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Abstract

In this text, we begin by giving a definition of Vector Space Ramsey Numbers. It concerns colourings
of t-dimensional subspaces of some vector space Fn

q . We want to ensure that each colouring contains a
monochromatic k-dimensional subspace. After proving that these numbers always exist, we continue
with studying asymptotic bounds for these numbers. We study a selection of methods, such as through
coding theory or using the probabilistic method, to obtain lower and upper bounds for vector space
Ramsey numbers. Lastly, we introduce two methods to directly compute vector space Ramsey numbers.
That being through an ILP formulation and through a SAT formulation.
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Chapter 1

Introduction

Say that you invite 6 people to have a party with. Having chosen them a bit arbitrarily, you take
some interest in the relations between your 6 guests. After doing this for a number of parties, you
realise that in each group of 6 guests, there were always 3 guests that were all friends with each other
or 3 where no 2 of them were friends. It may seem like coincidence, but you actually stumbled into
the world of Ramsey numbers. To get to the mathematical way of look at these numbers, replace the
guests with points in a graph and replace the relations with the colours red and blue. Then, a Ramsey
number R(s, t) = n implies that a complete graph of n points has a red clique of size s or a blue clique
of size t for every red-blue colouring of the edges. With a red clique of size s we mean a complete
subgraph of our graph whose edges are all coloured red. In particular, this is the smallest such n. In
our party example, we see that R(3, 3) ≤ 6.

The notion of these ‘classical’ Ramsey numbers tells us that graphs of sufficient size always have some
sort of structure to them. Though, graphs are scarcely the only notion to which this idea can be
applied to. In this text, we study what Ramsey numbers look like when applied to vector spaces
defined over finite fields. As will be explained in chapter 2, instead of colouring edges we shall be
investigating colourings of the subspaces of some vector space. In the same chapter it is also shown
that these Ramsey numbers always exist, showing that here too some sort of structure always arises.

As with classical Ramsey numbers, it can quickly be concluded that, save for low values, these vector
space Ramsey numbers are incredibly difficult to compute. Thus, in chapter 3, we study some of the
bounds of these Ramsey numbers. In particular, we use three methods to demonstrate a similar lower
bound. We also look back to classical Ramsey numbers to find an upper bound. Then, we consider
some of the recent upper bounds that have been given on more general forms of vector space Ramsey
numbers. We still attempt to compute some values in chapter 4. We explore two methods to compute
various Ramsey numbers, notably through an ILP and a SAT-problem formulation. Aside from values
we also obtain some specific colourings to study. We then have a discussion in chapter 5 surrounding
the explained computational and theoretical methods to compute these numbers, as well as the found
numbers. That includes some recommendations of what could be researched further concerning vector
space Ramsey numbers. We end with conclusions in chapter 6, collecting what we have discussed
throughout this text.
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Chapter 2

Theory

In this chapter, we shall lay out the basics of vector space Ramsey numbers. First, in section 2.1 an
explanation of Ramsey Numbers shall be given. Then, in section 2.2 the proof that these numbers
always exist is given.

2.1 Defining vector space Ramsey numbers

To define what these Ramsey Numbers are we first need to go over what Vector Spaces defined over
Finite Fields are. For this, we first give a short introduction to finite fields as well as discuss what it
means to define a Vector Space over one in subsection 2.1.1. This is followed up by colouring them in
subsection 2.1.2. With all that knowledge, we then go on to define what vector space Ramsey numbers
are in subsection 2.1.3.

2.1.1 Vector Spaces over Finite Fields

In this section we will discuss finite fields in a more practical manner, focusing on the fields we are
generally interested in. For a more rigorous definition of fields, see Appendix A. In short, a field F is
a ring such that F\{0} is an abelian group under multiplication.

The fields we are interested in are finite, containing q = pn elements, where p is prime. From here
on out, we shall denote these fields as Fq. To see exactly how these fields are constructed, refer to
Appendix A. For the most part, we’ll be dealing with F2, the binary field, consisting of the elements
{0, 1}.

We can define vector spaces over finite fields. We denote that n-dimensional vector space defined over
Fq as Fn

q . This space consists of all vectors of length n whose elements belong to Fq. To give a more
rigorous set notation:

Fn
q = {(x1, x2, ..., xn) : xi ∈ Fq for i ∈ {1, ..., n}} (2.1)

Alternatively, you can see it as the span of the vectors ei = (0, ..., 0, 1, 0, ..., 0) (the vector where all
values are 0 except for 1 at position i) for i ∈ {1, ..., n}, where the scalars for the linear combinations
are in Fq.

To get a feel for what these spaces look like, we look at the simple example of F2
2. So the 2-dimensional

vector space defined over the binary field. Its vectors are of the form (x, y) where x, y ∈ F2 = {0, 1}.
Taking the span approach, we have that

F2
2 = span({(0, 1), (1, 0)}) = {a · (1, 0) + b · (1, 0)|a, b ∈ {0, 1}} (2.2)

From here, it can be seen that F2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. The number of elements in this space

are interesting to note. We have vectors consisting of 2 elements, where each element can take one of
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two values. This results in |F2
2| = 22 = 4 vectors total. In general, we see that a vector space Fn

q has
vectors of length n, where each element of the vector can take one of q values. Thus we have |Fn

q | = qn.

We are interested in the subspaces of these vector spaces too. Let’s, for example, look at the 1-
dimensional subspaces of F2

2. That is, the span of any non-zero vector of F2
2. Since there are only

2 scalars, 0 and 1, the subspace consists of two elements: the non-zero vector and the zero vector.
Indeed, the 1-dimensional subspaces of F2

2 are {(0, 0), (0, 1)}, {(0, 0), (1, 0)} and {(0, 0), (1, 1)}. We can
similarly calculate the amount of elements for a k-dimensional subspace of Fn

q as qk. Though what
about the amount of subspaces? For that, we have the following theorem:

Theorem 1. Let Fn
q be the n-dimensional vector space defined over Fq and k ∈ N. Then

[
n
k

]
q
=

(qn − 1)(qn − q)(qn − q2)...(qn − qk−1)

(qk − 1)(qk − q)(qk − q2)...(qk − qk−1)
(2.3)

is the number of k-dimensional subspaces of Fn
q .

Proof. We prove the theorem essentially by counting the number of bases, or sets {v1, .., vk} of k
linearly independent vectors of Fn

q . For the choice of v1 we can take any non-zero vector of Fn
q , which

there are qn − 1 of. For v2, we can pick any non-zero vector of Fn
q so long as it is not in the span of v1.

We know that the span of v1 contains q1 = q elements, so there are qn − q choices for v2. In general,
for i ≤ k, we pick any non-zero vector that does not belong to the span of {v1, ..., vi−1}. That span
contains qi−1 elements. So we have choice of qn − qi−1 for vi. This all results in

(qn − 1)(qn − q)(qn − q2)...(qn − qk−1) (2.4)

possible sets of k linearly independent vectors. Of course, some of these sets form bases for the same
k-dimensional subspace, so we need to divide this number by the amount of bases for a k-dimensional
subspace. To get this amount, we simply fill in n = k in equation 2.4. Thus, we see that the total
number of k-dimensional subspaces of Fn

q is indeed

(qn − 1)(qn − q)(qn − q2)...(qn − qk−1)

(qk − 1)(qk − q)(qk − q2)...(qk − qk−1)

2.1.2 Colouring of Vector Spaces

Like with the Graph Theoretic Ramsey Numbers, we are interested in colourings. For the definition,
we introduce two sets of notation. First, we have [r] = {1, ..., r} for r ∈ N. Secondly,

[
V
t

]
denotes the

set of t-dimensional subspaces of a vector space V.

Definition 1. Let r, n, t ∈ N with t ≤ n and let Fn
q be the n-dimensional vector space defined over Fq.

An r-colouring of the t-dimensional subspaces of Fn
q is a function χ :

[Fn
q

t

]
→ [r].

So, for vector spaces over finite fields, we assign colours to the t-dimensional subspaces of Fn
q . Not the

points of those subspaces, the subspaces themselves. To understand this better we once again look at
F2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. We know the 1-dimensional subspaces of this are {(0, 0), (0, 1)}, {(0, 0), (1, 0)}

and {(0, 0), (1, 1)}. We can represent these vectors and the colouring of these 1-dimensional subspaces
visually as seen in figure 2.1.2. In the case of Fn

2 , since the 1-dimensional subspaces consist of the zero
vector and then some non-zero vector, we sometimes informally refer to it as colourings of the non-zero
vectors of Fn

2 .

Lastly, we define what it means for a vector space to be monochromatic.

Definition 2. Let r, n, t, k ∈ N with t ≤ k ≤ n and let Fn
q be the n-dimensional vector space defined

over Fq. Let χ be an r-colouring of the t-dimensional subspaces of Fn
q . Then a k-dimensional subspace

K of Fn
q is called monochromatic with colour i ∈ [r] if for all T ∈

[
K
t

]
we have that χ(T ) = i.

That is, a k-dimensional subspace of Fn
q is monochromatic with colour i ∈ [r] if all of its t-dimensional

subspaces are coloured i. For example, if the three 1-dimensional subspaces of F2
2 are assigned the

colour 0, then it it monochromatic with colour 0.
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(0,1)

(1,0)

(1,1)

(0,0)

Figure 2.1: Visual representation of the colouring of the 1-spaces (informally written down as non-zero
vectors)

2.1.3 Definition

With all of that defined and thought out, we can finally move on to the definition of vector space
Ramsey numbers. As we are mostly interested in Fn

2 and 2-colourings of 1-dimensional subspaces, we
start with a simplified variant:

Definition 3 (Simplified vector space Ramsey numbers). Let s, t, n ∈ N with s, t ≤ n. Then R2(s, t) =
n implies the following property. Let Fn

2 be the n-dimensional vector space defined over F2. Let
χ :

[Fn
2
1

]
→ {0, 1} be an arbitrary 2-colouring of the 1-dimensional subspaces of Fn

2 . Then there is either
an s-dimensional subspace of Fn

2 that is monochromatic with colour 0 or a t-dimensional subspace of
Fn
2 that is monochromatic with colour 1. Moreover, There is a 2-colouring of Fn

2 such that there is
neither an s-dimensional subspace that is monochromatic with colour 0 or a t-dimensional subspace
that is monochromatic with colour 1.

Remark. The 2 in R2(s, t) in this case implies that the vector space is defined over F2.

Remark. The last part essentially implies that n is the smallest number for which the first property
holds.

To explain what this definition encompasses, we shall look at the example of R2(2, 2). For n = 2, we
look at a 2-colouring χ of the non-zero vectors of F2

2. We note that the only 2-dimensional subspace of
F2
2 is the vector space itself. Hence, figure 2.1.2 already serves as an example of a colouring where no

2-dimensional subspace is monochromatic. In fact, any non-monochromatic 2-colouring of F2
2 suffices.

Since we can find colourings that don’t have monochromatic 2-dimensional subspaces, we may conclude
that R2(2, 2) > 2. We then look at the case that n = 3, so we get a 2-colouring χ of the non-zero
vectors of F3

2. Though the vectors can once again be represented in a grid, this time 3-dimensional, we
instead opt to represent the 7 non-zero vectors with the Fano plane, done so in figure 2.1.3. Here, the
edges go through 3 points each, including the circle going through (1,1,0), (1,0,1) and (0,1,1). These
edges represent the 2-dimensional subspaces of F3

2.

As can be seen, in this specific example of a colouring, we see that the subspace {(0, 0, 0), (0, 0, 1),
1, 0, 0), (1, 0, 1)} is monochromatic with colour blue. These monochromatic subspaces need to occur
in every colouring of course, though this turns out to hold. Though time-consuming, as there are
27 = 128 distinct colourings, this can be verified manually. It will not be demonstrated here and will
be left to the reader to think about. Regardless, once it’s shown that each of the colourings indeed
contains a monochromatic 2-dimensional subspace, we can conclude that R2(2, 2) ≤ 3. With the prior
result that R2(2, 2) > 2, we can further state that R2(2, 2) = 3.

Now, we state the more general definition of these Ramsey Numbers:

Definition 4 (Vector space Ramsey numbers). Let q, t, r, n, k1, ..., kr ∈ N with t ≤ ki ≤ n for i ∈ [r]
and q = pm for p prime and m ∈ N>0. Then Rq,t(k1, ..., kr) = n implies the following property. Let

Fn
q be the n-dimensional vector space defined over Fq. Let χ :

[Fn
q

t

]
→ [r] be an arbitrary r-colouring of

7



(1,1,1)

(0,0,1)

(0,1,0) (1,0,0)

(1,0,1)(1,1,0)

(0,1,1)

Figure 2.2: Representation of a colouring of F3
2 via the Fano plane.

the t-dimensional subspaces of Fn
q . Then for some i ∈ [r], there exists K ∈

[Fn
q

ki

]
that is monochromatic

with colour i. Moreover, There is an r-colouring of Fn−1
2 such that there is no ki-dimensional subspace

that is monochromatic with colour i.

Remark. In general, we look at the case that t = 1. For those cases, we shall simply write the Ramsey
Number as Rq(k1, ..., kr)

In this definition, we see that there are 3 important generalisations. First, instead of just looking at
2 colours with corresponding subspaces of dimension s, t, we now look at r-colourings with subspaces
of dimension k1, ..., kr. Secondly, instead of just focusing on the binary field, we increase our scope
to any finite field Fpm . Lastly, we now consider the colourings of t-dimensional subspaces rather than
just 1-dimensional subspaces.

