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Abstract

Portable Oxygen Concentrators (POCs) are devices that produce oxygen-enriched air, by
selectively filtering nitrogen out of ambient air with a cyclic process called Pressure Swing
Adsorption (PSA). The current control method is to adjust the timings of the process by
means of lookup tables, such that the POC operates as efficient as possible. The aim of
this thesis is to determine whether Model Predictive Control (MPC) is a viable alternative
to control the POC, and is able to cope with the constraints and variations of the system.
First, a high-fidelity model has been made of the POC, used for simulation of the device
and controller design. Comparisons with other suitable models of POCs have shown that the
dynamics inside the POC have been modeled correctly. Because this model is too complex to
serve as a predictive model, a simplified batch model has been created for that purpose. This
hybrid automaton consists of 13 linear models, and encompasses the cycle-to-cycle dynamics
of the plant. Finally, a switched linear MPC strategy has been designed and implemented on
the high-fidelity model. Simulations show that this control strategy is suited to control the
POC, although further research is needed to cope with system degradation.
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“The only difference between science and screwing around is writing it down.”
— Adam Savage





Chapter 1

Introduction

Oxygen therapy is the use of supplemental oxygen as a medical treatment. For people suffering
from e.g., Chronic Obstructive Pulmonary Disease (COPD), this treatment greatly improves
their quality of life [4]. Its use is widespread in the world; in 2008 it was estimated 800.000
people in the USA received long-term oxygen therapy [5]. One method of providing oxygen is
with an oxygen concentrator: these devices selectively remove nitrogen from the air using a
process called Pressure Swing Adsorption (PSA), to supply oxygen-rich air (ca. 90% oxygen)
to the user [6, 7]. These devices do not use compressed gas storage like regular O2 cylinders,
which makes them safer to use at home.

PSA, the process used to separate nitrogen and oxygen, is based on adsorption selectivity [8].
An oxygen concentrator works as follows: compressed air is pumped into sieve beds, cylinders
filed with a material that adsorbs nitrogen. As a result, nitrogen is adsorbed and oxygen flows
through into an oxygen tank, from where the desired flow of oxygen-enriched air is delivered
to the user.

A growing market is that of Portable Oxygen Concentrators (POCs), which unlike conven-
tional oxygen concentrators, carry their own power supply. This means users are no longer
confined to their stationary source of oxygen, giving them more mobility. POCs have even
been approved by the FAA for on-board aircraft usage [9]. These developments have led to
the desire for lightweight, long-lasting and efficient devices.

1-1 Research Context

This research is aimed towards reducing the power consumption of a POC, by increasing its
efficiency. This way the device could either be used for a longer period after a battery charge,
or smaller batteries can be used, reducing the weight of the POC. Possible ways to increase
the efficiency are e.g., improving the batteries or the compressor (the main power user [10]),
but this requires a change of hardware. Another option is to improve the efficiency of the
PSA process inside the POC. The PSA process is typically controlled in open-loop, where
the (valve) timings of the system, which control the flow of air in the POC, are calibrated
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2 Introduction

in the factory. System degradation needs to be taken into account, resulting in conservative
timings and consequently a reduced efficiency.
A better (more advanced) control strategy might be better suited to handle this system
degradation, and therefore control the POC more efficiently. In this thesis, the feasibility of
applying Model Predictive Control (MPC) as a control method for the POC will be inves-
tigated. MPC is based on finite-horizon optimization of a plant model: every time step an
optimal control move is calculated by minimizing a suitable cost function, possibly subject
to constraints [11]. There are multiple reasons why MPC could be an improvement over the
current control method. First of all, if the system degradation can be captured in the pre-
dictive model for the controller, MPC is able to predict this system behavior and adjust the
timings accordingly. Secondly, because MPC uses instantaneous feedback, it is more robust
to (small) disturbances (such as system degradation), compared to open-loop strategies. If
these disturbances become more severe, it is also possible to use hybrid- or adaptive MPC to
ensure adequate performance.
Another argument for MPC, not related to degradation, is its ability to deal with constraints.
The objective of the controller is to minimize the power consumption, but there are constraints
on the flow of oxygen-enriched air to the user: one, a certain flow rate is needed, and two, a
minimum oxygen concentration of this air is required.
Because of these two constraints (flow rate and O2 concentration) on the outgoing air, a
minimum flow rate of ambient air to the compressor is needed. This in turn sets a lower
limit on the power needed for the compressor, i.e. minimizing the power consumption is only
possible to a certain extent. Therefore, the efficiency of the PSA process becomes important:
the more efficient, the less air is needed. Increasing the efficiency of a PSA process is done
by operating the sieve beds as close to their saturation capacities as possible, which is a
challenge, because these capacities change over time due to sieve bed degradation [12]. So,
in order to optimize the operation of a POC, the controller should have knowledge of these
system dynamics.
To limit the scope of this research, sieve bed degradation will not be incorporated into the
controller (i.e. the predictive model); the main focus will be to optimize the power con-
sumption of the POC under normal operating conditions. However, a case study on sieve
bed degradation will also be done, in which the POC will be simulated with degraded sieve
beds. In this case study, the performance of the derived MPC strategy will be compared with
open-loop strategies, and with the case without degradation. After that, an assessment can
be made whether further development of the MPC strategy is required to handle sieve bed
degradation.
For this purpose, two models are developed. One will act as the plant (the POC), and is used
for simulation, data generation and control verification. The other is the predictive model,
and is used by the MPC strategy.

1-2 Research Objective

The goal of the research in this thesis is to develop an MPC-based control method that
minimizes the power consumption of a POC, subject to constraints on the flow of oxygen-
enriched air to the user. To (further) limit the scope of this research, some assumptions
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1-3 Main Contributions 3

and simplifications will be defined, of which one has already been discussed in the previous
section. These are:

• Sieve bed degradation will not be incorporated into the predictive model of the controller
(like discussed in Section 1-1).

• Only the power consumption of the compressor, the main power consumer, will be
considered.

• The molar flow rate of air to the user and to the compressor are both constant, leaving
the timings of the process as the inputs to the system.

Given these assumptions, the main research objective is the following:

Develop a model predictive controller that minimizes the power consumption
of the POC, while keeping the oxygen concentration in the tank above a certain
limit.

To do so, sub-objectives will also be defined. First of all, a dynamic model is needed to
simulate the behavior of the POC. This model needs to capture the intricate dynamics that
make up a PSA process. Secondly, the new controller should ideally work on the existing
hardware of the POC. This limits the complexity of the controller and the predictive model
that is used for optimization. Thus, these two sub-objectives are to:

1. Develop a model that is capable of accurately simulating the dynamics of a POC.

2. Develop a simplified predictive model for the controller, that is simple enough such that
it could be implemented on a POC.

1-3 Main Contributions

The research in this thesis has the following main contributions:

• Design and implementation of a high-fidelity model of the POC.
A first-principles based high-fidelity model has been created to simulate the POC in
the absence of the real device. Comparisons with other studies have shown that the
important dynamics of the PSA process are modeled correctly.

• Design and implementation of a simplified (predictive) batch model.
As a predictive model for MPC, a hybrid linear model has been identified that captures
the cycle-to-cycle dynamics of the POC.

• Development of a MPC strategy to control the POC.
This thesis shows that a POC can be controlled by MPC. Although detailed modeling
and optimization is applied, the MPC strategy can be improved further.
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4 Introduction

1-4 Thesis Outline

The outline of this thesis is as follows. First, in Chapter 2, some background information
will be given, needed for the modeling and control of a POC. A schematic overview of the
device is shown, and its components will be discussed. Thereafter, the process behind the
separation of nitrogen and oxygen, PSA, is explained. Next, Chapter 3 will discuss the high-
fidelity modeling of the POC. In the absence of a real POC, this first principles model will be
used to simulate the plant, and design the controller. In Chapter 4 the derived high-fidelity
model is simulated in open-loop, to show the dynamics of the POC. Comparable studies in
the literature are used to validate the model.

Chapter 5 will discuss the development of a so-called batch model. A hybrid linear framework
is used to model the cycle-to-cycle dynamics of the plant, and this model is used as a predictive
model for the controller. Then, in Chapter 6, the MPC strategy is derived. Cost functions
will be defined, and the design choices will be motivated. Chapter 7 will then discuss the
simulation results of the controller, and in Chapter 8 the results of this thesis are summarized,
the research objective will be reviewed, and recommendations for future work will be provided.
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Chapter 2

Background

This chapter covers the necessary background needed for the modeling and control of a
Portable Oxygen Concentrator (POC). The first section is about the device itself: its com-
ponents will be discussed, as well as the current control method. In Section 2-2, the chemical
process behind the purification of oxygen will be explained: Pressure Swing Adsorption (PSA).

2-1 Portable Oxygen Concentrators

A POC is a device that provides air with greater oxygen content (ca. 90%) than ambient
levels by filtering out the nitrogen in the air. Unlike their stationary counterparts, which have
external power supplies, POCs are equipped with batteries. This, in combination with their
relatively low size and weight, means that users are able to carry their devices with them,
providing mobility.

The setup of a POC is best explained by a schematic overview, see Figure 2-1. Air, consisting
of 78% nitrogen, 21% oxygen and trace amounts of other gases (mostly argon), is fed into
the system via the compressor, where it is pressurized. From here, pressurized air flows to
the sieve beds, where the nitrogen is extracted from the air. Oxygen-rich air exits these sieve
beds, and flows to the oxygen tank. From there it can be fed to the user at the desired
flow rate. The oxygen tank acts as a buffer, because there are moments there is no oxygen
production from either sieve bed. This way a continuous flow of oxygen is still achieved.

The two sieve beds (or adsorbers) are the lungs of the POC. These cylinders are filled with
a material that adsorbs nitrogen. By pumping compressed air through a sieve bed, nitrogen
is captured in the adsorber and oxygen-enriched air flows out the adsorber. They can get
saturated with nitrogen, and that is why two sieve beds are used: if one is producing oxygen,
the other is regenerating, i.e. exhausting the nitrogen. This will be explained in-depth in
Section 2-2.

There are three different kinds of valves inside the device, all used to control the direction of
the airflow. Some are passive, like the orifice and the check valves. The latter are used to
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6 Background

prevent oxygen-rich air from flowing back into the sieve beds from the oxygen tank, and the
need for the orifice will be explained in Section 2-2-3. The active valves, together with the
RPM of the compressor, are the inputs of the system and will be discussed in Section 2-1-1.
There are two kinds of POCs: devices that deliver a pulsed flow of oxygen-enriched air, and
devices that deliver a continuous flow. The POC in this thesis delivers a continuous flow, and
recalling Section 1-2, this flow will be constant, since also manipulating this variable is not
in the scope of this research. Therefore a valve controlling the flow of oxygen to the user has
been left out of the model.
One component that is not described in Figure 2-1 is the battery. Although the goal of this
study is to minimize the power consumption, including the battery is also not in the scope of
this thesis. It could be included in future improvements of this model, but for now the focus
is on modeling and subsequently controlling the other components of the POC.

Air

Oxygen-
enriched air

Exhaust gas Exhaust gas

Sieve
bed
1

Sieve
bed
2

Compressor

Oxygen tank

Legend:

Valve

Check valve

Orifice

Figure 2-1: Schematic overview of the POC.

2-1-1 Current Control Method

Like said before, there are two types of inputs: the valves and the RPM of the compressor. The
main purpose of the controller is to keep the energy consumption of the POC to a minimum,
whilst keeping the oxygen concentration of the air flow to the user above a certain limit. It is
important that a sieve bed is exhausted before it is completely saturated: otherwise nitrogen
will leak through into the oxygen tank. This phenomenon is called nitrogen breakthrough. As
a consequence, the oxygen concentration in the tank can drop below the minimal allowable
value. To prevent this from happening, the valves are used to change the flow in the system:
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2-2 Pressure Swing Adsorption 7

by carefully timing the switching of valves, the sieve beds are utilized to their maximum. The
other input, the compressor RPM, is used to change the flow of air into the system when
needed. However, the dynamical model described in this thesis will only use the valves as
input. This has been done to reduce the complexity of the system.
A physical POC has a limited amount of sensors, for economical reasons. Usually, the flow
rate and the oxygen purity are measured, but any states like pressure or oxygen concentration
in the sieve beds are not. For the dynamical model, another assumption is made, namely
that all states (e.g., pressure, oxygen concentration) inside the system are measurable.
The current method of controlling the POC is to tune the valve timings based on factory
calibration. Over time, small adjustments to these timings are needed, due to the degradation
of the sieve beds (see Section 2-2-4). Determining these adjustments is done by using lookup
tables, and the hardware on the POC is tailored for this.

2-2 Pressure Swing Adsorption

The process used inside the POC to extract the nitrogen from the air is called pressure
swing adsorption. PSA is a cyclic process, widely used in the industry to separate or purify
gasses [6, 8]. It is based on the affinity of specific gasses to an adsorbent material, which
highly depends on pressure. By increasing the pressure in a sieve bed, more and more of the
target gas (in this case nitrogen) is adsorbed, whereas oxygen is largely unaffected and can
flow through the sieve bed. If the pressure is then reduced, the adsorption capacity of the
adsorbent is also reduced, nitrogen is released and flows out of the other end of the sieve bed,
meaning the sieve bed is effectively regenerated. PSA is not only used for O2, N2 separation;
other usages are e.g., industrial separation of H2 and CH4 [13], or the capture of CO2 [14].
In order to produce the near-continuous stream of oxygen, two adsorbers are used in parallel.
In the first half of a cycle, the first adsorber is pressurized such that it produces oxygen, and
the second adsorber is depressurized, exhausting the nitrogen. During the second half of the
cycle the adsorbers switch roles, and after one cycle the first adsorber begins pressurization
again. This so-called PSA cycle will be discussed in Section 2-2-3.

2-2-1 Adsorption

Before the PSA cycle is explained, the phenomenon of adsorption will be discussed. Adsorp-
tion is the name of the attraction that a molecule (adsorbate) experiences when it is close to
the surface of a solid (adsorbent) [8].
The separation of a gas mixture by adsorption depends on both equilibrium and kinetic
factors, but the relative importance varies greatly for different systems [15]. Kinetic sepa-
ration is achieved by virtue of the differences in diffusion rates of different molecules, while
equilibrium-based separation is based on differences in equilibrium affinity, i.e. preferential
adsorption of certain components. The adsorbent used in this POC is a zeolite, and in this
material diffusion of both oxygen and nitrogen is rapid and thus the separation depends on
the preferential (equilibrium) adsorption of nitrogen [16].
Zeolites are micro-porous, crystalline minerals that are well suited as adsorbent; they are
highly porous and therefore have a high surface-to-volume ratio. The zeolite itself is produced
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8 Background

as a fine powder, where each grain is crystalline structure made up of zeolite molecules joined
together. These structures are then held together by a porous clay binder material to form
pellets, which consist of 80% zeolite crystals and 20% binder material. Both sieve beds are
filled with these pellets. The reason for this bound form is to reduce the pressure drop in the
column [1].

Adsorption Equilibrium

An important aspect in the design and modeling of adsorption processes is knowledge of the
adsorption equilibrium. This equilibrium mathematically defines the relationship between the
concentration of a given component in the gas phase with its concentration in the adsorbed
phase, and depends on pressure, temperature and phase composition [8]. These equilibria
are graphically depicted as isotherms, showing the maximal adsorbed phase concentration
(amount adsorbed per mass adsorbent) at various pressures. In Figure 2-2 isotherms of some
zeolites are shown. The greater the adsorption capacity difference for each gas, the greater
the driving force to separate those gasses. Different models exist that can represent these
isotherms. This will be discussed in Chapter 3.

Figure 2-2: Adsorption isotherms of nitrogen (left) and oxygen (right) on various zeolites at
25°C. Retrieved from [1].

2-2-2 Sieve Bed Behavior

Sieve beds have already been mentioned in this chapter as the zeolite-filled cylinders where
nitrogen is adsorbed. In this section, the adsorption dynamics inside the sieve beds will be
discussed. A sieve bed has a feed end, closest to the compressor, and a product end, closest
to the oxygen tank. The variable z will be used to denote the axial location in the sieve bed
with z = 0 the feed end and z = L the product end.

The (ideal) adsorption and desorption dynamics inside a sieve bed can be seen as traveling
concentration waves. During production, compressed air enters the column at the feed end,
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2-2 Pressure Swing Adsorption 9

and nitrogen is adsorbed. The zeolite closest to the feed end gets saturated first, since it is
first to come in contract with the nitrogen. As time continues, more and more zeolite gets
saturated, and this adsorption front propagates through the sieve bed. A widely used name
for this front is the Mass Transfer Zone (MTZ) [8], and in Figure 2-3 a visual representation
of the MTZ can be seen.

If the feed is not stopped before the leading end of the MTZ reaches the end of the sieve bed,
adsorbate (nitrogen) leaks through. The result is a decrease in oxygen concentration of the
air leaving the sieve bed, and eventually also a decrease of oxygen concentration of the air
going to the user. This should obviously be avoided. On the other hand, if the feed is stopped
prematurely, some unused bed will remain containing oxygen-enriched air. This lowers the
efficiency of the process. It is therefore paramount to detect this MTZ and adjust the feed
accordingly for optimal PSA process design.

The dynamics of a sieve bed depend on the adsorption equilibrium, adsorption kinetics and
fluid dynamics. Modeling of these sieve beds, among the other components, will be discussed
in the next chapter.

0 L

Equilibrium section MTZ Unused bed

z

cN2

cN2,feed

Figure 2-3: Manifestation of the concentration waves inside a sieve bed. Nitrogen enters the
sieve bed at z = 0 with a concentration cN2 = cN2,feed, and in the MTZ the nitrogen is adsorbed
such that cN2 → 0. This MTZ propagates from z = 0 to z = L or vice versa, depending on the
current PSA cycle step. Adapted from [8].

2-2-3 Cycle Steps

A PSA cycle can be divided into a number of steps. The PSA cycle of the POC is based
on a modified Skarstrom cycle [17], and consists of four steps: feed, pressure equalization I,
exhaust, and pressure equalization II. Each sieve bed undergoes these four steps in a cyclic
manner, and in an alternating way: if sieve bed 1 is at the 1st step, sieve bed 2 undergoes the
3rd step, and vice versa. The same holds for the two pressure equalization steps. Switching
between consecutive steps is done by opening and closing different valves.

The original Skarstrom cycle did not have the two pressure equalization steps; they were
added later [18]. Their only purpose is to increase the energetic efficiency of the process by
conserving energy that would otherwise be lost during the exhaust step. For that reasons this
PSA cycle can be found in other studies with [19, 20] and without [21, 2, 22] these two extra
steps.
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10 Background

The functionality of each cycle step is explained below, shown from the point of view of sieve
bed 1. In Figure 2-4, a visual explanation is provided.

1. Feed
Compressed air enters sieve bed 1 through the feed end, and as a result the bed is
pressurized to a higher operating pressure. Nitrogen is captured in the sieve bed, and
as soon as the pressure in the sieve bed exceeds the pressure in the oxygen tank, a check
valve opens and oxygen flows from the product end to the oxygen tank. A fraction of
the product gas is bled of via the purge orifice to purge the other sieve bed, as will be
explained in step 3.

