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Advancements in machine learning have sparked significant interest in designing mechanical metamaterials,
i.e., materials that derive their properties from their inherent microstructure rather than just their constituent
material. We propose a data-driven exploration of the design space of growth-based cellular metamaterials
based on star-shaped distances. These two-dimensional metamaterials are based on periodically-repeating unit
cells consisting of material and void patterns with non-trivial geometries. Machine learning models exploiting
large datasets are then employed to inverse design growth-based metamaterials for tailored anisotropic
stiffness. Firstly, a forward model is created to bypass the growth and homogenization process and accurately

predict the mechanical properties given a finite set of design parameters. Secondly, an inverse model is used
to invert the structure-property maps and enable the accurate prediction of designs for a given anisotropic
stiffness query. We successfully demonstrate the frameworks’ generalization capabilities by inverse designing
for stiffness properties chosen from outside the domain of the design space.

1. Introduction

With the ever-improving manufacturing capabilities and compu-
tational power, mechanical metamaterials (Kadic et al., 2013) are
pushing the boundaries of exhibiting exotic or tailored properties.
What started with the search for auxetic behavior (negative Poisson’s
ratio) (Lakes, 1987; Hengsbach and Lantada, 2014; Grima and Evans,
2000; Imbalzano et al., 2016) has now led the way to designer meta-
materials with high strength-to-weight ratio (Zheng et al., 2014; Meza
et al., 2014), high energy absorption (Bauer et al., 2021; Wu et al.,
2022), anisotropic stiffness tailoring (such as for patient-specific bone
implants) (Kumar et al., 2020; Bastek et al., 2022; Zheng et al., 2021;
Jiang et al., 2021; Amorim et al., 2019), mechanical cloaking (Wang
et al., 2022), prescribed failure loads (Injeti et al., 2019) and more.
Usually, these metamaterials are constructed by tessellating unit cells
or lattices in a periodic fashion. While a lot of research has been
dedicated to the design of mechanical metamaterials (often as networks
of trusses, plates, and shells), most designs are fundamentally based
on a few ad hoc unit cells identified over the years (e.g., by mimick-
ing crystal lattices) and hardly follow any design convention. Lately,
unit cells based on irregular patterns (Kumar et al., 2020; Liu et al.,
2022; Martinez et al., 2019; Martinez, 2021) are attracting interest as
they enable a much larger and seamless design and property space.

* Corresponding author.
E-mail address: Sid.Kumar@tudelft.nl (S. Kumar).
1 Equal contributions.

Recently, Martinez et al. (2019) presented a unique design space of
metamaterials using a growth algorithm governed by a star-shaped
distance. It offers a continuous, high-dimensional, but compact design
representation (as opposed to combinatorial design spaces (Panetta
et al., 2015; Schumacher et al., 2015) which are computationally chal-
lenging) and a vast space of attainable effective mechanical properties
such as tunable anisotropic stiffness and auxeticity. The method was
further extended in Martinez (2021) to allow for varying thickness of
the solid phase to expand the space of possible cellular geometries.
However, designing intricate unit cells for metamaterials is not a
trivial task, as the designs are often described by highly unintuitive
parameterization. Hence, before the introduction of machine learn-
ing (ML) to the mechanics of materials, metamaterial designs were
often explored in a trial-and-error fashion, i.e., iteratively extracting
the effective mechanical properties of several designs using forward
simulations (e.g., numerical homogenization) until the target properties
have been achieved. Each simulation is often computationally expen-
sive, which can severely limit the exploration of the design space.’
Data-driven and ML methods have increasingly overtaken this rather
inefficient way of design optimization. Neural networks (NN) (LeCun
et al., 2015) — a class of ML methods — can theoretically approximate
any arbitrarily complex mapping, given a sufficient amount of train-
ing data (Cybenko, 1989). Leveraging modern computing hardware,

