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Abstract—The Lunar Meteoroid Impact Observer (LUMIO) is
a CubeSat mission at the Earth-Moon Lagrangian point 2 (L)
designed to observe, quantify, and characterize the meteoroid
impacts by detecting their flashes on the Lunar farside. LUMIO
can be deployed as one of the payloads in the NASA Commercial
Lunar Payload System or from Artemis-2 mission to a low
Lunar orbit and to demonstrate autonomous navigation capa-
bilities to reach its operational orbit around the Earth-Moon
Lo. From there, its scientific mission to map and investigate
the spatial and temporal characteristics of meteoroids impacting
the Lunar surface will start and is expected to last for one
year. LUMIO is a 12U CubeSat including a dedicated cam-
era to monitor impact flashes in the visible and near-infrared
spectrum, and also allows estimating the impact of temperature
and energy. Optical navigation using the payload camera will
also demonstrate increased on-board autonomy and drastically
reduced mission costs. Navigation validation will be carried out
using standard ground-based radiometric techniques enabled
by a miniaturized X-band coherent transponder on-board. LU-
MIO can also use an inter-satellite link for telemetry and con-
trol via a commercial Lunar data relay system, providing a
redundant communication system and lowering the need for
high-gain ground stations for routine operations. The satellite
bus derives from a commercial version designed for Low Earth
Orbit and it will feature several improvements to operate in the
Lunar environment, including a more advanced thermal control
and radiation shielding. Commercial Off-The-Shelf systems
will require a radiation screening and this will contribute to
maintain the mission budget low and aim at a launch date in
2024.
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1. INTRODUCTION

The Lunar Meteoroid Impact Observer (LUMIO) is a 12U
CubeSat mission to a halo orbit at the Earth-Moon L5 that
shall observe, quantify, and characterize meteoroid impacts
on the Lunar farside by detecting their flashes. These ob-
servations can complement Earth-based observations on the
Lunar nearside, providing global information on the Lunar
Meteoroid Environment and contribute to Lunar Situational
Awareness.

LUMIO was one of the proposals submitted to the Euro-
pean Space Agency (ESA) LUnar CubeSats for Exploration
(LUCE) call. SysNova is intended to generate new and
innovative concepts and to verify quickly their usefulness
and feasibility via short concurrent studies [1]. LUMIO was
selected as one of the four concurrent studies run by ESA,
winning the challenge together with another study. The prize
for the challenge was an independent assessment conducted
at ESA’s Concurrent Design Facility (CDF) to prove the
feasibility and the scientific value of the mission [2], further
maturing system design and increasing the chances for the
mission to be selected at a future selection. Details on this
Phase-0 study have been provided in numerous publications
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and presentations [3-5]. The LUMIO Phase A study, funded
by ESA under the General Support Technology Programme
(GSTP), through the support of the nltalian Space Agency
(ASI), the Netherlands Space Office (NSO) and the Norwe-
gian Space Agency (NOSA), has been kicked off in March
2020 and has been completed in March 2021. Further details
on the initial results can be found in [6], while the final design
is illustrated in detail in [7].

This paper will discuss in detail the current design of LUMIO
subsystems. In Section 2, mission description is shown
including mission phases, operative orbit and Av budgets. In
Section 3, the spacecraft subsystems are presented including
payload, Attitude control, Propulsion, Communications, Data
Handling, Power generation, and Thermal Control subsys-
tems. Lastly, conclusions can be found in Section 4.

2. MISSION ANALYSIS AND PHASES
The LUMIO mission to addressed the following issues:

o Science Question: What are the spatial and temporal
characteristics of meteoroids impacting the Lunar surface?

« Science Goal: Advance the understanding of how mete-
oroids evolve in the cislunar space by observing the flashes
produced by their impacts on the Lunar surface.

o Science Objective: Characterize the flux of meteoroids
impacting the Lunar surface.

Figure 1 shows a simplified mission profile, divided onto the
following phases:

Earth-Moon transfer: After launch, LUMIO is carried
inside its mothership to a Lunar parking orbit. During the
transfer the spacecraft is switched off inside its deployer and
the batteries are kept charged by a power connection with the
mothership.

Parking: LUMIO is released in its Lunar parking orbit
by the mothership. After achieving an operational attitude
(detumbling) and deployment of the solar arrays, the payload
and all subsystems are commissioned. The spacecraft com-
municates with the Earth to determine its orbit and receive
telecommands. LUMIO stays in the parking orbit and, when
necessary, performs station keeping and wheel desaturation
maneuvers.

Parking Phase

Operative Phase

3B
005
RN

- Launch S "'
- LEOP “~.~(

- Trans-lunar injection &

\
Y

Transfer Phase

End of Life { 4

Figure 1. Mission timeline.
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Figure 2. Operative orbit concept of Operations.