2. Pressure equalization I
During this step, instead of directly exhausting the sieve bed, the active valve connecting
the two sieve beds at their product ends is opened. The high pressure of sieve bed 1 is
used to partially pressurize sieve bed 2, which has just finished the exhaust step.

3. Exhaust
The feed end of sieve bed 1 is opened and the pressure is further reduced in the sieve
bed. Nitrogen is released by the adsorbent and the bed is regenerated. At the same
time, a fraction of the product gas from sieve bed 2 (which is now at step 1) is used to
flush away the remaining nitrogen molecules still present in the sieve bed.

4. Pressure equalization II
This is the same as the second step, but with the roles reversed: sieve bed 1 now receives
pressure from sieve bed 2 and the compressor feed stream.

Feed
Exhaust

Step 1/3

To user

Step 2/4 Step 3/1 Step 4/2

1 2

O2

1 2

O2

1 2

O2

1 2

O2

Figure 2-4: Visualization of the 4 PSA steps. Blue lines denote flows of oxygen-enriched air, red
lines of nitrogen-rich air, and green lines of compressed ambient air. The sieve beds are denoted
with "1" and "2", and the oxygen tank by "O2". The sieve beds alternate between producing
oxygen and exhausting nitrogen. Note that the oxygen tank provides a continuous stream of
oxygen-enriched air to the user.

It is worth pointing out that the purge orifice is always open. This means that there is always
a flow from the high-pressure sieve bed to the low-pressure sieve bed through this orifice, also
during the pressure equalization steps.
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2-3 Concluding Remarks 11

2-2-4 Sieve bed Degradation

One unwanted side-effect of the oxygen separation process is the adsorption of water vapor
inside a sieve bed. Although steps are usually taken to remove moisture from the feed stream,
some moisture will pass through into the sieve beds [1, 23]. The attractive forces between
the water molecules and the adsorbent are so strong that desorption is not possible under
normal operating conditions. This means that this accumulation of water vapor inside the
beds is permanent, reducing the adsorption capacity of the adsorbent inside the beds [12].
Fortunately, the adsorption kinetics of water are slow, so most of the water molecules will
be purged out before they can adsorb into the zeolite pellets. Nevertheless, the small accu-
mulation of these water molecules in the adsorbent bed will eventually result in sieve bed
degradation, noticeable after months of use.

2-3 Concluding Remarks

In this chapter, the functioning of the POC has been explained. It is shown that the POC
operates in a cyclic manner, where oxygen is produced in one sieve bed and the other sieve
bed is exhausted. This cycle can be divided into four steps, which the sieve beds undergo in
a phase-shifted manner. These steps should be carefully timed to prevent a sieve bed from
saturating completely, at which nitrogen breakthrough occurs and the oxygen concentration
of the air to the user is lowered.

The dynamics in the sieve beds have also been discussed: the concept of the MTZ has been
introduced, where the adsorption front inside the sieve bed can be represented by a traveling
concentration wave.
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Chapter 3

High-Fidelity Modeling

Since a real POC cannot be used for control design, a dynamical model will be created. The
choice has been made to develop a first-principles based, high-fidelity model to capture the
dynamics of a POC, which is the subject of this chapter. These models can be complex and
computationally expensive, but are needed to capture all the nonlinear dynamics of a PSA
process, such as breakthrough and saturation. For this reason these kinds of models are also
used in comparable studies on PSA plants [7, 13, 20, 24].

The components that make up a POC have already been introduced in Section 2-1: a POC
consists of multiple valves, two sieve beds, a compressor and an oxygen tank. Because the
nonlinear dynamics (i.e. adsorption) take place in the sieve beds, the main focus of this
chapter will be on modeling these components.

The outline of this chapter is as follows: first, in Section 3-1, a short over view will be given of
the system and its components, and the assumptions and simplifications made in this study
will be explained. After that, the peripheral components will be discussed in Section 3-2,
and the sieve beds in Section 3-3. The choice of inputs and outputs to this system will be
explained in Section 3-4, and the chapter will conclude with a summary found in Section 3-5.

3-1 System Overview and Assumptions

Before the individual components will be discussed in the next sections, a short overview of
the model is given here. The same schematic overview that was given in Section 2-1 will be
used, now also showing all the states of the dynamic model. It can be found in Figure 3-1.
The meaning of all the mentioned states will be explained below.

The gas flowing through the POC is described by the following state variables: molar flux
Q, in [mol s-1], pressure p in [Pa], and nitrogen and oxygen mole fractions γN2 and γO2 .
Inside the sieve beds, qN2 and qO2 denote the adsorbed phase concentration of nitrogen and
oxygen, respectively (both in [mol kg-1]). The flow through a valve is given by Qv, also in
[mol s-1]. Note that some states also have a spatial dependence, this is denoted by the suffix
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14 High-Fidelity Modeling

(z). Superscripts are used to denote to which component a state belongs: j ∈ {1, 2} for the
two sieve beds, t for the oxygen tank, and c for the compressor.

In the following sections, the suffixes (z) and (t) will be left out of the equations, unless they
are necessary to clarify an equation.

pamb
γi,amb
Qfeed

pamb
γti (t)
Quser

pamb
γ1
i,out(t)
Q1
exhaust(t)

pamb
γ2
i,out(t)
Q2
exhaust(t)

Sieve
bed
1

Sieve
bed
2

Compressor

Oxygen tank

pj(t)
γji (z, t)
qji (z, t)
Qj(z, t)

For all components:
i ∈ {O2, N2}
j ∈ {1, 2}

pt(t)
γti (t), γti,in(t)
Qtin(t)

Q1
v,exhaust(t) Q1

v,feed(t) Q2
v,exhaust(t)Q2

v,feed(t)

Q1
v,prod.(t) Q2

v,prod.(t)

Qv,bal.(t)

Qv,purge(t)

P c(t)

Figure 3-1: Schematic overview of the POC, with the states of the model. Some constants are
also shown, i.e. the parameters without a temporal or spatial dependence. The subscript amb
stands for ambient conditions. Two valve names are abbreviated here, namely prod.: production,
and bal.: balance.

3-1-1 Assumptions and Simplifications

The following assumptions are made for the POC model:

1. The gas behaves as an ideal gas mixture, i.e. the ideal gas law,

p = cRT or equivalently pγi = ciRT, (3-1)

holds [8]. Here c is the gas-phase concentration in [mol m-3], either of the total gas
mixture or of component i in the gas mixture. T in [K] is the temperature, and R the
gas constant, in [J K-1 mol-1].
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3-2 Modeling of Peripheral Components 15

2. The pressure drop in the adsorption column, due to viscous energy losses and drop in
kinetic energy, is considered negligible [24, 25].

3. The PSA process (i.e. the adsorption) is considered to be isothermal. In [26] it is
reasoned that this is a reasonable assumption for oxygen production from air. For the
compressor, adiabatic compression is assumed.

4. Radial variations in concentration and pressure inside the adsorbers are considered
negligible compared to the axial variations. This assumption is found throughout the
literature [7, 13, 16, 20].

5. The composition of air in this model is 78% nitrogen, 21% oxygen, and 1% argon. How-
ever, to reduce the computational burden (i.e. one less mass balance, see Section 3-3-1),
argon and oxygen will be grouped together in the sieve beds. This can be done because
these two gasses have almost identical adsorption properties [21, 27]. In the oxygen
tank, the two gasses will be split up again. Other studies also use this approach [27],
or just ignore argon altogether [20, 22].

3-2 Modeling of Peripheral Components

In this section the peripheral components are discussed. These are the valves and orifices,
the oxygen tank, and the compressor.

3-2-1 Valves and Orifices

The flows between components of the POC are controlled by valves and orifices, and also need
to be modeled. This is done with valve equations. These equations are adapted from [28],
and relate the molar flow rate Qv through a valve to the up- and downstream pressure pu
and pd respectively, and the valve input uv:

Qv = Fv(pu, pd)uv, (3-2)

with Fv the actual valve equation:

Fv =


85.6 pstp

RTstp
kv

√
(pu−pd)pd
ρair,stpT

if pd >
pu
2 ,

42.8 pstp
RTstp

kv
pu√

ρair,stpT
else.

(3-3)

In this equation, kv is the flow coefficient in [sl/min] (standard liters per minute), which
denotes the flow through a valve at standard conditions1 and a pressure drop of 1 bar, and
depends on the valve. ρair,stp is the density of air at standard conditions (in [kg m-3]), and
pstp is the pressure at standard conditions.

The active valves (feed, balance, exhaust) are controlled by a binary valve input, so for these
valves uv ∈ {0, 1}. The purge orifice does not have an input and is always open, so for
convenience sake uv,purge = 1. The check valves between the sieve beds and the oxygen tank

1Standard conditions for Temperature and Pressure (STP): 0 °C and 105 Pa [29].
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16 High-Fidelity Modeling

only permit flow in one direction (towards the oxygen tank), hence their state depends on the
pressure in the corresponding sieve bed:

ujv,production =
{

1 if pj ≥ pt,
0 else.

(3-4)

3-2-2 Oxygen Tank

In the oxygen tank, oxygen-rich air from the sieve beds is stored until it can be fed to the
user. The states that are needed to describe the dynamics have already been introduced in
Figure 3-1: the tank pressure pt, the N2 mole fraction in the tank γtN2

, the molar flux entering
the tank Qtin, and the corresponding N2 mole fraction of the air entering the tank, γtN2,in

.
Both Qtin and γtN2,in

depend on the states in the sieve bed and the current PSA cycle step.
In this study, Qtuser, the flow rate of oxygen-rich air to the user of the POC, is a constant.

Two mass balances have been derived from the ideal gas law (Eq. (3-1)), namely the total
mass balance and component mass balance:

dpt

dt
= RT

V t

(
Qtin −Qtuser

)
, (3-5a)

dγtN2

dt
= RT

ptV t

(
Qtinγ

t
N2,in −Q

t
userγ

t
N2

)
−
γtN2

pt
dpt

dt
. (3-5b)

Here V t is the volume of the tank, in [m3]. Recall from Section 3-1-1, that argon and oxygen
have been grouped together in the sieve beds, but split up again in the oxygen tank. These
two mole fractions are calculated using γtN2

:

γtO2 = (1− γtN2) · 21
22 , (3-6a)

γtAr = (1− γtN2) · 1
22 . (3-6b)

Finally, the molar flux entering the oxygen tank and its corresponding mole fraction are
defined as:

Qtin = Q1
v,production +Q2

v,production, (3-7)

γtN2,in =
{
γ1
N2

(z = L) if Q1
v,production > 0,

γ2
N2

(z = L) if Q2
v,production > 0.

(3-8)

3-2-3 Compressor

In a real POC, the role of the compressor is to pressurize the air going into the sieve beds. The
mass flow Qfeed and pressure increase are controlled by adjusting the RPM of the compressor.
In this model, the pressure increase is calculated in the sieve beds, and Qfeed is set constant.
Therefore a compressor is not needed to simulate the PSA process.

The reason a compressor is included in Figure 3-1, is because an estimate of its power con-
sumption P c (in [W]) is needed. This will be estimated by calculating the adiabatic power
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3-3 Modeling of Sieve Beds 17

needed to compress the air from pamb to either p1 or p2, depending on the current PSA cycle
step. First the adiabatic compression work is needed [30]:

Hc = κ

κ− 1RTamb

((
pc

pamb

) 1−κ
κ

− 1
)
, (3-9)

withHc, also called the head, in [J/mol], κ the heat capacity ratio of air, and pc the compressor
pressure. Note that pc is equal to either p1 or p2.

Subsequently, the compressor power is estimated as

P c = Qfeed
Hc

ηc
, (3-10)

where Qfeed is the molar flow entering the compressor, and ηc the adiabatic compressor
efficiency.

3-3 Modeling of Sieve Beds

Now that all the other components have been described, the modeling of the sieve beds
can be discussed. What sets these sieve beds apart from the other components, is the fact
that coupled Partial Differential Equations (PDEs) are needed to describe all the necessary
dynamics [16].

Given the assumptions made in this study, the dynamics of a sieve bed are modeled by mass
balances, rate equations and adsorption isotherms.

3-3-1 Mass Balance

The governing equation for a PSA system is the mass balance, which describes the exchange
between the gaseous concentration c and the adsorbed concentration q, over a small axial
element of the adsorption column.

The component mass balance is taken from [8, 16], and holds for each sieve bed j ∈ {1, 2}:

ε
∂cji
∂t

+ ε
∂(vci)j

∂z
+ (1− ε)ρp

∂qji
∂t

= εDL
∂

∂z

(
cj
∂γji
∂z

)
. (3-11)

Here ε is the voidage of the sieve bed, i.e. the fraction of unoccupied space in the adsorption
column. v is the interstitial velocity of the gas in [m s-1], ρp the density of the adsorbent
pellets, and z the axial (spatial) coordinate. Lastly, DL, in [m2 s-1], is a coefficient for the
axial dispersion.

The term on the right hand side of the equation, describing the axial dispersion, is sometimes
omitted. Opinions differ in the literature whether this is a sound decision; Ruthven [16] states
that for smaller PSA units this axial dispersion is more significant, and advises to keep it. On
the other hand, many studies on (portable) oxygen concentrators leave this term out of their
mass balances [7, 20, 31]. Since the important dynamics (adsorption, MTZ) are captured
with the other terms, it will be removed for this study.
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18 High-Fidelity Modeling

Likewise with the oxygen tank, two mass balances are also needed for the sieve bed to fully
describe the dynamics. Which components are used is trivial, since the other component (or
the total concentration) can be calculated using the ideal gas law. In this thesis, the choice
has been made to use the component mass balance of nitrogen and the total mass balance,
and calculate the mole fraction of oxygen accordingly.

Since the models of the peripheral components all use the mole fraction γ and the molar flow
rate Q, Eq. (3-11) must be slightly rewritten. The ideal gas law (Eq. (3-1)) is again used, as
well as the following Eqs. (3-12) and (3-13):

cv = Q

εAb
, (3-12)

with Ab (in [m2]) the cross sectional area of the adsorption bed. Furthermore,

ρb = (1− ε)ρp. (3-13)

Here ρb is the bulk density, i.e. the density of the sieve bed. Then the total mass balance for
each sieve bed j ∈ {1, 2} with a N2, O2 gas mixture becomes:

∂pj

∂t
= −RT

ε

(
1
Ab

∂Qj

∂z
+ ρb

(
∂qjN2

∂t
+
∂qjO2

∂t

))
, (3-14)

and the component mass balance:

∂γjN2

∂t
= −RT

pjε

(
1
Ab

∂(QjγjN2
)

∂z
+ ρb

∂qjN2

∂t

)
−
γjN2

pj
∂pj

∂t
. (3-15)

3-3-2 Rate Equations & Adsorption Equilibria

Describing the rate at which gas is adsorbed inside an adsorption column is an important
aspect of modeling of PSA systems. Two fundamental properties need to be captured by
these equations: firstly, that mass transfer between the adsorbed state and the gaseous state
is not instantaneous, and secondly, that the adsorbate has a saturation limit. The following
is a brief summary on these topics, and is extracted from [8, 13, 24]. The interested reader is
referred to these works for more details.

Rate Equations

Rate equations, sometimes called mass transfer kinetics, are used to describe the interphase
mass transfer in e.g., adsorption columns. To fully describe all the mass transfer resistances
the adsorbate experiences would require a rigorous model, which increases computational
complexity.

However, throughout the literature, it is stated that these diffusion rates can be approximated
by the Linear Driving Force (LDF) model, which given in Eq. (3-16):

dqi
dt

= KLDFi(q∗i − qi), (3-16)
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3-3 Modeling of Sieve Beds 19

with KLDF a mass transfer coefficient in [s−1], and q∗ the equilibrium value for the adsorbed
amount of component i (at current temperature and pressure). Higher order approximations
of the diffusion model have also been used in the literature, but only sporadically [19]. It
should be noted that Khajuria [13] states that for "very fast" PSA processes (i.e. with cycle
lengths comparable to this POC), corrective terms are needed to ensure the validity of the
LDF model. Santos [7] also speaks about this in a study about small oxygen PSA units, but
states that for equilibrium-based separations (as is the case for O2, N2 separation), the use
of the LDF model is valid. So, because of this, and its widespread use in comparable studies
(see also [22, 32]), the use of this simplification is deemed valid.

Adsorption Equilibria

So-called isotherm equations relate q∗, the current equilibrium value, to qs, the saturation
value of the adsorbent for component i. Different equations can be used for this, and one of
the most popular isotherms is the Langmuir isotherm [8]:

q∗i
qsi

= kip

1 + pki
. (3-17)

Here k is the Langmuir equilibrium constant in [Pa−1]. An overview of other (basic) isotherms
can be found in [8].

Usually the adsorbate consists of multiple components, as is the case with air, and multi-
component isotherm equations are needed. The multi-component Langmuir isotherm is:

q∗i
qsi

= kip

1 + p
∑
j kjγj

, (3-18)

which adequately describes the adsorption equilibrium. It should be noted that the equilib-
rium constants of single-component and multi-component isotherms differ: e.g. kO2 of pure
oxygen will not be the same as kO2 of an air mixture.

Naturally, more complex isotherm equations exist. Examples are multi-site isotherms [33], and
the Ideal Adsorbed Solution Theory (IAST) [34], which permits the calculation of adsorption
equilibria for components in a gaseous mixture using only pure-component data [20]. The
downside of the latter method is that it is an implicit approach; implicit algebraic equations
have to be solved for q∗. The choice for the ordinary multi-component Langmuir isotherm in
Eq. 3-18 was made because its suitability for the POC and this research.

3-3-3 Spatial Discretization

As can be seen in the previous section, the dynamics of an adsorption column are made
up by three sets of equations in this thesis: mass balances (Eqs. (3-14) and (3-15)), a rate
equation (Eq. (3-16)) and adsorption isotherms (Eq. (3-18)). This system of coupled PDEs
cannot be solved by the built-in PDE solver of Matlab, since that requires that all equations
are PDEs [35]. Both the adsorption isotherms and the rate equation are "merely" Ordinary
Differential Equations (ODEs), so this system of equations has to be solved in another way.
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Qn−1− Qn− Qn+1− Qn+2−

xn−1 xn xn+1

∆zn−1 ∆zn ∆zn+1

zn−1 zn zn+1

Figure 3-2: Visual explanation of the spatial discretization. The adsorption column is discretized
in N compartments (or finite volumes) zn, n ∈ {1, . . . , N}. xn is the value of the state x at the
center of compartment zn, and ∆zn is the length of compartment n. Note that Qn− represents
the molar flux from compartment zn−1 to zn (or vice versa). Obviously, Qn−1+ = Qn− , but for
clarity only the latter is used.

Finite Volume Method

An approach that is found often in the literature is to discretize the spatial domain of the
sieve beds manually, such that the PDEs are changed into a set of ODEs. This is done with
the Finite Volume Method (FVM) [25], which is the topic of this section. A visual explanation
can be found in Figure 3-2. For clarity, the superscript j for the sieve beds will be dropped
temporarily.