So, for example, R4,2(5, 2, 3) = n implies the following. For any 3-colouring χ of Fn
4 , there is either

a 5-dimensional subspace that is monochromatic with colour 1, a 2-dimensional subspace that is
monochromatic with colour 2 or a 3-dimensional subspace that is monochromatic with colour 3. This
n also is the smallest number for which this holds.

2.2 Existence of vector space Ramsey numbers

With Ramsey Numbers properly defined in section 2.1, the question can be asked whether they always
exist. It turns out they do, and we shall present the proof for it in this section. The proof is largely
based on the work by Spencer (1979) [1]. Though we only consider the case for vector spaces defined
over Fq, whereas Spencer takes a more general look at affine spaces (a translation of a vector space)
defined over finite fields. It is also important to not that the existence of vector space Ramsey numbers
can also be derived from the Graham-Rothschild theorem, from the work of Graham and Rothschild
(1971)[2].

Before we proceed we restate some notation and introduce some more new notation for simplicity. We
have [r] = {1, ..., r} for r ∈ N. Secondly,

[
V
t

]
denotes the set of t-dimensional subspaces of a vector

space V. Finally, since we shall be referring to subspaces and their dimensions a lot, t-space shall refer
to a vector space of dimension t. For example, T is a t-space of V means that T is a t-dimensional
subspace of V . F shall also now generally refer to Fq.

The proof is quite complex, so we shall begin with giving an overview of the steps in subsection 2.2.1
as well as the statement of the theorem. Then in subsection 2.2.2, we introduce the Hales-Jewett
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theorem, alongside a corollary about monochromatic tuples. Both of these will prove vital to proving
the theorem. We proceed with defining what special vector spaces are in subsection 2.2.3, as well as
showing that we can always guarantee finding one. Then, as we intend to use induction, we show it
holds for the base case in subsection 2.2.4, followed up by the induction in subsection 2.2.5.

2.2.1 Outline of the proof

First, we shall give a statement of the theorem.

Theorem 2. For all t, r, k1, ..., kr ∈ N with t ≤ ki for i ∈ [r] there exists n = N (t)(k1, ..., kr) with the
following property. Let Fn

q be an n-space defined over Fq and χ :
[Fn

q

t

]
→ [r] be an arbitrary r-colouring

of the t-spaces of Fn
q . then for some i ∈ [r], there exists K ∈

[
V
ki

]
that is monochromatic with colour i.

Remark. Here, n = N (t)(k1, ..., kr) means that n is dependent on t, k1, ..., kr somehow.

As stated, the idea of the proof is to make use of strong induction. Notably, we do induction over both
t and

∑r
i=1 ki. First, we assume the existence of n for all t′ < t for any choice of k1, ..., kr. Then, for

t, we assume n exists for all
∑r

i=1 k
′
i <

∑r
i=1 ki.

To make use of these assumptions, we want to find lower-dimensional subspaces of Fn
q that are ‘special’.

These will be defined and discussed properly in subsection 2.2.3, but we give a short idea here. Given
is some subspace B of Fn

q equipped with a projection that ‘reduces’ its dimension by one. Then B
is special if its ‘transversal’ t-spaces have their colouring determined by their projection. We prove a
lemma that tells us that we can essentially always know such a special space B exists.

This proof, however, makes use of the Hales-Jewett theorem, which says that we can find monochro-
matic lines. So we begin with introducing that. Alongside it, we prove a corollary that helps us find
monochromatic sets using Hales-Jewett. With that corollary, we show that we can indeed construct
spaces in such a manner to guarantee a special space B.

With that, we finally move on to the main course, proving theorem 2. We start with the base case.
That is, that n exists for t = 0 and all

∑r
i=1 k

′
i <

∑r
i=1 ki. Using Hales-Jewett and a convenient

bijection from Fn
q to (Fk

q )m where n = km, we find a monochromatic line, whose inverse is then also
monochromatic in Fn

q . We then of course show that it is also a k-space of Fn
q .

With the base case proven, we move onto the induction step. By cleverly choosing our n, we can find
some special spaces of Fn

q , as well as induce 2 different colourings on them based on the projections
and the original colouring. By then finding a monochromatic subspace in the projection of one of the
special spaces, we can find a desired monochromatic ki-space of Fn

q using the induced colourings.

2.2.2 Hales-Jewett

The Hales-Jewett is an important results proven by Alfred W. Hales and Robert I. Jewett (1963) [3].
Here, we shall only give the statement of the theorem, and prove a corollary that is useful for our
proof. Before we give the theorem, we first define what a line is. Say we have some finite set A. Let
pi : A

n → A denote the ith coordinate projection for 1 ≤ i ≤ n. For example, p2((x, y, z)) = y. Then,
a set L ∈ An with |L| = |A| is called a combinatorial line if the following two things hold. Given some
non-empty subset I ⊂ [n] of the indexes, we have that pi is is bijective i ∈ I and that these various
pi are identical to one another. Additionally, for all i /∈ I, the value of pi is constant (though these
values may differ per i /∈ I). For an example of a combinatorial line, see figure 2.3. You see that p1
and p2 are bijective and that p1 and p2 identical, whereas p3 is constant with value 2.

With that definition in mind, we state the Hales-Jewett theorem:

Theorem 3 (Hales-Jewett). For all l, c there exists m = HJ(l : c) with the following property. Let
|A| = l and χ : Am → [c]. Then there exists a monochromatic line L ⊂ Am.

Remark. m = HJ(l : c) simply implies that m is dependent on l and c somehow. HJ(l : c) is also
sometimes referred to as the ‘Hales-Jewett function’.

To relate this more directly to our problem, we can for example take A = Fn
q . Then l = |Fn

q | = qn and
χ : (Fn

q )
m → [c]. Here (Fn

q )
m contains vectors of length m where the element of each vector is a vector

9



Figure 2.3: The red dots here form the combinatorial line L = {(0, 0, 2), (1, 1, 2), (2, 2, 2)} in F3
3.

out of Fn
q . Then we have a monochromatic line L ∈ (Fn

q )
m. As we’ll see in the base case, we can make

good use of this with a nicely defined bijection.

Before we get to the base case, we want to prove that we can always find ‘special’ spaces. To prove
that we can do so, the following corollary to Hales-Jewett plays an important role:

Corollary 1. Let m = HJ(|F |u+1 : c). Let χ be a c-coloring of the ordered (u+1)-tuples (x⃗0, ..., x⃗u), x⃗i

∈ Fm. Then there exist parallel affine lines L0, ..., Lu ⊂ Fm so that {(x⃗0, ..., x⃗u) : x⃗i ∈ Li} is
monochromatic.

Proof. We consider the bijection Φ : (Fm)u+1 → (Fu+1)m which is defined as follows. Given a (u+1)-
tuple (x⃗0, ..., x⃗u), where x⃗i = (xi1, ..., xim), 0 ≤ i ≤ u, we get an m-tuple (y⃗1, ..., y⃗m), y⃗j ∈ Fu+1

with y⃗j = (x0j , ..., xuj), 1 ≤ j ≤ m. Intuitively, you can think of it as ‘swapping’ the indexes of the
coordinates and vectors. For example, y⃗1 would consist of all the first coordinates all the vectors in
the (u+ 1)-tuple.

Given some colouring χ : (Fm)u+1 → [c], we can naturally induce a colouring on (Fu+1)m. Since Φ

is a bijection, we define χΦ−1

: (Fu+1)m → [c] as χΦ−1

((y⃗1, ..., y⃗m)) = χ(Φ−1((x⃗0, ..., x⃗u))), for some
m-tuple in Fu+1 such that ϕ−1((y⃗1, ..., y⃗m)) = (x⃗0, ..., x⃗u). Since m−HJ(|F |u+1 : c), we make use of

theorem 3 to deduce there is a combinatorial line L ⊂ (Fu+1)m that is monochromatic under χΦ−1

.
Hence, Φ−1(L) is also monochromatic, in this case under χ. What remains to be shown is that Φ−1(L)
consists of parallel affine lines in Fm.

Let L ⊂ (Fu+1)m. This L is of the form {((x01, ..., xu1), ..., (x0m, ..., xum)), (x1j , ..., xuj) ∈ Fu+1

for j ∈ [m]}. Since L is a combinatorial line, we have that for some j ∈ [m] that the corresponding
(x0j , ..., xuj) are all identical and bijective under pj . For the other values of j, the corresponding
(x0j , ..., xuj) are constant under pj . Let J ⊂ [m] denote all the indexes for which pj is identical and
bijective. Note that this means that for some 0 ≤ i ≤ u, we have that xij is identical and bijective for
all j ∈ J . For all j /∈ J , we have that (x0j , ..., xuj) is constant.

We now turn our attention to L′ = Φ−1(L). This L′ is of the form {((x10, ..., xm0), ..., (x1u, ..., xmu)),
(x1i, ..., xmi) ∈ Fm for 0 ≤ i ≤ u}. We fix some 0 ≤ i ≤ u, thus looking at a specific (x1i, ..., xmi) of
L′. As we noted earlier, we see that xji is identical and bijective for all j ∈ J . For j /∈ J , we know that
xji is constant. Hence, (x1i, ..., xmi) consists of a combination of identical and bijective coordinates as

10



well as some constant coordinates. Thus, Li = {(x1i, ..., xmi), xji ∈ F for j ∈ [m]} is an affine line. As
this goes for any 0 ≤ i ≤ u, we get a collection of parallel affine lines L0, ..., Lu, as desired.

2.2.3 Special Vector Spaces

In this section we will show what special vector spaces are exactly, as well as prove a lemma that
makes sure we can always find such a space. First, we define what vertical and transversal subspaces
are. Let u ∈ N with t ≤ u < n and B be a (u + 1)-space of Fn

q . Let p : B → Fu be a surjective
projection. For a t-space T of B, there are two cases under this projection. In one case, p|T : T → Fu

is injective.1 That means that p(T ) ∈
[
Fu

t

]
, in which case we call it transversal. In the second case,

where the projection is not injective, we have that p(T ) ∈
[
Fu

t−1

]
and we call T vertical. Note that a

vertical space T is indeed (t − 1)-dimensional, intuitively as p only ‘reduces’ B by one dimension as
well.

With those 2 notions in mind, we can define special spaces. Given some colouring χ of the t-spaces of
Fn
q , a (u+ 1)-space B of Fn

q is called special with respect to the colouring χ and the above mentioned

projection p if the following holds. If T1, T2 ∈
[
B
t

]
are transversal and have that p(T1) = p(T2), then

χ(T1) = χ(T2). That is to say, the colours of transversal t-spaces in B are essentially determined by
their projection.

Of course, for the proof, we want to make sure that we can have such a special space B. That’s what
the following lemma is for:

Lemma 1. For all t, u, r ∈ N with t ≤ u, there exists m = M (t)(u : r) such that, given an r-coloring
χ of the t-spaces of Fu+m, there exists a special (u+1)-space B.

Proof. We shall in fact show that these spaces exist specifically using the projection p : Fu+m → Fu

that simply takes the first u coordinates. We denote v =
[
u
t

]
q
as the number of t-spaces of Fu. We

take m = HJ(|F |u+1 : rv. Let χ :
[
Fu+m

t

]
→ [r] be an r-colouring of the t-spaces of Fu+m.

We first intend to define an affine u-space X ⊂ Fu+m based on a (u+ 1)-tuple of vectors in Fm and
induce a colouring χ′ on it. Then, using Hales-Jewett, we generate a (u+ 1)-space B which we show
to be special by relating its t-spaces back to the prior defined X.

To get to this affine u-spaceX, we begin by defining e⃗0, e⃗1..., e⃗u ∈ Fu as e⃗0 = 0⃗ and e⃗i = (0, ..., 0, 1, 0, ..., 0)
as the ith basis vector of Fu. Furthermore, let Ai be the set such that p−1(e⃗i) ⊂ Fu+m for all 0 ≤ i ≤ u.
That is, Ai consists of all the vectors in Fu+m such that the first u coordinates correspond to e⃗i.

Now, let (x⃗0, ..., x⃗u) be a (u + 1)-tuple with x⃗i ∈ Fm for all 0 ≤ i ≤ u. We define y⃗i ∈ Fu+m by
y⃗i − e⃗ix⃗i. So, yi is x⃗i with the ith basis vector of Fu in front of it. These yi then generate a unique
affine u-space X ⊂ Fu+m. Since the first u coordinates of the yi are the basis vectors of Fu and the
zero vector, we see that the projection p|X : X → Fu is bijective.

Take some ordering of the t-spaces of Fu, denoted by T1, ..., Tv. As p|X : X → Fu is bijective, we know
there is a unique T ′

i such that p(T ′
i ) = Ti for each i ∈ [v]. We induce a (rv)-colouring χ′ of (Fm)u+1,

that is, on the (u+ 1)-tuples, as follows:

χ′[(x⃗0, ..., x⃗u)] = (χ(T ′
1), ..., χ(T

′
v))

On the right, we see the colour is dictated by the colours of all the T ′
i . As each T ′

i for i ∈ [v] is
assigned one of r colours, we indeed get an (rv)-colouring. Practically, this colouring means that two
(u + 1)-tuples are coloured the same if and only if the u-spaces generated by them as defined above
are coloured identically.2 Importantly, this means the colouring of these tuples are dictated by the
projection p.

