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Summary

A propeller has a high propulsive efficiency, yet inherently leaves the air it propels swirling. The efficiency of
a propeller can be enhanced by placing it in the tip vortex of a wing. Such a tip-mounted propeller
configuration lets the vortex created by the wing and the vortex created by the propeller counteract each
other, enhancing the propulsive efficiency of the system.

Even though the benefits of such a configuration are clear, the concept is not commercially viable. Among
other benefits, electric engines are scalable, light and can be placed in advantageous positions. This allows
the engine to be placed at the tip of a wing. The batteries for electric propulsion are heavy, so synergistic
effects are needed to improve the efficiency to such an extent that electric propulsion will be commercially
viable.

Another benefit can be defined by tip-mounted propulsion. As the propeller is mounted at the tip of the
wing, the moment arm is large. This could result in a large directional control moment. On the other hand,
if one engine is inoperative, the resulting moment is so large that it cannot be compensated by a rudder
deflection. Therefore, if a one-engine inoperative situation arises, to still produce thrust both propellers have
to be interlinked resulting in a heavy system, or both engines should be switched off.

If tip-mounted propellers are used to enhance directional stability and control, the vertical tailplane size
can be reduced, resulting in a reduction of mass, drag and hence overall power consumption. In this thesis
the contribution of tip-mounted propellers to static stability, dynamic stability, and control is researched, for
both positive and negative input power. Negative input power denotes that the propellers are recuperating
energy from the airflow, and is a state that is applicable when one engine is inoperable.

The forces on a tip-mounted pusher propeller are obtained by linking a lifting line wing model and a
combined blade-element momentum vortex propeller model. The lifting line model is used to calculate
wing-induced velocities on the pusher propeller disk. These induced velocities are used as input for the
propeller model, and a resulting thrust and power is obtained. These are corrected for an angle of attack on
the propeller disk by empirical relations. The thrust, normal force and power are saved to a 7D dataset. A
non-linear flight mechanics model of the Piper Seneca III uses the dataset as lookup table and implements
the tip-mounted propeller as forces at the tip locations.

Thrust variations in the 7D dataset are parametrically visualised, showing the expected trends. Resulting
forces are compared with a rudder deflection, to estimate a potential rudder size reduction. When the
aircraft is flying slow, tip-mounted propellers can match the maximum moment produced by the
conventional rudder. When flying fast, around half the reference yawing moment can be produced by
tip-mounted propellers.

The static stability contribution of tip-mounted propellers is visualised parametrically for propeller
diameter, advance ratio, blade pitch and a toe-in angle. Negative toe-in angles, hence toe-out angles, prove
to greatly enhance the directional static stability. High thrust values greatly enhance longitudinal static
stability as the reference aircraft’s wing tips are positioned above the centre of gravity.

In the same parametric fashion as the static stability evaluation, the contribution of tip-mounted
propellers to dynamic stability is evaluated. The damping factor and natural frequency are obtained for first
order motions Dutch roll and the Phugoid by fitting an exponential curve to the time-response of the flight
mechanics model. This method succeeds in capturing the motion characteristics, and indicates clear trends:
the frequency of the Dutch roll increases with toe-out angles and thrust, and the frequency increases with
thrust. The Phugoid’s natural frequency increases with thrust, and damping factor decreases with thrust. An
attempt is done to use the curve-fitting method for the second order motion Short period as well, yet proves
too inaccurate.

A typical tip-mounted propeller design is evaluated to summarise the effects of using tip-mounted
propellers for directional stability and control. For this non-optimised design, the static stability is enhanced
by 37%. The dynamic stability has increased significantly as well. Maximum blade pitch deflection and
maximum rudder deflection result in similar time-history sideslip responses when the aircraft is flying slow,
when flying fast the tip-mounted propeller design’s sideslip response is around half the reference rudder
deflection response. This conclusion also applies to a one engine inoperative simulation.
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In this thesis, a significant first step is made toward enhancing directional stability and control with tip-
mounted propellers by defining the contribution of tip-mounted propellers in a parametric fashion. The
results are directly applicable to an aircraft that has been designed with tip-mounted propellers, yet does not
rely on tip-mounted propellers for directional stability and control. A typical design is evaluated in cruise,
recuperative and one-engine inoperative cases, proving that from a stability and control point of view the
vertical tailplane can be reduced in size.

