outlier around 45 Nm s. The nominal performance of the z-thruster is
almost the same, and the distributions are almost overlapping. The y-thruster, on the other hand, has three
outliers far away from the nominal configuration. This seems to indicate an excessive thruster use. This is
confirmed by Fig. 18, where the oscillatory behaviour of the thrusters is shown. The y-thruster has indeed
the “same” three outliers, indicating strong oscillations, which would also explain the large control effort.

Isolating the individual run with the strongest oscillations from the results is easy, and inspecting the
actual angle and thruster history indicates what happens. In Fig. 19 the related curves are shown. Indeed,
the pitch thruster is wildly oscillating and basically exhibits a bang-bang control at the controller frequency.
Surprisingly, the attitude remains stable, but fuel is, of course, depleted quickly in this way. Somehow, these
oscillations seem to transfer into the x and z control as well, indicated by the high-frequency oscillations,
albeit with small amplitude. In any case, high-frequency actuator switching should be absolutely avoided.
As a matter of fact, these small-amplitude oscillations in x and z do not show up in FMT,x

and FMT,z
, which

means that one should not rely on a single performance index. And, when in doubt, inspect the individual
time histories of selected variables.

The adaptive controller seems to handle this particular satellite configuration well, judging from the
absence of any oscillations, not only for this run, but for the other outliers of the y-thruster as well. The
distribution of FMT,z

is shifted to the right of the histogram, though, but as was discussed earlier, any
discrete actuator change also contributes to FMT,z

. And that is also observed in Fig. 19, where the z-
thruster experiences some “ragged” commands. This may have to be studied in more detail, but for now it
is safe to conclude that the adaptive controller is more robust towards design changes in the satellite.

The high-frequency oscillations do not seem to have an adverse effect on the flexible motion. Figure 20
shows the integrated beam deflection, which appears similar for both controllers. The x- and y-directions
exhibit a stronger deflection for the LQR, which might indeed be oscillation-induced. The z-deflection is
a little higher for the SAC, but it was already observed that the z-direction is more difficult to control for
the SAC. The total variation of these indices (between 30-50%) does not seem unrealistic, considering the
equally large variations in E and G. This could potentially lead to the conclusion that the controllers do
not induce additional, unwanted flexible-panel motion.

C. Controller Design

In the previous section it was shown that the LQR has a better performance for the nominal satellite
configuration. In this section, another use of the simulation environment is explored, namely that of controller
design. The initial design parameters of the adaptive controller were selected rather arbitrarily, and manually
tuned until a reasonable response was obtained. The full potential of the design was not explored, though,
but on the other hand, if all design parameters would have been included the design process would have
taken unacceptably long. What is meant here is that asymmetric, full weighting matrices could have been
used, as well as non-zero values for all initial integral gains. Usually not required, but it could come in handy
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Figure 16. Integrated control errors for varying satellite configurations (combined step commands).
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Figure 17. Integrated control effort for varying satellite configurations (combined step commands).
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Figure 18. Oscillatory behaviour for varying satellite configurations (combined step commands).
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Figure 19. Unstable actuator behaviour for LQR (combined step commands).

for systems that are more difficult to control. To be fair, it is surprising to see the excellent performance of
the LQR in most situations, with a design process that is a lot easier and shorter than for the SAC. But, in
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Figure 20. Integrated panel deflection for varying satellite configurations (combined step commands).

case robustness becomes a design driver, the LQR falls short.
Without going to great length, in this section the variation of the design parameters of the SAC is dis-

cussed as an example of performance improvement by design. The nominal satellite configuration introduced
in the previous section is used, and the controller design parameters are varied in a similar manner as was the
satellite configuration. The design parameters to be considered are taken from Tables 1-3, where the listed
values are nominal. Each parameter is varied over a ±50% range. The total number of design parameters is
36, being:

(a) roll controller:

1-8. weighting matrices Tp and Ti: diagonal elements related to eφ, pm, φm, MTm,x

9-12. integral-gain initial value: Ki,0 related to eφ, pm, φm, MTm,x

13. integral-gain filter constant: σi related to eφ

(b) pitch controller:

14-21. weighting matrices Tp and Ti: diagonal elements related to eθ, qm, θm, MTm,y

22. integral-gain initial value: Ki,0 related to eθ

23. integral-gain filter constant: σi related to eθ

(c) yaw controller:

24-31. weighting matrices Tp and Ti: diagonal elements related to eψ, rm, ψm, MTm,z

32-35. integral-gain initial value: Ki,0 related to eψ, rm, ψm, MTm,z

36. integral-gain filter constant: σi related to eψ

A total of 1,000 simulations are performed, and the same performance indices as before are evaluated. A
subset of the results has been summarised in Figs. 21 and 22. It is noted that doing a Monte-Carlo analysis
to improve the controller performance is far from optimal, let alone efficient. In older research it was shown
that using, for instance, an evolutionary algorithm gives better results at far less computational cost.16 With
the relatively fast framework developed in this paper such an optimisation method is certainly within reach.

