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ABSTRACT

The development of Smart Vehicles (SV) has increased the demand for secure and intel-
ligent sensors. The automotive radar plays a massive role in improving the security of
these vehicles. Radar needs to make fast and accurate detection in a noisy environment
while being aware of its surroundings. The modern radar systems deployed on the SVs
utilize multiple sensors to keep track of their surroundings and improve radar cognition.
Even though adding more sensors will help make accurate decisions, the processing time
to make those decisions may be affected. Hence, the research focuses on improving the
accuracy of the decisions without adding extra sensors and extra processing time.

The recent development of the Compressed Sensing (CS) theory has provided new
techniques to reduce the number of measurements required for storing the signal and
recovering the signal. This idea can be used for Direction-of-Arrival (DOA) Estimation,
where we have very few measurements to estimate accurately. Sparse recovery algo-
rithms based on the CS theory have shown promising results for single snapshot DOA
estimation. Uniform Linear Array (ULA) provides redundant spatial frequency samples.
This redundancy can be reduced by removing specific elements from the array. Remov-
ing the redundant elements can help improve the radar’s aperture size and angular res-
olution; these arrays are known as sparse arrays. Combining sparse recovery algorithms
with sparse arrays, the angular resolution and accuracy of the DOA estimates can be
improved. Based on this idea, an optimal array search algorithm has been proposed in
this thesis. The design technique optimizes the Multi-Input-Multi-Output (MIMO) array
configuration for improving sparse recovery guarantee. Optimal MIMO topologies, as an
example for 2Tx4Rx and 3Tx4Rx (Tx-Transmitters, Rx-Receivers), have been synthesized.
The performance of these arrays has been tested with prominent sparse recovery algo-
rithms. The performance of the algorithms is also ranked based on their probability of
detection and angular resolution. Improvement in the angular resolution up to 8◦ with
respect to the ULA-MIMO for 2Tx4Rx configuration and up to 5◦ for 3Tx4Rx configura-
tion is obtained with the help of a sparse recovery algorithm.
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1
INTRODUCTION

The development of radar technology in automobiles has improved the security and
decision-making process on roads. The automobile industry uses advanced signal pro-
cessing algorithms and different techniques to utilize radar technology to suit a specific
application and improve its performance. Radar can work efficiently in different weather
and light conditions, making it a very appealing choice for sensing purposes.

Research on signal processing algorithms and radar configurations has been evolv-
ing more with time. Interesting new aspects are being unfolded these days. However,
more improvement on the existing solutions and utilizing new techniques to enhance
performance is still open for research.

Figure 1.1: Different Ranges of Automotive Radar [1]
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2 1. INTRODUCTION

1.1. MOTIVATION
Radar is an established sensing technology for Highly Automated Driving (HAD). Radar
sensors measure distance, velocity and direction of arrival (DOA) and separate targets
into three dimensions. In practice, most targets can be separated in terms of veloc-
ity and range as the resolution in these dimensions is much higher than the resolution
achievable in the spatial dimension, which is limited by the aperture of the antenna ar-
ray. However, a high spatial resolution is essential to recognize the objects in the scene
better and support advanced HAD applications.

For the cases where the targets lie in the same range-doppler bin, angular signal pro-
cessing can help discriminate between two closely spaced targets. The angular resolu-
tion of an array is dependent on the aperture of the array. A larger aperture will have
a higher angular resolution. However, for a larger aperture, more antennas will be re-
quired, increasing the resource requirement to recover the signal.

Also, automotive radar needs to make quick and accurate decisions to traverse through
a highly dynamic environment on the road. It becomes a high priority to minimize re-
source requirements without compromising detection accuracy and estimations. Two
significant components of the resource requirements are the number of transmitting-
receiving channels (number of sensors) and the number of samples required by the sig-
nal processing algorithm.

Hence, this project will focus on improving the angular resolution of the array with-
out adding any extra antenna element to the processing chain. We also focus on using a
single snapshot algorithm to accurately estimate the targets’ location in the angular do-
main. To achieve our goals, we will also look at the emerging field of Compressive Sens-
ing (CS), which has shown promising results in recovering signals with very few samples.
As a result, an optimal array topology coupled with a signal processing algorithm will
reduce the resource requirements and achieve the desired accuracy.

1.2. MIMO RADAR
Multi-Input, Multi-Output (MIMO) Radar has been an important topic for research since
its inception [2]. Unlike traditional array radars, MIMO radar can transmit orthogonal
signals instead of the same scaled signal across all antennas. Although traditional radar
has higher processing gain due to a more focused transmitting beam, it would require
more time to scan the field of view, making it difficult to use in time-critical and high
precision tracking applications.

MIMO radar transmits an omnidirectional signal, illuminating all the angles within
the field of view. Multiple transmitters with orthogonal probing signals will illuminate
the target, and receiving array will recover from each transmit signal. Since the location
of the transmitter array and receiving array is known, the received signals can be phased
and combined to form beams in one or more directions (transmitter and receiver beam-
forming). Hence, MIMO radar is a suitable choice for time-critical, high precision scan-
ning and imaging applications.

A filter bank is used to recover the orthogonal signals at the receiving end. The MIMO
radar can be categorized into two categories based on the separation between the trans-
mitting antenna elements. First, MIMO radar with widely spaced antennas[3] where
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the antenna elements are widely separated compared to the distance between the tar-
get from the radar. As a result, the target RCS (Radar Cross Section) is different for the
different transmitters; this helps in better spatial diversity and better detection of the
targets. The second, MIMO radar with colocated antennas[4] where the transmitting an-
tennas are closely spaced so that the target RCS remains the same for all. A virtual array
can be formed with a larger aperture using the phase difference caused by the different
transmitting and receiving antennas.

Using a colocated MIMO, Transmitter(Tx) and receiving(Rx) arrays can form a larger
virtual array using fewer antennas. This project will focus on designing such arrays in
order to improve the angular resolution of the radar. Thus, from now onwards, the term
MIMO radar will be used to reference colocated MIMO Radar.

1.3. SPARSE RECOVERY ALGORITHMS
Compressive Sensing (CS) theory allows compressing a sparse signal into fewer mea-
surements at the time of acquisition[5]. Sparse recovery algorithms faithfully reconstruct
the original signal from these fewer measurements (underdetermined problem). These
algorithms are non-adaptive, i.e., not learning from previous measurements, making
them particularly useful for time-critical applications such as Direction-of-Arrival (DOA)
estimation in automotive radars. The number of targets is often relatively less than the
number of possible angular locations in the field of view, making it a sparse signal in the
spatial domain. Hence, one can estimate DOAs using sparse recovery algorithms with a
single snapshot.

For a perfect recovery of the signal, there are few necessary and sufficient conditions
such as Restricted Isometry Property (RIP)[6, 7] and Mutual Coherence[8]. These prop-
erties depend on array topology. Hence, one can design an array to increase the recovery
performance of sparse recovery algorithms based on the previous properties.

1.4. SPARSE ARRAYS
Unlike Uniform Linear Arrays (ULA), Sparse Arrays have non-uniform spacing between
the elements and have a larger aperture. ULA have uniform spacing between the anten-
nas resulting in high redundancy. Higher resolution can be achieved if the redundant
spacing between antennas is reduced, increasing the array’s length. A class of linear ar-
rays minimizing this redundancy is called as Minimum-Redundancy Arrays (MRA)[9].
MRA have antenna elements on a uniform grid with missing elements at specific grid
points to minimize redundancy. In comparison, sparse arrays can have antennas at any
point in the space (gridless). So, MRA can be considered as a subset of sparse arrays.

The concept of MRA can be extended to MIMO configurations as well[10]. Form-
ing an MRA-MIMO provides higher angular resolution compared to traditional radars.
Still, MRA-MIMO is bounded by the uniform grid points for antenna locations. Remov-
ing this grid constraint can further reduce the redundancy of MRA-MIMO. However, the
search for optimal Gridless Sparse-MIMO for large apertures and many antennas be-
comes highly computationally complex.

Different approaches using genetic and evolutionary algorithms have been used to
synthesize optimal non-uniform arrays[11–13]. However, with an increase in the num-
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ber of elements and aperture, these techniques’ complexity and computational burden
increase dramatically. The particle swarm optimization technique is similar to genetic
algorithms but computationally less heavy[14]. Deterministic synthesis techniques have
also been formulated to solve this problem[15–18]. Even after improving the computa-
tional efficiency of these techniques, the analytical complexity remains relatively high.

The use of convex optimization to solve this problem was introduced by H. Lebret
et al. in [19]. This method is computationally efficient and an effective alternative tech-
nique to design optimal arrays. Based on this, many optimization methods have been
proposed, including sparsity-based methods[20, 21], which can take into account mu-
tual coupling[22] and control the minimum spacing between the elements for the phys-
ical feasibility of the arrays[23].

The convex optimization approach might lead to local optimum and is sensitive to
the initial input points. Thus, simulated annealing is also performed in order to obtain a
near-optimum solution.

1.5. PROBLEM STATEMENT
Even with many techniques to synthesize an array, very few have been employed in the
MIMO system and none for the Sparse MIMO System. The MIMO virtual array is formed
by the combination of Tx and Rx arrays, and in order to obtain an optimal MIMO array,
one has to optimize both Tx and Rx arrays.