Before tip-mounted propellers can be used for directional stability and control behaviour analysis in the
stalled regime, more research has to be conducted. This is left as recommendation.
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Notation Description
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BEM Blade-Element Momentum
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anyb

Body frame normal acceleration in Y [m · s−2]
anzb

Body frame normal acceleration in Z [m · s−2]
b Wing span [m]
βp Propeller blade pitch [deg]
βs Aircraft sideslip angle [deg]
c Wing chord [m]
CL 3D Lift coefficient [-]
cl 2D Lift coefficient [-]
Clα 2D Lift coefficient due to angle of attack
Cmα Pitch moment coefficient due to angle of attack
Cn Yaw moment coefficient
Cnβ Yaw moment coefficient due to sideslip
Cnδr

Yaw moment coefficient derivative due to rudder deflection
CnT MP Yaw moment coefficient due to TMP forces
Cnr Yaw moment coefficient derivative due to yaw rate
CP Power coefficient [-]
CT Thrust coefficient [-]
CXu Tangential force coefficient derivative due to X-velocity
CYβ Side force coefficient derivative due to sideslip
CZu Normal force coefficient derivative due to Z-velocity
D Diameter [m]
δe Elevator deflection [deg]
δr Rudder deflection [deg]
ζ Eigenmotion damping factor [-]
f Parameter fraction [-]
Γ Vorticity strength [m2 · s−1]
γ Flight path angle [deg]
J Advance ratio [-]
KP Power fraction of original Seneca engine [-]
N Number of line sections [-]
n Propeller rotational speed [s−1]
P Propeller input power [J]
p Aircraft roll-rate [rad · s−1]
φ Roll angle [deg].
ηp Propeller propulsive efficiency [-]
q Aircraft pitch-rate [rad · s−1]
r Aircraft yaw-rate [rad · s−1]
Re Reynolds number [-]
ρ Density [kg ·m−3]
σe Effective propeller blade solidity [-]
SV T P VTP area [m2]
T Propeller thrust [N]

vii



viii List of Symbols

Notation Description

TC∗ Thrust coefficient
(
T /

(
q ·Swi ng

))
[-]

θ Aircraft pitch angle [deg]
εT MP TMP toe-in angle [deg]
u Aircraft X-velocity [m · s−1]
v Aircraft Y-velocity [m · s−1]
Vi nd Induced velocity [m · s−1]
Vi ndax Axial induced velocity [m · s−1]
Vi ndt Tangential induced velocity [m · s−1]
V∞ Free-stream velocity [m · s−1]
w Aircraft Z-velocity [m · s−1]
ωn Eigenmotion natural frequency [-]
Xb Body frame force in X [N]
Xp Propeller frame force in X [N]
Y Propeller normal force [N]
Yb Body frame force in Y [N]
Yp Propeller frame force in Y [N]
Zb Body frame force in Z [N]



Contents

List of Terms and Acronyms v
List of Symbols vii
1 Introduction 1
2 Theoretical Background 5

