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The probability density function (PDF) of the instantaneous streamwise velocity has
consistently been used to extract information on the formation of uniform momentum
zones (UMZs) in wall-bounded flows. Its temporal evolution has previously revealed
patterns associated with the geometry and amplitude of the underlying velocity fluctuations
[Laskari and McKeon, J. Fluid Mech. 913, A6 (2021)]. In this paper, we examine the
robustness of these patterns in a variety of data sets including experiments and wall-
bounded flow models. Experimental data sets spanning a range of Reynolds numbers, with
very long temporal and spatial domains, suggest that the rate of the observed temporal
variations scales in inner units. The use of a convection velocity, uniform across heights,
to transform space into time has a marginal effect on these features. Similarly, negligible
effects are observed between internal and external geometries. Synthetic databases gener-
ated following the resolvent framework and the attached eddy model are employed to draw
comparisons to the experimental databases. Our findings highlight the distinctive strengths
of each: The broadband frequency input of the attached eddy model allows for a better
statistical description as opposed to a narrow frequency input in the resolvent data sets;
instantaneously, however, representative eddies are seen to lack some structural details
leading to the observed temporal behavior, which is better replicated by resolvent modes.
Overall, given the considerable variety of the input data tested, the agreement between the
data sets highlights the robustness of the spatiotemporal characteristics of the examined
UMZs. It also underpins the need for their proper inclusion in UMZ modeling from a
statistical as well as an instantaneous viewpoint; the current analysis accentuates important
performance indicators for both.

DOI: 10.1103/PhysRevFluids.7.104603

I. INTRODUCTION

The undeniable importance of wall-bounded turbulence has led to intense research efforts on the
topic during the past several decades, providing us with a wealth of available data (both numerical
and experimental). Its complexity has stimulated the development of a wide range of models,
seeking some level of simplification of these flows. Currently, given the sheer range of data and
adopted modeling approaches, comparisons are not necessarily straightforward, especially when di-
verse models are involved; they are, however, crucial in improving flow models and their robustness
as well as in facilitating assessment of experimental data. In this paper, we present a comparison
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between two current prominent modeling approaches—one equation based (resolvent framework
[1]), and one conceptual (attached eddy model, AEM [2])—as well as between time-resolved and
snapshot particle image velocimetry (PIV) data. The comparisons will be limited to the streamwise
velocity component, and in particular, the temporal characteristics of its instantaneous probability
density function (PDF), as described in Ref. [3]: the overarching aim is to evaluate the robustness
of these features in a wide variety of data.

Since the work of Meinhart and Adrian [4], the PDF of the instantaneous streamwise velocity
has been increasingly scrutinized: local peaks in the PDF have been shown to indicate the presence
of large zones of uniform momentum (UMZs) in the flow [5], delineated by thin regions of intense
shear [6,7], reflected in the commonly observed staircaselike form of the instantaneous streamwise
velocity profiles. From a structural perspective, these observations allowed connections with impor-
tant notions of representative, energy-carrying, coherent structures populating the logarithmic and
wake regions of wall-bounded flows [5], including large-scale motions (LSMs) and very-large-scale
motions [8–11]).

More recently, UMZ characteristics have also been explored through the lens of drag reduction
strategies [12,13]. In this context, a broad variety of input data has been employed to examine
UMZs, including both experiments (PIV) and direct numerical simulations (DNS). Following the
original experimental studies [4,5], the presence and characteristics of UMZs (as well as the intense-
shear interfaces separating them) have been analyzed in experimental data of zero-pressure gradient
(ZPG), incompressible, smooth [3,6,7,14–17] and rough [18] turbulent boundary layers (TBLs),
TBLs subject to free-stream turbulence [19], TBLs in adverse pressure gradient (APG) [20,21],
transonic, supersonic [20], and hypersonic [22] TBLs, in turbulent pipe flows [23] and atmospheric
boundary layers [24,25]. Collectively, these works highlight the robustness and importance of these
flow features. Of these studies, the majority employed high spatial resolution databases to assess
specific structural elements, while only a few have explicitly examined temporal characteristics by
employing stationary [3,16,20] and moving [17] time-resolved PIV. The main observations in this
context were an increased temporal persistence of high-speed structures in the log region (involving
a low number of UMZs [16]), as well as a presence of repeating patterns in the temporal evolution of
the streamwise velocity PDF [3,17]. Recently, high resolution in both time and space domains has
been available in DNS studies of ZPG and APG TBLs [26], as well as turbulent pipe flows [27,28],
however, only a few studies (see Ref. [26]) explored the temporal persistence of UMZs specifically.
They reported that high-speed structures are seen to persist for longer and are located closer to the
free stream for ZPG flows, in line with experimental observations [16], while low-speed structures
closer to the wall are more persistent in APG TBL flows [26]. One of the goals of this paper is
to explicitly assess the importance of temporal information for the resulting characteristics of the
streamwise velocity PDF and, in particular, the consequences of employing Taylor’s hypothesis [29]
for comparisons in the case of non-time-resolved data sets.