The FVM is a conservative discretization method, which implies conservation of mass (and
energy) [36, 37]. For that reason it is widely used in fluid dynamics, and modeling of PSA
processes as well [20, 24]. The spatial domain is divided into a discrete number N of volume
elements, and the respective equations are integrated over a volume element n. Take e.g. the
total mass balance, Eq. (3-14), integrated over such a volume element with boundaries at zn−

and zn+ = zn+1− :∫ zn+1−

zn−

∂p

∂t
dz = −

∫ zn+1−

zn−

RT

ε

( 1
Ab

∂Q

∂z
+ ρb

(
∂qN2

∂t
+ ∂qO2

∂t

))
dz, (3-19a)

∂p

∂t
z

∣∣∣∣zn+1−

zn−

= −RT
ε

(
1
Ab

Q

∣∣∣∣zn+1−

zn−

+ ρb

(
∂q̄N2

∂t
+ ∂q̄O2

∂t

)
z

∣∣∣∣zn+1−

zn−

)
. (3-19b)

Note that x̄n are the time- and position-dependent states x(z, t) = [γN2 , qN2 , qO2 ], spatially
averaged over a control volume zn. The assumption will be made that for large enough N ,
x̄n = xn, where xn is the value of the state in the center of the control volume. Furthermore,
∆zn = zn+1− − zn− , and although the finite volumes could theoretically be of different sizes,
in this thesis this is not the case, so ∆zn = ∆z, ∀n. Then Eq. (3-19b) becomes:

dp

dt
= −RT

ε

( 1
Ab∆z

(Qn+1− −Qn−) + ρb

(
dqN2,n

dt
+ dqO2,n

dt

))
, n ∈ {1, . . . , N}. (3-20)

In this equation, Qn− is the molar flux evaluated at the left boundary of the control volume
zn. Likewise, Eq. (3-15) can be rewritten as:

dγN2,n

dt
= −RT

pε

( 1
Ab∆z

(
Qn+1−γN2,n+1− −Qn−γN2,n−

)
+ ρ

dqN2,n

dt

)
− γN2,n

p

dp

dt
,

n ∈ {1, . . . , N}. (3-21)
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Here γN2,n− is the mole fraction of nitrogen at the left side wall of the finite volume n. How
the value of this state is calculated will be discussed in the next section. Since the molar
flux now only appears at the boundaries of the finite volumes, the minus sign on Q will be
dropped from the equations from now on: Qn− = Qn.

With the two mass balances rewritten as two sets of coupled ODEs, the equations are now
solvable by any Matlab ODE solver. An overview of all the equations and how they relate
to each other can be found in Section 3-5.

Interpolation Schemes

As can be seen in Section 3-3-3, some states also appear at the boundaries of the cells. The
molar flux Qn can be derived from Eq.(3-20), as will be explained in Section 3-5, but to
calculate the nitrogen mole fraction γN2,n− at the cell boundaries, interpolation is required.

However, it is known in the literature that using spatial discretization methods like the FVM
with standard linear interpolation can yield unnatural oscillations. This is due to shocks,
discontinuities and steep gradients in the solution domain, which can also occur in PSA
processes. To counter these effects, flux limiters are used [38].

The main idea of flux limiters is to limit the spatial derivatives to realistic values. They only
come into operation when sharp wave fronts are present, and do not operate for smoothly
changing waves. To do so, first the ratio between successive gradients of the state variable
xn, for each n is defined:

r(n) =


xn−1−xn−2
xn−xn−1

if Qn ≥ 0,
xn−xn+1
xn−1−xn if Qn < 0,

(3-22)

which is used to calculate the limiter function. Different limiter functions exist (for examples
see [38]), and in this thesis the Van Leer flux limiter is used. The reason for this is the fact
that it produces favorable results, and its use in comparable studies [24, 39]. It is defined as

Φ(n) = r(n) + |r(n)|
1 + |r(n)| . (3-23)

By design, the limiter function is constrained to be greater or equal than zero, i.e. Φ(n) ≥ 0.
Its maximum value is limr→∞Φ(n) = 2.

With both these equations, the state variables at the boundaries are subsequently calculated
with:

xn− =
{
xn−1 + 1

2 (xn − xn−1) Φ(n) if Qn ≥ 0,
xn + 1

2 (xn−1 − xn) Φ(n) if Qn < 0.
(3-24)

This interpolation scheme is also taken from [24, 39]. What this all means in practice, is
that the flux limiter switches to a higher order interpolation scheme when the difference in
gradients is small (Φ(n) ≈ 1), and a low order interpolation scheme when the difference in
gradients is large (e.g. steep shock waves are present, Φ(n)→ 0∨Φ(n)→ 2). This low order
scheme does not have the problem of oscillations. In Chapter 4 the effect this flux limiter will
be evaluated.
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Boundary Conditions

The final step in describing the dynamics of the sieve beds is setting up the Boundary Con-
ditions (BCs) at the ends of the sieve beds, i.e. at z1− and zN+ . These can be defined using
the valve equations from Section 3-2-1. For each adsorption column j = {1, 2}, the BCs for
the molar flow rate are given as (adapted from [20]):

Qj(0, t) = Qj1 = Qjv,feed +Qjv,exhaust,

= Fv(patm, pj)ujv,feed + Fv(patm, pj)ujv,exhaust,

Qj(L, t) = QjN+1 = Qjv,production + (−1)j−1Qv,balance + (−1)j−1Qv,purge,

= Fv(pj , pt)ujv,production + (−1)j−1Fv(p1, p2)uv,balance
+ (−1)j−1Fv(p1, p2)uv,purge.

(3-25)

Note that the pressure p and valve states u also depend on (t), but that this suffix has been
dropped from the equations for clarity.

The BCs for the nitrogen mole fraction, that is, γjN2,1− and γjN2,N+ , are calculated using ghost
cells. What this means is that on each side of the spatial domain, a new cell is added, such
that Eq. (3-24) can be used normally at every finite volume n. These are:

γjN2,0 = γN2,amb,

γ1
N2,N+1 = γ2

N2,N ,

γ2
N2,N+1 = γ1

N2,N .

(3-26)

3-4 Inputs and Outputs

Although it is theoretically possible to control a PSA process by adjusting every valve in-
dividually, this is a very impractical approach. Doing so would require setting constraints
on the valves, since e.g. the feed valve and exhaust valve of a sieve bed cannot be open
at the same time (this is highly inefficient). An easier option, also often used in the liter-
ature [13, 20, 24], is to use lengths of the PSA cycle steps as input(s). The valve states
uv ∈ {0, 1} are subsequently retrieved from a lookup table.

With that in mind, in this thesis the input will be the feed time τf , the duration of the first
step. This feed time will be identical for both sieve beds during a cycle, so τf also denotes
the length of the mirroring step, i.e. step 3 (exhaust). The duration of the balance step, τb, is
constant. The reason for this is that this steps only purpose is to balance the pressures, and
the time that this takes is more or less the same for the operating range of this POC. Any
increase in performance in terms of mole fraction or power consumption is not really achieved
by also manipulating this value. The lookup table for this POC can be found in Table 3-1.

The outputs of the POC are the oxygen mole fraction in the tank, γtO2
, and the power usage by

the compressor, P c. As will be shown in the next chapter, these two outputs oscillate during
a cycle, whereas the input is constant. Therefore it is convenient to also define outputs that
are also constant during a cycle. This way the dynamics of one cycle k can be captured by
three variables: the input τf,k and the two corresponding outputs. These two outputs are the

Nathan Looye CONFIDENTIAL Master of Science Thesis



3-5 Concluding Remarks 23

u1
v,feed u2

v,feed u1
v,exhaust u2

v,exhaust uv,balance

Step 1/3 (τf ) 1 0 0 1 0
Step 2/4 (τb) 0 1 0 0 1
Step 3/1 (τf ) 0 1 1 0 0
Step 4/2 (τb) 1 0 0 0 1

Table 3-1: Binary values for the active valves in relation to the PSA steps.

cycle-averaged O2 mole fraction in the tank, also called the purity Pk, and the cycle-averaged
compressor power P̄ ck :

Pk = 100
τt,k

∫ tk+τt,k

tk

γtO2dt, (3-27)

P̄ ck = 1
τt,k

∫ tk+τt,k

tk

P cdt. (3-28)

Here tk denotes the time at which cycle k starts and τt,k denotes the length of this cycle:
τt,k = 2(τf,k + τb). The reason cycle-averaged outputs are used and not the value of the
time-domain outputs (γtO2

and P c) at e.g., the end of a cycle, is because these cycle-averaged
outputs paint a better picture of the dynamics of that cycle, especially for the transient
behavior. For that reason cycle-averaged outputs are also used in other studies [7, 13, 20].
Their use will be highlighted in the next chapters.

3-5 Concluding Remarks

In this chapter the modeling decisions for a high-fidelity model of a POC have been discussed.
Because part of the equations are coupled PDEs, they have been spatially discretized to ODEs
to allow for calculation by any ODE solver. The resulting 2-bed model consists of 6N + 4
ODEs: pt, p1, p2, γtN2

, γjN2,1, . . . , γ
j
N2,N

, qjN2,1, . . . , q
j
N2,N

, qjO2,1, . . . , q
j
O2,N

, j ∈ {1, 2}.

In Tables 3-2 and 3-3, a summary of all the equations can be found.
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24 High-Fidelity Modeling

Sieve bed model for each of the two adsorbers j ∈ {1,2}

Boundary values for molar flux Qj (Section 3-3-3):

Qj1 = Qjv,feed +Qjv,exhaust,

QjN+1 = Qjv,production + (−1)j−1Qv,balance + (−1)j−1Qv,purge.
(3-29)

Adsorbed state concentrations qji , i ∈ {N2, O2} (Section 3-3-2):

dqji,n
dt

= kLDF,i

 qsi kiγ
j
i,np

j

1 + pj
(
kO2γ

j
O2,n

+ kN2γ
j
N2,n

) − qji,n
 , n ∈ {1, . . . , N}. (3-30)

Pressure dpj/dt (Sections 3-3-1 and 3-3-3):

dpj

dt
= −RT

εL

 1
Ab

(
QjN+1 −Q

j
1

)
+ ρb∆z

N∑
n=1

dqjN2,n

dt
+
dqjO2,n

dt

 . (3-31)

Non-boundary values of Qjn (Sections 3-3-1 and 3-3-3):

Qjn+1 = Qjn −

 ε

RT

dpj

dt
+ ρb

dqjN2,n

dt
+
dqjO2,n

dt

Ab∆z, n ∈ {1, . . . , N − 1}. (3-32)

Nitrogen mole fraction dγjN2,n
/dt (Sections 3-3-1, 3-3-3 and 3-3-3):

dγjN2,n

dt
= −RT

pjε

 1
Ab∆z

(
Qjn+1γ

j
N2,n+1− −Qjnγ

j
N2,n−

)
+ ρb

dqjN2,n

dt

− γjN2,n

pj
dpj

dt
,

n ∈ {1, . . . , N}, (3-33)

with (Section 3-3-3):

γjN2,n− =

γ
j
N2,n−1 + 1

2

(
γjN2,n

− γjN2,n−1

)
Φ(n) if Qjn ≥ 0,

γjN2,n
+ 1

2

(
γjN2,n−1 − γ

j
N2,n

)
Φ(n) if Qjn < 0.

(3-34)

Table 3-2: Sieve bed equations for POC model.
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Valve models

Molar flow:

Qv = Fv(pu, pd)uv, (3-35a)

Fv =


85.6 pstp

RTstp
kv

√
(pu−pd)pd
ρair,stpT

if pd >
pu
2 ,

42.8 pstp
RTstp

kv
pu√

ρair,stpT
else.

(3-35b)

Oxygen tank model

Mass balances:

dpt

dt
= RT

V t

(
Qtin −Qtuser

)
, (3-36a)

dγtN2

dt
= RT

ptV t

(
Qtinγ

t
N2,in −Q

t
userγ

t
N2

)
−
γtN2

pt
dpt

dt
, (3-36b)

γtO2 = (1− γtN2)21
22 , (3-36c)

γtAr = (1− γtN2) 1
22 , (3-36d)

Qtin = Q1
v,production +Q2

v,production, (3-36e)

γtN2,in =

γ1
N2,N+1− if Q1

v,production > 0,
γ2
N2,N+1− if Q2

v,production > 0.
(3-36f)

Compressor model

Power consumption:

H = κ

κ− 1RTamb

((
pc

pamb

) 1−κ
κ

− 1
)
, (3-37a)

Pcomp = Qfeed
H

ηc
. (3-37b)

Table 3-3: Equations for peripheral components.
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Chapter 4

Model Validation

Ideally, a dynamical model of a real-life system is validated with experiments. In the case
of the POC, this is not possible due to a lack of sensors. Therefore, validation is done by
comparing the POC with other comparable studies in the literature. Although these will not
be 100% identical, these comparisons serve to prove that the important dynamics of a PSA
process (i.e. breakthrough, saturation) are modeled correctly.

The aim of this chapter is twofold: show the behavior of the POC and compare it with studies
in the literature. First, in Section 4-1, some modeling decisions will be substantiated with
simulation results. The dynamics of the POC are subsequently discussed in two sections: in
Section 4-2, steady state behavior will be discussed, and in Section 4-3 the transient dynamics
are analyzed. After that, the comparison with literature will be made in Section 4-4, and the
chapter will end with a conclusion.

4-1 Choice of Model Parameters

Most of the model parameters have been obtained from internal documents and discussions at
Philips, and because of their confidentiality cannot be included in this report. In this section
two modeling choices will be discussed that do not have this restriction: the first is the degree
of spatial discretization, i.e. the choice of N , and the second is the effect of the flux limiter
(for both see Section 3-3-3).

4-1-1 Choice of N

Choosing the right amount spatial volumes N is important: for N → ∞, the dynamics in
the sieve bed will get closer and closer to reality, but at the same time the number of ODEs
increases too, and with that the computation time. Therefore a trade-off has to be made. In
Figure 4-1 the results of different simulations with varying N can be found. In the left plot,
the purity of the 100th cycle is plotted against N , and in the right plot the computation time
has been plotted against N .
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Figure 4-1: Two plots showcasing the effect of increasing N . The purity will go to a steady-state
value, whereas the computation time skyrockets for large N .

The simulations have been done using Matlab R2018a on a MacBook Pro, with a 2.7 GHz
Intel Core i5 processor and 8GB of RAM. Looking ahead to Chapter 5, where large datasets
have to be created, it is wise to weigh the computation time more than the slight error in
purity that a smaller N entails. For that reason a spatial grid size of N = 100 has been chosen.
Any increase in N will result in a marginally smaller purity error, but the computation time
starts to increase exponentially.

4-1-2 Effect of Flux Limiter

The need of a flux limiter can also be demonstrated via simulations. Two cases will be
compared: one where the van Leer flux limiter is used with the interpolation scheme (see
Section 3-3-3), and one where the value of γN2 at the boundaries of the volumes is simply the
average of the two neighboring volumes.

The results can be found in Figure 4-2. Here the spatial profiles of the O2 mole fraction
during the feed step can be seen, after both models have been simulated for 100 cycles, with
τf = 5s. Each line in the plot denotes a different time t in the cycle. It is clear that a flux
limiter is needed: in the case without, unnatural oscillations due to the sharp wave fronts
occur, whereas in the case with flux limiter the concentration waves are smooth.

Figure 4-2: Effect of flux limiter. For much larger N , this effect would not happen, but the
computational effort would be too high, as discussed in Section 4-1-1.
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4-2 Cyclic Steady State Behavior

Now the steady-state behavior of the POC will be discussed. In the context of dynamical
systems, a system is said to be in steady state if its states are no longer changing over time. If
this definition is used for a PSA system, it would never reach steady state: due to its periodic
nature, states like pressure and mole fractions change continuously. Therefore a different
definition will be used, that of Cyclic Steady State (CSS).

If the input is held constant, and all other variables are kept the same, a PSA plant is said to
reach CSS if conditions at time t are identical to t+ τt, i.e. exactly one cycle length later [20]:

x(z, t) = x(z, t+ τt) and x(t) = x(t+ τt). (4-1)

CSS is either determined by simulating the plant over a large number of cycles, or by use of a
numerical algorithm. In this thesis the former is used, and CSS is said to have been reached
if the difference in purity P between two consecutive cycles is less than a value ε:

CSS if |Pk+1 − Pk| < ε. (4-2)

The purity can also be seen as points on a Poincaré section [40] of the periodic orbit of the
PSA system. A Poincaré map then maps the purity of the current cycle, Pk, to the purity of
the next cycle, Pk+1. If this new purity is at the same location on the Poincaré section (±ε),
the system is at CSS.

Santos [7] used the same definition, and said ε = 0.01. The same value will be used in this
thesis.

4-2-1 Dynamics of a Cycle in CSS

To show the behavior of the POC in CSS, a close look will be taken at a cycle with an input
of τf = 5s.

Figure 4-3 shows two plots: the pressure in the three main components (sieve beds and oxygen
tank), and the O2 mole fraction in the tank. First the top plot will be discussed. The four
PSA steps can be deduced from this image. in the first step, sieve bed 1 is pressurized, and
after ca. 1.5 seconds the pressure has risen to the same level as in the oxygen tank, so oxygen
rich air will flow to the tank. At the same time, sieve bed 2 is exhausted and its pressure
drops to almost ambient levels. The second step shows the pressures in the two sieve beds
equalizing, whereas the pressure in the oxygen tank drops due to the lack of product from any
of the sieve beds, and the fact that it is still feeding oxygen-enriched air to the user. Steps
3 and 4 are the same as 1 and 2, but with the sieve beds reversed, and that is also clearly
visible. The notion of CSS is evident: the three pressures at time t = 0 are all identical to
the pressures at time t = τt.

In the bottom plot of Figure 4-3, the variations in γtO2
during one cycle can be seen. One

might wonder why the mole fraction is not 1, and this is partly due to the argon still present
in the gas mixture (γtAr ≈ 0.042), which cannot be removed, and partly due to some nitrogen
(γtN2

≈ 0.028) that did not get adsorbed in the sieve beds. The oscillations in mole fractions
are due to the internal dynamics in the sieve beds, and these will be explained with Figure 4-4.
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Figure 4-3: Pressure variations in the sieve beds and oxygen tank (top), and variations in the
O2 mole fraction in the tank (bottom).

For the evolution of the other states in the sieve bed, the same type of plot from Section 4-1-2
is used. Two important states will be highlighted: the O2 mole fraction and the adsorbed
quantity of N2 in a sieve bed. They are both plotted against the normalized spatial location
z, each line denoting a different time t. For each subplot, the initial spatial profile is denoted
by the red line, and arrows are used to indicate the direction of the spatial profiles and thus
the MTZ. The results can be found in Figure 4-4. Since this concerns a PSA process in CSS,
the dynamics in the sieve beds are identical in a time-shifted manner: e.g., while sieve bed
1 is at step 1, sieve bed 2 will be at step 3. Therefore the states in only one sieve bed are
shown.