2 While topology optimization (Sigmund and Maute, 2013) has stepped up to the challenge of designing structures with tailored properties, the
pixel-/voxel-based approach therein is not always applicable to metamaterials with complex design parameterizations.
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NNs can serve as computationally efficient surrogates for expensive
mechanics simulations (Kumar and Kochmann, 2022). These powerful
capabilities have enabled orders of magnitude of acceleration for the
design of, e.g., pixelated composites (Gu et al., 2018a,b; Yang et al.,
2021; Wang et al., 2022, 2020), kirigami-based materials (Alderete
et al.,, 2022; Hanakata et al., 2020; Liu et al., 2021), truss lattices
in the two- (Wilt et al., 2020; He et al., 2022; Maurizi et al., 2022;
Ma et al., 2020) and three-dimensional space (Bastek et al., 2022;
Lee et al., 2022), spinodoid metamaterials (Kumar et al., 2020; Zheng
et al.,, 2021), and triply-periodic minimal surface-based metamateri-
als (Meyer et al., 2022; Lu and Wang, 2022). The design process is
often a combination of a NN (as a surrogate of the forward simulation)
embedded inside a classical design optimization framework (Gu et al.,
2018b; Kollmann et al., 2020; Shin et al., 2022; Lee et al., 2022). Note
that finding an optimal metamaterial design is an ill-posed problem, as
several designs may exhibit similar mechanical behavior. Consequently,
the optimization-based methods are sensitive to the initial guess and
require several runs to avoid producing suboptimal local minima. In
contrast, the idea of using an NN-based inverse framework, i.e., directly
mapping the properties back to the design parameters, has only recently
gained attention. Kumar et al. (2020) and Bastek et al. (2022) proposed
using a second NN to map the properties back to the structures while
eliminating the ill-posedness of inverse design by using a custom loss
function. Here, the need for an optimization process is bypassed, and
designs are efficiently obtained given a property query. The inverse
model can be viewed as an optimizer for all conceivable inverse prob-
lems by analyzing the entire property space via a dataset, enabling a
comprehensive assessment of the property space and an effective and
efficient solution across a wide range of design scenarios. We take
inspiration from these works and develop a model for the inverse design
of growth-based cellular metamaterials.

In the following, we present an ML framework for inverse designing
cellular metamaterials given by a growth process parameterized with
two different star-shaped sets. In Section 2, we introduce the geometry
generation strategy, followed by the homogenization method used to
extract its effective mechanical properties. Section 3 describes the
machine learning-based inverse design framework. In Section 4, we
deploy the trained models to inverse design for a range of different
anisotropic stiffness queries, as well as for properties that stem from
microstructures outside the design space of our growth-based cellular
metamaterials. Finally, we conclude our findings in Section 5.

2. Growth-based cellular metamaterials
2.1. Growth-process based design space

We consider the discrete growth process algorithm presented by
Martinez (2021) to generate the cellular materials. The algorithm out-
puts a two-dimensional image consisting of periodically tessellated unit
cells with a solid and void phase distribution. We consider square-
shaped unit cells of both size and resolution equal to K x K — each with
a nucleus at its center. A star shape grows from the nucleus of all the
unit cells simultaneously while obeying periodic boundary conditions.
The process ceases whenever and wherever a growing shape centered
around a nucleus comes into contact with that of another nucleus (see
Fig. 1a).

The growth process is parameterized by two compact, non-convex,
star-shaped sets: S, S* c R? centered around a nucleus q € S. We call
a set S star-shaped if, for any point x € S, the line segment [x, q]
is contained in S. S describes the initial shape around the nucleus
when the growth process is started, while S* determines the stopping
criterion of the growth process (as described later). The boundary of
the star-shaped set S can be represented in polar coordinates by a
continuous function wg : [0,27) — [ryin. 'maxl, Where r:. > 0 and
Fmax = 'min are the minimum and maximum Euclidean distance from
the nucleus g to the set boundary, respectively. The boundary functions
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are parameterized by n > 0 known radial spans R = {r; : i = 1,...,n}
at equally spaced polar angles {¢; =2x(i—1)/n : i =1,...,n}, such that
ys(a;) = r; for all i = 1,...,n. Subsequently, the boundary function is
constructed using a polar cubic interpolation method, ensuring that the
function values lie between the minimum and maximum radial bounds.
The boundary of S* is analogously represented and parameterized by