The project aims to synthesize a Sparse MIMO Topology optimized for maximizing
sparse signal recovery guarantee, increase the effective angular resolution of the array,
and improve DOA estimation performance using a single snapshot. The work is divided
into two sections:

1. Synthesize a realizable optimal Sparse-MIMO Topology

2. Apply sparse recovery algorithms and define performance metrics to be used to
select the most suitable algorithm for automotive radar applications

This report is divided into five chapters. Chapter 2 introduces the terminology as-
sociated with MIMO Radars and formulates the signal model for future chapters to be
used and tested. It also briefs the Compressive Sensing(CS) theory and the necessary
conditions for faithful sparse recovery. This condition will help in formulating the opti-
mization problem for synthesizing the sparse MIMO array. Then, the possible extensions
of the optimization problem will be discussed. Chapter 4 goes through the prominent
sparse recovery algorithms and selects the best candidates for automotive applications.
The performance of these algorithms is tested on the synthesized arrays, and compara-
tive analysis is shown. Chapter 5 provides concluding remarks and discusses some po-
tential future work.



2
MIMO RADAR AND SIGNAL MODEL

In this chapter, the radar operation of MIMO is briefly discussed, and the associated
signal model is formulated. Followed by a short introduction to Compressive Sensing
(CS) theory, the necessary conditions for sparse recovery guarantee are discussed.

2.1. MIMO RADAR
This section introduces the Multiple-Input, Multiple-Output (MIMO) radar and its fun-
damental principle of operation. MIMO radar refers to radar with multiple TX antennas
and multiple RX antennas. MIMO radar provides a cost-effective way to improve the
angular resolution of the radar.

2.1.1. ANGLE ESTIMATION BASICS

Estimating the Direction of Arrival (DOA) of a target requires at least two RX antennas.
Figure 2.1 shows a radar with one TX and two RX antennas separated by distance ’d ’.

Figure 2.1: Angle Estimation using two RX Antennas

5
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The signal from the TX antenna is reflected from the target (located at angle θ w.r.t.
radar) and is received by RX antennas. The signal from the target travels an extra distance
of d sin(θ) to reach the second RX antenna. Hence, if we calculate this phase difference,
we can estimate the direction of arrival of the target using equation 2.1

θ = sin−1(
ωλ

2πd
) (2.1)

Hence, with more RX antennas, one can receive additional shifts in phase at each
antenna. Thus, the phase shiftsω can be reliably estimated by sampling the signal across
nRx antennas and performing an FFT (angle-FFT) on this signal sequence. Hence, one
can improve angular resolution by adding more antenna elements and increasing the
aperture of the effective array.

ANGULAR RESOLUTION:
The resolution of an array with uniformly spaced N antennas is given by the Half-Power
Beam Width (HPBW) and is calculated by

Θ3dB = 0.886λ

N d sin(θ0)
[r ad ] (2.2)

where, d = distance between two elements, θ0 = desired direction.
For a linear array of N elements, with d/λ= 0.5

Θ3dB (θ0 = 90◦) ∼ 102◦

N
(2.3)

And if we use a sparse array, the aperture is increased, keeping the number of elements
the same, reducing HPBW proportionally. A standard MIMO-ULA of 3Tx4Rx configura-
tion provides 12 virtual element ULA arrays. The array resolution at broadside will be
given by:

Θ3dB (θ0 = 90◦) ∼ 8.5◦ (2.4)

2.1.2. PRINCIPLE OF MIMO RADAR
Let’s take a Single-Input, Multiple-Output (SIMO) radar with 1 TX and 4 RX antennas
2.2. Angle resolution can be doubled by doubling the number of RX antennas as shown
in Figure 2.3. Alternatively, using the MIMO concept, the same result can be achieved by
adding just one additional TX antenna as shown in Figure 2.4.

This radar has two transmitters TX1 and TX2. A transmitted signal from TX1 will
result in a phase shift of [0ω 2ω 3ω] at the four RX antennas (RX1 is used as a refer-
ence). For radar in Figure 2.4, the second TX is placed at 4d distance from the first
TX, the corresponding signal at receiving end will see an additional phase-shift of 4ω
w.r.t transmission of TX1. The phase shift observed at RX antennas due to TX2 will be
[4ω 5ω 6ω 7ω]. Combining these phase shifts for four RX antennas, we receive the se-
quence [0ω 2ω 3ω 4ω 5ω 6ω 7ω], which is similar to the sequence observed in Figure 2.3.
Thus, we can say that the 2TX-4RX antenna configuration can provide a virtual array of
8 antennas.
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Figure 2.2: Radar with 1 TX and 4 RX antennas

Figure 2.3: Radar with 1TX and 8RX Antennas

Figure 2.4: Principle of MIMO Radar

To generalize this concept, with nT x (number of TX) and nRx (number of RX) an-
tennas, one can generate a virtual array of nT x ×nRx antennas. Thus, using the MIMO
technique, the angular resolution can be improved with fewer additional antennas.
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2.1.3. MULTIPLEXING STRATEGIES

The previous section briefed how MIMO radar works using the same RX antennas pro-
cessing the signal received from multiple TX antennas. Hence, it is essential that the RX
antennas can separate the signals corresponding to each TX. There are different ways
to achieve this separation of signals. One method is using Time Division Multiplexing
(TDM), where the orthogonality is achieved in time. Another method is by sending or-
thogonal waveforms from each transmitter.

For example, in the automotive application of MIMO radar, Frequency Modulated
Continuous Wave (FMCW) signal is used for transmission. Hence, for the TDM method,
a chirp signal for a specific duration is assigned to TX1, and the next time slot is assigned
to the next TX2. The receiver will assign the received signal in the first time slot to TX1
and the second to TX2.

2.2. MIMO SIGNAL MODEL
If multiple targets lie in the same range bin, the doppler processing can help to distin-
guish them by determining their velocity. If the range and velocity are also the same for
multiple targets, then azimuthal information (angular position) is used to distinguish
these targets. We will be focusing on extracting this azimuthal information.

The target is assumed to be in the far-field; thus, we receive planar wavefront at the
receive array. As we discussed earlier in Figure 2.4, the direction of arrival creates a path
difference between two subsequent receiving antennas. The phase shift caused by this
path difference at each antenna can be calculated by:

a(θi ,k ) = e jωi ,k = e j −2π
λ

di si n(θk ) (2.5)

where ωi ,k is the phase shift caused by k th target at i th receiver, θk is the direction of ar-
rival for k th target, λ is the operating wavelength of radar and di is the distance between
first (reference) antenna and i th antenna.

Hence, the steering vector for TX array:

aT(θk ) = [1, a(θ1,k ) · · ·a(θnT x,k )]T (2.6)

The steering vector for RX array:

aR(θk ) = [1, a(θ1,k ) · · ·a(θnRx,k )]T (2.7)

Collecting the reflected signal from K targets over time samples, we obtain

y(t ) =
K∑

k=1
γk (aT(θk)⊗aR(θk))s(t −τk )+w(t ) (2.8)

Where γk is the complex scattering coefficient of target k, proportional to its RCS.
The term aT(θk)⊗aR(θk) can be considered as the steering vector of the virtual array for
k th target at direction of arrival at θk . s(t ) is the reflected signal, τk is the delay caused by
the range of the target from radar. And w(t ) is assumed to be White Gaussian Noise. The
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complex scattering coefficients for all the targets is assumed to be uniform and equal to
1 for the automotive radar case. Using virtual array steering vector:

a(θk) = aT(θk)⊗aR(θk) = [1, a(θ1,k ) · · ·a(θnT x·nRx,k )]T (2.9)

After discretization, the signal model becomes:

y = As+W (2.10)

where,
A = [a(θ1),a(θ2), · · ·a(θK )] (2.11)

S = [sτ1 · · · sτK ]T , wher e sτk = [s(−τk ), s(1−τk ), · · · , s(N −τk )] (2.12)

Where N = number of snapshots, and W contains complex Gaussian White noise.
This signal model will be used in the following chapters for testing the performance

of the synthesized arrays and algorithms.

2.3. COMPRESSIVE SENSING THEORY
After the famous Shannon sampling theorem, the introduction of Compressive Sensing
(CS) theory has been a breakthrough for Signal Processing Field. CS theory is useful for
the acquisition of signals which are compressible or sparse. CS can overcome the sam-
pling rate Nyquist-criterion and use fewer samples to represent the signal. And using
some non-linear reconstruction techniques, the signal can be recovered with sufficient
guarantee from fewer measurements. Now, we will look at the essential concepts under-
lying CS:

2.3.1. CS ACQUISITION
Let s ∈ Rn be the signal vector to be recovered. The compressive sensing theory (CS)
suggests that, one can define a measurement matrix A that ’compresses’ signal s into a
smaller dimension vector y ∈ Rm where m < n. And, still be able to recover the signal
s from the measurement vector y with sufficient guarantee but only if the signal s is a
’Sparse Signal.’ Since, A has fewer rows than columns, it becomes an underdetermined
system (refer Figure 2.5) which implies that for specific signal s0 there is no unique so-
lution such that for y = As = As0 ⇒ s 6= s0. Hence to enable faithful recovery, this theory
limits to special input signals s: Sparse Signals.