On the modeling side, there have been three distinct approaches that were specifically used to
analyze UMZ development and characteristics, to date: the AEM [2], the resolvent framework [1],
and the UMZ-vortical fissure model by Bautista et al. [30]. The first two were developed as con-
ceptual and equation-based low-order flow representations, respectively. Their ability to reproduce
key turbulent features and statistics guided subsequent fine-tuning [31] or input scale selection [32]
during model development; resulting UMZ characteristics were then assessed as model outputs
and compared with experimental observations. On the other hand, in the UMZ-vortical fissure
model, the phenomenology of UMZs was used as model input while flow statistics were assessed as
outputs to evaluate model performance [30]. Synthetic fields constructed using the AEM were able
to reproduce the mean number of UMZs and its experimentally observed logarithmic scaling with
Reynolds number; the model also underlined essential trends in the resulting population density
and vertical extent of the associated structures [14]. Using the resolvent framework formulation,
streamwise velocity fields of a representative LSM were able to reproduce UMZ behavior [15],
while those composed of downstream traveling, single mode, and multimode hierarchies in the
log region could reproduce experimentally observed temporal patterns of the streamwise velocity
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TABLE I. Data-set details | P (U, t) construction details | symbol definition for each database

PDF; the latter two also allowed clear associations of the PDF behavior with the underlying velocity
fluctuations [3]. On the other end, starting with instantaneous streamwise velocity profiles composed
of randomly displaced vortical fissures of concentrated vorticity (satisfying a mean momentum
equation analysis), statistics up to third (skewness) and fourth order (kurtosis) from high Reynolds
number DNS studies could be replicated particularly well [30]; the fissure’s thickness was seen to
decrease with friction Reynolds number and the velocity jump across each fissure to scale with the
friction velocity. These key observations further motivated the refinement of a conceptual model by
Chini et al. [33] based on large-Reynolds number asymptotic analysis of the Navier-Stokes (NS)
equations, which describes a 3D self-sustaining-process theory able to account for the formation
and maintenance of UMZs with the aforementioned key attributes, in the inertial region of wall-
bounded turbulent flows [34]. In this paper, we focus on the first two approaches, namely, the
AEM and the resolvent framework; consistency of their background theoretical considerations has
been previously examined [35], so here we are aiming to compare resulting flow representations
and assess how well they match experimental observations. As mentioned above, the model output
evaluated here is the PDF of the streamwise velocity and, in particular, its temporal evolution; as
such, and given that the approaches discussed here are designed to successfully replicate a very
wide range of flow behaviors, model (and experimental) data-set comparisons herein are meant to
be targeted and not necessarily indicative of general model performance or applicability.

In what follows, the experimental and modeling data sets used in this paper will first be
outlined. From a modeling perspective, the focus is entirely on structures anchored within the
logarithmic region. Self-similarity imposes specific scaling relationships and allows for the most
equitable comparison between the models (while the AEM contains exclusively self-similar eddies,
the resolvent approach can include velocity modes throughout y—albeit with a higher degree of
empiricism involved). The PDF construction and analysis described in Ref. [3] will subsequently
be briefly outlined and expanded to account for the variety of input data employed in the present
paper. These tools will then allow comparisons of the PDF behavior between data sets in the results
section, as well as some more in-depth scrutiny of the previously observed patterns. Finally, some
more in depth discussion and conclusions will follow.

II. DATA-SET DESCRIPTION

For the subsequent analysis, four different types of velocity fields are used: experimental velocity
fields generated by time-resolved (TRPIV) and snapshot planar PIV (SPIV) and synthetic snapshots
generated using the attached eddy model (AEM) and the resolvent framework (R). Both experimen-
tal and synthetic databases include data sets of internal (channel) and external (TBL) geometries and
their details are provided in the sections below and outlined in Table I. Coordinates x, y, and z are
used to denote the streamwise, wall-normal, and spanwise directions, respectively, and U , V , W the
corresponding velocity components (lower case letters denoting fluctuations, following a Reynolds
decomposition of the flow). Vectors are denoted with bold letters. Unless specified otherwise, all
velocity components are in outer units, normalized using the free-stream velocity, U∞ (or center-line
velocity UCL for internal geometries).
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A. Time-resolved PIV (TRPIV)

The first experimental database contains a single data set of time-resolved planar PIV data from
a TBL at Reτ = 5300 in a streamwise–wall-normal plane [16]. The data set comprises 37 time-
resolved runs, each containing 10 944 snapshots, covering about 14s of flow or 96 boundary layer
turnover times (tU∞/δ). Jones integral method was used to estimate δ, while uτ was estimated
employing the Clauser chart method [37] (similar results were obtained using the composite velocity
profile by Chauhan et al. [38]). The field of view (FOV) is approximately 0.5δ × 1.8δ in x and y,
respectively. To minimize potential pixel-locking effects (especially pertaining to peak detection in
the PDF of the velocity), filtering in time (effective time step of dt = 0.027δ/U∞) and space (2D
Gaussian filter with a 3 × 3 point kernel) was performed [14,39]. More details on the experimental
setup can be found in Ref. [16].

It should be noted here that—given the variety of the databases included in this paper and our
intent to assess the effects of using Taylor’s hypothesis when comparing high- and low-speed
data—we will consider this database as a baseline. It represents the full-scale problem when
compared to the synthetic data sets and will not be modified when compared with the snapshot
ones (all comparisons will be made in temporal units and as such only non-time-resolved data will
be transformed by invoking Taylor’s hypothesis).

B. Snapshot PIV: TBL (SPIV1, SPIV3, SPIV4)

A second planar PIV database of a TBL in streamwise–wall-normal planes, with an extended
streamwise FOV (Lx ≈ 12δ), is also employed in this paper. Details of the data sets can be found
in de Silva et al. [36]. To summarize, the database includes three non-time-resolved data sets, with
3000 independent velocity fields each, at three Reynolds numbers (Reτ = 2650, 5100, 7400). To
maintain spatial resolution while capturing a sufficiently large FOV to explore the large regions
of coherence in the boundary layer, a multicamera arrangement is employed. Specifically, the
experiments utilize an eight-camera array aligned in the streamwise direction to capture a FOV
spanning ∼12δ × 1.1δ in x and y, respectively. Each camera provides a spatial resolution of
4008 × 2672 pixels. The corresponding spatial resolution for each data set is summarized in Table I.
Illumination is provided a Big Sky Nd-YAG double pulse laser that delivers 120 mJ/pulse. An
in-house code is used for processing the PIV image-pairs [40]. δ and uτ are computed by applying
the composite velocity profile of Chauhan et al. [38].