u/; 1 [0,27) — [r*. ,r* 1, with the parameters distinguished by an

min’ max

additional superscript (-)*.
The growth process is governed by a star-shaped distance induced
by S. The distance between a point x € R? and the associated nucleus

q is defined as

4y _lx=al

=490 1
ws(4(x —q)) =

where £ : R? — [0,27) denotes the 2-argument arctangent function,
i.e., atan2(-). Hence, the star-shaped distance d; is equal to the factor by
which the star-shaped set S (centered around ¢) has to be isotropically
scaled to include the point x in the boundary y¢. This distance is used
to iteratively grow the star shape defined by S around the nucleus. The
growth of a star shape ceases at a point x, i.e., in the direction given
by «(x — q), if a closed Euclidean disk B, of radius r = S*(«(x — q))
and centered at x intersects any other simultaneously growing shape
corresponding to another nucleus (see Fig. 1a). At the end of the growth
process, the union of all fully grown star-shaped sets corresponds to the
void phase. The remaining domain corresponds to the solid phase. A
post-processing step is applied after the growth process to ensure that
the solid phase forms a single connected periodic structure. For more
details on the implementation, please refer to Martinez (2021) and the
open-source code.’

The growth process — governed by S and S* - is controlled by 2n
parameters which are collectively denoted by @ = {r|,...,r,, r’lk Y S
We require a sufficiently large database of structure—property pairs to
explore the mechanical design space of growth-based cellular metama-
terials. To this end, we generate N > 1 designs by randomly sampling
the radii {ry,...,r,} and {r| *,...,r;} with uniform distribution from
[Fmin> Fmax] @nd [r}, 7. ], respectively.

2.2. Homogenization of growth-based cellular metamaterials

For each cellular pattern (see Fig. 1b), we compute the effective
mechanical stiffness via numerical homogenization of a representative
volume element, i.e., the unit cell here. The solid phase is modeled
as an isotropic and linearly elastic material with Young’s modulus E,
and Poisson’s ratio v, = 0.3. For numerical stability, the void region
is also modeled as an isotropic and linearly elastic material with small
but non-zero Young’s modulus E, = 10~°E, and Poisson’s ratio v, =
v,. Without the loss of generality, all stiffness values henceforth are
normalized with respect to E, and, therefore, eliminate the need for
units.

The effective elastic response of the unit cell is represented by a
fourth-order stiffness tensor C. Note that here we assume plane strain
conditions. The effective stiffness is computed by applying three differ-
ent average strains (e) (two uniaxial compressions and one simple shear
loading along the principal axes) with periodic boundary conditions
to the unit cell and solving the linear system of equations (o;;) =
Cijuifer) (using Einstein’s summation convention) for each case, where
(o) denotes the volume-averaged stress in the unit cell obtained by
satisfying static equilibrium. Using the major and minor symmetries,
the stiffness tensor can also be rearranged into the Mandel notation as

. C:'n C:'12 (;3 Cin Cim  V2Cyyp,
C=[Cp Cn Cyp|=| Cyp () V2Cop, |- @
Ciz C Cp V2C, V2Cppn  2Cpp,

3 https://github.com/mfx-inria/auxeticgrowthprocess2d.
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(b) star shape §

(a)

growth process Boisse

n’s ratio

e

(c)

star shape
S

maximum
growth
radius §*

unit cell

Young's
modulus

Fig. 1. (a): Illustration of the discrete growth process and its stopping criterion. (b): The growth algorithm requires a nucleating star-shape S and maximum growth radius S* to
create the microstructure. The final unit cell is constructed by solidifying the space not occupied by the resulting star shape and setting the rest as void. This periodic black-and-white
image is then fed into an FFT-based homogenization framework (with periodic boundary conditions), and the effective stiffness tensor C (equivalently, € or &) is extracted. The
directional properties, such as Young’s modulus, shear modulus, and Poisson’s ratio, are readily available from the stiffness tensor. Each point in the polar plots represents the
effective property in the corresponding direction. (c): A selection of microstructures generated using diverse examples of S and S*, and their corresponding directional Young’s
modulus.