Sparsity is an important parameter in CS theory, which implies that signal s has only
very few non-zero values. Mathematically, this can be expressed as ‖s‖0 ≤ k where ‖·‖0

denotes l0-norm, which counts the number of non-zero values. A signal s is called sparse
signal if k ¿ n. The exhaustive search can be done to recover sparse signal s from the
measurements Y but it becomes NP-Hard problem to solve. One of the options is to use
l1-norm as given by equation 2.13.

ŝ = ar g min
s

‖s‖1 s.t . As = y (2.13)

‖s‖1 denotes the l1-norm of signal s, which represents the absolute sum of the elements
of a vector.
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Figure 2.5: Undetermined System for Sparse Signal ’s’

2.3.2. CS RECONSTRUCTION

Let the number of targets in the radar field of view to be k. If we select a uniform grid
of scanning angles for DOA estimation consisting n points on grid such that k ¿ n, then
we have sparsity (number of targets) in spatial domain. The respective steering matrix
formed by the uniform scanning grid will have dimensions of m ×n where m = number
of receiving elements.

A =


1 1 · · · 1

a(θ1,1) a(θ1,2) · · · a(θ1,n)
a(θ2,1) a(θ2,2) · · · a(θ2,n)
· · · · · · · · · · · ·

a(θm−1,1) a(θm−1,2) · · · a(θm−1,n)

 (2.14)

And the signal s vector will have non-zero values at k locations. If we define, support
of s = supp(s) =set of indices over which s is non-zero. Let ss be the vector s restricted
to its support and similarly, As denotes the columns of A corresponding to that support.
This support will correspond to the respective DOA for the targets i.e. As will be the set of
columns corresponding to the array response vectors of the DOA of targets. So we have
y = As = Asss. When the support is known, we can recover s from y via ss = (AT

s As)−1AT
s Y

assuming that As has full column rank. Hence, the task of sparse recovery algorithms is
to determine this support. Once we know the support of ’s’, then we can determine the
non-zero locations and recover the original signal.

2.3.3. NECESSARY AND SUFFICIENT CONDITIONS FOR PERFECT RECOVERY

The ability to recover signal s from measurements y = As depends on the properties of
CS matrix A. In most general case where CS theory used is in Underdetermined Prob-
lems. So, there can be infinite solution possible. The CS theory aims to find the sparsest
solution to the problem. Thus, it is important to determine conditions on A to ensure
recovery.
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RESTRICTED ISOMETRY PROPERTY (RIP)
Necessary condition for recovering signal vector - s from the measurement of y is that
the matrix A must obey RIP of order k, as given in equation 2.15.

(1−δ)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1+δ)‖‖2
2. (2.15)

and δ> 0 is known as restricted isometry constant. This condition states that the matrix
A must preserve the distance between two k-sparse vectors. It has been found in the
literature that calculating the value of δ itself is very hard, so another simpler popular
condition which guarantees stable recovery is Mutual Coherence.

MUTUAL COHERENCE

Mutual Coherence of a dictionary A, denoted by µ(A) [24] is the maximum absolute
cross-correlation of its columns:

µ(A) = max
1≤i 6= j≤n

|aH
i a j |

‖ai‖2‖a j ‖2
, (2.16)

where, ai is the i th column of A.
Lower value of µ(A) is desired for higher recovery guarantee.

2.3.4. CRITERIA FOR OPTIMAL ARRAY TOPOLOGY SEARCH
Even though RIP provides robust recovery guarantee, it is difficult to calculate. Mutual
Coherence (MC) - µ(A) has been shown to provide acceptable recovery guarantee and
most efficient to compute [25]. It is clear that we want to reduce the value of µ(A) as
much as possible to improve recovery guarantee.

The equation 2.16 states that µ(A) depends on the array topology(the rows of a).
Hence we can search for an array topology which can minimize this value. Hence, our
goal for optimization problem for search of optimal array will be minimizing µ(A).

2.4. CONCLUSION
In this chapter, the MIMO radar concept and its effect on improving the angular reso-
lution of the radar are analyzed. The virtual array for MIMO from the transmitter and
receiver array is created by transmitting orthogonal waveforms. The receiving array re-
ceives the waveform and is associated with the transmitting element that transmitted
that waveform.

The Compressive Sensing theory requires fewer measurements to recover a sparse
signal. Since the number of targets will always be ¿ the possible angular locations in
the Field-of-View of radar, the DOA estimation problem can be formulated as a sparse
recovery problem. Spare recovery guarantee can be improved with the low mutual co-
herence of the measurement matrix. For the DOA signal model, the steering matrix is the
measurement matrix. Hence, the goal problem can be formulated by finding the steering
matrix with the lowest mutual coherence to ensure maximum recovery.





3
MIMO ARRAY TOPOLOGY DESIGN

Recently, sparse array topologies synthesized from Non-Uniform Spaced Linear Arrays
(NSULA) have been introduced in order to improve the effective aperture of the array
and reduce spatial redundancy [13], [9]. This chapter describes two techniques for de-
signing a non-uniformly spaced Sparse MIMO antenna topology to improve radar per-
formance. The goal will be to obtain a non-uniformly spaced transmitter and receiver
array topology creating a virtual array with a larger aperture and lowest mutual coher-
ence value.

3.1. GRID-BASED OPTIMAL TOPOLOGY SEARCH
Similar to thinning strategy[26], a sequence of antennas are turned on or off from a set
of possible antenna locations. The transmitter and receiver antenna arrays will combine
and form the virtual array of desired aperture Lλ/2 units. The steps to obtain a grid-
based optimal array are as follows:

STEP 1
Define a Uniform Linear Array Antenna having L elements with λ/2 unit spacing. The
number of transmitters and receivers in the desired MIMO is nTx and nRx, respectively.

STEP 2
1. The possible transmitter and receiver arrays will lie within the larger L element

ULA

2. The first antenna of the receiver array and transmitter array is taken as reference
location with zero distance. di ,R is the location of i threceiver in terms of λ/2 units
from the reference. Similarly, d j ,T is the location j th transmitter.

3. The position of the last element, the receiver array, and the transmitter array’s last
element have the constraint to attain the desired aperture.

dnRx,R +dnT x,T = L s.t . dnRx,R < dnT x,T (3.1)

13
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where, dnRx,R and dnT x,T are the distance of the last element of receiver array and
transmitter array from the reference respectively. The possible configurations

4. Similarly,
di ,R < di+1,R < d j ,T < d j+1,T (3.2)

5. Following the above constraints, the possible transmitter and receiver arrays are
stored in HT and HR , respectively.

6. All the possible virtual arrays formed from the sets HT and HR are stored in H

STEP 3
1. Select a angular grid for creating steering matrix A. For example, A grid for angles

−90◦ to 90◦ with step size of 1 degrees(181 grid points).

2. Using virtual arrays from the set of H , steering vector a can be generated for each
scan angle and thus the steering matrix A

A = [a(θ1), a(θ2), · · · , a(θP )] (3.3)

STEP 4
1. As defined in the previous chapter, the goal is obtain the configuration that leads

to the lowest Mutual Coherence µ(A).

µ(A) = max
1≤i 6= j≤n

|aH
i a j |

‖ai‖2‖a j ‖2
, (3.4)

where ai is the i t h column of steering matrix A.

2. For each virtual array from the set H , generates the steering matrix A and the µ(A)
is calculated.

3. The virtual array that results in the lowest µ(A) value is selected, and respective
transmitter and receiver arrays that formed that array is selected as the grid-based
optimal arrays,

The transmitter and receiver arrays obtained from this search will be used for testing
the performance of DOA estimation against the results of grid-less optimal array search.

3.2. GRID-LESS OPTIMAL TOPOLOGY SEARCH
In the literature on antenna array topology optimization, being motivated by the prac-
ticality and optimum power efficiency of uniformly excited arrays [27], many uniform
amplitude array synthesis techniques have been proposed [11, 16, 28–30]. It is also im-
portant to ensure minimum inter-element spacing to avoid thermal problems, high mu-
tual coupling levels and unrealizable design.

Characteristics of state-of-art methods for optimum antenna array topology synthe-
sis have been compared against the superior proposed method in [31]. The proposed
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method in [31] applies more advanced optimization constraints than any previously
published articles. However, the method has not been developed for Sparse MIMO ar-
rays. This chapter will extend this method for Sparse MIMO arrays and obtain optimum
Transmitter and Receiver Array Topology for the desired aperture.