C. Snapshot PIV: Channel (SPIV2)

A third planar PIV database of a channel in streamwise–wall-normal planes, with an extended
streamwise FOV (Lx ≈ 12δ), is also employed for completeness. Details of the dataset can be found
in Kwon et al. [39]. To summarize, the database includes one non-time resolved data set, with
590 independent velocity fields, at an intermediate Reynolds number of Reτ = 3900. To maintain
spatial resolution (see Table I), while capturing a sufficiently large FOV to explore the large regions
of coherence in the boundary layer, a multi-camera arrangement is employed. Specifically, the
experiments utilize a four camera array (each providing a spatial resolution of 4008 × 2672 pixels)
aligned in the streamwise direction to capture a FOV spanning ∼12δ × 2h in x and y, respectively,
although only the lower half of the channel was used in subsequent calculations.

D. Resolvent framework (R1, R2)

The synthetic database generated using the resolvent framework contains two data sets of turbu-
lent channel flow at two different Reynolds numbers, henceforth referred to as R1 (Reτ = 5300) and
R2 (Reτ = 15 000). Each data set contains 21 time-resolved runs, each containing 1300 snapshots
of instantaneous streamwise velocity fields. Brief outlines of the resolvent framework and of the
construction details of these snapshots are included here for completeness; for more details, the
reader is referred to Refs. [3,41], respectively.
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The resolvent framework formulation for wall-bounded flows [1] treats the NS equations as
an input-output system: the nonlinear term f k, acts as an intrinsic forcing, exciting the linear NS
operator (the resolvent) Hk, following a Fourier transform in the homogeneous directions in space
and in time, with k = (kx, kz, ω) denoting the wave number/frequency triplet. The corresponding
output response from this forcing, uk, comprises downstream propagating traveling waves and
represents, in the Fourier domain, the velocity fluctuations around a wall-varying mean profile U (y)
based on a Reynolds decomposition of the flow. The linear operator requires only knowledge of
U (y) for its construction and, following a singular value decomposition, can be formulated in terms
of left (ψk, j) and right (φ∗

k, j) singular functions and singular values (σk, j) for each k:

Hk =
∞∑

j=1

ψk, jσk, jφ
∗
k, j . (1)

The velocity response can then be approximated as a weighted sum of resolvent modes [41],

uk =
∞∑

j=1

σk, jψk, jχk, j =
∞∑

j=1

ψk, jχk, j, (2)

where the weights χk, j are the coefficients of projection of the true nonlinear forcing f k onto the
forcing modes, and χk, j = σk, jχk, j . The resolvent operator has been shown to be low rank for those
wave-number triplets corresponding to important features of wall-bounded turbulence [41] and, in
what follows, a rank-1 approximation will be adopted and the singular value subscript j will be
dropped for clarity: uk = ψkχk.

To construct the data sets discussed above, an appropriate selection of key wave-number triplets is
required; for each resulting response mode, the corresponding projection weight χk is subsequently
chosen and the full fluctuating velocity contribution is then superimposed on the known mean
profile. For the two data sets included here, the discrete wave-number/frequency input selection
is guided on one hand by the need to include representative log region structures while allowing
enough complexity to break the purely periodic nature of the model and, on the other, by a wish
to retain as much simplicity as possible. Given those constraints, the data sets are constructed
using three self-similar hierarchies localized in the log region and comprising five (six) triadically
consistent members each, in the case of R1 (R2). With respect to the modes’ wall-normal location,
the shortest member of each hierarchy is centered at the start of the inertial region in the mean
velocity profile, yc,5/h = 3/

√
Reτ = 0.0046 (yc,6/h = 0.0245) [42], and defines the location of

all other members in the hierarchy through yc,m = A5−myc,5 (yc,m = A6−myc,6) for R1 (R2). The
longest member in each hierarchy is constrained by yc,1/h � 0.4, thus prescribing the total number
of members, while A is chosen equal to the golden ratio, φ = 1.6. With respect to the modes’
wave-number content, we select the wavelength of the largest mode in one of the hierarchies to
be representative of an LSM, with kx1 = 1.8 (kx1 = 2) for R1 (R2). Its corresponding spanwise
wave number kz1 is chosen such that, given the scaling relationships λz ∼ yc and λx ∼ y2

c , the aspect
ratio condition (γ = kz/kx � 1) is satisfied throughout the rest of the hierarchy [43]. The wave
numbers of the outmost modes in the other two hierarchies are selected to be triadically consistent,
while being noninteger multiples of each other; geometric self-similarity then dictates the wave
numbers for the rest of the modes and their convection velocity is prescribed by their wall normal
location: cm = U (yc,m). Finally, given the choice of wave-number/frequency triplets, the projection
weights for the resulting response modes are selected separately and chosen such that the resulting
fluctuation intensity (u2

k) decreases logarithmically with y.

E. Attached eddy model (AEM)

A synthetic data set generated following the AEM is included in the analysis. The database
is set up following the configuration published in Eich et al. [31]. To summarize, the AEM flow
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fields are computed based on a packet of � eddies, which has been shown to both statistically [44]
and structurally represent a TBL [14]. A set of vortex rods that contain a Gaussian distribution of
vorticity about its core are used to construct the representative eddies. To compute the flow field,
Biot-Savart calculations are performed over the vortex rods. This process is then repeated for each
hierarchy of representative eddies in the field, here chosen to be six, which corresponds to a flow
field at Reτ = 3200. The domain size was chosen such the maximum of the Reynolds shear stress
is one and κ ≈ 0.4 [14].