We now move on to construct a (u+ 1)-space B we intend to prove to be special. By how we defined
m, we may make use of corollary 1 to obtain parallel affine lines L0, ..., Lu, Li ∈ Ai for which all

1Here p|T refers to the projection restricted to the values of T .
2Of course, it is not actually the u-space that is coloured, but each t-space of the u-space can be uniquely identified

with a t-space in Fu+m, which does have a colouring.
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(u+ 1)-tuples (x⃗0, ..., x⃗u), x⃗i ∈ Li receive the same colour under χ′. Since these lines are parallel, one
can generate a (u+ 1)-space B using them. We claim B is special with respect to χ and p|B.

Let T ∈
[
B
t

]
be a transverse t-space of B. For some j ∈ [v], we have that p(T ) = Tj (Where Tj is the

jth t-space of Fu, as per the prior ordering). To show B is special, we need to show that the colour of
T , χ(T ), depends entirely on its projection. Ergo, it needs to depend on j. We consider the transverse
u-spaces of B. Intuitively, T must be contained in at least one of these. We fix such a u-space X. Since
X is transverse, we know that for 0 ≤ i ≤ u, the intersection X ∩ Ai must contain exactly 1 vector.
If it contained more than 1, then the p|X would no longer be injective, thus not transverse. Thus, for
each 0 ≤ i ≤ u, we set X ∩Ai = {y⃗i}. Thus, X can be seen as generated by y⃗0, ..., y⃗u, bringing us back
to how we defined X earlier in this proof.

We know that T is the unique t-space of Fu+m such that p(T ) = Tj for some j ∈ [v]. Hence, χ(T )
corresponds to the jth coordinate of χ′[(x⃗0, ..., x⃗u)] = (χ(T ′

1), ..., χ(T
′
j), ..., χ(T

′
v)). By how we defined

B, we know that χ′ is constant on it. Hence, χ(T ) depends solely on the value j, as desired. Thus, B
is special.

2.2.4 The Base Case

Lemma 2. Theorem 2 holds for the case t = 0.

We shall actually prove this lemma for the specific case that k1, ..., kr all assume the same value k.
Note that it then also still proves it for the general case. To show why, say there is some ki < k for
i ∈ [r]. Here we can specifically take ki as less than k, since we’re proving the lemma for an arbitrary
value of k. If some k-space K of Fn

q is monochromatic with colour i, then we simply take a ki-space of
K, which is then still monochromatic with colour i.

Proof. Set n = km where m = HJ(|F |k, r). We introduce the bijection Ψ : Fn
q → (F k)m, which

is defined by grouping the coordinates of a vector x⃗ ∈ Fn
q into m disjoint sets of k coordinates.

For example, say we’re working with F2. Let k = 2 and m = 3, giving n = 6. Take the vector
x⃗ = (0, 0, 1, 0, 1, 1). Then Ψ(x⃗) = ((0, 0), (1, 0), (1, 1)).

Say we have some colouring χ : Fn
q → [r]. Since Ψ is a bijection, we can easily induce a colouring

χ′ : (F k)m → [r] by taking, for x⃗ ∈ (Fm)k, χ′(x⃗) = χ(Ψ−1(x⃗)). Since we defined m with the Hales-
Jewett function, we know by theorem 3 that there is a monochromatic combinatorial line L ⊂ (F k)m

under χ′. Then, Ψ−1(L) ⊂ Fn
q is also monochromatic.

We claim that Ψ−1(L) is an affine k-space in Fn
q . For this, we observe that L is of the form

{((x11, ..., x1k), ..., (xm1, ..., xmk)), (xi1, ..., xik) ∈ F k for i ∈ [m]}. As L is a combinatorial line, we
take I ⊂ [m] to be the set of coordinates such that (xi1, ..., xik) are identical and bijective under pi for
i ∈ I. Then for i /∈ I, (xi1, ..., xik) is constant. Note that for some choice of j ∈ [k], that xij is also
identical and bijective for all i ∈ I.

We now consider L′ = Ψ−1(L). Put crudely, the ‘order’ of the coordinates is preserved under Ψ, so
that we can see the form of L′ as {(x11, ..., x1k, x21, ..., x2k, ..., xm1, ..., xmk), xij ∈ F for i ∈ [m] and j ∈
[m]}. For some i ∈ I, we know that all choices of j ∈ [k] result in identical xij . For i /∈ I, we get that
for any choice of j ∈ [m] that xij is some constant in F . Intuitively, as there are k distinct sets of
identical xij , we see that L′ defines an affine k-space. Since L was monochromatic under χ′, we then
have that L′ = Ψ−1(L) is also monochromatic χ.

The theorem has now been proven for affine k-spaces. Though we want it to be proven for vector
k-spaces. Since t = 0, we are just colouring the points of Fn

q . Any such point a⃗ ∈ Fn
q can be written as

a⃗ = c⃗+ w⃗, where w⃗ is determined by a⃗. Thus, we induce the colouring χ′′(⃗a) = χ(w⃗). So χ′′ is still a
colouring of the points of Fn

q . As we demonstrated prior, we can then find an affine k-space B which

is monochromatic under χ′′. Then we can set B = b⃗+ V where V is some vector k-space determined
by B. Then, for a point v⃗ ∈ Fn

q , we have χ(v⃗) = χ′′(⃗b+ v⃗), which is monochromatic. Hence, we have
obtained a monochromatic vector k-space as desired.
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2.2.5 Induction

Now that the base case is proven, we move onto the induction step. For convenience, we restate the
theorem here before proving it.

Theorem. For all t ≥ 0, r, k1, ..., kr there exists n = N(t, k1, ..., kr) with the following property. Let
Fn
q be an n-space defined over Fq and χ :

[Fn
q

t

]
→ [r] be an arbitrary r-colouring of the t-spaces of Fn

q .

then for some i ∈ [r], there exists K ∈
[
V
ki

]
that is monochromatic with colour i.

Proof. First, assume the existence of n for t′ < t for all values of
∑r

i=1 ki. Then for t, assume the
existence of n for all

∑r
i=1 k

′
i <

∑r
i=1 ki. Since we want to make use of special spaces, we are going to

set the following values:

s = max
1≤i≤r

N (t)(k1, ..., ki − 1, ..., kr),

u = N (t−1)(s : r)

m = M (t)(u : r)

n = u+m

(2.5)

We show that based on these values, n has the desired property.3 What exact role s, u and m play
will become clear as the proof progresses. Let χ :

[
Fu+m

t

]
be an arbitrary r-colouring of the t-spaces

of Fu+m. Using lemma 1, we see that there is a special (u+ 1)-space B which we fix. Let p : B → Fu

be the associated projection for this special space B. We induce a colouring χ′ :
[
Fu

t−1

]
→ [r] as follows:

for T ∈
[
Fu

t−1

]
, χ′(T ) = χ(p−1(T )). That is, a (t− 1)-space T of Fu is coloured by the same colour as

its corresponding t-space p−1(T ) of B. As p(p−1(T )) = T is a (t − 1)-space, we note that p−1(T ) is
vertical.

By our assumption of n existing for t′ < t and our definition of u, we know there exists an s-space X
of Fu that is monochromatic under χ′. Without loss of generality, we can take X to be monochro-
matic with colour 1 under χ′. Note that p−1(X) is vertical because X by definition contains vertical
subspaces. For such a vertical subspace T , we have that the points in p−1(T ) are not injective under
the projection and are also in p−1(X). Hence, p(p−1(X)) is also not injective, so p−1(X) is vertical.
Additionally, p−1(X) is a special (s+1)-space with projection p|p−1(X) : p

−1(X) → F s, as it still uses
the same projection as B, just restricted to the vectors of X. Lastly, we note that the vertical t-spaces
of p−1(X) are coloured 1. As for a vertical t-space T of p−1(X), χ(T ) = χ′(p(T )) = 1.

Now, we induce a colouring on the projection of the transversal t-spaces of p−1(X). We set χ′′ :
[
X
t

]
→

[r] by χ′′(T ) = χ(T ′) where T ′ is a t-space of p−1(X) such that p(T ′) = T . We note that there may be
multiple options for T ′. However, since p−1(X) is special, we know that for two choices T ′

1, T
′
2 we have

that χ(T ′
1) = χ(T ′

2) since p(T ′
1) = p(T ′

2) = T . Essentially, χ′′ applies the colouring of the transverse
t-spaces of p−1(X) to the t-spaces of X.

By our definition of s, we know that s ≥ N (t)(k1 − 1, k2, ..., kr). Clearly, k1 − 1 +
∑r

i=2 ki <
∑r

i=1 ki.
So we know there exists W ⊂ X that falls under one of 2 cases:

1. for 2 ≤ j ≤ r, W is monochromatic with colour j under χ′′ and has dimension kj .

2. for j = 1, W is monochromatic with colour 1 under χ′′ and has dimension k1 − 1

We can essentially have the dimension of W be kj − 1 for any j. However, we will make use of the fact
that the vertical t-spaces of X are coloured 1 to ‘fix’ the lowered dimension.

We begin with case 1, we can find a transverse kj-space W ′ ⊂ p−1(X) such that p(W ′) = W . Note
we can indeed do this. Observe that p−1(W ) is either kj-dimensional or (kj + 1)-dimensional. In the
former case, W ′ = p−1(W ) is transverse. In the latter case, we look at the basis of p−1(W ). Under
the projection, one of these two basis vectors must be projected to the same point. Pick one of those

3Note that this will not give us a specific value for n or some bound on it. As the ‘functions’ s, u and m are defined
by merely state that they are dependent on those variables somehow. There is no indication in what way they are
dependent on them.
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basis vectors w⃗i and let W ′ be the kj-space that has the same basis vectors as p−1(W ) except for wi.
Then p(W ′) = W still, so W ′ is transverse. Then

[
W
t

]
is monochromatic with colour j under χ.

For case 2, set W ′ = p−1(W ). Then W ′ is a vertical k1-space of B. Let T be a t-space of W ′. If T is
transversal, χ(T ) = χ′′(p(T )) = 1 as p(T ) is a t-space of W . If T is vertical it is a vertical t-space of
p−1(X), hence χ(T ) = 1.

14



Chapter 3

Asymptotic Bounds

As mentioned, computing actual values of these vector space Ramsey numbers quickly becomes infea-
sible as the possible number of colourings and subspaces simply becomes too big. Hence, there is a
strong interest in finding bounds on these numbers. The first three will focus on lower bounds. In
fact, each method will uncover roughly the same lower bound for vector space Ramsey numbers. This
is intended to show how different methods can be used to achieve these lower bounds.

In section 3.1, we investigate what the Probabilistic Method is and how it can be used to find a lower
bound. Then, in section 3.2 we look to Code Theory to obtain a lower bound. For the third, in section
3.3, we look for a lower bound using Projective Spaces.

We also want to put emphasis on the difference between finding a lower bound and an upper bound.
For a lower bound for Ramsey Numbers, all that is required is finding one colouring the does not
give rise to a monochromatic subspace. For upper bounds, however, it needs to be shown that for all
colourings there is such a monochromatic subspace. This requires different approaches, one of which
is demonstrated in section 3.4. Here, an upper bound is found by making use of an upper bound in
Classical Ramsey Numbers. After that, we discuss some other recent upper bounds of vector space
Ramsey Numbers in subsection 3.5

All of these bounds concern themselves with vector space Ramsey numbers over F2. Hence, all the
relevant definitions and theories shall also only be given in context to F2. Note some of it might apply
more generally though.

3.1 Probabilistic Method

For this section, the work from Bishnoi et al. (2023)[4] was studied. The Probabilistic Method is a
means of proving certain properties or structures exist that is applied to more than just vector space
Ramsey numbers. The general idea is to show that the probability that a desired structure arises from
some experiment is non-zero. This is of course much easier said than done. For the case of vector
space Ramsey numbers, one can also see it as there being ‘bad’ events we want to avoid. A bad event
in this case is a monochromatic ki-space coloured i. Here, the experiment we do would be randomly
assigning one of r colours to each 1-space. These events are of course not independent, as there is a
lot of overlap in the ki-spaces. Still, we can make use of this idea to obtain a lower bound for vector
space Ramsey numbers, as shall be demonstrated in 3.1.1

3.1.1 Lower bound using the Probabilistic Method

In this section R2(2, t) > ( 32 − o(1))t is the claim we intend to prove.1 The proof of this was provided
by Ravi (personal communication, 2024)[5]. To do this, we shall give a rough upper bound on the
probability that we get a monochromatic 2-space coloured red or t-space coloured blue. Then we
demonstrate that this upper bound is in fact strictly less than 1 for the desired value of n.

1o(1) here essentially represents some function f : N → R such that limn→∞ f = 0
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Theorem 4. R2(2, t) > ( 32 − o(1))t

Proof. We colour the 1-spaces of Fn
2 randomly and independently, such that a 1-space has probability

p to be coloured red and (1 − p) to be coloured blue. Then, for a 2-space R of Fn
2 , the event that it

is coloured mono-chromatically red shall be denoted by MR, and its probability is P (MR) = p3. For
a t-space B of Fn

2 , the even that it is coloured mono-chromatically blue is denoted by MB , and its

probability is P (MB) = (1−p)2
t−1. Note that 2t−1 is the number of 1-spaces in a t-space (essentially,

the number of non-zero vectors). Then, the probability that there is a monochromatic 2- or t-space is
the probability that any of the MR or MB happen. These events are of course not independent, but
we can upper bound this probability still by ‘neglecting’ the dependence.