where € is a symmetric and positive-definite matrix. The independent (equivalently, &) as

components can be further reduced to 1

2
&=(C11,C1p, C13, G, Gy, Gy 3) E(d) = Z Ci_j}cldidjdkdl ,

ikl
For the scope of this work, we use the Fast Fourier Transform (FFT) ) _1
based h40mo'genlzaF10n algorlthm dfeveloped by Br.1sard and Dormieux G(d) = Z 4. Cz_,}c dindgn, i 4)
(2010).* Anisotropic elastic properties can be readily computed from C e

2
—_— wd) = - C; L didnin; ) E(@),
4 https://sbrisard.github.io/janus/. ,-,j,z,:’,, kT TR
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T maximum growth radius §* T

compare

Fig. 2. The data-flow of training the inverse neural network is as follows. (i) A target stiffness le} (equivalently, &) is passed into the inverse neural network (i-NN). (ii) The i-NN
predicts the design parameters, i.e., the radial spans to construct the star shape S and maximum radial growth S*. (iii) The predicted design is passed into the pre-trained forward
neural network (f-NN), which reconstructs the stiffness of the predicted design. (iv) The trainable parameters of i-NN are updated to minimize the difference between the target

and reconstructed stiffness. The dual neural network strategy bypasses the ill-posedness of the inverse design challenge.

Table 1

List of parameters used for the growth process.
Parameter Notation Value
Resolution of microstructure image (pixels) K xK 128 x 128
Number of radial spans per star shape n 7
Lower radial bound for star-shaped set S Foin 0.01
Upper radial bound for star-shaped set S Fnax 1.0
Lower radial bound for star-shaped set S$* [ 0.2K
Upper radial bound for star-shaped set S* r 0.6K

where E(d), G(d), and v(d) denote Young’s modulus, shear modulus,
and Poisson’s ratio along any direction d € S!, respectively. Here, n
denotes the normal to the direction d.

3. Data-driven inverse design

We create a large dataset D = {{@D;£D}i = 1,...,N} of N
structure—property pairs with the aim to train a data-driven model for
the inverse design of growth-based cellular metamaterials with tailored
anisotropic mechanical stiffness. The inverse design framework is based
on a combination of two neural networks (see Fig. 2 for a schematic).

A forward neural network (f-NN) takes as input the design pa-
rameters @ (i.e., the 2n radial spans for both the star shape and the
maximum radial growth) and outputs the effective stiffness £. The f-
NN surrogates the entire process depicted in Fig. 1b — from creating
the star-shapes and maximum growth shape using the radial spans
to performing the growth process and extracting the stiffness of the
resulting structure using numerical homogenization. Let 7, : R?" — RS
denote the f-NN with the trainable parameter set w containing the
weights and biases of the network. The stiffness predicted by the f-
NN must be symmetric positive definite for physical admissibility. To
ensure the same, we employ a Cholesky factorization transformation
layer introduced by Jekel et al. (2022). Let z = (z,, 25, 23, 24, 25, Z¢)T be
the output of 7,,. The stiffness prediction from the f-NN is then obtained
as

. p(z) 0 0
C=LLT with L=| z, p(z3) 0 |, (5)
z4 zs  p(z6)

where p(-) = log (1 + exp) is the softplus activation function to ensure
that the diagonal elements of L are positive. Since L is a lower
triangular matrix with positive values on the diagonal, (5) represents a
Cholesky factorization and € is symmetric positive definite by construc-
tion. € can be rearranged into & as per (3). The Cholesky factorization

transformation from z to & is denoted by H. The f-NN is trained by
minimizing the stiffness prediction error across the dataset D as

F,, < min % g | 77, [0]] - & ”2 (6)

Note that the forward problem is well-posed, as every design corre-
sponds to a single, deterministic stiffness property.