III. PDF CONSTRUCTION

The PDF of the streamwise velocity, P (U ), is constructed using instantaneous velocity vectors
from either consecutive snapshots within time-resolved runs [TRPIV, R1, R2, Fig. 1(b)] or from
spatially overlapping regions of independent, non-time-resolved snapshots [SPIV1, SPIV2, SPIV3,
SPIV4, AEM, Fig. 1(a)]. For the latter, the long streamwise extent available allows the snapshots
to be divided in equidistant regions, for each of which a PDF is computed [solid black outlines
and sharp contours in Fig. 1(a)]. Spatial (and temporal) coherence is then provided by the PDFs
of consecutive overlapping regions in x [dashed outlines in Fig. 1(a)] with increasing x indicating
previous time instances. This overlap is chosen such that, assuming a single, uniform convection
velocity, the resulting temporal resolution of the PDFs is comparable between the snapshot and time-
resolved data sets. It should be noted here that temporal resolution is matched in inner units (dt+|PDF

in Table I), which allows for a better scaling analysis for the range of Reynolds numbers included,
making this the only difference from the analysis described in Ref. [3]. This is further ensured
by the choice of convection velocity used to transform space to time (Uc = 0.81U∞), primarily
chosen to correspond to the convection of a representative large-scale structure (see, for example,
Ref. [45]). One of the goals of the present paper is to identify to which extent such an assumption
affects the resulting PDF behavior. For the AEM, it should also be noted that employing a wall-
normal varying convection velocity (and periodic boundary conditions), as well as incorporating
spanwise meandering, as described in Eich et al. [31], only led to marginal changes in the metrics
presented here, while the overall trends remained the same. Constraints for the construction of
the PDF are imposed in both x and y in all data sets. With respect to x, the streamwise extent
used to construct the PDF is chosen such that the observed modal peaks in the PDF are well-
converged, without averaging out of the smallest modal peaks present in each frame. Following
Ref. [14], an optimal streamwise extent of L+

x |PDF = 2000, is chosen for all data sets. In the wall-
normal direction, all velocity vectors within the turbulent region are included; we only exclude
those belonging in the irrotational free stream (quiescent core) in external (internal) geometries. For
consistency and simplicity, the turbulent/nonturbulent interface is identified using the isocontour
lines of U = 0.95U∞ for all data sets, following Ref. [39]. We note that the use of other methods
such as a kinetic energy threshold [46] for the two experimental databases did not alter any of the
results or conclusions presented herein. It did, however, afford, a smoother free-stream identification
for the TRPIV data set compared to the abrupt drop of the high PDF values seen here [Figs. 2
and 6(a)], likely due to increased free-stream turbulence levels present in that flow (see also the
relevant discussion in Ref. [16]). Similar to the temporal resolution requirements discussed above,
comparable spatial resolution (in wall units) for the PDF construction is also ensured between data
sets (dx+|PDF in Table I) by undersampling the lower Reynolds number ones. The vectors contained
within these limits are then distributed in 67 bins for U ∈ [0,U∞] (of size approximately 0.4 ±
0.04Uτ ).

The resulting P (U, t) reveal interesting visual differences depending on the chosen scaling,
the Reynolds number of each data set, as well as the data-set type (experimental or synthetic).
Regarding experimental data sets, the use of a uniform convection velocity does not seem to affect
the resulting PDF patterns, while the temporal data set (TRPIV) is seen to result in slightly more
noisy fields (Fig. 2). It should be noted here that, these temporal patterns in P (U, t) are discussed on
the basis of variations in U∗(t ): U∗ = min(U |P (U, t ) > Pth) (see Fig. 3), following the procedure
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FIG. 1. Construction of P (U, t): (a) Spatial data (SPIV1, SPIV2, SPIV3, SPIV4, AEM), (b) temporal
data (TRPIV, R1, R2). In (a), the full spatial extent, Lx , is divided into regions of L+

x |PDF = 2000, while the
same extent is selected from the time-resolved snapshots in (b). To match the temporal resolution in (b), an
appropriate level of spatial overlap is used for each consecutive region in (a) (indicated with dashed lines) when
constructing the PDF, while also assuming a constant Uc = 0.81.

proposed in Ref. [3]. We are particularly interested in the temporal rate of transitions in U∗, defined
as the angle φ = tan−1(
U∗/
t ). The threshold Pth used for each of the data sets can be found in
Table I and for further details on how that choice influences the analysis, the reader is referred to
the relevant discussion in Ref. [3]. Returning to the data-set comparison (Fig. 2), the above defined
rate of transitions is seen to increase with Reynolds number when scaled in outer units, while better
agreement is observed when the temporal extent is matched in wall units. With respect to the data-set
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FIG. 2. Variation of P (U ) over time in increasing Reτ from top to bottom. Matching temporal extent in
outer (left) and inner (right) units. Black solid lines denote U∗ = min(U |P (U, t ) > Pth.

FIG. 3. An illustration of the transitions in P (U, t)–TRPIV, adapted from Ref. [3]. The identified φ+
(
U∗ > 0, light colors) and φ− (
U∗ < 0, dark colors) transitions of U∗ are shown on the left, with the
corresponding definitions on the detail on the right.
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FIG. 4. Probability density function and mean values of transition angles φ+ and φ−, in outer (a), (c) and
inner (b), (d) scaling (φ = tan−1(
U∗/
t )). SPIV is denoted by �, AEM by �, TRPIV by �, and R1 (R2) by
� (see also Table I). Colors of each transition angle as in Fig. 3 (with lighter shades indicating increasing Reτ ).

type, and before moving forward with a quantitative analysis of these features, from a purely visual
inspection, the two synthetic databases are able to reconstruct different aspects of the experimental
patterns. The AEM data set, given its broadband frequency input, allows some level of variation
in P (U, t) for a larger range of velocities compared to the resolvent framework data sets which
contain a preselected set of scales (particularly notable for velocities <0.6U∞). However, the largest
P (U, t) values are confined to a very narrow range around 0.95U∞ for the AEM and, although some
transitions to lower velocities are still observable and comparable in rate with the experimental data
sets, they are much less discernible. In contrast, the patterns from the two resolvent data sets are
more clearly formed and are also seen to qualitatively support the aforementioned Reynolds number
variation in terms of their temporal extent. These differences between the models, which will be
analyzed in more detail in the next sections, essentially reflect the relative lack of frequency content
for the chosen resolvent data sets and an incomplete instantaneous spatial/temporal organization
for the AEM.