Let us consider an nTx and nRx element uniformly excited linear transmitter and re-
ceiver array, respectively. The steering vectors formed by the transmitting and receiving
array can be given by:

aT(θp ) = [
aT,0(θp ), aT,1(θp ) · · ·aT,nT x (θp )

]
(3.5)

aR(θp ) = [
aR,0(θp ), aR,1(θp ) · · ·aR,nRx (θp )

]
(3.6)

with,
aT,n(θp ) = e j kxn si n(θp ), aR,m(θp ) = e j k ym si n(θp ) (3.7)

where, θp is the angular position of the p th target, xn and ym are the positions of the
nth transmitter and mth receiver respectively. And k = 2π

λ . Using the Kronecker Product
of these vectors (a(θk ) = aT(θk )⊗ aR(θk )) we obtain steering vector of the virtual array
formed as

a(θp ) = [
a0(θp ), a1(θp ) · · ·anRx·nT x (θp )

]T (3.8)

where
am+n(θp ) = e j k(xn+ym )si n(θp ) (3.9)

Using the iterative method proposed in [28], we start with a transmitter linear array
with spacing (nRx·di ni ) and receiver linear array with spacing di ni . And move nth trans-
mitter element by εi , mth receiver element by δi at the i th iteration. The new position
of the elements will be:

xi
n = xi−1

n +εi
n , y i

m = y i−1
m +δi

m (3.10)

Substituting (3.10) in (3.9), the expression for steering vector becomes:

am+n(θp ) = e j k(xi−1
n +εi

n+y i−1
m +δi

m )si n(θp ) (3.11)

As realized in [28], the far-field expression in (3.11) can be linearized around the ele-
ment positions using the Taylor expansion when following relations hold:

|2π

λ
si nθ(εn ,δm)i |¿ 1, i .e. |(εn ,δm)i |¿λ/2π= 0.16λ (3.12)

If sufficiently small high-order terms ignored to keep the convexity of the problem, the
approximated expression at i th iteration:

am+n(θp ) ≈ e j k(xi−1
n +y i−1

m +δi
m )si n(θp ) × (1+ j kεi

n sin(θk )+ j kδi
m sin(θk )) (3.13)

This approximated expression will be used to formulate the new steering vector. The
subsequent new steering matrix:

A = [a(θ1),a(θ2) · · ·a(θP )] (3.14)
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For the compressed sensing terminology, we will call the columns of steering matrix
A as atoms. Assume that we have P atoms in A. In order to calculate the mutual coher-
ence amongst the columns, we will define a function f and using equations 3.13 and
3.14,

f i
εn ,δm

(θs) ≈ max
a 6=b

nT x∑
n=1

nRx∑
m=1

e j kxi−1
n (si nθa−si nθb ) ×e j k y i−1

m (si nθa−si nθb )

× (1+ j kεi
n(si nθa − si nθb)+ j kδi

m(si nθa − si nθb)) . . . {θa ,θb ∈ θs} (3.15)

Where the input to the function f (θs), is the set of angles from the selected Field-of-
View. The vectors of parameters for the i th iteration are given by:

xi =
[

xi
1, xi

2, . . . , xi
nT x

]T
yi =

[
y i

1, y i
2, . . . , y i

nRx

]T
(3.16)

εi =
[
εi

1,εi
2, . . . ,εi

nT x

]T
δi =

[
δi

1,δi
2, . . . ,δi

nRx

]T
(3.17)

The set of p angles for θs forms the following vector:

θs =
[
θ1,θ2, . . . ,θp

]
(3.18)

To calculate inter-element spacing at each iteration a (nT x ·nRx − 1)×nT x ·nRx
circulant matrix D is formed.

D =



−1 1 0 0 · · · · · · 0
0 −1 1 0 · · · · · · 0
0 0 −1 1 · · · · · · 0

0
. . .

. . .
. . . · · · · · · ...

...
. . .

. . . · · · −1 1 0
0 · · · · · · · · · 0 −1 1


(3.19)

An additional condition is imposed in order to set the first element positions of trans-
mitter array and receiver array is same as required by the MIMO Linear Array setup. It is
given by:

εi
1 = δi

1 (3.20)

Finally, if the limit of aperture size is set, an additional condition should be forced on
the element positions at each iteration so that the effective aperture is equal to the set
limit on aperture. This condition is given as:

|(xi−1
nT x +εi

nT x + y i−1
nRx +δi

nRx )− (xi−1
1 +εi

1 + y i−1
1 +δi

1)| = L (3.21)

Using far-field equation (3.11) and the above-defined vectors for parameters, we can
formulate an iteration based convex optimization problem. At each iteration the follow-
ing convex optimization problem will be solved:
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argmin
εi,δi

µ

s.t .max | f i
εn ,δm

(θs)| < µ

|εi| ≤ β, |δi| ≤ β, εi
1 = δi

1

D ∗ ((xi−1 +εi)⊗ (yi−1 +δi)) ≥ dmi n

|(xi−1
nT x +εi

nT x + y i−1
nRx +δi

nRx )− (xi−1
1 +εi

1 + y i−1
1 +δi

1)| = L

(3.22)

µ is the maximum Mutual Coherence amongst the columns of steering matrix, which
is simultaneously minimized for all the defined angles within Field-of-View (FOV) θs. |εi|
& |δi| are upper bounded by user-defined constant β as followed by equation (3.12). Set-
ting εi

1 = δi
1 ensures the first element of transmitter and receiver are equally shifted. The

last two constraints guarantee that the minimum inter-element spacing at each iteration
is larger than or equal to the desired value, dmi n and the desired aperture size is defined
as L

The optimization problem presented in (3.22) is a non-linear convex problem, namely
a second-order cone program[32], which can efficiently solved using interior-point meth-
ods by available solvers such as CVX[33]. In this thesis, an off-the-shelf CVX solver will
be used to synthesize the non-uniform Sparse MIMO configuration. The optimization
problem 3.22 provides the transmitter and receiver array optimized for minimizing Mu-
tual Coherence for predefined Field-of-View (FOV).

3.3. SIMULATED ANNEALING
Using the convex optimization technique, we can not solve all the synthesis problems;
only local optima are found, and the choice of the initial point is also very crucial [19].
Thus, the algorithm can get stuck at local optima. In order to get out of these local optima
points, there are various Metaheuristic techniques available in the literature, such as Hill
Climbing and Simulated Annealing. Hill climbing is a relatively simple algorithm but has
a higher chance of getting stuck at another local optimum.

The Simulated Annealing (SA) approach introduced in [34] comes from the ’anneal-
ing’ technique in metallurgy, which involves heating and cooling of a material to reduce
the defects. The heating adds randomness (energy) to the system, and cooling will lead
to a more stable configuration of the crystals. This approach can be adapted to the op-
timization problems stuck at local optimums. Hence, Simulated Annealing applies to
only specific optimization problems that utilize this technique. This technique does not
guarantee a global optimum solution but approximates a global-optimum solution if the
appropriate temperature curve is selected.

For all the possible initial input antenna topologies (set of H) to the optimization
problem 3.22, the obtained mutual coherence µ may follow the curve in Figure 3.1. The
figure tells us that the optimization problem can get stuck at local optima when the initial
input Topology is T1 ∈ H .

Let us assume that for a specific configuration of MIMO, the optimization problem
is stuck at local optima when initial input topology T1 was used. So it is possible that a
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global optima solution can be obtained if the initial input to the optimization problem
was different (e.g. if it started with T3 topology).

Figure 3.1: Simulated Annealing Technique

Steps involved in the simulated annealing approach:

1. The temperature curve defined in Figure 3.2 provides the amplitude for a random
shift in the topology to be selected for the next iteration. Hence, a more significant
shift in the topology (e.g. T2) is observed with a high temperature at the beginning.

2. Using this new topology as input to the optimization problem 3.22, a new solution
is obtained that may or may not be stuck at the local optimum. At this point, the
temperature-dependent acceptance curve 3.3 helps in accepting worse solutions.
So if the temperature is high, a high level of acceptance for a worse solution is tol-
erated, and the algorithm settles towards that point. Even if the next local optima
(T3) is worse than the previous optima, the simulated annealing method helps get
out of the local optima point.

3. Then, for the next iteration, the topology is shifted depending on the tempera-
ture at that point. As the temperature has cooled down for the next iteration, the
shift in the amplitude should be smaller than the previous iteration. And this new
topology (e.g. T4) is used as the initial point for the optimization problem.

4. This process is repeated until the temperature reaches zero or the optimization
provides a worse solution than the acceptable value at that temperature.

5. The algorithm should converge towards global-optimum solution.
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Figure 3.2: Temperature curve for shifting the topology.

Figure 3.3: The acceptance curve

As we can notice, Simulated Annealing approach helps in getting out of local optima
points and provides chance to move towards global optima solution. It is important
to note that this process is very sensitive to the nature of temperature and acceptance
curves. A balanced curve will provide the best chance to reach global optimum solution.
Overall, simulated annealing will help us in reaching better solutions.
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3.4. SYNTHESIS RESULTS
In this section, we will look at the synthesized arrays resulting from the previously de-
fined optimization algorithms. We will compare the results from the grid-based opti-
mal array search against the grid-less optimal array search. In automotive applications,
2Tx4Rx and 3Tx4Rx MIMO radar configurations are most commonly used. Hence, our
search algorithm will focus on these two configurations. The modern radars operate in
the range of 76-78GHz. Thus we will select 77GHz as the operating frequency for our
synthesis.

Based on the application, the automotive radars are designed to work in the Short
Range, Mid Range and Long Range. A wider Field-of-View for radar’s operation is re-
quired for short-range, while a very short Field-of-View is scanned for long-range radar.
Depending on the various applications in the automotive industry, we can divide the
Field-of-View for different ranges of operation of radars, summarized in table 3.1:

FOV (degrees) Range
[-15 to 15] Long Range
[-30 to 30] Medium Range
[-50 to 50] Short Range

Table 3.1: The Field-of-View (FOV) of the radar for different range of operation

The setup for testing the algorithms for both configuration:

2TX4RX - MIMO CONFIGURATION

nTx = 2, nRx = 4 with minimum inter-element spacing dmi n = 0.5λ, we will set the desired
aperture size L = 19λ/2. The reason for defining this aperture size is because it is used in
industry-standard MRA-MIMO for 2Tx4Rx.