For each state four subplots can be seen, each for a step in the PSA cycle. Starting with
the first step, feed, the moving MTZ is characterized by the mole fraction staying longer at
ambient levels (γO2,amb = 0.21), because the sieve bed is saturated there. The last blue line
is at t = 5s, so at the end of the feed step a large part of the sieve bed has not been used, i.e.
qN2 is not yet everywhere at its equilibrium value. However, waiting until the complete sieve
bed has been saturated is not ideal. Nitrogen breakthrough will occur before this happens,
and as a result the mole fraction oxygen in the tank will drop. Examples of this phenomenon
will be shown in Section 4-2-3.

It was already explained that the purpose of the balance steps, steps 2 and 4, is to equalize
the pressures in the sieve beds. In the second step, the air from the sieve bed is directed
to the other sieve bed, and the wave propagates to the left. In the fourth step, the roles
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Figure 4-4: Simulated profiles for the O2 mole fraction (top four plots) and the adsorbed amount
of N2 (bottom four plots), during one cycle at CSS with τf = 5s. The red line is the initial profile,
and the arrows denote the temporal evolution of the waves. The temporal resolution for steps 1
and 3 is 0.5s, and for steps 2 and 4 ca. 0.08s.
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are reversed: this sieve bed receives air from the other sieve bed and from the compressor,
denoted by the two arrows pointing in opposite directions in the subplot for γO2 .

The last step to be discussed is the exhaust step. Here the pressure is lowered in the sieve
bed, and as a result the adsorption capacity of the adsorbent is reduced. Nitrogen is released
in the adsorber and that can be seen in the profiles of γO2 : initially, γO2 < 0.21 at z = 0,
meaning that the outgoing air has a larger nitrogen mole fraction than ambient. After some
time, the value of γ1

O2
will rise above ambient levels, and exhausting this air becomes less and

less efficient since you are removing partially oxygen-enriched air.

At the end of the cycle, both the O2 mole fraction and the adsorbed amount of N2 are back
at their levels from the beginning of the cycle, and the next cycle begins.

4-2-2 CSS Input/Output Dynamics

Recall from Section 3-4, that the two cycle-averaged outputs are the purity, P, and the average
compressor power, P̄ c. In this section the CSS relationship between these outputs and the
input τf will be discussed. The reason these so-called cycle-domain outputs are used, and not
their time-domain counterparts, is because the time-domain outputs oscillate during a cycle,
making it harder to see the Input/Output (I/O) relationship.

In Figure 4-5 the CSS I/O relationships are plotted. For now, the range τf ∈ [3, 10]s will be
evaluated for a better understanding of the PSA dynamics, and in Chapter 5 the operating
range for the controller will be explained.

The first I/O relationship, P and τf , is a parabolic one: there is a maximum at τf ≈ 6.5,
because for lower inputs there is not enough time to adsorb the maximum amount of nitrogen.
For higher inputs, nitrogen breakthrough starts to occur: the sieve bed gets increasingly
saturated, and N2 leaks through to the oxygen tank, causing the mole fraction O2 in the tank
to drop. Breakthrough will be the subject of the next section.

The CSS I/O dynamics of the average compressor power are almost linear. There is a no-
ticeable rise in gradient at τf ≈ 9s, and this is due to the increased saturation of the sieve
beds. With the sieve beds getting saturated, more and more gas can flow through the sieve
bed instead of being adsorbed, resulting in a higher increase in pressure.

Figure 4-5: Input/Output dynamics of the POC at CSS.
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4-2-3 Breakthrough

Nitrogen breakthrough was already briefly mentioned in Chapter 2, but now what a high-
fidelity model of the POC has been created, this phenomenon can be explained better.

The dynamics of a nitrogen breakthrough can be seen in Figure 4-6, where the spatial profiles
of γO2 are plotted for different times t in a cycle. The feed time is τf = 10s, and normally there
is no reason to use such a long cycle time. However, here it is used because the breakthrough
effects are clearly visible.

Bearing in mind that the dynamics in both sieve beds are identical during CSS, the dynamics
of a sieve bed undergoing nitrogen breakthrough are as follows. There is more interaction
between the adsorbers during a cycle with breakthrough, so that is why the sieve bed number
will be mentioned too. During the first (feed) step, the concentration wave propagates through
adsorber 1. With the longer feed time, this adsorber gets increasingly saturated, resulting
in a drop in O2 mole fraction at the end of the sieve bed. The concentration wave keeps
propagating through sieve bed 1 during the second step, and even breaks through into sieve
bed 2, which is currently at step 4. The next step for adsorber 1 is the exhaust step, and the
gas is exhausted normally. The second sieve bed goes to step 1, but with the concentration
wave from the other sieve bed still present. This is the reason for the strange initial profile
at z = 1 in the plot of step 1 in Figure 4-6. Now the cycle will start again.

Figure 4-6: Simulated profiles for the O2 mole fraction during one cycle at CSS with τf = 10s,
at which nitrogen breakthrough occurs. Initial profiles are denoted with red lines. The temporal
resolution is the same as in Figure 2-4.

The result of the breakthrough can be seen in the oxygen tank dynamics, shown in Figure 4-7.
Obviously, the average O2 mole fraction is lower than in a case without breakthrough, e.g. in
Figure 4-3. The oscillations are also larger: they will increase in magnitude for larger τf .
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Figure 4-7: Variations in mole fraction O2 in the oxygen tank during a cycle at CSS with
τf = 10s.

4-3 Transient Behavior

In this section the transient behavior of the POC will be discussed. To do so, the high-fidelity
model has been simulated subject to step changes in the input τf . The start-up behavior
(i.e. starting with "empty" sieve beds and ambient conditions in the oxygen tank) will not be
considered, since for this study the POC is assumed to start at CSS.

Figure 4-8: Transient behavior of the pressure in the three main components and the mole
fraction O2 in the tank. The system is initiated at CSS with τf = 3.5s, and after one cycle a
new input is give of τf = 6.5s.
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First, the response of the time-domain states and outputs will be reviewed: Figure 4-8 shows
the result of a step change in feed time. τf = 3.5s initially (with the system at CSS), and
after one cycle the feed time is increased to τf = 6.5s. The pressure in the components
rises immediately, whereas the O2 mole fraction in the tank has a much slower response.
This is due to the oxygen tank, which acts as a filter. However, that does not explain the
non-minimum-phase behavior that γtO2

shows.

Non-minimum-phase systems are systems with right-half-plane zeros in the complex plane
(if in continuous time), and this property manifests itself as an "undershoot". During a step
response the system output first goes the opposite way before changing direction and going to
its steady state value, as can be seen in the figure. The reason this system has non-minimum-
phase behavior is as follows. In CSS, the initial profiles of the states in the adsorber are
tailored to the corresponding input. After a sudden increase in feed time, the adsorbers need
time to adjust, and this causes a nitrogen breakthrough. The non-minimum-phase behavior
strongly depends on the input: it is not always this noticeable.

Figure 4-9: Response of the cycle-domain outputs on different step changes in the input τf .

To get an idea of the steady-state value of the outputs, it is better to use the cycle-domain
outputs Pk and P̄ ck , given the long settling time. The results of a longer simulation (310
cycles) have been plotted in Figure 4-9, where multiple step changes have been applied to
the input. The same dynamics as in Figure 4-8 can be detected: the purity has a very slow
response with some non-minimum-phase undershoots, and the average compressor power
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reacts immediately, although it does not go directly to its steady state value.

If the signal of the average compressor power is inspected closely, some very small random
oscillations can be spotted: it seems to be affected by (white) noise. This is likely because
of the variable step ODE solver, and the timer that determines when to switch between
steps and end the cycle. Due to the variable steps, the length of a cycle varies within a
few milliseconds, and thus the average compressor power will also vary slightly. The purity
does not have this problem, because of the filtering effect of the oxygen tank. Increasing the
relative error tolerance of the solver did not change this.

4-4 Comparisons with Literature

Comparisons between this model and other dynamical models of POCs or oxygen concentra-
tors in general should be made with an annotation. No study has been found that matches the
structure of this POC completely, and therefore the dynamics will differ slightly. The general
PSA dynamics, like traveling concentration waves, (nitrogen) breakthrough and the course of
the pressure inside a sieve bed will have the same characteristics though. An assessment of
the validity of this model will therefore be based on the resemblance between the dynamics
of the POC in question and dynamics of POCs in the literature.

The study with the PSA plant that resembles this POC the most is one by Bitzer [20, 3].
In this study a dynamical model is made of a (non-portable) oxygen concentrator, slightly
larger than the POC in this thesis. Although it differs in size, the same dynamics in the sieve
beds can be seen. The two rightmost plots in Figure 4-10 show some simulation results of
this study, and these resemble the concentration waves found in this POC.

Figure 4-10: Left: development of pressure in a sieve bed. Retrieved from [2]. Right: traveling
concentration waves in sieve bed for different cycle times. Retrieved from [3].

Other studies worth mentioning are the ones by Santos et al. [7, 2]. These are about the
simulation and optimization of small oxygen PSA units, and closely resemble this POC. The
greatest difference is the absence of the pressure equalization steps, and the result of that can
be found in the left plot of Figure 4-10. Here the pressure in a sieve bed starts at ambient
levels, whereas in Figure 4-3, the pressure starts halfway. Nevertheless, the same concept can
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be seen in Figure 4-10: the pressure in the sieve bed increases, until it matches the pressure
in the storage tank, and the pressure in the other sieve bed is reduced to ambient levels.

Comparing transient behavior is difficult. For example, Bitzer also shows some transient
behavior of the system, but any non-minimum-phase behavior can not be seen. This difference
in transient behavior is likely due to the larger size of the oxygen concentrator that is being
investigated.

Other studies that also show resemblance are [19, 21, 22], all about PSA for oxygen concen-
trators.

4-5 Concluding Remarks

In this chapter the steady-state and transient behavior of the POC has been studied. For
that reason, the high-fidelity model of Chapter 3 has been used to simulate the system.

The plant dynamics are characterized by traveling waves, which travel back and forth through
the adsorbers during a cycle. If the input is held constant, the states of the POC become
periodic during each cycle, which is called Cyclic Steady State. Transient behavior is studied
with the cycle-domain outputs, and the slow response time of the system has become evident.

The validation of the model has been done by comparing it with other studies about oxygen
concentrators. Although there are no studies that have POCs that are identical, the dynamics
of these devices adhere to the same principles: the traveling concentration waves can be found,
as well as the typical pressure profiles in the sieve beds. This is reason to assume that the
high-fidelity model of Chapter 3 shows realistic behavior.
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Chapter 5

Batch Modeling

In the previous two chapters, the design and validation of the high-fidelity model has been
discussed. Although this model is perfectly suited for simulation, using it for a prediction
model for a controller will cause problems, because of the computational load. Therefore, for
prediction purposes, a hybrid batch model is derived in this chapter.
The first section is about the background of batch modeling: what exactly constitutes a batch
model, why it is used, and how it is used in the literature. The approach taken in this thesis
will also be highlighted. Section 5-2 concerns the identification of local batch models, and
in Section 5-3 the hybrid part of the model is derived. The chapter will conclude with a
summary.

5-1 Background

Before the reasoning behind the use of a batch model is explained, an explanation of what a
batch model actually is (in the context of a PSA system) will be given.
A batch model uses cycle-averaged outputs and input(s), to calculate the cycle-averaged
outputs of the next cycle. In the case of this POC, the outputs are the purity Pk and the
average compressor power P̄ ck , and the input the feed time τf,k, all defined in Section 3-4.
The aim of this chapter is therefore to find the following function f :

yk+1 = f(yk, τf,k), yk =
[
Pk
P̄ ck

]
. (5-1)

An illustrative example of this batch model, and the difference between a time-domain output
and a cycle-averaged output, can be found in Figure 5-1.

5-1-1 Motivation

There are multiple reasons why a batch model is better suited as a prediction model than
a high-fidelity model. The first one is that the high-fidelity model is simply too complex to
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t

γ,P
γtO2

(t)

Pk−1

Pk

Pk+1

. . . Cycle k − 1 Cycle k Cycle k + 1 . . .

f(Pk, τf,k)

Figure 5-1: Illustrative comparison between the cycle-averaged purity Pk, and the continuous
time-domain output of the high-fidelity model, γtO2

. Note that the purity is calculated at the end
of the cycle. A batch model is used to find the purity (and also power usage, but that is not
shown) of the next cycle given the current input and outputs.

use for real-time control purposes. The sharp wave fronts present in the sieve bed require
a relatively low sample time (0.01s), and combined with the large time constant of a PSA
system, a controller needs to simulate a very large amount of time steps. Given that this
controller has to compute an optimal control move on-line, a simpler model is desirable. This
reason is also often cited in the literature [41, 42].
It is possible to counter the first argument by simply using a more powerful processor. How-
ever, the available hardware on a POC should also be taken into consideration: ideally the
controller would be able to run on the current hardware, which is tailored for the current
(computationally cheap) control method (see Chapter 2). So for that reason, again a simple
model would be best. One can argue that e.g., order-reduction, like is done in [24], would also
reduce the complexity of the high-fidelity model, making it possibly suited for prediction pur-
poses. However, recalling the step responses in Chapter 4, the dynamics of the time-domain
outputs in Figure 4-8 are less linear than the cycle-domain outputs shown in Figure 4-9. So
it is likely that a batch model will be much simpler than such a reduced-order model.

5-1-2 Batch Models in Literature

There is no absence of batch models in the PSA literature. Two kinds of batch models feature
prominently: linear models [41, 42] and Hammerstein models [3, 43]. Linear models are of
the standard form:

xk+1 = Axk +Buk,

yk = Cxk +Duk,
(5-2)

with xk the states, yk the output, uk the input and A,B,C,D the system matrices. Ham-
merstein models are an extension on linear models. Instead of directly using the input uk, a
static nonlinear map is used that maps the true input uk to a virtual input wk:

wk = f(uk), (5-3)

which is then used in Eq. (5-2) instead of uk. The advantage of this static input mapping is
that it adds some extra flexibility to the model, whilst keeping the dynamics linear.
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Like said before, the PSA plants of the studies in which these batch models have been found,
differ from the PSA structure found in the POC. Take the study by Khajuria and Pistikopou-
los [41]: the plant here is an industrial H2, CH4 PSA separation system, with four adsorbers
of 0.6m in size and an operating range of 99.975 - 100% H2 purity. An 8th order linear
state-space batch model was identified using Pseudo-Random Binary Sequence (PRBS)-like
signals, with a fit of 82%.

Urich et al. [42] also used a linear model for a batch model of a single-sieve bed RPSA POC.
Single sieve bed PSA systems are rare, and according to the authors such a system enabled
the use of a linear batch model. A fit of 92% was obtained for the oxygen concentration.

The use of Hammerstein models has been described in the studies by Bitzer [3] and Peng et
al. [43]. Both studies are on O2, N2 separation. Unfortunately both authors do not go into
their identification procedures, nor do they discuss validation of their batch models.

5-1-3 Approach

As the results will show, the approaches from Section 5-1-2 are not directly suited for this
POC. The input/output dynamics are not as linear as other PSA plants, possibly due to its
small size and relatively short PSA cycle. A reason for this could be that larger PSA plants
(with larger storage tanks) are better able to filter out the nonlinear wave dynamics than a
smaller plant.

In order to solve this problem, the following approach has been taken. Firstly, the input
range of the system is reduced. The same tactic has been used by Khajuria [41], who only
exited the respective PSA plant for feed times τf ∈ [78, 88]s. Because of the difference in sizes
between that PSA plant and the POC, a direct comparison cannot be made. The choice has
been made to use the following input range U in this thesis:

U = {τf | 3.5 ≥ τf ≥ 6.5}. (5-4)

The reasoning behind this choice is as follows. Recall Figure 4-5 in Chapter 4, where the I/O
dynamics in CSS were shown. The lower bound has been chosen because for lower τf the
CSS purity is below the minimum value, 90%. The upper bound is the maximum attainable
purity for this POC: after that nitrogen breakthrough starts to occur, and it is therefore not
feasible to use inputs larger than the upper bound.

The second part of the approach is to use a hybrid model. Hybrid systems are systems
consisting of both continuous and discrete dynamics, e.g. a system that switches between
different linear models given a switching parameter. This hybrid model consists of multiple
local models (or submodels), each local model identified for a convex subset of the input
space, Um ⊆ U , with every set disjoint from the others. A controller is then able to switch
between these submodels, depending on the desired input. This will be further explained in
Section 5-3.

Looking back at Section 5-1-1, it was stressed that this batch model should be as simple as
possible. By using linear models or Hammerstein models as local models, the complexity
of the hybrid model is kept to a minimum. Moreover, their usage has been proven in the
literature. Identification and validation of these local models will be the subject of the next
section.
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5-2 Local Model Identification

Identification of the submodels is done by exciting the high-fidelity model of Chapter 3 with
known input data in open-loop, recording the corresponding output data, and finding the
Input/Output relationship with identification methods.

In this section, two modeling decisions will be explained. The first is the type of local model
(Hammerstein or linear), and the second is the amount of local models used, i.e. the degree
of division of the input space.

The optimal amount of submodels will be determined empirically. Three sets of submodels
are identified: one where a single model is used for the complete range, one where three
submodels are used, and one with 13 local models. The input range U remains the same for
all three sets.

5-2-1 Identification Methods

The linear models are identified using a subspace identification method called Numerical
algorithm for Subspace IDentification (N4SID). Other methods exist for identification of
linear models, but because of personal experience with N4SID this method has been chosen.
Now a brief explanation of this method will follow, but for an in-depth description the reader
is referred to [44], of which the following is also extracted.

Subspace methods use two so-called Hankel matrices, one composed of (the identification)
input data and the other of the corresponding output data, to construct subspaces that
are related to the system matrices of the state-space model. The system model is then
obtained in a non-iterative way via the solution of a number of linear-algebra problems.
This means no optimization routine is required for this identification method. The System
Identification Toolbox (SIT) of Matlab [45] contains a function called n4sid which is used
for identification. Chosen parameters will be discussed in the next section.

There is much literature available on identification of Hammerstein models, e.g. [46, 47].
However, instead of implementing an identification method of one of these studies, the SIT
function nlhw has been used which shows appropriate results. This is an optimization-based
function, i.e. the model parameters are estimated by iteratively solving an optimization
problem.

In Eq. (5-3), the nonlinear map of the Hammerstein model was not defined. It could be any
nonlinear function, but an often used function is a polynomial expansion [48], which will also
be used in this study:

f(uk) =
N∑
i=0

αiu
i
k. (5-5)

Here, N is the order of the polynomial, and αi the coefficients which need to be optimized in
addition to the state-space matrices to achieve the best fit.
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Figure 5-2: Part of the identification data for the local modal with range τf ∈ [4.875, 5.125].

5-2-2 Generation of Data Sets

In this section the generation of the identification data sets will be explained. The most
important aspect of this process is the choice of input sequence: the signal should be persis-
tently exciting, i.e. excite all dynamics of a system. For that reason, random signals like the
previously mentioned PRBS are ideal.

