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Ab strac t 

The problem of the lateral dispersion of a beam of high-energy 
ions by molecular collisions as it passes through a va"riable density 
medium is solved by using both a M:>nte Carlo simulation and a new 
approximate analytical method. Numerous Mbnte Carlo computer runs 
are completed for high-energy ions (protons) moving in a varying den
sity gas (molecular hydrogen). These runs include aphysical cases 
for which the energy of the ion is unattenuated with distance and 
physical cases for which the ion energy is decreased in accordance 
with experimental measurements of its range. Such numerical results 
show clearly that the beam-dispersion profiles at increasing ion-beam 
penetration depths are essentially self similar and that the profiles 
from different cases were also essentially similar. Based on the 
idea of similarity, an approximate analytical method is developed for 
quick and easy scaling of the beam-dispersion profiles within each 
case and from one case to another, in order to dispense with the time 
consuming and costly Monte Carlo simulations. This method for pre
dicting the change in the probability distribution (root-mean-square 
value) of the dispersed-beam profile is successful, and the Mbnte 
Carlo results are reproduced well. It should be noted that this werk 
is done mainly for a unidirectional po int 80urce of monoenergetic 
ions in the absence of any external magnetic and e1ectric fields. 
However, the analysis to extend the resul ts from a point source to a 
finite-sized beam of variabie intensity, cross-sectional area, and 
ion. energy is presented and some results are given. 
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Notation 

first Bohr radius of an electron (ao = n2/moe2 = 5.29177xl0- 11 m) 

i th coefficient of the curve fit to the measured stopping power data 

initial ion-beam cross-sectional area 

diameter of a free-jet orifice 

-10 
elementary unit of charge (4.8029xl0 e.s.u.) 

collision energy in the center-of-mass reference frame 

expected va1ue of the variable in the brackets 

reference energy equal to the ionization potentia1 of hydrogen 
(Eo = e2/2ao = moe~/2h2 = 2.1785xl0- 11 erg = 13.58 eV) 

initia1 ion-energy distribution across the beam 

abbreviation for the symbol Ep_ 
1n 

energy of a proton in the laboratory frame of reference 

initial energy of a proton in the laboratory frame of reference 

mass-weighted dimension1ess ion energy in the center-of-mass frame 
of reference (mE/moEo) 

difference in proton energy between two collisions (EPi - EPi+1
) 

dimension1ess number density profile of scattering medium [N = Nof(y)] 

function in P(R) in appendix B 

rationa1izecl P1anck's constant (h = h/2TI = 1.05459xl0-
27 

erg-s) 

function in the free-jet profile given by Eq. 2.39 

ion current due to a point source 

ion-beam intensity 

differentia1 scattering cross section 

initia1 constant ion-beam intensity 

initia1 ion-beam intensity distribution across the beam 

total number of ion paths fo110wed by the Monte Car10 simu1ation 
. 

constant factor for the energy 10ss used in 'Eq. 2.6 
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Notation (continued) 

magnitude of the incident wave vector (mv/h) 

magnitude of the incident wave vector (mv/h) 

magnitude of the scattered wave vector 

magnitude of the scattering wave vector [2(mv/fi) sin(8/2)] 

reduced mass of two partic1es in a collision [mlm 2 /(ml+m2 )] 

-27 
rest mass of an electron (9.106xlOg) 

mass of the incident particle in a collison 

mass of the targer particle in a collision 

-24 mass of a proton (1.762xlO g) 

number of ions per unit time passing within a radius R of the beam axis 

total number of ions per unit time emitted by a point source 

symbolic notation for using the minimum value of the pair (i,j) 

ion-beam number density 

number of collisions, n th collision 

unit direction vector 

initial ion-beam number density 

numberdensity of the scat tering medium 

initial number density of the scattering medium 

scattering medium number density at infinity for the free jet 

scattering medium number density at the orifice of a free jet 

probability density distribution 

cumulative probability distribution 

cumulative probability distribution 

total collision cross section 

radial separation distance between two colliding particles 

a random number in the range of 0 to 1 (uniform) 
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Notation (continued) 

i th random number in the range of 0 to 1 (uniform distribution) 

radial distance measured perpendicular to the ion-beam axis 

initial radius of a cylindrical ion beam 

R value for which P(R) = 0.5 

lateral separation distance measured from the point-source axis 
to a certain position of interest forcalculating the current 

maximum value of R 

minimum value of R 

path length along a particle trajectory 

direct ion cosine in the x Cartesian direction 

direction COS1ne 1n the y Cartesian direct ion 

speed of an ion in the center-of-mass reference frame 

interaction potential between two colliding particles 

direction cosine in the z Cartesian direction 

multiple scattering deflection angle 

root-mean-square multiple-scattering deflection angle 

Cartesian direct ion 

reduced variable equal to Exsin2 (e/2) 

x position of the ion af ter its ithcollision 

x Cartesian coordinate in the target plane 

Cartesian direction 

dummy integration variable 

y position at which the ion is presently located 1n the 
scattering medium 

y position of the ion af ter its i th collision 

maximum range of an ion or proton in a scattering medium 

y Cartesian coordinate in the target plane 
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1.0 INTRODUCTION 

1.1 Motivation for the Present Study 

In todays growing need for energy, society is beginning to depend more and 
more on atomic energy. Fission energy has fallen into disfavour with most of 
the population, because of the possibility (although remote) of the release of 
radioac tive by-produc ts in the event of an accident and the hazards associated 
with moving and storing radioactive waste. The alternative - fusion energy -
has not yet reached the engineering stage where it is feasible and marketable. 
However, research and engineering are progressing rapidly, and the promise of 
success seems certain in the next few decades. 

In the ongoing research into fusion reactors the search for a suitable 
reactor wall material is an important part of making fusion power economically 
feasible. If the wall material will not withstand the continued impact of a 
tremendous number of high-energy neutrons, alpha and other particles created 
within the reac tor it will not be feasible to employ it as a wall material , 
because it WDuld have to be replaced of ten. This would thus increase greatly 
both the down time and operational cost of the reactor. 

Various devices have been proposed and even developed to test suitable 
wall materials to sustain high-energy particle impact, in order to obtain 
information regarding their flux and fluence end urance to such particles • A 
number of studies of proposed devices for 14-MeV-neutron testing of materials 
that prompted the present study involve subsonic, transonic and hypersonic gas 
target neutron generators [1-6]. For example, consider the subsonic gas target 
neutron generator sketched in Fig. 1. A triton beam is direc ted through the 
free-j et expansion into the nozzle flow of molecular deuterium from the large 
reservoir. The triton beam loses most of its energy in the dense, subsonic, 
nozzle flowand stops therein. A small percentage of the collisions between 
the tritons and deuterium molecules results in fusion, with the release of 
14-MeV neutrons. Some of these neutrons then collide with the material to be 
tested, whiçh lines the inside periphery of the nozzle. 

Not illustrated in Fig. lis that the triton beam does not remain fixed in 
diameter but in fact spreads laterally from numerous small angle collisions 
with deuterium molecules as it traverses the deuterium free jet and enters the 
nozzle flow [3]. The nozzle diameter must be large enough to accommodate the 
entire triton beam, otherwise high-energy tritons will strike both the nozzle 
walls and materials sample, thereby causing tmdesirable damage. A knowledge of 
the extent of the beam spreading is important to the design of such a device, 
therefore, because the nozzle diameter must be sufficiently large to surround 
the entire beam, and yet it must be as small as possible mainly to reduce the 
deuterium circulation pumping requirements and partly to maximize the flux of 
neutrons striking the materials sample. 

Although the present study sterns from the need to predict the lateral 
spreading of a triton beam in a molecular deuterium flow occurring in a gas 
target neutron generator, it is presented in this report for the more general 
case of the ' lateral spreading of a beam of high-energy ions as a function of 
the initial ion beam energy, the density variation of the scattering medium, 
and the distance travelled by the beam through the scattering medium. A more 
detailed description of the problem is given in the next section. In this 
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manner the present investigation has a wider application to other and more 
general problems of ion beams passing through gases [7] and solids [8]. 

1.2 Description of the Problem 

Consider an ion beam of initial cross section Ao(x,z), intensity Io(x,z), 
and ion energy Eo(x,z) travelling through a stationary or flowing gas with a 
density field p(y) (see Fig. 2), in which it spreads laterally due to molecular 
collisions with the scattering medium. The beam dispersion studied in this 
work will be due to the Coulomb interactions between the high-energy ions of 
the beam and the atoms or molecules of the intervening gas. A solution will be 
presented for the ion beam intensity I(x,y,z), that is, as a function of the 
coordinates x, y and z. For this study it will be assumed that there are no 
externally applied magnetic or electric fields. Furthermore, the effects of 
beam heating on generating a gas flow in an initially stagnant scattering 
medium or altering the already existing flow field of the scattering medium are 
ignored. 

1.3 Previous Work 

The random walk of a high-energy particle within a scattering medium can 
be simulated fairly easily through the use of a M::>nte Carlo computer program, 
provided that the collision probability statistics are known and readily 
available. An excellent review of the subject of MOnte Carlo calculations of 
this kind can be found in a paper by Berger [9]. However, the present problem 
has not been studied before. Similar problems have been considered that make 
use of the same collision theory presented in this study; however, they are 
concerned principally with the calculation of reflection and transmission 
coefficients, the angular distribution of particles emerging from thick folis, 
absorption of particles by foils, path length straggling, mean ionization 
potentials, and the backscattering of ions from solids (e.g., see Refs. 8 and 
9). None have dealt directly with the prediction of the lateral spreading of 
an ion beam within a varying density scattering medium. However, it should be 
noted that most of the problems mentioned above could also be solved by using 
the type of analysis presented in this report. 

1.4 Present Study 

In the present study the dispersion of an ion beam is simulated by means 
of a MOnte Carlo computer code that includes all of the necessary collision 
theory statistics. In this simulation the range-energy equation is used in 
conj unction wi th the continuous-slow-down approximation to include the energy 
attenuation of the ions. The spatial variations of gas density under consider
ation here include linear and exponential distributions, as weIl as free-j et 
expansion profiles. From the individual ion paths generated numerically by the 
M:>nte Carlo method, the intensity distributions can be obtained at different 
distances from the beam origin, which illustrates the degree of beam spreading 
with distance. All of this werk and the graphical results are presented in 
Chapter 2. 

It is anticipated that the Monte Carlo solution will be a time consuming 
and expensive process, because thousands of ion paths have to be followed 
through thousands of collisions to obtain statistically meaningful results. In 
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order to reduce the costs, an analytical approximation for sealing the lateral 
spreading of the ion beam within each case and from , one case to another is 
developed, which is quick and easy to implement. This new technique and the 
evaluation of its success in reproducing and replacing Monte Carlo results are 
given in chapter 3. The beam configuration considered in chapters 2 and 3 is 
a unidirectional point souree of initially monoenergetic ions. All problems 
can be solved initially for such a po int souree , because the resul ts for this 
case can be easily extended analytically to that of a finite beam of initial 
cross section Ao(x,z), intensity Io(x,z), and ion energy distribution Eo(x,z). 
The analysis for this extension is presented in chapter 4. The concluding re
marks follow in chapter 5. 

2.0 MONTE CARLO SIMULATION OF ION BEAM SPREADING IN A SCATTERING MEDIUM 

2.1 Introduc tion 

Monte Carlo techniques comprise that extension of experimental mathematics 
that is concerned with experiments on random numbers. Previous applications of 
Monte Carlo simulations have been mainly in the fields of nuclear physics and 
operational research, although problems in other fields of science including 
biology, chemistry, and medic ine have been solved successfully by this method. 
Typically, Monte Carlo methods are used in solving problems where the available 
theoretical mathematics is insufficient to yield an analytical solution. For 
a thorough discussion of the principles involved in the Monte Carlo method the 
reader is referred to the books by Hammersley & Handscomb [10] and Cashwell & 
Ev er e t t [ 11] • 

The fundamental principle involved in Monte Carlo simulations can be 
stated in the following way [10]. If p(y)dy is the probability of y lying 
between yand y + dy in the interval a ~ y < b, where a and bare constants, 
and 

f b p(y) dy 
a 

1 , (2.1) 

then 

r P(y) = J x p(y) dy 
a 

(2.2) 

determines y uniquely as a function of r or P(y). Moreover, if r is uniformly 
distributed on the interval 0 ~ r < 1, then y falls with frequency p(y)dy in 
the interval (y, y + dy). Hence, in Monte Carlo simulations the probability 
density function p(y) must be known a priori. Then, by picking a random number 
r from a uniform distribution in the range of 0 to 1, a value of y can be 
determined from Eq. 2.2 for the process involved. The correct randomness of 
the physical process can therefore be obtained. Note that the integral of the 
probability density function, denoted as P(r), is called the cumulative prob
ability function • 

If Eq. 2.2 can be inverted to obtain an explicit expression for y as a 
function of r, a notable benefit in simplicity is achieved. Otherwise, the 
integral equation bas to be solved numerically for the value of y, or by other 
more appropriate means (see Refs. 10 and 11). 
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The random walk of an ion through a scattering medium includes thousands 
of individual collisions for which the deflection angles and the free path 
length between colli~ions must be obtained. The deflection angle and free path 
length conventions used in this study are illustrated in Fig. 3. Thus, in 
order to apply the M:>nte Carlo method to solve for the paths of ions moving 
through a scattering medium, the probability density functions should be known 
a priori for 

a) the free path length À of the ion between collisions, 

b) the scattering angle ij in the laboratory frame of reference, 

c) the azimuthal angle ~ in the laboratory frame of reference, and 

d) the energy change of the ion due to the collision. 

For each known p(y), a value of r can be chosen at random from a uniform 
distribution of random numbers in the range of 0 to 1, and the value of the 
free path length, scattering angle, and so on can be obtained, such that the 
correct randomness of the physical process is simulated. 

2.2 Free Path Length 

For a beam of particles of number density n scattering in a medium of 
number density N, whose individual scatterers have a cross-sectiona1 area Q, 
the attenuation 1aw for unscattered particles is [appendix A and Ref. 11] 

-dn/n QN dy. (2.3) 

The derivation of the probability density function p(y) for the free path 
length from this attenuation law, and the subsequent inversion of the cumula
tive probability function P(y) given by Eq. 2.2 to yield the free path length 
as a function of the random number r, are developed and discussed in appendix 
A. The result for a density variation in the general form 

N = Nof(y) (2.4) 

is (Eq. 8 of appendix A) 

J
Y1+À 

f(y) dy 
Y1 

(2.5) 

where r1 is a random number in the range of 0 to 1, Y1 is the position of the . 
particle within the scattering medium (the origin being at the source), and À 
is the free path length. When N = Nof(y) is specified, that is, once the gas 
density profile f(y) is known, then Eq. 2.5 can be inverted to yield À as an 
explicit function of r1. A few particular examples of different density dis
tributions and the I'esulting free path lengths (af ter inversion) are given in 
appendix A. 

For interest it is worth mentioning that the path length can be specified 
by alternate methoda. Although these methods are not employed in this report 
because they are not as appropriate, some of the more common ones are noted 
briefly here. For a more thorough examination of these alternate methods the 
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reader is referred to a paper by Berger [9]. 

a) Logarithmic spacing. In this method the path length is chosen such 
that, on the average, the energy of the particle is decreased by a constant 
factor k per step. That is, the energy of the particle af ter the collision is 
obtained from the energy of the particle before the collision by multiplying by 
a constant factor k and subtracting. This is written as 

1 f si+l I dE I 1 - -- ~ ds 
Ep. ds 

~ si 
k , (2.6) 

where dEp/ds must be obtained from either theory or experiment. Then, from 
Eq. 2.6 the path 1 eng th si+l - si can be determined. This has the advantage 
that, if k = 1/2m, the particle has then lost one half of its energy af ter m 
steps. This also has the advantage that the distribution of angular deflec
tions changes very slowly from step to step [9]. This method is generally used 
when condensed case histories are being employed, and it can be used in two 
different ways. The variabie that is used as the time clock for "taking the 
picture" can be either the energy of the particle or the path length. 

b) Mixed logarithmic spacing. This procedure employs the same method as 
that used in a, ex cept that, if the particle is about to cross a boundary of 
interest, the step is broken into even smaller steps so that the uncertainty of 
both the crossing point and the energy of the particle is reduced. 

c) Uniform spacing. In this method the step size si+l - si is constant. 

d) Consideration of path length fluctuations. As pointed out and dis
cussed by Berger, the path 1 eng th fluctuations are specified by a Gaussian 
distrib utiolJ,. 

Method::; a to c introduce a predictabie step size into the so-called random 
walk of the ' particle. If the walk is to be truly random, then the step size 
must vary s~atistically about an average value that is predictabie from the 
physics of the collision • However, the Gaussian distributed fluc tua tions of 
method d do not correctly represent the physical process, as one can see from 
Eq. 2.5. Further, all of these methods are used when condensed case histories 
are involved, that is, each step includes many collisions and thus are of no 
use in this study. 

2.3 Angular Deflection 

The interaction potential Ver) between an ion and a molecule or atom is 
needed in oNer to calculate the probability density functions for both the 
azimuthal and scattering angles. For the specific case of a proton colliding 
with a hydrogen atom [12] 

V(r) e2 [;0 + ~ ] exp(-2r/ao) , (2.7) 

where e is the fundamental unit of charge, a o is the first Bohr radius, and r 
is the distance separating the two charges. 

For a central potential the azimuthal angle <t> will be tmiformly distri-

5 



buted between - rr and +rr, that is, the scattering is isotropic with respec t to 
the azimuthal angle and p(y) is the constant 1/2rr. Therefore, in order to 
obtain an azimuthal angle for each collision, the equation 

(2.8) 

can be used, where r2 is a random number between 0 and 1. 

To find an expression for the scattering angle 8 in the laboratory refer
ence frame, one must first consider the differential scattering cross section 
l(S), where S is the scattering angle in the center-of-mass reference frame. 
The differential scattering cross section is defined as the number of particles 
scattered into the solid angle dw = sin(S) dSdq, divided by the total number of 
particles of the incident beam. This is the tmnormalized probability density 
function for the angle S. The Born approximation of l(S) for the potential 
given by Eq. 2.7 is determined in appendix B. l(S) is then used to yield S as 
a ftmction of the random number rg. The final result is quoted here; however, 
the reader is referred to append ix B for more details. The scattering angle in 
the center-of-mass frame is 

S 2 Arcsin [ E~C [ 

1 - C2/4 
(2.9) 

where 

C = (7 - /I3)/3 (2.10) 

and 
(2.11) 

Here, m is the reduced mass of the 10n and the scatterin~ particie, mo is the 
mass of an electron, Eo is a reference energy equal to e /2a o = moe 4 /2n2 or the 
ionization potentialof hydrogen (13.58 eV), and E is the collion energy in the 
center-of-mass coordingate frame. 

If the collision is assumed to be elastic, the scattering angle ij) in the 
laboratory frame is given by 

tan(8) = sin(S) 
(2.12) 

where ml is the mass of the incident particle and m2 is the mass of the target. 
This, of course, is not true in general, but for collisions considered in this 
study the premise of elastic collisions is valid (see appendix B). 

The angles ij and <P determine the deflection of the ion from its precollis
ion line-of-flight direction. This deflection must be added to the line-of
flight direction to obtain the resultant post collision direction in the Car
tesian coordinate system (see Fig. 3). Let ni-1 = [ui-lt vi-lt wi-l] be the 
direction cosines of the line-of-flight direction of the particle af ter it has 
experienced i-I collisions • If Si and <Pi are the deflec tion angles experienced 
by the particle during the ith collision, then the resultant direction cosines 
are given at the top of the next page as [11] 
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----------------------------------------------------------, 

u · = 
~ 

v· ~ 

w· 
~ 

= (sin(@i)cos(~i)vi-1wi-1 + sin(®i)sin(~i)ui-1)/Il-wr-1 + cos(9i)vi-1, · 

-sin(®i)cos(~i);l-wî-1 + cos(8i)wi-1' 
(2.13) 

Therefore, once the random angles ~i and ®i are obtained from Eqs. 2.8 and 2.9, 
respectively, Eqs. 2.13 then yield the direction cosines of the scattered ion. 
Note that Eqs. 2.13 become unstable when \w\ is close to unity; therefore, it 
will be assumed that the ions will emerge from the source and travel in the y 
or no = [0, 1, 0] direction. This will avoid encountering the instability in 
these equations because the scattering angle @ is so small that \w \ « 1 at all 
times. 