3TX4RX - MIMO CONFIGURATION

nTx = 3, nRx = 4 with minimum inter-element spacing dmi n = 0.5λ. Since, a standard
Uniform Linear MIMO Array with 3Tx4Rx has aperture size of 11λ/2. We will set the de-
sired aperture size L = 22λ/2 in order to double the angular resolution of the synthesized
array.

3.4.1. GRID-BASED OPTIMAL TOPOLOGY SEARCH

The algorithm looks for the virtual array with the lowest mutual coherence (µ) value by
performing the exhaustive search for the possible MIMO configurations with given con-
straints. The antennas are assumed to lie on a uniform grid with λ/2 spacing. The re-
spective transmitting and receiving arrays are selected as the grid-based optimal arrays.

It has been observed that the grid-based optimal array search algorithm results lead
towards Restricted - Minimum Redundancy MIMO Array for the given apertures. Hence,
the results of this search will be called MRA-MIMO results from now onward. It is also
important to note that the search algorithm remains independent of Field-of-View(FOV)
selection. Hence the resulting arrays have the same performance for any FOV.
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3.4.2. GRID-LESS OPTIMAL TOPOLOGY SEARCH
The iterative optimization problem 3.22 requires a initial MIMO configuration to start
the algorithm. The result obtained from the grid-based search is taken as the starting
point for the algorithm. The maximum shift (β) is set to = 0.16λ. The algorithm is tested
for different Field-of-Views (FOV). The algorithm provides us with the transmitter (TX)
and receiver (RX) array directly as the output while minimizing the mutual coherence
value µ. This algorithm does not have the grid constraint for the physical location of the
antennas. Hence, the synthesized arrays from this algorithm can take any position in the
space, providing more freedom to the algorithm to look for optimum array positions.

There is a chance of the optimization algorithm getting stuck at local optima, and
thus the simulated annealing has been performed to get the optimization out of local
optima. As discussed earlier, the simulated annealing method was implemented for both
the configurations and the results after the simulated annealing are summarized in the
following section.

3.4.3. SYNTHESIZED ARRAY TOPOLOGY
The result of the both algorithms are presented in this section. The algorithms provide
transmitting array (TX) , receiving array (RX) and the virtual array with lowest possible
mutual coherence (mu) for given FOV and aperture size.

2TX4RX - MIMO
The synthesis result from the both optimization algorithms are summarized in the fol-
lowing tables (Table 3.2 and 3.3).

Position of TX and RX arrays (λ/2 units)
FOV TX RX

1 2 1 2 3 4
[-15 to 15] 0 10.3022 0 2.4794 5.3829 8.6977
[-30 to 30] 0 11.1357 0 1.8041 3.2855 7.8642
[-50 to 50] 0 12.8436 0 1.0165 4.0965 6.15630

MRA 0 13 0 1 4 6

Table 3.2: TX and RX positions obtained from the optimization problem for 2Tx4Rx

As we can observe in Table 3.3, the value of mutual coherence can be reduced if we
decrease the FOV of operation. The lower value of mutual coherence helps us in the
stronger signal recovery even in a noisy environment where the MRA-MIMO might fail
to recover the original signal. But for short-range applications (large FOV), we do not see
significant improvement in the mutual coherence values.

The following figures (ref. Figures :3.4,3.5,3.6) show the relative positions of the syn-
thesized arrays w.r.t the MRA-MIMO for varying Field-of-View.
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2Tx4Rx
Virtual Array Position (λ/2 units)

FOV
Element [-15 -15] [-30 30] [-50 50] MRA

1 0 0 0 0
2 2.47942 1.80411 1.01653 1
3 5.38293 3.28554 4.09655 4
4 8.69777 7.86423 6.15630 6
5 10.30222 11.13576 12.84369 13
6 12.78164 12.93988 13.86023 14
7 15.68515 14.42131 16.94025 17
8 19 19 19 19

µ 0.17615 0.38734 0.48305 0.5092
µ(dB) -15.08192 -8.23801 -6.32002 -5.8622

Gain (dB) 9.2197 2.3758 0.4578 0

Table 3.3: The Result of the optimization algorithm for 2Tx4Rx

Figure 3.4: Relative position of the synthesized arrays vs MRA for 2Tx4Rx with aperture = 19λ/2
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Figure 3.5: Relative position of the synthesized arrays vs MRA for 2Tx4Rx with aperture = 19λ/2

Figure 3.6: Relative position of the synthesized arrays vs MRA for 2Tx4Rx with aperture = 19λ/2
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3TX4RX - MIMO

Similarly, the synthesis results for 3Tx4Rx MIMO using the optimization problems are
summarized in the following tables.

Position of TX and RX arrays (λ/2 units)
FOV TX RX

1 2 3 1 2 3 4
[-15 to 15] 0 7.7040 15.3520 0 2.1676 4.3846 6.6479
[-30 to 30] 0 8.9322 16.5580 0 1.8714 3.8238 5.4419
[-50 to 50] 0 7.1718 16.8757 0 3.1101 3.99611 5.1242

MRA 0 10 17 0 3 4 5

Table 3.4: TX and RX positions obtained from the optimization problem for 3Tx4Rx

3Tx4Rx
Virtual Array Position

FOV MRA
Element [-15 to 15] [-30 to 30] [-50 to 50]

1 0 0 0 0
2 2.1676 1.8714 3.1101 3
3 4.3846 3.8238 3.9961 4
4 6.6479 5.4419 5.1242 5
5 7.7040 8.9322 7.1718 10
6 9.8716 10.8036 10.2820 13
7 12.0886 12.7560 11.168 14
8 14.3520 14.3741 12.2961 15
9 15.3520 16.5580 16.8757 17

10 17.5196 18.4294 19.9859 20
11 19.7366 20.3818 20.8718 21
12 22 22 22 22

µ 0.1910 0.2551 0.3459 0.3732
µ(dB) -14.3807 -11.8655 -9.222 -8.5612

Gain(dB) 5.8195 3.3043 0.6588 0

Table 3.5: The Result of the optimization algorithm for 3Tx4Rx

It is important to note that the aperture size for synthesizing 3Tx4Rx is set to 22λ/2
which is twice as large as the traditional uniform MIMO with λ/2 uniform spacing. Dou-
ble aperture will provide double the angular resolution without adding any extra an-
tenna to the system. But this comes at the cost of increasing mutual coherence (µ) val-
ues. Hence, to retain low mutual coherence, the operational Field-of-View needs to get
narrower (as observed in table 3.5).
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Figure 3.7: Relative position of the synthesized arrays vs MRA for 3Tx4Rx with aperture = 22λ/2

Figure 3.8: Relative position of the synthesized arrays vs MRA for 3Tx4Rx with aperture = 22λ/2
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Figure 3.9: Relative position of the synthesized arrays vs MRA for 3Tx4Rx with aperture = 22λ/2

3.5. EXTENSIONS

The iterative optimal topology search algorithm in 3.22 takes the aperture limit (L),the
number of transmitters (nTx) and receivers (nRx) as the input variables. By interchang-
ing the variables involved, we can extend this iterative optimization technique to obtain
additional results useful for antenna design. These extensions will help us analyze the
parameters required to meet certain requirement while designing an antenna.

In this section we will look at three possible extensions:

3.5.1. EXTENSION 1

We have formulated the array search algorithm for the MIMO configuration to obtain
optimal transmitter and receiver array in 3.22. A similar technique can be applied to
obtain an optimal Non-Uniform Linear Array (NULA) of ’M’ elements for the desired
aperture. In this extension, we will identify the lowest mutual coherence possible for the
given number of element ’M,’ given aperture size ’L for a given Field-of-View operation.
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The modified optimization problem will be:

min
εi

µ

s.t .max | f i
εn

(θs)| <= µ

|εi| ≤ β,

D ∗ (xi−1 +εi) ≥ dmi n

|(xi−1
M +εi

M )− (xi−1
1 +εi

1)| = L

(3.23)

Figure 3.10: The input and the output of the first extension

This optimization is run for varying number of antenna elements for Field-of-View
of [-30 to 30] with fixed aperture size of 22λ/2. The result is shown in the Figure 3.11

Figure 3.11: Extension 1 Result

As expected, with the increase in the number of elements, the mutual coherence is
reduced for the fixed aperture and FOV. This extension can help us determine the lowest
possible mutual coherence value for a given number of elements, fixed aperture and
FOV.
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3.5.2. EXTENSION 2
This extension looks for the largest aperture possible with desired mutual coherence µ
value for a fixed number of elements ’M’. Hence, the input to the optimization algorithm
will be desired mutual coherence: ’µ’ and the number of elements ’M’ for a given Field-
of-View. The algorithm’s output will be the largest possible aperture size L for the desired
constraints.

max
εi

L

s.t .max | f i
εn

(θs)| <= µ

|εi| ≤ β,

D ∗ (xi−1 +εi) ≥ dmi n

|(xi−1
M +εi

M )− (xi−1
1 +εi

1)| >= L

(3.24)

Figure 3.12: The input and the output of the second extension

Figure 3.13: Extension 2 Result

As we can see in the figure 3.13, increasing the number of elements can help us
achieve larger apertures for the fixed value of mutual coherence.
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3.5.3. EXTENSION 3
In this extension, the goal will be to find the minimum number of elements required to
achieve certain mutual coherence (µ) and desired aperture size for a given Field-of-View.

min ‖M‖1

s.t .max | f i
εn

(θs)| <= µ

|εi| ≤ β,

D ∗ (xi−1 +εi) ≥ dmi n

|(xi−1
M +εi

M )− (xi−1
1 +εi

1)| = Lmi n

(3.25)

The actual goal function should be l0−norm of M i.e. ‖M‖0 but this makes the prob-
lem non-convex. Hence, we will use ‖M‖1 , the l1−norm of M as our goal function.