In total, 16 identification data sets have been created, one for each (local) model. For clarity,
each data set is denoted with IMUm , whereM stands for the set of submodels it belongs to (i.e.
M = 1 for the global model, M = 3 for the model consisting of 3 submodels, and M = 13 for
the model consisting of 13 submodels). Um is the range or input space of that specific data
set. So e.g. the first data set for the model with 13 submodels is denoted with I13

τf∈[3.375,3.625].

With that having said, some care has to be taken to make the input signal persistently exciting
for the POC. Three properties are crucial [13]:

• The maximum change in signal value |∆τf,k| = |τf,k − τf,k−1|: a very large change can
perturb the POC beyond the scope of fitting a linear model. Therefore the maximum
change has been set to |∆τf,k| = 0.25.

• The switching time for the input τf , called tswitch. This is the time for which the signal
stays constant before switching to another random value. If the switching time is set
too low, low frequency dynamics of the PSA system may not be captured. The value of
this switching time is tswitch = 800s, slightly longer than the settling times for different
values of τf . After this time, the current cycle will finish and then a new input is fed
to the system.

• The length of the input sequence. Each input sequence is measured in amount of input
changes, with each input held for a minimum of 800s. The input sequences of I13

Um
all

have 400 input changes, the input sequences of I3
Um

all have 800 input changes, and the
input sequence for the global model, with data set I1

τf∈[3.4,6.6], has 1000 input changes.
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Proving that input sequences are in fact persistently exciting is possible (at least for linear
systems [49]), but in this thesis this has not been done. Instead the identification results
are used: if the fits of the local models are high enough, the amount of excitation is deemed
sufficient. This will be discussed in Section 5-2-5.

In Table 5-1 all the ranges for the identification data sets are shown, along with the fits. The
reason some data sets have ranges that exceed the global range U , defined in Eq. (5-4), is
to also excite the system properly at the edge of the range. As an example, a part of the
identification data set I13

τf∈[4.875,5.125] is shown in Figure 5-2.

To ensure that there is no case of overfitting on the identification data, each data set will be
split up in a validation subset and a identification subset. Recall that the input sequences are
measured in input changes, each input held for a minimum of 800s. The first 75% of these
input changes (and the corresponding outputs) are used for identification, and the remaining
25% are used for validation. So e.g., any data set I13

Um
has a identification subset with 300

input changes and a validation subset with 100 input changes.

5-2-3 Determining Model Properties

There are some properties that need to be determined before identification. These are the
order of the linear models (or the order of the linear part of the Hammerstein models), if
there is any direct input feedthrough to the output (a D matrix), and the order of the input
polynomial for the Hammerstein model.

Model Orders

When identifying a system, the order has to be chosen manually. Sometimes this can be done
by analyzing the physical system and counting the states, but since there are no tangible
states in a batch model, it has to be estimated in a different way. For that reason, estimating
the order of the linear batch models is done with Hankel Singular Values. These singular
values provide a measure of the energy stored in each state of the system, and are calculated
as follows [50], given a stable state-space system:

σH,i =
√
λi(WoWc), (5-6)

here λi are the eigenvalues of the product of Wo and Wc, the observability and controllabil-
ity Gramians. These Gramians can be computed by solving the (discrete time) Lyapunov
equations:

AWcA
T −Wc +BBT = 0, (5-7a)

ATWoA−Wo + CTC = 0. (5-7b)

Of course, the system matrices are not yet known. To get an idea of the order, a system
with a model order larger than the true model order is identified. The actual order is then
estimated by looking at where the biggest drop in "energy" is, i.e. which states are part of
the system and which states are noise.
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An initial guess was made of order 20, and if no clear distinction was visible between noise
and system states, another attempt would be made with a larger order. However, this was
not needed, as can be seen in Figure 5-3. Here the Hankel singular values have been plotted
for three datasets. Looking at the figure, clear drops can be seen between the 5th and 6th

singular values for data sets 1 and 2, and a drop between the 4th and 5th singular value for
the third data set. This indicates that a 4th or 5th order state-space model would be a good
initial guess. The best results were obtained with 5th order models, so that order has been
used for all local models.

Figure 5-3: Hankel Singular values of three datasets.
Data set 1 = I13

τf∈[3.375,3.625]. Data set 2 = I13
τf∈[4.875,5.125]. Data set 3 = I13

τf∈[6.375,6.625].

For the identification of the Hammerstein models, more information of the state-space models
needs to be specified, namely the number of zeros, number of poles and the input delay. An
alternative is to provide the optimization algorithm with an initial linear model. Delays
and the number of poles and zeros are then extracted from this model. This is the chosen
approach: every Hammerstein model will be "initiated" with the corresponding linear model,
so the order of the Hammerstein models is also five.

Direct Feedthrough

Although the two linear batch models in the literature [41, 42] both did not have any direct
input feedthrough to the output, in this study another conclusion is drawn.

Not having a D matrix would mean the system has a input delay of one step, i.e. any change
in input is not directly visible. Looking at Figure 5-2, and then especially at P̄ ck , the effect
of an input change is directly noticeable in the output. For that reason a D matrix is added
to the state-space system. This can also be explained with reasoning: if the input is changed
during a cycle, e.g. τf is lowered from 6 to 3 seconds, the average compressor power will also
drop immediately instead of waiting one cycle.

Static Input Nonlinearity

The order of the polynomial from Eq. (5-5) should also be chosen before identification. It is
set to 2, since any higher orders did not improve the fit of the Hammerstein models:

f(uk) = α0 + α1uk + α2u
2
k. (5-8)
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5-2-4 Data Preprocessing

Before the datasets can be used for identification, some preprocessing is needed. Namely,
a linear model is not able to capture any static offset the in the identification data, and
therefore the data needs to be detrended. The two offsets are the means of the input and
output-data: Ūm and Ȳm, respectively. After identification, the two offsets are added back
to all local state-space models. This is done by augmenting the models with an extra state,
xo,k = 1 ∀k: [

xk+1
xo,k+1

]
=
[
Am −BmŪm
0 1

] [
xk
xo,k

]
+
[
Bm
0

]
uk,

yk =
[
Cm (Ȳm −DmŪm)

] [ xk
xo,k

]
+Dmuk,

(5-9)

and similarly for the dynamic part of the Hammerstein models. Note that in Eq. (5-8) there
is also a constant term, α0. In theory this term could be used to account for the input offset,
but better fits were obtained if the offsets were removed from the data before identification.

5-2-5 Results

The identification results have been obtained as follows. The identification subsets of every
data set IMUm have been used to identify both linear and Hammerstein models, the former with
the Matlab function n4sid and the latter with the Matlab function nlhw (see Section 5-
2-1). As a measure of fit for both the identification and validation subsets, the Normalized
Root Mean Square Error (NRMSE) is used:

fit = 100
(

1− ||y − ŷ||
||y − ȳ||

)
. (5-10)

Here y is the true output of the high-fidelity model, ŷ the output of the identified model and
ȳ is the mean of y.

The fits can be found in Table 5-1. Different observations can be made looking at these results.
One might have suspected that the Hammerstein models would outperform the linear models,
and they do, but barely. Another interesting point is the fact that the average compressor
power can be captured adequately by a global model, but the purity can not. This is most
likely due to the (nonlinear) breakthrough and saturation effects that the oxygen mole fraction
experiences.

In Section 5-1-3 it was already hinted that a global model would not work for this POC. To
substantiate this, the global model (and as a comparison also some local models) have been
validated using validation subsets of I13

Um
. The goal is to show that the fit of the global model

is even worse when looking at a very narrow input range, and this can be seen in Table 5-2,
where the validation subset of I13

τf∈[3.625,3.875] is used. It is now clear a global model is not an
option for this POC: fits of 41% are not acceptable.

Now that the option for a global model has been eliminated, the choice for the type of model
and amount of submodels can be explained. This choice has been made with the hybrid
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Amount of Range Um Linear model fit [%] Hammerstein model fit [%]
local models (τf [s]) Identification Validation Identification Validation

Pk P̄ ck Pk P̄ ck Pk P̄ ck Pk P̄ ck

13 [3.375, 3.625] 97.19 93.0 97.08 92.74 98.68 93.25 98.79 92.9
[3.625, 3.875] 96.9 92.72 96.97 93.05 98.8 92.83 98.8 93.12
[3.875, 4.125] 97.71 91.89 97.61 92.01 98.86 92.33 98.84 92.55
[4.125, 4.375] 97.36 91.25 97.22 90.9 98.91 91.0 99.01 90.68
[4.375, 4.625] 97.32 90.8 97.14 90.8 98.98 90.81 98.87 90.77
[4.625, 4.875] 97.35 90.46 97.15 90.85 99.02 90.44 99.0 90.82
[4.875, 5.125] 97.46 90.91 97.55 91.36 99.05 90.45 98.92 90.91
[5.125, 5.375] 96.87 90.95 96.59 90.85 98.93 90.75 98.86 90.59
[5.375, 5.625] 97.14 92.15 96.96 91.73 98.71 91.84 98.68 91.43
[5.625, 5.875] 96.38 91.32 96.1 91.05 98.35 90.53 98.31 90.25
[5.875, 6.125] 94.2 89.43 93.87 89.77 97.65 89.83 97.64 90.23
[6.125, 6.375] 94.14 89.86 94.12 90.36 96.21 89.3 96.15 89.74
[6.375, 6.625] 91.26 91.08 92.27 91.49 92.76 90.48 93.33 90.85

3 [3.4, 5.0] 85.04 93.68 84.78 93.74 88.44 97.79 89.79 97.94
[5.0, 5.9] 87.41 97.74 87.21 97.67 90.6 96.45 90.38 96.44
[5.9, 6.6] 82.16 95.64 82.72 95.69 86.7 95.34 86.97 95.62

1 (global) [3.4, 6.6] 72.32 96.37 69.42 94.23 73.74 96.83 66.43 94.76

Table 5-1: Identification and validation fits of linear and Hammerstein batch models. The three
different sets of local models are separated.

framework in mind: although it is theoretically possible to combine some hybrid approaches
with Hammerstein models, it adds complexity which can be avoided. Linear models offer
almost the same fit, if enough local models are used. That is why, for this study, a batch model
consisting of 13 linear submodels is chosen. In Appendix A-1, the state-space parameters of
these local models can be found.

Model corresponding Validation fits [%]
to data set Linear model Hammerstein model

Pk P̄ ck Pk P̄ ck

I13
τf∈[3.625,3.875] 96.97 93.05 98.79 93.1
I3
τf∈[3.4,5.0] 74.43 85.61 72.87 90.91
I1
τf∈[3.4,6.6] 41.14 73.01 -235.1 14.91

Table 5-2: Fits of all viable models on the validation subset of I13
τf∈[3.625,3.875].
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5-3 Hybrid Models

Now that the choice of submodels has been explained, the hybrid aspect of the batch model
will be discussed. This section will cover some options on how to "stitch" the local models
together, and explain the reasoning behind the chosen approach.

The three hybrid models that are considered will be introduced in Section 5-3-1, and in
Section 5-3-2 the final choice is explained.

5-3-1 Hybrid Models in Literature

The following hybrid models have been researched: hybrid automata, Linear Parameter Vary-
ing (LPV) systems, and Piecewise Affine (PWA) systems.

Hybrid Automaton

The hybrid automaton is a very general description of a hybrid system, and often considered
to be the formal model for hybrid systems. The following is extracted from [51] and modified
slightly to depict the case of this POC batch model.

The structure of a hybrid automaton can be seen in Figure 5-4. Let qm ∈ Q be the local linear
models with input ranges Um, G(qm, qn) the guard conditions, and R(qm, qn) : X → M(X )
the reset maps. Here X is the set of possible states. An example of a guard condition is the
following:

G(q1, q2) = {uk | uk > β},
G(q2, q1) = {uk | uk ≤ β}.

(5-11)

That is, the transition between models takes place whenever the input passes a certain value
β. To prevent excessive switching between models, the guard condition is sometimes extend
with a time-based condition, called dwell time (tdwell). Switching can then only take place
after waiting for tdwell time units.

q1
uk ∈ U1

(q1, uk) ∈ Init
q2

uk ∈ U2

G(q1, q2)
R(q1, q2)

G(q1, q2)
R(q2, q1)

Figure 5-4: Example of a hybrid automaton with two local (not necessarily) linear models q1
and q2. The system is initialized at q1, and the guard condition G controls the switching between
models. If switching takes place, states are passed through a reset map R.
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LPV Systems

LPV models are, as the name suggests, linear models where the system matrices are parameter
dependent. This parameter p can be a function of a state, input, exogenous variable, or
combinations hereof, but in this thesis it is only based on the input:

xk+1 = A(p(uk))xk +B(p(uk))uk,
yk = C(p(uk))xk +D(p(uk))uk,

(5-12)

Identification of these kinds of models can be done by identifying multiple linear models
for known parameters p, and then fitting functions for the parameter-dependent values in
the state-space matrices. However, this requires all identified models to be in a coherent
state-space realization.
Different state-space realizations have been used in the literature, e.g. the Controllable Canon-
ical Form (CCF) [52], or balanced realizations using the observability and controllability
Gramians [53]. Another proposal by Paijmans et al. [54] is a series interconnection of coher-
ent low-order state-space submodels. Some of these methods require the manual sorting of
eigenvalues, which can be tedious for high-order systems.

PWA and PWL Systems

A PWA system is a special case of hybrid automaton, where the dynamic equations and
switching rules are linear functions of the state (and sometimes input) [55, 56]. Piecewise
affine systems are described by the following state-space equations:

xk+1 = Amxk +Bmuk + fm, for
[
uk
xk

]
∈ Xm ,

yk = Cmxk +Dmuk + gm,
(5-13)

where {Xm}sm=1 is a partition of the state + input set, and fm, gm are constant vectors. If
these are null, the system is Piecewise Linear (PWL). Each subsystem is defined by the
6-tuple {Am, Bm, Cm, Dm, fm, gm},m ∈ {1, . . . ,m}.
An additional requirement, not always explicitly stated, is that the states are continuous on
the boundaries between regions m [57, 58]. This complicates matters, since this is not the
case with the local models described in Section 5-2.

5-3-2 Choice of Hybrid Model

Ideally, a "simple" hybrid model should be used for the batch model. Literature on control
of PWL and LPV systems is extensive, so those are preferred over the more general hybrid
automaton.
However, with they way the local models have been identified, an LPV model is not feasible.
This is due to the input (and output) offsets that have to be added back to the state-space
models. Recall Eq. (5-9), where the state-space matrices were extended with the input offset.
After applying the parameterization, the difference equation for the states becomes:[

xk+1
xo,k+1

]
=
[
A(p(uk)) −B(p(uk))Ū(p(uk))

0 1

] [
xk
xo,k

]
+
[
B(p(uk))

0

]
uk. (5-14)
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Since the input offset is the mean of the used identification input set, the parameterized offset
becomes an approximation of the input itself: Ū(p(uk)) ≈ uk. This means the B matrix is
canceled out (recall that xo,k = 1 ∀k), and the input now only appears indirectly in the
A matrix. Therefore the steady-state response may still be acceptable, but the transient
response will not. So another type of hybrid model must be used.
Concerning the other preferred option, a PWL system, a small look ahead must be made
to Chapter 6. It was already mentioned in Section 5-3-1 that the requirement of continuous
states at the boundaries was not met for this batch model. Since no literature was found that
proposed a control strategy for PWL or PWA systems with such discontinuities, the choice
was made to not implement this type of model.
With two of the three models eliminated, the remaining option is to use a hybrid automaton
as a hybrid model. The downside of such a model are the nonlinear reset maps, hindering the
use of linear control methods, but the advantage of a hybrid automaton is its great flexibility.
Since no other feasible model structures were found in the literature, the choice has been
made to use a hybrid automaton.
The local models qm will be the 13 linear models identified in Section 5-2, and now the guard
conditions G and the reset maps R will be defined.

Guard Conditions

The guard conditions are simple: switch to whichever subsystem is in the range of the input.
For each m ∈ [1, 13], the guard conditions are:

G(qm, qn) = {uk | uk ∈ Un}, n = [1, . . . , 13] \ {m}. (5-15)

Reset Maps

The reset maps are as follows. Only the first output (purity) and the corresponding parts
of the state space matrices Cn and Dn are used for the reset map. Given the output of the
current local model yk,m, and the output of the next local model yk,n, a map R should ensure
the states are reset in such a manner that the two outputs are identical:

yn,k = ym,k, (5-16a)
Cnxn,k +Dnuk = ym,k. (5-16b)

In other words, find states xn,k such that yn,k = ym,k. Every reset map R(qm, qn) calculates
these states as follows. By using the output of five time steps [yk−5,m, . . . , yk,m], a system of
equations can be set up: Cnxn,k−4

...
Cnxn,k

+

Dnuk−4
...

Dnuk

 =

ym,k−4
...

ym,k

 , (5-17a)


Cnxn,k−4

Cn (Anxn,k−4 +Bnuk−4)
...

Cn
(
A4
nxn,k−4 +

∑k−1
l=k−4A

k−l−1
n Bnul

)
+


Dnuk−4
Dnuk−3

...
Dnuk

 =


ym,k−4
ym,k−3

...
ym,k

 . (5-17b)
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Moving the unknown terms to the left-hand side and the known terms to the right-hand side,
this becomes:

Cn
CnAn

...
CnA

4
n


︸ ︷︷ ︸
O

xn,k−4 =


ym,k−4
ym,k−3

...
ym,k

−

Dnuk−4
Dnuk−3

...
Dnuk

−


0
CnBnuk−4

...
Cn
∑k−1
l=k−4A

k−l−1
n Bnul


︸ ︷︷ ︸

v

, (5-18)

where v denotes a vector composed of the known terms. Let the first five columns of O be
denoted by O∗,[1,...,5], and the last column by O∗,6. The states xn,k−4 are then calculated as:

xn,k−4 =
[
O−1
∗,[1,...,5] (v −O∗,6)

1

]
. (5-19)

The reasoning behind this is as follows. Recall from Section 5-2-4 that the (5th order) models
all have been augmented with an extra state to account for the input and output offsets. Since
this state is already known, it is not necessary to calculate this state. Note that O∗,[1,...,5] is
the observability matrix of the unaugmented system (using only the first output), and since
these are all observable and thus have full rank, the inverse exists. The inputs [uk−4, . . . , uk]
are subsequently used (along with xn,k−4) to calculate the values of the states xn,k.

Problems may arise if the used measurements correspond to inputs that are not in (or close
to) the range of the new model qn, since that model is not identified for that range. This
has been countered by constraining the rate of change of the input and will be discussed in
Chapter 6.

In Figure 5-5 a comparison can be seen between the high-fidelity model and the hybrid batch
model, using the mentioned local linear models, guard conditions and reset maps.

5-4 Concluding Remarks

In this chapter the development of a hybrid batch model has been discussed. Because the
cycle-to-cycle dynamics of the POC are nonlinear, a single linear or Hammerstein model is
not sufficient.

Therefore, a hybrid automaton has been designed. Each local model is a linear model, valid
for a subset of the input space U . The local models have been identified using input-output
data of the high fidelity model, and validation results show sufficiently high fits.

