

Delft University of Technology

Programming Misconceptions for School Students

Swidan, Alaaeddin; Hermans, Felienne; Smit, Marileen

DOI
10.1145/3230977.3230995
Publication date
2018
Document Version
Submitted manuscript
Published in
ICER '18

Citation (APA)
Swidan, A., Hermans, F., & Smit, M. (2018). Programming Misconceptions for School Students. In ICER '18
: Proceedings of the 2018 ACM Conference on International Computing Education Research (pp. 151-159).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3230977.3230995

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/3230977.3230995

Programming Misconceptions for School Students
Alaaeddin Swidan, Felienne Hermans and Marileen Smit

Delft University of Technology
Delft, The Netherlands

{alaaeddin.swidan,f.f.j.hermans,m.i.e.smit}@tudelft.nl

ABSTRACT
Programming misconceptions have been a topic of interest in in-
troductory programming education, with a focus on university
level students. Nowadays, programming is increasingly taught to
younger children in schools, sometimes as part of the curriculum.
In this study we aim at exploring what misconceptions are held
by younger, school-age children. To this end we design a multiple-
choice questionnaire with Scratch programming exercises. The
questions represent a selected set of 11 known misconceptions and
relate to basic programming concepts. 145 participants aged 7 to 17
years, with an experience in programming, took part in the study.
Our results show the top three common misconceptions are the
difficulty of understanding the sequentiality of statements, that a
variable holds one value at a time, and the interactivity of a program
when user input is required. Holding a misconception is influenced
by the mathematical effect of numbers, semantic meaning of iden-
tifiers and high expectations of what a computer can do. Other
insights from the results show that older children answer more
questions correctly, especially for the variable and control concepts.
Children who program in Scratch only seem to have difficulties
in answering the questions correctly compared to children who
program in Scratch and another language. Our findings suggest that
work should focus on identifying Scratch-induced misconceptions,
and develop intervention methods to counter those misconceptions
as early as possible. Finally, for children who start learning pro-
gramming with Scratch, materials should be more concept-rich and
include diverse exercises for each concept.
ACM Reference Format:
Alaaeddin Swidan, Felienne Hermans and Marileen Smit. 2018. Program-
ming Misconceptions for School Students. In ICER ’18: 2018 International
Computing Education Research Conference, August 13–15, 2018, Espoo, Fin-
land. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3230977.
3230995

1 INTRODUCTION
It is known from existing research that learning programming is
difficult [3, 4, 11]. One source of difficulties is holding program-
ming misconceptions [4, 24], which affects performance in writing
or understanding code. A programming misconception is having

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’18, August 13–15, 2018, Espoo, Finland
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5628-2/18/08. . . $15.00
https://doi.org/10.1145/3230977.3230995

an incorrect understanding of a programming concept or a set of
related concepts, typically affected by prior knowledge from do-
mains other than programming such as mathematics and natural
languages [20].

Studying programmingmisconceptions involves identifying their
possible origins in order for both learners and educators to rec-
tify relating concepts. Misconceptions have a harmful effect on
the performance of students. The effect starts early [24] and may
remain for a long time [17]. They have been found to cause fail-
ure in introductory programming courses and, in the long run,
even cause students to drop out of programming education [12].
Previous studies focused nevertheless on introductory courses in
universities. Nowadays, CS education and programming is increas-
ingly introduced to younger students in primary and secondary
schools [2, 10]. Many countries have already integrated program-
ming activities into their school curriculum [9]. Moreover, new
programming languages and programming environments are im-
plemented especially for younger children. An example is Scratch1,
a block-based language which is developed by MIT with the aim
of teaching children how to program. While CS education is mov-
ing down to schools, little is known on whether children develop
certain misconceptions at this stage. In this study we aim at explor-
ing the programming misconceptions held by school-age children.
We developed a multiple-choice questionnaire containing 11 ques-
tions representing a selected set of programming misconceptions
known from previous research [21]. In total, 145 children aged be-
tween 7 and 17 participated in our study. The participants, who
were required to have an experience in programming, additionally
provided reasoning for their answers in open-ended texts. From
the data collected in this survey, we aim to answer the following
research questions:

RQ1 Which programming misconceptions are the most com-
mon among Scratch novice programmers?

RQ2 How do children holding those misconceptions explain
their answers? How do their explanations differ from the
ones of children understanding the concept correctly?

RQ3 How do age and previous programming knowledge affect
the holding of a misconception or the correct understanding?

2 BACKGROUND
Research defines a programming misconception as an incorrect un-
derstanding of a concept or a set of concepts, which leads to making
mistakes in writing or reading programs [20]. Misconceptions can
be related to basic, yet fundamental, programming concepts, not
only to advanced concepts. Apart from syntactic mistakes, there

1https://scratch.mit.edu/

https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/3230977.3230995

seems an agreement among researchers on particular concepts be-
ing difficult for learners. Those language-independent concepts in-
clude variables, loops, and conditional statements [4, 7, 11, 13, 17].
An example of a programming misconception: the belief that a
variable can hold multiple values, or the belief that a variable’s
assignment goes the opposite direction [4, 21]. In object-oriented
languages, common difficulties are related to the scope and visi-
bility of variables, modularization and decomposition and inheri-
tance [8, 12].