Transfer: LUMIO autonomously transfers from the Lunar
parking orbit to the final operative orbit. The transfer is per-
formed by a Stable Manifold Injection Manoeuvres (SMIM),
two Trajectory Correction Manoeuvres (TCM), and a Halo
Injection Manoeuvres (HIM). Also, during this phase, the
spacecraft will be able to communicate with the ground, in
order to determine its state and perform the flight dynamics
tasks.

Operational phase: In this phase, expected to last at least
one year, LUMIO accomplishes its scientific objectives. The
phase is divided in two sub-phases: the science cycle (blue
solid line in Figure 2) and the navigation and engineering
cycle (orange solid line in Figure 2). During the science
cycle, lasting approximately 14 days, the Moon farside has
optimal illumination conditions to perform impact flash ob-
servations. In this cycle, scientific data (images) are contin-
uously acquired, processed and compressed while during the
navigation and engineering cycle (also lasting approximately
14 days), orbit determination, station keeping and data down-
link to Earth are performed.

End-of-Life: This phase puts the spacecraft in safe condi-
tions for other spacecraft which may come in contact with
it: the end-of-life maneuvers will be performed to bring the
spacecraft into an orbit limiting collision risks and then all
spacecraft subsystems will be passivated and de-activated.

The quasi-periodic halo orbit (sometimes referred here as
quasi-halo orbit) about Earth-Moon Lagrangian point 2 (L5)
is designated as the operative orbit. This resulted from a
thorough trade-off analysis among a set of fourteen quasi-
halos orbits computed in the high-fidelity Roto-Pulsating
Restricted n-Body Problem (RPRnBP) [8]. The trajectory of
the selected orbit is shown in Figure 3 and 4.

The mission Av budget is presented in Table 1 for the
Artemis-2 launch opportunity considering an optimized
transfer strategy from the corresponding release orbit. It
also includes a set of deterministic and stochastic maneuvers.
The optimized Av budget for the Commercial Lunar Payload
Services (CLPS) launch opportunity is significantly lower
(119.5 m/s including margins, as opposed to the 201.8 m/s
of the Artemis-2 case) mainly because of its significantly less
demanding SMIM maneuver. For further details on the Av
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Table 1. AV budget for LUMIO [9].

Maneuver Deterministic, m/s  Stochastic, 30, m/s Margin
Delta-V 8.31 5%
SMIM 129.21 5%
TCM 18 100%
HIM 12.21 5%
1-year S/K 4.34 5%
Disposal 2 100%
Total (without margins) 174.07 m/s
Total (with margins) 201.78 m/s

budgets, please refer to [9].

3. SPACECRAFT DESIGN

After a few iterations from the previous phases, the current
design of the spacecraft, with the spacecraft mass (including
safety margins) being 28.69 kg, is reached and it can be seen
by the rendering in Figure 5. The two internal configuration
overviews are shown in the Figure 6 and 7 [7].

The following summarize the spacecraft subsystems design.

Payload (LUMIO-CAM)

LUMIO-CAM is a compact imager that will observe, quan-
tify and characterize meteoroid impacts on the Lunar far side
by detecting their impact flashes. The instrument, for which
a rendering can be seen in Figure 8, has been designed to
operate in the bandwidth between 450 nm and 950 nm, im-
plementing a double focal plane assembly configuration. The
instrument architecture is composed of three main parts: one
optical head, two focal plane assemblies and the proximity
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Figure 3. Projection of the selected operative Earth—-Moon
Ls quasi-halo in the Roto-Pulsating Frame. Dimensions are
provided relative to the average Earth-Moon distance.
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Figure 4. Selected operative Earth-Moon Lo quasi-halo
orbit in the Earth—-Moon synodic frame. Dimensions are
provided relative to the average Earth-Moon distance.

Figure 5. Satellite rendering.

electronic. The optical head includes an optical barrel, a
dioptric objective composed of five lenses, with a focal length
of 127 mm, a field-of-view of £3°, and a 150 mm baffle to
limit the influence of stray light during payload operations
coming from the Sun and from the Earth. The baffle has been
developed to fully fit inside the satellite volume. The focal
plane assembly includes the two detectors and their Thermo-
Electric Cooler: two identical 1024 x 1024 Charge-Coupled
Device (CCD) detectors are positioned after a dichroic cube
to split the incoming light on two separate bands: this solution
has been selected to estimate the flash temperature. The
Proximity Electronic generates the two detectors scanning
and acquisition digital signals and manages the acquisitions
of the housekeeping parameters.

