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ARTICLE OPEN

Genome-wide association study of frontotemporal dementia
identifies a C9ORF72 haplotype with a median of 12-G4C2
repeats that predisposes to pathological repeat expansions
Lianne M. Reus 1✉, Iris E. Jansen1,2, Merel O. Mol3, Fred van Ruissen4, Jeroen van Rooij 3, Natasja M. van Schoor5, Niccolò Tesi 1,6,7,
Marcel J. T. Reinders 7, Martijn A. Huisman5,8, Henne Holstege 1,6, Pieter Jelle Visser1,9,10, Sterre C. M. de Boer 1, Marc Hulsman1,6,
Shahzad Ahmad 11, Najaf Amin 11, Andre G. Uitterlinden 12, Arfan Ikram 11, Cornelia M. van Duijn 11, Harro Seelaar3,
Inez H. G. B. Ramakers9, Frans R. J. Verhey9, Aad van der Lugt13, Jurgen A. H. R. Claassen14, Geert Jan Biessels15, Peter Paul De Deyn16,
Philip Scheltens1, Wiesje M. van der Flier 1,5, John C. van Swieten3, Yolande A. L. Pijnenburg1 and Sven J. van der Lee 1,6

© The Author(s) 2021

Genetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it
is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association
studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD
risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients
(including and excluding N= 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was
used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were
strongly associated with FTD in the discovery (rs147211831: OR= 4.8, P= 9.2 × 10−9, rs117204439: OR= 4.9, P= 6.0 × 10−9) and
replication analysis (P < 1.1 × 10−3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly
available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder
haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat
lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder
haplotypes without one of the two risk variants (~22% versus ~2%; P= 7.70 × 10−58). In haplotypes without a pathologic expansion,
the founder risk haplotype had a higher number of repeats (median= 12 repeats) compared to the founder haplotype without the
risk variants (median= 8 repeats) (P= 2.05 × 10−260). In conclusion, the identified risk haplotype, which is carried by ~4% of all
individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer
C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.
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INTRODUCTION
Frontotemporal dementia (FTD) is the second-most common cause
of early onset dementia (3.5–15 per 100,000 in <65 years), leading
to a spectrum of clinical syndromes associated with frontal and/or
temporal neuronal loss [1, 2]. Clinically, FTD can be classified into
the behavioral variant (bvFTD) and the language variants semantic
dementia (SD) and progressive non-fluent aphasia (PNFA) [3]. FTD

is associated with motor neuron disease (FTD-MND) in 10% of all
cases [4]. Currently, no treatment options are available for FTD. To
identify potential treatment targets, an understanding of the
underlying genetic etiology of FTD is highly needed.
Genetic factors play a major role in FTD; up to 40–50% of all FTD

patients have a positive family history for dementia [5, 6].
Mutations that cause autosomal dominant FTD have been
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identified in microtubule associated protein tau (MAPT) [7],
progranulin (GRN) [8], and the chromosome 9 open reading
frame 72 (C9ORF72) G4C2 hexanucleotide repeat expansion [9, 10].
While familial mutations account for ~30% of FTD cases, the
majority of FTD is multifactorial and polygenic in nature [11].
Previous genome-wide association studies (GWAS) on FTD have
identified only a handful of common genetic risk variants for FTD
with small effects on developing disease [12–15]. As the majority
of sporadic FTD cannot be genetically explained yet, it is likely that
there are still FTD risk loci to be discovered.
Rare genetic variants (minor allele frequency (MAF) ≤ 5%) often

have stronger associations with disease than common genetic
variants, but reliable imputation of rare genetic variants with widely
used reference panels is challenging [16]. The Haplotype Reference
Consortium (HRC) allows imputation of genetic variants with a MAF
up to 0.001 [17, 18]. Performing a GWAS on FTD using the HRC panel
as reference panel may aid in identifying rare risk variants for FTD,
thereby improving insights into the genetic etiology of FTD.
To identify rare and common variant FTD risk loci and provide

more insight into the pathogenesis and heritability of C9ORF72-
related FTD, we performed a GWAS study in a cohort of Dutch
FTD patients and control subjects, using the HRC panel as
reference panel.

METHODS
Study sample genome-wide association study
We performed a genome-wide association analysis in which we compared
genotype data of 354 FTD patients (8%, N= 28 with pathological C9ORF72
repeat length) from three cohorts with 4209 control subjects from seven
cohorts. Table S1 presents a brief description of the contributing cohorts.
FTD was diagnosed according to diagnostic guidelines for FTD [3, 19].
Clinical subtypes of FTD (i.e., bvFTD, SD, PNFA, and FTD-MND) were
available for 311 patients from the Amsterdam Dementia Cohort (ADC).
Replication analyses were performed using data from the Erasmus Medical
Center and an independent sample of the LASA study, including 281 FTD
patients and 618 control subjects [20, 21].
All participating studies were approved by their respective Medical

Ethics Committee (Table S1). Informed consent, either from the patient or
from the legal representative, was obtained from all participants.