Research focused on understanding where a misconception orig-
inates from. A programming misconception does not mean that
the learner has a complete lack of knowledge, rather it indicates
partial but self-interpreted knowledge which comes from domains
other than programming [4]. Some of the known origins include
the use of particular analogies in explaining a concept, the ambigu-
ous and double meanings of some of the programming keywords
in English as a natural language, and mathematics [4, 15, 19]. Du
Boulay [4] introduced what he called the “notional machine” as
one origin of programming misconceptions. The notional machine
refers to the general properties that a student assumes of the ma-
chine executing their code. Having an incorrect understanding of
the notional machine of a programming language is believed to
be the cause of many misconceptions [13, 20]. For example errors
were found as a result of what Pea [14] called the “superbug” which
is the assumption that “there is a hidden mind somewhere in the
programming language that has intelligent, interpretive powers” [14,
p. 32], or “forgetting about alternative branches because they are too
obvious to merit consideration” [22, p. 6].

Finally, the variety of misconceptions make it difficult for edu-
cators to take them fully into account. In this regard, Sorva [21]
provides a comprehensive list of programming misconceptions col-
lected from various studies [4, 6, 12, 19, 20]. In this study, we use
Sorva’s list as the starting point to investigate Scratch misconcep-
tions in school students.

3 SETUP
The goal of our study is to explore the common misconceptions
among school-age children in Scratch. To this end, we perform a
questionnaire-based study. Participants are given a set of multi-
ple choice questions; each question is a programming exercise in
Scratch which tests the holding of a known misconception. Ques-
tionnaires have been used to assess the holding of programming
misconceptions in previous research [12, 18]. Participants in most
cases need to predict the outcome of the script to choose an answer.
Figure 2 shows an example question from our study. We provide the
full questionnaire (English version) here2. In the following sections
we describe the study setup in detail.

3.1 Participants
In total 145 children took part in the study. Figure 1 shows the dis-
tribution of the participants over the reported age, ranging between
7 and 17 years. Among the participants, 102 (70.3%) are boys, and
51 (29%) are girls; one participant did not specify gender.

2http://cli.re/g1zyQM

Figure 1: Age distribution of the participants. 70.3% of them
are primary school students (12 years old and younger)

3.2 Study environment
We ran this experiment at NEMO science museum 3 in Amsterdam.
Children visiting the museum were asked to join an experiment
on programming but received no further information on what the
experiment would measure. Participants did not get financial com-
pensation for participation, but did receive a certificate for their
efforts. The experiment was assigned a 25-minutes window per
child and was run in a separate room in the museum that seated 8
children at a time. In total we spent 14 days at the museum, running
the experiment for about 5 hours each day. During the experiment
each participant had to fill answers to our web-based questionnaire
in which the questions were put in static images. The children had
access to the machine and the Internet, but we did not observe
any participant opened other applications or pages than the ques-
tionnaire. The number of participants reported in this study is a
subset of the total children who visited our booth, we filtered out
participants who did not have programming experiences or who
indicated guessing the answers. Asking children in such setup al-
lowed us to study the holding of misconceptions on a sample that
is less-dependent on specific teaching methodologies compared to
an experiment run in a school.

3.3 Misconceptions selection
Sorva provides a comprehensive list of 162 programming miscon-
ceptions known from the literature [21]. We used the list as our
starting point to investigate Scratch misconceptions. We followed
a two-step approach to achieve that. First, we selected the most
commonmisconceptions from the list. Amisconception is com-
mon if indicated by at least two separate research works. This step
reduced the list to 17 programming misconceptions. Second, since
we study Scratchmisconceptions, we filtered out themiscon-
ceptions that do not fit Scratch as a language. For example, we
eliminated two misconceptions that concern the use of a loop con-
trol variable inside the loop’s body. In Scratch, loops use a static
value and no variable is necessary to iterate through the body. This
resulted in 11 misconceptions, shown in Table 1.

3.4 Questions
Before presenting the misconception questions to the participants,
we require the participant to answer five close-ended questions
in the questionnaire. The answers to those questions indicate the
3https://www.nemosciencemuseum.nl/en/

Table 1: Programming misconceptions included in our study from [21].

Code4 Description Prerequisite
Concept(s)5

Question Description
(Pseudo-code)

Misconception Choice(s)

M9 A variable can hold multiple values at a time Variables Set [X] to 10; Set [X] to 20; Say [X]; Gobo says 10, 20
M11 Primitive assignment works in opposite direction Variables Set [a] to 10; Set [b] to 20;

Set [a] to [b];
a=20, b=0
a=20, b=10

M14 A variable is a pairing of a name to a changeable
value. It is not stored inside the computer

Variables We create a variable called message,
Where is the variable stored?