Figure 3.14: The input and the output of the second extension

Figure 3.15: Extension 3 Result
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3.6. CONCLUSION
This chapter proposed two techniques to design Sparse-MIMO to minimize the Mutual
Coherence (µ) value. Minimizing the µ provides a stronger recovery guarantee of the sig-
nal using sparse recovery algorithms. Also, making the array sparse improves the array’s
aperture, and thus the angular resolution is also improved.

The first technique is a Grid-based topology search for the lowest mutual coherence.
This technique scans through possible transmitter and receiver antennas at specific grid
points with uniform spacings, meeting aperture size requirements. Then, the transmit-
ter (TX) and receiver (RX) arrays for MIMO with the lowest mutual coherence are se-
lected.

The second technique is a Grid-less Optimal topology search, based on an iterative
convex optimization algorithm. The positions of the antenna elements are updated at
each iteration in the direction of the topology that gives a lower mutual coherence value.
The iterative optimization algorithm is computationally effective and can provide near-
optimal solutions. This method may get stuck at local optima, and in order to avoid that
Simulated Annealing technique is used to achieve global optima.

The design techniques introduced in this chapter focus on optimizing the physical
locations of the transmitter and receiver array rather than the virtual array since it is pos-
sible that the optimum virtual array does not have the realizable receiver and transmitter
arrays.

The iterative optimization algorithm can be applied to our problem and get addi-
tional results. The extensions introduced in this chapter will help analyze the relation-
ship between various parameters, and depending on the requirements and constraints,
one can select a specific extension to check the limits.



4
SUPER RESOLUTION DOA

ESTIMATION

This chapter will focus on the Direction-of-Arrival (DOA) estimation of the targets. It is
important to note that we will be using just a single snapshot of received data to make
quick decisions in time-critical applications. At the same time, the goal is to achieve
super-resolution estimates with high confidence.

A class of DOA estimation algorithms has shown promising results using a single
snapshot without compromising the angular resolution. This class is known as Sparse
Recovery Algorithms. In the previous chapter, we discussed the techniques to design
MIMO arrays with low mutual coherence. We have seen that a lower mutual coherence
value provide a higher guarantee for recovery of sparse signals. Hence, we expect the de-
signed MIMO arrays from the previous chapter to give the best performance for sparse
recovery algorithms.

First, we will formulate the DOA estimation problem into a sparse recovery problem
and summarize the prominent Sparse Recovery Algorithms available in the literature.
We will use the possible candidates suitable for automotive application and compare
their performances against each other in order to determine the optimal algorithm.

4.1. DOA ESTIMATION USING SPARSE RECOVERY
In this section we will introduce the sparse representation of our signal model. As we
have defined earlier, for K targets, the signal model with single snapshot contains cor-
responding K steering vectors, forming the steering matrix As ∈ CM×K (Figure 4.1). The
vector ss ∈ CK contains the reflected complex signal from each target and W ∈ CM con-
tains the noise information.

y = AsSs +W (4.1)

This signal model can be represented in sparse domain, if we consider that the As

can be formed by selecting specific columns from a larger dictionary A ∈ CM×N whose

31



4

32 4. SUPER RESOLUTION DOA ESTIMATION

Figure 4.1: Signal Model for K-targets

columns are called atoms. Similarly the corresponding s ∈CN will become the selection
vector that selects respective atoms from A and linearly combine them to form y ∈ CM

(Figure 4.2). By sparsity, we mean that only a few entries , say K ¿ N , of s are non-zero
and the rest are zero. This is true for our signal model since the number of targets (K ) is
¿ the total possible positions (N ) in angular domain.

Figure 4.2: Sparse Representation of the signal model containing K-targets

Given y and A, the problem of sparse recovery is to find the sparse vector s subject
to data consistency. But since, for DOA estimation we are only concerned with the non-
zero locations of the sparse vector s, the sparse recovery algorithms will focus on finding
the support of s = supp(s) = locations/indices of the non-zero locations of the vector s.

Intuitively, the sparsest solution to solve for the sparse signal should be found. So, if
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the noise is absent, the following optimization problem should be solved:

s = argmin
s

‖s‖0 subject to y = As; (4.2)

The l0 problem in 4.2 is NP-hard to solve. So, a more efficient approach is needed
to solve this problem. In the literature, there have been many methods and algorithms
proposed to solve for sparse signal recovery. The next section will briefly look at the
different approaches and select possible candidates suitable for automotive application.

4.2. SPARSE RECOVERY ALGORITHMS
In this section, we will summarize the popular algorithms for sparse recovery. The goal
of sparse recovery algorithms is to find the sparsest solution to the problem 4.2. The
steering matrix A can be created with discrete or continuous atoms. Hence, the sparse
recovery algorithms on the broader scope can be divided into three major categories:

4.2.1. GRID-BASED ALGORITHMS
In this category, the algorithms will use the dictionary A based on the discrete atoms
and hence the term ’Grid-based’ algorithms. There has been extensive research done on
sparse recovery algorithms. These algorithms can be classified under six approaches. A
summary of these approaches with their Pros and Cons are listed in Table 4.1. Readers
can consult [5], [35] for a review.

Automotive applications desire to estimate the Direction-of-Arrival (DOA) targets in
a noisy environment using a single snapshot. As we can see from Table 4.1, the Com-
binatorial approach requires noiseless measurements and works best when there is a
specific pattern in measurements [36]. Similarly, the Bayesian approach demands prior
information on the signals and expects the signal belonging to some known probability
distribution [37]. Since we are working with single snapshots, the Bayesian approach will
not be efficient. Hence we can discard these two approaches from our analysis.

For the rest, we will select the most popular algorithm with low complexity and high-
resolution algorithms from each approach and compare their performance.

CONVEX APPROACH

This approach poses sparse recovery problem as a convex optimization algorithms which
can be solved using off-the-shelf solvers [33]. One of the most popular algorithm from
this category is:

Basis Pursuit Denoising (BPDN): BPDN was introduced by Chen et. al [38]. This is
similar to the Least Absolute Shrinkage Selection Operator (LASSO) algorithm, intro-
duced by Tibshirani [39] in statistics. BPDN considers the noise in measurements and
formulates the optimization problem given by 4.3.

ŝ = ar g min
s

‖s‖0; subject to
1

2
‖(y−As)‖2

2 ≤ ε, (4.3)

Some algorithms solve BPDN using Lagrangian form, which can be formulated as 4.4,
where λ is unknown prior. The value of λ is used to balance the sparsity of the solution
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Approach Complexity Attributes Pros Cons

Convex ≈O(m2n3) - global optimization - robust to noise - slower, complex
- minimizes l1-norm - ability to superre-

solve
Greedy -serial

version:
O(mnk)

- correlation based
step-by-step iterative
method

- faster, low complex,
robust to noise

-prior knowledge on
sparsity required

-parallel
version:
O(mn.i ter )

- parallel versions can
discard wrong entries
from previous itera-
tions

- convergence issues,
requires more mea-
surements than con-
vex approach

Thresholding O(mn.i ter ) - nonlinear thresh-
olding criteria to
select atoms

-faster, low complex - convergence issue

- requires adaptive
step size

Combinatorial linear in n - min and median
computation

- faster, simple - requires noiseless
measurements
- specific pattern
in measurements
required

Non-Convex ≈O(m2n3) - minimizes lp -norm
where 0 < p < 1

- recovers from fewer
measurements

- slower, complex

- functions under
weaker RIP

Bayesian O(nm2) - recovery for
bayesian inference
problem

- faster & more sparse
solution

- prior dependent

- applicable for sig-
nals ∈ known proba-
bility distribution

-high computation

Table 4.1: Summary of Sparse Recovery Approaches

and error. To solve 4.4, one of the famous algorithms is the primal-dual interior-point
method.

ŝ = ar g min
s
λ‖s‖0; subject to

1

2
‖(y−As)‖2

2 ≤ ε, (4.4)

4.2.2. GREEDY APPROACH

Whereas, Greedy Approach is a step-by-step iterative method.

The convex optimization approach is a global optimization method. At each itera-
tion, the solution is formed by selecting the columns from the dictionary matrix (steer-
ing matrix), which are highly correlated with the measurement. These selected columns
are called atoms. The atoms selected at each iteration are removed to improve the recon-
struction, reducing the algorithm’s computational complexity. Hence these algorithms
are considered as a fast and straightforward approach for sparse reconstruction.