After building the f-NN, we tackle the inverse challenge, i.e., pre-
dicting a set of design parameters based on a stiffness query. Let
v, : R® — R2?" denote the inverse neural network (i-NN) with the
trainable parameter set  containing its weights and biases. The i-NN
receives as input a target stiffness £ and predicts the design parameters
0 = V,[£]. However, unlike the training of f-NN in (6), training
the i-NN is not straightforward. The inverse design problem is ill-
posed, as multiple designs could correspond to a certain stiffness query.
Therefore, training the i-NN based on minimizing the design prediction
error, i.e., |V, [67]— 0|2 directly, is not feasible. To circumvent this
challenge, we follow the work of Kumar et al. (2020). We use the f-NN
to reconstruct the stiffness of the predicted design from the i-NN. The
reconstructed stiffness should match the target stiffness, irrespective
of the predicted design parameters. This is formalized into the i-NN
training by minimizing the error between the target and reconstructed
stiffness across the dataset D, i.e.,

v = mind 3 ) -0 | 7

Both neural networks are trained by backpropagation-based iter-
ative minimization (Goodfellow et al., 2016) of the loss functions
in (6) and (7). Note that the weights w of the f-NN remain fixed
and are not updated during the i-NN training. The f-NN serves as a
computationally efficient and differentiable approximator of the map
from design parameters to stiffness properties, which is required to
perform backpropagation-based training of the i-NN.

4. Results

Table 1 summarizes the parameters used for growth process. Both
f-NN and i-NN have the same architecture, a multilayer perceptron
(Hornik et al., 1989) containing 5 hidden layers (not including the
input and output layers) — each with 512 dimensions and softplus
activation function (Nair and Hinton, 2010). A training set of N =
800,000 structure—property pairs is used for training. Note that the f-NN
and i-NN are both trained on the same training set. Fig. 3 illustrates
the diverse distribution and pairwise relationships for each stiffness
component in the dataset. To ensure efficient training of the neural
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Fig. 3. Distribution and pairwise relationships for each stiffness component in the training dataset.

networks, all radial spans in any given @ are individually normalized
to the range of {0,1} based on the minimum and maximum values
across the training dataset. Both neural networks are trained using
the optimizer Adam (Kingma and Ba, 2014) with a mini-batch size
of 4096 and a learning rate of 0.001 for 1000 epochs. A separate
validation set of 150,000 structure-property pairs is used to monitor
the prediction accuracy and over-/underfitting during training. To
avoid overfitting, an early stopping patience criterion is used, wherein
the training is terminated if the validation loss (as defined in (6) and
(7)) does not decrease within 50 epochs. Furthermore, we generate a
test set of 50,000 structure—property pairs to evaluate the performance
of the neural networks on data that is previously unseen during the
training/validation. Additional implementation details and associated
computational costs are presented in Appendix A.

Forward modeling accuracy: Fig. 4 summarizes the stiffness prediction
accuracy of the f-NN. In a plot of true vs. predicted (from the f-NN)
stiffness components, each data point from the test set should ideally lie
on a line with unit slope and zero intercept. We obtain a goodness-of-fit
(with respect to the ideal line) of R?> > 0.98 for all the stiffness matrix

components. Hence, with the f-NN, we get an accurate estimation of
the stiffness properties given any randomly sampled S and S*.