Variable is not stored anywhere
Variable is only visible on the screen

M15 Primitive assignment stores equations or unresol-
ved expressions

Variables Set [X] to 1, Set [counter] to [X+1];
Say [counter];

Gobo says X+1

M17 Natural-language semantics of variable names aff-
ects which value gets assigned to which variable

Variables Set [big] to 1; Set [small] to 100;
Set [big] to [small];

big=100 small=1
big=100 small=0

M23 Difficulties in understanding the sequential-
ity of statements

Variables Set [number1] to 0;
Set [number2] to 0;
Set [total] to [number1] + [number2];
Set [number1] to 4; Set [number2] to 2;
Say [total];

Gobo says 6

M26 A false condition ends program if no else branch
exists

IF ELSE IF touching the color [black] then {
Say “Auw!!” ; };
Say “I am moving” ;

Gobo does not say anything

M30 Adjacent code executes within loop Variables &
Loops

Set [counter] to 0;
Repeat 5 { Change [counter] by 1;};
Say [counter];

Gobo says 1 till 5

M31 Control goes back to start when condition is false IF ELSE Say “I am moving” ;
IF touching the color [black] then {
Say “Ouch!!” ; };
Say “Done!!” ;

Gobo says “I am moving”

M33 Loops terminate as soon as condition changes to
false

Variables &
Loops

Set [number] to 1;
Repeat until [number]=3 {
Change [number] by 1; Say [number]; };

Gobo says 2

M150 Difficulties understanding the effect of input calls
on execution

None Ask [“How old are you?”] and Wait;
Say “Nice! I will move now” ;
Move [10] Steps;

Gobo says “How old are you?” and
immediately Says “Nice! I will
move now” and Moves 10 steps.

Figure 2: Question and possible answers for M33

participant’s familiarity with these programming concepts: vari-
ables, IF statements and loops. We use the answers in an automatic
branching logic so that we present a set of three to eleven multiple-
choice misconception questions (See Table 1) that fit the knowledge
of the participant. Each question is designed to elicit one of the

well-known programming misconceptions. For this purpose we use
programming problems similar to the ones suggested by Ma [12]
for Java students. In our case, we design the question in Scratch
both in English and Dutch. Scratch enables programming in one’s
native language, which eliminates the cognitive load for reading a
foreign language for the local children and enables them to focus
on the programming challenge [5, 24]. Figure 2 shows an exam-
ple of one of the questions related to the misconception of a loop
terminating as soon as the condition becomes false (M33). We ask
the participants to predict the outcome of the program by asking
“What will Gobo say when we click the green flag?”, where Gobo is
one of the characters known in Scratch. The answers are catego-
rized intoHolds_Correct (Gobo says 2 then 3), “Holds_Misconception”
(Gobo says 2), and Other_Wrong (Gobo says 1 then 2 then 3). An
open-ended question follows so that the participant can explain the
reasons behind the chosen answer. We used the open-ended text
to filter the results. The aim of this filtering is to eliminate answers

4We add a prefix, M, to the original numbers assigned to the misconception in Sorva’s
list. This is for the sake of easy referencing in the paper.
5This column indicates how we assign questions to participants based on the familiar
concepts they report.

for which children admitted that they either guessed the answer or
did lack understanding of the question. We note that we initially
received 1,306 answers from 178 participants. Due to the filtering
process, 545 answers were eliminated. The number of participants
included in the study went down to 145 since for some participants
their whole answer set was eliminated.

4 RESULTS
This section provides an overview of the answers to the study’s
research questions based on the questionnaire’s data.

4.1 Most common misconceptions
[RQ1]Which programmingmisconceptions are themost com-
mon among Scratch novice programmers?
To answer RQ1, we analyze the answers for each misconception
question. Figure 3 presents the percentage of participants who
selected the misconception choice per question. The three most
common misconceptions are related to different concepts: (i) the
sequentiality of executing code (M23), (ii) the variable holdingmulti-
ple values at a time (M9), and (iii) the human-computer interactivity
and its effect on execution (M150). Moreover, we notice that among
the least common misconceptions are the misconceptions related
control statements: loops and conditions (M31, M33 and M26). In
these cases, however, otherwise wrong choices are popular among
participants, which indicates the general difficulty to understand
those concepts.

4.2 Insights from children explanations
[RQ2] How do children holding those misconceptions explain
their answers? How do their explanations differ from the ones
of children understanding the concept correctly?

First we quantitatively analyze the open-text provided by par-
ticipants per their answer category for the top three common mis-
conceptions (see Table 2). To highlight the thinking process of the
children both holders of a misconception or the correct concept, we
further explore the open-ended answers provided by participants
for M14 and M26 in addition to the ones in Table 2. M14 is chosen
because two aspects of the misconception are provided in the multi-
ple choices. M26 is chosen because although a choice representing
the misconception is not provided separately (See Section 5.4), par-
ticipants still indicated holding the misconception through their
provided open-ended text.