Genotyping and imputation
The discovery cohorts were genotyped on the Illumina Genome Screening
Array (GSA, GSAsharedCUSTOM_20018389_A2) v1, human genome build
37. Quality control prior to imputation has been described in depth
elsewhere [22]. Briefly, genetic variants were excluded from analyses when
they deviated significantly from Hardy–Weinberg equilibrium (P < 1 × 10−6)
in the total sample of founder individuals, or had a variant call rate of
<98%. Individuals with sex mismatches or an individual call rate <98%
were excluded from analyses. In total, 529,668 SNPs passed QC and were
submitted to the Sanger imputation server for imputation to the Haplotype
Reference Consortium (HRC) reference panel (https://imputationserver.sph.
umich.edu). We pre-phased with SHAPE-IT2 [23]. This resulted in the
imputation of 39,131,578 variants [18, 24]. To identify ethnic outliers, a
principal component analysis of ancestry (PCA) was performed (based on
1000Genomes clustering), using EIGENSOFT [25]. Individuals of non-
European ancestry were excluded from analysis to account for population
structure. Relatedness was assessed through identity by descent (IBS), and
family relations up to second degree (IBS ≥ 0.3) were excluded. To account
for population structure, PCs were calculated on genetic data prior to
imputation. In the replication cohort, cases were genotyped on the GSA
array and the controls on the Axiom-NL array from Affymetrix (Avera
Institute for Human Genetics, Sioux Falls, SD) [26, 27]. Quality control was
performed in the same way as described for the discovery dataset for cases
and controls independently and frequencies of the variants were
compared after imputation.

Genotyping across the GGGGCC C9ORF72 repeat
Allele-specific polymerase chain reaction (PCR) was performed using
0.2 mM dNTPs (Solis Biodyne), 0.05 Units HotFirePol DNA polymerase (5 U/
μl Solis Biodyne), 1x Buffer B (Solis Biodyne), 2 mM MgCl2 (Solis Biodyne),

7% DMSO (Sigma Aldrich), 2 μM 6FAM-fluorescent labeled forward primer
([6FAM]ACTCGCTGAGGGTGAACAAG) and 2 μM reverse primer (TCGAG
CTCTGAGGAGAGCC), and 100 ng of genomic DNA. A standard PCR cycling
program (35 cycles) was used where the annealing temperature was set at
55 °C with a 1-min extension time for each cycle. Fragment length analysis
was performed on an ABI 3730xl/3500 genetic analyzer (Applied
Biosystems Inc., Foster City, CA, USA), and data was analyzed using
GeneScan software (version 4/5, ABI). Chromatograms were scored for the
number of alleles and the number of repeats. Samples that have large
lengths and samples with two alleles of the same length show only one
band in the allele-specific PCR. For these samples, repeat-primed PCR was
performed (supplementary methods).

Phenome-wide association studies
We conducted phenome-wide association studies (PheWAS) on the two
replicated SNPs, rs147211831, rs117204439, using the ‘phewas’ function of
the R-package ‘ieugwasr’ [28, 29]. Using this function, we searched traits
that associate with the list of SNPs with P < 5 × 10−8 in all GWAS
harmonized summary statistics in the MRC IEU OpenGWAS data
infrastructure [29].

Haplotyping of the identified risk variants for FTD and
C9ORF72 repeat lengths
To further study the relationship between the FTD risk alleles identified in
the GWAS (rs147211831-A and rs117204439-C) and C9ORF72 repeat
lengths, we phased C9ORF72 repeat lengths to haplotypes. We re-
imputed chromosome 9 using EAGLE2 for pre-phasing [30]. This resulted
in phased imputed genotypes in contrast to phasing with SHAPE-IT2
(which has slightly higher imputation accuracy) [23].
In accordance with previous studies, we found that the founder

haplotype could be simplified to just one variant, rs3849942 (founder
SNP= T) (Fig. S1) [31, 32]. Therefore, we were able to construct three SNP-
haplotypes covering the C9ORF72 gene. In short, we classified all
haplotypes into the ancestral (non-founder) haplotype (rs3849942-C) and
the founder haplotype (rs3849942-T). Subsequently, we split these
haplotypes on having at least one risk allele (rs147211831-A and/or
rs117204439-C) or no risk alleles. This resulted in four haplotype groups:
ancestral non-risk, ancestral risk, founder non-risk, and founder risk
haplotypes. We then mapped C9ORF72 lengths to these haplotypes using
a Bayesian classifier as described in Fig. S2 and the supplementary
methods. The distribution of the C9ORF72 lengths in the training dataset of
these ancestral and founder haplotypes is presented in Fig. S3.