It is worth mentioning for interest that the deflection angles can be 
specified by alternate methods. Although these methods are not used in this 
report because condensed case histories are not employed, some of the most 
common ones are noted briefly here. For a more thorough discussion of these 
techniques the reader is referred to a paper by Berger [9]. 

a) Gaussian distribution. If the net angular mul tiple-scattering deflec
tion is the result of many small angle scattering events, each of the same 
order of magnitude, then purely statistical considerations lead to a Gaussian 
distribution given by 

p(w) w dw 2 (W/W)2 exp(_w2 /til) dw, (2.14) 

where w is the multiple scattering deflection angle. The root-mean-square 
deflection angle w is calculated from the appropriate single scattering cross 
section. This approximation does not include the large individual deflections 
that statistically occur; therefore, it does not represent the actual fluctua
tion in the individual scattering events in this study. Large angles, although 
infrequent, contribute markedly to the lateral dispersion of the beam. This 
method can only be used when condensed case histories are employed, and it is 
not very accurate. The following two theories would be normally used instead 
because they are more accurate. 

b) Distribution of Mlliere [13]. Mlliere' s theory takes into account the 
effect of occasional large angle scattering events, which are neglected in the 
Gaussian approximation. From this theory the multiple scattering cross section 
is known as an infinite series involving a reduced angle variable. Because 
this theory involves an infinite series with a tabulation of statistical func
tions, it is not in a convenient analytical package for use by a computer. 
Large tab les would have to be stored in the program or in a readable data file 
and, although this cao be done, it is a cumbersome and an expensive process. 

c) Theory of Goudsmit and Saunderson [14, 15]. These authors derived the 
angular distribution of mul tiple scattering deflections as a Legendre series, 
by assuming a continuous-slowing-down approximation that will be discussed in 
section 2.4. This theory includes all possible angular deflections, and it can 
be used with any single scattering cross section. Therefore, this theory is 
superior to that of Mlliere, but it still involves an infinite series and is 
thus cumbersome to incorporate in a computer program. 

All of the theories in a, b, and care for condensed case histories, un-
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fortunately, and they, therefore, cannot be used in this study. However, they 
can be used to test some of the results of the present Mbnte Carlo simulation. 
This test will be done for the Gaussian approximation only, because it permits 
an easy check. 

2.4 Energy Loss 

The energy loss of the ion as it travels through the scattering meditun is 
determined by [9] 

1 Si+l I~I ds ds, 
Si 

(2.15) 

where s is the actual path length travelled by the ion. Because the ion does 
not deviate substantially from its incident direction along the y-axis, the 
path length scan be approximated by its projection onto the y-axis. There
fore, Eq. 2.15 becomes 

= Epi Epi+l J Yi+l I~I d dy. 
Yi Y 

(2.16) 

It now remains to find an expression for the ion energy as a function of the 
distance y. The stopping power of a material with respect to an incident 
particle is defined as 

= (2.17) 

and has been experimentally measured for many materials [16]. 

Thestopping power of a hydrogen gas for protons has been measured by 
Whaling [16], and his resul ts are shown in figure 4. A curve of the form 

1 
E; (2.18) 

was fitted to that data. It was found for the two regions 0.0 to 0.04 MeV and 
0.04 to 10.0 MeV that the curve fit is within 3 percent of Whaling's data. 
Values of the coefficients for Eq. 2.17 are given in the following table for 
the respective regions. 

Coeffic ienta 0.0 ~ E < 0.04 MeV 0.04 ~ E ~ 10.0 MeV 

ao 0.00294787 0.0512652 

al 0.359963 -0.246743 

a2 -1.84853 0.690572 

as 3.93144 0.389733 
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Note that in Eq. 2.18 the energy of the proton must be in units of M:V. 

As a further check on the accuracy of this curve fit, Eq. 2.18 can be 
integrated to obtain an expression for the range of a proton in molecular 
hydrogen, that is, 

N dy 1 -8 dEp (2.19) 

Recall that N = Nof(y) in general; therefore, 

fYmax 
No f(y) dy 

o J
o 1 

- 8 dEp 
Epin 

(2.20) 

where Ep' is the initial energy of the proton and Ymax is the range of the 
proton. 1Por a constant density Eq. 2.20 becomes 

Ymax 

where the appropriate coefficients must be used. This equation was compared to 
the experimental equation for the range of protons in molecular hydrogen found 
by Whaling. The predicted values of the present curve fit and the curve fit 
presented by Whaling are shown in table 1, and the agreement is very good. 

To obtain the energy loss for a particular collision for the Monte Carlo 
simulation, Eq. 2.17 is inverted to yield 

dE -N E: dy (2.22) 

In using this formula the energy of the proton in M:V before the collision is 
used in Eq. 2.18 to calculate E:. Ibis value is then used in Eq. 2.22 to obtain 
the desired energy loss during that collision. Note that the energy loss for 
a particular collision includes, in an average way, that from bremsstrahlung, 
ionization, electrical excitation losses, and so on. Therefore, the assumption 
made in section 2.3 that the collisions are elastic, affects only the calcula
tion of the scattering angle and not the energy loss or the path length. This 
means that any discrepency between , the Monte Carlo results and any experimental 
results that may be obtained would be, in part, due to the assumption in this 
study that the collisions are elastic in the calculation of the scattering 
angle. 

It should be pointed out that insufficient data on energy-loss cross 
sections does not permit the determination of the probability density distri
bution for the energy loss of the ion to be used in this study. Instead the 
continuous-slowing-down approximation is used, even though a complete solution 
of the problem would require a random fluctuation of the energy. 

For interest it is worth mentioning that the energy loss can be specified 
by alternate methods. Although these methods are not used in this report 
because they are not as appropriate, some of the most common ones are noted 
briefly here. For a more thorough dicussion of these methods the reader is 
referred to a paper by Berger [9]. 
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a) Fluctuations of ionization and bremss~rahlung losse To take into 
account these losses, the ionization and bremsstralung collisional cross 
sections must be known. The analysis for these cross sections is complicated 
and some have been derived for a wide variety of approximations • The use of 
complicated and approximate cross sections has been avoided in this study by 
using the range-energy relationship presented earlier in this section, which 
takes these fluctuations into accotmt on an average basis through the use of 
experimental data. 

b) Logarithmic spacing. For this case Ei+1 equals kEi as described 
previously for the case of the free path length. 

c) Uniform spacing. In this method Ei - Ei+1 equals a constant. 

Berger also describes a scheme that mixes these procedures, that is, the 
collisions are grouped together but are separated by a single "catastrophic" 
collision in Which the partiele loses a large fraction of its energy. By this 
means the partiele's history is divided into sections, in Which the continuous
slowing-down approximation is used, and each section then terminates in a 
catastrophic collision. 

2.5 Monte Carlo Computer Program 

All of the analysis required for the simulation of the spreading of an ion 
beam in a varying density scattering medium by a M:>nte Carlo technique has now 
been presented. This analysis was incorporated into a FORTRAN computer program 
that considers a tmidirectional point souree of protons travelling through a 
varying density molecular hydrogen gas. The computer-program listing for this 
Monte Carlo simulation is given in appendix C. In this computer program the 
point-source configuration is always used. This is all that is required for 
the simulation of any finite beam configuration, because by varying the point
souree intensity, position, and ion energy the resul ts for a fini te beam can be 
obtained through an integration of the numerical results generated by the Monte 
Carlo simulation (see chapter 4). Hence, all Monte Carlo results will be pre
sented initially in chapters 2 and 3 for a point souree. 

In the Monte Carlo simulation, ntunerous ions (ITOTP) are followed out to 
a distance somewhat shorter than the total range of the ion. As the ion path 
crosses several planes perpendicular to its initial direction (i.e., target 
planes) at specified distances from the souree, the coordinate position [x,z] 
of the crossing point can be recorded. When the Monte Carlo simulation is 
complete, these crossing point values could then be used to calculate the 
intensity I(x,z) of the beam at each particular plane. This could be accomp
lished by dividing the plane into small squares and counting the number of 
partieles that cross each square. The resulting spatial distribution of the 
intensity would be a surface as depicted in Fig. 5. It would be peaked at the 
center (x = 0, y = 0), where most of the ions would cross, and drop off symmet
rically from the center. Further, the distribution would remain symmetrie as 
the penetration depth increases, experiencing only a flattening out as depicted 
in Fig. 6. The intensity remains axially symmetrie because of the isotropie 
nature of the azimuthal angle and the tmiformity in the scat tering medium in 
the lateral directions. Note that the construction of such an intensity dis
tribution from Mont~ Carlo generated data would require a tremendous number of 
ion paths to ensure smoothness. 
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By considering the intensity distribution as a function of R (instead of 
x and y), the distrbution can be construc ted with markedly fewer ion paths. 
This is possible, of course, because the intensity is axially symmetric. The 
intensity distribution 1 (R) is shown in Fig. 7a. Note that this distribution 
could be constructed from the Monte Carlo data by counting paths crossing each 
target plane between concentric circles surrounding the beam axis and dividing 
by their mean radius. 

The probab ility density function p(R) can be obtained direc tly from the 
intensity I(R), by multiplying the path count in concentric circles by the mean 
radius. The resulting curve for the probability density is shown in Fig. 7b. 
Furthermore, the cumulative probability distribution P(R) follows directly from 
p(R), and it is shown in Fig. 7c. Note that the interrelationships among I(R), 
p(R), and P(R) are given in equation form as insets in Figs. 7a to 7c. 

The procedure to obtain p(R) from Monte Carlo generated data still invol
ves a counting of the path crossings. It would be most beneficial to be able 
to construct a distribution directly from the R values of the crossing points 
from the Monte Carlo data, without counting them. This is possible, in fact, 
if one construc ts the cumulative probability distribution first. All that is 
required is that one orders according to increasing magnitude the R values of 
the crossing points and plots the results. When this is done the smoothest 
distribution is obtained with a given number of ion paths. For this reason in 
the present study the cumulative probability distribution will always be 
constructed. Then p(R) and I(R) can be obtained when necessary from P(R). 

The construc tion of the cumulative probab il ity curve is now explained in 
greater detail. Consider the curve obtained from the Monte Carlo data by hav
ing the M:>nte Carlo simulation record only the value of the rad ius R from the 
beam axis of the crossing point of the ion path at each target plane. These 
values are then sorted in increasing magnitude for each particular plane. The 
sorted values are then plotted in the following manner. The distance R is 
recorded along the x-axis and the percentage point through the data file of the 
sorted R value is recorded on the y-axis. The first value of R (the smallest) 
is plotted at (Rl' l/ITOTP) and the next smallest is plotted at (R2' 2/ITOTP), 
and so on. The curve that would be produced by this process in shown in Fig. 
7c and is, by nature of construction, the cumulative probability distribution 
of the lateral displacement of the ion beam. This curve represents the fact 
that the probability of the ion path crossing the target plane at a distance of 
R or less is P(R). In this manner the Monte Carlo simulation data is employed 
directly to produce a curve from which the intensity distribution can then be 
obtained. Note that ITOTP is the total number of ion paths for the simulation. 

For the Mbnte Carlo simulations, certain initial conditions are required. 
These are given below. The constant No is set to be the value of the number 
density of molecular hydrogen at a pressure of one atmosphere and a temperature 
of 288 K, and it is the same value for all of the density distributions in this 
study with the exception of the free-jet density profile. Therefore, 

No = S.0946xl0 l9 atoms/cm 3 • (2.23) 

To evaluate the mean free path the total collisional cross section Q must 
be known. From appendix B the equation for Q is 

Q = 
4 + 6Ex + 7Ei/3 

(1 + Ex) 3 
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where Ex is a convenient nondimensional mass-weighted energy to be mentioned. 
The known quantity in an experiment of this type is generally the energy of the 
ion as it leaves the source and not the energy of the collision; therefore, Ex 
will be written in terms of the energy and mass of the proton. Now 

Ex = mE/mo Eo, (2.25) 

but from Eq. 6 of append ix B, 

(2.26) 

therefore, 

E = (2.27) 

where mp is the mass of a proton and Ep is the energy of the proton. As a 
consequence, 

(2.28) 

The reduced mass m for protons colliding with hydrogeri molecules is 

m (2.29) 

This completes the data specification for the Mente Carlo computer code. 

2.6 Numerical Results and Discussion 

The numerical results from the Mente Carlo simulation for a number of 
interesting examples of the spreading of ions from a point source as they pass 
through a scattering medium are now presented and discussed. For exemplary 
reasons the ion used in the simulations will be the proton and the scattering 
medium will be gaseous molecular hyd rog en • 

Example 1: Constant scattering density and constant proton energy 

This Monte Carto simulation is aphysical in that the proton energy remains 
constant or is unattenuated with distance. In an actual case the proton would, 
of course, lose energy as it experienced collisions during its random walk, and 
this is ignored for this case only. For this simulation the hydrogen density 
is constant; therefore, 

À -~cZn(r) 
-1 
NoQ Zn(r) (2.30 ) 

from Eq. 2.5 for the fr ee pa th length. The angles <p and ij are calculated from 
Eqs. 2.8 and 2.9 respec tively. 

The first set of Mente Carlo simulation results are presented graphically 
in the form of the cumulative probability distributions peR) in Fig. 8. These 
distributions, labelled 1 to 8, were constructed for different target planes at 
increasing distances from the point source, as tabulated on the next page. 
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Target Plane Penetration Depth R for peR) = 0.5 
Number (mean free paths) (cm) R* (cm) 

1 100 8.629 2.46184x10- 3 

2 200 17.258 7.54377x10- 3 

3 500 43.145 3. 22668x10-2. 

4 1000 86.290 9. 15732x10-2. 

5 2000 172.580 0.2802619 

6 3000 258.870 0.4969370 

7 4000 345.160 0.7652349 

8 5000 431.450 1.100479 

All of these results were generated by following 500 paths of protons with an 
e!!ergy of 10 MeV from the point souree to a distance of 5000 mean free paths 
(Àc = 0.08629 cm), through molecular hydrogen with a density of 5.0946x10 19 

atoms/cm 3 • The lateral dispersion behaviour of the proton beam as a function 
of penetration depth can be seen clearly. Note that the jaggedness in the 
distributions increases at larger distances, simply because the same number of 
points constitute each curve but are spread further apart in each consecutive 
curve. This j aggedness could be diminished, of course, if more proton paths 
were follo~d. 

The successive cumulative probability distributions, al though spread out, 
look similar in shape. In order to investigate the degree of similarity of the 
curves, the R values for each distribution are divided by the corresponding R 
value for which peR) = 0.5, which is denoted by R* for brevity. The resulting 
scaled curves are shown in Fig. 9. The self similarity of the scaled curves is 
readily apparent. Self similarity is excellent for peR) values less than 0.8 
and is fair for larger values. 

The spreading of the curves for peR) values greater than 0.8 is expected 
and is the result of not incorporating a sufficient number of statistics in 
this example. That is, not enough collisions are being considered or not 
enough proton paths are being followed to generate each distribution. A suffi
cient number of statistics are incorporated in both the azimuthal angle and the 
free path l~ngth; however, the number of scattering angles sampled was simply 
not sufficient to adequately represent the scattering angle distribution due to 
the sharpness of this distribution (see Fig. 4 of appendix B). The rapid 
change in this distribution and its long tail from e in the range of 10-1+ to 1T 
radians requires that the number of collisions be extremely large in order to 
properly accotnlt for the tail of the distribution. For a proton energy of 10 
Me V, one scattering angle of 1T/6 or greater would require more than 200 million 
collisions. If more proton paths were followed, smoother distributions would 
be obtained, and this would very likely make the self similarity more obvious. 

Each distribution at a target plane was generated with a different number 
of statistics, that is, although the number of proton paths remained constant 
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the number of collisions required to reach each plane was different. It would 
be more reasonable if an equal number of statistics was employed to generate 
each distribution. This was done to check the self similarity of the distribu
tions. The number of proton paths was altered for each plane in order to have 
each distribution constructed wi th the same number of collisions , rather than 
the same number of paths. The cumulative probability distributions for this 
case are shown in Fig. 10, for the same ~roton energy of 10 MeV and molecular 
hydrogen density of 5.0946x1019 atoms/ cm. The distributions in this figure 
resembie closely the cumulative probability distributions obtained by using an 
equal number of proton paths. Note that target plane number 1 is not included 
here, owing to the large number of proton paths (25,000) that would be needed, 

. which would be very costly to complete. The number of collisions employed to 
generate each distribution is constant at 2.5 million, and the number of paths 
to the target planes 200, 500, 1000, 2000, 3000, 4000 and 5000, are 12500, 
5000, 2500, 1250, 833, 650 and 500, respectively. In order to examine any 
reduction in the variation of the cumulative probability distributions, the 
distributions in Fig. 10 are scaled in the same manner as before for Fig. 9. 
The result of this scaling is shown in Fig. 11. As can be seen, there is some 
improvement in that the curves lie closer together. Sufficient statistics, 
however, are still not incorporated to significantly reduce the variation in 
the distributions. Note that in this figure the two insets show both the gas 
density and proton energy variations as a function of the penetration depth. 
The abscissa indicates the relative separation between successive target planes 
(1 to 8). 

The large number of proton paths considered to construct the target-plane 
distribution at a distance of 200 mean free paths from the point source pro
vides a test of the effect of the randomness of the Monte Carlo simulation. 
The raw data from the Monte Carlo simulation was broken into 12 consecutive 
groups of 1000 proton paths. These 12 groups were then treated as individual 
Monte Carlo simulations and, therefore, 12 separate experiments. The scaled 
distributions obtained from this procedure are shown in Fig. 12. The resulting 
scatter in these scaled distributions is of the same order of magnitude as 
those in Figs. 9 and 11. Therefore, it can be concluded that a large propor
tion of the scatter obtained in the Monte Carlo generated cumulative proba
bility distributions arises from the randomness introduced into the Monte Carlo 
simulation by not having a sufficient number of statistics for the scattering 
angle. 

The Monte Carlo simulation induced variations in the distributions could 
be reduced by considering a larger number of proton paths; however, this would 
result in too great of an increase in computer costs to be considered here. In 
stating this, it is realized that the Monte Carlo simulated results will not be 
the exact solution to the problem being discussed here. However, the results 
obtained will be "first-order" accurate with most of the variations occurring 
in the resulting curves arising from the randomness of the Monte Carlo simula
tion. In spite of this variation the results obtained from the simulation are 
quite good. Although this study cannot prove more conclusively that self simi
larity exists between the individual cumulative probability distributions, it 
is fully expec ted tliat this does in fac t occur. 

The results presented so far were all obtained for a proton energy of 10 
MeVand a gas density of 5.0946x1019 atoms/cm 3 • It is important to investi
gate the effects of different proton energies and different gas densities on 
the shape of the cllIllulative probability distributions, in order to see if simi
larity carries over from case to case. Three seprate cases were considered as 
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follows : 

a) Ep = 10 Mev, No ... 5. 0946x1 019 cm- 3 , 5: c ... 8. 629x1 0-2 cm, 

b) Ep ... 0.01 Mev, No -= 5.0946x1019 cm- 3 , 5: c .. 8. 629x1 0- 5 cm, 

c) Ep ... 10 Mev, No = 5. 0946x1 018 cm -3, 5: c = 8.629x10- 1 cm. 

The scaled resul ts from these three simulations are all combined in Fig. 13. 
The scatter in the distributions at larger peR) values still exists but is of 
the same degree experienced in each individual simulation. Therefore, it can 
be concluded that self similarity occurs for other cases of constant proton 
energies and gas densities, and that similarity also exists from one case to 
another. Additional MOnte Carlo results for other constant proton energies and 
molecular hydrogen densities, which are not presented here for brevity, are 
very similar and reinforce the above conclusions. 

Now that self similarity within each simulation and similarity from one 
simulation to the next has been established, a sealing law can be developed for 
the numerical resul ts. In order to accomplish this a particular point on each 
distribution must be tagged and then that point followed from target plane to 
target plane. Because the distributions are self similar, any po int on the 
distribution will therefore suffice. For simplicity, the R value corresponding 
to peR) = 0.5 is tagged and followed. This R value will be denoted as R* for 
simplicity. 

Assume a sealing law which has a functional dependenee of the form 

R* = a nb , (2.31) 

where a and bare constants and n is the number of mean free paths required to 
reach the t~rget plane. In order to determine the constant b in the above 
relation, the ratio of the R* value of the farthest target plane (n = 5000) to 
the R* value of each of the other target planes is considered and the logarithm 
of that ratio taken. A linear regression fit to the straight line 

Zn(Rrooo/R~) ~ b Zn(5000/n ) + c, (2.32) 

where the constant c should be zero, was completed by using a TI-58C calculator 
and taking into consideration the funte Carlo generated data for the three 
cases listed above. It was fOlUld that b = 1.5505 and c = 0.00188. The data, 
and the corresponding fitted curve, is shown in Fig. 14. The constant c is 
negligible compared to the first term; therefore, the functional dependence of 
R* on the penetration distance is simply 

R* = A Y 1 • 5505 cm, (2.33) 

where A is a constant that will be both density and energy dependent and y is 
the distance measured in cm. 

In order to determine the dependence on the energy of the proton and the 
density of the scattering medium in the scaling law, the ratios of the values 
of R* for a particular target plane were formed for the three cases listed 
above. 11;: ~s fOlUld that, to a good approximation, 

R* = 1.8174x10- 13 N 1 /z y1.5505/E . o P1n cm, (2.34) 
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where No is in units of atoms/em 3
, Ep. is in MeV, and y is in em. 1.n 

111is sealing law can now be used to obtain the R* value of the eumulative 
probability distribution at any penetration depth, proton energy, and hydrogen 
gas density, provided that the proton energy and gas density are constant. 
Onee the R* val ue has been obtained the entire curve is known because of the 
self similarity of the distribution with distance and the similarity from 
problem to problem. 

In order to obtain the eumulative probability distribution numerically or 
graphically to use in conjunetion with the sealing law just developed, a smooth 
distribution should be obtained from the funte Carlo simulation. This eumula
tive probability distribution eould then be normalized with respect to its R* 
value to obtain a smooth referenee curve. This curve, along with the sealing 
law predie tion for the R* value of the distribution given by Eq. 2.34, repre
sents all of the data obtainable from a funte Carlo simulation for different 
proton energies, hydrogen gas densities, and any penetration depth. 

