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Abstract—Predictive analysis of post fault system dynamic
behavior can be a vital resource for better control and reliability
improvement of the overall system. This article presents meth-
ods for predictive analysis of Fault Induced Dynamic Voltage
Recovery (FIDVR) event using a faster than real-time digital
replica of a power system. The methods proposed include use of
quick algorithms for detection of FIDVR events and metrics for
predicting dynamic behavior of the power system impacted by the
detected FIDVR event. We show that, using a digital faster than
real-time replica, the FIDVR event can be detected in required
time and that the transient voltage deviation index (TVDI) can
be quickly calculated.

Keywords – Fault Induced Dynamic Voltage Recovery
(FIDVR), Phasor Measurement Unit (PMU), Short-Term Volt-
age Instability (STVI), Voltage Stability Indices (VSI), Faster
Than Real-Time Digital Replica (FTRTDR), Transient Voltage
Deviation Index (TVDI).

I. INTRODUCTION

Modern power systems are operating close to limits with the
increased penetration of renewable energy resources and grow-
ing demand for electricity. Intelligent online dynamic security
assessment methods play a pivotal role in the operation of
such systems. Short-Term Voltage Instability (STVI) detection
is one such method for online dynamic security assessment.
The STVI phenomena, e.g. FIDVR, occurs in these systems
with increased penetration of induction motors and electronic
devices. The time frame of its occurrence is in the order
of a few seconds. Hence, STVI is a growing concern of a
power system operator, who requires effective methods for its
assessment within a very short timescale.

Conventional voltage stability assessment is mostly based
on static methods that typically use the static power flow
equations. Such an approach has proved adequate for effective
monitoring of the long term voltage stability of the power sys-
tems and many Voltage Stability Indices (VSI) are developed
for this propose [1]. A few recent works in literature have
addressed the problem of monitoring STVI using methods
such as hierarchical intelligent systems [2], a synchrophasor
based short-term voltage stability indicator [3] and a time
series shapelet classification based method [4]. However most
of these indices are less adequate for online monitoring of
STVI and only a very few address the prediction of it.

For the mitigation of STVI problems such as FIDVR using
demand side management solutions, it is of utmost importance
to have a predictive assessment of the phenomenon. Load
shedding is a promising demand side management solution
to the FIDVR mitigation problem and few recent works in the
literature address this problem using methods such as under
voltage load shedding using kinetic energy [5] and under speed
load shedding [6]. An FIDVR phenomenon [7] is usually
triggered by severe faults such as transmission line outage,
short circuit in a critical load and other equipment damages
or accidents. If the fault clearance exceeds more than 3 cycles,
the corresponding voltage sag induces stalling behavior in
induction motors which leads to delayed voltage recovery oc-
curring in a time frame of few seconds, most often less than 30
seconds. Hence, it is important to have a mechanism to detect
the faults triggering the FIDVR event. Many frameworks have
been developed in literature such as synchro-measurement
application development platform [8], GridOPTICS [9] which
serves as a tool for Phasor Measurement Unit (PMU) data
management and can be used with intelligent algorithms as
a mechanism for fault detection. Once the fault duration that
could initiate an FIDVR event is detected we can simulate
an FIDVR phenomenon in a time domain simulation tool and
analyse the impact of the post fault dynamic behavior and how
it affects the system stability. The main challenge of using
time domain simulation as online stability assessment tool is
the computational time required for the same. Many recent
references [10]–[12] have shown the possibility of having
faster than real-time dynamic simulations with some using
custom made software solutions [10], [11] and others using
commercial software solutions [12]. The advantages of having
commercial software is that it enables accurate post fault
dynamic analysis in the most up-to-date system models that
are maintained by the system operators. The work presented
in this paper combines the advantages of a new framework
for PMU data management and faster than real-time dynamic
simulations.

In this paper, we propose the use of a digital replica of a
power system that can accurately and efficiently model the
system dynamics and predict the FIDVR event. The main
benefit of using digital replica [13], [14] is that the control
action for the real system can be implemented based on faster



than real-time impact analysis on the digital replica. The key
feature of this approach is fast calculation of TVDI, which
is proposed as a metric to predict an FIDVR event and as
means for quantifying the impact of this event on reliable
operation of the power system. The underlying methodology
that allows fast impact and stability assessment is the ultra-
fast time domain simulation of an accurate system model.
The present work uses Python API for PowerFactory software
to obtain faster than real-time capability. The high level of
details that can be achieved using the PowerFactory models for
system simulation allow us to accurately describe the FIDVR
event propagation and ultra fast simulation allows us to take
action fast enough to prevent possible damage from the FIDVR
event.