Statistical analysis
Association analysis on FTD patients versus controls was performed using
PLINK version 2.0 [33, 34]. We used the Firth fallback option to fit logistic
regression models, adjusting for population stratification (PC1-5). This
model automatically uses Firth regression if the model does not converge
(e.g., mainly for rare variants). SNPs with a low imputation quality (R2 < 0.3)
and a MAF < 0.5% were excluded. In total 8,813,788 variants were analyzed.
To examine whether genome-wide significant loci (P < 5 × 10−8) were
driven by pathological C9ORF72 repeat carriers, analyses were repeated
excluding patients who carried a pathological C9ORF72 repeat length or
did not have C9ORF72 lengths available (discovery N= 275 FTD patients/
239 controls; replication N= 198 FTD patients/618 controls).Additional
analyses were performed including age and sex as covariates. We
performed a meta-analysis on genome-wide significant loci (P < 5 × 10−8)
using fixed-effects model with the rmeta package [35]. Last, we stratified
analyses by clinical subgroups of FTD.
Additional statistical analyses were performed using R studio (version

4.0.3, Bunny-Wunnies freak out, R Development Core team 2010). To
examine the association between haplotype and C9ORF72 repeat length,
we compared C9ORF72 repeat expansion carriership using the proportion
test and C9ORF72 repeat lengths (excluding C9ORF72 repeat expansion
carriers) between haplotype groups (i.e., ancestral non-risk, ancestral risk,
founder non-risk, and founder risk haplotypes), using Kruskal–Wallis test.

RESULTS
An overview of sample characteristics is shown in Table S2. The
discovery FTD sample included less females, was younger compared
to the controls and included ~8% (N= 28/354) pathological C9ORF72
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repeat length carriers (9%; N= 25/281 in replication). Of the FTD
patients with clinical subtyping available, N= 194 were classified as
bvFTD, N= 74 as SD, N= 25 as PFNA, N= 18 as FTD-MND and N=
43 were unclassified.

Association with FTD
Variants in two genomic loci were significantly associated with
FTD (p < 5 × 10−8) (Fig. 1A and Table 1). No genomic loci were
significant in the analysis excluding pathological C9ORF72 repeat
carriers. There was no genomic inflation in the GWAS (λ= 0.009)
(Fig. S4).
A single intronic variant in a locus on chromosome 5

(rs76679949), located on the SLIT3 (Slit Guidance Ligand 3) gene,
was associated with a 3.7 times increased risk of FTD (MAF-cases
= 4.4%; MAF-controls=1.9%; P= 1.4 × 10−8) (Fig. S5). There were
no additional variants in linkage with this variant to support the
association and we were not able to replicate the association in
the replication dataset (P= 0.18; OR= 1.58). We consider this
locus a false positive finding and did not investigate it further.
The second locus on chromosome 9 contained two genetic

variants that were significantly associated with FTD risk
(rs117204439 and rs147211831). These two variants are located
on both sides of the C9ORF72 gene (Fig. 1B). In our data the two
variants were in partial linkage (R2= 0.041; D′= 0.52) and 48%
(43/90) of the carriers of rs117204439-C also carried the
rs147211831-A allele. The most significant SNP, rs117204439,
associated with a ~4.9 times increased risk of FTD (risk allele= C;
MAF-cases= 3.9%; MAF-controls= 1.5%; P= 6.0 × 10−9). The sec-
ond variant, rs147211831, associated with a ~4.8 times increased
risk of FTD (risk allele= A; MAF-cases=3.2%; MAF-controls=0.9%;
P= 9.2 × 10−9). When including the allele status of rs117204439 as
covariate in the logistic regression model on FTD, the association
of rs147211831 with FTD remained significant (P= 4.8 × 10−3;

OR= 2.7). This was also the case for the association of
rs147211831 with FTD, corrected for rs117204439 (P= 2.6 ×
10−3, OR= 2.8). These observed residual associations after
adjusting for the other SNP suggests that signals were driven by
their shared haplotype rather than by the specific SNP. Analyses
stratified by clinical subtypes of FTD showed that associations
were strongest in bvFTD (OR= 5.3–5.5) and FTD-MND (OR=
13.1–16.9) (Fig. S6). Results for rs147211831 and rs117204439 were
similar when repeating the analyses correcting for age and sex
(Table S3).
In our independent replication datasets, both variants near

C9ORF72 significantly associated with increased risk for FTD
(rs117204439 MAF-cases= 3.6%; MAF-controls= 1.5%; P= 2.0 ×
10−3; OR= 3.2, rs147211831 MAF-cases= 3.1%; MAF-controls=
1.1%; OR= 3.95, P= 1.1 × 10−3) (Table 1). Associations were
strongest in bvFTD (OR= 3.9-4.1) and FTD-MND (OR= 6.2–6.3)
(Table S4). Meta-analysis on the discovery and replication data
showed similar results (rs117204439; P= 5.6 × 10−11; OR= 4.22,
rs147211831; P= 5.2 × 10−11; OR= 4.62) (Table S5). After exclud-
ing pathological C9ORF72 repeat length carriers and FTD patients
without C9ORF72 data (N= 28/52 carriers/unknown in discovery,
N= 25/58 in replication) the association was no longer significant
in both the discovery (rs117204439; P= 0.05; OR= 2.12,
rs147211831 P= 0.15; OR= 1.87) and the replication cohorts
(rs117204439 P= 0.60; OR= 1.32, rs147211831 P= 0.09; OR=
2.33). It is unlikely that results were driven by a single Dutch
family, as the haplotype is relatively common and family relations
up to second degree were excluded from analyses.