A smooth reference distribution was eonstruc ted from the M:>nte Carlo simu
lation of 12,500 proton paths from a point souree to a distance of 200 mean 
free paths. 111e proton energy for this simulation was 10 MeV and the gas den
sity was 5. 0946x1 0 19 atomsl em 3. This cumulative probab ility distribution is 
shown graphically in Fig. 15, and it is tabulated in table 2 as a funetion of 
Ep. IN~/2yl.05505 (MeV-cmO.9495). To use this curve the values tabulated in 
taSYe 2 must be multiplied by 

NO. 5 1. 5 5 ° 5 IE ° y Pin ' 
(2.35) 

where Epin is the initial proton energy in MeV, No is the initial number den
sity of the hydrogen gas in atoms/cm 3 , and y is the penetration depth in cm. 
The resulting radial distanee R is then in em. 

In section 2.3 it was stated that a comparison of the results generated by 
the M:>nte Carlo simulation and the Gaussian approximation for multiple small 
angle scattering would be eonsidered. This comparison would indieate whether 
or not the M:>nte Carlo simulation was producing results that are theoretically 
and experimentally correct. If the dispersion of the beam is due to many small 
angle collisions , all of the same order of magnitude, then a Gaussian distribu
tion of ions would be expee ted [9]. However, when a single large angle scat
tering cross see tion is added to the analysis, the distribution obtained is 
that of a Gaussian with a stretched tail called the single large angle scatter
ing tail [17]. 111is tail is the result of collisions for which the scattering 
angle is much larger than average. These seattering events, al though infre
quent, succeed in pushing the ion farther away from the beam axis, and this 
results in the larger or stretehed tail. 

If the reference cumulative probability curve generated by the M:>nte Carlo 
simulation is now compared to a Gaussian distribution, the tail of the refer
enee curve should be longer than that of the Gaussian. This comparison is 
shown in Fig. 16, in which the Gaussian distribution and the M:>nte Carlo refer
ence curve are matched at the point where P(R) = Q.5. As can be seen from the 
figure, the distribution obtained is a Gaussian distribution but with an 
extended tail. 111is extended tail has the trend both predicted by theory and 
measured by experiment [17]. Therefore, it can be concluded that the M:>nte 
Carlo simulation gives resul ts that have the correct physical shape. 
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Figure 16 shows that the Gaussian distribution does not accurately repre
sent the entire cumulative probability distribution obtained from the Monte 
Carlo simulation. In order to produce an analytical function that matches the 
Monte Carlo generated distribution, a suitable curve was fitted to the data in 
table 2. It is necessary to obtain a function that resembles the Gaussian 
distribution initially but has a longer tail. If the Arctan(R2/R*2) function 
is considered, it will have too long of a tail. Therefore, a linear combina
tion of the two functions - the Gaussian and the arc tang ent - was fitted to the 
data in table 2. It is found that the Monte Carlo data is represented weIl by 
the func tion 

P(R) l Arctan([R/R*]2) 
'TT 

(2.36 ) 

A graphical comparison between this curve fit and the Monte Carlo generated 
distribution is given in Fig. 17 for interest. The curve fit is a very good 
representation of the Monte Carlo data. 

Example 2: Constant scattering density and varying proton energy 

This Monte Carlo simulation is physical in that the energy of the proton 
in decreased in accordance with experimental data as described in section 2.4 • . 
Consider the case where the density of the hydrogen gas is constant at one 
atmosphere and 288 K, and the energy of the ion is initially 10 MeV. The posi
tions of the target planes of interest are described as 'being so many mean free 
paths (~) of the ion when it is at the position y = O. The angles ~ and @ are 
obtained from Eqs. 2.8 and 2.9, and the free path length is obtained from 
Eq. 2.32. 

The Monte Carlo generated cumulative probability distributions are given 
in Fig. 18. These distributions, labelled 1 to 8, were construc ted for target 
planes at in~reasing distances from the point source, as tabulated below. 

Target Plane Penetration Depth R for P(R) = 0.5 Pro ton Energy 
Number (mean free paths) (cm) R* (cm) (MeV) 

1 100 8.629 2. 4906x10- 3 9.9253 

2 200 17.258 7. 1 912 xl 0 - 3 9.8495 

3 500 43.145 3. 1728x10 -2 9.6188 

4 1000 86.290 9. 3764x10-2 9.2237 

5 2000 172.580 0.27699 8.3864 

6 3000 258.870 0.53633 7.4717 

7 4000 345.160 0.90327 6.4512 

8 5000 431.450 1.33641 5.2727 
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All of these results were generated by following 500 paths of protons with an 
initial energy of_10 MeV from the point souree to a distance of 5000 initial 
mean free raths (Àc = 0.08629 cm), through molecular hydrogen with a density of 
5. 0946x1 cr a toms/ ern3

• The lateral dispersion behav iour of the proton beam as 
a function of penetration depth can be seen clearly. 

The scaled cumulative probability distributions for this example are shown 
in Fig. 19. Again the self similarity of the distributions is very good for 
values of P (R) less than about 0.8, but scatter exists for larger values of 
P(R). However, the scat ter that is present is only slightly larger than that 
incurred by the randomness of the Monte Carlo simulation (see Fig. 12), and 
thus most of the scatter is attributed to the simulation (i.e., an insufficient 
number of statistics for the scattering angle). 

Another very interesting aspect of Fig. 19 is the comparison of the smooth 
thick reference curve with the rest of the distributions. It lies in the 
center of the distributions. This curve is not the average of the other curves 
but rather it is the cumulative probability reference distribution constructed 
from example 1. This reference distribution was obtained from a completely 
aphysical simulation (constant proton energy) but it has the same shape as the 
distributions generated from this physically real example. This means that the 
reference distribution has the same shape as that of the distributions for this 
new example, and similarity is now extended to this case with a varying proton 
energy. 

Now that it has been found that the shape of the cumulative probability 
distribution has not changed it is interesting to find out to what extent the 
sealing law given by Eq. 2.34 is applicable. Note that it should not be 
expected that the sealing law will be very accurate, because the varying energy 
of the proton is not accounted for in its development. The Monte Carlo genera
ted data for the R* values of the various target planes is shown in Fig. 20 
along with the straight line given by Eq. 2.34. In this figure it is seen that 
the sealing law prediction for the R* values of the farthest planes is too 
smalle This behaviour is to be expected because of the decreasing energy of 
the proton. However, at the target planes where the energy of the proton is 
not significantly attenuated the sealing law prediction is within a few percent 
of the Monte Carlo generated values. 

Example 3: Linearly increasing scat tering density and varying proton energy 

Consider a lin~arly varying density N = No (1 + by) for which the density 
doubles af ter 500 initial mean free paths, that is, b = 1/(500\c)' The angles 
~ and ® are obtainedfrom Eqs. 2.8 and 2.9 and the free path length is obtained 
from Eq. 2.5 as (Eq. 17 of appendix A) 

À 
1 _ 2bÀc l.n (r) 

Cl + bYl) 2 

(2.37) 

The Monte Carlp generated cumulative probability distributions are given 
in Fig. 21. These distributions, labelled 1 to 7, were constructed for target 
planes at increasing distances from the point source, as tabulated on the next 
page. 
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Target Plane Penetration Depth R for peR) = 0.5 Proton Energy 
Number (mean free paths) (cm) R* (cm) (~V) 

1 100 8.629 2. 51504x1 0- 3 9.917 

2 200 17.258 7.58537x10- 3 9.819 

3 400 34.516 2. 59852x10-2 9.572 

4 600 51.774 5.3173 7x10- 2 9.255 

5 800 69.032 8. 76831x10- 2 8.863 

6 1000 86.290 0.1626170 8.385 

7 1200 103.550 0.1796409 7.810 

All of these results were generated by following 500 paths of protons with an 
initial energy of 10 MeV from the point souree to a distance of 1200 initial 
mean free paths (Xc = 0.08629 cm), through molecular hydrogen with an initial 
density of 5. 0946x1 0 19 a toms/ cm 3. 

The scaled cumulative probab ility distributions for this example are shown 
in Fig. 22. The self similarity of the distributions is again very good for 
peR) values below about 0.7, but scatter exists for higher values. However, 
the amount of scatter present is of the same magnitude as the Monte Carlo 
induced scatter (see Fig. 12), and thus it can be concluded that self similar
ity very likely exists for these distributions. 

In Fig. 22, the thic k smooth curve is again the reference curve generated 
for example 1. It again has the same shape as the distributions generated in 
this example, showing that similarity is also extended to this example of an 
increasing scattering density. Because the sealing law developed in example /1 
might be of use for the current example, the Monte Carlo generated data for the 
R* values at the various target planes are given in Fig. 23, along with the 
line generated by the sealing law equation (Eq. 2.34). It can be seen from 
this figure that the first two target planes have had their R* value predie ted 
weIl, but the sealing law gives results that are much too small for the remain
ing target planes. This behaviour can be explained by the rising scattering 
density and the falling proton energy. The decreasing proton energy causes the 
prediction to drop as experienced in example 2 and the density now increases 
the deviation for the same reason. It must be concluded that the empirical 
sealing law developed for example 1 is not very useful for this current 
example. 

Example 4: Linearly decreasing scattering density and varying proton energy 

Consider a linearly varying density N = N 0(1 - by) for which the density 
of the scattering medium is zero af ter 5000 initial mean free paths, that is, 
b = 1/(5000X c). The same equations apply for this example as apply for example 
3, because the only change is that the density now decreases with distance 
instead of increases. 
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The M:>nte Carlo generated cmnulative probability distributions are given 
in Fig. 24. These distributions, labelled 1 to 8, were construc ted for differ
ent target planes at increasing distances from the point souree, as tabulated 
below. 

Target Plane Penetration Depth R for P(R) = 0.5 Proton Energy 
Number (mean free paths) (cm) R* (cm) (MeV) 

1 100 8.629 2. 19372 xl 0 - g 9.926 

2 200 17.258 6. 75508x10- g 
9.852 

3 500 43.145 2.95470x10- 2 9.638 

4 1000 86.290 9.11058x10-2 9.304 , 

5 2000 172.258 0.264821 8.730 

6 3000 258.887 0.491845 8.300 

7 4000 345.160 0.735808 8.032 

8 4500 388.310 0.864582 7.965 

All of these results were generated by following 500 paths of protons with an 
initial energy of 10 MeV from the point souree to a distance of 4500 initial 
mean free paths (~c = 0.08629 cm), through molecular hydrogen with an initial 
density of 5.0946x10 19 atoms/cm 3 • 

The scaled cumulative probability distributions for this example are shown 
in Fig. 25. Again the self similarity of the distributions is extremely good" 
although some scatter still occurs for P(R) values greater than 0.7. However, 
the scatter that is present is still of the same magnitude as the scatter that 
is induced by the M:>nte Carlo simulation itself (see Fig. 12), and thus it can 
be concluded that the cumulative distributions obtained are again very likely 
self similar. 

In Fig. 25 the thick smooth curve is again the reference curve generated 
for example 1, and ~t again has the same shape as the distributions generated 
in this example. Therefore, the sealing law developed in example 1 is checked 
to see if it applies for the current example. The Monte Carlo generated data 
for the R* values of the various target planes is given in Fig. 26, along with 
the line generated qy the scaling law equation (Eq. 2.34). As can be seen from 
this figure, the empirical prediction is initially a little too large, owing to 
the decreasing density not accounted for in the empirica! equation. However, 
the Monte Carlo dat~ points begin to approach the empirica! curve and then de
viate again. This is due to the compensating effects of the decreasing density 
and the decreasing ~nergy. Therefore, the accuracy of empirical prediction is 
due only to the fortuitous chance of these counterbalancing effects. 
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Example 5: Exponentially increasing gas density and varying proton energy 

Consider an exponentially increasing density N = Noexp[b(y-a)], for Which 
b = 1/(1000~c) and a - 3000~c. The angles ~ and 8 are determined from Eqs. 2.8 
and 2.9 and the free path length is determined from Eq. 2.5 as (Eq. 18 of 
appendix A) 

À (2.38) 

where ~c'" I/No ç. In this example the target planes are specified in terms of 
the number of '-cs. The MJnte Carlo generated cumulative probability distribu
tions are given in Fig. 27. These distributions, labelled 1 to 9, were con
structed for different target planes at increasing distances from the point 
source, as tabulated below. 

Target Plane Penetration Depth R for peR) = 0.5 Proton Energy 
Number (mean free paths) (cm) R* (cm) (~V) 

1 1000 86.29 1.95222x1o-3 9.936 

2 2000 172.58 7.35981 xl 0-2 9.758 

3 2500 217.73 0.166190 9.573 

4 3000 258.87 0.180296 9.261 

5 3200 276.13 0.209753 9.082 

6 3500 302.02 0.263745 8.728 

7 3800 327.90 0.328804 8.229 

8 4000 345.16 0.373129 7.781 

9 4200 362.42 0.428605 7.204 

All of these results were generated by following 500 paths of protons with an 
initial energy of 10 MeV from the point source to a distance of 4200 initial 
mean free paths (~c c 0.08629 cm), through molecular hydrogen with the constant 
No = 5.0949x1019 atoms/cm 3 • . 

The scaled cumulative probability distributions for this example are shown 
in Fig. 28. Again the self similarity of the distributions is very good, but 
scatter again exists for peR) values greater than 0.7. However, the scatter is 
of the same magnitude as that introduced by the randomness of the MJnte Carlo 
simulation, and th us it can be concluded tbat the curves are self similar. 

In Fig. 28 the thick smooth curve is again the reference curve generated 
for example 1. It also has the same basic shape as the distributions generated 
in this example, and it illustrates that similarity is also extended to this 
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problem. In order to check the sealing law developed in example 1, the Monte 
Carlo generated data for the R* values of the various target planes is given in 
Fig. 29, along with the line generated by the sealing law equation (Eq. 2.34). 
It can be seen from this figure that the empirical sc al ing law is accurate only 
for the first target plane. The prediction is accurate for this plane simply 
because the gas density and proton energy variations are very small up to this 
plane. The extreme change in gas density not accounted for in the sealing law 
accounts for the large discrepancy in the other resul ts. It must be concluded 
that the sealing law is not very useful for this example. 

Example 6: Exponentially decreasing gas density and varying proton energy 

Consider an exponentially decreasing density N = Noexp[-b(y-a)] , for Which 
b = l/(lOOOfc ) and a = 1200~. The equations for calculating À, <1>, and @ are 
the same as the equations used in example 5. In this example the target planes 
are specified in terms of the number of mean free paths of the ion When it is 
at the position y = a. The Monte Carlo generated cumulative probability dis
tributions are given in Fig. 30. These distributions, labelled 1 to 10, were 
constructed for different target planes at increasing distances from the point 
source, as tabulated below. 

Target Plane Penetration Depth R for P(R) = 0.5 Proton Energy 
Number (mean free pa ths) (cm) 

R* (cm) 
(~V) 

1 100 8.629 4. 58055x10- 3 9.761 

2 200 17.258 1. 372 20x1 0 - 2 9.539 

3 400 34.516 4.82780x10- 2 9.147 

4 800 69.032 0.122729 8.536 

5 1000 86.,290 0.172592 8.301 

6 1500 129.440 0.308921 7.869 

7 2000 172.580 0.468089 7.597 

8 3000 258.870 0.826468 7.324 

9 4000 345.160 1.18736 7.222 

10 5000 431.450 1.55396 7.184 

All of these results were generated by following 500 paths of protons with an 
i~itial energy of 10 MeV from the point souree to a distance of 5000 Xcs 
(Àc = 0.08629 cm), through molecular hydrogen with No = 5.0949x1019 atoms/cm3 • 

The scaled cumulative probability distributions for this example are shown 
in Fig. 31. Again the self similarity of the distributions is very good, and 
scatter also exists for P(R) values greater than 0.7. However, the scatter 
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that is present is only slightly larger than that incurred in the randomness of 
the M:mte Carlo simulation (see Fig. 12) and thus most of the scatter can be 
attributed to the simulation. The remainder of the scatter could very weIl be 
attributed to an insuffic ient number of statistics being considered, as discus
sed earl ier • 

In Fig. 31 the thick smooth curve is again the reference curve generated 
for example 1, and it again has the same shape as the distributions generated 
in this example. To check on the scaling law developed in example 1, the M:>nte 
Carlo generated data for the R* values of the various target planes is given in 
Fig. 32, along with the line generated by the scaling lawequation (Eq. 2.34). 
In this example the scaling law prediction is good for most of the target 
planes, with the third plane probably being a spurious point. This accuracy 
was not expected but results from the fortuitous counterbalancing of the two 
effects of the proton energy loss and the scattering density decrease. This 
balancing will not occur in general , and thus the scaling law should not be 
used for such problems. 

Example 7: Free-jet expansion scattering density and varying proton energy 

Consider a free-jet flow field typical of that occurring in gas-target 
neutron generators [3-6]. As sketched in Fig. 1, the ion beam is directed 
along the free jet and orifice axis and comes to a stop inside of the orifice 
flow where the gas is most dense. The density of such a flow field is weIl 
represented empirically by 

N Norf[ 1 + H(Xorf - X){Xorf - xJ2r1
, (2.39) 

where 

X y/D (2 . 40) 

and 

H(X) 4 1 + CX/10 (2.41 ) 
1 + 4X/10 

In these expressions Norf is the number density in atoms/cm 3 of the free jet at 
the orifice, D is the diameter of the orifice, X is the dimensionless distance 
from the source, Xorf is the dimensionless position of the orifice, and 

C 

1 
IY-1 2JY-1 
LY+1 B _ 

(2.42) 

where Y is the ratio of the specific heats of the gas and B equals 3.65 is a 
constant chosen to fit the available theoretical and experimental data. This 
equation is the resul t of a curve fit to such data given in Ref. 18. 

In the Mente Carlo computer code this density field was specified accord
ing to Eq. 2.39. In order to calculate the free path length, the gas density 
variation was taken to be a linear variation locally, and then the local slope 
was obtained from the derivative of Eq. 2.39 and used in Eq. 2.37 to calculate 
À. The Mach disk was taken into account, at which the density increases by a 
factor of s:f,.x in the flow direction owing to the strong shock wave. Behind the 
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Mach disk the density is assumed to be constant [18-20) and is denoted as Ninf. 

A Monte Carlo simulation was done for the following free-jet parameters: 

D = 2 cm, 

Xorf = 50, 

y 1.4 (diatomie gas), 

Norf = 5xl019 atoms/cm 3 , 

Ninf 1.8xl017 atoms/ cm 3 , 

and the location of the Mach disk was y = 70 cm. The initial energy of the 
proton was 0.4 Mev. 

The funte Carlo generated cumulative probability distribution for this 
example is given in Fig. 33. This distribution was construc ted at a target 
plane located at the the flow exit of the orifice for the free-jet expansion. 
The data generated by the funte Carlo simulation for this example is shown in 
the table below. 

Target Plane Penetration Depth R for peR) = 0.5 Proton Energy 
Number (cm) (cm) (MeV) 

1 100 0.146635 0.131 

For this set of results, 1000 proton paths were followed from the point souree 
to the orifice. For this case the energy of the proton falls from 0.4 MeV at 
the souree to 0.13 MeVat the orifice. 

The scaled cumulative probability distribution for this example is shown 
in Fig. 34. The thick smooth curve is again the reference curve generated for 
example 1, and it again has the same shape as the distribution generated in 
this example. To check on the sealing law developed in example 1, the funte 
Carlo generated data for the R* value of the target plane is given in Fig. 35, 
along with the line generated by the scaling . law equation (Eq. 2.34). In this 
example the sealing law predie tion is reasonably accurate because the range 
over which the proton energy and scattering density varies is small compared to 
the distance that the proton travels. 

2.7 Conclusions 

The funte Carlo method is good for handling a wide variety of density 
distributions in this type of problem. The method is easily set up and the 
computer programming is not very involved. It is, however, a very expensive 
procedure to use. The average M:>nte Carlo CPU time was approximately 2 hours 
on a Perkin Elmer 3~50 computer. The results obtained resembie the experi
mental oberservations in that the cumulative probability distribution obtained 
is the mul tiple small angle scattering Gaussian distribution wi th an added 

24 



large angle scattering tail. 

The Mente Carlo simulation results for each of the various examples con~ 
sidered showed that the cumulative probability distribution for the lateral 
spreading of an ion beam is a self similar function of penetration depth wi thin 
each example. Further, the Mente Carlo simulation showed that the cumulative 
probability distribution has the same shape for all of the examples considered. 
As a result of this similarity a simple scaling law was developed for predict
ing the R value for which peR) ... 0.5 for the aphysical case of constant proton 
energy and constant scattering density. In order to make use of this scaling 
law, a smooth distribution was obtained from a Mente Carlo simulation of 12,500 
proton paths and the curve was normalized and tabulated for later use. 

The simple scaling law was found to be of only limited use for most of the 
examples considered in this study. This might have been expected, owing to the 
simple analysis used in its development, which did not include the effects of 
variations in the proton energy and scattering density. If the scattering den
sity variation is not too extreme and the energy of the proton is not allowed 
to be attenuated by more than about 20 percent, then the scaling law is useful 
for giving a quick indication of the extent of the lateral spreading. However, 
if a more appropriate scaling law could be developed to account for variations 
of both the proton energy and the scattering density, then the accuracy of the 
predicted distribution should be improved significantly. This is considered in 
the next chapter. 