Inverse design accuracy: Fig. 5 summarizes the inverse design perfor-
mance of the i-NN. Each stiffness in the test set is used as a target. The
i-NN predicts a relevant design, whose stiffness is then reconstructed
by the growth process and numerical homogenization. Note that the
stiffness reconstruction during training is performed using the f-NN.
However, during testing, numerical homogenization is used to avoid
compounding any prediction error from the f-NN. Similar to the f-NN,
the target and reconstructed stiffness should lie on the ideal line with
unit slope and zero intercept, regardless of the differences between the
original and predicted input parameters. We obtain R> > 0.98 for all the
stiffness components for inverse design across the test set. In Fig. 6,
for a selection of examples from the test set, the design parameters
(i.e., the star shape S and maximum growth radius S$*) and geometry
corresponding to the queried target stiffness are compared with that
of the designs predicted by the i-NN. The significant difference in the
design parameters and geometry despite a perfect match between their
stiffness confirms the ill-posedness of the inverse design problem and
verifies the need for the dual neural network approach. Note that some
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Fig. 6. (a)—(c): Selection of inverse design examples from the test set of growth-based cellular metamaterials. In each case, the query (top row) represents the design whose
stiffness is used as target for inverse design. The prediction (bottom row) represents the design predicted by the i-NN. The corresponding plots of directional Young’s modulus,
Poisson’s ratio, and shear modulus show good agreement despite significant difference in the query and predicted designs. This verifies the framework’s ability to overcomes the

ill-posedness of the inverse design challenge.

designs look visually similar, as the unit cell’s geometry and material
distribution are closely linked with its resulting anisotropic mechanical
properties.

Moreover, generating large datasets can be a challenging and expen-
sive task. To address this, we perform a data ablation study, the results
of which are presented in Appendix B. We show that good forward
modeling and inverse design accuracy can be achieved by training the
neural networks using only 10% of the original dataset’s design-stiffness
pairs.

Inverse design generalizability: Instead of sampling the target stiffness
from the property space of growth-based metamaterials itself, we test
the generalizability of the i-NN by using as target the stiffness of
arbitrary microstructures not achievable by the design space of choice
here. The predicted designs and their properties — specifically, polar
plots of directional Young’s modulus, Poisson’s ratio, and shear modu-
lus (computed using (4)) are subsequently compared to those of the
original designs in Fig. 7. A symmetric star-shape with eight spans,
shown in Fig. 7a, cannot be perfectly replicated with seven prescribed

spans in the chosen design space. The i-NN predicts a nearly square-
shaped microstructure that closely matches the queried properties. The
predictions have similar symmetry to the original query, albeit with
a different topology. Fig. 7b considers a circular microstructure that
would be challenging (although not impossible) to reproduce using the
growth process since we prescribe an odd number of radial spans. The
predicted microstructure is not visually similar to the original circle.
However, the reconstructed stiffness components accurately match the
target. The diagonal voids in the queried design of Fig. 7c are impos-
sible for the growth process to replicate since it can only produce a
single void per unit cell. Consequently, the predicted microstructure is
significantly different from the original, yet it shows a similar void elon-
gation orientation. Additionally, the stiffness properties of the predicted
microstructure closely match those of the original.

Lastly, since we obtain both forward and inverse structure-property
maps, the f-NN (which ensures the production of physically meaningful
stiffness matrices via a Symmetric Positive Definite (SPD) layer) or FEM
can be used to obtain a discrepancy between the target stiffness and the
achieved stiffness. A high discrepancy indicates that either the target



S. Van ’t Sant et al.

(a) (b)
query prediction query
1
! —
1
_ 1
= 1
g |
- 1
= 1
S !
1
1
1
1
1
1
7] e | &
3 ! ‘
> o b [
S 7! e
E M g —— ] o L =—p:
1
\U) 1
%D |
S 1
1
L !
1
1
1
o e 1 & e
et 1
(] 1
— 092 1 094
%2}
= Lo b
8 1
(%] 1
2 !
o 1
1
1
1
1
(%] ! L
= [ i f
g 04 1 04 4
. :
f- 1
(48] |
é’ 1
7 1
1
1

prediction

L

039
026
o1
e
2
3

x DM

—_

~—

Mechanics of Materials 182 (2023) 104668

query

prediction

055
036
018
e
054
036
018
009
004
003

Fig. 7. (a)-(c): Selection of inverse design examples beyond the design space of growth-based cellular metamaterials. In each case, the query (left column) represents the design
whose stiffness is used as target for inverse design. The designs are specifically chosen such that they cannot be reproduced by the current design space. The prediction (right
column) represents the design predicted by the i-NN. The corresponding plots of directional Young’s modulus, Poisson’s ratio, and shear modulus show good agreement despite
significant difference in the query and predicted designs. This exemplifies the framework’s ability of accurately predicting growth-based cellular metamaterials given arbitrary

stiffness targets.