FTD risk alleles associate with amyotrophic lateral sclerosis in
PheWAS
Both of the identified risk alleles for FTD showed an association
with amyotrophic lateral sclerosis (ALS) (NGWAS= 12,663 ALS

Fig. 1 Manhattan plot and regional plot of the discovery analysis on the genome-wide association with frontotemporaldementia.
A Manhattan plot. The discovery analysis included N= 354 FTD patients and N= 4209 controls. The genome-wide significance threshold (p <
5 × 10−8) has been highlighted in red and the suggestive significance threshold (P < 1 × 10−5) is depicted in blue. For each genome-wide
significant locus, loci are named by the closest located gene. B Regional plot for the C9ORF72 locus on chromosome 9. The genetic variant
depicted in purple represents the strongest associated variant. Abbreviation(s) FTD: frontotemporal dementia, C9ORF72: chromosome 9 open
reading frame 72, SLIT3: Slit Guidance Ligand 3.
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patients/53,439 controls) [36]. Risk allele rs147211831-A was
associated with a ~1.9-fold increased risk of ALS (P= 2.3 ×
10−20) and rs117204439-C with a 1.6-fold increased risk (P= 3.1 ×
10−14) (Table S6). No other traits showed significant associations
with the variants.

Screening of risk SNP carriers for C9ORF72 repeat expansions
The ADC also includes subjects diagnosed with other types of
dementia and mild cognitive impairment (N= 2543). From these
samples, we selected 58 non-related carriers of the FTD risk alleles
rs117204439-C and rs14721183-A of European ancestry. We found
that four of these 58 risk allele carriers had a pathological C9ORF72
repeat expansion. The diagnoses of the patients were diverse
including vascular dementia, a psychiatric diagnosis, mild
cognitive impairment, and a postponed diagnosis.

C9ORF72 risk alleles associate with intermediate repeat length
in haplotype analysis
C9ORF72 repeat lengths were measured in a total of 1578 subjects
from the ADC cohort, of whom 1327 had SNP-array data available.
We excluded 104 individuals with a non-European ancestry and 23
individuals that were related (IBS > 0.2) to each other, leaving N=
1200 individuals for the haplotype analysis (Table S7). We
attempted phasing C9ORF72 repeat lengths to haplotypes in all
N= 1200 participants (see Methods section and Figs. S1 and S2).
We were able to reliably assign C9ORF72 lengths to the

haplotype for 2352/2400 haplotypes (98%). These include 1743
(74.1%) ancestral non-risk haplotypes, 14 (0.6%) ancestral risk
haplotypes, 535 (22.7%) founder non-risk haplotypes, and 60
(2.6%) founder risk haplotypes (Fig. 2).
Of all pathological C9ORF72 repeat lengths, 96.8% (N= 30/31)

were mapped to the founder haplotype and one was mapped to
the ancestral haplotype. Of the 31 repeat expansion haplotypes,
13 (41.9%) were the founder risk haplotype, 12 (38.7%) the
founder non-risk haplotype, and 6 (19.4%, 5 founder and 1
ancestral) could not be assigned to a haplotype (Fig. 2).
As the founder risk haplotype was much less prevalent, the

C9ORF72 repeat expansion was ~10-times more likely to be on a
founder risk haplotype compared to the founder non-risk
haplotype. In total, 21.7% of the founder risk haplotypes had
pathological C9ORF72 repeat lengths (N= 13/60) compared to the
founder non-risk haplotypes (2.2%, N= 12/535) (P= 7.70 × 10−58)
(Table S8). Next, we compared the distribution of C9ORF72 repeats
in the four haplotypes, excluding haplotypes with a pathological
C9ORF72 repeat length (>30 repeat elements). Founder risk
haplotypes had a median of 12 repeat elements, which was
significantly higher than the founder non-risk haplotypes (median
= 8, P= 1.03 × 10−38), ancestral risk haplotypes (median= 2,
P= 2.35 × 10−8) and ancestral non-risk haplotypes (median= 2,
P= 3.33 × 10−245) (Table S8 and Fig. 3).