M23: Difficulties in understanding the sequentiality of
statements
Participants with the misconception=56.2%, Correct=42.5%, n=73

Misconception: Participants show a focus on the mathematical
operation itself, not on the sequence. This is shown in the the top
three words as the the words include “values” and “add”. Addition-
ally, we find explanations such as “because if you add number 1(4)
and number 2 (2) [then] it will say 6” or simply “Basic math man”.
Some participants assumed an automatic aspect of the operation:
“when you change values of these variables total value changes also”,
and “4 + 2 = 6 the computer should calculate that for you”.

Correct: Participants are able to identify the sequential nature of
the code. In the most frequent words we find the word “before”
which indicates an order. One participant, for example, explains:
“Because total is set to [no.1] + [no.2] so it equals 0. The variables
changed after that are irrelevant”. Another participant suggested
a “fix” to the code: “If the block set [total] to [number1]+[number2]
was put lower then it would have worked”.

M9: A variable can hold multiple values at a
time/“remembers” old values
Participants with the misconception=42.9%, Correct=42.9%, n=63

Misconception: Most participants referred to the code in the ques-
tion as their reason without extra highlights. The frequent words
used include the words “first” and “numbers” which shows the
attention these participants give to the old value of the variable
and both numbers used in the exercise respectively. However, one
participant, despite choosing the misconception answer explains:
“I’m not sure, but if two [instances] of the same variable are used
with different numbers, if possible, [the result] will give both numbers.
Otherwise it would be 20 because that was the last change”.
Correct: One of the most frequently used words is the word “vari-
able”. This might indicate that participants have a basic understand-
ing of what a variable is and thus they use the term more frequently.
Moreover, we notice from the explanations of some of the partic-
ipants referring to the last change made to the variable’s value.
Examples on this include: “X= 20 is after X= 10 and the later one
will overwrite the earlier one”. However, one participant shows a
full awareness of this aspect of variables: “variable X is changed to
10, then 20, and a variable can only have one value”.

M150: Difficulties understanding the effect of input func-
tion calls on execution
Participants with the misconception=39.1%, Correct=35.7%, n=115

Misconception: The word “order” is the second most frequent
mentioned by these participants, highlighting the importance they
give to the sequential execution that respects the blocks’ order.
One participant explains for example: “This is the order from up to
bottom” and another says: “because [the answer] is in the correct
order”. Moreover we notice that some participants use the word
“answer” identifying the question-answer nature of the program.
However they still provided the wrong answer because of a vari-
ety of wrong assumptions such as that since it is not possible for
the participant to fill an answer then the computer will continue.
Another assumption is that the question is directed towards the
computer, therefore the computer will answer and continue the
execution: “Gobo says i am .. years old and directly says ...[continues
the next blocks]”, and another participant: “I think that in the game
Gobo is asked how old he is, then he ...[continues the next blocks]”.
Correct: We notice again two forms of reasoning when partici-
pants give the correct answer. One has a direct approach and relies
on the word “wait” being present in the question and in the answer
text, stating that the choice comes because “there is wait” in both
question and answer. The second shows that participants have more
precise recognition of the question-answer nature of the program,
and hence the need for an answer from the user so that the program
can continue. One participant explains: “if he asks you then you have

Figure 3: Misconceptions and their answer distribution, ordered frommost to less common. M14, M26 in addition to the top 3
misconceptions are further discussed by exploring participants open-ended text.

Figure 4: The questions representing M23 (Left), M9 (Middle) and M150 (Right)

Table 2: Most common words in the open-end text provided by children for the top three misconceptions

M23: sequential-execution M9: variable’s multiple values M150: user-input effect

Rank1 Rank2 Rank3 Rank1 Rank2 Rank3 Rank1 Rank2 Rank3
Holds Correct before numbers values then set variable wait answer until

Holds Misconception value then add then first numbers,
makes answer order program

Other Wrong Not applicable then say picture what know does

to type an answer, then he will respond”, and another participant
says: “because you have not typed anything”.