stiffness is non-physical or outside the bounds of the property space
spanned by the star-shaped metamaterials.

5. Conclusion and outlook

In this work, we developed a data-driven framework to instantly
design two-dimensional metamaterials with tailored anisotropic elastic
properties. The design space is based on the growth-based periodic
cellular patterns introduced by Martinez (2021). The growth process is
governed by two distinctive star-shaped sets (compactly parameterized
by a small number of radial spans). The choice of the star-shaped sets
defines the non-trivial geometry of the void inside each periodic unit
cell. For the purpose of achieving targeted anisotropic elastic properties
and bypassing the ill-posedness of the inverse design challenge, we de-
veloped a dual neural network approach. (a) A forward neural network
predicts the independent components of the elastic stiffness matrix
given the radial spans defining the star-shaped sets, and (b) an inverse
neural network predicts the radial spans (corresponding to the star-
shaped sets) given the components of the target stiffness matrix. We
demonstrate that the forward neural network accurately predicts the
mechanical properties given any arbitrary star-shape design; the inverse
neural network accurately and efficiently reconstructs unit cell designs
with elastic responses matching the target properties. Furthermore,
we demonstrate that the inverse design framework can generalize to
stiffness properties beyond those encompassed by the design space of

growth-based metamaterials. While the proposed inverse design frame-
work covers a large space of attainable anisotropic stiffness properties,
future work may include: (i) the exploration of unit cells with multiple
nuclei (with each corresponding to the same or different star-shaped
sets) to enlarge the structure-property space, (ii) design for targeted
mechanical response under finite deformations, (iii) ML methods such
as generative adversarial (Goodfellow et al., 2016) or diffusion (Ho
et al., 2020) networks to stochastically produce multiple dissimilar
designs for a given target, and (iv) Bayesian neural networks (Goan
and Fookes, 2020) account for data noise and uncertainties.
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Fig. A.8. Scatter plot of the directional minimum and maximum of Young’s modulus, shear modulus, and Poisson’s ratio for a large number of star-shaped designs for different
number of radial spans: n = 3,5,7. The coverage of the property spaces is assessed by investigating the spread of the data points in the scatter plot.

101 R2 =0.960 101 R2=0.0953 s 109 R2=10.990 P

0.8 4
- ~N 2]

= S 5 957
CIJ CIJ CI)
e o4 jo4
) 0 9
© el el

[ () L 044
0 o 0
Q. a. a

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True: Gy True: €y, True: ;5
1.0 4 1.0 4 1.0 4
R% =0.961 4 R? = 0.990 o~ R? = 0.980
& - o
® ® ®
e ] o
9 O 9.
o o o
[ [ [
0 o o
a a a
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True: €y, True: Cy3 True: €33

Fig. B.9. Target vs. reconstructed stiffness of the design predictions from the f-NN on the test set. Here, the f-NN is trained on a dataset of the size of 10% of the original
dataset size. All dashed lines represent the ideal line with unit slope and zero intercept; the corresponding R?> goodness-of-fit are indicated.

Appendix A. Additional implementation details

The workflow involved a dataset generation process consisting of
growing the unit cell and the FFT-based homogenization for each star-
shaped design, followed by sequential training of the f-NN and i-NN ML
models on the training set of 800,000 samples. The dataset used in this
study was generated on a computing cluster equipped with multiple
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50 GHz central processing units
(CPU). The ML training was carried out on an Intel Xeon Gold 6248R
with 24 cores and one NVIDIA RTX A5000 graphical processing unit.
The computational time for each task is described in Table A.2.