In the quantitative analysis that follows, statistics of the angles φ describing the transitions in
P (U, t) are compared first, in all the available data sets, with φ+ indicating transitions to higher
velocities with increasing time (
U∗ > 0) and φ− transitions to lower ones (
U∗ < 0).

IV. RESULTS

A. Rate of temporal transitions

Both the PDF and the mean values of the transition angles exhibit fairly good collapse in inner
units for all data sets, especially for φ− [Figs. 4(b) and 4(d)], while a monotonic increase in both
angles is seen with Reynolds number in outer units [Figs. 4(a) and 4(c)], in line with the earlier
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FIG. 5. Conditionally averaged streamwise velocity fluctuations in increasing Reτ (from top to bottom) for
each type of transition, u|φ+ (left) and u|φ− (right) as shown schematically with symbols on top (to provide
spatially continuous structures from left to right in the contour plots, time increases from right to left for the
indicated transitions in U∗, following the convention from Ref. [3]).

observations from the P (U, t) fields (Fig. 2). In particular, results from all experimental data sets
indicate a very good collapse for both φ− and φ+ angles in inner units. The resolvent-based data sets
(R1, R2) indicate a more discrete range of values for the transition angles (especially noticeable in
outer normalization) due to the model’s discrete scale input. On the other hand, the AEM data set,
being broadband in frequency space, allows for a fuller range of the resulting transitional angles,
with only φ+ being slightly underestimated due to a narrower tail of the PDF [Fig. 4(b)]. Overall,
given the broad range of the input data used here, these metrics illustrate the robustness of the
observed patterns despite these discrepancies.

It has been previously shown that the transitions in the PDF of U discussed above were associated
with well-defined variations in the fluctuations, revealed through conditional averaging [3]. More
precisely, φ+ transitions (toward higher velocities) were shown to be associated with the passage of
an inclined low-speed structure followed by a high-speed one (Fig. 5, left), while the opposite was
true for φ− transitions (Fig. 5, right). Very similar behavior in the conditionally averaged fluctuation
fields was observed in the current study for all additional data sets. Regarding the experimental data
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sets, the use of a uniform convection velocity did not seem to affect the resulting structures in
either the phase or the amplitude of the observed patterns. For similar Reynolds numbers (SPIV3,
TRPIV), their inclination with respect to the horizontal as well as their vertical extent also compare
very well, however, they do seem to decrease with increasing Reynolds number (SPIV1, SPIV4).
The PDF threshold Pth has been shown to affect the wall normal location where the structures are
centered and, to some degree, their vertical extent and inclination [3]; here, the same threshold is
applied to all experimental data sets for consistency (see Table I), however, higher PDF values for
lower velocities are observed in general for higher Reynolds number data sets (see Fig. 2). As such,
the choice of a constant Pth for all data sets might be partly responsible for these differences with
the Reynolds number. On the other hand, for modeled data sets there are much more pronounced
disparities. As was already discussed in our previous work [3], the resolvent data sets are able to
replicate the phase change in the conditional structures observed in experiments, however, they are
very localized in y due to the discrete frequency input of the model. On the contrary, the AEM,
given its broadband frequency input, succeeds better in capturing a wider wall-normal extent for
the conditional fluctuating fields, however, the phase and, to a smaller extent, the geometry of
the structures exhibit differences from all other data sets. This is intriguing, given the success
of the model in statistically predicting the rate of these transitions (see Fig. 4). It is likely that
the reason for this discrepancy lies in the lack of clearly formed patterns in the PDF for the AEM,
where there is an almost monotonic decrease in the PDF values with velocity (Fig. 2). Tracing the
transitions of U∗ = min(U |P (U, t ) > Pth) in those cases might lead to correct overall transition rate
estimates but a mismatch in where these transitions occur in time, resulting in discrepancies when
fluctuating fields are then averaged over these snapshots. Overall, the robustness of these features is
clearly highlighted when assessing both snapshot and time-resolved PIV data, while the differences
observed in the models appears to be mostly from their own distinct inherent limitations.

B. Temporal coherence

As was mentioned above, the local peaks of P (U ) are indicative of the presence of UMZs in
the flow at a specific snapshot (see, for example, Fig. 1), a method that has been followed almost
universally for UMZ identification and statistical analysis of their characteristics (one notable
exception been the method described in Ref. [47]). When longer time (space) information is
available, the resulting P (U, t ) exhibits robust temporal patterns (Fig. 2), the rate of which was
quantified in the first part of this section. These transitions have also been indirectly linked to the
temporal variation in the number of UMZs (see the relevant discussion in Ref. [3]). Aside from
these transitions, however, time (space) information allows further analysis of UMZ characteristics
more directly. In particular, visual inspection of P (U, t ) reveals that an increase in Reynolds number
in outer scaling leads to a decrease in the temporal coherence of local PDF peaks (Fig. 2, left), an
observation also reflected in the resolvent data sets. On the other hand, temporal coherence of UMZs
is much less discernible in the AEM, where there is an almost monotonic decrease in the values of
P (U, t ) for decreasing velocity [especially obvious in the 3D representation of the morphology in
Fig. 6(d)]. The topic of temporal coherence has been partly addressed by Laskari et al. [16] who
observed that high-speed events, linked to a low number of UMZs, exhibited longer coherence than
low-speed ones, associated with multiple UMZs. In this paper, we follow a more targeted approach,
seeking to quantify the temporal coherence of UMZs for selected modal velocities, focusing on
Reynolds number scaling and individual model performance.