The local models are connected through each other with guard conditions and reset maps;
the reset maps ensure the states of the batch model are reset when switching between two
local linear models.
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52 Batch Modeling

Figure 5-5: Comparison between the cycle-averaged outputs of the high-fidelity model and the
batch model. Both models are initiated from CSS with τf = 5s. The states of the batch model
are also plotted, and the effect of the reset map can be seen when the input enters the range
of another local model. The boundaries of the input spaces Um of the local models are denoted
with dotted lines.

Nathan Looye CONFIDENTIAL Master of Science Thesis



Chapter 6

Model Predictive Control

This chapter will cover the design and derivation of the Model Predictive Control (MPC)
strategy used to control the POC. MPC is a control method that exploits a (simplified) plant
model to predict the future states and outputs, and calculates a optimal control input by
minimizing a suitable cost function, whilst adhering to a set of constraints.

In this case, the objective is to minimize the compressor power usage, while keeping the purity
above a minimum value. The hybrid batch model from Chapter 5 is used as a prediction
model.

The lay-out of this chapter is as follows. Section 6-1 provides some background information,
and discusses the motivation behind the choice for MPC. In the next section, the control
approach will be explained. Section 6-3 concerns the derivation of the cost functions, and in
Section 6-4 the tuning of the parameters is discussed. The chapter will end with a conclusion.

6-1 Background

MPC is based on iterative, finite horizon optimization of a plant model: at each time step k,
a cost function is minimized over the prediction horizon Hp, yielding a sequence of optimal
control inputs ûk for the next Hc steps, the control horizon. The following is based on [11, 59].
The cost function used in this thesis is:

J = ỹT2 Qyỹ2 + ũTQuũ. (6-1)

Here ỹ2 is a vector of predicted outputs y2 = P̄ ck over the prediction horizon, and ũ a vector
consisting of the differences of consecutive inputs, i.e. ∆ûk = ûk − uk−1:

ỹ2 =

 y2,k
...

y2,k+Hp−1

 , ũ =

 ∆ûk
...

∆ûk+Hc−1

 . (6-2)
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54 Model Predictive Control

The first term penalizes the second output P̄ ck , and the second term is used to penalize
any excessive change in control input, which is needed to prevent the input from oscillating
around a steady-state value. The matrices Qy and Qu are weighing matrices, used to change
the relative importance of one of the terms, or e.g., one specific predicted output over the
other outputs. The control horizon is smaller than the prediction horizon: Hc < Hp. After
the control horizon, the control input is held constant: ∆ûk+i = 0 for i ≥ Hc.
The optimization problem that is solved (each time step k) is the following:

min
ũ

J = ỹT2 Qyỹ2 + ũTQuũ,

s.t.: ỹ1 ≥ Pmin,
ũ ∈ Ũ .

(6-3)

Where ỹ1 is a vector of predicted purity outputs, also of length Hp. Pmin is the minimum
acceptable purity, and ũ ∈ Ũ are constraints to ensure the input optimized input ûk stays
inside the operating range U , and that limit the maximum allowable input change ∆umax.
Technically, the Input/Output (I/O) relationships described by the batch model are also
constraints. However, these will be incorporated into the cost function (see Section 6-3).
Although Hc control inputs are optimized, only the first control input is used each time step.
This way the most recent measurements are utilized immediately.
Like said before, to compute these predicted outputs, the hybrid batch model from Chapter 5
is used. At each time step, this batch model is initiated with the estimated states and the
known input of the previous cycle uk−1. To estimate the batch states, an observer is needed,
which will be discussed in Section 6-2-4.

6-1-1 Motivation

In Chapter 1, the reason for developing an MPC-based controller was already given. It will
be repeated here.
The main goal of this study is to improve the efficiency of the POC, by reducing the power
consumption. Because of sieve bed degradation, as discussed in Section 2-2-4, the dynamics of
the POC will change over time. The current control method (see Section 2-1-1) uses lookup-
tables to adjust the valve timings in open-loop, and has no direct knowledge of the system
dynamics. Therefore the tolerances might not be as tight as is desired.
Because MPC uses a model of the plant, it does have information about the system dynamics,
and therefore is able to predict and act on changes of the system. MPC lends itself well to this
particular case, since the objective is to minimize the power consumption. Constraints like a
minimum purity value can be added, and the controller could be extended to a Multi-Input
Multi-Output (MIMO) case (e.g., the addition of the feed flow rate as an input).
Another advantage of MPC is adaptation. Currently, tuning a POC is done at the factory.
So if a device needs a sieve bed replacement, it has to be sent back to the factory. Using
MPC, it might be possible to use a controller which automatically adapts itself, based on the
location of the user (e.g., high or low altitude) and the capacity of the sieve beds. This way
the POC does not need to be returned.
The aim of this thesis is to show the feasibility of MPC. A self-tuning controller or other
improvements will be part of future work.
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6-1-2 MPC in the PSA Literature

Initially developed in the 1970s, MPC has been a popular subject for academic and industrial
research. The popularity of this control strategy is due to its ability to predict future plant
outputs, providing early warnings of potential problems, and the fact that the controller can
handle constraints. This makes MPC an excellent choice for the process industry, where
input and output constraints play an important role [60]. The same holds for PSA processes:
different studies have been published that use MPC. For example, both studies mentioned in
Chapter 5 that use a single linear batch model, the first by Khajuria [13] and the other by
Urich et al. [42], use MPC to control their respective PSA plant.

Unfortunately, both studies have PSA plants that differ much from the POC in this thesis, and
the objectives of these studies (disturbance rejection) also also different. Therefore comparing
these studies with the approach in this chapter is not helpful.

6-2 Switched Linear MPC

The approach that has been taken in this thesis can described as switched linear MPC.
Instead of using the complete hybrid batch model to compute the predicted states, only the
local linear model qm corresponding to the last known input, uk−1 ∈ Um, is used. If the
controller steers the system to a different local model (i.e. the first optimized input ûk lies
in a different range Un), in the next cycle the cost function will be updated with the new
state-space matrices, states and inputs, and this new cost function is optimized.

This approach, switched MPC, can also be found in the literature. Two kinds are found:
MPC where switching is not incorporated in the optimization (as is the case in this study),
e.g., [61], and MPC where switching is incorporated in the optimization, e.g., [62]. However,
switched MPC where the input is the only switching variable has not been found.

First, the reasoning behind this approach is explained. After that, in Section 6-2-2, switching
between local models is explained, and the stability of this approach is analyzed. In Section 6-
2-3 Quadratic Programming (QP) is explained, and lastly in Section 6-2-4, the design of the
observer, needed to estimate the states of the batch model, is discussed.

6-2-1 Convexity

To understand why this approach has been taken, the notion of convexity needs to be ex-
plained. A function f(x) is convex on an interval [a, b] if for any two points x1, x2 in [a, b]
and any λ ∈ (0, 1) [63],

f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (6-4)

As a consequence, a convex function only has a global minimum, and no local ones. Likewise,
a convex cost function only has one minimum, and this poses an advantage to a solver: there is
no chance of getting stuck in local minima, so the calculated input will always be the optimal
one. Global solvers can handle non-convex optimization problems, but are more complex and
often it cannot be proven that they will find the global minimum.
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The hybrid batch model as described in the previous chapter is, due to the reset maps R,
a nonlinear model. If this nonlinear model is used to compute ỹ1 and ỹ2 in Eq. (6-3), there
is no guarantee that the resulting optimization problem will be convex. In fact, simulations
with the hybrid batch model as a predictive model for an MPC have shown the controller
getting stuck in local minima. This behavior is unacceptable for the POC: e.g., not reaching
the required purity levels can be harmful to the user.

6-2-2 Switching

Like has been said, switching between local models is based on the inputs. At the end of step
k, after optimization, the range Un of the newfound input uk is compared with the range of
the previous input uk−1 ∈ Um:

switch if Um 6= Un. (6-5)

If so, the local model qn corresponding to the range Un is used during optimization in the
next cycle. To prevent oscillations, i.e. unnecessary switching, a dwell time has been added
(see Section 5-3-1). During this dwell time, the controller can not switch back to the local
model(s) used in the previous five cycles or steps k.

This is not a hard proof that this switched system is stable. This has not been done for the
controller: proving that a "hybrid" MPC-based controller is stable, is difficult. Instead, the
input weight Qu and input constraints are chosen to limit any oscillation (see Section 6-4),
and linear MPC is used to ensure the inputs are optimal over the prediction horizon.

A consequence of this approach is that, during optimization, some of the optimized inputs
will lie outside the current operating range Um, as illustrated in Figure 6-1. Since it is not
possible to switch local models during optimization, the wrong state-space matrices will have
been used for these inputs.

u

cycle k

U1

U2

U3 uk+1 + ũ

uk−1

Figure 6-1: Example of optimization during cycle k. Starting from the previous input uk−1,
inputs ũ are optimized over the control horizon (here Hc = 4). Since uk−1 ∈ U2, local model q2
has been used for optimization. Note that the last two optimized inputs are in U3.

To show that for neighboring models (i.e. with neighboring ranges Um), using the wrong
model is not detrimental, additional validation on the local models has been done. Every
local model qm,m = [1, . . . , 13] has been validated with the validation data sets from its (up
to four) neighboring models. The results can be found in Table 6-1, and the same measure
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of fit as in Chapter 5 has been used: the NRMSE defined in Eq. 5-10. For most of the local
models, the fits of the closest neighboring validation sets are still above 75%; only for higher
input ranges the fit on the purity starts getting worse, and there are some outliers with the
second input, average compressor power.

Model Fit of y1 [%] on validation set of model Fit of y2 [%] on validation set of model
(qm) qm−2 qm−1 qm qm+1 qm+2 qm−2 qm−1 qm qm+1 qm+2

1 - - 97.04 84.52 71.58 - - 92.74 88.28 66.22
2 - 81.12 96.85 84.12 71.15 - 87.05 93.11 85.03 54.83
3 59.19 81.26 97.21 84.77 71.28 84.03 85.03 91.93 79.39 78.6
4 59.25 80.7 97.23 84.46 71.3 74.99 47.96 90.9 89.04 83.06
5 60.54 81.34 97.14 84.31 70.58 -9.48 89.35 90.8 89.33 86.26
6 59.18 81.18 97.13 83.69 69.19 82.6 89.66 90.85 89.17 59.58
7 60.11 81.03 97.66 82.6 67.54 86.25 88.83 91.37 84.45 83.66
8 57.16 79.55 96.55 81.85 64.71 87.29 82.75 90.85 90.13 88.78
9 55.01 79.1 96.93 78.24 58.97 61.63 90.94 91.73 91.08 51.63
10 49.18 75.44 96.07 74.54 50.93 87.7 90.29 91.05 69.59 57.69
11 36.28 68.38 93.73 69.69 39.72 84.02 85.69 89.87 87.17 85.83
12 18.84 59.0 94.14 60.03 - 71.21 87.73 90.36 89.7 -
13 -2.96 48.22 92.27 - - 85.89 89.53 91.49 - -

Table 6-1: Fits of every local model m on the validation sets of its four neighboring models
(and its own), to show that the models are also able to predict dynamics which lie slightly out of
their operating range. On the left, y1 (purity) is shown, and on the right, y2 (average compressor
power) is shown. Model 1 is the model with range U1 ∈ [3.375, 3.625], model 13 the model with
range U13 ∈ [6.375.6.625], et cetera.

In other words, the local models are still able to predict the dynamics corresponding to inputs
which lie slightly out of their operating range. Measures are taken to ensure the predicted
input stay close to "their" input range Um, namely by choosing a small control horizon Hc and
setting a constraint on the maximal allowable change in input ∆umax. This approach will be
validated in the next chapter, and the tuning of the two mentioned parameters is discussed
in Section 6-4.

6-2-3 Quadratic Programming

Since the prediction model is now a single local linear model, the optimization problem can
be recast as a Quadratic Programming problem [59]. Such an optimization problem has the
following form:

min
ũ

J = 1
2 ũ

THũ+ fT ũ,

s.t.: Aineqũ ≤ bineq,
(6-6)

where Aineq and bineq are a matrix and vector making up the (in)equality constraints. If H,
called the Hessian, is a positive definite matrix and the (in)equality constraints are linear, the
optimization problem is convex. Such a problem can be easily solved by any suitable solver,
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and in this study the Matlab function quadprog has been used, which is designed to solve
these QP problems.

The optimization algorithm that has been used is called ’interior-point-convex’, the default
algorithm for quadprog. Interior-point algorithms can solve linear and nonlinear convex
optimization problems, and are based on so-called barrier functions [64].

The matrices and vectors H, f,Aineq and bineq are built up from linear combinations of the
state-space matrices and states of the current local model, and the previous input uk−1. Their
derivation will be explained in Section 6-3.

6-2-4 Observer Design

Like said in the previous section, an observer is needed to estimate the states of the batch
model. The switching aspect of the controller is incorporated in the observer: since the states
pass a reset map when a switch happens, the observer should also have knowledge of this
reset map R.

The linear part of the observer is a Luenberger observer [65]. Other types of observers have
not been evaluated, since this was not the focus of this thesis, and this observer showed
accurate estimations (i.e. low observer error).

Let the estimated states be denoted by x̂k, and equivalently the estimated output with ŷk.
Given the state-space matrices of the current local model Am, Bm, Cm, Dm, the observer
dynamics are:

x̂k+1 = Amx̂k +Bmuk + Lm (yk − ŷk) , (6-7a)
ŷk = Cmx̂k +Dmuk, (6-7b)

where Lm is called the observer gain. An observer is called asymptotically stable if the
observer error ek = x̂k − xk converges to zero for k →∞. The error dynamics are:

ek+1 = x̂k+1 − xk+1,

= Amx̂k +Bmuk + Lm (yk − ŷk)−Amxk +Bmuk,

= (Am − LmCm)ek.
(6-8)

Therefore, by choosing the observer gain Lm such that the eigenvalues of the matrix Am −
LmCm are within the unit disk, the observer is made asymptotically stable. A requirement
for this is that all pairs Am, Cm are observable. Like said in Section 5-3-2, this is the case, so
all local observers are asymptotically stable.

A high observer gain Lm ensures that the observer states converge quickly to the real states.
The downside of a high observer gain is that the initial error can get dangerously large
because of this high Lm, and any noise is also amplified. Tuning of Lm,m = [1, . . . , 13] will
be discussed in Section 6-4.

If the optimization algorithm switches between subsystems, the state-space matrices of the
observer will also switch to match the current local model. The observer states x̂k are subse-
quently reset with the reset map R(qm, qn) from Section 5-3-2. Since all the error dynamics are
asymptotically stable, the observer will remain asymptotically stable if a state reset happens.
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During simulations, it became clear that using only the purity output, y1, yielded better
results than using both outputs for the observer. This is due to the noise present in the signal
of the average compressor power, as explained in Section 4-3, whereas the purity is a smooth
signal. A Kalman filter specializes in filtering noise, which might have solved this problem,
but only using y1 was simpler and also effective.

6-3 Derivation of Optimization Problem

In this section the derivation of the cost function and the constraints will be explained. That
is, how to change Eq. (6-1) into the form of a QP problem as shown in Eq. (6-6). The following
is based on [59].

First, recall that ỹi, i ∈ {1, 2} is a vector of length Hp of predicted outputs of either the purity
(y1) or the average compressor power (y2), and that ũ is a vector of the (to be optimized)
differences between consecutive inputs of length Hc. Let x̃ be a vector of corresponding
predicted states, its length being 6Hp. In this section the subscript m, denoting the local
model, will be dropped, since switching does not take place during optimization. The following
holds for all qm.

Since the differences in inputs ∆ûk are optimized, it is convenient to also write the state-space
difference equations in terms of ∆ûk:

xk+1 = Axk +B∆ûk +Buk−1, (6-9a)
yk = Cxk +D∆ûk +Duk−1. (6-9b)

Note that uk−1 is known and ûk is the to-be-optimized input. The goal is to write any output
yk+i, i ∈ [0, Hp−1] in terms that are known (state-space matrices, current states xk, previous
input uk−1) and in terms of ũ.

The resulting difference equation is shown here:

xk+i = Aixk +
i−1∑
j=0

AjBuk−1 +
[∑i−1

j=0A
jB

∑i−2
j=0A

jB . . . B
]


∆ûk
∆ûk+1

...
∆ûk+i

 , (6-10a)

yk+i = Cxk+i +Duk−1 +
[
D D . . . D

]


∆ûk
∆ûk+1

...
∆ûk+i

 . (6-10b)

An added advantage of this notation is that for i ≥ Hc,∆uk+i = 0, because after the control
horizon the input is held constant. Using this notation, the predicted state and output vectors
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x̃ and ỹ at time step k can be written as:



xk
xk+1
...

xk+Hc
xk+Hc+1

...
xk+Hp−1


︸ ︷︷ ︸

x̃

=



I
A
...

AHc

AHc+1

...
AHp−1


︸ ︷︷ ︸

Ã

xk +



0
B
...∑Hc−1

i=0 AiB∑Hc
i=0A

iB
...∑Hp−2

i=0 AiB


︸ ︷︷ ︸

B̄0

uk−1+



0 . . . 0
B . . . 0
... . . . ...∑Hc−1

i=0 AiB . . . B∑Hc
i=0A

iB . . . AB +B
...

...
...∑Hp−2

i=0 AiB . . .
∑Hp−Hc−1
i=0 AiB


︸ ︷︷ ︸

B̃

 ∆ûk
...

∆ûk+Hc−1


︸ ︷︷ ︸

ũ

(6-11a)



yk
...

yk+Hc−1
...

yk+Hp−1


︸ ︷︷ ︸

ỹ

=

C . . . 0
... . . . ...
0 . . . C


︸ ︷︷ ︸

C̃

 xk
...

xk+Hp−1


︸ ︷︷ ︸

x̃

+

D...
D


︸ ︷︷ ︸
D̃0

uk−1 +



D . . . 0
... . . . ...
D . . . D
...

...
...

D . . . D


︸ ︷︷ ︸

D̃

 ∆ûk
...

∆ûk+Hc−1


︸ ︷︷ ︸

ũ

(6-11b)

If the first output is needed, ỹ1, the extended matrices C̃, D̃0 and D̃ are made up of the
respective row (e.g., the first for ỹ1) of the matrices C and D. The extended matrices are
then denoted as C̃1, D̃0,1 and D̃1. The same holds for ỹ2.

Using these extended matrices, the predicted output ỹ1 can be written as:

ỹ1 = C̃1x̃+ D̃0,1uk−1 + D̃1ũ,

= C̃1
(
Ãxk + B̃0uk−1 + B̃ũ

)
+ D̃0,1uk−1 + D̃1ũ,

= C̃1Ãxk +
(
C̃1B̃0 + D̃0,1

)
uk−1︸ ︷︷ ︸

F̃1

+
(
C̃1B̃ + D̃1

)
︸ ︷︷ ︸

G̃1

ũ.
(6-12)

For clarity, the extended matrices have been grouped together into a vector of known elements
F̃1, and a matrix which depends on ũ, denoted by G̃1. The prediction vector of the second
output is also written like this:

ỹ2 = F̃2 + G̃2ũ. (6-13)
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Cost Function

Using the newfound vectors and matrices F̃i, G̃i, i ∈ {1, 2}, the original cost function from
Eq. (6-1) can be rewritten:

J = (F̃2 + G̃2ũ)TQy(F̃2 + G̃ũ) + ũTQuũ,

= F̃ T2 QyF̃2 + 2F̃ T2 QyG̃1ũ+ ũT
(
G̃T1 QyG̃1 +Qu

)
ũ.