Denoting the event that there is at least one monochromatic 2-space that is red or monochromatic
t-space that is blue as M , we get:

P (M) ≤
[
n
2

]
2
p3 +

[
n
t

]
2
(1− p)2

t−1

If we can show that the right expression is strictly less than 1, then there is a non-zero chance that
there isn’t a monochromatic 2- or t-space. Thus, there must then be a colouring such that there is no
monochromatic 2- or t-space. To work towards this, we set n = αt, where α is some constant. We turn
our attention to the second term of the inequality

[
n
t

]
2
(1 − p)2

t−1. We wish to find an upper bound

for it. For
[
n
t

]
2
, we observe the following:

(2n − 1)(2n − 2)...(2n − 2t−1)

(2t − 1)(2t − 2)...(2t − 2t−1)
< 2nt−t2

It is easy to see that 1− p < e−p. Combining these 2 results, we get

[
n
t

]
2
(1− p)2

t−1 < 2nt−t2e−p(2t−1) < 2nt−t2−p2t+p

If we get that exponent to roughly equal -1, then the second term of the inequality will be strictly less

than 1
2 . Thus, rewriting nt− t2 − p2t + p ≈ −1 givues us p ≈ nt−t2+1

2t−1 = t2(α−1)+1
2t−1 .

Using the earlier shown inequality, we have that
[
n
2

]
2
< 22n−4. By using the expression for p we just

obtained, we get that the first term of inequality results in:

[
n
2

]
2
p3 < 22αt−4(

t2(α− 1) + 1

2t − 1
)3

As a last step, we take the limit of this expression.

lim
t→∞

22αt−4(
t2(α− 1) + 1

2t − 1
)3 = lim

t→∞

22αt

23t

Taking α = 3
2 − ϵ, we see that the limit goes to 0. Hence, we obtain P (M) < 1 and R2(2, t) > n for

n = ( 32 − o(1))t.

The notable thing that differentiates this method from some of the others we will study is that we do
not obtain any sort of construction for an actual colouring. Instead, we’ve merely demonstrated that
such a colouring must exist. For the purposes of a lower bound, it’s not generally necessary to know
what the colouring looks like. Thus, the probabilistic method proves a powerful tool to research these
bounds.
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3.2 Codes

A second method to finding a lower bound for vector space Ramsey numbers is through coding theory.
In subsection 3.2.1, some relevant basics from Code Theory will be discussed as well as a theorem
about the maximum dimension of a code with certain distance. This theorem is taken from Enomoto
et al. (1987)[6]. Then in subsection 3.2.2 we discuss how that theorem can be used to obtain a
lower bound for vector space Ramsey numbers. Though the thoeries from coding theory were known
prior, the connection with vector space Ramsey numbers was discovered by A. Bishnoi (personal
communications, 2024)

3.2.1 Codes with given distances

We call any arbitrary subset C ⊂ Fn
2 a code of length n. A code is linear if it is a subspace of Fn

2 . So
notably, the subspaces we consider when looking at Ramsey Numbers are linear codes.

Two important notions to define on the elements of these codes are the Hamming distance and weight.
The Hamming distance between some vectors x and y, written as d(x, y), is defined as the number
of coordinates where these two vectors have different values. For example, let x = (0, 1, 1, 0, 1) and
y = (0, 0, 1, 0, 0) then we see that d(x, y) = 2. The weight of a vector, written as w(x) is the number
of non-zero coordinates. So for our previously written x we see that w(x) = 3.

We also define the dual of a code C⊥ as follows:

C⊥ = {x ∈ Fn
2 : (x, y) = 0 for all y ∈ C} (3.1)

Here, (x, y) refers to the scalar product of x and y defined as (x, y) =
∑n

i=0 xiyi(mod 2). So, the dual
is defined as all the vectors in Fn

2 such that the scalar product with all vectors in the code C are zero.
If C is linear, we have two interesting properties. Namely that dim C + dim C⊥ = n and C = (C⊥)⊥.

Lastly, we define the function l(n,D), which we are interested in studying. It is defined as follows:

l(n,D) = max{dim C : C ⊂ Fn
2 , C is linear and D(C) ⊂ D} (3.2)

Here, D ⊂ {1, 2, ..., n} and D(C) is the set of all distances of C. Thus, l(n,D) is the maximum
dimension of a linear code C so that it contains only distances in D. In particular, we are interested
in the following special case:

l(n, t) = l(n, {1, 2, ..., n} − {t}) (3.3)

That is, the maximal dimension of a code C that does not contain two vectors with distance t. The
aim specifically is to prove the following theorem:

Theorem 5.
l(4t, 2t) = 2t and

l(n, 2t) = 2t− 1 for 2t− 1 ≤ n < 4t
(3.4)

To prove this theorem, we want to make use of the following theorem:

Theorem 6.
l(4t, {2t− 1, 2t}) = 2t− 1 (3.5)

In turn, this theorem requires a lemma to be proven. Before that, we introduce the notion of binormal.
A matrix is said to be in binormal form if it is k by n with 2k ≤ n and the (2i−1)th and (2i)th columns
differ in only the ith place for i ∈ [k]. So, the 1st and 2nd column differ in position 1, the 3rd and 4th
in position 2, and so on. We then get the following lemma:

Lemma 3. Suppose that M is a k by n matrix with binary entries with rank k. Furthermore, suppose
2k < n, n is odd and every row of M is orthogonal to 1. Then M can be brought to binormal form by
row operations and permutations of the columns.
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Furthermore, we require the following proposition:

Proposition 1. If M is in binormal form and c is an arbitrary (0,1)-vector of length k. Then there
exists a unique combination of k columns of M such that its sum is c. Here, the ith column of this
combination is either the (2i− 1)th or the (2i)th column.

The proof for the lemma and the proposition shall be omitted here, but can be found in the original
work by Enomoto et al. (1987)[6]. We proceed with the proof of theorem 6.

Proof. Let C ⊂ F4t
2 be a linear code of dimension 2t. We aim to obtain an upper bound of l(4t, {2t− 1, 2t})

if we show that C contains a vector of weight 2t − 1 or 2t. We can then sum such a vector with the
zero vector to obtain the distance of 2t− 1 or 2t. We shall prove this by contradiction.

First, we claim we may assume that 1 ∈ C. If it isn’t, we can obtain a code of same dimension that
does contain it as follows. Let C1 =< C,1 >. That is to say, C1 is the code generated by adding 1
to C. This code has dimension 2t+ 1. It also has no vectors of weight 2t since w(v + 1 = 4t− w(v).
Since we assume there is no v ∈ C such that w(v) = 2t, we also have that 4t− w(v) ̸= 2t.

Next, we take a subcode C0 of C1 by only taking the vectors with even weight. This has either
dimension 2t or 2t+ 12. In the former case, it contains 1, has no vectors of weight 2t− 1 or 2t and is
of the desired dimension. In the latter case, one could simply take a 2t subcode of C0 that contains 1
to achieve the same.

Now we consider the dual of C, C⊥. Its dimension is 4t− 2t = 2t. Let M be a generating matrix3 of
C⊥. So M is a 2t by 4t matrix. We obtain M ′ by adding a column of zeros to M . Note M ′ is 2t by
4t+ 1. Since 1 ∈ C, 1 is orthogonal to every row of M ′. Taking k = 2t < 4t+ 1 = n, we observe that
M ′ then satisfies the conditions of lemma 3. Hence, we can write M ′ in binormal form.

Doing so, we make use of proposition 1 to obtain a combination of 2t columns of M ′ such that its
sum is 0. If this combination includes the last column, we obtain 2t− 1 non-zero columns of M ′ that
add up to zero. Else, we have 2t columns of M ′ that add up to zero. Take I as the set of indices
corresponding to these columns. Then we define a vector v = (v1, ..., v4t) as follows:

vi =

{
1 if i ∈ I

0 if i /∈ I

Thus Mv = 0 as per the proposition. So v ∈ (A⊥)⊥ = A. Additionally, w(v) = |I| which is either 2t
or 2t− 1. This is a contradiction, as we assumed there to be no vectors of weight 2t or 2t− 1. Hence,
it is proven that l(4t, {2t− 1, 2t}) < 2t.

For the lower bound, we consider the following code:

C = {(v1, ..., v4t) : v2t−1 = ... = v4t

That is, C is the code where (2t − 1)th entry and all the ones after it have the same value. Clearly,
the dimension of C is 2t− 1. Furthermore, if v2t−1 = ... = v4t = 0, we see that w(v) < 2t− 1. On the
other hand, if v2t−1 = ... = v4t = 1, then w(v) > 2t+ 1. Hence C excludes distances 2t− 1 and 2t as
desired. Thus, l(4t, {2t− 1, 2t}) ≥ 2t− 1.

Combining the two results, we get that l(4t, {2t− 1, 2t}) = 2t− 1.

Finally, we prove theorem 5:

2This claim is not proven here but it is indeed true that either half or all of a linear code’s vectors are of even weight.
If it’s half, the dimension of C0 is 2t. If it’s all, C0 = C1 and its dimension remains 2t+ 1.

3A generating matrix of a code C with dimension k and length n is a k by n matrix such that the vector Mv = c
with v ∈ Fk

2 is in C. In other vectors, the rows of M form a basis for C
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Proof. There are two parts to theorem 5. The case where n = 4t and the case where 2t− 1 ≤ n < 4t.
We first look at lower bounds for these two cases. For the latter case, we take the following code:

C = {(v1, ..., vn) : v2t = ... = vn = 0}

So, the last n−2t+1 entries are 0. Clearly, C is of dimension 2t−1 as desired. Also, w(v) < 2t for any
v ∈ C. Thus, We get the lower bound of l(n, 2t) ≥ 2t− 1. For the former case, we take C ′ =< C,1 >.
That is, the code generated by adding 1 to the prior defined C. This is then a code of dimension 2t.
Also, as discussed in the proof for theorem 6, since C does not contain a word of weight 2t, nor does
C ′. So we get the lower bound l(4t, 2t) ≥ 2t.

For the upper bound for l(4t, 2t), we look at an arbitrary linear code C of F4
2t that does not contain

words of weight 2t. Let Ce be the subcode that consists of all the vectors of even weight of C. So
dim Ce ≥ do, C − 1. Ce also contains no vectors of 2t. Additionally, since 2t − 1 is odd Ce also
contains no vectors of that weight. Hence, we may apply theorem 6 to get

dim C ≤ 1 + dim Ce ≤ 2t

Giving us the upper bound of l(4t, 2t) ≤ 2t− 1 as desired.

For the upper bound of l(n, 2t) we look at a linear code C of F4t
2 where all the entries after the nth are

0 and that once agains contains no vectors of weight 2t. Since some entries of vectors are always zero,
we know that 1 /∈ C. Hence, we take C ′ =< C,1 >. This has dim C ′ = dim C + 1. It once again
also contains no vectors of weight 2t. Now, the case l(4t, 2t) = 2t provides us an upper bound for the
dimension of C ′. This gives:

dim C ′ = dim C + 1 ≤ 2t

Thus, dim C ≤ 2t− 1 as desired.

3.2.2 Lower bound using Codes

Now we proceed to observe how theorem 5 may help us find a lower bound for vector space Ramsey
numbers. Particularly, we’ll be looking at R2(2, 2t). We claim that R2(2, 2t) ≥ 3t (For t > 1). To
prove this, we take A to be all vectors of weight 2t of F3t−1

2 . We note that all 2t-spaces of F3t−1
2

intersect with A. This follows from theorem 5. Indeed, the theorem states the maximum dimension of
a linear code (ergo a subspace) of F3t−1

2 that does not contain a vector of weight 2t is 2t− 1. Hence,
a subspace of dimension 2t must contain a vector of such weight, thus it intersects with A.

Importantly as well, if you take two vectors from A, their sum will not be of weight 2t so not be in
A. Intuitively, this is because the two vectors will also overlap in more than t spaces because of their
weight of 2t. This means that A also does not contain any 2-spaces of F3t−1

2 .

Thus, our colouring is as follows: A is coloured blue (or colour 1) and the complement of A is coloured
red (or colour 2). Since A does not contain any 2-spaces of F3t−1, this colouring also does not give any
monochromatically blue 2-spaces. Similarly, since all 2t-spaces intersect with A, at least one non-zero
vector of each of these subspaces is coloured blue. Hence, none of them are monochromatically coloured
red. Thus, we have constructed a colouring of F3t−1

2 that does not contain any monochromatic 2- or
2t-spaces. Hence, we have that R2(2, 2t) ≥ 3t.

3.3 Projective spaces

The third method to finding a lower bound for vector space Ramsey numbers is in spirit similar to the
one in subsection 3.2. We make use of vectors with sufficiently high weight to achieve our colouring.
However, here we approach that using Projective Spaces. The theorems used to find this lower bound
are discussed in subsection 3.3.1. These are taken from the work by Lisoněk and Khatirinejad (2005)[7].
Then, in subsection 3.3.2, we discuss how a lower bound can be found using Projective Spaces. Similar
as with the coding theory method, the connection to vector space Ramsey numbers was discovered by
A. Bishnoi (personal communications, 2024).
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3.3.1 Caps in Projective Spaces

Let PG(n,2) denote the n-dimensional projective space over F2. The points of PG(n,2) correspond
to the non-zero vectors of Fn+1

2 . These points shall be denoted by
∑

n+1. A cap in PG(n,2) is a set
C ⊆

∑
n+1 such that the sum of any two points in C is not in C. A cap is called complete if it is not

a proper subset of some other cap in the same space. For m ≥ 0, an m-flat is defined as a subspace of
PG(n,2) spanned by m+ 1 independent points.