Attitude Determination and Control System

The ADCS design is of crucial importance in the mission
to guarantee Moon pointing for the science requirements,
antennas pointing towards the Earth and the Moon, along

Figure 6. Internal view, -Y
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with the need to maximize the power generation by pointing
the solar panels towards the Sun. The same attitude strategy
proposed in [6] has been maintained. The operational attitude
requires the roll axis to be oriented towards the Moon and
the pitch axis lying on the CubeSat-Moon-Sun plane. The
yaw axis completes the ortho-normal frame. Please refer to
Figure 9 for further details on the attitude in the different
modes of operations.

The selected sensor suite is composed by six fine Sun sen-
sors (one per CubeSat face, provided by Lens R&D), two
star trackers (AURIGA, made by Sodern), and one Inertial
Measurement Unit (IMU) (SCG, produced by ISISpace).
The actuators for the ADCS comprise four reaction wheels
(RW25 SW50, produced by ISISpace), and one Reaction
Control System (RCS), explained more in details in Section 3.
Further details can be found in [7].

Propulsion

The propulsion system design is also of crucial importance
for the success of the LUMIO mission [9]. It accomplishes
various functions: orbital transfer from the initial Lunar orbit
to the final halo orbit around L, station keeping, reaction
wheel desaturation, end of life disposal maneuvers.

Figure 8. The LUMIO-CAM [7].

Figure 9. LUMIO reference attitudes, from left to right:
body-fixed frame, roll axis pointing to the Moon, science
cycle and navigation experiment pointing profile.

The initial design choice was the VACCO Hybrid ADN MiPs
system, which allowed to have in the same unit the main
propulsion thruster and four 10 mN cold gas thrusters. This
selection would have also allowed for de-tumbling and wheel
de-saturation maneuvers with a single unit. Following design
iterations proposed an alternative solution to overcome the
uncertainties related to the customization of the VACCO
system, based on two Aerojet MPS130-2U systems, mounted
at two different corners of the spacecraft. This would allow
for a total of eight 0.25 N mono-propellant thrusters that
could therefore be used for the main trajectory corrections
but also for de-tumbling and de-saturation, depending on the
amount of activated thrusters and their activation strategy.

A complicated trade-off between an “integrated” propulsion
system and alternative solutions in which two fully separate
systems were considered can be found in [9], where more
options have been considered regarding the initial study. Two
more options for the major propulsion system have been
analyzed: the NanoAvionics EPSS system and a system from
Bradford-ECAPS based on their flight-proven HPGP 1N
thruster. For the RCS, two options have been considered:
the GomSpace 6DOF cold gas system and a custom-designed
version of the ARM water resistojet system produced by
Aurora.

Communications

The communications system design is based on an architec-
ture involving a combination of Inter-Satellite Link (ISL) and
Direct-to-Earth (DTE) link. The ISL is expected to involve,
as relay satellite, the SSTL Lunar Pathfinder satellite: this is
a commercial data relay spacecraft developed by SSTL under
ESA contract to serve Lunar assets. Considering the high
visibility of the relay satellite (up to 22 hours a day), this
provides a very good coverage compared to a single ground
station on the ground. The data rate is unfortunately limited
because of the available volume on the satellite to fit a higher
gain antenna.

The ISL link budgets for the different communication links
have been calculated considering the final mission configu-
ration and using the real antenna patterns. Considering an
approximate Equivalent Isotropic Radiated Power (EIRP) for
LUMIO in S-band of 9dBW, including a 3 dB safety margin,
the achievable data rates with the Lunar Pathfinder are in
the order of 0.5-4 kbps (depending on the relative distance,
minimum 31 000 km and maximum 89 000 km). The selected
radio for this link is the ECW31 produced by Syrlinks (S-
band uplink/downlink), which would require customizations
to support the Proximity-1 standard [10]. Considering the
low achievable rates and the lack of coherent operations in
the Lunar Pathfinder transponder, the ISL cannot be used
for navigation purposes. Despite the low accuracy, not
sufficient for the mission purposes, autonomous navigation
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Figure 10. Sardinia Deep Space Antenna (SDSA) [12].

can be achieved by Linked Autonomous Interplanetary Orbit
Navigation (LiAISON) navigation techniques [11].

The DTE link is used for payload data downlink, ranging and
tracking in nominal conditions. The link is relying on one
ground station and the trade-off took into account both S- and
X- band. The final selection was the Sardinia Deep Space
Antenna (SDSA), shown in Figure 10, as a baseline after
comparing it against several other institutional and commer-
cial solutions. LUMIO requires radiometric navigation as a
baseline, thus X-band provides better performances regarding
S-band in terms of Doppler accuracy. Considering the ground
selection, the European Deep Space X-band transponder has
been selected for DTE communication [13]. This provides
a data downlink rate of 450-900kbps and an uplink rate
of 10kbps. Because of the different power consumption
on the ISL and DTE on-board receivers, it was selected to
maintain the former always active (also considering the good
availability of the link) for nominal commanding from ground
(via the Lunar relay). The DTE link will instead be used for
payload data downlink, thanks to the much higher speed. This
link will also be used for emergency operations thanks to its
added simplicity and the flexibility in controlling a ground
station for eventual rescue operations.