M14: A variable is (merely) a pairing of a name to a
changeable value (with a type). It is not stored inside the
computer
Participants with the misconception=33.3%, Correct=60.3%, n=63

Misconception: In total, 33.3% of the participants (n=63) chose
a misconception choice (see Figure 3). In a detailed manner, 7.9% of
the participants chose the answer indicating that “the variable is
not being stored anywhere”. Participants who provided their reasons
here seem confused by the built-in option provided by Scratch:
Cloud variable (stored on server), which was shown as part of the
question. Two participants highlighted that their choice came as a
result of this option not being ticked, which is the default in Scratch.
25.4% of participants chose the answer that indicates “the variable
is only visible on the screen”. For these participants, the location
at which the storage occurs is important and needs to be sensed.
One participant says: “because you can’t see it anywhere else”, and
another one: “there is nowhere for it to be so it just sits there”. An-
other participant, despite choosing the wrong answer, indicates an
analytical approach that is one step-away from being correct. The
participant is uncertain where a variable should be stored because
the program is not run, saying: “the code will only set to value when
run, and as the code is not yet running, the variable is moot”.
Correct: Participants who answered correctly vary in their reason-
ing. Some give a concrete reason, for example “It sits in the RAM
memory”, and “all computers store data in the hardware, to know
what they need to do”. Others focus on the need to save the whole
program for Scratch to “remember” it later.
M26: A false condition ends program when no else
branch
Participants with the misconception=7.4%, Correct=51.6%, n=95

Figure 5: The question representing M26

Misconception: Although we have not provided an answer option
to represent the misconception (See Sect. 5.4), some participants
(7.4%) show they hold the misconception after analyzing the text
they wrote. For those, the code does not execute at all because the
condition is false. For example, one participant says: “he [Gobo]
does not touch the black, so nothing happens there”. Another partici-
pant finds it illogical to execute the code: “he [Gobo] is not touching
the black so why would he do the commands that only apply to him
if he is touching the black”.
Correct: Participants highlight the false condition as a motive to
their answer, from the opposite perspective to the participants with
the misconception. The condition being false means the program
runs, but parts of it are skipped. For example, one participant states:
“he skips the Auw part because he is not standing on the black”, and
another participant agrees: “Gobo says only I am moving because he

does not touch the black wall”.

4.3 Effect of age and previous programming
knowledge

[RQ3] How do age and previous programming knowledge af-
fect the holding of amisconception or the correct understand-
ing?

4.3.1 Age factor. For the effect of age analysis, we exclude the
age points 7 and 17 because only one participant in each of these age
categories answered the questionnaire. Results show that a positive
correlation exists only between age and holding the correct con-
cept (Spearman’s Rank Correlation p-value =0.005). In words, the
older the child the more they answer correctly. Additionally, when
considering the category of the misconception according to Sorva’s
original classification (see Table 1), positive correlation is found
between age and correctly answer the misconception questions
under the “Variable” category (Spearman’s Rank Correlation p-
value=0.015) and “Control” category (Spearman’s Rank Correlation
p-value=0.048).

In the alluvial diagrams (See Figure 6) we observe how age groups
contribute to the answers for the top three misconceptions. The
contribution is represented by the thickness of the flow from source
to destination. The diagrams show that children younger than 12 are
more likely to hold a misconception than older children. However,
the relation is only significant in holding the correct answer as
stated above, and not in holding a misconception.

4.3.2 Previous programming knowledge. The reported knowl-
edge of programming languages (Figure 7) shows that almost two
thirds of the participants programmed before with Scratch, while
the remaining third used programming with a variety of other lan-
guages such as Lego, Alice, Python or Javascript. Moreover, the
participants reported where they learned programming: at school
(62%), at home (28%) or other places such as friends, communities
or courses (10%). Since we investigate misconceptions in Scratch,
we explore how knowing Scratch in particular compares to other
programming languages when it comes to holding a programming
misconception. The results show the following:
Knowing Scratch and other languages: is found to decrease the
tendency to holding a misconception (Pearson Product-Moment
correlation, r=-0.077, p-value=0.035) and increase the tendency to
holding correct concepts (Pearson Product-Moment correlation,
r=0.151, p-value<0.001).
Knowing other languages: is found to increase the tendency to
holding a misconception (Pearson Product-Moment correlation,
r=0.071, p-value=0.049).
Knowing Scratch only: knowing only Scratch does not correlate
with the holding of a misconception. However, results show that it
correlateswith answering incorrectly under the “Other_Wrong”category
(Pearson Product-Moment correlation, r=0.081, p-value=0.025).

5 DISCUSSION
5.1 General observations
While some could argue that it is expected that younger children
hold such misconceptions, their origins could be different from

(a) M23 (b) M9 (c) M150

Figure 6: Alluvial diagrams for the top three misconceptions showing the flow of answers from age groups 8y-16y towards the
answer categories

Figure 7: Reported programming languages versus where
the child learned them: schools are the primary source of
learning programming, while almost one-third of the chil-
dren indicate home as the learning place for programming.

Figure 8: The ratio of misconception answers to the total an-
swers per age (year)

misconceptions in university level students. First, the relation with
mathematics seems more pervasive: whenever a question contains
numbers, some participants chose to sum the values, even when

there is no sum operation in the question (such asM9). The semantic
meaning of variables is another recurring aspect that is present in
questions other thanM17. For example, for misconceptionsM33 and
M31, since we use the variable name “counter”, some participants
believe that the program must “count” the sequence from one till
the end regardless of the loop’s condition and the operation inside.