2.1 Lifting Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Propeller Forces Calculation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Tip-mounted Propeller - Wing Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Flight Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Discrete Time-response Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Simplified Linearised Eigenmotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerical Model Setup 19
3.1 Wing-induced Flow Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Lifting Line Solver Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Induced Velocity Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 CFD Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Propeller Forces with Blade-element Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Evaluation Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Isolated Propeller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Propeller Force Parameter Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Implementing Propeller Forces into a Non-linear Flight Mechanics Model . . . . . . . . . . . . 34
3.3.1 Verification by a Trim Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Analysis of Propeller Force Inputs 39
4.1 Parametric Propeller Force Dataset Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Assumptions Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Propeller Forces’ Contribution to Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Sensitivity Analysis of Stability Contribution 49
5.1 Static Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Longitudinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Motion Damping and Frequency Extraction Approach. . . . . . . . . . . . . . . . . . . 52
5.2.2 Dutch Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Phugoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Short Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Typical Stability and Control Contribution Assessment 63
6.1 Static Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Directional Control Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion & Recommendations 73
A Propeller Forces Post-processing 75
B Phugoid Sensitivity Analysis (cntnd.) 77
Bibliography 79

ix





1
Introduction

With increasing concern for environmental impact of aircraft, design focus shifts to energy efficiency and
noise. To achieve a high propulsive efficiency, air should be accelerated by a small amount. With its large
blades, a propeller is capable of accelerating a large area by a small amount. Hence, a propeller is an efficient
means of propulsion. This propulsive efficiency can even be enhanced by placing the propeller in the wing-
tip vortex. This efficient placement will first be discussed, followed by why this efficient placement is not
yet widely incorporated and why it might be in the future. This will lead to the definition of a research gap,
followed by a research objective to fill this gap. Finally, a reference aircraft to apply the tip-mounted propellers
to is presented that will be used for assessment throughout this thesis.

The Tip-mounted Propeller
Due to its simplicity, as a propeller is basically a rotating wing, early aircraft were driven by propellers. These
already had propulsive efficiencies up to 82% [1]. With the rise of jet engines combined with low fuel prices,
propeller development stagnated. When fuel prices started to rise in the eighties, development of propellers
continued, focussing on interaction with the wing. A propeller leaves behind a swirl, which inherently
means an efficiency loss. This should be kept to a minimum. An idea investigated by Snyder and Zumwalt
[2] is to position the propeller in front of the wing tip, in such a fashion that the propeller swirl and wing tip
vortex cancel each other out. This would then effectively lead to a change in the downwash pattern of the
wing. The fashion of propeller rotation (pro or counter-vortex) would then respectively increase or decrease
induced drag. Since the trailing vortex is shifted outboard, the effective aspect ratio of the wing is increased
[3]. Induced drag reductions can be as high as 30% [4].

The effect of tip-mounted propellers has been modelled numerically and measured experimentally
numerous times. Examples include: lifting line models Miranda and Brennan [5], VLM methods [6] and CFD
methods [7, 8]. Aerodynamic and aeroacoustic interaction effects for tip-mounted propellers specifically
have been researched in an experimental fashion [9], for both tractor and pusher configurations.

An aircraft that has been designed using this tip mounted propulsion concept is the Vought V-173 (see
Fig. 1.1). It has flown numerous test flights where many problems were solved, yet was not a success due
to continuing vibration problems caused by the propeller gearboxes and interconnecting drive shafts [10].
This shaft was installed so that in case of an engine failure, no asymmetric thrust condition would arise. The
shaft connected the two radial engines. To indicate the complexity, and therefore loss in efficiency, reliability
and maintenance ease, the system for its successor (Chance Vought XF5U-1) is depicted in Figure 1.2. Such
a system (albeit less complex than the XF5U-1 system) is also used by tilt-rotor aircraft that have a larger
span than the Vought V-173. One can imagine that for a larger span, hence larger bending moment and
larger tip deflection, this system becomes even heavier. For both tilt-rotor and the V-173 the disk loading
on the propellers is much lower than for a conventional aircraft. Even though the benefits of tip-mounted
propulsion are clear, they have not been implemented on conventional aircraft.

Design Space Enlargement by Electric Propulsion
An important factor that inhibits the implementation of tip-mounted propellers is the moment produced in
case of a one-engine-out situation. This resultant moment has to be overcome by for example a triple slotted

1https://airandspace.si.edu/collection-objects/vought-v-173-flying-pancake ; Accessed 14-12-2018
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2 1. Introduction

Figure 1.1: Vought V-173 "Flying Pancake" 1
Figure 1.2: XF5U-1 engine detail [10, p. 25]

rudder, or multiple engines on the wing so a one-engine-out situation would be less critical [4]. The last
solution requires engine scalability. This can be achieved by applying electric propulsion. Other potential
benefits of electric propulsion with respect to jet fuel are listed below, which are exhaustively described by
Brelje and Martins [11].