DISCUSSION
Our findings show that the two variants rs117204439 and
rs147211831 tag a C9ORF72 haplotype that is carried by ~4% of
the population. This founder risk haplotype greatly increases the
risk for a pathological C9ORF72 repeat length, which has been
associated with FTD and the related motor neuron disorder ALS.
Pathological lengths were ~10-times more likely to be present on
this founder risk haplotype than on the founder haplotype
without the risk variants. Haplotype analyses showed that the
well-known founder haplotype with at least one risk allele had a
median of 12 repeats compared to a median of 8 for the founder
haplotype without risk alleles. The results of this study imply that
an increased number of C9ORF72 repeat units increases the risk of
conversion from a non-pathological repeat length to a patholo-
gical repeat length during parent-offspring transmissions.
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Common variants at the C9ORF72 locus at chromosome 9p21
have been identified previously as a genetic risk region for FTD
and ALS [14, 15, 37–39]. Most, but not all [40], studies showed
that association signals within the 9p21 region were driven by

carriers of the pathological repeat length of the G4C2 repeat in
the C9ORF72 gene [9, 10, 41]. These variants tag a so-called
‘Finnish founder haplotype’ of ~200 kb [31, 42]. This haplotype
has a common founder and likely originated in Northern Europe

Fig. 2 Pathological C9ORF72 repeat lengths in C9ORF72 haplotypes, including ancestral non-risk haplotypes, ancestral risk haplotypes,
and founder non-risk haplotypes and founder risk haplotypes. Haplotypes could be mapped to C9ORF72 repeat lengths for N= 1743
ancestral (non-founder) non-risk haplotypes, N= 14 ancestral risk haplotypes, N= 535 founder non-risk haplotypes, and N= 60 founder risk
haplotypes. The founder haplotype is defined by the presence of rs3849942-C (tags ancestral allele) or rs3849942-T (tags founder allele). Risk
status is defined by the presence of at least one risk allele, including rs117204439-C or rs147211831-A. *The subset off haplotypes that could
not be assigned to C9ORF72 lengths had a short allele with a low probability (<0.8) for the ancestral allele (rs3849942-C) and C9ORF72 lengths
differed by more than 3 repeats. Abbreviation(s) C9ORF72: chromosome 9 open reading frame 72.

Fig. 3 C9ORF72 repeat length (excluding haplotypes with >30 repeats) in C9ORF72 haplotypes, including ancestral non-risk haplotypes,
ancestral risk haplotypes, founder non-risk haplotypes and founder risk haplotypes. The founder haplotype is defined by the presence of
rs3849942-C (tags ancestral allele) or rs3849942-T (tags founder allele). Risk status is defined by the presence of at least one risk allele,
including rs117204439-C or rs147211831-A. Abbreviation(s) C9ORF72: chromosome 9 open reading frame 72.
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and spread from there to other regions [31, 32]. Haplotype
analyses of carriers of pathological C9ORF72 repeat lengths
showed that nearly all carriers share (a part of) this haplotype.
Therefore, the leading hypothesis is that pathological C9ORF72
repeat lengths have been introduced on this haplotype into the
population on multiple events due to a permissive allele [43–45].
This is a form of mutation in which repeat lengths expand within
tissues [46] and during parent-offspring transmission [47],
thereby predisposing to pathological repeat lengths [48, 49].
The founder haplotype had ~8 repeat units, compared to 2–4
units in the ancestral haplotype. Probably, this is the permissive
allele that is associated with repeat instability. Still, it is debated
whether the 8-unit repeat is more prone to repeat expansions as
the inheritance of <30 repeats was found to be stable over
generations [50]. On the other hand, it has been shown that
pathological C9ORF72 repeat lengths frequently vary over
generations [43, 44, 51]. With our study, we add to this
knowledge that a sub-haplotype of the founder haplotype with
a median of 12 repeat units explains the majority of the
pathological repeat lengths. This makes it plausible that the
longer the G4C2 C9ORF72 repeat is, the more likely it is that a de
novo pathological expansion occurs during meiosis. Still, these
expansion events must be extremely rare as the haplotype we
identified is carried by only 4% of the Dutch population and by
~1–3% of all populations of European ancestry [25].
The molecular mechanisms underlying C9ORF72 repeat

instability involve DNA damage, since C9OR72 repeats have
shown to interfere with DNA replication via abnormal nuclei
acid structures (e.g., the formation of G-quadruplex structures,
hairpins, and R-loops) [49, 52, 53]. C9ORF72 repeats can form
abnormal nuclei acid structures with as few as four repeats and
repeat instability increases with longer C9ORF72 repeats [49].
This may explain why the founder risk haplotype (with
intermediate repeats) and the founder non-risk haplotype (with
a lower range of repeats) both predispose to de novo
pathological repeats, but differ in the proportion of pathologi-
cal C9ORF72 repeat lengths (~21.7% and ~2.2%, respectively)
[31]. Further longitudinal research in multiple generations of
carriers of the identified haplotype is required to confirm the
higher conversion rate to longer C9ORF72 repeat lengths in
carriers of the founder risk haplotype compared to carriers of
the founder non-risk haplotype. This type of study is also
required to examine whether the risk haplotype serves as a pre-
mutation or as predisposing allele for further stepwise
mutation. Moreover, future studies should further investigate
the possibility that the C9ORF72 region contains additional
genetic and epigenetic variants conferring risk to FTD.
While the identified SNPs tagging the founder risk haplotype