Figure 21(a) indicates that the performance of the LQR (
∑
φerr

= 2.71◦ s and
∑
MT,x

= 24.5 Nm s) is not

met, although the nominal performance has improved between 1-3%. The nominal performance of the
pitch thruster was already better than the LQR, and has improved a bit more, about 3-4%. Interesting to
see is that there is a significant number of controller designs with a better performance. Considering the
performance of the the yaw thruster (LQR:

∑
ψerr

= 2.79◦ s
∑
MT,z

= 86.1 Nm s), the control error has dropped
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Figure 21. Adaptive-controller redesign: integrated control errors and control effort (combined step com-
mands).
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Figure 22. Adaptive-controller redesign: oscillatory actuator behaviour (combined step commands).
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Figure 23. Adaptive-controller extended design range: controller performance (combined step commands).

to value just above the LQR one, but the control effort has dropped slightly below the LQR value (the
minimum value is now

∑
MT,z

= 84.5 Nm s). The oscillatory behaviour of the controls shows a more significant

improvement (Fig. 22). Even though the values for roll and yaw control do not go below the ones for the
LQR, the improvement for the yaw thruster is over 30% (roll thruster: about 12%). The pitch thruster,
which was already more stable than its LQR counterpart, has reduced from

∑
FMT,y

= 16.2 Nm s to 13.8 Nm s.

It remains to be studied whether the performance indices reduce simultaneously, but this brief analysis
has shown that with the current simulation environment and approach, the controller performance can be
analysed and improved, where necessary. To show the limitations of a Monte-Carlo variation of the design
parameters instead of a proper optimisation process, a final Monte-Carlo batch is run where the controller
parameters are varied between 5-400% of their nominal values (1,000 runs). Results for the control errors
and control effort are shown in Fig. 23. In general, the performance has degraded, as the parameter variation
is apparently too large and possibly some of the parameters are dominating the response. However, there
are actually a few runs that approach the LQR performance or are even better.

Looking at just the minimum values of the performance indices shows that in almost all of the indices
a controller configuration can be found that has a better performance than the LQR. Unfortunately, none
of these configurations are the same, so undoubtedly a compromise has to be found based on specific re-
quirements. Alternatively, one can also optimise the individual controllers separately, since the motion axes
are largely decoupled. In that case, with fewer design parameters per batch, convergence is expected to be
relatively quick. Summarised, the following minimum values are obtained:

• Minimum control error:
∑
φerr

= 2.56 (2.71)◦ s,
∑
θerr

= 2.54 (2.73)◦ s,
∑
ψerr

= 2.54 (2.79)◦ s. All minimum

errors are now below the LQR values.

• Minimum control effort:
∑
MT,x

= 28.8 (24.5) Nm s,
∑
MT,y

= 69.5 (86.6) Nm s,
∑
MT,z

= 65.2 (86.1) Nm s.

Roll thruster effort has reduced, but is a little above the LQR performance. Both pitch and yaw
thruster are well below the LQR nominal values.

• Minimum oscillatory behaviour:
∑

FMT,x

= 20.0 (18.2) Nm s,
∑

FMT,y

= 13.3 (26.9) Nm s,
∑

FMT,z

= 12.1

(18.6) Nm s. The roll thruster oscillatory behaviour has dropped about 20%, but is still a bit above
the LQR value. The pitch thruster value is half the LQR one, and the yaw thruster has become “more
stable” by about 70% (from 46.7 down to 13.3 Nm s) and has now a value lower than the LQR.
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VI. Conclusions and Recommendations

A simplified three-dimensional beam model was created, which precluded a complicated interactive system
of rigid and elastic bodies coupled through force (Lagrange) multipliers. However, the commercial beam
model was superior to the simplified model that has been developed, albeit at a very high computational
cost. Therefore, it is impractical to use the commercial model with such rapidly changing system states
and applied loads. One can conclude that the linear beam model is a reasonable first-order estimate for the
controller design. It should be noted that it performs much faster than complex nonlinear models and is
suitable to rapidly develop adaptive gains for the simple adaptive controller. The intention is also not to
replace the more accurate models with a simplified beam model, but to first generate the performance values
and adaptive gains, before continuing the structural dynamic analysis with a more complicated, and more
computationally expensive, model.