The rest of the article is divided into three main sections.
Section II gives the basic description of the faster than
real-time digital replica together with subsections explaining
the detection and prediction algorithm used for the prediction
of an FIDVR event. Section III presents the simulation results
with the focus on the detection and prediction algorithm.
Section IV concludes the paper with a discussion and future
scope of the work.

II. FASTER THAN REAL-TIME DIGITAL REPLICA

A faster than real-time digital replica (FTRTDR), as shown
in Fig. 1, is proposed using a Python based master algorithm.
In the proposed architecture, the real system supplies measure-
ment points to the FTRTDR.

Fig. 1: Architecture of the FTRTDR

The master algorithm contains detection and prediction
algorithms for fault detection and post fault dynamic behavior
prediction. The main purpose of the detection algorithm for
the present study is to detect topological changes that lead to
the occurrence of STVI event and hence detection algorithms
should be computationally efficient to enable detection in the
minimum possible time. The prediction algorithm is activated
with the detection of an event by the detection algorithm.
The prediction algorithm can start a faster than real time,
time domain simulation of the test network. This simulation
provides the post fault dynamic behavior information of the

test system in faster than real-time corresponding to the
detected fault. The prediction algorithm then processes this
post fault dynamic behavior information and hence make better
prediction on the system behavior to provide control actions
to the real system. The following subsections further explain
the detection and prediction algorithms used.

1) Detection Algorithm: The main purpose of the detection
algorithm is to detect any topological changes that can lead
to the occurrence of an FIVDR event from the PMU data
infeed. In the present study, we confine ourselves to detection
of faults such as line outage fault and three-phase short circuit
fault. Our focus is to detect the time of occurrence of a fault,
which is of utmost importance as it determines the post fault
dynamic behavior of FIDVR event in a power system. We use
the Quickest Change Detection (QCD) using the Cumulative
Sum (CuSum) algorithm developed in [16] as our detection
algorithm. The sequence of statistic of each line in a network
is computed as in [16] as,

W(m,n)[k + 1] =

(
W(m,n)[k] + log

fσ(m,n)(∆θ[k + 1])

f0(∆θ[k + 1])

)+

(1)
where W(m,n)[0] = 0, (m,n) denotes to line connecting bus
m and bus n in a transmission network and k denotes the
kth measurement sample. The second term of the sum in the
equation relates to the determination of log likelihood ratio
with respect to the fault. The scalability of the QCD based
detection method is well explored in [16] with systems as big
as IEEE 118-bus test system, and hence, this paper does not
focus much on exploring the same.

2) Prediction Algorithm: The prediction algorithm consists
of the following steps:

• Start the faster than real-time time domain simulation
with the latest topological change detected using the
detection algorithm.

• Process the data in the ElmRes object and calculate the
chosen metric values. For the present study, we use the
Transient Voltage Deviation Index (TVDI) developed in
[2] as our metric. The TVDI is calculated as,

TV DIi,t =

{ |Vi,t−Vi,0|
Vi,0

, if
|Vi,t−Vi,0|

Vi,0
≤ µ

0, otherwise
(2)

where Vi,t denotes the voltage magnitude of bus i at
time t, which is obtained from the faster than real-time
time domain simulation, and µ is the threshold to define
unacceptable voltage deviation level, which is set as 20%
for the present study.

• Use this metric to choose the best corrective action (e.g.
the most appropriate UVLS scheme),

• Communicate the control actions to the equipment in the
field (e.g. voltage relay).

(x)+ = x if x ≥ 0, otherwise (x)+ = 0



Fig. 2: Timing diagram of FTRTDR with three levels: 1) Real
system (real-time measurements), 2) Detection and prediction
in the master algorithm, and 3) PowerFactory replica simula-
tion results

3) Implementation: To validate the FTRTDR concept, the
real system is represented with an ElectroMagnetic Transient
(EMT) simulation of the test network simulated in the Real-
Time Digital Simulator (RTDS) with RSCAD software. The
PMUs are implementated using the soft-PMU models in the
RSCAD software and output of which is transferred to the
master algorithm via TCP/IP socket connection. This setup
emulates the in-feed of measurement data to the control room.
Once the FTRTDR is deployed in the field such setup can be
replaced by actual on-line stream of measurement data. The
measurement data considered for the present study includes
magnitudes of voltages and currents, together with phase
angles and frequency.