We shall work with the same definition of the weight of a vector as in 3.2. We also define the notion
of a support, which is the set of non-zero coordinates of a vector. That is, if we have a vector x ∈ Fn

2 ,
then the supper is a subset of [n] coorresponding to the non-zero entries of x. Further, for 0 ≤ i ≤ n,
Un
i denoted the set of all vectors of weight i. If there is no confusion about the dimension, we may

also denote it simply as Ui. Furthermore, for two subsets X,Y of Fn
2 , their sum is defined as follows:

X ⊕ Y := {x+ y : x ∈ X, y ∈ Y and x ̸= y}

We will be constructing a complete cap. To do so, we require the following Lemma, which shall be
stated without proof:

Lemma 4. Let n ≥ r ≥ s. If r = s, let e = 2. If instead r > s, let e = r − s. Furthermore, if
r + s ≤ n, then let f = r + s. Otherwise, if r + s ≥ n, let f = n− (r + s). Then we have that

Un
r ⊕ Un

s = Un
e ⊔ Un

e+2 ⊔ ... ⊔ Un
f

4

With that in mind, we state the set we intend to prove is a complete cap:

Definition 5. For k ∈ N>0 let

Lk =

3k+1⊔
i=2k+1

U3k+1
i

So, essentially, L encompasses all vectors of weight 2k + 1 and higher. With that, we prove the
following:

Theorem 7. The set Lk is a complete cap in PG(3k, 2) for all k ∈ N>0.

Proof. To prove L is a cap, we need that the sum of no two distinct vectors in Lk is in Lk again. This
can also be written as needing that (Lk ⊕ Lk) ∩ Lk = ∅. That is, there is no overlap between Lk and
the sum with itself. For it to be complete we require (Lk ⊕ Lk) ⊔ Lk =

∑
3k+1. That means that

the union of Lk and the sum with itself needs to encompass all points of PG(3k, 2). If it didn’t, it
would mean there are points that could be added to Lk still to increase the size of the cap. Combining
these two, we get that (Lk ⊕Lk) must be the complement of Lk. This gives us that we must show the
following holds:

(Lk ⊕ Lk) =

2k⊔
i=1

U3k+1
i (3.6)

Suppose that x ∈
⊔2k

i=1 U
3k+1
i . Then 1 ≤ w(x) ≤ 2k. We claim that either x ∈ (U2k+1 ⊕ U2k+2) or

x ∈ (U2k+1 ⊕ U2k+1). To prove the claim, we make use of lemma 4. We get that (U2k+1 ⊕ U2k+2) =
U1 ⊔U3 ⊔ ...⊔U2k−1. That is, (U2k+1⊕U2k+2) encompasses all the odd weights between 1 and 2k. We
also have (U2k+1⊕U2k+1) = U2 ⊔U4 ⊔ ...⊔U2k. So (U2k+1⊕U2k+1) encompasses all the even weights.
Hence, if w(x) is odd, it is in (U2k+1 ⊕ U2k+2). If w(x) is even, it is in (U2k+1 ⊕ U2k+1). Thus, we see

that
⊔2k

i=1 U
3k+1
i ⊂ (Lk ⊕ Lk).

Now, suppose that x ∈ (Lk ⊕ Lk). So x = y + z, y ∈ Ui, z ∈ Uj for some 2k + 1 ≤ i, j,≤ 3k + 1 with
y ̸= z. We want that 1 ≤ wt(x) ≤ 2k. The lower bound follows form the fact that y ̸= z. For the
upper bound, we once again look to lemma 4. We try to maximise f . That will result in the biggest

4For clarity, ⊔ here means a disjoint union of sets.
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possible weight for any choice of i, j. It is relatively easy to see that i = j = 2k + 1 results in the
largest f . Namely f = 2(3k+ 1)− 2(2k+ 1) = 2k. Hence we get that wt(x) ≤ f ≤ 2k. Thus, we have

that (Lk ⊕ Lk) ⊂
⊔2k

i=1 U
3k+1
i .

Combining these two results, we obtain the equality in equation 3.6 as desired.

Furthermore, we want to demonstrate that L also intersects with all 2k-flats. To do this, we shall need
an additional Lemma:

Lemma 5. Let r < n and r, n ∈ N>0. Let S1, ..., Sr be r non-empty distinct subsets of [n]. Then there
exists a set S′ ⊆ [n] with |S′| ≥ n− r such that |S′ ∩ Si| is even for all i ∈ [r].

Proof. Proof Lacking for now, adding later

Using this Lemma, we shall now prove the following theorem:

Theorem 8. For all k ∈ N>0, Lk intersects every 2k-flat of PG(3k, 2)

Proof. Let F be an arbitrary 2k-flat of PH(3k,2). We shall write F as the intersection of k hyperplanes
of PG(3k,2). Writing the hyperplanes as Hi = {x ∈

∑
3k+1 : (hi, x) = 0}5 for each i ∈ [k], we can then

write F =
⋂k

i=1 Hi. Let Si ⊆ [3k + 1] be the support of hi. Then the various Si have k non-empty
distinct subsets of [3k + 1]. This satisfies the conditions of 5. So, there exists a S′ ⊆ [3k + 1] with
|S′| ≥ 3k + 1− k = 2k + 1 and |S′ ∩ Si— is even for all i ∈ [k].

Let s′ ∈ F3k+1
2 such that its support is S′. For all i ∈ [k], we have |S′∩Si| even. That is, hi and s′ both

take on the value 1 in an even amount of coordinates. Hence, (hi, x) is the sum of an even amount
of ones, meaning (hi, x) = 0. Therefore, s′ is in each Hi and then also in the 2k-flat F . Additionally,
since |S′| ≥ 2k + 1, we have that w(s′) ≥ 2k + 1, hence we also have that s′ ∈ Lk.

Thus, we conclude that F ∩ Lk ̸= ∅.

3.3.2 Lower bound using Projective Spaces

We proceed with showing how Lk may be used to derive a lower bound for vector space Ramsey
numbers. We claim that, using this complete cap, we can show that R2(2, 2t + 1) > 3t + 1. Thus we
shall consider F3t+1

2 . Note that F3t+1
2 /{0} is exactly the points of PG(3t,2). Then, Lt is a complete cap

that also intersects every 2t-flat. By definition, a 2t-flat with the zero vector added is a (2t+ 1)-space
of F3t+1

2 . So in a sense Lt intersects every 2t + 1-space. Furthermore, Lt also does not contain all
non-zero vectors of any 2-space as it is a cap. That is, any sum of two vectors in Lt is not in Lt.

Hence, we proceed with the colouring similarly as we did in 3.2. Lt is coloured blue (or colour 1)
and the complement of Lt, that is all vectors of weight 2t or less, is coloured red (or colour 2). Since
Lt does not contain any 2-spaces, the colouring does not give any monochromatically blue 2-spaces.
Additionally, since Lt intersects all 2t + 1-spaces, each 2t + 1-space has at least one vector that is
coloured blue. So there are no 2t + 1-spaces that are coloured monochromatically red. Thus, we
have a colouring of F3t+1

2 that avoids monochromatic 2- or 2t + 1-spaces. Thus we conclude that
R2(2, 2t+ 1) > 3t+ 1.

3.4 Graph Ramsey Numbers

Lastly, we would also like to demonstrate an upper bound for vector space Ramsey numbers. Unlike
the previous 3, where we only had to demonstrate there was at least one colouring that avoided
monochromatic ki-spaces, we now need to verify for all that there is some monochromatic ki-space.
Specifically, we shall achieve this by relating it to a bound of Classical Ramsey Numbers.

5(hi, x) here refers to the scalar product defined in subsection 3.2
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First, in subsection 3.4.1, we shall briefly discuss what Classical Ramsey Numbers are. Then, in
subsection 3.4.2, we show an upper bound on R(3; r). Lastly, in subsection 3.4.3, we demonstrate how
the upper bound on R(3; r) can be related to an upper bound for R2(2; r).

6

3.4.1 Classical Ramsey Numbers

Classical Ramsey Numbers originate from Graph Theory. The example oft discussed is that of a group
of 6 people. Imagine you represent the individuals with vertices in a graph. Then, the edges represent
whether 2 people are friends or not. If they are, the edge is coloured red, blue otherwise.7 You may
for example, get the graph in figure 3.4.1.

1

2

3

4

5

6

Figure 3.1: Graph representing 6 people and who is friends with who.

You can quickly see there are triangles of the same colour. For example, 2, 4 and 6 form such a ‘clique’
of 3. As it turns out, these monochromatic triangles will always form in a group of 6 people. This can
be more formally stated and proven as follows:

Theorem 9. In a 2-colouring of the edges of K6, there will always be a monochromatic clique of size
3.8

Proof. We may assume that vertex 1 of K6 (for some ordering of the vertices) has 3 edges that are
coloured red. After all, if there are 2 or less coloured red, there are at least 3 coloured blue. For the
3 vertices that are connected to these 3 red edges, there are 2 cases. If one pair of these 3 vertices is
connected by a red coloured edge, then we have a red clique of size 3. If none of the 3 are connected by
a red coloured edge and instead by blue coloured edges, then those 3 form a blue coloured clique.

The question is whether this is the smallest size graph for which this is true. A quick colouring of K5

demonstrated in figure 3.4.1 verifies this. That then brings us to the definition of a Classical Ramsey
Number.

Definition 6 (Classical Ramsey Number). R(k1, ..., kr) = n implies that n is the smallest such number
with the following property. For any r-colouring of Kn, there is a i ∈ [r] such that there is a clique of
size ki coloured i.

This definition is quite a bit more general than the example. Notably, we can have Classical Ramsey
Numbers for more than 2 colours and the sizes of the cliques for each colour need not be the same.
Our example for 6 vertices would be written as R(3, 3) = 6.

6Though the notation is quite similar, note that the distinction is that Rq(k1, ..., kr) refers to vector space Ramsey
numbers over Fq whereas R(k1, ..., kr), without the q, refers to Classical Ramsey Numbers.

7For the purposes of a mathematical example, friendship is a binary notion here.
8K6 here refers to the complete graph of 6 vertices.
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34

5

Figure 3.2: Colouring of K5 that has no monochromatic cliques of size 3

3.4.2 Upper bound on R(3; r)

We shall be proving an upper bound for R(3; r) (Which is R(3, ..., 3) where 3 is repeated r times).
Specifically, we intend to prove R(3; r) ≤ 3r!. You can see R(3; r) as the multi-colour generalisation of
the case R(3, 3) = 6. In fact, the idea of the proof will be similar, we shall show that a vertex must
have a certain amount of edges of the same colour, then showing there are monochromatic cliques
somewhere among that vertex and the vertices connected to the monochromatic edges.

Theorem 10. R(3; r) ≤ 3r!

Proof. We prove this by induction. The base case R(3, 3) ≤ 3(2!) = 6 was already proven in subsection
3.4.1. For the induction step, we assume that R(3; (r− 1)) ≤ 3(r− 1)! holds. We consider an arbitrary
r-colouring of the graph G = K3r!. Let v be an arbitrary vertex of the graph. We claim that at least
⌈ 3r!−1

r ⌉ are of the same colour. For r > 1 we see that:

3r!− 1

r
=

3r!

r
− 1

r
= 3(r − 1)!− 1

r

So, this gives us that ⌈ 3r!−1
r ⌉ = 3(r − 1!). If each colour appears less than 3(r − 1)! times we see that

at most r(3(r − 1)! − 1) = 3r! − r of the edges can be coloured. Thus, there must be a colour that
appears at least 3(r−1)! times. Without loss of generality, say that is colour 1. let G′ be the subgraph
consisting of the vertices of the graph G which are the neighbours of v that are connected by an edge
with colour 1. Then, if any pair of vertices in G′ is coloured 1, we have a monochromatic clique of size
3 coloured 1. If none of them are coloured 1, then G′ contains r − 1 colours. Additionally, we know
that |V ′| ≥ 3(r − 1)!. By our assumption, we can then find a monochromatic clique of size 3 with
colour i with i ∈ {2, ..., r}. Thus, we have that R(3, 3) ≤ 3r!.

3.4.3 Upper bound of R2(2; r)

To see how this provides an upper bound for, we actually intend to aim the following lemma first:

Lemma 6. R2(2; r) > n =⇒ R(3; r) > 2n − 1

We can then take the contrapositive of this statement to obtain our upper bound. To prove this, we
will need to make use of Schur’s Theorem, which is as follows:

Theorem 11 (Schur’s Theorem). Let r ∈ N>0. Then there exists a positive integer n such that for
every partition of [n] into r parts, there is a part containing integers x, y, z such that x+ y = z.

Importantly, we shall show that R(3; r) is sufficient for this theorem. Once proven, we then know that
this is a property that R(3; r) satisfies in general. Thus, if we then have an n and a partition of [n]
into r parts that does not satisfy that property, we know that R(3; r) > n.
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Proof. Given some r ∈ N>0, take n = R(3; r). Let χ be an r-colouring of [n].9 Now consider the graph
Kn, where the vertices have some ordering {v1, ..., vn}. We induce a colouring χ′ on Kn as follows:
the edge between vi and vj receive the same colour that |i− j| received in the colouring of [n].

By definition of Classical Ramsey Numbers, there is a monochromatic triangle somewhere in Kn. Say
that the vertices belonging to that triangle have indexes i > j > k. Then we know that i − j, j − k
and i− k received the same colour under χ. Thus, we set x = i− j, y = j − k and z = i− k. Then we
get x+ y = i− j + j − k = i− k = z.