The possibility of analytically predicting the lateral spreading of the 
cumulative probability distribution for each problem and from one problem to 
another would have a number of benefits. This would include a tremendous 
saving in computing costs; the Mente Carlo simulation would only need to be run 
once for a large number of proton paths and for a relatively short distance to 
generate a reference distribution for use with the analytical scaling law, thus 
saving many hours of CPU time. Also, it was found that the Mente Carlo simula
tion does not produce smooth cumulative probability distributions, because of 
the limited number of statistics that could be used in the simulation. An 
analytical scaling law would have the benefit of considering average or ex-
pec ted values for all of the variables concerned and thus effectively consider 
an infinite number of proton paths, which obviously the Mente Carlo simulation 
cannot do. 

3.0 ANALYTIgAL APPROXIMATION OF ION BRAM SPREADING IN A SCATTERING MEDIUM 

3.1 Introduc tion 

The simplistic scaling law developed in the previous chapter was seen to 
be not very accurate whenever an extreme density change and/ or extreme energy 
variation was experienced. This breakdown can be attributed to the inadequate 
development of the scaling law, which did not take into account any changes in 
the ion energy or scattering medium density. For this reason it is beneficial 
to develop a scaling law that includes both the ion energy variation and the 
scattering density variation. Another more important reason for developing an 
analytical ~caling law is that the expensive Mente Carlo simulation can then be 
dispensed with and replaced by a quick and easy numerical integration, thus 
saving computing costs by a factor of at least two orders of magnitude. The 
purpose of this chapter is the development of such an analytical scaling law 
and an evaluation of its usefulness. 
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3.2 Ana1ytica1 Deve10pment of the Sca1ing Law 

The lateral displacement of the ion as it traverses the scattering medium 
is convenient1y recorded by its Cartesian coordinates af ter each collision. 
From Fig. 36 it is seen that the Cartesian coordinates of the ion af ter it has 
experienced n collisions are 

n 

L Ài ui , 
i=l 

Yn 
n 

L 
i=l 

n 

L 
i=l 

where ui = [ui, vi, wi] are the direction cosines of the ion path during the 
ith step and Ài is the path 1ength during the ith step. If the vector compon
ents ÏÏi-l = [Ui-I, vi-I, Wi-l] are the direction cosines of the ion during the 
(i-l)st step, and ®i and ~i are the def1ection ang1es from the 1ine-of-f1ight 
direction for this ith collision, then ni can be determined from these 
variables by 

u· = [sin(®i)cos(~i)ui-lwi-l - sin(@i)sin(~i)vi-l] /vi-wf-l + cos( ~i)Ui-l, 1 

v· 1 [sine ei) cos (~i)v i-lw i-I + sine (i)i) sine ~i) ui-I] / vi -w Î-l + cos( 6i)v i-I, 

W· 1 -sin((j)i)cos(~i) vi -wf-l + cos( 9i)wi -1' 
(3.2) 

which are the same as Eqs. 2.13. The ang1e ~i is a1ways sma11 in this work; 
therefore, the smal1-ang1e approximation leads to 

and 

Equations 3.2 are unstab1e if Iw I is too close to unity [11]. 
initial direction no x [0, 1, 0] was chosen in chapter 2, and 
here. Therefore, ui and wi are a1ways sma11 and vi is a1most 
substitution of this :1-nformation in Eqs. 3.2 yie1ds 

U· 
1 

v· = 
1 

W· = 
1 

(3.3) 

Hence, the 
it is a1so used 
unity. The 

(3.4) 

af ter terms of second order in sma11ness are discarded. Equations 3.4 can be 
rewritten as 

i 
ui = - L 9jsin( ~j), 

j=1 
v i = 1, 

i 
wi = -L@jCOS(~j). 

j=1 
The lateral displacement R of the ion from its 

collisions is 

= 2 x n + 
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initia1 direction af ter n 
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which becomes 

n n 
L L (ÀiÀjUiUj + ÀiÀjWiwj) 
i=l j=l 

(3.7) 

wh en Eqs. 3.1 are used. Equation 3.7 can be rewritten in a more convenient 
form, with the use of Eqs. 3.5 as 

1~-1 J'~-l ÀiÀj [kL=i
1 

~ e e~ s (8 {) l -tI k co k - ~ _ . (3.8) 

If the number of collisions considered is small, this formula can be used 
directly to calculate the R~ value of the distribution. However, if the number 
of collisions is large, the direct use of this equation becomes unreasonable. 
One method of handling this difficulty is to calculate the expected value of 

2 the sum and th us the expected value of Rn' Af ter all, only one value of the 
cumulative probability curve is required to predict the entire distribution, 
because the distribution profiles are self similar for each example and similar 
from one example to the next. Thus, if the square root of the expected value 
of R~ (the RMS value) can be determined, then, because of the similarity of the 
cwnulative probab ility distribution, the whole curve can be obtained. 

To calculate the expected value of R~ in Eq. 3.8 the following proper ties 
of the expected value are used, 

and 

E{ À. À.} 
1 J 

E{ s.a.} 
1 J 

if i ;ot j, 

E{ ÀI} if i = j, 

ifi j, 

= 

where 0" is the Kronecker delta function. Therefore, Eq. 3.8 becomes 1J 

~ n min.(j. ,j ) 
L.. L E{Ài Àj} L 
i=l j=l k=l 

(3.9) 

(3.10) 

(3.U) 

(3.12) 

(3.13) 

(3.14) 

where min(i,j) means that the minimum of the pair (i,j) is to be used to 
terminate the series. 

In order to write E{ ÀiÀj} as E{ Ài}E{ Àj}' this sum must be broken into two 
swns in which the first one does not allow i = j and the second contains all of 
the other te~ms. If i and jare reversed in Eq. 3.14 the resultant sum is then 
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identical to the initial sum; therefore, Eq. 3.14 can be rewritten as 

n i-I ± 
n i 

E{R~} 2 L L EO'i)..j } E{8~} + .L EP,V L E{~} , (3.15) 

i=2 j=1 k=1 1=1 k=1 

which, because i ;é j in the first sum, can be rewritten as 

n i-I 

t n 1 
E{~} 2 L L );:i 5:j 82 + .L ~~ ~1 8

2 (3.16) k l. k 
i=2 j=l k=l 1=1 

where the overbar designates the expected value of the variable for brevity. 

The calculation of the expected value of the scattering angle in a labor
atory frame of reference cannot be completed because the probability density 
function has not been determined for that variable. However, the probability 
density function of the scattering angle in the center-of-mass frame has been 
determined in appendix B. Hence, the variabie of integration can be changed to 
the center-of-mass frame angle in order to complete the integration. From 
Eq. 2.12 of chapter 2 the scattering angle e> in the laboratory frame can be 
written as 

® = 28/3 (3.17) 

in the small-angle approximation, where 8 is the angle of scattering in the 
center-of-mass frame. 

A relationship between E{À 2 } and E{À} would also simplify the summation in 
Eq. 3.16. In appendix Ditwas found that 

(3.18) 

is a very good approximation for almost all of the examples considered in this 
work. The substitution of equations 3.17 and 3.18 into equation 3.16 then 
yields 

E{~} (3.19) ] ' i-I 

. L 
J=l 

n 

L 
i=2 

1 

L ~ 
k=l 

5: . 
J + 

where 5: and e2 must b~ determined from the physics of the collision process. 

The expected value of the free path length calculated in appendix D is 

E{ À} = 5: l/NQ, (3.20) 

where Q is a function of the ion energy and N is a fWlction of penetration 
depth. In appendix E it is shown that the expected value of the square of the 
scattering angle e is given approximate1y but accurate1y by 

12 
7Ex Zn(2.01Ex )' (3.21) 

where Ex mpEpfmoEo for this study. 
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If the density of the scattering medium and the energy of the ion are now 
constant, then it is apparent from Eqs. 3.20 and 3.21 that X and ë2 are also 
constant. Therefore, Eq. 3.19 can be written as 

= 

which reduces to 

i-I 

L 
n 

L t 1 + 
j=l k=l i=l 

2 - , 
(4/2 7)n( n+1 )(n+2)X e2• 

For large values of n, Eq. 3.23 can be approximated as 

E{R~} 

which in terms of the distance y is 

E{R~} = 

~ 

L 
k=l 

because n = y/~. The substitution of Eqs. 3.20 and 3.21 yields 

64 2 2 ( mp Ep) N 3 
243 TIao Eo Zn 2.01 moEo E~ y, 

(3.22) 

0.23) 

(3.24) 

0.25) 

(3.26) 

where the definition of Ex has been used. In this equation Ep is in eV, N is 
in atoms/cm 3 , and y is in cm. Note that the square root of Eq. 3.26, 

h'W1 
n 

/ [m Ep ) _ 64 2 2 P 1 5 
- 243 TI a o Eo Zn 2.01 moEo IN y . IEp, 

(3.27) 

has a functional form similar to the empirical formula developed in chapter 2 
(see Eq. 2.34), if the logarithmic term which varies slowly with energy is con
sidered to be constant. Thus, it is seen that the proton energy and scattering 
density dependence is the same as that for the empirical scaling law. However, 
the penetration depth dependence is now to the 1.5 power instead of 1.5504. 
The analytically predicted 1.5 is smaller than the empirically predicted value 
because of the small angle approximations introduced by Eq. 3.3. This approx
imation means that the ion is always travelling in the forward or y direction 
immediately prior to a collision which, of course, is not exactly true. How
ever, this a~proximation neglects only the second and higher order corrections 
as indicated by the small discrepancy between the empirically determined power 
and the analytically predicted one (3.4 percent) • 

The evaluation of Eq. 3.19 for more complex examples in which the scatter
ing density and ion energy both vary becomes more involved because X and ë'2 are 
no longer constants. In order to accommodate variations in energy and density, 
consider Eq. 3.19. M..ütiply each sum by unity, or equivalently td., L\j, or /::,k, 
that is, 

s[ n 
i-I ± n 

~~ i\i 
~ 

~l1kl E{R2
} = - r Xi i\i L Xj i\j ~i\k + L L 0.28) n 9 i=2 ~ 

j=l k=l i=l k=l 
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Because ~ is the average step size, Xi~i is just the average distance travelled 
between collisions or ~it.i = ~Yi. Therefore, Eq. 3.28 can be written as 

n 

L 
i=1 

~Yj t 
k=1 

~ 

2: 
k=1 

~YkJ. (3.29) 
);:k 

In this equation the sums can be approximated by the integrals to obtain the 
following more convenient expression, 

where e2 and f are functions of both the energy of the ion and its penetration 
depth. If for the moment the ion energy and the scattering density are kept 
constant, the integr,als can then be evaluated with little effort. For large 
values of y 

4 
27 

which is of the same form as that obtained from the sum (see Eq. 3.25). This 
illustrates the validity of this procedure. 

For the case of changing proton energy and scattering density, it is now 
necessary to obtain either of the variables y (penetration depth) or Ep (proton 
energy) as a function of the other variable, in order to complete the integra
tion. Because of the particular choice of range-energy relationship used in 
this study (see section 2.4 of chapter 2), it is most convenient to change the 
variable of integration to Ep' instead of y. This is done through Eq. 2.17, 

E: 
1 dE 
N dy , (3.32) 

where E: is the stoppi~g cross sec tion and is given by 

1 (3.33) - = 
E: 

The coefficients of this equation are given in section 2.4 of chapter 2. This 
equation, when integrated, yields y as a function of Ep, 

f
E 1 

- - dE , 
E . E: 
~n 

(3.34) 

where Epin or simply Ein is the initial energy of the ion at y = 0 and E is the 
energy of the ion at the the distance y. 
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Equation 3.32 can be used to rewrite Eq. 3.30 as 

+ 

If the expressions for N, E, X, and ë2 are used, this equation becomes 

where 

128 2 - 81 'JTa o 

N = Nof(y) 

(3.35 ) 

(3.36 ) 

(3.37) 

and y is determined from Eq. 3.34. This is the general result for all examples 
in "ibich the energy of the proton is attenua ted in gaseous molecular hydrogen. 

This completes the analysis for the sealing law and now examples of its 
use can be illustrated. The integral expression of Eq. 3.36 can be evaluated 
analytica1ly for only a few particularly simple scattering density variations 
and, therefore, a computer program was developed for the numerical integration 
of Eq. 3.36 py means of a simple rectangular integration. The listing of this 
computer program is given in appendix F. 

3.3 Analytical results and discussion 

Results in this section will provide an evaluation of the usefulness of 
the analytical sealing law for a few specific ex amp 1 es • The predicted resul ts 
will be compared to those generated by the Monte Carlo simulation for the same 
examples as presented in chapter 2. As done in chapter 2, all of the following 
examples wil! consider the ion to be a proton and the scattering medium to be 
gaseous molecular hydrogene 

I 
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Example 1: Constant scattering density and constant proton energy 

For this example, the integral equation can be avoided and the sum can be 
evaluated directly as in Eq. 3.27. A comparison of the values obtained from 
Eq. 3.27 and the RMS values of the funte Carlo distributions is given in the 
following table for the particular example of Ep = 10 Mev and No = 5. 0946x10 19 

atoms/cm 3 (1 atm, 288 K). 

RMS Value of R 

a) Monte Carlo b) Equation 3.27 
Ratio 

n b/a 
(cm) (cm) 

100 4.0596x10- 3 5. 5117x1 0- 3 1.358 

200 1. 1552xl0-2 1.5590x10-2 1.350 

500 4.5707x10- 2 6.1264x10- 2 1.348 

1000 0.126708 0.174299 1.376 

2000 0.392987 0.492993 . 1.254 

3000 0.791042 0.905686 1.145 

4000 1.23834 1.394395 1.126 

5000 1.74799 1.94872 7 1.115 

As can be seen from this table, the funte Carlo predictions for the RMS 
values correspond weU wi th the analytically predicted ones. The deviations 
that are present could be due to either the approximations that are used in the 
development of Eqs. 3.27 and 3.36 or the statistics employed in the funte Carlo 
simulation. The approximations employed in the development of Eqs. 3.27 and 
3.36 are believed to be very reasonable for the problems considered in this 
study. Therefore, it is assumed that the variations in the tabulated values 
arise from the use of an insufficient number of statistics in the funte Carlo 
simulation. The evidence that supports this assumption is partly contained in 
the tabulated results. As the penetration depth increases the number of 
statistics involved in the funte Carlo simulation increases, and thus the two 
predictions should come closer together, as in fact occurs in the tabulated 
values. 

Note that the one-sided trend in the ratio b/a, that is, the trend of the 
funte Carlo prediction to be always smaller than the analytical prediction, 
should not be expected. They could have been larger or intermixed • If a 
single large angle scattering event occurs in the funte Carlo simulation in the 
first few collisions, then this ion path will drift substantially from the ion 
beam axis, and the subsequent funte Carlo prediction for the RMS value of the 
cumulative probability distribution can be increased markedly if there are an 
insufficient number of statistics. In this case the funte Carlo RMS value will 
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be larger than the analytical prediction. However, if a large angle collision 
occurs af ter the ion has travelled most of the distance to the target plane, 
then the ion will not have a chance to drift significantly from the beam axis, 
and the subsequent M>nte Carlo prediction of the RMS value can be much smaller 
than the analytical resul t. Thus, the observed one-sidedness in the ratio b/ a 
should not be expec ted. However, the tendency of the ratio to approach unity, 
as the distance and collision statistics increase, demonstrates that the 
analytical scaling law is both valid and very useful for prediction purposes • 

A similar table was also completed for the M>nte Carlo simulation in which 
each target plane distribution was generated by employing an equal number of 
statistics. These results are given below. 

RMS Value of R 

a) Monte Carlo , b) Equation 3.27 
Ratio 

n 
(cm) -(cm) 

b/a 

100 - - -
200 1.2310xl0 

-2 
1.5590xl0 

-2 
1.267 

500 4. 7543xl0 
-2 

6.1264xl0 
-2 

1.289 

1000 0.202046 0.174299 0.863 

2000 0.576236 0.492993 0.856 

3000 1.096830 0.905686 0.826 

4000 1.39292 1.394395 1.001 

5000 1.74799 1.94872 7 1.115 

This data shows explicitly that any one-sidedness of the ratio b/ a should not 
be expected. The ratio starts initially above unity, increases, abruptly drops 
below unity and finally increases again. This indicates that the random fluc
tuations above and below unity depend on the occurrence of large angle scatter
ing events in the case of insufficient statistics. 

In order to gain additional insight into the effect of the randomness of 
the M>nte Carlo simulation on the ratio b/a, the analysis was completed for the 
12 different ~nte Carlo experiments obtained wi th equistatistics, as j ust con
sidered. The raw data from the 200 mean free paths target plane was broken 
into 12 consecutive simulations , each of 1000 proton paths. The RMS values of 
these 12 separate simulations are compared to the RMS value predicted by 
Eq. 3.27 for that target plane in the table at the top of the next page. 
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RMS Value of R 
Experiment 

a) Monte Carl0 b) Equation 3.27 
Ratio 

Number (cm) (cm) b/a 

1 1.1511xl0 
-2 1.5590xl0 

-2 
1.354 

2 1.0998x10 -2 1. 5590xl0-2 
1.418 

3 1.0462xl0 
-2 

1.5590xl0 
_2 

1.490 

4 1. 1703x1 0 
-2 

1.5590x10 
-2 

1.332 

5 1. 1200x10 
-2 1.5590xl0 

-2 
1.392 

-2 -2 
1.116 6 . 1.3974x10 1.5590x10 

7 1.2192xl0 
-2 

1.5590x10 
-2 

1.279 

8 1.8926x10 
-2 

1. 5590x10 
-2 

0.824 

9 1.0560x10 
-2 

1.5590x10 
-2 

1.476 

10 1.0662x10 
-2 

1. 5590x10 
-2 

1.462 

11 1.2155x10 
-2 

1.5590xl0 
-2 

1.283 

12 1. 1128x10 
-2 

1. 5590x10 
-2 

1.401 

As can be seen from these resul ts, the randomness introduced into the ratio b/ a 
by the M:>nte Carlo simulation can be fairly considerable (up to 50 percent) • 
The effect of large ang1e scattering events is clearly visible in the data for 
the eighth simulation where the ratio is suddenly less than unity. TIlerefore, 
it will be assumed that a ratio within 30 to 40 percent of unity has to be 
acceptable for Mbnte Carlo simulations which use an insufficient number of 
collision statistics. 

It should be noted that additional resul ts were also obtained for the 
following two cases: 

a) Ep = 10 Me V, 5.0946xl018 atoms/ern3 , 

b) Ep .. 0.01 MeV, No = 5.0946xl019 atoms/ern3 • 

However, because thes~ resul ts are very similar to those already presented, 
they will not be givep here. 

It is worth mentioning here that the shape of the extended tail of the 
cumulative probability distribution can be established correctly by the Mbnte 
Carlo simulation only if a very large number of collision statistics are used. 
Because this is not possible in the present work, the shape of the extended 
tail is not weIl estab1ished. If a few large angle collisions occur in the 
Mbnte Carlo simulation, the tail can be greatly extended compared to the case 
when such collisions 40 not occur. Yet, the extended tail shape has astrong 
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effect on the RMS value of the M:mte Carlo generated distributions. For 
example, a slightly longer or shorter extended tail can result in significantly 
different RMS values. This is believed to be the main reason for the large 
fluctuations in the b/a ratios from the value of unity. 

Example 2: Constant scattering density and varying proton energy 

Consider the case where the density of the hydrogen gas is constant at one 
atmosphere and 288 K [example 2 of chapter 2]. In this second example, because 
f(y) = 1, Eq. 3.36 can be integrated analytically, but because the result lVOuld 
contain more than 500 terms, Eq. 3.36 was integrated numerically instead. The 
resul ts of the numerical integration and the corresponding ones from the ~nte 
Carlo simulation are given for comparison in the following tabIe. 

RMS Value of R 

a) Monte Carlo b) Equation 3.27 Ratio 
n b/a 

100 4.24791x10- 3 5. 480688x1 0- 3 1.290 

200 1.18467x10-2 1.561 096x1 0-2 1.318 

500 4.476 77xl 0-2 6. 223572x10- 2 1.390 

1000 0.123349 0.1776375 1.440 

2000 0.34947 0.5130061 1.468 

3000 0.671193 0.9646772 1.437 

4000 1.11802 1.523882 1.363 

5000 1.7705 2.194779 1.240 

The Mente ~rlo generated RMS values agree fairly weIl with the analytically 
predicted values for this example. The ratio b/a again illustrates a one-sided 
behaviour but starts small and increases initially and then decreases. This is 
again believed to be due to the use of an insufficient number of statistics in 
the Mente ~rlo simulation. However, in spite of this, the results again show 
that the scaling law is both valid and very useful for prediction purposes. 

Example 3: Linearly increasing scat tering density and varying proton energy 

Consider a linearly varying density N = No(l + by), for which the density 
doubles af ter 500 initial mean free paths, that is, b = 1/(500Xc) [example 3 of 
chapter 2]. The results of the numerical integration of Eq. 3.36 and the cor

·responding RMS values obtained from the Mente Carlo simulation are given for 
comparison in the table at the top of the next page. 
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RMS Value of R 

a) Monte Carlo I b) Equation 3.27 Ratio 
n (cm) (cm) b/a 

100 4.08585x10- 3 5.588494x10- 3 1.368 

200 1. 35302x10-2 1. 636196x10- 2 1.209 

400 4.08866x10- 2 4. 873529x10-2 1.192 

600 7. 95496x10- 2 9.380299x10- 2 1.179 

800 0.129323 0.1512783 1.170 

1000 0.200466 0.2209936 1.102 

1200 0.286931 0.3035977 1.058 

These results are similar to those in examples 1 and 2, and the same conclu
sions can be made here. 