(6-14)

The first term in this equation does not depend on ũ, and thus it will not be affected by
the optimization. The actual value of the cost function is not needed, only for which ũ it is
minimal. Therefore it can be dropped from the cost function, so:

J = 2F̃ T2 QyG̃1︸ ︷︷ ︸
fT

ũ+ ũT
(
G̃T1 QyG̃1 +Qu

)
︸ ︷︷ ︸

2H

ũ. (6-15)

The cost function is now in the form of the QP problem of Section 6-2-3. Qy and Qu are
positive definite by design, and the product of the matrices G̃T1 QyG̃1 is positive-definite.
Therefore the matrix 2H is positive-definite, and the optimization problem is convex.

Constraints

Now that the cost function has been rewritten into the QP form, only the constraints remain.
These all have to be rewritten into the form Aineqũ ≤ bineq (since there are no equality
constraints). Starting with the constraint on the purity, which is rewritten, using Eq. (6-13):

ỹ1 ≥ Pmin, (6-16a)
−G̃1ũ ≤ F̃1 − Pmin. (6-16b)

Eq. (6-16b) is a so-called hard constraint: the purity cannot fall under the limit. This is a
potential problem. If this limit is raised during simulation because a higher purity level is
desired, the controller may not able to provide an input for which this constraint holds. With
that in mind, slack variables s̃ have been added to this optimization problem such that this
purity constraint becomes a soft constraint. Eq. (6-16b) becomes:

−G̃1ũ− s̃ ≤ F̃1 − Pmin, (6-17)
−s̃ ≤ 0, (6-18)

and these slack variables will also be penalized:

min
ũ,s̃
J = 1

2
(
ũTHũ+ s̃TQs̃s̃

)
+ fT ũ. (6-19)

If there is a ũ that satisfies Eq. (6-16b), s̃ = 0. If not, then s̃ will be the smallest value that
satisfies Eq. (6-17). The extra constraint in Eq. (6-18) ensures the slack variables are positive.
Qs̃ is a positive definite weighing matrix for these slack variables, and tunes the "softness" of
this constraint. This will also be discussed in Section 6-4.
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The constraints on the input are as follows. Firstly, the maximum change is constrained by
the vector ∆umax, which is tuneable, and the second constraint ensures the optimized inputs
ũ stay inside the operating range U .

|ũ| ≤ ∆umax, (6-20)3.5
...

3.5

 ≤ uk−1 +


∆ûk
...∑k+Hc−1

i=k ∆ûi

 ≤
6.5

...
6.5

 . (6-21)

Rewriting the above constraints into the form Aineqũ ≤ bineq is considered trivial and will not
be shown. Instead, these two constraints (Eqs. (6-20) and (6-21)) will be denoted by ũ ∈ Ũ .

Final Form

The final form of the first optimization problem, minimizing the power consumption, is ob-
tained by first defining the following matrices:

Haug =
[
G̃T2 QyG̃2 +Qu 0

0 Qs̃

]
, faug =

[
2F̃ T2 QyG̃2

0

]
, ũaug =

[
ũ
s̃

]
, (6-22)

and

Aaug =
[
−G̃1 −I

0 −I

]
, baug =

[
F̃1 − Pmin

0

]
. (6-23)

Yielding the final form:

min
ũaug

J = 1
2 ũ

T
augHaugũaug + fTaugũaug,

s.t.: Aaugũaug ≤ baug,
ũ ∈ Ũ .

(6-24)

6-4 Tuning

In the previous sections the approach, and the derivation of the cost functions and constraints
have been explained. This section will discuss the tuning of the MPC parameters.

Firstly, the observer gains Lm. Like said in Section 6-2-4, the poles of the matrices Am −
LmCm,m = [1, . . . , 13] should be placed inside the unit circle. If they are chosen too fast (i.e.
too close to zero), oscillations in the error may appear. For that reason the poles p of every
matrix Am − LmCm have been placed at:

p =
[
−0.4 0.4 −0.45 0.45 0.5

]
. (6-25)

Different pole locations have been evaluated, and these values provided the best results. The
values of the observer gains Lm can be found in Appendix A-2.
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MPC Parameters

The parameters for the optimization have been chosen as follows. They are the same for
every local model, since tuning the parameters for every model individually is tedious, and
good results were obtained this way.

First, the prediction horizon Hp will be discussed. It is good practice to pick the prediction
horizon as long as possible [59], i.e. increase Hp until further increases have no effect on the
performance. For that reason, the prediction horizon has been set as Hp = 20.

The control horizon Hc and the maximum change in input ∆umax are used to constrain the
input, as discussed in Section 6-2-2. Table 6-1 showed that fits were still acceptable when
the input was close to the original range of the used local model. For that reason, a control
horizon of Hc = 2 and a maximum input change of ∆umax = 0.1 has been chosen. With these
two parameters it can be guaranteed that the optimized inputs [ûk, ûk+1] will lie inside the
range of the current model qm and the two closest neighboring models qm−1, qm+1, i.e.:

uk−1 +
[

∆ûk
∆ûk + ∆ûk+1

]
∈ Um + Um−1 + Um+1. (6-26)

The downside is that the controller will be slow because of this small ∆umax.

All that remains are the weighing matrices Qy, Qu and Qs̃, for the output, input and slack
variables, respectively. Qs̃ should be high, to penalize any constrain violations. In this case,
Qs̃ = 500IHp was chosen (where Iw is a (w × w)-identity matrix). The choice of the other
weighing matrices, Qy and Qu, is more important, since they help shape the dynamics of the
controller. If Qu = 0, excessive input changes are not penalized and the input will oscillate
unnecessary. Obviously, if Qy → 0, the cost function has a minimum for ũ = 0, so uk = uk−1.
Therefore a trade-off must be made.

That trade-off is the following: pick Qu and Qy such that unnecessary input oscillations are
kept to a minimum, and that the transient response is as fast as possible. The following
weighting matrices met this criteria: Qu = 10IHc and Qy = (1/20)IHp .

In Chapter 7 the simulation results of the controller, using these parameters, will be discussed.

6-5 Concluding Remarks

In this chapter the design of the controller has been discussed. MPC has been chosen as
the control method, since its optimization-based approach is very suited for the goal of this
thesis. Local linear MPC is implemented, such that the optimization problem can be cast as
a convex QP problem.

Two cost functions have been derived: one that minimizes the power consumption of the
compressor with a constraint on the purity, and the other that minimizes the tracking error
between a desired purity value and the true purity.

The batch states are estimated with an Luenberger observer which makes use of the hybrid
batch model from Chapter 5.
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Chapter 7

Results

This chapter will show the simulation results obtained with the MPC-based controller that
was derived in Chapter 6. The high-fidelity model from Chapter 3 is used as a plant model
for the POC, and the predictive model for the controller is the hybrid batch model, derived
in Chapter 5.

Three topics will be discussed in this chapter. First, the used observer will be analyzed, in
Section 7-1. Subsequently, in Section 7-2, the performance of the controller under normal
operation (i.e. no sieve bed degradation in the POC) will be reviewed. After that, a case
study on sieve bed degradation will be discussed: the POC will be simulated with degraded
sieve beds, such that the performance of the derived controller can be compared with the case
without degradation. The chapter will conclude with a summary.

7-1 Observer Performance

In this section, two decisions regarding the design of the observer will be discussed. The first
is why only the purity P is used to estimate the states x̂ (instead of both outputs), and the
second is about the impact of the reset maps R on the observer performance.

7-1-1 Choice of Outputs for Observer

To show why only the purity is used for the observer, two simulations have been done in which
the high-fidelity model is controlled with the MPC-strategy derived in Chapter 6. In the first
simulation, only P is used by the observer to estimate the states, and in the second, both
outputs are used by the observer. For both simulations, Pmin undergoes a single step change.
The results can be found in Figure 7-1. Because the "real" batch states are not known, a
comparison between observer states and real states cannot be shown. Instead the observer
error, ek = x̂k−xk, will be approximated with the differences between estimated outputs and
true outputs. Let e1,k be the error between ŷ1 and y1 (purity), and likewise e2,k = ŷ2 − y2
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(for the average compressor power). Also, the observer using only P will be called observer
1, and the observer that uses P and P̄ c will be called observer 2.

The advantage of observer 1 is visible in the plot showing e1,k. For observer 1, this error goes
to zero quickly, whereas for observer 2, this error keeps oscillating. Note also that there is
almost no difference in magnitudes for e2,k. The result is a much smoother input trajectory
(with less switching) for the case with observer 1 compared to the case with observer 2.

Figure 7-1: Comparison between the observer that only uses the purity to estimate the states
(observer 1), and the observer that uses both outputs to estimate the states (observer 2). Since
the actual batch states are not known, the observer error is approximated with the outputs of the
observer and the plant.

These results are somewhat surprising, since this means that the observer receiving less in-
formation performs better. This is due to the noise present in the second output (P̄ c), as
explained in Section 4-3. If the observer tries to steer e2,k to zero, it does not take the noise
into account, resulting in unnecessary oscillations in the states and the outputs, also visible
in Figure 7-2, where the estimated states of both observers are shown for these simulations.

In hindsight, a Kalman filter could have been useful, since it is designed to filter out noise
present in a signal, such that both outputs could be used by the observer. However, since the
performance of observer 1 (so using only one output) was deemed sufficient, further research
into state estimators has not been done.
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Figure 7-2: Estimated states of both observers.

7-1-2 Effect of Reset Maps

In section 5-3-2, the reset maps R were derived. These reset maps ensure that the states
are reset when a switch happens, and in this section the necessity of these reset maps will
be shown. In Figure 7-3 the results of a simulation can be seen, where an observer has been
used that does not have the reset maps incorporated. The same step change has been put on
Pmin as in the previous section, such that this observer can be compared with the observers
discussed there.

It is clear that not using the reset maps results in instability. Because of the switching between
local models, an observer error appears, which steers the input to another local model, such
that a new observer error appears, and the process repeats itself. Were it not for the dwell
time of five cycles, the oscillations would even be more severe. In other words, the reset maps
are necessary in providing stability for the observer and thus the controller.

Figure 7-3: Simulation of the observer (using only the purity) without reset maps. Observer
errors are not shown like in Figure 7-1, because the differences between y and ŷ can be seen from
the top two plots.
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7-2 Controller Performance

Now the performance of the controller under normal operation will be discussed (so without
sieve bed degradation). Recall that the objective of the controller is to minimize the average
compressor power P̄ c, subject to a (soft) constraint on the purity P, i.e. P ≥ Pmin. In
practice, this means that the controller should steer the purity to this minimal value. To
show that the controller can handle different settings (i.e. minimal purity levels), and can
switch between them, Pmin will be subjected to step changes, which the controller should
track.

The reason the controller should steer the purity to Pmin is because of the I/O relationships.
Recall Figure 4-5 in Chapter 4, where the I/O relationships of both outputs were shown. The
CSS relationship between P̄ c and τf is linear, so to minimize the power consumption one has
to minimize the feed time, only constrained by Pmin. Since the other I/O relationship (of the
purity) is also monotonically increasing for the current operating range (defined in Section 5-
1-3), steering the purity to Pmin will result in the lowest possible power consumption.

Tracking of Pmin, i.e. the minimization of a certain tracking error, is not the explicit objective
of the controller such that this MPC framework is suitable for future improvements. The
analogy between the two objectives (power minimization and tracking) only holds because of
the current simplifications and assumptions; if e.g., the input range U is extended, the I/O
relationship between P and τf is no longer monotonically increasing, and thus tracking Pmin
does not guarantee power minimization.

In Figure 7-4, the results of a simulation are shown. The POC has been simulated for approx.
400 cycles, and Pmin is subjected to step changes, as previously explained in this section. The
top two plots show the two outputs of the POC: the purity (y1) and the average compressor
power (y2). In the top plot, Pmin has also been plotted in addition to the purity. In the
third plot, the "tracking error" eP is shown, i.e. how close the purity is to Pmin. The fourth
plot shows the input, and the bottom plot shows the switching, i.e. the local model for the
respective cycle.

Looking at the top plot, it can be seen that the controller is successful in steering the system
to the lowest possible purity value, since the tracking error goes to zero after every step
change. The speed of the response is limited by the constraints on ∆uk (see Section 6-4),
which ensures the prediction model uses only viable local models for the optimization. Due
to the weights on the input, Qu, input oscillations are kept to a minimum. This is also visible
in the bottom plot: there is no excessive switching between local models.

In the third plot, around cycles k = 170 and k = 270, overshoots can be seen. This is a
consequence of the soft constraint on P: here Pmin was increased, and therefore the constraint
is suddenly violated, resulting in nonzero slack variables. Since these are heavily penalized
in the cost function, the controller will then aggressively steer the purity above this new
minimum value to get the slack variables to zero again. The result is a peak in the input
and thus a slight (positive) overshoot. This does not happen when Pmin decreases, hence the
response of the system is much more gradual when this happens (e.g., around k = 50).

The fact that there is also an overshoot (again in the third plot) around k = 370 is strange,
since Pmin has been lowered during that step. This could be due to the observer errors, which
are plotted in Figure 7-5.
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Figure 7-4: Simulation results of the POC under normal operation. Pmin is the minimum
allowable purity.
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Figure 7-5: Errors between outputs of observer and outputs of the plant.

In Figure 7-5, the two observer errors, as explained in Section 7-1, are shown. There are
some oscillations during transient behavior, but the system remains stable. However, there
is a noticeable observer error in the top plot around cycle k = 370, which could explain the
overshoot around the same cycle in Figure 7-4. There are also some observer errors visible
between ŷ2 and y2, namely around cycles k = 50 and k = 270. All these observer errors are
likely due modeling inaccuracies, but the exact cause is unknown.
All in all, the MPC strategy is able to control the POC adequately. There are some unex-
plained observer errors, but the system does not become unstable because of this.

7-2-1 Computation Time of Controller

Recall from Section 1-2, that one of the sub-objectives is that the controller should be able
to run on the existing hardware of the POC. Since implementation of this MPC strategy on
a real device is not in the scope of this research, this cannot be tested. As an alternative, the
computation time of the controller will be assessed.
This is done by comparing the simulation times tsim of the case discussed in this section, with
a simulation without the controller (and observer), i.e. in open-loop. The optimized inputs
from the first case will be used as inputs for the plant. The difference in simulation time,
∆tsim, can be seen as the time needed by the controller to calculate the inputs. If this is
divided by the amount of cycles, 427, an estimate of the computation time of the controller
per cycle, called tMPC , is obtained:

tMPC = 1
ncycles

∆tsim. (7-1)

For the case with controller, tsim = 553.1s, and for the case without controller, tsim = 373.7s.
Given the amount of cycles, 427, this means that tMPC ≈ 0.42s. In other words, on average
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the controller needs 0.42s to compute a new input every cycle. The simulations have been
done with Matlab R2018a on a MacBook Pro, with a 2.7 GHz Intel Core i5 processor and
8GB of RAM.

At first sight, it seems that the built-in hardware on the POC will not be able to use this
controller as-is. Given that there is a substantial difference in computing power between the
built-in hardware and the laptop used for these simulations, tMPC will likely be much higher
when using the existing POC hardware. On the other hand, this code has not been optimized
for usage on a real controller (e.g., compiled), and that might reduce the computation time.
Further research is needed to conclude applicability on a real POC.

7-3 Case study: Sieve Bed Degradation

In this final section, a case study will be discussed: the performance of the MPC strategy
will be evaluated when the POC is simulated with sieve bed degradation. The reason for
sieve bed degradation was already given in Section 2-2-4: some water vapor present in the air
gets irreversibly adsorbed by the adsorbent, with the result that some of the zeolite crystals
are unable to adsorb nitrogen (or oxygen). This means the total adsorption capacity of the
sieve bed decreases, changing the dynamics of the POC. Like said in Chapter 1, sieve bed
degradation is not incorporated in the predictive model of the controller.

Degradation of the sieve beds has been modeled by setting some of the values of the adsorbed
phase concentration q to zero (see Section 3-3-2), such that for some axial locations in the
sieve beds, adsorption is no longer possible:

dqji,n
dt

= 0, qji,n(t0) = 0, j ∈ {1, 2},
i ∈ {N2, O2},

n = [1, . . . , Ndegr]. (7-2)

Here qji,n(t0) denotes the initial condition, and Ndegr is the amount of volumes that are
degraded, so for e.g., 10% sieve bed degradation, Ndegr = 10. Different levels of degradation
will be evaluated and compared to the non-degraded case: 5%, 10% and 20% sieve bed
degradation.

The effect of sieve bed degradation on the I/O relationships can be found in Figure 7-6. Mul-
tiple observations can be made. First of all, since the effective sieve bed length gets shorter for
increasing degradation, nitrogen breakthrough will happen earlier and the maximum achiev-
able purity also decreases. Also notice that for low τf , the purity rises for increasing sieve
bed degradation. This is caused by the increase of pressure in the sieve beds, leading to a
higher adsorption capacity. This increase in pressure is due to the accumulation of nitrogen
molecules that cannot be adsorbed by the degraded section of the sieve beds; more molecules
present leads to a faster rise in pressure. This higher average pressure can also be seen in the
right plot, showing the I/O relationship of P̄ c and τf . This all means that for increasing sieve
bed degradation, the peak of the purity will move down and to the left (to lower τf ), whereas
the average compressor power will only rise (given that the mass flow out of the compressor
stays constant). A control strategy that adjusts the timings based on the degradation would
therefore need to decrease the feed time τf for increasing sieve bed degradation, given that
adhering to Pmin is still feasible.
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Figure 7-6: I/O relationships at CSS of the POC with various levels of sieve bed degradation
compared to those of a POC without degradation.

Ideally, the developed MPC strategy would be compared to the current control method of the
POC. Recall from Section 2-1-1, that the current control method is to tune the valve timings
based on factory calibration: as the adsorption capacity of the sieve beds decreases over time,
the timings are adjusted such that the constraints on the flow of oxygen-enriched air are
not violated. However, these timings and adjustments are not available for comparison, and
thus the performance of this open-loop strategy is unknown. Therefore, the controller will
be compared with two open-loop strategies: one that has no knowledge of the degradation,
and one that has full knowledge (i.e. perfect adjustments to the timings). This way the
performance of the controller can be compared with a worst-case scenario and an optimal
one. In Section 7-2 it was explained that for minimal power consumption, P = Pmin. With
that in mind, Figure 7-6 will be used to provide inputs for the two open-loop cases: the
strategy without knowledge uses the "no degradation" I/O relationships to steer the purity
to Pmin (regardless of any degradation), and the strategy with full knowledge uses the I/O
relationships of the respective level of degradation to calculate the inputs.