• Carbon emission reduction.
• Cost per unit energy reduction.
• Decoupling fan placement and power source. A fan can be placed on aerodynamically favourable

positions to achieve installation drag reduction, high lift augmentation or swirl cancellation, or in
positions where noise is shielded more effective. Also, the bypass ratio can be increased [12].

• Engine scalability [13, 14]. Distributed electric propulsion (DEP) concepts are enabled, giving rise to
boundary layer ingestion concepts, and leading to less critical engine failures. Therefore total excess
thrust (e.g. one engine inoperative climb requirements) and one engine inoperative yawing moment
can be decreased [15].

• Energy recuperation [16].

Since conventional constraints are not necessarily valid anymore, a large design space has opened up.
Aircraft fuel is around 50 times more energy dense than a battery, making all-electric systems heavy. Using
the aforementioned advantages and the large design space weight reductions are still claimed to be possible
[17] (using a jet fuel - electric hybrid architecture).

Research from the eighties already suggested to extract rotational energy from the flow around the wing
tip using turbines [5, 18]. Power circuits to support recuperation have recently been suggested [16]. Tests
employing this concept using a propeller that was optimised for recuperation showed 19% reduction in
energy consumption for 1000ft climb and descent manoeuvres, and 27% increase in the number of traffic
pattern circuits that could be flown [19].

The commercial viability of personal electric aircraft has been shown by Pipistrel2, who are producing
electric aircraft since 2007. The Alpha Electro model is a double seat trainer for basic circuit training with
recuperation abilities. This aircraft allows for 13% of energy recuperation on every approach3.

State-of-the-art
Challenges that arise from implementing tip-mounted propellers can be split in control and structural
challenges. The latter challenge can be solved by using lightweight electric engines. Electric engines also
reduce vibrational issues. With respect to control, in a OEI situation both propulsive devices have to be
switched off as the resulting moment due to thrust of the operable engine is too large. One could rely on
other engines to counter this moment, yet NASA’s X-57 (Fig. 1.4) does not as the DEP system is only designed
as a high lift device [20]. It relies on a redundant electrical system, so power can always be supplied to the tip
engines. If a OEI situation would arise, the advice would be to land as soon as possible, or scale the thrust of

2https://www.pipistrel.si/about-us/history ; Accessed 14-12-2018
3https://www.pipistrel-aircraft.com/aircraft/electric-flight/alpha-electro/#tab-id-1 ; Accessed 04-03-2019
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the remaining engine to 50%, which would yield a torque that can be trimmed by the rudder. The DEP
system makes for a CLmax of 4.48, without the need of a heavy slotted fowler flap system [20]. This results in a
reduction factor of the wing area of 2.5, yielding a high cruise efficiency. Then, the tip mounted engines are
the main propulsors, effectively countering the wing tip vortex. Using this configuration a cruise efficiency
multiplier of approximately 4.8x better than the stock aircraft (Tecnam P2006T) is expected [21].

Figure 1.3: Agusta Westland AW609 4
Figure 1.4: NASA X-57 Maxwell [20]

The large moment resulting from a TMP can also be used for directional control. DEP concepts have
proven to be able to remove the need for a vertical tailplane, as for example the Lilium jet 5. An example of a
tilt-rotor aircraft that uses propellers on the tip for directional control is the Agusta Westland AW609, depicted
in Figure 1.3. The figure gives a clear view of the vertical tailplane, where no rudder is installed. By changing
the pitch of the blades, directional control is obtained. This aircraft does apply a shaft to interconnect the
engines.