Looking further into the effect of age on misconceptions, we
present Figure 8 which shows the misconception ratio for the chil-
dren per age. The results show that there exists a sudden increase in
the holding of a misconception at age=14. The increase is significant
compared to the neighboring age groups (13y,15y). Unfortunately,
the increase cannot be explained by the currently collected data
and need further research.

5.2 Scratch-specific issues
The programming language has its role in eliciting some misconcep-
tions. In previous research this contributed not only to syntactical
errors, but also to errors related to the difficulty of understanding
the notional machine of this programming language. In our study,
we notice that the use of particular blocks in our programming prob-
lems caused common and worthy remarks from the participants.
First, the “Say” block in Scratch caused confusion whenever it was
used in the questions. Despite it being a basic and common block,
it led to errors when integrated with a variable instead of plain text.
Many participants in this case indicated that the program will say
the variable’s identifier, for example “X” or “total”, instead of its
value. This signifies both a lack of understanding of the variable
concept, and the effect of the lingual imperative sense of the verb
“Say”. A second difficulty we note being related to Scratch is the
block used to set a variable to a value: “Set [variable] to [value]”.
The use of the preposition “to” adds ambiguity over the direction of
the assignment. Finally, the order of the blocks should be respected
because, for some children, the “visually-attached” blocks meant
that the program will execute in the order from top to bottom even
when condition or repeat block exist.

5.3 Reflections on and implications of the
results

Misconceptions are considered one area of difficulty in learning
how to program. Our results suggest that as we move towards
younger children we see more difficulties in answering the ques-
tions correctly. This is especially the case for the concepts of vari-
ables and control. This result confirms previous research that have
shown that children younger than 11 have difficulties understand-
ing those concepts in addition to the concepts of parallelization
and procedures [9, 16]. Our results shows, however, some different
observations than those in university level students: i) children tend
to perform mathematical operations (mostly summations) when-
ever numbers are present in the exercises, and ii) tend to make
assumptions based on their understanding to the semantic names
of variables. Consequently, we believe that more diverse exercises
should be developed to include operations on strings and booleans,
in addition to carefully selecting identifier names in those exercises.

Moreover, our findings suggest that children who indicated pro-
gramming in Scratch only have difficulties in understanding the
concepts correctly and tend to choose other wrong answers. This
result highlights two issues. First, educators and researchers are
encouraged to identify and realize new misconceptions induced
by Scratch as a language. We provided a few observations from
our dataset (See Section 5.2), but more research is still needed.
Second, our results suggest that younger children start learning
programming in Scratch (age positively correlates with the number
of programming languages reported in addition to Scratch), and
they do it primarily in schools. Those younger “Scratchers” seem to
have more difficulties to correctly understand the concepts in our
study. This result confirms previous research which found Scratch
projects to have low percentage of conceptual constructs such as
variables, procedures and conditional statements [1, 16, 23]. As a
result, we believe that primary education providers are advised to
develop more nontrivial and concept-rich materials in Scratch.

Finally, a few participants showed signs of a struggle between
contradicting thoughts while reasoning their answers (See Sec-
tion 4.2). This indicates our belief that holding a misconception
is not binary: you either understand the concept or not. On the
contrary, it can be a step into grasping the complete concept, and
when the confusion is identified it becomes easier to provide the
missing piece of information by educators.

5.4 Threats to validity
Like all studies, this paper has some limitations. An external threat
to validity comes from the reported experience in programming
which the participants provided. In the questionnaire we ask five
questions about the previous experience in programming, including
questions to identify knowledge of particular concepts. The partic-
ipants could have still misjudged their own experience and gave
false indications. Moreover, a construction threat to validity comes
from using multiple choice questions because some children would
have guessed the answer despite lacking the knowledge. We elim-
inated to the minimum those two threats by adding an open-end
text following each multiple-choice question, then strictly filtered
out any answer for which the participant indicated in the open-end
text that they guessed the answer or lacked the understanding of

the question or the knowledge to answer it. An internal threat to
validity is the design of the question and possible answers for M26.
The answers we provided did not include an answer which reflects
the misconception: in this case that the program will do nothing.
Despite this design issue, 7.2% of 95 participants who answered this
question hold the misconception, which was based on the text they
provided using the “Other” answer option.