We shall now prove lemma 6.

Proof. Let r ∈ N>0. Since R2(2; r) > n, we know there is a colouring for Fn
2 that has no monochromatic

2-spaces, we denote this colouring by χ. We note that for a vector in Fn
2 , one can see it as a number

is base 2. For example, the vertex (0, 1, 1, 0, 1) can be seen as 011012 = 1310. Thus, we order the
non-zero vectors of Fn

2 based on which binary number the vector ‘represents’. For i < j < k ≤ 2n − 1
that satisfy i+j = k, we see that vi+vj = vk. Important to note is that then {vi, vj , vk, 0} is a 2-space
of Fn

2 .

We induce a colouring χ′ on [2n − 1] simply by χ′(i) = χ(vi). For any i < j < k ≤ 2n − 1 such that
i+ j = k, we have that vi, vj , vk are part of a 2-space of Fn

2 . Since χ has no monochromatic 2-space,
we then know that vi, vj , vk do not all have the same colour. Thus, under χ′, i, j, k do not all have
the same colour either. This means that 2n − 1 is not large enough to satisfy theorem 11. Since we’ve
proven that R(3; r) is large enough for it, it then must hold that R(3; r) > 2n − 1.

With that lower bound established, We take the contrapositive of lemma 6. We add one to the upper
bound of R(3; r) as well for convenience. This means we get R(3; r) ≤ 2n =⇒ R2(2; r) ≤ n. As per
theorem 10, we know that R(3; r) ≤ 3r!. It is pretty easy to see that rr ≥ r!. For r = 3 specifically,
we see that 3(3!) = 18 < 27 = 33. Hence, for r ≥ 3, we have 3r! ≤ rr. This bound is quite bad,
but we shall rewrite it in a nice form for our purposes: rr = 2log2 rr = 2r log2 r. Thus, we see that
R(3; r) ≤ 2r log2 r. Combining this with the contrapositive of lemma 6, we get that R2(2; r) ≤ r log2 r.

3.5 Other Upper Bounds

In this section we shall more briefly discuss some recent discoveries and improvements on upper bounds
of vector space Ramsey numbers. Rather than providing a full proof, the idea of the proof shall be
given in short. For the first few bounds that we shall be looking at, we have studied the work of
Frederickson and Yeprenmyan (2023)[8]. Their work gives improved upper bounds on R2(2, t), R3(2, t)
as well as delving into general bounds for Rq(k1, ..., kr).

An earlier upper bound for the specific case of R2(t; r) was given by Taylor (1981)[9], by reducing the
problem to the unions problem for finite sets. The bound is as follows:

Theorem 12 (Taylor). The number R2(t; r) is at most a tower of height 2k(t− 1) of the form

R2(t; r) ≤ k3
k
. .

.
k

The work of Frederickson and Yepremyan sets out to improve this bound for q ∈ {2, 3} specifically, as
well as have it be applicable for general choices t1, ..., tk. Before this is discussed, some notions will be
briefly introduced.

Most notably, instead of looking at subspaces, we concern ourselves with subsets of Fn
q that have either

a linear or affine configuration. Linear means that on A = {x1, ..., xk} ⊆ Fn
q we have the equation of

the form
∑k

i=1 λixi = 0, where λ1, ..., λk ∈ Fq. If we have sumk
i=1λi = 0, we call it affine.

Though it isn’t really mentioned in the following text, the subsets being Sidorenko play a vital role
in a lot of the inequalities and arguments. Thus we define it still. An affine configuration B ⊂ Fn

q is
C-weakly Sidorneko if, for any A ⊆ Fn

q of density α,

9An r-colouring is essentially partitioning something into r parts, we simply opt for the former.
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homaff (B,A) ≥ σCN rankaff (B)

We simply call it Sidorenko if C = |B|. Here, N = qn, homaff (B,A) represents the number of affine
homomorphism B → A and rankaff (A) is the size of an affine basis of A.

For A ⊆ Fn
q to contain an affine copy of B ⊆ Fn

q , we require there to be a non-degenerate affine
homomorphism B → A. This essentially meaning that both relations and non-relations are preserved.
If, for some family of subsets B = {Bi}i∈I , we have that A ⊆ Fn

q contains no affine copy of any Bi.
then A is called B-free. The largest size of an affine subset of Fn

q such that it remains B-free we denote
by exaff(n,B) amd os called the n-th affine extremal number of B.

We intend to prove the following bound:

Theorem 13. There exists a constant C0 ≈ 13.901 such that for σ2 = 2 and σ3 = C0 the following
holds for q ∈ {2, 3}. For any r ≥ 2 and any tr ≥ ... ≥ t1 ≥ 2, Rq(t1, ..., tr is at most a tower of height∑r−1

i=1 (ti − 1) + 1 of the form

Rq(t1, ..., tk) ≤ σ
σ

. .
.
σ
3tk
q

q
q

The intent is to prove this with induction, where the base case is Rq(s, t). For that, we have the
following theorem:

Theorem 14. For q ∈ {2, 3}, let σ2 = 2 and σ3 = C0 ≈ 13.901. For any t ≥ s ≥ 2, Rq(s, t) is at
most a tower of height s of the form

Rq(s, t) ≤ σ
σ

. .
.
σ2t
q

q
q

This in turn, too, is proven using induction. Here, we fix t and the induction is done on s. We choose
n = tσr

q with r = Rq(s − 1, t). We essentially suppose there is a 2-colouring of Fn
q \{0} that does not

translate into a monochromatic s-space coloured 1 or a monochromatic t-space coloured 2. By then
making use of bounds on exaff(n,Fr

q and the size of the set of vectors coloured 1, we may conclude
that that set contains an affine r-space. We then get a monochromatic (s− 1)-space which we can use
to obtain a monochroamtic s-space, bringing us to a contradiction.

This then gives is that n = tσr
q is an upper bound, which through induction gives the desired upper

bound.

With that base case proven, we can prove the general case of Rq(k1, ..., kr). Here, use is made of the
fact that:

Rq(t1, ..., tk) ≤ Rq(t1, ..., tk−2, Rq(t(k − 1, tk))

That is, the last two colours are replaced with the Ramsey number of those 2 colours specifically.
Through induction we then obtain the desired bound.

For Rq(2, t), Nelson and Nomoto (2018)[10] observed that it was upper bounded by m2(t). Here,
m2(t) refers to the minimum n such that for ever A ⊆ Fn

2 of size at least 2n−t+1 we have that
A+A := {x+ y : x, y ∈ A} contains a linear t-space. Once again, we prove this by assuming we have
a colouring with no monochromatic 2-space or t-space. This being for n = m2(t). By lower bounding
the size of the set of vectors receiving colour 1, we can find two vectors that are coloured 1 that are
linearly independent. This would be a contradiction. as the span of these 2 would then form a 2-space
that is coloured 1. With that contradiction, the desired bound of Rq(2, t) ≤ m2(t) is obtained.

To now make use of this bound, an upper bound for m2(t) is needed. To obtain this, m2(t) is
recontextualised as the minimum n such that exaff (n,Bt

2) < 2n−t+1 wjere Bt
q := {B ⊆ Fn

q : m ≥
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1, ω(B + B) ≥ t. That is, B consists of all subsets B of Fm
2 such that the sumset B + B contains a

t-space.

For more general mq(t), it is the minimum n such that exaff (Bt
q) < qn−t+1.

Through some inequalities we can prove that exaff (n,Bt
2 < 2

n− (n−4k)

6k−4k and exaff (n,Bt
3) < 2

n− n−t

Ct
0−t .

By filling in n1 = (t−1)(6k−4k)+4k and n2 = (t−1)(Ct
0−t)+t respectively, both get upper bounded

by 2n−t+1. This can then be used to show the following two bounds:

R2(2, t) ≤ m2(t) ≤ (t− 1)(6k − 4k) + 4k) = O(t6
t
4 )

R3(2, t) ≤ m3(t) ≤ (t− 1)(Ct
0 − t) + t = O(tCt

0)

Lastly, we mention a bound given by Hunter and Pohoata (2023)[11]. For the 2-colour case, they
proved:

Theorem 15. For every integer d ≥ 1, there exists an absolute constant C > 0 such that R2(2, d) ≤
Cd7.

Furthermore, they showed a generalisation for more colours:

Theorem 16. Let r ≥ 2 and let R
(r)
2 (2; d) denote the r-colour Ramsey number where the first r − 1

entries are 2 and the r-th is d. Ergo R2(2, ..., 2, d). There exists an absolute constant C > 0 such that
the following holds for every integer d ≥ 1:

R
(r)
2 (2; d) ≤ Cr(log r + d)7
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Chapter 4

Computational Methods

Though vector space Ramsey numbers become practically impossible to compute after the first few
numbers, we still take interest in computing those first few numbers. For this, we first made use of
an ILP formulation of the problem, which we discuss in section 4.1. First by giving the formulation
in subsection 4.1.1. Then, we also implemented it using SAT, discussed in section 4.2. First a small
elaboration on what SAT is, is given in 4.2.1. Then, we give the formulation for the problem in SAT
form subsection 4.2.2. With the two methods explained, we explore some of the computed values for
these formulations in 4.3.

4.1 ILP

4.1.1 ILP Formulation

To explain the ILP formulation, we shall work with the example of R2(2, 2), taking n = 3 as the
dimension of our vector space. That means that we have vector space:

F3
2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

And the subspaces that we are colouring are 1-dimensional and contain the zero vector and a non-zero
vector. In general, this formulation will be for Rq,t(k1, ..., kr).

Before explaining the ILP formulation, we begin with expressing the intent behind it. Rather than
trying to formulate vector space Ramsey numbers as an ILP directly, we actually take the opposite
approach. The ILP will look for a colouring of the 1-dimensional subspaces so that none of the k-
dimensional subspaces are monochromatic. By then incrementing the dimension n, we will eventually
run into a formulation that is not feasible. This then implies that for that n there is no colouring to
avoid some monochromatic k-dimensional subspace, meaning that Rq,t(k1, ..., kr) = n.1

To begin any ILP formulation, variables are required first. We define our variables xi,j as follows:

xi,j =

{
1, if subspace i has colour j assigned to it

0, otherwise
(4.1)

This goes for some ordering of the t-dimensional subspaces we are colouring. For example, say i = 1
represents the subspace {(0, 0, 0), (0, 1, 0)}. Then x1,0 = 1 implies that {(0, 0, 0), (0, 1, 0)} is assigned
the colour 1. We note we then do not also want that x1,1 = 1, as each subspace should only be assigned
1 colour. Thus, this gives rise to our first set of constraints:

r∑
j=0

xi,j = 1 for all i ∈ [T ] (4.2)

1It actually implies Rq,t(k1, ..., kr) ≤ n. However, as we increment n by 1 each time we find a feasible solution, we
know that n− 1 is feasible. That implies Rq,t(k1, ..., kr) > n− 1. Combining those results gets us Rq,t(k1, ..., kr) = n.
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Here, T is the number of t-dimensional subspaces of Fn
q . To see what this T looks like, refer to section

2.1.1. This constraint says that every t-dimensional subspace of Fn
q must be assigned exactly 1 colour.

In our example subspace, that constraint will look like this:

x0,0 + x0,1 = 1

Now that our colourings behave correctly, we introduce the constraint that ‘prevents’ our k-dimensional
subspaces from being monochromatic. Let IS denote that set of indexes of the t-dimensional subspaces
that belong to the k-dimensional subspace S and let TS the number of t-dimensional subspaces of S.
Then the constraints are of the form:

∑
i∈IS

xi,j ≤ T − 1 for all S ∈
[Fn

q

kj

]
and j ∈ [r] (4.3)

This constraint states that for each j and each kj-dimensional subspace S, at most T − 1 of its sub-
spaces may be coloured j. A subspace S would be monochromatic if all T of its subspaces were
coloured j. Hence, this constraint ‘prevents’ subspaces from being monochromatic. Say we take
the 2-dimensional subspace S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1) of F3

2. Where the 3 1-dimensional
{(0, 0, 0), (0, 0, 1)}, {(0, 0, 0), (0, 1, 0)} and {(0, 0, 0), (0, 1, 1)} are assigned indexes 0, 1 and 4 respec-
tively. Then the constraints looks like:

x0,0 + x1,0 + x4,0 ≤ 2

x0,1 + x1,1 + x4,1 ≤ 2

The last part of the ILP we have yet to describe is the objective function. As mentioned, the aim of this
ILP is to check for feasibility, not finding an optimal solution. However, for the sake of studying the
results, we might want to optimise for certain values. Most notably, we are interested in maximising
for a certain colour. Hence, our objective function generally shall be of the form:

max

T∑
i=0

xi,j for a prior fixed j ∈ [r] (4.4)

That is, for some predetermined j, this objective function maximises the amount of subspaces that
receive that colour. Say, for our example, we maximise for colour 1. Then the objective function would
look like this:

maxx0,1 + x1,1 + x2,1 + x3,1 + x4,1 + x5,1 + x6,1 + x7,1

Putting it all together our ILP is as follows:

max

T∑
i=0

xi,j for a prior fixed j ∈ [r]

s.t.
∑
i∈IS

xi,j ≤ T − 1 for all S ∈
[Fn

q

kj

]
and j ∈ [r]

r∑
j=0

xi,j = 1 for all i ∈ [T ]

(4.5)
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4.2 SAT

4.2.1 SAT Explanation

SAT is the Boolean Satisfiability Problem. That is, given some expression of Boolean variables (for
example something like x1 ∨ (x2 ∧ ¬x3)) is there a set of variables that satisfies the expression. Given
such an expression there exist solvers that compute whethere the expression is satisfiable. These solvers
generally work off a specific form of SAT expressions, called ‘Conjunctive Normal Form’ (or CNF for
short). A CNF is a ‘conjunction’ of clauses. Here, a clause is a series of ‘OR’ statements. For example
x1 ∨ x2 ∨ x3. Then, you take the conjunction of those clauses by stringing them together using ‘AND’
statements. An example of a CNF might be:

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4)

We wish to formulate our problem in this way. [More explanation of SAT needed?]