If tip-mounted engines are not interconnected by a shaft, and wished to be used for directional stability
and control, the most stringent case is OEI. The moment introduced by the operational engine is too large to
counteract, obliging the operational engine to be switched off.

Research Definition
With the conclusion that synergistic propulsion integration and application should be explored for electric
aircraft [11, 13, 22, 23] and the extremely active field of aerodynamic propulsion integration, the question
arises whether propulsion can be used for other disciplines. Electric propulsion opens up new design
spaces, yet such a system is heavy and therefore relies on synergistic engine placement to compensate the
extra mass. More strategies to enhance synergistic performance should be explored. A currently unexplored
synergy strategy is to use tip-mounted propellers for directional stability and control. If this is possible, the
vertical tailplane can be reduced in size. This will reduce the drag and mass of an aircraft, decreasing the
total energy consumption. Furthermore, the aircraft’s descent angle can be controlled by recuperating
propellers. This leads to the following question for this research:

Can tip-mounted propellers enhance the directional stability and controllability of an aircraft?

To answer this question, four objectives are specified:

1. Develop a program that calculates the forces on a propeller that resides in the wing-tip vortex.
2. Evaluate the static stability contribution of tip-mounted propellers.
3. Simulate the dynamic response to a perturbation of an aircraft fitted with tip-mounted propellers.
4. Compare the time-response of a conventional rudder deflection and a tip-mounted propeller

deflection for both positive and negative input power.

4https://newatlas.com/agustawestland-aw609-tiltrotor/21466/ ; Accessed 14-01-2020
5https://lilium.com/the-jet ; Accessed 14-01-2020
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4 1. Introduction

The question and its corresponding solution-strategy can be summarised in the following research
objective:

The objective of this research is to investigate the contribution of tip-mounted propellers to directional
stability and control by applying propeller forces to an (existing) baseline aircraft.

Piper Seneca III as Baseline Aircraft
This baseline aircraft will be the Piper Seneca III, since a verified and validated flight mechanics model of this
aircraft is available in-house [24]. It has been used in for example Ref. [25]. The general parameters of this
aircraft are presented in Table 1.1, obtained from [26] except for the airfoil6. The Simulink flight mechanics
model will be modified to incorporate tip mounted propellers.

Table 1.1: Input parameters Piper Seneca model

Name Value Unit
Span 11.86 m
Dihedral 7 deg
Chord 1.63 m
Airfoil NACA 65-415 -

Whether a pusher or tractor propeller is used does not matter theoretically for the performance of the
propeller-wing system [5]. Assuming that the propeller rotates contra-tip-vortex, a tractor configuration
mainly enhances wing performance, where a pusher configuration enhances propeller performance. When
rotating co-tip-vortex, for example when the propeller is recuperating, in a tractor configuration the wing
performance will even degrade. The wing performance is verified and validated in the flight mechanics
model, in a non-parametric fashion. Preferably, it should not be changed if that is possible within the scope
of the thesis. These two reasons motivate the choice for a pusher propeller configuration.

Designing a tip-mounted propeller aircraft is outside the scope of this research. Therefore, the resultant
forces of the propeller are directly applied to the flight mechanics model. This implies that the aircraft is not
properly designed. This has no effect on our analysis; the improvement/reduction in stability and control is
our focus. This choice does imply that statements about the aerodynamic flight performance of the aircraft
(i.e. drag reductions due to tip mounted propellers) can not be made.

A drawing of the altered Piper Seneca is included in Figure 1.5.

Figure 1.5: Top view artist impression of Piper Seneca III fitted with TMP

First background theory that is used throughout the thesis is presented in Chapter 2. The theory is
implemented as a software package in Chapter 3. Resulting forces and its potential applicability to control
are studied in Chapter 4. Static and dynamic stability will be evaluated in a parametric fashion in Chapter 5.
A potential design is made and evaluated in Chapter 6.