cannot replace the C9ORF72 repeat length assessments itself, a
potential implementation of our findings is the use of the risk SNPs
as pre-screener for the presence of a pathological C9ORF72 repeat
length in large population samples with array genotype data
available. We were able to identify four previously undiscovered
repeat expansion carriers that had another diagnosis than FTD or
ALS. This underlines the diverse clinical presentation of subjects
carrying the pathological C9ORF72 repeat expansion.
Several limitations should be taken into account. While this

study provides relevant insights into the genetic architecture of
FTD in populations of European ancestry, further studies are
required to examine the genetic architecture of FTD in other
populations – particularly because C9ORF72 repeat lengths
differ across ethnic populations [54]. Finally, we could not map
all phased C9ORF72 haplotypes to C9ORF72 repeat lengths.
Ideally, we would have used long read sequencing data to
confirm the phases of these haplotypes. Nonetheless, because
findings for the unmapped haplotypes are in line with the rest
of our results (Table S9) we do not think that this has influenced
the results.

To conclude, we identified two risk SNPs for FTD that tag a 12-
repeat sub-haplotype of the 8-repeat founder haplotype, which
predisposes to C9ORF72 pathological repeat lengths. We
hypothesize that the longer repeat length makes the C9ORF72
repeat more unstable and thus more susceptible to pathological
expansion. To further understand the dynamic relationship
between risk founder haplotypes (with increased repeat
instability) and expansions of the C9ORF72 repeat, it is essential
that our efforts will be extended using functional follow-up
studies and studies over generations.

CODE AVAILABILITY
Codes used to generate results are available upon request.

REFERENCES
1. Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC. Clinical, genetic and

pathological heterogeneity of frontotemporal dementia: a review. J Neurol
Neurosurg Psychiatry. 2011;82:476–86.

2. Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of
dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry.
2003;74:1206–9.

3. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al.
Sensitivity of revised diagnostic criteria for the behavioural variant of fronto-
temporal dementia. Brain. 2011;134:2456–77.

4. Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N. Frontal
lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry.
1990;53:23–32.

5. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol.
2019;266:2075–86.

6. Rohrer JD, Guerreiro R, Vandrovcova J, Uphill J, Reiman D, Beck J, et al. The
heritability and genetics of frontotemporal lobar degeneration. Neurology.
2009;73:1451–8.

7. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of
missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-
17. Nature. 1998;393:702–5.

8. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C,
et al. Mutations in progranulin cause tau-negative frontotemporal dementia
linked to chromosome 17. Nature. 2006;442:916–9.

9. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ,
et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72
causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

10. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A
hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-
linked ALS-FTD. Neuron. 2011;72:257–68.

11. Seelaar H, Kamphorst W, Rosso SM, Azmani A, Masdjedi R, de Koning I, et al.
Distinct genetic forms of frontotemporal dementia. Neurology.
2008;71:1220–6.

12. Pottier C, Ren Y, Perkerson RB, Baker M, Jenkins GD, van Blitterswijk M, et al.
Genome-wide analyses as part of the international FTLD-TDP whole-genome
sequencing consortium reveals novel disease risk factors and increases support
for immune dysfunction in FTLD. Acta Neuropathol. 2019;137:879–99.

13. Pottier C, Zhou X, Perkerson RB, Baker M, Jenkins GD, Serie DJ, et al. Potential
genetic modifiers of disease risk and age at onset in patients with frontotemporal
lobar degeneration and GRN mutations: a genome-wide association study. Lan-
cet Neurol. 2018;17:548–58.

14. Diekstra FP, Van Deerlin VM, van Swieten JC, Al-Chalabi A, Ludolph AC, Weishaupt
JH, et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis
and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol.
2014;76:120–33.

15. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-
Radford NR, et al. Common variants at 7p21 are associated with frontotemporal
lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42:234–9.

16. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of
GWAS discovery: biology, function, and translation. Am J Hum Genet.
2017;101:5–22.

17. Iglesias AI, van der Lee SJ, Bonnemaijer P, Höhn R, Nag A, Gharahkhani P, et al.
Haplotype reference consortium panel: practical implications of imputations with
large reference panels. Hum Mutat. 2017;38:1025–32.

18. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A
reference panel of 64,976 haplotypes for genotype imputation. Nat Genet.
2016;48:1279–83.

L.M. Reus et al.

6

Translational Psychiatry          (2021) 11:451 



19. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Fronto-
temporal lobar degeneration: a consensus on clinical diagnostic criteria. Neu-
rology. 1998;51:1546–54.

20. Hoogendijk EO, Deeg DJH, Poppelaars J, van der Horst M, Broese van Groenou MI,
Comijs HC, et al. The Longitudinal Aging Study Amsterdam: cohort update 2016
and major findings. Eur J Epidemiol. 2016;31:927–45.