These algorithms are further divided into two categories:
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1. Serial Greedy Algorithm: The Orthogonal Matching Pursuit (OMP) proposed by Y.
C. Pati et al. [40] can be considered as a Serial Greedy Algorithm. Only one atom is
selected in each algorithm iteration, and the respective support vector (indices of non-
zero entries of solution) is calculated. The steps:

• Initialization: A residual vector r is initialized with measurement vector ’y. Solu-
tion vector s and support vector Λ are initialized to null vectors. And the iteration
is started.

• Atom Search: This step search for the column of dictionary matrix which is maxi-
mally correlated to the residual vector. The position/index of this atom is stored in
Λ.

• Update the solution: The solution set is updated is using Least Squares Method, si

• Update the residual: New residual is calculated by subtracting AΛi Si from the mea-
surement vector y . For convergence, these steps are either repeated for K times or
desired value of residual is reached.

2. Parallel Greedy Algorithm: The Compressive Sampling Matching Pursuit (OcSaMP)
proposed by Needell and Tropp [41] can be categorized as Parallel Greedy Algorithm.
Unlike OMP, each iteration of CoSaMP selects 2K columns from the A, which are max-
imally correlated with the residual vector. These are added to the K atoms from the
previous iteration. Best K atoms are retained from these 3K atoms, by least-squares best
fit for sparse vector s. Then the locations of these atoms are updated inΛ.

THRESHOLDING APPROACH

In this approach, the algorithms work with K atoms simultaneously. A thresholding op-
eration is performed to update the solution set si. The rest of the steps are similar to the
Greedy Approach. One of the most popular thresholding algorithms is:

Iterative Hard Thresholding Algorithm (IHT): Blumensath and Davies proposed the
IHT algorithm [42]. This method selects a thresholding operator pk to keep largest K
entries in s and the rest is set to zero.

s = pk (s+λAT(y−As)) (4.5)

The λ denotes the step size of the iterations. There are algorithms with adaptive step
sizes to converge faster, but it becomes more complicated.

NON-CONVEX APPROACH

The sparse recovery algorithms try to find the sparsest solution, basically minimizing
the l0-norm. But it is an NP-hard problem. The convex approach relaxes the l0-norm
to l1/2-norm optimization problem. Whereas, in the non-convex approach l1-norm is
replaced with lp -norm where, 0 < p < 1. The advantage of this approach is that we can
reconstruct the sparse signal with fewer measurements than the convex counterpart.
This approach also works with a weaker RIP conditioned dictionary matrix. The most
popular algorithm in this category is:
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Focul Underdetermined System Solution (FOCUSS): Gorodnitsky and Rao proposed
the FOCUSS algorithm [43]. This method is the non-convex relaxation of the l0-norm
optimization problem. The optimization problem is given by 4.6

ŝ = argmin
s

‖s‖p subject to y = As; (4.6)

In order to guarantee convergence, a regularized FOCUSS was introduced in [44]. The
regularized version is given by

ŝ = argmin
s
λ‖s‖p + 1

2
‖As−y‖ (4.7)

where λ> 0 is a regularization parameter.

4.2.3. OFF-GRID ALGORITHMS
These algorithms focus on a dynamic grid for the atoms. But most of these algorithms
involve non-convex optimization, and only local convergence can be guaranteed. Hence
this category will not be the focus of our analysis.

4.2.4. GRIDLESS ALGORITHMS
In this section, the DOA estimation approach designated as the sparse gridless method is
presented. As the name suggests, this method does not require gridding of the direction
domain. Instead, it directly operates in the continuous domain and can resolve the grid
mismatch problem while sparse recovery. Moreover, it is convex and has strong theoret-
ical guarantees. However, this kind of method can only be applied to uniform or sparse
linear arrays on a uniform grid.

ATOMIC NORM

Atomic norm is analogous to l0-norm minimization from grid-based methods. The prob-
lem is formulated as frequency estimation for DOA. The optimization problem can be
given by 4.8.

ŝ = argmin
s

‖s‖A subject to y = As; (4.8)

where, ‖.‖A means the automic-norm.
There have been different approaches proposed in the literature to solve optimiza-

tion problems 4.8. Reader can review in [45], [46]. However, most of them have focused
on ULA and Sparse Linear Arrays on a grid. And the proposed Array Topology optimiza-
tion results in Non-Uniform Sparse Arrays, for which there is not much literature avail-
able to implement atomic norm optimization. There have been few techniques given by
[47],[48], but these techniques either increase computational complexity or move away
from the grid-less approach.

4.3. TRADITIONAL DOA ESTIMATION ALGORITHMS
Until now, we saw the sparse recovery algorithms for single snapshot DOA estimation.
The state-of-art high-resolution subspace-based algorithms such as Multiple SIgnal Clas-
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sification (MUSIC), Root-MUSIC, Minimum Variance Distortionless Response (MVDR/Capon),
etc., require multiple snapshots in order to estimate DOAs correctly.

Some advanced algorithms have been proposed to estimate DOA using Single Snap-
shots in [49–52]. But these algorithms exploit the Uniform Linear Array structures and
compromise on the angular resolution as well. For Non-Uniform Linear Arrays, it is not
easy to adapt these advanced algorithms.

4.3.1. DETERMINISTIC MAXIMUM LIKELIHOOD ESTIMATOR (DML):
Stoica and Sharman proposed DML for DOA estimation in [53]. DML algorithm is robust
to noise and is considered the best estimator for DOA estimation. DML finds the vector
s that maximizes the negative of the log-likelihood function 4.9 [54].

L =−log (σ2)− 1

σ2

N∑
i=1

|y−As|2 (4.9)

where N = number of snapshots = 1 for our case.
Since the logarithm is a monotonic function, the maximization problem is simplified

to

argmin
θ,s

|y− A(θ)s| (4.10)

where θ is the set of True DOAs of the targets. After simplifying, the maximum likelihood
estimate of the parameterΘ is obtained by maximizing the log-likelihood function:

L(θ) = |PA(θ)Y|2 (4.11)

where,

PA(θ) = A(θ)(AH(θ)A(θ))−1AH(θ) (4.12)

The simplified version of equation 4.11 is given by

L(θ) = tr [PA(θ)R] (4.13)

where tr [] is trace of the bracketed matrix and the R is the sample covariance matrix.

R = y∗yH; (4.14)

(since we have only one snapshot).

4.4. PERFORMANCE ANALYSIS
In this section, we will test the performance of the algorithms we discussed in the pre-
vious sections. These algorithms will be tested on the synthesized arrays compared
based on their angular resolution, Probability of Detection and SNR performance. For
the following analysis, the synthesized grid-based optimal array will be referred to as
Minimum Redundancy MIMO (MRA-MIMO). The synthesized arrays will be compared
against Uniform Linear MIMO Array having some number of transmitters and receivers.
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4.4.1. PROBABILITY OF DETECTION
Probability of Detection (PD ) is defined as the probability of the algorithm to estimate
DOAs of the targets within an acceptable error margin. This simulation will determine
the PD for each algorithm and compare their performance against the synthesized arrays
and the existing MIMO array (ULA-MIMO).

For the simulation setup, we will place two targets symmetric to the broadside di-
rection. The targets will move away from each other, and at each angular separation,
the algorithms will estimate the target location. The simulation is run for 1000 iterations
for varying Signal-to-Noise Ratio, and the error margin is set ≤ 0.25 degrees to obtain
Probability of Detection (PD ).

The key plots are shown in the following figures:

(a) Synthesized Array for FOV : [-15 to 15] (b) Synthesized Array for FOV : [-30 to 30]

(c) MRA-MIMO Array (d) ULA-MIMO Array

Figure 4.3: Probability of Detection of the arrays for 2Tx4Rx at SNR = 10dB

From the plots, 4.3 and 4.4 following observations can be made:

• MLE, FOCUSS, OMP and BPDN were able to perform the best among the selected
candidates for analysis.

• At low SNR values, Synthesized arrays have shown consistent and high probability



4.4. PERFORMANCE ANALYSIS

4

39

(a) Synthesized Array for FOV : [-15 to 15] (b) Synthesized Array for FOV : [-30 to 30]

(c) MRA-MIMO Array (d) ULA-MIMO Array

Figure 4.4: Probability of Detection of the arrays for 3Tx4Rx at SNR = 0dB

of detection (PD ) compared to MRA and ULA MIMO (Figure : 4.3a, 4.4a).

• Synthesized arrays have improved angular resolution compared to ULA-MIMO.

• Even though BPDN shows high-resolution performance, it does not seem stable.

• OMP performance is bad with ULA but it performs well with synthesized arrays
(Figure 4.3a).

• BPDN struggles to show consistent performance at low SNR values.
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4.4.2. ANGULAR RESOLUTION
The Angular Resolution of the algorithm for each respective array is determined with the
help of Probability of Detection (PD ). The results from the previous simulations are used
to determine the resolution. In order to find the resolution, we set the following condi-
tion: if the PD >= 0.98, then the two targets are successfully resolved in angular domain,
and the separation between those targets will be defined as the Angular Resolution of
the algorithm for the respective array.