4.2.2 SAT Formulation

We base our SAT formulation on the way we formulated the ILP. As SAT focuses solely on feasibility,
we need only find a way to transform the following two constraints into clauses:

r∑
j=0

xi,j = 1 for all i ∈ [T ]

∑
i∈IS

xi,j ≤ T − 1 for all S ∈
[Fn

q

kj

]
and j ∈ [r]

For the variables used in the SAT formulation, we essentially use the same. Except instead of binary
values, xi,j now of course assume boolean values. Thus, it looks like this:

xi,j =

{
True, if subspace i has colour j assigned to it

False, otherwise
(4.6)

For the first constraint, essentially getting the colours to behave ‘correctly’, we first look at an example
where we have 2 colours. We claim that (xi,0 ∨ xi,1) ∧ (¬xi,0 ∨ ¬xi,1) makes it so that subspace i has
to assume exactly one colour. To verify this, we look at the truth table 4.1

xi,0 xi,1 xi,0 ∨ xi,1 ¬xi,0 ∨ ¬xi,1 (xi,0 ∨ xi,1) ∧ (¬xi,0 ∨ ¬xi,1)

T T T F F
F T T T T
T F T T T
F F F T F

Table 4.1: Truth table for (xi,0 ∨ xi,1) ∧ (¬xi,0 ∨ ¬xi,1)

Indeed we see that the expression is only true if only 1 of xi,0 or xi,1 is true. So for 2 colours, which is
generally the colourings we are interested in, the clauses simply look like (xi,0 ∨ xi,1) ∧ (¬xi,0 ∨ ¬xi,1)
for each subspace i.

For more general colourings, . Note that the two clauses essentially ‘block out’ only the case that i is
assigned all colours or no colours. Take 3 colours for example, if we try to generalise what we did before
we would get (xi,0 ∨ xi,1 ∨ xi,2) ∧ (¬xi,0 ∨ ¬xi,1 ∨ ¬xi,2). However, we see that for xi,0 = xi,1 =True
and xi,2=False that the expression is True. Of course, we do not want this, as i can then be assigned
multiple colours. So, we can add a clause ¬xi,0 ∨ ¬xi,1 To prevent both of those being true at once.
This needs to be done for all pairs of colours. Note that if any pair of colours is ‘blocked’ by this
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expression, then any bigger groups of colours can not be true either. Hence, the expression suffices as
this:

(xi,0 ∨ xi,1 ∨ xi,2) ∧ (¬xi,0 ∨ ¬xi,1) ∧ (¬xi,0 ∨ ¬xi,2) ∧ (¬xi,1 ∨ ¬xi,2) (4.7)

To verify this has the desired effect, we shall give the truth table of expression 4.7.

xi,0 xi,1 xi,2 expression 4.7

T T T F
F T T F
T F T F
F F T T
T T F F
F T F T
T F F T
F F F F

Table 4.2: Truth table for expression 4.7

Thus the expression has the desired effect. We can generalise this for r-colours. Then the expression
is the conjunction of (

∨r
j=0 xi,j) and all (¬xi,j ∨ ¬xi,k) such that j, k ∈ [r] and j ̸= k.

Fortunately, the second constraint is easier to transform into such a SAT expression. Say once again
that for some k-dimensional subspace S of Fn

q that IS are the indexes of the t-dimensional subspaces
of S. We want that not all t-dimensional subspaces of S receive the same colour. Say IS = {1, 3, 8}
for some subspace S. Then we want for colour 0 for example:

¬(x1,0 ∧ x3,0 ∧ x8,0) (4.8)

This we can easily rewrite to be:

(¬x1,0 ∨ ¬x3,0 ∨ ¬x8,0) (4.9)

This clause is in the form we want, thus we can use it for the final expression. First, we give a
generalisation. For some colour j ∈ [r] and some kj-dimensional subspace S of Fn

q , the clause is:

∨
i∈IS

¬xi,j (4.10)

For our final expression, this needs to be done for every j ∈ [r] and every kj-dimensional subspace S.
With that, our SAT formulation is complete.

4.3 Results

We now explore some of the values and solutions computed using the 2 methods explained above. In
subsection 4.3.1 we look at the computed values for various vector space Ramsey numbersRq,y(k1, ..., kr).
We begin with some prior known values, mostly of the form R2(2, t). Then move on to some other
values, such as R3(2, 2). Then, in subsection 4.3.2, we take a look at some of the specific solutions for
the case there are feasible colourings.
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4.3.1 Values

Using the computational methods, we began with verifying some of prior known values for the vector
space Ramsey numbers. Partially, this was to verify that the code functioned correctly. For example,
we know that R2(2, 2) = 3. Indeed, for n = 2 in the ILP we obtain a feasible solution, but for n = 3
the ILP is infeasible. Similarly, the SAT for n = 2 gives us values for the variables that satisfy the
expression, but for n = 3 it informs us it is not possible.

Using the ILP method, we see the confirmed values for R2(2, t) in table 4.3.

R2(2, t) n

2 3
3 5
4 6
5 ≥ 8

Table 4.3: Values for R2(2, t), where the values on the left are values for t.

Additionally, some values for R2(2 : r) (2 repeated r times) were verified. These can be found in table
4.4.

R2(2 : r) n

2 3
3 5
4 6

Table 4.4: Values for R2(2 : r), where the values on the left are values for t.

To conclude with these more ‘conventional’ values of vector space Ramsey numbers, we found that
R2(3, 3) ≥ 7 Apart from the number of colours and sizes of subspaces, there are of course also other
factors that we can vary. For example, we have mostly focused of F2 so far, but we may also look at
other fields. For example, we can see what Ramsey Numbers are like for F3. For that, the following
results have been found:

R3(2, t) n

2 4
3 ≥ 6

Table 4.5: Values for R3(2, t), where the values on the left are values for t.

Additionally, we also looked at an example for F3 with more than 2 colours, and found that R3(2, 2, 2) ≥
6.

Aside from the field, we can also change the dimension of the subspaces we are colouring. Say we look
at colourings of 2-spaces of Fn

2 . We were then able to compute that R2,2(3, 3) ≥ 10.

4.3.2 Solutions

For the ILP, if there was a colouring such that the ILP was satisfied, a table was generated for that
colouring. With ‘satisfied’ we of course mean that the colouring had no monochromatic ki-space
coloured i. For these tables specifically, we also set an actual objective function to optimise for the
maximum amount of subspaces coloured 0 possible. To see how this table is made, refer to Appendix
B.

This table consists of 3 columns. The first column indicates what index was assigned to the associated
t-space. The 2nd column gives the basis for the t-space. Since we mostly work with t = 1, the 2nd
column mostly contains one non-zero vector. Then, the 3rd column displays which colour the t-space
received, represented by a number between 0 and r. For example, table 4.3.2 displays the colouring of
the 1-spaces of F3

2 such that no 2-dimensional subspace is coloured 0 and no 3-dimensional subspace
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is coloured 1. Of course, this is a relatively trivial example, as long as all but one 1-space is coloured
1, the ILP is satisfied.

index basis colour
0 [(1, 0, 0)] 1
1 [(1, 0, 1)] 0
2 [(1, 1, 0)] 0
3 [(1, 1, 1)] 1
4 [(0, 1, 0)] 0
5 [(0, 1, 1)] 1
6 [(0, 0, 1)] 0

Table 4.6: Colouring that satisfies the ILP for R2(2, 3) with n = 3

As R2(2, 3) = 5, we shall instead look at the case that n = 4, as displayed in 4.3.2. We proceed with
a number of other examples of colourings. Though note that the sizes of the tables are kept small,
even though they grow quite quickly for larger choices of n. Additionally, all of these use the same
objective function, that being for optimising the colour 0.

index basis colour
0 [(1, 0, 0, 0)] 0
1 [(1, 0, 0, 1)] 1
2 [(1, 0, 1, 0)] 1
3 [(1, 0, 1, 1)] 1
4 [(1, 1, 0, 0)] 0
5 [(1, 1, 0, 1)] 1
6 [(1, 1, 1, 0)] 0
7 [(1, 1, 1, 1)] 0
8 [(0, 1, 0, 0)] 1
9 [(0, 1, 0, 1)] 0
10 [(0, 1, 1, 0)] 1
11 [(0, 1, 1, 1)] 1
12 [(0, 0, 1, 0)] 1
13 [(0, 0, 1, 1)] 1
14 [(0, 0, 0, 1)] 1

Table 4.7: Colouring that satisfies the ILP for R2(2, 3) with n = 4
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index basis colour
0 [(1, 0, 0, 0)] 2
1 [(1, 0, 0, 1)] 2
2 [(1, 0, 1, 0)] 2
3 [(1, 0, 1, 1)] 0
4 [(1, 1, 0, 0)] 2
5 [(1, 1, 0, 1)] 1
6 [(1, 1, 1, 0)] 2
7 [(1, 1, 1, 1)] 3
8 [(0, 1, 0, 0)] 3
9 [(0, 1, 0, 1)] 3
10 [(0, 1, 1, 0)] 3
11 [(0, 1, 1, 1)] 0
12 [(0, 0, 1, 0)] 1
13 [(0, 0, 1, 1)] 1
14 [(0, 0, 0, 1)] 0

Table 4.8: Colouring that satisfies the ILP for R2(2 : 4) with n = 4

index basis colour
0 [(1, 0, 0, 0)] 1
1 [(1, 0, 0, 1)] 0
2 [(1, 0, 0, 2)] 0
3 [(1, 0, 1, 0)] 1
4 [(1, 0, 1, 1)] 0
5 [(1, 0, 1, 2)] 0
6 [(1, 0, 2, 0)] 0
7 [(1, 0, 2, 1)] 0
8 [(1, 0, 2, 2)] 0
9 [(1, 1, 0, 0)] 0
10 [(1, 1, 0, 1)] 1
11 [(1, 1, 0, 2)] 1
12 [(1, 1, 1, 0)] 0
13 [(1, 1, 1, 1)] 1
14 [(1, 1, 1, 2)] 1
15 [(1, 1, 2, 0)] 1
16 [(1, 1, 2, 1)] 0
17 [(1, 1, 2, 2)] 1
18 [(1, 2, 0, 0)] 1
19 [(1, 2, 0, 1)] 1

index basis colour
20 [(1, 2, 0, 2)] 1
21 [(1, 2, 1, 0)] 1
22 [(1, 2, 1, 1)] 0
23 [(1, 2, 1, 2)] 1
24 [(1, 2, 2, 0)] 1
25 [(1, 2, 2, 1)] 1
26 [(1, 2, 2, 2)] 1
27 [(0, 1, 0, 0)] 0
28 [(0, 1, 0, 1)] 1
29 [(0, 1, 0, 2)] 0
30 [(0, 1, 1, 0)] 0
31 [(0, 1, 1, 1)] 1
32 [(0, 1, 1, 2)] 1
33 [(0, 1, 2, 0)] 1
34 [(0, 1, 2, 1)] 0
35 [(0, 1, 2, 2)] 0
36 [(0, 0, 1, 0)] 1
37 [(0, 0, 1, 1)] 1
38 [(0, 0, 1, 2)] 1
39 [(0, 0, 0, 1)] 1

Table 4.9: Colouring that satisfies the ILP for R3(2, 3) with n = 4

index basis colour
0 [(1, 0, 0), (0, 1, 0)] 1
1 [(1, 0, 0), (0, 1, 1)] 0
2 [(1, 0, 1), (0, 1, 0)] 0
3 [(1, 0, 1), (0, 1, 1)] 1
4 [(1, 0, 0), (0, 0, 1)] 0
5 [(1, 1, 0), (0, 0, 1)] 0
6 [(0, 1, 0), (0, 0, 1)] 0

Table 4.10: Colouring that satisfies the ILP for R2,2(3, 3) with n = 4
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Chapter 5

Discussion

In subsection 2.1.3, the Fano plane is shown to represent the colouring of the 1-spaces of F3
2, where

the edges represent the 2-spaces. This is actually an example of a hypergraph, that being a graph
where edges may connect any number of vertices together (including zero!). In general, colourings of
subspaces Fq can be represented as hypergraphs, with the vertices representing the t-spaces and the
edges the ki-spaces. Unfortunately, there was no proper space or time found to explore the possible
connections and relations between vector space Ramsey numbers and hypergraphs. In particular, the
connection to the chromatic number of a hypergraph may be useful to study further.

It was not until quite late in the process that the possibility of using SAT to compute Ramsey Numbers.
Thus, there was not much time to explore how much we could have benefited from this. Intuition would
suggest that SAT, which only looks for satisfiability, would get values of vector space Ramsey numbers
faster. There is perhaps also a chance for a more efficient SAT formulation. The current one is based
on the ILP formulation, and there may be formulations that are more efficient. Although, one would
still have to contend with rapidly increasing numbers of colourings and subspaces.