In all data sets, UMZs are identified as local peaks of P (U ) for each snapshot (see also Fig. 1); the
detection parameters are kept the same with some appropriate adjustments made for the modeling
databases due to their bias toward velocities closer to U∞, which lead to higher maximum PDF
values (also reflected in the choice of Pth, Table I). For a relevant discussion on this disparity see
Ref. [3], and for more details on the detection thresholds see Ref. [16]. Only peaks identified in at
least three consecutive snapshots (t ∼ 20+) are considered. The number of consecutive snapshots
for which a UMZ can be detected has previously been used as an indication of temporal coherence
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FIG. 6. 3D variation of P (U, t ) for experimental (top) and model datasets (bottom): TRPIV (a), SPIV3 (b),
R1 (c), AEM (d).

[16]. To avoid the discrete nature of this approach, here we introduce a different metric, based on the
3D peak morphology that also exploits the available temporal information more fully. Specifically,
the temporal extent, T (Um), of the time-coherent UMZ at a modal velocity Um, is defined as the
time for which the peak retains at least 85% of its maximum value (see Fig. 7 for an illustration
of the approach). The total drop-off percentage of the maximum peak value varies significantly
between peaks of different data sets and can be much greater than 85%; this threshold percentage,

FIG. 7. Illustration of the evolution of P (Um, tm ) (symbol), an instantaneous, time-coherent UMZ peak at
time tm and modal velocity Um, and its extent in time, T , calculated at 85% of the peak value.
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FIG. 8. (a) Illustration of multiple time-coherent UMZ peaks (symbols) overlaid on PU . Statistics of T (Um )
in what follows are calculated at 0.63 � Um/U∞ � 0.66, 0.72 � Um/U∞ � 0.75, and 0.81 � Um/U∞ � 0.84
(shaded regions). (b) Corresponding wall-normal locations for the selected velocity regions in (b), based on the
mean, U (here for TRPIV). Blue shaded region indicates the logarithmic region extent (3/

√
Reτ � y/δ � 0.2).

however, (identical for all data sets for consistency) is chosen because all identified peaks decrease
monotonically to at least 85% of their original value. As such, here we are interested in comparing
the time it takes for peaks to reach this threshold rather than the final drop-off level of their maximum
value. This definition of time coherence explicitly combines space and time information: at time tm,
a spatial extent L+

x |PDF = 2000 is used to construct P (U, tm) and identify P (Um, tm) as a local peak
at a modal velocity Um; the peak’s extent in time, T (Um), is then determined by the peak morphology
in the temporal axis. It follows that statistical analysis of the temporal coherence can be performed
for each modal velocity Um, according to the binning procedure followed for the construction of P
(see Sec. III). To improve convergence, however, since the resulting temporal coherence does not
vary significantly with Um, the statistical analysis for T (Um) is performed in bins of double the size
[0.03U∞, red shaded regions in Fig. 8(a)].

In what follows, we analyze the temporal coherence of modal velocity peaks belonging in three
representative bins which correspond (based on the mean velocity profile) to wall-normal locations
in the middle of the log region (3/

√
Reτ � y/δ � 0.2), as well as close to its lower and upper limits

[see Fig. 8(b)]. It should also be noted that for all subsequent results, a temporal filter (effective
resolution of dt+ = 32) was applied to all data sets. The scaling trends discussed below remained
largely unchanged; filtering mostly affected the time-resolved experimental data set (TRPIV) for
which P (U ) was more noisy (see also Fig. 2) and exhibited slightly lower values of temporal
coherence than all the rest. The filter size was selected such that the resulting temporal resolution
would be comparable to the spatial one (see Table I) and was the minimum above which the relative
values of T between data sets remained unchanged.

The conditionally averaged PDF values, preceding and following the identified UMZ peaks in
time, indicate that for all data sets, similar to the PDF transition rates, φ− and φ+, inner scaling is
successful in collapsing the resulting peak shapes—as far as their extent in time is considered (see
Fig. 9, right). As was mentioned earlier, however, the average level of drop-off of the maximum
peak value varies markedly between data sets without an apparent trend with respect to Reynolds
number scaling. It is interesting to note that time-resolved data sets (TRPIV, R1, and R2) mostly
exhibit higher drop-offs compared to the rest, especially for higher velocities, although the source
of this behavior is likely different for the two databases. For the synthetic data sets based on the
resolvent framework (R1, R2), the higher level of drop-off in well-defined peaks can be attributed
to the discrete scale input of the model: superposition of selected modes creates distinct modal
peaks in an otherwise monotonically varying PDF of the mean velocity. The sole exception to this
trend, in the data shown here, is data set R1 for 0.72 � Um/U∞ � 0.75 [dotted lines in Figs. 9(c)
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FIG. 9. Conditionally averaged PDF values with respect to time, 〈P̃ (Um, t )〉, for all data sets, normalised
with the maximum peak value, P (Um, tm ). Temporal axis in outer (left) and inner (right) scaling, for 0.63 �
Um/U∞ � 0.66 (a), (b); 0.72 � Um/U∞ � 0.75 (c), (d); and 0.81 � Um/U∞ � 0.84 (e), (f). Increasing Reτ is
denoted with lighter colors. Following Fig. 8(a), symbols denote the UMZ peaks at t = 0.

and 9(d)]; for both R1 and R2 data sets, however, this velocity range is at the lower edge, above
which P (U, t ) varies significantly (see also Fig. 2) and as such not as indicative or statistically
accurate. This confinement of significant PDF values in a limited velocity range is one of the main
limitations of the two resolvent-based data sets and is also apparent in the lack of any peaks present
at the lowest velocity range [0.63 � Um/U∞ � 0.66, Figs. 9(a) and 9(b)]. On the other hand, the
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high average drop-off level observed in the time-resolved experimental data set (TRPIV) when
compared to almost all other non-time-resolved ones (SPIV1, SPIV2, SPIV3, SPIV4, solid lines in
Fig. 9), regardless of Reynolds number, might be more indicative of differences due to space-time
conversion—a process which was not observed to impose any significant influence on the metrics
discussed up until this point. As mentioned in Sec. III, the time-resolved data set did exhibit overall
higher P (U ) values compared to its snapshot counterpart at comparable Reynolds numbers [Figs. 2,
6(a), and 6(b)], attributed to the higher free-stream noise present; however, given the normalization
of the peak magnitude here (the drop-off is quantified relative to the maximum peak value), this is
not likely to influence the observed disparity between low- and high-speed data sets. Finally, the
AEM data set (dot-dash lines in Fig. 9) exhibits progressively worse collapse of the conditional
peak shape with increasing velocity, with larger temporal coherence and very low drop-off levels,
compared to the rest of the data sets.