A link analysis was also performed for the radio-navigation
signals to estimate the achievable line-of-sign position error.
Ranging sessions have been scheduled to happen at the
beginning, in the middle and at the end of the engineering
phase (see Section 2 for further details): this session distri-
bution (with a time separation between them of 7, 7 and 14
days) allows to minimize navigation measurements while still
achieving the required position estimation accuracy. Two-
way range measurements have been planned at the beginning
and the end of every ranging session while coherent Doppler
measurements have been considered every 20 minutes. It
was found from simulations that 3 hours of tracking for each
session would fit well within the navigation requirements.

Further details on the communications system design can be
found in [14].

On-Board Data Handling

The LUMIO design features an On-Board Payload Data Pro-
cessing (OBPDP) system whose task is detecting meteoroid
impact flashes in the continuous stream of images arriving
from the camera in real time. As its second task, this system
will carry out the autonomous optical navigation experiment
using sporadically recorded images [15]: this experiment

~8361x reduction

Images 7 /
1024x1024x2 Keep only images Images of
#++———> containing flashes flashes
p / (+4 neighbours) 1024x1024x2

~31 flashes/day x 5 images

569 MB/day
4.76 TB/day

~419x reduction
Keep only a region Flash tiles
around flashes 50x50x2

1.36 MB/day

Figure 11. LUMIO payload data reduction strategy.

aims at demonstrating fully autonomous visual navigation
without aid from ground. On-board processing of the images
is required because the LUMIO-CAM generates an amount
of data that cannot be realistically be transmitted to Earth:
it should also be considered that most of the acquired images
would not contain impact flashes and such flashes would only
cover a minor area on the image.

The rationale for the design of the OBPDP science products
is primarily to minimize the amount of scientifically relevant
data that is lost by the on-board processing. Another aim
is to minimize the amount of computation that needs to be
performed on-board the spacecraft. Therefore, the science
products are designed to be as similar to the acquisitions (raw
images) as possible and the focus of the on-board processing
is on the removal of the scientifically non-relevant parts. Only
the flash-containing image plus two images before and after
will be kept. To further reduce the total amount of data, only
a 50x50 pixel tile surrounding the flash is kept. The position
(regarding the full acquired image) will also be downloaded
to reference the flash position to the Lunar surface and
eventually perform investigations on the crater size using
other ground or space telescopes. Figure 11 summarizes the
whole data-reduction process. Full frames download is also
possible, as part of the optical navigation experiment [15],
but also for general commissioning of the system or scientific
investigations that go beyond the mentioned flash analysis.

Electrical Power System

The EPS uses two deployable and steerable solar arrays, a
battery pack for energy storage and a distribution unit to
regulate and distribute the power to the various subsystems.
The selected configuration provides an average of 54 W to
58 W during the various mission phases with a total battery
storage capacity of 180 Wh.

The different mission phases have been divided into multiple
“modes” resulting in the maximum power usage of 54 W
during the science phase, 54 W during attitude correction ,
47W during the navigation and engineering phase and up
to 67 W when the propulsion system is used. Although
the highest power consumption occurs during the propulsion
heating and the transfer phase, the phase that drives the power
budget is the science one. This is because the spacecraft only
has to operate in the propulsion heating and transfer modes
for a limited amount of time while it spends the vast majority
of its time in the science phase.

Thermal Control

The thermal control system has been designed to ensure
spacecraft thermal stability throughout the mission lifetime,
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by keeping all subsystems within their acceptable temper-
ature ranges. Because of the available power and volume
on-board and the relatively benign orbit scenario, it was
decided to select a completely passive design, identifying
proper coatings for the external spacecraft panels to maintain
the critical nodes’ temperature within the admissible oper-
ative range. The Phase A study allowed to conclude that
it is possible to keep all spacecraft components within their
allowed temperature range, greatly simplifying the overall
satellite design.

4. CONCLUSIONS

The LUMIO mission, with the primary science goal of
observing and characterizing meteoroid impacts on the Lu-
nar farside, will significantly improve the current meteoroid
distribution models and possibly reduce their uncertainty.
LUMIO will be fully complementary, in both space and time,
to Earth-based observations, and will, therefore, represent a
fundamental contributor to Lunar Situational Awareness.

LUMIO is a 12 Unit CubeSat equipped with the LUMIO-
CAM, an optical instrument capable of detecting impact
flashes while continuously monitoring and processing im-
ages. In this paper, the current design of LUMIO, its sub-
systems and its mission characteristics have been presented
and discussed. The design shows the mission is feasible and
it can reach the required performances. The mission’s Phase
B is expected to start at the end of 2021 or at the beginning of
2022 and the launch is expected in 2024.
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