6 CONCLUSIONS
Our paper aims at exploring programming misconceptions held
by school-age students. The study is based on a multiple-choice
questionnaire with programming exercises in Scratch. 145 children
participated in the study, aged between 7 and 17 and have some pre-
vious experience in programming. The results show that younger
learners in school-age indeed hold misconceptions, which caused
them to make errors when tracing a small script in Scratch. The
top three common misconceptions span over multiple concepts;
M23: the difficulty of understanding the sequentiality of statements,
M9: the difficulty of understanding that a variable holds one value
at a time, and M150: the difficulty to understand the interactive
nature of a program when a user input is required. The origins of
these misconceptions vary and include the great influence of num-
bers and mathematical operations in the mindset of the children,
the influence semantic meaning of the variable identifier, and the
wrongful expectation of what a computer can do, i.e. misunder-
standing the notional machine. When analyzing the age effect we
found that older children tend to answer the exercises correctly.
Moreover, results show that knowing Scratch in addition to at least
one other programming language positively influence choosing
a correct answer. While children who reported programming in
Scratch only had more tendency to choose other wrong answers.
Finally, examples we observed in the experiment signify that hold-
ing a misconception is indeed a step towards holding the correct
and complete concept. Our findings suggest that educators and
school teachers should count for the misconception effect as early
as possible. Additionally, we should realize new misconceptions
induced by Scratch as a language, due to, among other reasons, the
use of visually-attached blocks and the use of special keywords in
its block set. Finally, Scratch material and lessons should integrate
more concept-rich exercises that highlights areas such as variables
and control of execution. This is especially needed for children who
start learning programming in Scratch. In future work we have two
main directions. First we intend to explore and identify Scratch-
specific misconceptions. Second, we aim to study in more depth the
effect of learning another programming language on Scratch learn-
ers. Finally, we aim at developing and testing teaching materials
and methods that have less possibility of inducing misconceptions
in children.

ACKNOWLEDGMENT
We would like to thank the team of Science Live program at NEMO
and all the staff for their support. We also thank the colleagues and
student volunteers who took part in running the experiment at the
museum.

REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How

We Know. Proceedings of the 2016 ACM Conference on International Computing
Education Research - ICER ’16 (2016). DOI:http://dx.doi.org/10.1145/2960310.
2960325

[2] Erik Barendsen, Nataï£¡a Grgurina, and Jos Tolboom. 2016. A New Informatics
Curriculum for Secondary Education in The Netherlands. Informatics in Schools:
Improvement of Informatics Knowledge and Perception (2016), 105–117. DOI:
http://dx.doi.org/10.1007/978-3-319-46747-4_9

[3] A. Berglund and R. Lister. 2010. Introductory Programming and the Didactic Tri-
angle. In Proceedings of the 12th Australasian Conference on Computing Education.
35–44. http://dl.acm.org/citation.cfm?id=1862219.1862227

[4] B. Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of Edu-
cational Computing Research 2, 1 (1986), 57–73. DOI:http://dx.doi.org/10.2190/
3LFX-9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[5] S. Dasgupta and B. Hill. 2017. Learning to Code in Localized Programming
Languages. Proceedings of the 4th ACM Conference on Learning @ Scale (2017).
DOI:http://dx.doi.org/10.1145/3051457.3051464

[6] D. Doukakis, M. Grigoriadou, and G Tsaganou. 2007. Understanding the Pro-
gramming Variable Concept with Animated Interactive Analogies. Proceedings
of the 8th Hellenic European Research on Computer Mathematics & its Applications
(2007).

[7] P. Fung, M. Brayshaw, B. Du Boulay, and M. Elsom-Cook. 1990. Towards a
taxonomy of novices’ misconceptions of the Prolog interpreter. Instructional
Science 19, 4-5 (1990), 311–336. DOI:http://dx.doi.org/10.1007/bf00116443

[8] K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk, M. C. Loui, and
C. Zilles. 2008. Identifying important and difficult concepts in introductory
computing courses using a delphi process. ACM SIGCSE Bulletin 40, 1 (2008), 256.
DOI:http://dx.doi.org/10.1145/1352322.1352226

[9] F. Hermans and E. Aivaloglou. 2017. Teaching Software Engineering Principles
to K-12 Students: A MOOC on Scratch. In Proceedings of the 39th International
Conference on Software Engineering: Software Engineering and Education Track.
13–22. DOI:http://dx.doi.org/10.1109/ICSE-SEET.2017.13

[10] Hai Hong, Jennifer Wang, and Sepehr Hejazi Moghadam. 2016. K-12 Computer
Science Education Across the U.S. Informatics in Schools: Improvement of Infor-
matics Knowledge and Perception (2016), 142–154. DOI:http://dx.doi.org/10.1007/
978-3-319-46747-4_12

[11] E. Kurvinen, N. Hellgren, E. Kaila, M. Laakso, and T. Salakoski. 2016. Programming
Misconceptions in an Introductory Level Programming Course Exam. Proceed-
ings of the ACM Conference on Innovation and Technology in Computer Science
Education (2016). DOI:http://dx.doi.org/10.1145/2899415.2899447

[12] L. Ma. 2007. Investigating and improving novice programmers mental models
of programming concepts. PhD Thesis. University of Strathclyde, UK. http:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444415

[13] L. Ma, J. Ferguson, M. Roper, and M. Wood. 2011. Investigating and improving
the models of programming concepts held by novice programmers. Computer
Science Education 21, 1 (2011), 57–80. DOI:http://dx.doi.org/10.1080/08993408.
2011.554722