The faster than real time, time domain simulation of the test
network is done using Digsilent PowerFactory software.The
simulated test network model is an RMS/phasor model and it
is re-configurable to different post fault scenarios. The faster
than real time, time domain simulation is possible by running
the PowerFactory software in engine mode, i.e. the Python
API based execution of the simulation runs. The simulation
results are stored as an ElmRes object [17], which consists of
values of all the variables monitored during the simulation in
a tabular form as time series data. The number of monitored
variables plays a crucial role in the performance of the digital
replica as the PowerFactory software takes additional time to
process and store them.

Fig. 2 illustrates the timing diagram of the FTRTDR.
The first part of the diagram represents dynamic behavior
of the real system in real-time. The second part represent
the operation of master algorithm and the third part shows
the simulated results in PowerFactory. The master algorithm
receives measurement data as data samples at a particular
sampling rate for a particular time window (t2 − t1). For the
present study this time window is chosen as 1 second and
sampling rate is chosen as 60 samples per second which is
a practically possible data sampling rate using PMUs. The
detection algorithm executes at the end of every time window

with the time taken for detection of a event represent as Td.
Once an event is detected, the prediction algorithm executes a
faster than real-time PowerFactory simulation in time Tp. The
simulation result over the time Tp corresponds to the dynamic
behavior of the real system from time t1 to tn. Thus if the
time Tp is short enough, the simulation results can be used for
the prediction of the post fault dynamic behavior of the real
system.

All simulations (except RTDS) are run from a personal
computer (DELL i7, 2.6 GHz(4 CPU’s), 8 GB RAM).
The RMS simulation model takes the total of 3.07sec in a
IEEE 9-bus system considered. The paper [18] discusses the
scalability of the proposed method for different test systems.
It further shows that the proper selection of the factors such
as type of simulation, step-size and the number of monitored
variables of PowerFactory simulation model enables the
possibility of having a faster than real-time PowerFactory
simulation.

III. SIMULATION RESULTS

This section is divided into three subsections, the first
subsection explains the short term instability event modeling,
the second section explains the results of implementation of
QCD as the detection algorithm and third section explains the
results of prediction algorithm implementation using the TVSI
index. The IEEE 9-bus system is used as the test system in this
paper. The Fig. 3 shows the PMU locations in the test system
and this system is simulated in RTDS as the representation of
the real world.

Fig. 3: IEEE 9-bus system with PMU

A. Modeling of FIDVR event

Here we explain how the FIDVR event is added in the IEEE
9-bus system. Load at Bus 5 is replaced with the composite
load model as shown in Fig. 4. The FIDVR event is primarily
caused by the composite load model in response to the three-
phase fault that is not cleared in less than 3 cycles. The CLM
model is created in resemblance to the model from [20] and
the parameters of different components are mostly obtained
from [21]. Some parameters are modified for the sake of
better illustration of the FIDVR behavior. The Fig. 5 shows
an FIDVR event in IEEE 9-bus simulated using PowerFactory



Fig. 4: Composite load model as specified in [20]

software for 5 seconds. The FIDVR event is triggered by short
circuit happening in the bus 5 at 0.2 seconds and cleared in
0.3 seconds. It can be noticed from the Fig. 5 that the post
fault dynamic voltage of bus 5 has severe deviation.

Fig. 5: Bus voltages of IEEE 9-bus system during an FIDVR
event

B. Detection algorithm Implementation

This section explains how the QCD algorithm [16] is used
as the detection algorithm for the detection of two events
namely the outage of line and a three-phase short circuit event.
QCD also helps in determening the duration of events. The
QCD algorithm uses the angle values as input and for the
present study we have considered infeed data sample rates of
30 samples per second and 60 samples per second. First the
sequence of statistics W(m,n) for each line (m,n) is calculated
for a period of one second and then the variations in the
slope values are used to detect the existence of an event
and its duration. The Fig. 6 shows outage of line event with
outage of line (5, 7) happening in 0.2 seconds followed by its
reconnection happening after 0.4 seconds. The Fig. 6a shows
the angle values corresponding to the line outage and second
part shows the W(m,n) value calculated.