Before generating the dataset, we investigated the design space
for the growth-based cellular metamaterials by varying the number of
spans (n) considered in the analysis. We tested three different options:
n = 3, 5, and 7. The choice of n is based on balancing the expanse
of the property space with the computational costs required since a

Table A.2
Computational times for individual tasks. Note that the runtimes reported are only
rough estimates.

Task Time
Growth process given a star-shaped design 12 ms
FFT-based homogenization of a unit cell 16 s
Training of the f-NN per epoch 13 s
Training of the i-NN per epoch 10 s
Total training of the f-NN 93 min
Total training of the i-NN 64 min
Inference of 1000 queries using f-NN 11 ms
Inference of 1000 queries using i-NN 8 ms

higher number of spans would result in more complex parameters and
would demand more data for accurate ML predictions. We generated



S. Van ’t Sant et al.

Mechanics of Materials 182 (2023) 104668

., . 0.20 ,
o R2 = 0.959 /" R2 = 0.991 {;',.’
? ¢ 0.15 e
0.15 g el
0.10 -
& o o
e « Q' 0.05 4
8 = 0.10 1 -
g 9] ]
53 8 & 0.00-
=1 (5] o
= 3 b |
= = £
£ 2 0,05 3 -0.05 1
§ 3 3
k2 fo 2 0101
0.00 - -0.15
-0.20
00 01 02 03 04 05 06 0.7 0.00 0.05 0.10 015 -0.2 -0.1 0.0 01 0.2
Target: ;4 Target: €y Target: €3
0.7 1 2 e 5 ” 035 3 ,
; R* = 0.964 o 0.2 4 R* =0.990 ” R* =0.983 o+
. 7’
030 1 e
o
& & 01 o5 0251
5 = ]
g 2 2 020
Q Q
2 S 004 =1
] = ]
2 2 2 015
S S o
Q o
(7} Q L2
& & 014 & o104
0.05 -
-0.2 1 y
0.004
00 01 02 03 04 05 06 0.7 -02  -01 0.0 01 0.2 000 005 010 015 020 025 030 035
Target: C,, Target: Cp3 Target: C35

Fig. B.10. Target vs. reconstructed stiffness of the design predictions from the i-NN on the test set. Here, the i-NN is trained on a dataset of the size of 10% of the original
dataset size. The stiffness reconstruction is performed via the growth process and numerical homogenization to avoid compounding errors (as opposed to stiffness reconstruction
via the f-NN during training). All dashed lines represent the ideal line with unit slope and zero intercept; the corresponding R> goodness-of-fit are indicated.

scatter plots (see Fig. A.8) of the directional minimum and maximum of
Young’s modulus, shear modulus, and Poisson’s ratio for a sufficiently
large number of designs for each value of n. From the analysis of
the scatter plots, we observe that the coverage of the property space
expectedly increases as the number of spans increases from n = 3 to
n = 7. However, the difference is only minimal between n = 5 and
n = 7. Therefore, we selected n = 7 spans as a good trade-off between
design complexity and computational costs.

Appendix B. Data ablation test

The computational expense of generating a large dataset can be
mitigated by using a smaller dataset if the decrease in accuracy is
minimal/acceptable. To this end, we re-train our neural networks using
only 10% of the design-stiffness pairs from the original dataset. Hence,
the resulting dataset sizes are 80,000, 15,000, and 5000 samples for
the training set, validation set, and testing set, respectively. The cor-
responding forward and inverse prediction performances are presented
in Figs. B.9 and B.10. As expected, the models trained on the reduced
dataset showed slightly inferior performance compared to those trained
on the larger dataset. However, the R? values indicate that the accuracy
degradation is not significant. Thus, we conclude that our framework
can still achieve comparable performance even when provided with a
fraction of the original dataset, which is particularly useful in cases
where data generation is a bottleneck.
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