These findings follow directly from the considerable disparity observed in the P (U, t ) contours
of the data set [Figs. 2 and 6(d)], where the temporal patterns of the PDF were broader and
less prominent. The relative lack of instantaneous information in the construction of the AEM
dataset (eddies randomly placed in the spatial domain) can partly explain these deviations from
the experimentally observed behavior. Another likely culprit of such discrepancies, however, is the
much larger number of vectors representative of higher velocities (as U∞ is approached) relative to
the other data sets, inherent in the construction of the AEM: packets of nested eddies superimposed
on an otherwise irrotational frees tream and inducing a corresponding superposition of velocity
deficits, lead to a much denser eddy population closer to the wall than closer to the free stream. As
such, the largest eddies (with the lowest velocity deficits) occupy an increasingly large proportion of
the flow field, which is then characterized by velocities close to U∞ and leads to the aforementioned
almost monotonic increase of P (U, t ) with increasing velocity.

Looking more closely at the statistics of the temporal coherence, T , the same Reynolds number
scaling for inner and outer normalization as the one observed for the conditionally averaged
peak shape is also observed here (Figs. 10 and 11). More specifically, the PDF of T (Um) for
all experimental data sets and all three representative velocity regions for Um collapses in inner
units (Fig. 10, right). Due to the aforementioned limitation in the two lowest velocity ranges for
R1 and R2, it is only for the highest velocity band [0.81 � Um/U∞ � 0.84, Fig. 10(f)] that the
two resolvent-based data sets also collapse on the experimental ones, while the lack of statistical
convergence is clear for 0.72 � Um/U∞ � 0.75 [Fig. 10(d)], and the lack of any peaks present at
lower velocities can be seen for 0.63 � Um/U∞ � 0.66 [Fig. 10(b)]. On the other hand, the PDF
of T (Um) based on the AEM data set is seen to deviate from all other data sets and for all three
Um regions, leaning toward higher values on average and a slightly more limited range overall. The
latter is an interesting contrast to the broader shape of P (T +) for the R1 and R2 data sets (at the
highest velocity range). A limited frequency content in the construction of the resolvent data sets
was seen to be reflected in a limited range for the PDF transitions (φ+ and φ−) when compared
to the wider range of values from the broadband frequency content in AEM (Fig. 4); however, the
relative lack of temporal information on the latter that is inherently present in the former leads to
the opposite picture emerging for the two databases in the PDF of temporal coherence.

These observations are further supported in the scaling of the mean values of T which, for most
data sets, is seen to approximate a value of 〈T +〉 = 100 ± 50 (Fig. 11, right). Values for R1 and
R2 are seen to deviate slightly from this when 0.72 � Um/U∞ � 0.75 and no data is available for
0.63 � Um/U∞ � 0.66. In contrast, for the AEM, agreement is only found for this lowest velocity
range while higher values of 〈T +〉 ≈ 130 are predicted for the higher velocities. In line with the
observations for P (T ), Reynolds number scaling for T is also reflected in the standard deviation
around the mean (error bars in Fig. 11), which is seen to decrease with Reynolds number in outer
units (Fig. 11, left), while it is almost constant for all data sets (∼50+) in inner scaling. These
trends also delineate more clearly the improved predictions for R1 and R2 in the highest velocity
range (indicated by a collapse with the experimental estimate of the standard deviation around 〈T 〉
for 0.81 � Um/U∞ � 0.84). With respect to the experimental data sets, it should be noted that,

104603-15



LASKARI, DE SILVA, HUTCHINS, AND MCKEON

FIG. 10. PDF of T (Um ), as defined in Fig. 7. Outer (left) and inner (right) scaling for 0.63 � Um/U∞ �
0.66 (a), (b); 0.72 � Um/U∞ � 0.75 (c), (d); and 0.81 � Um/U∞ � 0.84 (e), (f). Increasing Reτ is denoted
with lighter colors.

aside from deviations in the peak shape—and particularly the drop-off level of the maximum values
discussed above (Fig. 9)—the use of a uniform convection velocity for the comparison between
time-resolved and snapshot data was not seen to influence any of the scaling results for T presented
here.

The overall behavior of 〈T 〉 with increasing Um accentuates the discrepancies discussed above
between the models, while it also indicates the slight increase of temporal coherence for higher
modal velocities (Fig. 12; a similar observation was made by Laskari et al. [16]), although care
should be taken when comparing the two studies, given the different definitions of temporal
coherence followed in each.

V. SUMMARY AND DISCUSSION

From the above analysis, the robustness of the observed patterns and UMZ peak morphology in
time, as well as the success of inner scaling in sufficiently collapsing most relevant metrics, are the
most compelling conclusions. Despite observed discrepancies, the overall agreement between data
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FIG. 11. Variation of 〈T (Um )〉 with Reτ in outer (left) and inner (right) scaling, for 0.63 � Um/U∞ � 0.66
(a), (b); 0.72 � Um/U∞ � 0.75 (c), (d); and 0.81 � Um/U∞ � 0.84 (e), (f). Error bars equal one standard
deviation.