[14] Roy D. Pea. 1986. Language-Independent Conceptual ï£¡Bugsï£¡ in Novice Pro-
gramming. Journal of Educational Computing Research 2, 1 (1986), 25–36. DOI:
http://dx.doi.org/10.2190/689t-1r2a-x4w4-29j2

[15] R. Putnam, D. Sleeman, J. Baxter, and L. Kuspa. 1986. A Summary of Miscon-
ceptions of High School Basic Programmers. Journal of Educational Computing
Research 2, 4 (1986), 459–472. DOI:http://dx.doi.org/10.2190/fgn9-dj2f-86v8-3fau

[16] Linda Seiter and Brendan Foreman. 2013. Modeling the learning progressions of
computational thinking of primary grade students. Proceedings of the ninth annual
international ACM conference on International computing education research - ICER
’13 (2013). DOI:http://dx.doi.org/10.1145/2493394.2493403

[17] Simon. 2011. Assignment and sequence. Proceedings of the 11th International
Conference on Computing Education Research (2011). DOI:http://dx.doi.org/10.
1145/2094131.2094134

[18] Simon and S. Snowdon. 2011. Explaining program code. Proceedings of the
7th International workshop on Computing Education Research (2011). DOI:http:
//dx.doi.org/10.1145/2016911.2016931

[19] D. Sleeman, R. Putnam, J. Baxter, and L. Kuspa. 1986. Pascal and High School
Students: A Study of Errors. Journal of Educational Computing Research 2, 1
(1986), 5–23. DOI:http://dx.doi.org/10.2190/2xpp-ltyh-98nq-bu77

[20] J. Sorva. 2008. The same but different students’ understandings of primitive and
object variables. Proceedings of the 8th International Conference on Computing
Education Research (2008). DOI:http://dx.doi.org/10.1145/1595356.1595360

[21] J. Sorva. 2012. Visual program simulation in introductory programming education.
PhD Thesis, Aalto University. (2012). http://urn.fi/URN:ISBN:978-952-60-4626-6

[22] Juha Sorva. 2013. Notional machines and introductory programming education.
ACM Transactions on Computing Education 13, 2 (2013), 1–31. DOI:http://dx.doi.
org/10.1145/2483710.2483713

[23] Alaaeddin Swidan, Alexander Serebrenik, and Felienne Hermans. 2017. How
do Scratch Programmers Name Variables and Procedures? 2017 IEEE 17th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM)
(2017). DOI:http://dx.doi.org/10.1109/scam.2017.12

[24] D. Teague, M. Corney, A. Ahadi, and R. Lister. 2013. A Qualitative Think Aloud
Study of the Early Neo-piagetian Stages of Reasoning in Novice Programmers.
In Proceedings of the 15th Australasian Computing Education Conference. 87–95.
http://dl.acm.org/citation.cfm?id=2667199.2667209

http://dx.doi.org/10.1145/2960310.2960325
http://dx.doi.org/10.1145/2960310.2960325
http://dx.doi.org/10.1007/978-3-319-46747-4_9
http://dl.acm.org/citation.cfm?id=1862219.1862227
http://dx.doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://dx.doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://arxiv.org/abs/https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://dx.doi.org/10.1145/3051457.3051464
http://dx.doi.org/10.1007/bf00116443
http://dx.doi.org/10.1145/1352322.1352226
http://dx.doi.org/10.1109/ICSE-SEET.2017.13
http://dx.doi.org/10.1007/978-3-319-46747-4_12
http://dx.doi.org/10.1007/978-3-319-46747-4_12
http://dx.doi.org/10.1145/2899415.2899447
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444415
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444415
http://dx.doi.org/10.1080/08993408.2011.554722
http://dx.doi.org/10.1080/08993408.2011.554722
http://dx.doi.org/10.2190/689t-1r2a-x4w4-29j2
http://dx.doi.org/10.2190/fgn9-dj2f-86v8-3fau
http://dx.doi.org/10.1145/2493394.2493403
http://dx.doi.org/10.1145/2094131.2094134
http://dx.doi.org/10.1145/2094131.2094134
http://dx.doi.org/10.1145/2016911.2016931
http://dx.doi.org/10.1145/2016911.2016931
http://dx.doi.org/10.2190/2xpp-ltyh-98nq-bu77
http://dx.doi.org/10.1145/1595356.1595360
http://urn.fi/URN:ISBN:978-952-60-4626-6
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1109/scam.2017.12
http://dl.acm.org/citation.cfm?id=2667199.2667209

	Abstract
	1 Introduction
	2 Background
	3 Setup
	3.1 Participants
	3.2 Study environment
	3.3 Misconceptions selection
	3.4 Questions

	4 Results
	4.1 Most common misconceptions
	4.2 Insights from children explanations
	4.3 Effect of age and previous programming knowledge

	5 Discussion
	5.1 General observations
	5.2 Scratch-specific issues
	5.3 Reflections on and implications of the results
	5.4 Threats to validity

	6 Conclusions
	References