Additionally, if we want to study specific solutions for cases where it is feasible, the ILP still better
suits our needs there. That is because we can optimise for specific colours or some other property that
may be of interest.

For that matter, unfortunately there wasn’t enough time to spend on analysing some of the actual
colourings that were computed. It is very possible that studying colourings that do avoid monochro-
matic ki-spaces may offer us insight into how vector space Ramsey numbers behave. As mentioned,
the tables in subsection 4.3.2 optimise for as many spaces of colour 1 as possible.

There are of course other factors that could be optimised for that may produce insightful results.
Though we do have to note the current form of the ILP makes some of those difficult. If you want to,
for example, optimise based on hamming distance between basis vectors or something akin to that,
that is not quite directly possible currently. It may be possible to model hamming weights or distances
in the ILP as well and maximise or minimise for those somehow.

34



Chapter 6

Conclusion

In this text, we have introduced the notion of vector space Ramsey numbers. Where Rq,t(k1, ..., kr) = n
implies that n is that smallest such number that for any r-colouring χ of the t-spaces of Fn

q , we must
have an i ∈ [r] such that ki is monochromatic with colour i under χ. We’ve also demonstrated these
numbers exist for any choice of q, t, k1, ..., kr. This proof required a number of things to be introduced
like Hales-Jewett and special spaces. Using those tools and strong double induction, first on all t′ < t
for any

∑r
i=1 ki, and then for t and all

∑r
i=1 k

′
i <

∑r
i=1 ki, we were able to demonstrate these Ramsey

Numbers indeed exist.

We then quickly concluded that these numbers are very difficult to compute because of the quickly
increasing number of colourings and subspaces. Thus, to say anything about bigger values for the vector
space Ramsey numbers, we studies some asymptotic bounds. In particular, we studied 3 methods to
obtain a lower bound that is roughly the same, that being roughly R2(2, t) >

3
2 t. The first one was

the probabilistic method, where we demonstrated the chance that there was a monochromatic 2- or
t-space was less than 1, meaning there was at least one colouring that didn’t have these monochromatic
subspaces.

The 2nd method was based on coding theory. We showed that the maximum dimension of a code that
does not contain two vectors with distance t is 2t − 1 for Fn

2 where 2t − 1 ≤ n < 4t. Thus, if we fix
n = 3t − 1, we know that any 2t-space must contain a vector of weight 2t. By then taking A to be
all vectors of weight 2t, it was easy to show that this contained no 2-spaces fully. By then assigning
that the colour red and its complement the colour blue, we then obtained a colouring that had no
monochromatic 2- or t-spaces. Hence, giving us R2(2, 2t) > 3t.

Lastly, we made use of projective spaces. It was demonstrated that Lk, consisting of all vectors of
weight 2k+1 and higher, is a complete cap in PG(3k,2) that intersects every 2k-flat as well. In similar
fashion to Code Theory, we then took Lk as our set and showed it both intersected all 2k-spaces and
contained no 2-space, resulting in a similar bound.

We also introduced one method to obtain an upper bound. For this, we went back to Classical Ramsey
Numbers, showing that R(3; r) ≤ 3r!. We then demonstrated that R2(2; t) > n =⇒ R(3; r) > 2n − 1
using Schur’s Theorem. By then taking the contrapositive of this we were able to get our bound
R2(2; r) ≤ r log2 r.

Though for high values, vector space Ramsey numbers are difficult to compute, we still have an interest
in finding it for lower values. For this, we explored 2 methods to compute some values. First was by
means of an Integer Linear Program. There were 2 sets of constraints, one making sure t-spaces were
assigned at most 1 colour, and another making sure that no ki space was monochromatic with colour
i. Notably, we did not need to optimise for something in this ILP. The intent is to verify whether the
ILP is feasible for certain values of n. If it is, then the vector space Ramsey number is bigger than n.
If it isn’t, then the Ramsey Number is less than or equal to n.

Based on the ILP formulation, we also made a formulation based on the Boolean Satisfiability Problem.
As this is more directly about feasibility, in theory it should be quite a bit faster than the ILP

35



formulation. This of course being a bit up to implementation.
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Appendix A

Fields

A.1 Definition of Fields

Fields are a special type of ring. So to define fields, we first need to define rings. In turn, to first define
rings, we first look at what an abelian group is.

Definition 7 (Abelian Group). A set R is an abelian group under addition if it satisfies the following
three condition:

1. (Associativity) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R

2. (Identity) There is an element 0 ∈ R such that a+ 0 = a and 0 + a = a for all a ∈ R

3. (Inverses) For all a ∈ R, there is an element −a ∈ R such that a+ (−a) = 0 and (−a) + a = 0

4. (Commutativity) a+ b = b+ a for all a, b ∈ R

We immediately proceed with the definition of a ring.

Definition 8 (Rings). A set R, equipped with two operations + and · (addition and multiplication, is
called a ring if it satisfies the following three conditions:

1. R is an abelian group under addition.

2. · (multiplication) is associative. So for all a, b, c ∈ R we have a · (b · c) = (a · b) · c

3. The distributive law holds. That is, for all a, b, c ∈ R we have that a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c

Remark. In general, R does not contain multiplicative identity, nor does it have a multiplicative
inverse for every element. It also is not necessarily commutative under multiplication.

With this, we can properly define what a field is:

Definition 9 (Fields). A ring R is a field if R\{0} is an abelian group under multiplication.

Remark. Q,R and C are examples of fields.

We are mostly interested in fields with finite elements. For this, we introduce the notion of an integral
domain

Definition 10 (Integral Domain). Say we have a ring R with the following properties:

1. R has a multiplicative identity. That is, there is an element 1 ∈ such that a · 1 = a and 1 · a = a.

2. R is commutative under multiplication. That i, for all a, b ∈ R we have that a · b = b · a

Then it is called an integral domain if a · b = 0 implies that a = 0 or b = 0.

Remark. By definition, all fields are integral domains.
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For finite fields, we look to the following theorem:

Theorem 17. A finite integral domain is a field.

With this in mind, it can be shown that the set Z/nZ, with addition and multiplication calculated
according to modulo n, is an integral domain if n is prime. After all, if n is prime then there are no
elements a, b ∈ Z/nZ\{0} such that a · b = 0. Given that it is finite and an integral domain, theorem
17 then tells us Z/nZ with n prime is also a finite field.

A.2 Construction of Fqn

Definition 11. For a ring R we define the polynomial ring R[x] over R as follows. R[x] consists
of the polynomials f(x) =

∑n
i=0 aix

i. Where ai ∈ R for i ∈ [n]. Addition and multiplication are as
expected.

Theorem 18. If a polynomial ring F [x] is defined over a field F , then it is an integral domain.

Definition 12. g(x) ∈ F [x] divides f(x) ∈ F [x] if there exists an h(x) ∈ F [x] such that f(x) =
g(x)h(x). Then f is also called a multiple of g.

Remark. In general, dividing two polynomials f, g ∈ F [x] gives two unique polynomials q, r ∈ F [x]
such that f(x) = q(x)g(x) + r, where q is known as the quotient and r is referred to as the rest.

Definition 13. Let F be a field and let f, g, h ∈ F [x]. We call f modulo h equal to r if r is the rest
when dividing f by h, noted down as r = fmodh. We say f and g are equivalent under modulo h if
they have the same rest after dividing, noted down as f ≡ gmodh.

Definition 14. A polynomial p ∈ F [x] with degree≥ 1 is called irreducible in F [x] if p = bc with
b, c ∈ F [x] imples that either b or c is a constant polynomial.

Remark. Degree refers to the highest power xi present in the polynomial.

Theorem 19. Let F be a field and let h ∈ F [x]. The quotient ring F [x]/h consists of all polynomials
of F [x] with degree smaller than the degree of h. Calculating according to modulo h results in F [x]/h
being a commutative ring with a multiplicative identity.

Remark. For a field F with q elements and h ∈ F [x] met degree n ≥ 0, the number of elements in
F [x]/h is equal to qn.

Theorem 20. Let F ve a field. Let f ∈ F [x] be an irreducible polynomial. Then F [x]/f is a field.
Furthermore, if F is finite, then so is F [x]/f .
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Appendix B

Code

B.1 ILP Gen

The aim of this code is to generate an ILP that can be passed on to ILP solvers. It was coded in
SageMath.

def subspace_count(q: int, n: int, k: int):

res = q**n - 1

for i in range(1, k):

res *= (q**n - q**i)

for i in range(k):

res /= (q**k - q**i)

return int(res)

def VSRN_ILP_Gen(n: int, K: list, q=2, y=1, c=0):

#Here, n is the dimension of the vector space, K is a list of subspaces of

#which we avoid monochromatic subspaces.

#q is the size of the field, y the size of the subspaces we colour.

#c is which colour we maxamise for.

m = MixedIntegerLinearProgram() #create model

x = m.new_variable(binary=True) #set-up variables.

V = VectorSpace(GF(q),n) #Create F_2^n

T = V.subspaces(dim=y) #Generator for all y-dim subspaces of V

#Make a dictionary to associate the y-dim subspaces of V

#with variables x, where i

#corresponds to the subspace and j to the colour.

mvars = {}

i = 0

for t in T:

X = [x[i,j] for j in range(len(K))]

#make a list of variables, where i is associated with the subspace

#t and j the colour

mvars[t] = X

i+=1

#Add constraints that makes sure that every y-dim subspace

#is assigned at most 1 colour.

for key in mvars:

m.add_constraint(sum(mvars[key]) == 1)
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#Add constraints that ensure each k-dimensional subspace

#is not monochromatic for all k in K

for j in range(len(K)):

S = V.subspaces(dim=K[j])

for s in S:

R = s.subspaces(dim=y)

I = []

for t in R:

I.append(mvars[t][j])

m.add_constraint(sum(I) <= subspace_count(q, K[j], y)-1)

m.set_objective(sum([x[o,c] for o in range(i)]))

return m, n, K, q, y, mvars

m, n, K, q, y, mvars = VSRN_ILP_Gen(3,[2,2])

m.write_lp(’VSRN_ILP.lp’)

with open(’values.txt’, ’w’) as f:

f.write(str(n) + ’ ’ + str(len(K)) + ’ ’ + str(q) + ’ ’ + str(y) +

’\n’ + str(K))

with open(’mvars.txt’, ’w’) as f:

for key in mvars.keys():

l = [i for i in key.basis_matrix()]

f.write(str(l) + ’\n’)

B.2 ILP Solve

This code solves the ILP generated by the code in section B.1. It also generates an excel file containing
the solution. It was coded in Python.

import gurobipy as gp

import pandas as pd

def subspace_count(q: int, n: int, k: int):

res = q**n - 1

for i in range(1, k):

res *= (q**n - q**i)

for i in range(k):

res /= (q**k - q**i)

return int(res)

def hamming_distance(v1, v2):

res = 0

for i in range(len(v1)):

if v1[i] != v2[i]:

res += 1

return res

m = gp.read("VSRN_ILP.lp")

m.setParam(’SolutionLimit’, 1)

m.optimize()

with open(’values.txt’, ’r’) as f:

temp = f.read().split(’\n’)

v = temp[0].split(’ ’)
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n, r, q, y = int(v[0]), int(v[1]), int(v[2]), int(v[3])

K = eval(temp[1])

r = len(K)

ss = subspace_count(q, n, y)

opt_vals = {’index’: [], ’basis’: [], ’colour’: []}

with open(’mvars.txt’, ’r’) as f:

lines = f.read().split(’\n’)

i = 0

for line in lines:

if line != ’’:

v = eval(line)

for j in range(r):

s = i*r + j + 1

z = m.getVarByName(’z_%s’ % s)

if int(z.X) == 1:

opt_vals[’index’].append(i)

opt_vals[’basis’].append(v)

opt_vals[’colour’].append(j)

i += 1

df = pd.DataFrame(opt_vals)

#File name depends on type of Ramsey number, R_q,y(s,t) or R_q,y(k:r)

df.to_excel("R_q%s_y%s_s%s_t%s_n%s.xlsx" % (q,y,K[0],K[1],n), index=False)

df.to_excel("R_q%s_y%s_k%s_r%s_n%s.xlsx" % (q,y,K[0],r,n), index=False)

B.3 SAT Gen

The aim of this code is to generate a solver using the boolean expressions outlined in subsection 4.2.2.
It generates a text file that can be input into SAT solver such as Glucose. It was coded in SageMath.

from sage.sat.solvers.dimacs import DIMACS

def VSRN_SAT_Gen(n: int, K: list, q=2, y=1):

solver = DIMACS(filename="VSRN_SAT.txt")

r = len(K)

V = VectorSpace(GF(q),n)

T = V.subspaces(dim=y)

mvars = {}

i=1

for t in T:

X = [int(i*r+j) for j in range(r)]

mvars[t] = X

solver.add_clause(tuple(X))

for j in range(r):

for k in range(j+1,r):

solver.add_clause((-X[j],-X[k]))

i+=1

for j in range(r):

S = V.subspaces(dim=K[j])

for s in S:
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R = s.subspaces(dim=y)

clause = ()

for t in R:

clause += (-mvars[t][j],)

solver.add_clause(clause)

return solver

solver = VSRN_SAT_Gen(3, [2,2])

DIMACS.render_dimacs(solver.clauses(), "VSRN_SAT.txt", solver.nvars())
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