(a) Synthesized Array for FOV : [-15 to 15] (b) Synthesized Array for FOV : [-30 to 30]

(c) MRA-MIMO Array (d) ULA-MIMO Array

Figure 4.5: Angular Resolution performance of the arrays for 2Tx4Rx

In Figure 4.5, the angular resolution of each algorithm for varying SNR values is cal-
culated. For MRA-MIMO and synthesized arrays, the sparse recovery algorithms BPDN
and FOCUSS provide super-resolution. And for ULA-MIMO, MLE performs the best for
resolving two targets.
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(a) Synthesized Array for FOV : [-15 to 15] (b) Synthesized Array for FOV : [-30 to 30]

(c) MRA-MIMO Array (d) ULA-MIMO Array

Figure 4.6: Angular Resolution performance of the arrays for 3Tx4Rx

From Figure 4.6, it is clear that the FOCUSS performs better at high SNR values and
BPDN performs better at low SNR range. A complex algorithm like MLE is performing at
the same range of simple algorithm like OMP for for the synthesized arrays.
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SUMMARY

The results from the previous plots are summarized in the following tables. The syn-
thesized MIMO arrays improve up to 2◦ in angular resolution with respect to the MRA-
MIMO and up to 8◦ w.r.t. ULA-MIMO. It is important to note that the MRA-MIMO has
the same performance as the synthesized arrays, but in the low SNR region, the proposed
arrays have better resolution.

Angular Resolution (2Tx4Rx)
- Synthesized Arrays

SNR (dB) FOV [-15 to 15] FOV [-30 to 30] FOV [-50 to 50] MRA ULA-MIMO
10 6 6 6 7 14
20 4 4 4 6 8
30 4 4 4 4 8

Table 4.2: Summary of the Angular Resolution of the Arrays for 2Tx4Rx.

Angular Resolution (3Tx4Rx)
- Synthesized Arrays

SNR (dB) FOV [-15 to 15] FOV [-30 to 30] FOV [-50 to 50] MRA ULA-MIMO
10 4 4 6 6 9
20 3 3 3 4 7
30 3 3 3 3 6

Table 4.3: Summary of the Angular Resolution of the Arrays for 3Tx4Rx.

4.4.3. COMBINED PERFORMANCE
In this simulation, the performance of two algorithms will be tested. The goal of the
simulation is to show the super-resolution performance of the sparse recovery algorithm
FOCUSS coupled with the synthesized MIMO arrays. It will be compared against the
standard MLE algorithm.

For this simulation, two targets are scanned throughout specified FOV (e.g. [-20 to
20]). The two targets take all possible positions within the FOV, and the algorithms per-
form the DOA estimation for two targets. The MSE over 100 iterations have been aver-
aged and plotted in the following figures. On the left side, the performance of the MLE al-
gorithm is plotted, and FOCUSS is plotted on the right side. These algorithms are tested
for synthesized arrays, MRA-MIMO and ULA-MIMO for both 2Tx4Rx and 3Tx4Rx con-
figurations.

The advantage of sparse recovery algorithm FOCUSS can be seen on the right side
figures. Even for ULA-MIMO, the FOCUSS shows good performance (Figure 4.7a). The
MSE for synthesized arrays is much lower than the counterparts for both of the algo-
rithms. The combined result of the sparse-recovery algorithm and the synthesized array
can be observed in Figure 4.9b.
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(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.7: MSE for ULA : 2Tx4Rx

(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.8: MSE for MRA-MIMO : 2Tx4Rx

(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.9: MSE for Synthesized MIMO : 2Tx4Rx
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(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.10: MSE for ULA -MIMO : 3Tx4Rx

(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.11: MSE for MRA-MIMO : 3Tx4Rx

(a) Performance for MLE (b) Performance for FOCUSS

Figure 4.12: MSE for Synthesized MIMO : 3Tx4Rx
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4.5. CONCLUSION
In this chapter, different approaches for sparse recovery are studied, and prominent
sparse recovery algorithms are selected for testing against the synthesized arrays. The
Probability of Detection (PD ) is an important feature to describe the algorithm’s reliabil-
ity. The BPDN, FOCUSS, MLE and OMP have shown high PD values in a single snapshot
case. The synthesized arrays provided higher PD in the low SNR region compared to
MRA-MIMO and ULA-MIMO. PD can be used to determine the angular resolution of the
algorithms. Two targets are considered resolved if the PD ≥ 0.98 at that angular location.
With such a high confidence rate, BPDN and FOCUSS provided the highest resolution of
4◦ for synthesized 2Tx4Rx array and 3◦ for synthesized 3Tx4Rx array, which is twice the
improvement over the ULA-MIMO array. Both of these algorithms have the same com-
plexity, and the choice of selection depends on the noise level of the environment and
expected resolution.

The combined effect of synthesized MIMO and sparse recovery algorithm is ana-
lyzed. The synthesized arrays start to show better performance in the low-SNR region
(10dB). For both synthesized arrays, 2◦ of improved angular resolution over MRA-MIMO
at low-SNR is observed. The synthesized arrays have consistent performance with high
accuracy of the estimations within the field of view.
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CONCLUSION AND FUTURE WORK

5.1. CONCLUSIONS
This thesis considered different design techniques for Sparse-MIMO Array, and the sparse
recovery algorithms’ performance was analyzed. The goal of the thesis is to design a
Sparse-MIMO Array with low Mutual Coherence values such that the recovery perfor-
mance of the sparse recovery algorithm is improved. Two distinct techniques for design-
ing transmitter (Tx) and receiver (Rx) arrays to obtain MIMO with low mutual coherence
value are analyzed. The first technique, grid-based search for optimal array topology,
restricts the antenna elements’ location on a fixed grid. And the second technique is a
grid-less search for the optimal location of the elements.

For the grid-based search, it was possible to run an exhaustive search and look for
the topology with the lowest mutual coherence value. This search leads towards the
Restricted-Minimum Redundancy MIMO (MRA-MIMO). However, for grid-less optimal
array search, the exhaustive search is not possible. From different techniques available
to search grid-less array topology, the convex optimization technique was selected. This
technique is computationally efficient and has been proven to provide near-optimal so-
lutions. Hence, based on the convex optimization technique, an algorithm to search
MIMO configuration with mutual coherence as the cost function is proposed.

The existing optimization approaches for MIMO optimize the virtual array element
positions and then recover Tx and Rx arrays. The proposed novel optimization algorithm
looks for sparse arrays with user-specified aperture size and optimizes Tx and Rx array
elements’ positions rather than virtual array element position. Therefore, the approach
proposed provides Tx and Rx array elements’ positions as output without the need for
further processing. Thus, the optimization algorithm requires the input of the number
of transmitters, number of receivers, Field-of-View of operation and the aperture size
and returns the optimal transmitter and receiver array topologies.

The algorithm might get stuck at local optima since the optimization problem is
solved using the interior-point method. In order to avoid that, the simulated annealing
method was implemented to add an extra layer or robustness to the proposed algorithm.
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The most common MIMO configurations in automotive radar are 2Tx4Rx and 3Tx4Rx
with short-range, medium-range, and long-range operations. The optimization algo-
rithm was run for these configurations with different field-of-view depending on the
range of operation. The synthesized arrays with the smallest FOV (long-range appli-
cation) dramatically improved mutual coherence values compared to the existing grid-
based optimal MIMO (MRA-MIMO). We observed the gain up to 9.2dB for 2Tx4Rx and
up to 5.82dB for 3Tx4Rx. The proposed algorithm also provided some extensions that
might be helpful for antenna designers. These extensions gave us the limits of operation
for aperture, the number of elements and mutual coherence.

After successfully synthesizing MIMO arrays with low mutual coherence values, it
is necessary to couple them with super-resolution algorithms for DOA estimation to
achieve the best performance. Prominent sparse recovery algorithms are selected for
testing the performance of the synthesized arrays. These algorithms are tested based on
Probability of Detection (PD ), Angular Resolution and Estimation Accuracy to find the
optimal algorithm for the synthesized arrays.

At high SNR range (30dB), synthesized MIMO arrays provided 4◦ (twice) improve-
ment in angular resolution over ULA-MIMO. Whereas MRA-MIMO and synthesized ar-
rays have the same angular resolution at high SNR values, for the low SNR range (10dB),
the synthesized arrays provide up to 2◦ improvement in angular resolution over MRA-
MIMO and about 8◦ over ULA-MIMO. Similarly, for 3Tx4Rx Synthesized MIMO the an-
gular resolution has improved by 3◦ (twice) over ULA-MIMO at high SNR. And at the
low-SNR range, the synthesized array provides an improvement of about 2◦ over MRA-
MIMO and about 5◦ over ULA-MIMO.

The synthesized arrays have the advantage in a low-SNR environment. The sparse
recovery algorithms BPDN and FOCUSS perform the best among the tested algorithms.
BPDN works better in a low-SNR environment, and FOCUSS performs better in high-
SNR applications. And both of the algorithms have the same level of complexity. The
selection of the algorithm will depend on the application and the noise in the system.
Hence, the synthesized arrays combined with one of these algorithms should provide
optimal performance.

5.2. FUTURE WORK
1. Further optimization of the proposed algorithm can be investigated. The pro-

posed algorithm is sensitive to different starting array element positions, inves-
tigation needs to be done to find the optimal starting point.

2. The extensions (Section 3.5) provided in the thesis are for linear array (SIMO), they
need to be developed for MIMO configurations as well.

3. A technique to implement automic norm minimization algorithm for non-uniform
sparse MIMO should be developed to avoid the grid-mismatch problems in DOA
estimation.

4. The sparse recovery algorithms have been tested for single and dual targets. Multi-
target analysis and shortcomings need to be investigated further.
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