Example 4: Linearly decreasing scattering density and varying proton energy 

Consider a linearly varying density N = No (1 - by), for which the density 
of the scattering medium is zero af ter 5000 initial mean free paths, that is, 
b = 1/(5000Xd [example 4 of chapter 2]. The results of both the numerical 
integration of Eq. 3.36 and the Monte Carlo simulation are given for comparison 
in the following table. 

RMS Value of R 

a) Monte Carlo I b) Equation 3.27 
n (cm) (cm) b/a 

100 3.69596x10- 3 5.354520x10- 3 1.449 

200 1.11969x10-2 1. 540136x10-2 1.376 

500 4. 45387x10- 2 6.104793x10- 2 1.370 

1000 0.126246 0.172198 1.364 

2000 0.362576 0.4830323 1.332 

3000 0.673682 0.8740876 1.297 

4000 1.03337 1.318215 1.276 

4500 1.24277 1.550105 1.247 
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The agreement bet\to1een the M:>nte Carlo simulation and analytieal results for 
this example are not as good as the previous ones, simply beeause fe\to1er 
collisions are being eonsidered in this example. However, the agreement 
beeomes better as the ion travels away from the souree • If more ions had been 
eonsidered the agreement would have been even better • These resul ts still 
demonstrate that the analytieal predietion is valid and very useful. 

Example 5: Exponentially inereasing gas density and varying proton energy 

Consider an exponentially inereasing density N = Noexp[a(y-b)], for whieh 
a = 1/(1000Xe ) and b = 3000Xc [example 5 of ehapter 2]. The results of both 
the numerical integration of Eq. 3.36 and the Monte Carlo simulation are given 
for eomparison in the following tabie. 

RMS Value of R 

a) Monte Car10 I b) Equation 3.27 Ratio 
n 

(cm) (cm) 
b/a 

1000 3. 16963x10- 2 4.457416x10- 2 1.406 

2000 0.106099 0.1486396 1.401 

2500 0.164324 0.2271026 1.382 

3000 0.241806 0.328882 1.360 

3200 0.278902 0.377661 1.354 

3500 0.357009 0.4613879 1.292 

3800 0.457883 0.5597499 1.222 

4000 0.535488 0.6350828 1.186 

4200 0.620556 0.7199342 1.160 

The agreement again beeomes better as the penetration depth inereases. This is 
due to the rapidly inereasing number of collisions required to get from one 
target plane to the next. To get to the target plane for whieh n = 1000 only 
requires approximately 100 eollisions, but to get to the target plane for which 
n = 4200 requires approximately 6000 eollisions. This is due to the rapidly 
inereasing density variation. Again, the results demonstrate the validity and 
usefulness of the analytieal sealing law. 

Example 6: Exponentially deereasing gas density and varying proton energy 

Consider an exponentially deereasing density N = Noexp[-a(y-b)], for whieh 
a = 1/ (1 000 Xc> and b = 1200 Xc [example 6 of e hapter 2). The resul ts of the 
numerical integration of Eq. 3.36 and the eorresponding results from the Monte 

37 



Carlo simulation are given for comparison in the following table. 

RMS Value of R 

a) Monte Carlo ! b) Equation 3.27 Ratio 
b/a n (cm) (cm) 

100 9.52554x10- 3 9.869345x10- 3 1.036 

200 3.92642x10- 2 2.79306lx10-2 0.711 

400 0.106571 0.0780439 0.732 

800 0.258179 0.214970 0.833 

1000 0.340397 0.296263 0.870 

1500 0.562593 0.525185 0.933 

2000 0.803433 0.779900 0.971 

3000 1.32076 1.328994 1.006 

4000 1.8644 1.901423 1.020 

5000 2.42034 2.427491 1.003 

The agreement in this example is not good at the target planes closest to the 
point source, but is very good for those farther from the source. Note that 
the ratio b/a starts very close to unity and then drops. This effect is slowly 
washed out as the number of collisions increases from one target plane to the 
next. These results illustrate that the ratio ean again fluctuate about unity, 
but they eventually approach unity as the number of statistics increase in the 
Mbnte Carlo simulation. In spite of this, these results are another good 
illustration of the validity and usefulness of the analytical scaling law. 

Example 7: Free-jet expansion scattering density and varying proton energy 

Consider the free-j et expansion scattering density profile simulated in 
example 7 of chapter 2. The results of the numerical integration of Eq. 3.36 
and the corresponding results from the Monte Carlo simulation are given for 
comparison in the following table. 

RMS Value of R 

a) Monte Carlo 
, 

b) Equation 3.27 
Ratio 

n (cm) 
. 

(cm) b/a 

100 0.236779 0.219731 0.928 
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The agreement for this example is good and is another good illustration of the 
validity and usefulness of the analytical scaling law. 

3.4 Conclusions 

The approximate analytical method presented in this chapter predicts very 
satisfactorily the RMS value of the cumulative probability distribution for the 
lateral dispersion of a point-source proton beam in molecular hydrogene The 
agreement between the Monte Carlo generated data and the analytically predic ted 
values is acceptable, considering that the discrepancy is due mainly to the 
limited number of ion paths that can be followed in the Monte Carlo simluation. 
The most practical reason for using the analytical method is the speed and 
reduced cost in which predicted values can be obtained. Typical Monte Carlo 
computer runs consume 2 hours of CPU time whereas the numerical integration of 
Eq. 3.36 is done in less than 1 minute of CPU time, resulting in a two-order
of-magnitude reduction in computational effort. 

4.0 EXTENSION OF THE POINT-SOURCE RESULTS TO A FINITE BEAM 

All of the previous work dealt strictly with a 1.IDidirectional point-source 
beam of monoenergetic ions travelling through a gaseous scattering medium. The 
results of chapters 2 and 3 for the point source can now be used with some ad
ditional analysis to yield results for a finite-sized ion beam. The analysis 
is first developed in general for a finite beam of nonuniform area Aa (x,z) over 
which the ion intensity 10 (x,z) and energy Eo (x,z) can be initially nonuniform • 
Then, this general analysis is reduced to give results for the interesting spe
cif:lc case of a cylindrical unidirectional beam of monoenergetic ions having a . 
uniform intensity. Some graphical results are also presented in this chapter 
to demonstrate application. 

The Monte Carlo simulations of chapter 2 provided the reference cumulative 
probability distribution denoted as peR) for a unidirectional point source of 
monoenergetic ions at y = 0 and R = O. The results in chapter 3 demonstrated 
that such a reference distribution can be suitably warped by using the scaling 
law to provide the cumulative probab ility distr ibution at y = Yl for virtually 
any desired density variation with distance. This distribution can now be used 
in the following manner to calculate the intensity I(R) in particles per unit 
area per unit time for an entire finite-sized beam. 

For a unidirectional point source of monoenergetic ions, the lateral dis
persion of the resulting ion beam as it passes through a scattering medium is 
axisymmetric • In this case the number of ions M per unit time passing a target 
plane at di~tance y from the point source and within a radius R of the beam 
axis is giv~n by 

M M peR), (4.1) 

where M is the total number of ions per unit time .emitted by the point source 
and peR) is the cumulative probability distribution. The resulting ion inten
sity I(R) at the radius R in units of ions per unit area per unit time at the 
target plane is, therefore, 

I(R) 2'ITR dR dM. (4.2) 
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The combination of Eqs. 4.1 and 4.2 then gives 

I(R) 
M dP(R) -----

21TR dR 
(4.3) 

for this case of a point source. 

For the case of a finite-sized beam which can be considered to consist of 
an infinite number of point sources, Eq. 4.3 can now generalized to 

dI(X,y,Z) = 
IO(x,z) dP[R' ,y,Eo(x,z)] dxdz . 

21TR' dR' 
(4.4) 

In this expression dI(X,y,Z) is the resulting differential ion intensity at the 
position (X, y, Z) in the target plane from a point source or sources in the 
elemental area dxdz located at position (x, 0, z) in the source plane (see Fig. 
37). This point source has an initial intensity Io(x,z) and initial energy 
Eo(x,z), which are not considered here as constant over the initial beam area 
A(x,z). Also, R' = [(X - x)2 + (Z - z)2]O.5 is the lateral separation dis
tance in the (X, Z) plane (see Fig. 37). 

In order to calculate the total beam intensity I(X,y,Z) in ions per unit 
area per unit time at the point [X, y, Z] due to all of the point sources 
within a beam of initial cross sectional area Ao (x,z), Eq. 4.4 must then be in
tegrated over the entire initial area of the beam, giving 

I(X,y,Z) = I I Io(x,z) dP[R' ,y,Eo(x,z)] dxdz. 
27TR' dR' (4.5) 

(x, z) 

This is the general equation for the intensity distribution in the (X,Z) plane 
at a distance y for a finite-sized beam that has an area Ao(x,z) in the (x,z) 
plane and passes through a scattering medium. This expression would in general 
have to be integrated numerically to yield 1 (X,y ,Z) • 

The reduced or special case of a constant intensity, cylindrical, unidi
rec tional beam of monpenergetic ions will now be considered. Al though this 
special case is rather simple, the results are still of practical importance. 
For this basic case, I(X,y,Z) can be evaluated through the use of Eq. 4.5, by 
setting Io(x,z) = 10 , Eo(x,z) = Eo, and Ao(x,z) be the area of a circular beam 
of radius Ra. Equation 4.5 can now be written as 

I(x,y,Z) I I 2~~' 
(x, z) 

dP(R' ,y,Eo) 
dR' 

dxdz (4.6) 

In this expression the cumulative probability distribution peR' ,y,Eo) can be 
obtained in digital form from table 2 or as a smooth analytical function from 
Eq. 2.36, which was fitted to the digital data. This analytical function is 
repeated here for convenience, 

where P[R*(y,E o) ,y,E ol = 0.5. Therefore, the derivative of peR' ,y,Eo} is 
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simply 

dP(R' ) 
dR' 

+ 
2 R' 
TI R*(y,Eo) 

(4.8) 

1 

1 + 

Because of the cylindrical symmetry of this example it is best to change 
the variables of integration from x and z to R' and n. Substitution of this 
information into Eq. 4.6 gives 

f ~ax f nmax .!.Q.. dP(R' ,y,Eo) ddR' 
27T dR' n 

~in nmin 
I(R,y) (4.9) 

for the intensity I(Rty) in ions per unit area per unit time at the radius R 
from the beam axis due to the entire beam. 

In order to evaluate this integral, three geometr ies must now be consid
ered, and they are shown in Fig. 38. The first geometry involves only the case 
when R > Ro, whereas the second and third cases consider R < Ro but distinguish 
between R > Ro - R' and R < Ro - R'. If Ris greater than Ro then 

and 

and, hence, 

I(R,y) = 

Rmin R - Ro, 

R = R + Ro, ·ïIJ.ax 

nmax = [
R'2 + R2 - R~J 

Arccos 2R'R ' 

10 fR + Ro [R' 2 + R2 - R~ ] 
7T Arccos 2R'R 

R- Ro 

dP(R' ,y,Eo) dR'. 
dR' 

If R is less than Ro and R + R' is greater than Ro, then 

and 

nmax 

R. = Ro - R, 
-"lD~n 

= Ro + R, 

[ 
R' 2 + R 2 - R% ] 

Arccos 2R'R 
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(4.13) 

(4.14) 

(4.15) 

(4.16) 



again. Therefore, 

I(R,y) = 10 f Ro + R [ RI 2 + R2 - R~ ] 1T Arccos 2R
'
R 

Ra - R -

dP(R',y,Eo) dR
' 

, 
dR ' 

(4.17) 

which is the same as Eq. 4.13 but with a different lower limit of integration. 
If R is less than Ra but R + R' is less than Ra, then 

0, (4.18) 

Rmax Ra - R, (4.19) 

and 

nmax = TI. (4.20) 

Consequently, 

I(R,y) Ia P (Ro -R,y ,Eo) (4.21) 

for this simplest final case. 

In summary, therefore, if R > Ra, then 

I fR+Ra [R'2 + R2 - R~ _-I dP(R',y,Ea) 
I(R,y) = ~ Arccos 2R ' R dR' 

R- Ra 

dR I , (4.22) 

and if R < Ra, t hen 

I(R,y) = IoP(Ro-R,y,E a) (4.23) 

!Q.. f Ra + R A [ RI 2 + R 2 - R~ ] dP (R I ,y, Eo) 
+ TI rccos 2R

'
R dR' dR ' , 

Ra - R -

where P(Ra-R,y,Ea) is obtained from Eq. 4.7 and dP(R',y,Eo)/dR is obtained 
from Eq. 4.8. Notice that, if R = Ro, Eqs. 4.22 and 4.23 are then equivalent. 

The value of R* in this chapter is the 50 percent point of the cumulative 
probability distribution of the lateral dispersion of a po int source of ions 
seattering in gaseous molecular hydrogene Note that R* is dependent on the 
penetration depth, scattering density, and initial ion energy. In chapter 3 an 
analytical sealing law was developed for predicting the root-mean-square (RMS) 
value of the cumulative probab ility distribution (see Eq. 3.36). It is, there
fore, necessary to convert the value of R* to the RMS value of the curve. It 
was found that the RMS value of the reference distribution given in table 2 of 
ehapter 2 is 5/3 larger than the 50 percent R value (R*) of the distribution. 
Therefore, the analytical RMS value can be calculated by using Eq. 3.36 for the 
particular penetration depth and density distribution desired, and then this 
value can be mul tiplied by 3/5 and then used as the R* value fo r the cumulative 
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probability distribution given by Eqs. 4.22 and 4.23. In this manner the lat
eral dispersion of a finite-sized ion beam ean be predieted. 

To illustrate some of the results from these equations, consider an ini
tially cylindrical beam of ions of uniform intensity 10 and energy Eo. The 
initial intensity distribution as a function of R at the souree plane (y = 0) 
for this beam is ShOWIl in Fig. 39a. The probability density function for this 
beam ean be obtained from the intensity distribution by multiplying by R, that 
is, p (R) = R I(R). This distribution for the ion beam is shown in Fig. 39b. 
Finally, the eumulative probability distribution for this ion beam ean be 
obtained by integrating the probability density function. For this particular 
beam it is found that P(R) = (R/Ro) for R < Ra and P(R) = 1 for R > Ra. This 
distr ibut ion is ShOWIl in Fig. 39c. 

In order to calculate the intensity, probability density, and eumulative 
probability distributions, increasing values of R* can be used in Eqs. 4.22 and 
4.23 and these integrals evaluated. Intuitively it is expeeted that the three 
distributions would approach those of a point souree (see Fig. 6) as the R* 
value or the penetration depth increases. This would occur beeause a finite
sized ion beam would appear more and more like a point souree as the distance 
to the target plane increases. The results given in Figs. 40, 41, and 42 
illustrate how the distributions obtained from Eqs. 4.24 and 4.25 change in 
shape for inereasing values of R*, or increasing distance from to the target 
plane. These figures also show that the distributions do indeed approach the 
corresponding shape of the point-source distributions as the distance 
inereases. 

Before leaving this chapter, it is worth mentioning that I(R,y) ean be 
obtained from Eqs. 4.22 and 4.23 by integrating with respect to either R' or 
P(R' ,y,Eo)' In the former case used herein a smooth curve fit to P(R' ,y,Eo) is 
needed such that dP(R' ,y,Eo)/dR' can be obtained to do the integration. In the 
latter case, however, a curve fit is not required and the MJnte Carlo generated 
numerical distribution for P(R' ,y,Eo) can be used directly in the integration. 
This lat ter integration technique has been employed in work not presented here. 
lts use is not necessary, but in some instanees it has inherent advantages. 

5.0 CONCLUDING REMARKS 

The lateral dispersion of a po int-source or finite-sized ion beam in a 
variabie density scattering medium due to multiple Coulomb scattering has now 
been solved successfully. A Monte Carlo simulation was used first to solve 
this problem. The results were very expensive to produce if the tail of the 
distributions were generated with any precision. However, they do have the 
behaviour expected of both the theoretical and experimental observations. The 
cumulative probability distribution P(R) for the lateral dispersion of a point 
souree beam of ions was shown to be self similar with respect to ion penetra
tion depth, ion energy, and number density variation of the scattering medium 
within each example, and it was also shown to be similar from one example to 
the next. This similarity was not expected, but has important implications 
regarding other numerical solutions of such ion-beam dispersion problems. 

A successful approximate analytical sealing law was developed to predict 
the root-mean-square value of the cumulative probability distribution. This 
sealing law can be used to warp the Mente Carlo generated reference cumulative 
probability distribution to give the solution to almost any new corresponding 
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ion-beam dispersion problem. 

The present method of solving the problem of the lateral dispersion of a 
point-source or finite-sized ion beam as it traverses a scattering medium is 
fundamental to understanding the transport of ion beams in scattering mediums. 
Although the present method was illustrated by maldng use of the collision 
theory of protons scattering in gaseous molecular hydrogen, the method could 
easily be applied to the case of other ions scattering in other gaseous, 
liquid, or solid mediums. 
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TABLE 1 

RANGE OF A PRarON IN MOLECULAR HYDROGEN 
(at a pressure of 1 atm and a temperature of 288 K) 

Proton Energy Calcul ated Range (Eq. 2.21) Range (Whaling [16) ) 
(~V) (cm) (cm) 

0.040 0.1740 0.174 
0.045 0.1898 0.190 
0.050 0.2052 0.205 
0.055 0.2205 0.220 
0.060 0.2358 0.236 
0.065 0.2510 0.251 
0.070 0.2663 0.266 
0.075 0.2818 0.282 
0.080 0.2975 0.297 
0.085 0.3134 0.313 
0.090 0.3296 0.329 
0.095 0.3461 0.346 
0.100 0.3629 0.362 
0.150 0.5508 0.551 
0.200 0.7794 0.780 
0.250 1.0509 1.05 
0.300 1.3653 1.37 
0.350 1.7220 1.73 
0.400 2.1204 2.13 
0.450 2.5598 2.57 
0.500 3.0394 3.05 
0.550 3.5586 3.57 
0.600 4.1166 4.12 
0.650 4.7129 4.72 
0.700 5.3470 5.35 
0.750 6.0183 6.02 
0.800 6.7264 6.72 
0.850 7.4707 7.46 
0.900 8.2510 8.24 
0.950 9.0668 9.06 
1.000 9.9177 9.91 
1.500 20.2943 20.2 
2.000 33.9058 33.8 
2.500 50.5874 50.6 
3.000 70.2233 70.3 
3.500 92.7275 92.8 
4.000 118.0316 118. 
4.500 146.0803 146. 
5.000 176.8277 177. 
5.500 210.2345 210. 
6.000 246.2668 246. 
6.500 284.8950 285. 
7.000 326.0930 326. 
7.500 369.8374 370. 
8.000 416.1069 417. 
8.500 464.8826 . 466. 
9.000 516.1470 518. 
9.500 569.8835 572. 

10.000 626.0789 628. 