FIG. 12. Variation of 〈T 〉 with Um in outer (a) and inner (b) scaling. Increasing Reτ is denoted with lighter
colours.
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sets is notable in both mean values and distributions, especially given the variety on input data and
the effort made to ensure consistency of the PDF construction process and analysis.

With respect to scaling, it should be noted again here that we focus entirely on structures
anchored within the logarithmic region for all the modeling data sets, where we expect specific
scaling relationships based on self-similarity and we can ensure the most equitable comparison
between the models. The preceding analysis on the temporal characteristics of the streamwise
velocity PDF, including the full-scale experimental data sets, supports inner normalization for a
collapse of most metrics. While it seems that ruling out outer normalization is certainly justifiable,
it should be stressed that the range of Reynolds numbers available might not be sufficient for a
definite conclusion on whether mixed scaling would be more suitable than inner scaling tested here.
The highest available Reynolds number belongs to a synthetic data set (R2), which was constructed
using a particularly discrete frequency input, localized in the logarithmic region. As such, the range
of Reynolds numbers in the available data sets certainly allows assessment of the two models in
replicating the experimental features (and to some extent the observed scaling), however, full-scale
experimental data sets with a wider Reynolds number range would be required to fully assess scaling
behavior.

The experimental data sets indicated only marginal discrepancies due to the space-time con-
version, even considering a uniform convection velocity in y. A higher drop-off level of the UMZ
maximum peak value for the time-resolved data sets (Fig. 9) was the only metric where appreciable
variation was observed within the different experimental databases, however, given also the lack
of any clear Reynolds number scaling for this metric, more in-depth analysis would be required
for further conclusions on the observed behavior. Regarding the selection of convection velocity
itself, as mentioned in Sec. III, a wall-normal dependence for Uc was also tested for the AEM data
set and the differences in the metrics presented here were minimal. For that particular evaluation,
the PDF construction process for the AEM was similar to that for the time-resolved data sets (see
Fig. 1), with periodic boundary conditions. For consistency, all data sets were also down-sampled
to match the resulting temporal resolution (dt+ ≈ 32) of the AEM, allowing for an additional
evaluation of potential resolution effects in the trends discussed here; all effects were again shown
to be inconsequential and the main trends unaltered. For completeness, different uniform convection
velocities were also tested for both SPIV and AEM data sets, again with only marginal differences
observed. Besides space-time conversion, the experimental databases used here (SPIV) further
highlighted that a different flow geometry (channel or external boundary layer) also has negligible
influence on the resulting characteristics. This observation further cements our conclusions with
respect to the model data sets (outlined in the following paragraph); it is the model construction and
input selection rather than the flow geometry that leads to the discrepancies between the resolvent
(channel) and the AEM (TBL) datasets.

Finally, with respect to model comparisons, different benefits and drawbacks of each were
displayed, although the resulting conclusions presented herein apply exclusively on reproducing
the temporal characteristics of P (U, t ) and are not necessarily representative of global model
performance. Synthetic data sets based on the resolvent framework have been shown to successfully
replicate the characteristics of the PDF transitions [3]. In the present paper, these findings were
extended to show that for modal velocities at the outer edge of the log region, the resulting temporal
coherence of UMZ peaks and Reynolds number scaling was also in good agreement with the
experimentally observed behaviours. On the other hand, these data sets were limited by the discrete
frequency input, inherent in the model construction, reflected in a restriction of PDF patterns within
a narrow range of velocities (see, for example, Fig. 2) and a resulting sparser value distribution for
the transition rates φ− and φ+ [Fig. 4(a)] and a shorter wall-normal extent in the conditionally
averaged fluctuations (Fig. 5); temporal coherence of UMZ peaks also quickly deteriorated for
velocities closer to the wall and very close to the free stream (Fig. 12). Regarding the synthetic data
set based on the AEM, the broadband frequency input of the model allowed a much broader range of
velocities with substantial PDF activity compared to the resolvent data sets, reflected in the smoother
distribution of transition rates φ− and φ+ and the wider wall-normal extent of the conditionally
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averaged fluctuating velocity. However, the instantaneous structure details encompassed in the AEM
also resulted in significant discrepancies in the temporal behavior of the model when compared to
experimental data, with respect to both the phase and the geometry of the conditional structures
(Fig. 5), which could be traced back to a much less prominent peak behavior in P (U, t ) [Figs. 2
and 6(d)], with PDF values almost monotonically decreasing with decreasing velocity. This was
also reflected in the disparities observed in the temporal coherence of the UMZ peaks for the
AEM, which was shown to be larger on average and with a more discrete distribution of values
than either the experimental or the resolvent-based data sets. Aside from the lack of a well-defined
instantaneous structure, another potential explanation for the observed discrepancies in the AEM is
an increase in the number of vectors belonging to higher velocities: The largest eddies of the nested
packets occupy a much larger proportion of the flow field, averaging out larger velocity deficits from
smaller eddies which have a more limited wall-normal extent.

VI. CONCLUSIONS

The temporal characteristics of the PDF of the streamwise velocity were evaluated in a variety
of experimental and synthetic data sets of wall-bounded flows, the latter based on the attached eddy
model (AEM [2]) and the resolvent framework [1]. The effects of Reynolds number, availability of
temporal information, and specifics of model construction were assessed. The temporal patterns in
P (U, t ), first analyzed by Laskari and McKeon [3], were seen to be robust and repeatable in all data
sets. The rate of transitions, φ, and the temporal coherence of UMZ peaks are both found to scale
in inner units. The use of a uniform convection velocity in space-to-time transformations as well
as the specific flow geometry (internal versus external) both had a negligible effect in most metrics
analyzed here. Overall, the two synthetic data sets were able to replicate many of the experimentally
observed behaviors, with a narrow frequency input and lack of instantaneous structural details being
the main drawbacks for the resolvent and AEM-based data sets, respectively.
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