21. Hoogendijk EO, Deeg D, de Breij S, Klokgieters SS, Kok A, Stringa N, et al. The
Longitudinal Aging Study Amsterdam: cohort update 2019 and additional data
collections. Eur J Epidemiol. 2020;35:61–74.

22. Tesi N, van der Lee SJ, Hulsman M, Jansen IE, Stringa N, van Schoor N, et al.
Centenarian controls increase variant effect sizes by an average twofold in an
extreme case-extreme control analysis of Alzheimer’s disease. Eur J Hum Genet.
2019;27:244–53.

23. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for
disease and population genetic studies. Nat Methods. 2013;10:5–6.

24. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation
genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

25. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al.
A global reference for human genetic variation. Nature. 2015;526:68–74.

26. Ehli EA, Abdellaoui A, Fedko IO, Grieser C, Nohzadeh-Malakshah S, Willemsen G,
et al. A method to customize population-specific arrays for genome-wide asso-
ciation testing. Eur J Hum Genet. 2017;25:267–70.

27. Stringa N, Milaneschi Y, van Schoor NM, Suanet B, van der Lee S, Holstege H, et al.
Genetic liability for depression, social factors and their interaction effect in
depressive symptoms and depression over time in older adults. Am J Geriatr
Psychiatry. 2020;28:844–55.

28. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU
OpenGWAS data infrastructure. bioRxiv. https://doi.org/10.1101/2020.08.10.244293
(2020).

29. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-
Base platform supports systematic causal inference across the human phenome.
Elife. 2018;7:7.

30. Loh PR, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al.
Reference-based phasing using the Haplotype Reference Consortium panel. Nat
Genet. 2016;48:1443–8.

31. Smith BN, Newhouse S, Shatunov A, Vance C, Topp S, Johnson L, et al. The
C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and
has a single founder. Eur J Hum Genet. 2013;21:102–8.

32. Mok K, Traynor BJ, Schymick J, Tienari PJ, Laaksovirta H, Peuralinna T, et al.
Chromosome 9 ALS and FTD locus is probably derived from a single founder.
Neurobiol Aging. 2012;33:209 e203–208.

33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a
tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet. 2007;81:559–75.

34. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

35. Lumley T. Lumley MT Package ‘rmeta’ (2018).
36. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, et al. Genome-wide

analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97:1268–83.
37. Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, et al.

Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide
association study. Lancet Neurol. 2010;9:978–85.

38. Shatunov A, Mok K, Newhouse S, Weale ME, Smith B, Vance C, et al. Chromosome
9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other coun-
tries: a genome-wide association study. Lancet Neurol. 2010;9:986–94.

39. van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, et al. Genome-
wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility
loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41:1083–7.

40. Jones AR, Woollacott I, Shatunov A, Cooper-Knock J, Buchman V, Sproviero W, et al.
Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-
causing hexanucleotide repeat. Neurobiol Aging. 2013;34:2234 e2231–2237.

41. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger
G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with
disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis
spectrum: a gene identification study. Lancet Neurol. 2012;11:54–65.

42. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency
of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic
lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet
Neurol. 2012;11:323–30.

43. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large
C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegen-
erative syndromes and are more frequent than expected in the UK population.
Am J Hum Genet. 2013;92:345–53.

44. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S, De
Bleecker J, et al. The C9orf72 repeat size correlates with onset age of disease,
DNA methylation and transcriptional downregulation of the promoter. Mol
Psychiatry. 2016;21:1112–24.

45. Shamim U, Ambawat S, Singh J, Thomas A, Pradeep-Chandra-Reddy C, Suroliya V,
et al. C9orf72 hexanucleotide repeat expansion in Indian patients with ALS: a
common founder and its geographical predilection. Neurobiol Aging.
2020;88:156.e151–156.e159.

46. McGoldrick P, Zhang M, van Blitterswijk M, Sato C, Moreno D, Xiao S, et al.
Unaffected mosaic C9orf72 case: RNA foci, dipeptide proteins, but upregulated
C9orf72 expression. Neurology. 2018;90:e323–e331.

47. Xi Z, van Blitterswijk M, Zhang M, McGoldrick P, McLean JR, Yunusova Y, et al.
Jump from pre-mutation to pathologic expansion in C9orf72. Am J Hum Genet.
2015;96:962–70.

48. Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of
dynamic mutations. Nat Rev Genet. 2005;6:729–42.

49. Thys RG, Wang YH. DNA replication dynamics of the GGGGCC repeat of the
C9orf72 Gene. J Biol Chem. 2015;290:28953–62.

50. van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S,
et al. A Pan-European study of the C9orf72 repeat associated with FTLD: geo-
graphic prevalence, genomic Instability, and intermediate repeats. Hum Mutat.
2013;34:363–73.

51. Kaivola K, Kiviharju A, Jansson L, Rantalainen V, Eriksson JG, Strandberg TE, et al.
C9orf72 hexanucleotide repeat length in older population: normal variation and
effects on cognition. Neurobiol Aging. 2019;84:242.e247–242.e212.