Three control strategies are evaluated (MPC, best-case open-loop and worst-case open-loop),
as well as four degrees of sieve bed degradation: 5%, 10%, 20% and no degradation. Each
of these cases will be simulated three times, with different values for Pmin (91.5%, 92.5% and
93%). So in total, 36 scenarios are simulated. The performances of the control strategies are
measured by the CSS outputs: PCSS and P̄ cCSS . The results can be found in Table 7-1, and
in Figure 7-7 the results of simulations with Pmin = 92.5% have been plotted as an example.

As can be seen from Table 7-1, the performance of the MPC strategy is identical to the (best-
case) open-loop strategy when no degradation is considered; the fact that MPC can control
such a system was already discussed in the previous section. For 5% sieve bed degradation,
the difference in performance between the best-case open-loop strategy and the MPC strategy
is still small; a difference in P̄ cCSS of 0.01 to 0.03 W. However, for increasing degradation of
the sieve beds, the performance of the MPC strategy worsens. For e.g., Pmin = 93% and
a sieve bed degradation of 20%, the MPC performance is closer to the performance of the
worst-case open-loop strategy than that of the best-case open-loop strategy.

It is clear that not incorporating the sieve bed degradation in the predictive model leads to
performance limitations when the POC is simulated with degraded sieve beds. The MPC
strategy outperforms a worst-case open-loop strategy, but that is to be expected since MPC
uses feedback and has knowledge of the system. On the other hand, comparing MPC with
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a "best-case" scenario is not really fair; it is unlikely that the current control method is
able to perfectly adjust the valve timings to counter the degradation. Nevertheless, to truly
counter sieve bed degradation, the MPC strategy needs to be improved. Possible solutions
are to implement an adaptive control approach, or to incorporate the degradation into the
predictive models of the controller.

Pmin = 91.5%
Amount of MPC strategy Open-loop (best-case) Open-loop (worst-case)
degradation PCSS [%] P̄ cCSS [W] PCSS [%] P̄ cCSS [W] PCSS [%] P̄ cCSS [W]

none 91.50 4.46 91.50 4.46 - -
5% 91.55 4.47 91.50 4.46 91.79 4.51
10% 91.63 4.52 91.50 4.47 92.04 4.58
20% 91.90 4.66 91.50 4.58 92.36 4.77

Pmin = 92.5%

none 92.50 4.63 92.50 4.63 - -
5% 92.64 4.69 92.50 4.66 92.69 4.71
10% 92.75 4.74 92.50 4.68 92.82 4.76
20% 92.84 4.94 92.50 4.81 92.90 4.96

Pmin = 93%

none 93.00 4.75 93.00 4.75 - -
5% 93.06 4.80 93.00 4.79 93.12 4.82
10% 93.10 4.86 93.00 4.82 93.19 4.90
20% 93.05 5.08 93.00 5.02 93.06 5.09

Table 7-1: Results of simulations with three different control methods, four levels of sieve bed
degradation, and three different values for the minimal purity value Pmin. Note that the worst-
case and best-case open-loop strategies are the same for "no degradation", therefore the results
of the former have been left out.

7-4 Concluding Remarks

In this chapter, simulations of the POC and the controller have been discussed. It has been
shown that the controller is able to steer the plant to the desired purity, and that the system
is stable. However, any change in dynamics, e.g., due to sieve bed degradation, results in
sub-optimal performance. Further development of the controller is needed to also fully cover
these cases.

Master of Science Thesis CONFIDENTIAL Nathan Looye



74 Results

Figure 7-7: Performance comparisons between the three discussed control methods: MPC,
best-case open-loop, and worst-case open-loop, on a POC with various degrees of sieve bed
degradation. The minimal purity value is Pmin = 92.5%, shown by the black dashed line in the
top three plots.
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Chapter 8

Conclusions

In this final chapter, first a summary of the research will be given. After that, the research
objective, introduced in Section 1-2, will be revisited see whether the goal of this thesis has
been achieved. Lastly, some recommendations and suggestions for future work are provided.

8-1 Summary

In this thesis, a switched linear Model Predictive Control (MPC) method has been developed,
that minimizes the power consumption of a Portable Oxygen Concentrator (POC), while
respecting the constraints on the purity. POCs are mobile devices that provide oxygen-
enriched air, by separating nitrogen and oxygen with a cyclic process called Pressure Swing
Adsorption (PSA). The aim of the controller is to optimize this process, such that no oxygen
is wasted inside the device and the desired purity is held. This in turn ensures that the
compressor can operate at its lowest possible power output.

The POC has two sieve beds, in which nitrogen is adsorbed and oxygen can flow through
to an oxygen tank. These sieve beds alternate between adsorbing nitrogen (i.e. producing
oxygen) at high pressure, and exhausting this nitrogen (i.e. regenerating the sieve bed) at
low pressure. This is done in an alternating manner, such that one sieve bed is producing
and the other regenerating. The dynamics inside these sieve beds manifest themselves as
traveling concentration waves: this Mass Transfer Zone (MTZ), where the adsorption of
nitrogen happens inside a sieve bed, propagates through a sieve bed. If this zone reaches the
end of the sieve bed, nitrogen leaks through and the purity (i.e. the concentration of oxygen
in the tank) drops. The input of the POC is the time that a sieve bed is producing oxygen
every cycle, called the feed time τf .

A high-fidelity model of the POC has been developed in order to simulate the device and design
a controller. The coupled PDEs that describe the dynamics of the sieve beds are rewritten
as coupled ODEs by spatially discretizing the equations, such that any ODE solver is able
to simulate the process. This high-fidelity model is subsequently validated by simulating it
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in open-loop, and the described dynamics are shown. Because of its complexity, this high-
fidelity model is not suited as a predictive model for the MPC strategy. Therefore, a hybrid
batch model has also been developed. This model encompasses the cycle-to-cycle dynamics of
the POC; two outputs, the purity P and the average compressor power P̄ c are sampled once
per cycle. The model has a hybrid linear structure: 13 linear models have been identified
for disjoint convex sets of the input space, which are connected to each other with a hybrid
automaton.

MPC is an optimization-based control method. At every step, a cost function is minimized
over a finite horizon that produces an optimal input u. The MPC strategy that has been used
can be described as switched linear MPC: instead of optimizing the complete hybrid batch
model, only the local model corresponding to the previous input is optimized. This way a
convex optimization problem is obtained. The states of the batch model are unknown, and
are used in the cost function. Therefore an observer also has been developed, which uses the
reset maps of the hybrid batch model to switch between local models.

Finally, the results of the simulations with the newly designed controller are discussed. First,
some design choices regarding the observer are justified. After that, the performance of the
MPC strategy is evaluated. In these simulations, the minimum purity value Pmin is subjected
to step changes, to show that the controller is able to handle different purity settings, and
can switch between them. The results show that the MPC strategy is able to minimize the
power consumption, steering the purity P to Pmin. Finally, a case study has been done, in
which the POC is subjected to various degrees of sieve bed degradation. The performance
of the MPC strategy is compared to two open-loop cases: a worst-case, which does not take
the degradation into account, and a best-case, which perfectly counters the degradation (i.e.
minimizes the power consumption). Although the performance of the controller is acceptable
for low levels of sieve bed degradation (i.e. 5%), for increasing levels (up to 20%), the
performance of the MPC strategy worsens compared to the best-case scenario.

8-2 Evaluation of Research Objective

Now the research objective will be evaluated. The main research objective was to:

Develop a model predictive controller that minimizes the power consumption
of the POC, while keeping the oxygen concentration in the tank above a certain
limit.

And the two sub-objectives were to:

1. Develop a model that is capable of accurately simulating the dynamics of a POC.

2. Develop a simplified predictive model for the controller, that is simple enough such that
it could be implemented on a POC.

As the results in this thesis show, a power-minimizing MPC strategy has been successfully
developed for a model of a POC with fully functional sieve beds (i.e. no sieve bed degradation).
A high-fidelity model of the POC has been designed and developed, and open-loop simulations
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show that the dynamics of the POC resemble the dynamics of similar studies on POCs.
Therefore the first sub-objective is deemed to be met. The design of a predictive model for
the controller has also been successful: validation of the local models has shown that the
cycle-to-cycle dynamics are captured adequately, which is substantiated by the performance
of the controller. However, it cannot be guaranteed that this predictive model is simple
enough to use on a POC. Further research is needed to answer that question.

The performance of the MPC strategy has also been evaluated on a POC that is subjected
to sieve bed degradation. Simulation results have shown that the MPC strategy is close to
optimal for small levels of degradation, but for increasing sieve bed degradation, it fails to
minimize the power consumption. Given all the results in this thesis, the main conclusion is
that the developed MPC strategy needs further improvement if it is to replace the current
control method of the POC. Some suggestions for improvements are given in Section 8-3.

8-3 Recommendations and Future Work

This section will discuss some possible improvements and ideas that could be developed in
the future.

• Incorporate sieve bed degradation.
Like discussed in the previous section, sieve bed degradation needs to be incorporated
in the MPC strategy if MPC is to replace the current control method. One possibility
is to incorporate this degradation into the model, but due to the large time scale this
becomes difficult. Another option is to use adaptive or hybrid MPC techniques that
can handle the change in dynamics.

• Add compressor RPM as input.
The addition of a second input, the compressor RPM, would regulate the mass flow into
the compressor. Although this mass flow does not change much during a normal cycle,
also having this input will provide a slight increase in efficiency of the PSA process, and
different flow settings can be simulated.

• Identification of local models.
The current identification method for the 13 batch models is tedious. Because the data
sets use one sample per cycle, creating a sufficiently long identification data set takes
a considerable amount of time. If the MPC strategy is to be applied in the real world,
research towards a different, faster identification method is strongly recommended.

• Hybrid MPC
The chosen MPC approach is not hybrid: only one local model is optimized every time
step, and the switching is not incorporated in the optimization. The MPC strategy could
therefore be improved by incorporating this switching, bearing in mind that convexity
should ideally be preserved.

• (Re)consider other control strategies
The performance of MPC on a POC with sieve bed degradation is not optimal. Other
control strategies, e.g., conventional feedback control, might be better suited to steer
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the system to Pmin, such that power consumption is minimized. The identified local
linear models, and of course the high-fidelity model of the POC, can be used to develop
and benchmark such control strategies.
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Appendix

A-1 State-Space Matrices for Local Models

The state-space matrices for the local models can be found in Eqs. (A-1), (A-2) and (A-3).

Am =



am

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


,

m = [1, . . . , 13],

a1 =
[
3.43 −4.54 2.87 −0.847 0.0902 −3.5

]
,

a2 =
[
3.34 −4.26 2.56 −0.691 0.0606 −3.75

]
,

a3 =
[
3.41 −4.45 2.72 −0.753 0.0691 −4.0

]
,

a4 =
[
3.19 −3.92 2.27 −0.604 0.0568 −4.25

]
,

a5 =
[
3.13 −3.76 2.11 −0.525 0.0421 −4.51

]
,

a6 =
[
3.28 −4.11 2.41 −0.636 0.0582 −4.75

]
,

a7 =
[
3.14 −3.76 2.12 −0.542 0.0416 −5.0

]
,

a8 =
[
3.03 −3.49 1.88 −0.465 0.0367 −5.26

]
,

a9 =
[
3.0 −3.4 1.79 −0.426 0.0312 −5.5

]
,

a10 =
[
2.63 −2.55 1.16 −0.258 0.0188 −5.75

]
,

a11 =
[
3.22 −3.91 2.18 −0.543 0.0479 −6.0

]
,

a12 =
[
3.12 −3.59 1.8 −0.34 0.00829 −6.25

]
,

a13 =
[
2.86 −2.95 1.29 −0.199 0.00508 −6.5

]
.

(A-1)
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Bm =



1
0
0
0
0
0


, m = [1, . . . , 13], (A-2)

C1 =
[
0.00448 0.0857 −0.176 0.0989 −0.0114 90.1
0.159 −0.529 0.653 −0.355 0.0717 2.87

]
,

C2 =
[
−0.011 0.123 −0.202 0.0987 −0.00836 90.9
0.152 −0.497 0.601 −0.32 0.063 3.03

]
,

C3 =
[
−0.00907 0.106 −0.182 0.094 −0.009 91.5

0.122 −0.405 0.498 −0.269 0.0537 3.06

]
,

C4 =
[
−0.00422 0.08 −0.128 0.0588 −0.00336 92.0

0.112 −0.347 0.4 −0.203 0.0376 3.33

]
,

C5 =
[
−0.00524 0.0735 −0.111 0.048 −0.00133 92.5

0.109 −0.333 0.378 −0.189 0.0343 3.42

]
,

C6 =
[
−0.0117 0.0883 −0.132 0.0611 −0.00186 92.8

0.101 −0.322 0.383 −0.199 0.0373 3.48

]
,

C7 =
[
−0.0146 0.0898 −0.123 0.0549 −0.00602 93.2
0.0903 −0.275 0.309 −0.154 0.0292 3.54

]
,

C8 =
[
−0.0297 0.135 −0.167 0.0695 −0.00677 93.4
0.0862 −0.255 0.279 −0.136 0.0259 3.53

]
,

C9 =
[
−0.0165 0.0872 −0.108 0.0423 −0.00309 93.6
0.0797 −0.233 0.251 −0.118 0.0212 3.57

]
,

C10 =
[
−0.0159 0.076 −0.0745 0.0208 −0.0038 93.8
0.0771 −0.197 0.179 −0.0706 0.0117 3.64

]
,

C11 =
[
−0.0244 0.111 −0.144 0.0629 −0.00458 93.8
0.0683 −0.215 0.247 −0.121 0.021 3.78

]
,

C12 =
[
−0.0191 0.0909 −0.115 0.0436 1.77 · 10−4 94.0
0.0664 −0.204 0.228 −0.107 0.0172 3.94

]
,

C13 =
[
−0.0209 0.0896 −0.0964 0.0255 0.00256 94.0
0.0639 −0.179 0.177 −0.0696 0.00794 4.01

]
.

D1 =
[
−0.0249

0.396

]
,

D2 =
[
−0.019
0.351

]
,

D3 =
[
−0.0234

0.344

]
,

D4 =
[
−0.0315

0.28

]
,

D5 =
[
−0.0334

0.261

]
,

D6 =
[
−0.0294

0.25

]
,

D7 =
[
−0.0363

0.24

]
,

D8 =
[
−0.025
0.244

]
,

D9 =
[
−0.0337

0.239

]
,

D10 =
[
−0.0333

0.23

]
,

D11 =
[
−0.0253

0.209

]
,

D12 =
[
−0.0326

0.184

]
,

D13 =
[
−0.0368

0.176

]
.

(A-3)
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A-2 Observer Gains

L1 =
[
2.49 1.70 0.659 −0.694 −2.41 0

]T
· 104,

L2 =
[
0.888 1.00 1.13 1.28 1.45 0

]T
· 106,

L3 =
[
−1.30 −1.34 −1.39 −1.43 −1.48 0

]T
· 107,

L4 =
[
1.01 1.24 1.49 1.74 1.95 0

]T
· 104,

L5 =
[
0.552 0.792 1.07 1.36 1.64 0

]T
· 104,

L6 =
[
2.24 2.94 3.57 4.05 4.32 0

]T
· 104,

L7 =
[
−0.811 −0.874 −0.942 −1.01 −1.09 0

]T
· 105,

L8 =
[
−1.09 −1.13 −1.18 −1.23 −1.30 0

]T
· 105,

L9 =
[
−2.17 −2.39 −2.62 −2.86 −3.13 0

]T
· 104,

L10 =
[
−3.23 −3.62 −4.03 −4.43 −4.73 0

]T
· 103,

L11 =
[
−0.676 −0.793 −0.931 −1.09 −1.28 0

]T
· 107,

L12 =
[
−1.21 −1.27 −1.33 −1.40 −1.48 0

]T
· 105,

L13 =
[
−1.13 −1.17 −1.21 −1.24 −1.27 0

]T
· 104,

(A-4)
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Glossary

List of Acronyms

BC Boundary Condition

CCF Controllable Canonical Form

COPD Chronic Obstructive Pulmonary Disease

CSS Cyclic Steady State

FVM Finite Volume Method

IAST Ideal Adsorbed Solution Theory

I/O Input/Output

LDF Linear Driving Force

LPV Linear Parameter Varying

MIMO Multi-Input Multi-Output

MPC Model Predictive Control

MTZ Mass Transfer Zone

NRMSE Normalized Root Mean Square Error

N4SID Numerical algorithm for Subspace IDentification

ODE Ordinary Differential Equation

PDE Partial Differential Equation

POC Portable Oxygen Concentrator

PRBS Pseudo-Random Binary Sequence

PSA Pressure Swing Adsorption
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PWA Piecewise Affine

PWL Piecewise Linear

RPSA Rapid Pressure Swing Adsorption

SIT System Identification Toolbox

STP Standard conditions for Temperature and Pressure

QP Quadratic Programming

List of Symbols

Greek Symbols
γ Mole fraction
∆u Change in control input
∆z Length of control volume [m]
ε Bed voidage
ε CSS purity error [%]
η Adiabatic efficiency
κ Heat capacity ratio of air
ρ Density [kg m-3]
ρb Bulk density [kg m-3]
ρp Packing density [kg m-3]
τb Feed time: duration of PSA steps 1 and 3 [s]
τf Balance time: duration of PSA steps 2 and 4 [s]
τt Total PSA cycle time [s]

Latin Symbols
Ab Cross sectional area of sieve bed [m2]
c Gaseous phase concentration [mol m-3]
DL Axial dispersion coefficient [m2 s-1]
e Observer error
G Guard condition for hybrid automaton
Hc Compressor head [J mol-1]
Hc Control horizon
Hp Prediction horizon
KLDF Mass transfer constant for LDF model [s-1]
k Langmuir equilibrium constant [Pa-1]
kv Valve flow coefficient [sl min-1]
P Purity [%]
Pmin Minimum allowable purity [%]
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P c Compressor power [W]
p Pressure [Pa]
Q Molar flow rate [mol s-1]
Qs̃ Slack variable weighing matrix
Qu Input weighing matrix
Qy Output weighing matrix
q Adsorbed phase concentration [mol kg-1]
q∗ Equilibrium value for adsorbed phase concentration [mol kg-1]
qs Saturation value for adsorbed phase concentration [mol kg-1]
q Local model
R Gas constant [J K-1 mol-1]
R Reset map for hybrid automaton
T Temperature [K]
t Time [s]
tk Time at which cycle k starts [s]
U Input range
Um Input range of local model m
u Input
uv Binary valve input
V Volume [m3]
v Interstitial velocity [m s-1]
x State variable
x̄ Averaged variable; spatial or time
x̂ Observer state
y Output variable
ŷ Observer output
z Axial coordinate [m]

Subscripts
amb Ambient conditions
Ar Argon
CSS Denotes variable at Cyclic Steady State
d Downstream
i Index for component in gas mixture
k Index for cycle
m,n Index for local model
N2 Nitrogen
n Index for control volume
O2 Oxygen
stp Standard Conditions (STP)
u Upstream
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v Valve

Superscripts
c Compressor
j Index for sieve bed
t Oxygen tank
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