Performance indices were evaluated for three characteristics: the Euler-angle deviation, the integrated
thruster activity, and the integrated panel deflection. The first two indices gauged the global performance of
the controller by comparing the minimum state deviation of the satellite with respect to guidance commands
and comparing the minimum control effort that is required to influence the behaviour of the plant. The
third index linked the performance of the controller with the flexible dynamics, as the absolute motion of
all the structural nodes were tracked over time and integrated, representing the directional absement of the
solar panels. This gave an indication of the vibration or motion of the panels with respect to the satellite
bus. In certain cases, the performance of the controllers based on only one index did not suggest controller
instability; however, with the combination of at least one other index it became clear that the SAC was
stable, but the linear quadratic regulator was unstable.

The robustness of the two controllers, LQR and SAC, was examined by varying the geometric and
mechanical parameters of the satellite system. The variation of the system parameters was up to 50%,
but was performed with respect to a single manoeuvre of three combined step commands of 1 deg executed
immediately at simulation start. The baseline characteristics were that the SAC had a slow start with
regards to the control error, but was more stable in the long run. The LQR, known for its rapid and smooth
transient response performed better and used less fuel for the steady state, although it had more difficulty
controlling the y-axis.

For the Monte-Carlo simulations, both controllers limit control error, but the LQR outperformed the
SAC in terms of inducing smaller errors, but also with less deviation. The simple adaptive controller also
had more difficulty in controlling the z-deflections. However, in terms of control effort, the SAC generally
performed as well as the LQR for x-thruster and slightly poorer for z-thruster activity, but the LQR had
three outlying cases for the y-thruster control effort. This indicated unstable behaviour of the LQR for
certain combined commands, which were handled well by the SAC.

A Monte-Carlo-based adaptive controller design was also introduced; although the full potential of the
design was not explored, the relatively fast framework developed in this paper allowed the improvement of
the SAC performance. While the performance of the LQR is still not objectively always met, the nominal
performance of the simple adaptive controller was improved by 1-3%. The pitch thruster performance, which
was already better than the LQR, improved between 3-4%. There were a significant number of adaptive
controller designs with better performance. After optimisation using the Monte-Carlo design, the minimum
control errors fell below all those of the LQR, the minimum control effort was reduced; although the roll
thruster had reduced effort, it was still above the LQR performance, despite the pitch and yaw thruster
efforts well below that from the LQR. The oscillatory behaviour is lower than the LQR, except for the roll
thruster, but still improved by 20%. The pitch thruster oscillation is less than half that from the LQR, and
the yaw thruster is more stable and about two-thirds the LQR value.

Some of the future work will revolve around the improvement of the beam model, without resorting to
higher-complexity models, and determining the robustness of a nonlinear model that will allow the develop-
ment of larger rotations than the current linear model. Such a nonlinear model would be useful to compare
with a fully nonlinear continuum model, which was presented in previous works by the authors. Also the use
of a Runge-Kutta integration should be considered to reduce the numerical issues. With a model that can
accurately incorporate large rotations, one could examine more complex manoeuvres and develop control
strategies for capture operations, faster autonomous manipulator movement, or collision avoidance with or-
bital debris. With respect to controller design, the performance-optimisation methodology should be further
developed, and linked with actual design requirements.
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14Oñate, E., Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells, Springer

Science & Business Media, 2013.
15Gransden, D.I., and Mooij, E., “Control Recovery of a Satellite with Large Flexible Appendages after Impact”, AIAA-

2018-2099, AIAA SciTech Forum: AIAA/AAS Space Flight Mechanics Meeting, Kissimmee, FL, 8-12 January 2018.
16Mooij, E., “Evolutionary Optimisation of a Model Reference Adaptive Control System”, AIAA-2002-4922, AIAA Guid-

ance, Navigation, and Control Conference, Monterey, CA, August 5-8, 2002.

24 of 24

American Institute of Aeronautics and Astronautics

View publication statsView publication stats

https://www.researchgate.net/publication/322310270

	CoverAiaa18 1
	AIAA-2018-0209
	Introduction
	Control System Design
	Simple Adaptive Control
	Reference Model
	Integrated System

	Satellite Structural Model
	Flexible Satellite Verification
	Results
	Performance Analysis
	Controller Robustness
	Controller Design

	Conclusions and Recommendations