52. Konopka A, Atkin JD. The emerging role of DNA damage in the pathogenesis of
the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Int J Mol Sci.
2018;19:3137.

53. Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, et al. C9orf72
expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci.
2017;20:1225–35.

54. Ng ASL, Tan EK. Intermediate C9orf72 alleles in neurological disorders: does size
really matter? J Med Genet. 2017;54:591–7.

ACKNOWLEDGEMENTS
Research of the Alzheimer Center Amsterdam is part of the neurodegeneration
research program of Amsterdam Neuroscience. The Alzheimer Center Amsterdam
is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. This
research is supported by ABOARD, which is a public-private partnership receiving
funding from ZonMW (#73305095007) and Health~Holland, Topsector Life
Sciences & Health (PPP-allowance; #LSHM20106). More than 30 partners
participate in ABOARD. ABOARD also receives funding from Edwin Bouw Fonds
and Gieskes-Strijbisfonds. The clinical database structure was developed with
funding from Stichting Dioraphte. Genotyping of the Dutch case–control samples
was performed in the context of EADB (European Alzheimer DNA biobank)
funded by the JPco-fuND FP-829-029 (ZonMW projectnumber 733051061). The
Longitudinal Aging Study Amsterdam is supported by a grant from the
Netherlands Ministry of Health Welfare and Sports, Directorate of Long-Term
Care. The work described in this study was carried out in the context of the
Parelsnoer Institute (PSI). PSI was part of and funded by the Dutch Federation of
University Medical Centers and has received initial funding from the Dutch
Government (from 2007 to 2011). Since 2020, this work was carried out in the
context of Parelsnoer clinical biobanks at Health-RI (https://www.health-ri.nl/
initiatives/parelsnoer). The 100-plus study work was supported by Stichting
Alzheimer Nederland (WE09.2014-03), Stichting Diorapthe, horstingstuit founda-
tion, Memorabel (ZonMW projectnumber 733050814), and Stichting VUmc Fonds.
Genotyping of the 100-Plus Study was performed in the context of EADB
(European Alzheimer DNA biobank) funded by the JPco-fuND FP-829-029
(ZonMW projectnumber 733051061). The European Medical Information Frame-
work for AD (EMIF-AD) PreclinAD study and EMIF 90+ study have been funded by
the Innovative Medicines Initiative Joint Undertaking under EMIF grant
agreement #115372. We thank and acknowledge the International FTD-
Genomics Consortium (IFGC). We thank Eleonora Maria Vromen from Amsterdam
UMC, Alzheimer Center for proofreading our manuscript.

AUTHOR CONTRIBUTIONS
Writing: LMR, SJvdL, and YALP. Analysis: LMR, SJvdL, IEJ, and NT. Computation: MJTR.
Reviewing and editing: LMR, SJvdL, WMvdF, YALP, SCMdB, JAHRC, GJB, and PPdD.
Revision of the manuscript: all. Contribution to sample collection discovery data:
SJvdL, IEJ, FvR, NMvS, MJTR, MAH, HH, PJV, WMvdF, YALP, NT, MH, PS, SA, NA, AGU,

L.M. Reus et al.

7

Translational Psychiatry          (2021) 11:451 

https://doi.org/10.1101/2020.08.10.244293
https://www.health-ri.nl/initiatives/parelsnoer
https://www.health-ri.nl/initiatives/parelsnoer


MAI, CvD, JCvS, JvR, MOM, HS, IR, FV, AvdL, JAHRC, GJB, and PPdD. Contribution to
sample collection replication data: JCvS, JvR, MOM, and HS. Secured funding: WvdF
and YALP. Supervision study: SvdL and YALP.

CONFLICT OF INTEREST
YALP received a personal fellowship from the Dutch brain foundation. All other
authors report no disclosures or conflicts of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-021-01577-3.

Correspondence and requests for materials should be addressed to LianneM. Reus

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

L.M. Reus et al.

8

Translational Psychiatry          (2021) 11:451 

https://doi.org/10.1038/s41398-021-01577-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Genome-wide association study of frontotemporal dementia identifies a C9ORF72 haplotype with a median of 12-G4C2 repeats that predisposes to pathological repeat expansions
	Introduction
	Methods
	Study sample genome-wide association study
	Genotyping and imputation
	Genotyping across the GGGGCC C9ORF72 repeat
	Phenome-wide association studies
	Haplotyping of the identified risk variants for FTD and C9ORF72 repeat lengths
	Statistical analysis

	Results
	Association with FTD
	FTD risk alleles associate with amyotrophic lateral sclerosis in PheWAS
	Screening of risk SNP carriers for C9ORF72 repeat expansions
	C9ORF72 risk alleles associate with intermediate repeat length in haplotype analysis

	Discussion
	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Conflict of interest
	ADDITIONAL INFORMATION