TABLE 2 

MONTE CARLO GENERATED CUMULATIVE PROBABILITY DISTRIBUTION peR) 
FOR THE LATERAL DISPERSION OF APRarON BEAM IN GASEOUS MOLECULAR HYDROGEN 

The values in this table are normalized sa that to calculate the value of R in 
cm the tabulated value must be multiplied by 

NO. 5y 1 • 5 5 0 5/ Ep • 
o 1n 

where No is , the gas density in molecules/ cm3 , Epin is the proton energy in MeV 
and y is the penetration depth in cm. This distribution was generated for the 
aphysical case of a constant energy proton and a constant scattering density. 

per) r per) r per) r 

0.000 O.OOOOOE+OO 0.070 0.56487E-13 0.140 0.81724E-13 
0.002 0.81876E-14 0.072 0.57314E-13 0.142 0.82419E-13 
0.004 0.13569E-13 0.074 0.58168E-13 0.144 0.83114E-13 
0.006 0.15800E-13 0.076 0.59150E-13 0.146 0.83894E-13 
0.008 0.18547E-13 0.078 0.60086E-13 0.148 0.84480E-13 
0.010 0.20749E-13 0.080 0.60959E-13 0.150 0.85060E-13 
0.012 0.21934E-13 0.082 0.62167E-13 0.152 0.85632E-13 
0.014 0.24151E-13 0.084 0.62996E-13 0.154 0.86508E-13 
0.016 0.25796E-13 0.086 0.63770E-13 0.156 0.87218E-13 
0.018 0.28438E-13 0.088 0.64511E-13 0.158 0.87987E-13 
0.020 0.29834E-13 0.090 0.65123E-13 0.160 0.88452E-13 
0.022 0.31430E-13 0.092 0.65935E-13 0.162 0.89035E-13 
0.024 0.32513E-13 0.094 0.66715E-13 0.164 0.89701E-13 
0.026 0.34064E-13 0.096 0.67245E-13 0.166 0.90408E-13 
0.028 0.35153E-13 0.098 0.68127E-13 0.168 0.90972E-13 
0.030 0.37044E-13 0.100 O. 685 94E-13 0.170 0.91424E-13 
0.032 0.38588E-13 0.102 0.69239E-13 0.172 0.91956E-13 
0.034 0.40235E-13 0.104 0.69924E-13 0.174 0.92591E-13 
0.036 0.41144E-13 0.106 0.70675E-13 0.176 0.93247E-13 
0.038 0.42246E-13 0.108 0.71219E-13 0.178 0.93807E-13 
0.040 0.433&2E-13 0.110 0.71834E-13 0.180 0.94265E-13 
0.042 0.44585E-13 0.112 0.72408E-13 0.182 0.94739E-13 
0.044 0.45890E-13 0.114 0.73009E-13 0.184 0.95364E-13 
0.046 0.46575E-13 0.116 0.73666E-13 0.186 0.95937E-13 
0.048 0.47578E-13 0.118 0.74420E-13 0.188 0.96523E-13 
0.050 0.48706E-13 0.120 0.75364E-13 0.190 0.97082E-13 
0.052 0.49777E-13 0.122 0.75990E-13 0.192 0.97500E-13 
0.054 0.50407E-13 0.124 0.76820E-13 0.194 0.98037E-13 
0.056 0.51034E-13 0.126 0.77455E-13 0.196 0.98369E-13 
0.058 0.51833E-13 0.128 0.77942E-13 0.198 0.98861E-13 
0.060 0.52457E-13 · 0.130 0.78698E-13 0.200 0.99556E-13 
0.062 0.53820E-13 0.132 0.79331E-13 0.202 0.10027E-12 
0.064 0.54312E-13 0.134 0.79930E-13 0.204 0.10087E-12 
0.066 0.55108E-13 0.136 0.80419E-13 0.206 0.10133E-12 
0.068 0.55824E-13 0.138 0.81214E-13 0.208 0.10194E-12 
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TABLE 2 (continued) 

MONTE CARLO GENERATED CUMULATlVE PROBABILITY DISTRIBUTION P(R) 
FOR THE LATERAL DISPERSION OF A PROTON BEAM IN GASEOUS MOLECULAR HYDROGEN 

P(r) r P(r) r p(r) r 

0.210 0.10243E-12 0.300 0.12618E-12 0.390 0.15083E-12 
0.212 0.10278E-12 0.302 0.12671E-12 0.392 0.15151E-12 
0.214 0.10329E-12 0.304 0.12722E-12 0.394 0.15214E-12 
0.216 0.10380E-12 0.306 0.12768E-12 0.396 0.15278E-12 
0.218 0.10441E-12 0.308 O. 1282 5E-12 0.398 0.15337E-12 
0.220 0.10492E-12 0.310 0.12888E-12 0.400 0.15379E-12 
0.222 0.10574E-12 0.312 0.12939E-12 0.402 0.15424E-12 
0.224 0.10620E-12 0.314 0.13000E-12 0.404 O. 15481E-12 
0.226 0.10679E-12 0.316 0.13042E-12 0.406 0.15515E-12 
0.228 0.10723E-12 0.318 0.13100E-12 0.408 0.15573E-12 
0.230 0.10766E-12 0.320 0.13176E-12 0.410 0.15616E-12 
0.232 0.10832E-12 0.322 0.13237E-12 0.412 0.15678E-12 
0.234 0.10880E-12 0.324 0.13294E-12 0.414 0.15739E-12 
0.236 0.10932E-12 0.326 0.13369E-12 0.416 0.15782E-12 
0.238 0.10987E-12 0.328 0.13414E-12 0.418 0.15838E-12 
0.240 O. 11 054E-12 0.330 0.13479E-12 0.420 

'. 
0.15903E-12 

0.242 0.11114E-12 0.332 0.13523E-12 0.422 0.15963E-12 
0.244 0.11159E-12 0.334 0.13597E-12 0.424 0.16011E-12 
0.246 O. 11216E-1 2 0.336 0.13640E-12 0.426 0.16062E-12 
0.248 0.11270E-12 0.338 0.13689E-12 0.428 0.16148E-12 
0.250 O. 11313E-12 0.340 0.13 734E-12 0.430 0.16216E-12 
0.252 O. 11385E-12 0.342 0.13794E-12 0.432 0.16265E-12 
0.254 0.11426E-12 0.344 0.13838E-12 0.434 0.16351E-12 
0.256 0.11463E-12 0.346 0.13893E-12 0.436 0.16393E-12 
0.258 o. 11505E-12 0.348 0.13949E-12 0.438 0.16469E-12 
0.260 0.11549E-12 0.350 0.14015E-12 0.440 0.16518E-12 
0.262 0.11589E-12 0.352 0.14050E-12 0.442 0.16564E-12 
0.264 0.11637E-12 0.354 0.14092E-12 0.444 0.16628E-12 
0.266 0.11679E-12 0.356 0.14128E-12 0.446 0.16712E-12 
0.268 0.11742E-12 0.358 0.14190E-12 0.448 0.16761E-12 
0.270 0.11809E-12 0.360 0.14265E-12 0.450 0.16805E-12 
0.272 0.11857E-12 0.362 0.14323E-12 0.452 0.16860E-12 
0.274 0.11915E-12 0.364 0.143 nE-12 0.454 0.16910E-12 
0.276 0.11977E-12 0.366 0.14422E-12 0.456 0.16966E-12 
0.278 0.12028E-12 0.368 0.14499E-12 0.458 0.17022E-12 
0.280 0.12095E-12 0.370 0.14557E-12 0.460 0.17061E-12 
0.282 0.12138E-12 0.372 0.14615E-12 0.462 0.17095E-12 
0.284 0.12179E-12 0.374 0.14681E-12 0.464 0.17161E-12 
0.286 0.12225E-12 0.376 0.14738E-12 0.466 0.17212E-12 
0.288 0.12269E-12 0.378 0.14783E-12 0.468 0.17283E-12 
0.290 0.12332E-12 0.380 0.14835E-12 0.470 0.17348E-12 
0.292 0.12397E-12 0.382 0.14866E-12 0.472 0.17396E-12 
0.294 0.12443E-12 0.384 0.14925E-12 0.474 0.17432E-12 
0.296 0.12494E-12 0.386 0.14969E-12 0.476 0.17493E-12 
0.298 0.12569E-12 0.388 0.15028E-12 0.478 0.17543E-12 
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TABLE 2 (continued) 

MONTE CARLO GENERATED CUMULATIVE PROBABILITY DISTRIBUTION P{R) 
FOR THE LATERAL DISPERSION OF A PROTON BEAM IN GASEOUS MOLECULAR HYDROGEN 

P (r) r P (r) r P{r) r 

0.480 0.17624E-12 0.570 0.20278E-12 0.660 0.23325E-12 
0.482 0.17671E-12 0.572 0.20355E-12 0.662 0.23416E-12 
0.484 0.17728E-12 0.574 0.20422E-12 0.664 0.23517E-12 
0.486 O. 17790E-12 0.576 0.20486E-12 0.666 0.23596E-12 
0.488 0.17853E-12 0.578 0.20547E-12 0.668 0.23682E-12 
0.490 0.17906E-12 0.580 0.20618E-12 0.670 0.23759E-12 
0.492 0.17972E-12 0.582 0.20670E-12 0.672 0.23864E-12 
0.494 0.18062E-12 0.584 0.20748E-12 0.674 0.23944E-12 
0.496 0.18109E-12 0.586 0.20800E-12 0.676 0.24035E-12 
0.498 O. 181 74E-12 0.588 0.20871E-12 0.678 0.24099E-12 
0.500 0.18237E-12 0.590 0.20956E-12 0.680 0.24162E-12 
0.502 0.18287E-12 0.592 0.21025E-12 0.682 0.24251E-12 
0.504 0.18332E-12 0.594 0.21107E-12 0.684 0.24318E-12 
0.506 0.18407E-12 0.596 0.21166E-12 0.686 0.24400E-12 
0.508 0.18461E-12 0.598 0.21221E-12 0.688 0.24485E-12 
0.510 0.18518E-12 0.600 0.21277E-12 0.690 0.24569E-12 
0.512 O. 18572E-12 0.602 0.21360E-12 0.692 0.24619E-12 
0.514 0.18640E-12 0.604 0.21426E-12 0.694 0.24677E-12 
0.516 0.18722E-12 0.606 0.21509E-12 0.696 0.24775E-12 
0.518 O. 18776E-12 0.608 0.21579E-12 0.698 0.24856E-12 
0.520 0.18841E-12 0.610 0.21677E-12 0.700 0.24905E-12 
0.522 0.18908E-12 0.612 0.21758E-12 0.702 0.24947E-12 
0.524 0.18964E-12 0.614 0.21824E-12 0.704 0.25033E-12 
0.526 0.19009E-12 0.616 0.21874E-12 0.706 0.25114E-12 
0.528 0.19064E-12 0.618 0.21924E-12 0.708 0.25188E-12 
0.530 0.19116E-12 0.620 0.21990E-12 0.710 0.25257E-12 
0.532 0.19169E-12 0.622 0.22048E-12 0.712 0.25360E-12 
0.534 0.19235E-12 0.624 0.22102E-12 0.714 0.25448E-12 
0.536 o. 192 90E-12 0.626 0.22169E-12 0.716 0.25526E-12 
0.538 0.19337E-12 0.628 0.22231E-12 0.718 0.25606E-12 
0.540 O. 1941 7E-12 0.630 0.22299E-12 0.720 0.25700E-12 
0.542 O. 194 7.0E-12 0.632 0.22371E-12 0.722 0.25791E-12 
0.544 0.19520E-12 0.634 0.22458E-12 0.724 0.25883E-12 
0.546 0.19564E-12 0.636 0.22541E-12 0.726 0.25992E-12 
0.548 O. 19612E-12 0.638 0.22590E-12 0.728 0.26095E-12 
0.550 O. 19653E-12 0.640 0.22640E-12 0.730 0.26169E-12 
0,.552 o. 1971 OE-12 0.642 0.22720E-12 0.732 0.26254E-12 
0.554 O. 19765E-12 0.644 0.22781E-12 0.734 0.26332E-12 
0.556 0.19831E-12 0.646 0.22843E-12 0.736 0.26402E-12 
0.558 O. 19877E-12 . 0.648 0.22903E-12 0.738 0.26499E-12 
0.560 0.19934E-12 0.650 0.22969E-12 0.740 0.26573E-12 
0.562 O. 19992E-12 0.652 0.23034E-12 0.742 0.26682E-12 
0.564 0.20054E-12 0.654 0.23125E-12 0.744 0.26763E-12 
0.566 0.20117E-12 0.656 0.23198E-12 0.746 0.26857E-12 
0.568 0.20196E-12 0.658 0.23275E-12 0.748 0.26946E-12 

I 
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TABLE 2 (continued) 

MONTE CARLO GENERATED CUMULATIVE PROBABILITY DISTRIBUTION P{R) 
FOR THE LATERAL DIS PERS ION OF A PROTON BEAM IN GASEOUS MOLECULAR HYDROGEN 

P{r) r P{r) r P{r) r 

0.750 0.27042E-12 0.834 0.31948E-12 0.918 0.40995E-12 
0.752 0.27154E-12 0.836 0.32079E-12 0.920 0.41205E-12 
0.754 0.27240E-12 0.838 0.32220E-12 0.922 0.41532E-12 
0.756 0.27328E-12 0.840 0.32369E-12 0.924 0.41902E-12 
0.758 0.27415E-12 0.842 0.32561E-12 0.926 0.42388E-12 
0.760 0.27539E-12 0.844 0.32722E-12 0.928 0.42828E-12 
0.762 0.27661E-12 0.846 0.32849E-12 0.930 0.43153E-12 
0.764 0.27751E-12 0.848 0.33017E-12 0.932 0.43547E-12 
0.766 0.27889E-12 0.850 0.33135E-12 0.934 0.44079E-12 
0.768 0.28004E-12 0.852 0.33318E-12 0.936 0.44447E-12 
0.770 o. 28081E-12 0.854 0.33525E-12 0.938 0.44826E-12 
0.772 0.28180E-12 0.856 0.33626E-12 0.940 0.45424E-12 
0.774 0.28318E-12 0.858 0.33795E-12 0.942 0.45996E-12 
0.776 0.28402E-12 0.860 0.33938E-12 0.944 0.46590E-12 
0.778 0.28497E-12 0.862 0.34117E-12 0.946 0.46929E-12 
0.780 0.28603E-12 0.864 0.34335E-12 0.948 0.47517E-12 
0.782 0.28736E-12 0.866 0.34548E-12 0.950 0.48076E-12 
0.784 0.28858E-12 0.868 0.34700E-12 0.952 0.48744E-12 
0.786 0.28966E-12 0.870 0.34913E-12 0.954 0.49453E-12 
0.788 0.29046E-12 0.872 0.35082E-12 0.956 0.49977E-12 
0.790 0.29155E-12 0.874 0.35290E-12 0.958 0.50718E-12 
0.792 0.29275E-12 0.876 0.35411E-12 0.960 0.51744E-12 
0.794 0.29386E-12 0.878 0.35584E-12 0.962 0.52581E-12 
0.796 0.29534E-12 0.880 0.35802E-12 0.964 0.53440E-12 
0.798 0.29634E-12 0.882 0.36012E-12 0.966 0.54570E-12 
0.800 0.29745E-12 0.884 0.36294E-12 0.968 0.55628E-12 
0.802 O.29886E-12 0.886 0.36595E-12 0.970 0.56652E-12 
0.804 0.29989E-12 0.888 0.36812E-12 0.972 0.58019E-12 
0.806 0.30115E-12 0.890 0.37096E-12 0.974 0.59204E-12 
0.808 0.30252E-12 0.892 0.37316E-12 0.976 0.61346E-12 
0.810 0.30352E-12 0.894 0.37582E-12 0.978 0.64103E-12 
0.812 0.30526E-12 0.896 0.37782E-12 0.980 0.66425E-12 
0.814 0.30643E-12 0.898 0.38018E-12 0.982 0.68486E-12 
0.816 0.30751E-12 0.900 0.38313E-12 0.984 0.71952E-12 
0.818 0.30863E-12 0.902 0.38501E-12 0.986 0.77592E-12 
0.820 0.30961E-12 0.904 0.38823E-12 0.988 0.82422E-12 
0.822 0.31139E-12 0.906 0.39083E-12 0.990 0.91943E-12 
0.824 0.31250E-12 0.908 0.39408E-12 0.992 0.10104E-ll 
0.826 0.31411E-12 0.910 0.39677E-12 0.994 0.1l187E-ll 
0.828 0.31518E-12 0.912 0.39932E-12 0.996 0.12767E-ll 
0.830 0.31672E-12 0.914 0.40195E-12 0.998 0.16732E-ll 
0.832 0.31847E-12 0.916 0.40545E-12 1.000 0.12010E-10 
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Fig. 5. Illustration of the ion beam intensity I(x,z) 
for a point souree. 
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Fig. 29. Plot of the Rvalues given by P(R) = 0.5 from the cumulative 
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Fig. 32. Plot of the Rvalues given by peR) = 0.5 from the cumulative 
probability distributions for example 6. The straight line 
is the first-order, least-squares best fit of Eq. 2.34. 
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APPENDIX A 

FREE PATH LENGTH BETWEEN COLLISIONS 
FOR THE MONTE CARLO METHOD 

In all Monte Carlo simulations of a particle travelling through a scat
tering medium an important part of the algorithm is the calculation of the free 
path length between consecutive collisions. For realistic simulations, this 
path length must be allowed to vary about some mean value, the so-called mean 
free path, according to some probability density function that is based on the 
physics of the collision process. 

Consider a beam of monoenergetic particles that penetrates a scattering 
medium. If N is the number density of the scattering medium, Q the total 
collision cross section of individual scatterers, n the number density of the 
incident beam particles that have not undergone a collision, and y the distanee 
in the direction of the beam into the scattering medium, then the attenuation 
law for unscattered particles is [1] 

-dn/n QN dy. (1) 

If the number density N of the scattering medium is constant in this differen
tial expression, integration from zero to y yields 

n/no = exp(-QNy), (2) 

where n = no at y = O. However, for more general applications like those in 
the present work, the number density of the scattering medium must be allowed 
to vary with distance. Let the variation of the number density N in the 
direction of the incident particle beam he 

N N of(y), 

where f(y) is a dimensionless density profile. 
a position y = Yl within the scattering medium. 

n 
no 

where n = no at y = O. 

= [ f
Yl+y 

exp -QNo 
Yl 

(3) 

Further, let the partiele be at 
The integral of Eq. 1 is now 

f(y') dy' ) , 
(4) 

The probability density function and its associated cumulative probability 
function can be obtained from Eq. 4. The right hand side of this equation ean 
be interpreted as the probability density for which a particle experiences its 
first collision in the distance y to y + dy [1]. Hence, the normalized 
probability density function is 

p(y) = QNo f(y+Yl) exp [ -QNo f Yl +y f(y') dy' ) (5) 
Yl 

The cumulative probability function P(y), defined as the integral of p(y)dy 

Al 



from Y1 to Y1+ y, is 

f 
Y1 +y 

P(y) 
Y1 

[ f 
Y1 + y' ) 

QNof(y'+Y1)exp -QNo f(y")dy" dy' 
Y1 

(6 ) 

It represents the probability that the particle has experienced its first 
collision in the distance y or less. This distance is precisely the free path 
length of the particle from one collision to the next, and it is denoted by À. 

To calculate a specific free path 1 eng th for the Mlnte Carlo simulation, 
a random number r is chosen from a tmiform distribution of random numbers in 
the range of zero to tmity. That value of r can then be assigned to either 
P (À) or 1 - P (À), which both have the same range of zero to tmity. Equation 6 
can then be inverted to obtain an expression for the free path length À, 

or 

r = exp [ -QNo f Y1 + Àf(y') dy' ) (7) 

Y1 

f 
Y1 +À 

f(y') dy' 
Y1 

= 1 
- - Zn(r) 

NoQ 
(8 ) 

where the density variation Nof(y) and the total collsion cross section, are 
specified. Equation 8 can be used to obtain values of the free path length 
for each random number r. 

It is of interest to derive an expression for the mean free path length 
(or just the mean free path). The general definition of the mean free path is 

J 00 y p (y) dy • 

o 
By using Eq. 5, this expression can be rewritten as 

(9 ) 

I = f ooQNo f(Y1 +y) yexp [-QNo f Y1 +y f(y') dy' ) dy, (10) 

o Y1 

which is still general. If the density N is constant [f(y) = 1], this integral 
can be integrated readily to yield 

Ic = 1 /No Q, (11) 

where the subscipt c denotes constant density. However, once N is allo~d to 
vary, this integral becomes more difficult to evaluate analytically. For 
example, if N is simply equal to No (1 + by) , then Eq. 10 becomes 

= f ooQNo y [1 + b(Y+Y1)] exp [ -QNo [by2/2 + yO+bYl )]) dy 
o 

(12) 

This expression was ~ntegrated numerically for ntllnerous combinations of b and 
Yb and it was found that a good approximation to the integral for this density 
variation is 

(13) 
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Further, it was found that this approximation is worst for small values of YI 
(of the order Ic) but becomes accurate very rapidly as YI increases and the 
density variation over a mean free path becomes smaller. For example, when 
b = 1 /Ic, then at y = 0 the approximation ofEq. 13 is in error by 65 percent, 
but when y = loIc the error decreases to less than 1 percent. The approxi-
mat ion given by Eq. 13 is expected intuitively. When the density does not 
change substantially over a distance of one collision, one might expect that 
the mean free path would be inversely proportional to the density, or depend on 
the local value of the density. 

It should be noted that the energy E of the particle (and therefore Q) is 
kept constant over the entire range of the integration indicated in Eqs. 1 and 
9, because a particle loses energy only during the collision process. Futher
more , the energy E at the po int YI must be used when calculating À, because Q 
is in general a function of the energy of the incident particle. For the 
particular problem of a high energy proton colliding with molecular hydrogen it 
was found in appendix B that 

Q 7Ta~[:a) 
2 4 + 6Ex + 7Ei/3 

(1 + Ex) 3 

which for high energies is approximated well by 

Q = 2[m)2 7 7Tae - -
me 3Ex 

(14) 

(15 ) 

In these expressions , a e, m, me, and Ex denote the first Bohr orbit, the 
reduced mass, the ma ss of an electron, and the nondimensional energy. As the 
incident particle travels through the scattering medium and experiences 
collisions, it loses a discrete amount of energy at each collision. In the 
present werk, the range-energy relationship of chapter 2 is used to describe 
the energy loss with distance. Therefore, af ter each collision, the reduced 
energy of the particle must be used in Eq. 15 to calculate the new total 
collision cross section for the next collision. 

For density variations of interest in this work, the inversion of Eq. 8 
can be done analytically. Some sample expressions for the free path length for 
particular density variations are summarized below. 

Case 1. Constant Density: N =No because f(y) 1. · 

À = -ÀcZn(r) 

Case 2. Linear change in Density: N = No (1 + by) • 

À = t (1 +by,) [ 
2b Ic Zn(r) 

(1 + YI) 2 

Case 3. Exponential change in Density: N = Neexp[a(y - y')]. 