The detection algorithm can detect the event by processing
the slope values of W(m,n) computed for the entire time-
window. It can be noted from fig. 6b that the slope values
of W(5,7) is highest during the initial occurrence of the line
outage at 0.2 seconds and during the reconnection at 0.4
seconds. Thus a fault happening can be detected and isolated
as the outage of line with corresponding duration of occurrence
analyzing the slope values of W(m,n).

(a) Measured angle values.

(b) W(m,n) values calculated.

Fig. 6: Outage of line (5,7).

The Fig. 7 corresponds to a three-phase short circuit event
occurring at Bus 5 at 0.2 seconds and cleared at 0.3 seconds.
The Fig. 7a shows the angle values corresponding to the three-
phase short circuit event and second part shows the W(m,n)

value calculated. In the case of a three-phase short circuit



event occurring at a bus, the slope of W(m,n) of the lines
connected to that bus will be the highest during the fault time
and the time of fault clearance. It can be noted from fig. 7b
that by processing the values of W(4,5) and W(5,7) computed
for the entire time-window, the detection algorithm can detect
the event with the duration of its occurrence.

(a) Measured angle values.

(b) W(m,n) values calculated.

Fig. 7: Three-phase short circuit in Bus 5.

The time taken for the detection algorithm execution de-
pends on the sampling rate and time window considered. For
the present study the time window considered is one second.
It is noted that the time taken for execution of detection
algorithm is 0.0312 seconds for the sampling rate of 30
samples per second and 0.0467 seconds for the sampling rate
of 60 samples per second by using the personal computer
specification explained in Section II. The time taken for execu-
tion of detection algorithm should be less than the time taken
to receive one data sample to make sure every sample gets

included in the on-the-fly-execution of the detection algorithm.
This is possible if the sampling rate of 30 samples per second
is used. In such case, all samples are included in the detection
algorithm. To manage the detection with the sampling rate
of 60 samples per second or more, a system with higher
computational power is needed.

C. Prediction algorithm Implementation

This section illustrates how the prediction algorithm uses
faster than real-time simulation results along with fault du-
ration information to predict the impact of an FIDVR event.
Since a three-phase short circuit fault at Bus 5 is longer than
60 milliseconds (3 cycles), as shown in Fig. 7, it triggers
an FIDVR event. Once the event is detected, the prediction
algorithm starts the simulation of 5 seconds of the same event
in PowerFactory model. The results are retrieved as voltage
values corresponding to bus affected with the three-phase short
circuit fault. The Fig. 8 shows the 5 second simulation results
for the voltage of Bus 5 for different three-phase short circuit
fault durations in the PowerFactory model. The Fig. 9 shows
TVDI value computed corresponding to the voltage values
in the first part. The final value of TVDI after a 5 second
simulation can be used as a metric to analyze the impact of the
FIDVR event and to determine the appropriate control action
such an under voltage load shedding scheme.

Fig. 8: Bus 5 voltage for FIDVR events with different fault
durations.

For the test system modeled in PowerFactory with all the
composite load models, the time taken for initialization of
the simulator is 3.05 seconds and the time take for dynamic
RMS simulation is 1.17 seconds. If the initialization of the
simulator is done ahead of time, then the time taken for the
dynamic simulation is short enough to be able to compute the
TVDI value much faster. As shown is [19], the time taken for
tripping of loads in a GOOSE message based load shedding is
in the range of 67-100 milliseconds. Taking 100 milliseconds



as the upper bound, the time passed from event detection to
load shedding is within 1.27 seconds from the occurrence of
the fault in the real system. Thus the particular FIDVR event
can be detected and corresponding UVLS scheme can be
implemented in the real system in the order of seconds from
the actual occurrence of the fault.

Fig. 9: TVDI calculation for FIDVR events with different fault
durations.

IV. CONCLUSION AND FUTURE WORK

The paper presents a faster than real-time digital replica
that can be used a tool to detect an FIDVR event and to
predict its impact on the system transient behavior. Detection
for an FIDVR event is done using the QCD algorithm, which
is used to detect the three-phase short circuit fault with fault
duration greater than three cycles and this can be seen in
fig. 7b. The fig. 9 illustrate how the TVDI value calculated
can be used as a metric to evaluate the impact of the FIDVR
event.

To improve the methodology even further, we look at how
the TVDI index value calculation can be used to propose
better under voltage load shedding schemes for the mitigation
of FIDVR event detected.
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