À = ~Zn [1- aIc Zn(r) exp{ a(y' -YI)}) 

A3 

(16) 

(17) 

(18) 



Reference 

1. Cashwell. E. D. & C. J. Everett. "'!be MJnte Carlo Method for Random Walk 
Problems". Vol. 1. Perganon Press. 1959. 
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APPENDIX B 

SCATTERING ANGLE FOR A HIGH-ENERGY PROTON 
COLLISION WITH MOLECULAR HYDROGEN 

In all Monte Carlo simulations of particles meving through a scattering 
medium, an integral part of the computer program involves the selection of a 
scattering or deflection angle for each collision. This deflection must be 
sampled randomly from an appropriately weighted distribution of angles. To get 
this distribution, called the differential scattering cross section, four 
approaches are available, depending on the problem being considered. These 
approac hes are: 

a) classical mechanics, 

b) exact quantum mechanical treatment (method of partial waves), 

c) Born' sexpansion (integral scattering equation), 

d) curve fit to experimental data. 

The first and third approaches will be discussed in the following paragraphs. 
Note that the third approach is an approximation to the second, and the four th 
requires extensive experimental data that is normally unavailable. 

The interaction between two like charges (that are unscreened) is gaverned 
by Co ul omb' s po ten tial equa tion , 

(1) 

where Zl and Z2 denote the charges on the two particles, e is the fundamental 
unit of charge, and r is the distance between the two charges. In a classical 
treatment, ~he scattering cross section for Coulomb's potential is [1] 

(2) 

which is known as Rutherford's scattering law, where E is the energy of the 
incident particle and 8 is the scattering angle in the center-of-mass 
coordinate frame. 

To determine the probability density function p(8) = I(8)/Q, the total 
cross section Q must be calculated. Q is given in general by 

Q = J 2TI J TI 1(8) sin(8) de d<j>, 

o 0 

(3) 

where <j> is the azimuthal angle in the center-of-mass coordinate frame. When an 
expression for Q is derived for the Coulomb scattering cross sec tion (Eq. 2), 
an infinitely large cross section is obtained. This renders the classical 
treatment of the problem of no use for realistic Mente Carlo calculations, and 
another approach must be sought. 
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The quantum mechanical approach for two particles in a central po tential 
field V(r) leads to an integral scattering equation, if only asymptotic 
behaviour is considered. However, by simple iteration of the integral 
scattering equation the Born expansion can be obtained. In the use of this 
expansion the number of terms of the expansion retained determines the accuracy 
of the solution. Born's first approximation for the differential scattering 
cross section of a cent~al potential field V(r) is given by [2] 

1(8) = J 00 sin (Kr) Ver) r dr 
o 

2 

(4 ) 

where K is the magnitude of the scattering wave vector, m is the reduced mass 
of the particles, and n = h/2rr is the rationalized Planck constant. K is 
found by considering the triangle in figure 1. The eosine law yields 

ki + k~ - 2kikdcos(8), (5) 

where ki is the magnitude of the incident wave vector, kd is the magnitude of 
the scattered wave vector, and 8 is the scattering angle. If an inelastic 
collision is considered, for which the incident particle loses a differential 
amount of energy dE, where 

(6) 

with v being the speed of the incident particie, then ki and kd can be written as 

ki = k, kd = k - dk, (7) 

where 
dk/k dE/2E. (8) 

The substitution of Eqs. 7 and 8 into Eq. 5 yields 

= 2k
2 [[1 - ~~) 2sin

2
(8/2) + i-[~ErJ (9 ) 

For high energies (i.e., dE/E « 1), expression 9 reduces to 

K = 2k sin(8/2) = (2mv/fi) sin(8/2) (10) 

which is the result tor elastic collision scattering. In the present werk the 
energy of the collid~ng particles is almost always large. Consequently, it is 
reasonable to ignore inelastic effects for simplicity, and Eq. 10 is used in 
lieu of Eq. 9. In typical Monte Carlo simulations in the present werk, the 
energy was seldom leas than 1 MeV, at which point dE/E is small at only 0.05. 

It now remains to piek the po tential V (r) for the present \oIOrk. 
hydrogen atom, if the incident particle is an electron, Ver) is given 
as [3] 

Ver) = - e' [ ~ 

B2 

For a 
exac tly 

(11 ) 



where a o = ó 2/moe 2 is the radius of the first Bohr electron orbit, and mó is the 
mass of the electron. This potential can be used, with a change in sign, for .a 
high-energy proton colliding with a hydrogen molecule, because the interaction of 
the proton with the hydrogen molecule will be assumed to occur only between the 
proton and a single hydrogen atom. This assumption is valid because the distance 
between the atoms of the hydrogen molecule is larger than the impact parameter. 

Barn' s approximation is valid for the range of scattering angles for which 
the following condition is satisfied [3], 

z V(h/mv8) « 1 , (12 ) 

mv 2 8 

where v is the velocity (magnitude) of the incident particle in the center-of-mass 
reference frame. For this particular potential, and for proton energies in the 
range 1 to 10 MeV, Born's approximation becomes inaccurate for angles smaller 
than about 10-5 radians. The validity of this approximation will be dicussed 
later, af ter an expression for 8 has been developed. 

The substitution of Eq. 11 in Eq. 4 yields 

m2e4 a 4 [2 + (Ka o/2)2]2 
0 

1(8) 
'fl4 4 [1 + (Ka

o
/2)2]4 

which in terms of E and e becomes 
2 a 2 [2 + (mE/moEo) sin2(8/2)]2 

1(8) [~ ) 
0 

= 

4 [ 1 + (mE/moEo) sin2(8/2)]4 

where mo is the mass of an electron and Eo = e 2/2a o = n2/2m e2 is 
energy equal to the ionization potentia1 of hydrogen (13.58

o
eV). 

ab1e variab1e for use in this study can be defined as 

where Ex 

x m E sin2 (8/2) 
moEo 

mE/moEo. Therefore, 

lex) = 
2 2 

[~) 
a o [2 + x] 2 

4 [1 + x] 4 

2 a 2 

[ (l~)2 [~) 0 

4 
= + 2 + 1 

(l+x) 3 (l+x) 4 

(13) 

(14 ) 

a reference 
A more suit-

(15 ) 

l 
(16) 

The normalizeq distribution of 1(8) [i.e., 1(8)/1(0)] is shown in figure 2 for 
the specific case of E = 5 MeV. 

The probability that a particular value of the scattering angle 8i is less 
than or equal to 8 defines a cumulative probability distribution. 
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Therefore, 

P(8) = ~I2Tf f8 1(8) sin(8) d8 dep. 

o 0 

For a proton collision with a hydrogen molecule, 

Q = 
2 4 + 6Ex + 7E~/3 

7Ta~ (:J o + Ex) 3 

4 + 6x + 7x2 /3 ti + E~ x 
Ex 4 + 6E + 7E~/3 1 + x x 

p(x) = 

(7) 

(18) 

3 

(19) 

The dependence of Q on the energy Ex for the above expression 1S illustrated 
1n figure 3. 

The intent of the following work is to obtain an expression that relates 
the scattering angle 8 (in the form of the variable x) to a particular 
probability P(x). In other words, a function is being sought such that 

8 = F(P{x}). (20) 

Manipulation of equation 19 to achieve this would be difficul t, because x would 
appear in a cub ic polynomial. An approximation to Eq. 16 is then sought such 
that, on integration to obtain expressions for Q and P(x), aquadratic 
polynomial in x is obtained. For this purpose assume an lex) of the form 

lex) = 

which leads to 

Q Tfa~ [;: r 
+ 

A + B + C (A + B /2) Ex 

0+CEx )2 

(21) 

(22) 

To determine the con~tants, consider the following limits of Eqs. 16, 18, 21, 
and 22: 

As x+ 0: Eq ~ 16 = Eq. 21 gives A+B 4 

As x+oo: Eq. 16 Eq. 21 gives A = C2 (23) 

As E,x+oo: Eq, 18 Eq. 22 gives A + B/2 7C/3 

The solutions for A, B, and C are 

A (62 - 7/52) /9, 

B (7/52 - 26)/9, (24) 

C (14 - /52) /6. 
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The negative root was chosen to achieve better agreement. A detailed 
comparison of Eqs. 16 and 21 for lex) and Eqs. 18 and 22 for Q would show that 
the approximation was excellent (less than 1 percent difference), provided that 
Ex > 100. For protons colliding with hydrogen molecules this implies that 
E > O.OlEo, which is satisfied for all problems in this werk. 

The solution for P{x) , in terms of the constant C, is 

P{x) = [D - F{x)] /[D - F{Ex)] , (25) 

where 2 

D 16 
F(z) [ C2 1 

J = = + 
(4_C2 )2 4 - C2 1 + Cz (26) 

These resul ts yield 

1 [;D - 1 1J x = (27) C P(x)(D - F(Ex ) + 1 - Iö 

for 

Ex 
m E » 1 , (28) 
moEo 

which is a good approximation for the present werk, the approx imation for e 
from Eq. 27 becomes, 

! 

2Arcsin [ E~C[ /1 

1 - C2 /4 l] e = 1 . (29) 
- P(x)(1-C"/16) - C2 /4 

This distribution is shown in figure 4 for E = 5 MeV. As can be seen from the 
figure, the scattering angles considered are indeed very smalle This is 
charac teristic of screened Coulomb scattering of a heavy particle for which the 
scattering ~s very strongly forward. For this particular energy, it is seen 
that 90 percent of the individual collisions produce a scattering angle of 200 
microradian$ or less, and the average angle can be computed by assigning the 
value of 0.5 to P{x) in Eq. 29. In order to calculate an angle e for M:mte 
Carlo simul~tions, a random number is picked from a uniform distribution in the 
interval zero to unity. That value is assigned to P{x), which then permits the 
scattering angle e to be calculated by Eq. 29 [4]. 

The table on the next page shows the average scattering angle for various 
energies, a$ weIl as the Born approximation validity coefficient Z from Eq. 12. 
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E (eV) (P{x}=O. 5) Z 

107 5x10- s 0.07 

5x106 7x10- s 0.10 

106 1.6x10-l+ 0.20 
, 

2.2x10-l+ 5x10s 0.30 

. As can be se en from the Z values in the above table and Eq. 12 the validity of 
using the Born approximation in the present work is borderline. That is, 
al though the average values of the scattering angle are above the threshold for 
validity, some scattering angles obtained from Eq. 29 will be smaller than this 
threshold value. However, even though the smallest angles will be in error, 
according to the cutoff equation (Eq. 12), this is not very significant, 
because small angles do not contribute markedly to the dispersion of a 
high-energy proton beam in molecular hydrogene Hence, Born's first 
approximation is reasonable for the present purpose • 
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I· 1 

Figure 1. The geometrical relationship between the incident 
wave vector ki , deflected wave vector k d , deflecting wave 
vector K, and the scattering angle 8. 
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Figure 2. Normalized distribution of the differential 
scattering cross section for protons colliding with hydrogen 
molecules. 
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F~gure 3. Normalized total scat tering cross section Q as a 
function of the nondimensional energy Ex, for protons scat
tering in molecular hydrogen. 
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Figure 4. Cummulative probability function pee) as a 
function of e for protons scattering in molecular hydrogene 
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APPENDIX C 

MONTE CARLO COMPUTER PROGRAM 

C 
C BEAM DIS PERS ION PROGRAM BY T. W. CROUCH 
C 
C PROGRAM COMPUTES BEAM DIS PERS ION FOR PROTONS IN MOLECULAR 
C HYDROGEN(H2) 
C 
C CONTAINS PROPER PHI AND THETA DISTRIBUTION 
C CORRECT ENERGY LOSS ALONG PATH VIA STOPPING 
C 
C 
C 

CROSS-SECTION 
CORRECT MEAN FREE PATH AS FUNCTION OF ENERGY 

C ********** LINEARLY DECREASING DENSITY GAS *********** 
C 
C **************** N = NO (1 + Bl*Y) ********************* 
C ************* BI = -1./(5000.*BARLl) ******************* 
C 
C CAPABLE OF TAKING DATA AT 10 Y VALUES 
C 

C 

C 

IMPLIC IT REAL (M-N) 
DOUBLE PRECISION SEEDl,SEED2,SEED3 
DIMENSION XLCK(lO),EAV(lO) 
DATA XLCK/lOO.,200.,500.,1000.,2000.,3000., 

.4000.,4500.,0000.,0000./ 

LMAX=8 
ITOTP=500 

C**** THE FOLLOWING MUST BE SATISFIED AS A MINIMUM 
C XLCK(LMAX) ••• EAV(LMAX) 
C 

C 

G 

PI=3.l4l592654 
SEEDl=123456789. 
SEED2=653472l046. 
SEED3=923775032l. 

ME=l. 
MP=1836.11 
MH=2.*MP 
MR.= (MP*MH) / (MP+MH) 

q ALL ENERGY VALUES ARE IN (EV) 
a 

EP=l. E+07 
EO=EP 
ER=MP*EP/MR. 
EXO=(MR.*ER)/(ME*13.58) 
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C 
C COEFFICIENTS FOR CALCULATING THETA 
C 

C 

C=7. 13. -S QRT (13. ) 13. 
A=C*C 
B=4.-C*C 
Cl=(I. +AI B) **2. 

C DENSITY DEFINITION (NO IS IN UNITS OF MOLECULES/cM**-3 FOR MOLEC
C ULAR RYDROGEN AND IN UNITS OF ATOMS/cM**-3 FOR ATOMIC HYDROGEN) 

NO=2.S473EI9 

C 

NO=NO*2. 
Q=PI*(S.29177E-9)**2.*(MR/ME)**2.*(4.+6.*EX0+7.*EXO**2/3.) 

./(l.+EXO)**3. 
BARLl=l. I (Q*NO) 
Bl=-I./(5000.*BARLl) 

DO 20 I=I,LMAX 
20 XLCK(I)=XLCK(I)*BARLI 

WRITE(6,*) EO,BARLl,ITOTP,LMAX,I.,Bl,DUMl,' LINEAR' 
WRITE (6, *) (XLCK(LL) ,LL=I, LMAX) 
DO 7 1=1, ITOTP 

C ********* BEGIN NEW PARTICLE PA TH ************ 
EX=EXO 
N=NO 
EP=EO 
L=1 
BARL=BARLI 
XO=O. 
ZO=O. 
YO=-BARL*ALOG (GGUBFS (SEEDl» 

C GGUBFS IS AN IMSL SUBROUfINE THAT PRODUCES A UNIFORM 
C DISTRIBUfION OF RANDOM NUMBERS BETWEEN 0 AND 1. 

DY=YO 
NOl=O. 
N02=1. 
N03=O. 

1 PR=PI*(1. -2.*GGUBFS(SEED2» 

C 

R=GGUBFS (SEED3) 
C2= (AI B+1. I ( 1. ~*EX» **2. 
XX~(I./ (SQRT (C1*(I. -R)+R*C2)-AI B)-I.) I( C*EX) 
THCM=2. * AS IN (S QRT (XX» 

TH:ATAN(SIN (TRCM) I(MP/MH~OS (THCM) » 
N 11 =S IN (TH )*COS (PH) 
NI2=S IN (TH)*S IN (PH) 
N 13=C OS (TH) 

C CALC ULA TE NEW ENERGY 
C 

El=EP/l.E6 
IF(E1.LT.0.04) GOTO 2 

EIN=. 512652E-1 IE1** .5-.246743+.690572 *E 1** .5+. 389733*E 1 
GOTO 3 

2 EIN=. 294 787E-2 IEl ** .5+. 359963-1. 84853*E1** .5+3. 93144 *E 1 
3 EPS=I./EIN*I.E-21 

N=NO*(1. +B~*YO) 
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C 

E1=E 1-EPS*DY~ 
EP=E1*1. E6 
ER=MP*EP/MR 
EX=(MR*ER)/(ME*13.58) 

C CALCULATE NBW DIRECTION 
C 

IF(N03.NE.1.) GOTO 4 
N1=N 11 
N2=N 12 
N3=N 13 
GOTO 6 

4 N l=(N 11 ~03*N01~ 12*N02) 1(l.~03**2 )** .5+N 13*N01 
N2=(N 11 ~03~02-tN 12~Ol) I( 1. ~03**2 )** .5+N 13*N02 
N3 ..... N 11 *(1. -N03**2 )** .5+N03*N 13 

C 
C NEW POSITION 
C 
6 BARLC ..... EP/EO*BARL1*ALOG(GGUBFS(SEED1)) 

C 

DY=l. I BI *( 1. +B1*YO) *(SQRT (1.+2. * BI *BARLCI (l.+B 1*YO)**2. )-1.) 
XO=XO+DY*N 1 
YO=YO+DY*N2 
ZO=ZO+DY~3 

N01=N 1 
N02=N2 
N03=N3 

C DATA COLLECTION 
C 

IF (Y O. LT. XLCK(L)) GOTO 1 
XP =X O-N 1/N2*(YO-XLCK(L)) 
ZP=ZO-N3/N2*(YO-XLCK(L) ) 
YP=XLCK(L) 

WRITE(6,*) (XP*XP+ZP*ZP)**.5,EP 
EAV(L )=EAV(L )+EP 
L=L+1 
IF (L • GT. LMAX) GOTO 7 
GOTO 1 

7 CONTINUE 
DO 11 L=l, LMAX 

11 EAV(L)=EAV(L)/ITOTP 
WRITE (6, *) (EAV (LL) , LL=l, LMAX) 
STOP 
END 
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APPENDIX D 

CALCULA TION OF THE EXPECTED VALUES 
OF THE FREE PA 'TIl LENGTH AND lTS SQUARE 

The root-mean-square value of the lateral dispersion R of a molecular 
beam, given by Eq. 3.19 of chapter 3, involves the expected value of the square 
of the scattering angle, the expected value of free path length between 
collisions, and the expected value of the square of the free path length. For 
high-energy protons colliding with molecular hydrogen, these expected values 
can be obtained as a function of the penetration distance y, the energy E of 
the collision, or some combination of both. In this appendix the expected 
values of the free path length and the square of the free path length will be 
obtained as functions of both the energy of the collision and the depth of 
penetration, leaving the calculation of the expected value of the square of the 
scat tering angle for appendix E. 

The expected value of the free path length is defined to be [1) 

= JCO p(y) y dy, 
o 

(1) 

where the origin of y is defined to be Yl (the current position of the incident 
particie) • The probability density function p(y) is defined in appendix A as 

pC\) = QNo f{Yl+ À) exp [-QNo L:'+
À 

f{y') dY'J ' 

where the total collision cross section is 

7ïTa% (m)2 
3Ex mo 

Q = 

and the number density is defined quite generally as 

N(y) Nof(y). 

If the particle is at the position y = Yl in the density field, then Eq. 1 
becomes 

= I 
co [ . J Yl + Y ] 

QNo fCYl+y)yexp -QNo fCy')dy' dy. 
o Yl 

(2 ) 

(3 ) 

(5) 

It should be noted that Q is held constant during the integration, because the 
particle does not lose energy between collisions. 

The expected value of the square of the free path length is defined, 
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similarly, to be 

which then becomes 

= 

j'X> y2 p(y) dy , 
o 

QNo Joo f(y+Yl) y2 exp [ -QNo JYl +y f(y') dY'J dy . 
o Yl 

(6) 

(7) 

Equations 5 and 7 can be evaluated nwnerically to obtain solutions for 
E{À} and E{À 2 }. However, this technique is cwnbersome when it is necessary to 
evaluate the two integrals for nwnerous positions and energies. It is 
beneficial, therefore, to develop fairly simple approximate analytical 
expressions for these integrals, which are still accurate and can be used more 
readily. 

If the density N is assumed to be constant [i.e., f(y) = 1], the average 
or mean free path th en reduces to the expression commonly found and used in the 
literature [1], that is, 

= Joo QNo Y exp(-QNOY) dy • 
o 

The expected value of the square of the free path length from Eq. 7 is 

= Joo QNo y2 exp(-QNOY) dy • 
o 

These two integrals can be evaluated analytically to give 

En} 

and 

(8) 

(9 ) 

(10) 

(11) 

For this simple case of constant density, no approximation is necessary. It is 
also seen from Eqs. 10 and 11 that the expected value of only the first power 
of the free path length needs to be determined because the second power (and 
any subsequent power) can be obtained from the first. Further, because the 
particle is losing energy af ter each collision as it traverses the mediwn, E{À} 
depends on the local value of the energy. This dependence on energy in 
Eqs. 10 and 11 is through Q, which is inversely proportional to E (see Eq. 3). 
By taking this into ~ccount, Eqs. 10 and 11 can be written more conveniently as . 

and 

where the subscript 0 denotes the initial values of E and E{À} when the 
particle is at the position y = o. 
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• 

Consider now a linear density distribution of the form 

N(y) No{l + by). 

Equations 5 and 7 then become 

= 

and 

= 

QN 0 f 00 [ 1 + b (y + Yl)] Y exp [ -QN 0 ( by2 /2 + Y [1 + Yl DJ dy (15) 

o 

QNo foo [1 + b(Y+Yl)]y2 exp [ -QNo( by2 /2+y[1 +YIDJ dy, 
- (16) 

o 

which are considerably more difficul t to evaluate analytically. They can, 
however, be evaluated numerically for a wide range of Yl and b to determine 
their behaviour, so that approximate expressions can be developed and checked. 
When this was done for the linear density distributions of this work, it was 
found that 

= (17) 

and 
(18) 

were good approximations • These approximate expressions were found to be 
accurate (within 1%) for all linear density variations considered in this work. 
Equations 17 and 18 are also very accurate even for linear variations in which 
b = l/Eo{À}, provided that Yl is greater than 10EoO}. This implies that the 
numerical integration can be dispensed with for the cases of all practical 
linear density variations, and the local values can be used in their place. 

For an exponential density variation with 

N(y) No exp[a(y - y')], (19) 

the approximations for Eqs. 5 and 7 become somewhat more complicated. The full 
integral expressions are 

.E{À} QNo fooexp[a(y-y')]y exp[-Q:o eXp[a(Yl-y')][exp(ay)-O]dY (ZO) 

o 

and 

E{À 2
} = QN of:xp [a(y-y')]y2 exp [-Q: exp[a(Yl-y')][exp(ay) -1] ]dy ,(Zl) 

o 

which are not integrable analytically. Equation ZO was found to follow 

(Z2) 

fairly accurately for a wide range of a and y'. However, the expression for 
E{À 2 } devia~es from the previously found behaviour (Eqs. 11 and 18), but this 
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can be remedied by inserting a simple mul tiplicative fac tor. It was found that 
EO.2 } can be given by 

(23) 

for all of the exponential density variations considered in this werk. 

The use of approximations for E{;Ü and E{ À 2} of Eqs. 5 and 7 instead of 
ntunerical integrations is not, of course, necessary. However, when 
approximations are both simple and sufficiently adequate, as they are in this 
work, their use is highly beneficial in reducing computation time and cost. 
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APPENDIX E 

CALCULATION OF THE EXPECTED VALUE 
OF THE SQUARE OF THE ·SCATTERING ANGLE 

The root-mean-square value of the lateral dispersion R of a molecular 
beam, g iv en by Eq. 3.19 of chapter 3, involves both the expected value of the 
square of the scattering angle and the expected value of the free path length 
between collisions • For high-energy protons colliding with molecular hyd rog en , 
these expected values can be obtained as a function of the penetration distance 
y, the energy of the coll ision E, or some combination of both. In this 
appendix the expected value of the square of the scattering angle will be 
obtained as a function of the energy of the collision. 

The expected value of the square of the scattering angle 8 is defined to 
be [1] 

Q
1 J21TJ 1T 8 2 1 (8 ,ep) sin(8) d8 dep , 

o 0 

which for a central potential reduces to 

= 21T J 1T 8 2 1(8) sin(8) d8 . 
Q 0 

From appendix B the differential scattering cross section 1(8) for the 
collision of a high-energy proton with molecular hydrogen is 

I(x) = [:,J' 
where 

x = 

and 

a 2 [ 1 ~ + 4 (1 + x) 2 

m E sin2 (8/2) = 
moEo 

Q 
71Ta 2 __ 0 

3 Ex 

2 1 + (1 + x) 3 (1 + x) '+ 

Ex sin2 (8/2) 

for Ex »1. The substitution of Eqs. 3 and 4 into Eq. 2 yields 

l 

(1) 

(2 ) 

(3) 

(4 ) 

(5) 

which cannot be integrated analytically. This integral can be solved 
ntmlerically to give E{8 2

} as a function of E. However, in the present wrk it 
was found preferable to evaluate this integral by an approximate but highly 
accurate methode The procedure and results are given below. 
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Let the infegration be divided into two parts, one eovering small angles 
of e and the other covering large angles. Then the total integral will be the 
sum of the two parts, that is, 

where 

. for small angles of e for whieh x* lEx « 1, and 

2 

E {e2} = 41T[~J a~ f.Exarcsin2[ EX ) [ 1 2 + 
l Q mo Ex x* x (1 + x) 

for large angles of e for whieh x* » 1. 

Consider &:t. 8 first. For this case it is assumed that x* lEx « 1; 
therefore, 

arcsin [ E:) 
x 

Ex 

is a good approximation. The integral equation then simplifies to 

= 2 
(1 +x}3 + 

which is now integrable. The final resul t is 
2 

Es {e
2} = ~1T (:o:!) [ln (x*) + i] ' 

whieh is obtained qu~te readily. 

Now consider Eq. 9. For this case it is assumed that x* » 1 and 

(7) 

(8 ) 

(9) 

(10) 

(11 ) 

(12 ) 

x* lEx < 1. Therefore, the eub ie and quartie terms in the sum ean be neglee ted 
in eomparison with the dominant quadratic term. Equation 9 is then 

= 4ïT (..!!!...)2 ~Ea2 . J Ex aresin2 ( EX ) ~ dx . 
Q mo x x* x x 2 

(13) 

Wi th the change of v{lriable given by 

x = E x sin 2( y) , (14) 

Eq. 13 ean be integrated to give 

= ':;' [:';~J [ 3 - :' + Zn(Ex/x*) ] • (15) 

if one remembers that x* » 1. 
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To obtain the expected value of the scattering angle, Eqs. 12 and 15 must 
be added. The final result is 

= 
4'TT 
Q [ 

m a o)2 [ ) 1 'TT
2 ] -- ~n (Ex + 3 + - - -

moEx 6 4 
(16 ) 

The constants in the square bracket have not been omitted in Eq. 16 because, 
even though Ex is large, the logarithm of Ex is of the same magnitude as these 
constants. Hence, these constants are significant and must be retained. 
Equation 16 can be rewritten as 

2 

= 4'TT [mao) ) Q moEx ~n(2.01 Ex , (17) 

by including the constants in the logarithmic term. With the use of Eq. 5, the 
final expression for the expected value of the square of the scat tering angle 
is then 

= 
12 

7Ex ~n(2.01 Ex) • (18) 

The use of this simple approximate analytical expression, which is very 
accurate, is highly preferabie to doing numerical integrations of the original 
integral expression. 

It is also of interest to calculate the expected value of the first power 
of the scattering angle for the collision of a high-energy proton with 
molecular hydrogen. The expected value of the scattering angle is defined as 

E{e} = ~ J 2'TT J'TT 8 I(8,cj» sin(8) de dcj> , 

o ° 
which, on following a procedure similar to that used above, yields 

E{8} = 39'TT 1 
56 vEx . 

This is alsp a simple and accurate analytical resul t. 

(19) 

(20) 

From Eqs. 18 and 20 it is seen that, for this particular scattering event, 
the expectep value of the square of the scattering angle and the expected value 
of the scattering angle are both dependent only on the energy of the collision. 
These expected values should not depend direc tly on the depth of penetration y, 
because the medium is assumed to be composed of the same molecules throughout. 
These expected values, however, have an indirect dependence on the penetration 
depth through the range-energy relationship of chapter 2, which relates the 
energy of the collision to the penetration depth of the particie. 

The integrals of Eqs. 6 and 19 were numerically integrated for typical 
energies used in this work, by using Chebychev' s integration technique. It was 
found that the numerical values obtained were less than 0.05 percent different 
from the approximate analytical resul ts obtained above. 

Reference 

1. Cashweil , E. D. & C. J. Everett, "The Monte Carlo Method for Random Walk 
Problems" , Vol. 1, Pergamon Press, 1959. 
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APPENDIX F 

COMPUTER PROGRAM TO NUMERICALLY INTEGRATE EQUATION 3.36 

C 
C THIS PROGRAM INTEGRATES EQUATION 3.36 BY THE RECTANGULAR METHOD 
C 
C ENERGY LIMITS ARE OBTAINED FROM THE MONl'E CARLO Ilt\ TA FILE 
C 

C 

C 

C 

C 

C 

C 

IMPLICIT REAL (M-N) 
COMMON AO,Al,A2,A3,EO 
REAL INl(10000),IN2(10000),IN3(10000),IN4(10000),EN(10),XL(10) 

AO=.0512652 
Al=-. 246743 
A2=O.690572 
A3 =0 • 389733 

PI=3.141592654 

WRITE(5,*)' DATA FILE FOR FINDING E(R) VALUES?' 
READ(7,*) EO,BARL,D3,LMAX,CASE,B,B2 
READ (7, *) (XL (I) ,1=1, LMAX) 
READ (7, *) (EN (I) ,1=1, LMAX) 
NO=2 7. /28. /PI/5. 292E-9**2. /1836.11/13. 58*EO/BARL 
WRITE(5,*) , NO=',NO,' EO=' ,EO 

EO=EO/l. E6 

N=10000. 
DE=EO/N 
NN=INT«EO-EN(LMAX)/I.E6)/EO*N)+1 

DO lI=I,NN 
E=EO-(FLOAT(I)-.5)*DE 
INl(I)=(AO/E**.5+àl+à2*E**.5+A3*E)*ALOG(2.01E6*1836.11*E/13.58) 

./E**2. *DE 
IF(I.NE.l) INl(I)=INl(I)+INl(I-l) 

1 CONTINUE 

C 
WRITE(5,*) , FINISHED l' 

DO 2 I=I,NN 
E=EO-(FLOAT(I)-.5)*DE 
CALL CALY(Y,FY,E,NO,B,B2) 
IF(FY.LT.O.) GOTO 3 
IN2(I)=(AO/E**.5+Al+à2*E**.5+A3*E)/FY*INl(I)*DE 
IF(I.NE.l) IN2(I)=IN2(I)+IN2(I-l) 

2 CONTINUE 
3 WRITE(5,*)' FINISHED 2 y=',Y 
C 

DO 4,1=1, NN 
E=EO-(FLOAT(I)-.5)*DE 
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CALL CALY(Y,FY,E,NO,B,B2) 
IF(FY.LT.O.) GOTO S _ 
IN3(I)=(AO/E**.S+A1+A2*E**.S+A3*E)/FY*IN2(I)*DE 
IF(I.NE.l) IN3(I)=IN3(I)+IN3(I-1) 

4 CONTINUE 
S WRITE (S, *) , FINISHED 3' 
C 

6 
7 
C 

C 

DO 6,I=1,NN 
E=EO-(FLOAT(I)-.S)*DE 
CALL CALY(Y,FY,E,NO,B,B2) 
IF(FY.LT.O.) GOTO 7 
IN4(I)=(AO/E**.S+A1+A2*E**.S+A3*E)/FY**2.*IN1(I)*E*DE 
IF(I.NE.1) IN4(I)=IN4(I)+IN4(I-1) 
CONTINUE 
WRITE(S,*) , FINISHED 4' 

C1=-(128./81.*PI*S.29177E-9**2*13.S8**2/NO**2*1.ES1) 
C2=12./7./1836.11*13.S8/NO**2*1.E36 
WRITE(S,*) Cl,C2 

DO 9 1=1, LMAX 
EN(I)=EN(I)/1.E6 
IE=INT«EO-EN(I»/EO*N) 
EI=(EO-EN(I»/EO*N 
ER2=-(C1*IN3(IE)+C2*IN4(IE» 
WRITE(6,8) EN(I),SQRT(ER2),ER2,IE 
WRITE(S,*) -C1*IN3(IE),-C2*IN4(IE) 

8 FORMAT (3E20. 10,16) 
9 CONTINUE 
10 FORMAT(20X,E20.10) 

C 
C 

C 

STOP 
END 

SUBROUT INE CALY (Y, FY, E, NO, B, B2) 

C THIS SUBROUTINE CALCULATES Y FOR A GIVEN ENERGY USING EQ. 3.34 
C 

1 

COMMON AO,A1,A2,A3,EO 
REAL NO 
IF(B.EQ.O.) GOTO 1 
IF(B2.NE.0.) GOTO 2 
Y=1./B*(SQRT(1.+2.E21/NO*B*(2.*AO*(EO**.S-E**.S)+A1*(EO-E)+ 

.2./3.*A2*{EO**1.S-E**1.S)+A3/2.*(EO*EO-E*E»)-1.) 
FY=l.+B*Y 
RETURN 
X=O. 
FY=l. 
RETURN 

2 Y=1.E21/NO*(2.*AO*(EO**.S-E**.S)+A1*(EO-E)+ 
.2./3.*A2*(EO**1.S-E**1.S)+A3/2.*(EO*EO-E*E» 
Y=l. / B2*Al1JG(B2*Y+EXP (-B*B2) )+B 
FY=EXP(B2*(Y-B» 
RETURN 
END 
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APPENDIX G 

COMPUTER PROGRAM TO INTEGRATE EQUATIONS 4.22 AND 4.23 

C 
C THIS PROGRAM USES CHEBYCHEV INTEGRATION TO SOLVE THE INTEGRAND 
C DEFINED IN FUNCTION F2 
C 
C SUBROUTINE FF32(F,T,XL,XU) DOES THE INTEGRATION 
C 
C 
C 
C 
C 
C 

F- THE INTEGRAND 
T- V ALUE OF THE INTEGRAL 
XL- LOWER LIMIT OF SEGMENT INTEGRATION 
xu- UPPER " " " " 

C THE PROGRAM BREAKS THE INTERVAL (XMIN-XMAX) INTO N DIVISIONS 
C 

C 

IMPLICIT REAL (M-N) 
DIMENSION XX(lS3),YY(lS3),Yl(lS3),Y2(lS3) 
COMMON RR,RO,Rl 

YY(lS2)=O. 
YY(lS3)=1. 
XX(lS2)=O. 
XX(lS3)=1. 
Y1(lS3)=1. 
Yl(lS2)=O. 
Y2(lS3)=1. 
Y2(lS2)=O. 

C******************************************** 
C D~ETER OF THE ORIFICE 

READ(3,*) RORF 
C******************************************** 
C DIAMETER OF THE PROTON BEAM 

READ(3,*) RO 
C******************************************** 

CALL PLOTS(1,O,O) 
CALL NEWPEN(2) 
CALL PLOT(l.,l.,-3) 
CALL PLOT(S.,O.,2) 
CALL PLOT(S.,7.,2) 
CALL PLOT(O.,7.,2) 
CALL PLOT(O.,O.,2) 
DO 1 1=1,4 
CALL PLOT(O.,I/S.*7.,3) 

~ CALL PLOT(O.OS,I/S.*7.,2) 
CALL PLOT(O.,O.,3) 
CALL NEWPEN(4) 
CALL PLOT(S.*RO/RORF,7.,2) 
CALL PLOT(S.*RO/RORF,O.,2) 
CALL PLOT(S.,O.,2) 
CALL NEWPEN(2) 
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C******************************************** 
C GET THE R* VALUE FOR P(R} 
2 READ(3,*} RR 

IF(RR.LT.O.} GOTO 18 
RR=6.1 1 O.*RR 

C******************************************** 
DO 3 J=1,15l 

3 XX(J)= (J-l.) 150*RO/RORF*5. 

C 

DO 6 J=I,151 
Rl=(J -I.} 150. *RO 
IF(RI. EQ. O.} GOTO 5 

C 

C******************************************** 
C LOWER LIMIT 
C******************************************** 
C 

XMIN=Rl-RO 
IF(Rl.LT.RO} XMIN=-XMIN 

C 

C******************************************** 
C UPPER LIMIT 
C******************************************** 
C 

XMAX=RO-+Rl 
C 

C******************************************** 
C DIVISIONS 
C******************************************** 
C 

N=lO 
C 

C******************************************** 
C PERFORM INTEGRATION 

C******************************************** 

C 

C 

T=O. 
DX=(XMAX-XMIN} IN 
DO 4 I=l,N: 
XL=XMIN+DX*(FLOAT (I )-1.) 
XU=XMIN+DX*FLOAT(I) 
IF (XU. GT. XMAX) XU=XMAX 

CALL FF32(SI,XL,XU) 

YN=l. 
T~+Sl 

4 CONTINUE 
TEST=ALOG(2.} *( (RO-Rl) IRR}**2. 
IF(Rl.LT.RO.AND.TEST.LT.23.) T=T+l./2.*(1.-EXP(-ALOG(2.)* 

.«RO-Rl}/RR}**2.» 
IF(Rl.LT.RO.AND.TEST.GT.23.) T=T+l./2. 
IF(Rl.LT.RO} T=T+l./3.l41592654*ATAN«(RO-Rl)/RR)**2.) 
YY (J )=T*l. *XX(J) *RORF/5. IRO 
WRITE (4 , *) XX (J ) * RORF 15. , YY (J ) /7 • 
IJK=J 
IF(YY(J} .LT.0.005) GOTD 1 
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GOTO 6 
S TEST=ALOG(2.)*(RO/RR)**2 

6 
7 
4 
C 

8 

9 

10 

11 

12 

13 

14 

IS 

IF(TEST.LT.23.) T=3./4.*(I-EXP(-ALOG(2.)*(RO/RR)**2.» 
IF(TEST.GT.23.) T=T+3./4. 
TJf+l. /3. 141S92 6S4 *ATAN( (RO/RR)**2.) 
YY(J)=T*7.*XX(J)*RORF/S./RO 
WRITE(4,*) XX(J)*RORF/S. ,YY(J)/7. 
T=O. 
CONTINUE 
DO 4 I=IJK,ISI 
YY(I)=O. 
CALL CURVE(XX,YY,ISI,.OS) 
CALL LINE(XX,YY,ISI,I,O,O) 
CALL PLOT(7.,0.,3) 
CALL PLOT (12. ,0. ,2) 
CALL PLOT(12.,7.,2) 
CALL PLOT(7.,7.,2) 
CALL PLOT(7.,0.,2) 
DO 8 1=1,4 
CALL PLOT(7.,I/S.*7.,3) 
CALL PLOT(7.0S,I/S.*7.,2) 
CALL PLOT(7.,7.,3) 
CALL NEWPEN(4) 
CALL PLOT(7.+S.*RO/RORF,7.,2) 
CALL PLOT(7.+S.*RO/RORF,0.,2) 
CALL PLOT(12.,0.,2) 
CALt NEWPEN(2) 
DO 9 I=2,ISI 
Yl(I)=YY(I)/XX(I)/RORF*S.*RO 
Y 1 (1 ) =Y 1 (2) 
DO 10 I=I,ISI 
XX(I)=XX(I)+7. 
CALL LINE(XX,Yl,ISI,I,O,O) 
CALL PLOT(14.,0.,3) 
CALL PLOT(19.,0.,2) 
CALL PLOT (19.,7. , 2) 
CALL PLOT(14.,7.,2) 
CALL PLOT(14.,0.,2) 
DO 11 1=1,4 
CALL PLOT(14.,I/S.*7.,3) 
CALL PLOT(14.0S,I/S.*7.,2) 
CALL PLOT(14.,7.,3) 
DO 12 1=1, ISI 
XX(I )=XX(I )+7. 
DO 13 1=1, SI 
Y2(I)=(XX(I)-14.)**2. 
DO 14I=I,SI 
Y2 (I )=Y 2 (I) /Y 2 (SI) *7 • 
DO IS I=S2, IS1 
Y2(I)=7. 
CALL NEWPEN(4) 
CALL LINE(XX,Y2,151,1,0,O) 
CALL .NEWPEN(2) 
Y2 (1 )=0. 
DO 16 I=2,ISI 
Y2(I)=YY(I)+Y2(I-l) 
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16 CONTINUE 
DO 171=1,151 

17 Y2{I)=Y2{I)!Y2(151)*7. 
CALL LINE (XX, Y2, 151,1,0,0) 
GOTD 2 

18 CALL PLD!{O.,O.,999) 
STOP 
END 

C 
C******************************************** 
C INTEGRAND 
C********************************~*********** 
C 

C 

C 

REAL FUNC TroN F l(R) 
COMMON RR, RO, Rl 

F2=0. 
TEST=ALOG{2.) *(R/RR)**2. 
IF{TEST.LT.23.) F2=ALOG{2.)*R/RR*EXP{-ALOG{2.)*{R/RR)**2.) 
F2=F2+2. /3. 141592654*R/RR/ (1. +(R/RR) **4 .) 
F1=1./3.141592654*ACOS{{R*R+R1*R1-RO*RO)/{2.*R*R1»*F2 

RETURN 
END 

G4 



C 
C******************************************** 
C CHEBYCHEV INTEGRATION 
C******************************************** 
C 

C 
SUBROUTINE FF32 (T ,XL, XU) 

X=XU-XL 
C=.136806908E-2*X 
T=.350930500E-2*(F1 (XL+C)+F1 (XU-C» 
C=.719424423E-2*X 
T=T+.813719737E-2*(F1(XL+C)+F1(XU-C» 
C=.176188722E-1*X 
T=T+.126960327E-1*(F1(XL+C)+F1(XU-C» 
C=.325469620E-1*X 
T=T+.171369315E-1*(F1(XL+C)+F1(XU-C» 
C=. 5183 94221E-1 *x 
T=T+. 214179490E-1*(F1(XL+C)+F1 (XU-C» 
C=.753161931E-1*X 
T=T+. 254990296E-1*(F1 (XL+C)+F1(XU-C» 
C=.102 7581 02*X 
T=T+. 293420467E-1*(F1 (XL+C)+F1 (XU-C» 
Ca. 133908941 *X 
T=T+.329111114E-1*(F1(XL+C)+Fl(XU-C» 
C=. 168477867 *X 
T=T+. 361728971E-1 *(Fl(XL+C )+F1 (XU-C» 
C=.206142121*X 
T=T+.390969479E-1*(F1 (XL+C)+Fl (XU-C» 
C=.246550046*X 
T=T+.416559621E-l*(F1(XL+C)+Fl(XU-C» 
C=. 289324362 *X 
T=T+. 438260465E-l*(Fl (XL+C)+Fl (XU-C» 
C=.334065699*X 
T=T+.455869393E-1*(F1(XL+C)+Fl(XU-C» 
C=.380356319*X 
T=T+. 469221995E-l*(Fl(XL+C)+Fl (XU-C» 
Ca. 42 7764019*X 
T=T+.478193600E-l*(F1(XL+C)+F1(XU-C» 
C=.475846167*X . 
T=T+. 482 700443E-1 *(F1 (XL+C )+Fl (XU-C» 
T=T*X 
RETURN 
END 
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