6http://www.aerofiles.com/airfoils.html ; Accessed 4-12-2019
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2
Theoretical Background

In this chapter underlying theory for the rest of this thesis is presented. The thesis focusses on tip mounted
pusher propellers and its effect to flight mechanics. First a method to obtain wing-induced velocities is
presented, to calculate the input flow field of the propeller. Then the theory of evaluating the forces on a
propeller will be described, followed by a discussion on propeller-wing interactions. The chapter will
conclude with the set-up of a non-linear flight mechanics model, and a simplified representation of some of
its eigenmodes.

2.1. Lifting Line
Forces that act on a wing are pressure and shear due to the velocity and viscosity of air. These can be summed
into a resultant force, which can be decomposed into lift and drag, or a normal force and an axial force. This
is depicted for an airfoil in Figure 2.1.

Figure 2.1: Forces on an airfoil [27, p. 20]

The airfoil can be extended into and out of the paper, resulting in a three-dimensional wing. The same
forces apply to such a wing. To calculate the forces on this wing, Prandtl’s classical lifting-line theory as
described by Anderson [27, Ch. 5] is presented here.

A wing can be split into elements. Each element has a vorticity, which can be related to lift as in Equation
(2.1) according to the Kutta-Joukowski theorem. This vorticity for each element is depicted in Figure 2.2 by
curved arrows, where the wing is represented by a lifting line. Each element has two free trailing vortices
which extend from the lifting line to infinity to the right, resulting in a horseshoe vortex. The free trailing
vorticity is the difference in vorticity between two adjacent elements of the lifting line.

dL = ρ~Ve ×~Γdr (2.1)

Each of the trailing vortices will induce a flow downward on each of the sections. This is an induced angle
of attack, and denoted by αi in Figure 2.3. This induced angle of attack will reduce the local vorticity of the

5



6 2. Theoretical Background

Figure 2.2: Vorticity distribution for a finite amount of horseshoe vortices [27, p. 426]

section. This in turn will alter the strength of the section’s trailing vortices, which in turn will have an effect of
the induced angle of attack. The induced velocity from any vortex line can be calculated using Equation (2.2).

Figure 2.3: Effect of downwash on the angle of attack [27, p. 417]

~v =−
∫

Γ

4π

d~s ×~r
|~r |3 (2.2)

If the inflow to the wing is symmetric, some simplifications can be made. The downwash, denoted by w
in Figure 2.3, which is responsible for the reduction in angle of attack, can be obtained from Equation (2.3).
This can be converted to an induced angle of attack by Equation (2.4).

w(y0) =− 1

4π

∫ b/2

−b/2

(
dΓ/d y

)
d y

y0 − y
(2.3)

αi
(
y0

)=−w
(
y0

)
V∞

(2.4)

Now that the relation of the trailing vortices’ strength on αi , and the relation of αi on the vorticity of the
trailing vortices is defined, the system can be solved. For an analytical solution, the number of elements can
be increased to infinite for a continuous vorticity distribution. For numerical applications an approximation
with a large number of elements would suffice. The amount of sections that is needed for an accurate result
depends on the wing, and has to be determined experimentally by a convergence study.

Now the total lift of the wing can be obtained by summing the lift contributions of all elements. The drag
can be calculated using the downwash at the wing, i.e. the lifting line location. The downwash leads to an
angle of αi between the free-stream velocity V∞ and the local relative wind. Since the lift is perpendicular to



2.2. Propeller Forces Calculation Methods 7

the local relative wind, the lift force is tilted by αi as well. This tilting of the lift vector leads to the induced
drag Di . For clarification, this drag force Di is depicted in Figure 2.3.

It is now known how the lifting line theory evaluates the performance of an arbitrary wing. The process
presented here has excluded implementation details; these are described in more detail by Anderson [27,
Sec. 5.3]. For a method to analyse an arbitrary wing with non-linear lift slope using the lifting line method,
the reader is referred to Ref. [27, Sec. 5.4].

Figure 2.4: CL −α plot of numerical results with fixed initial distribution and experimental results [28]

The theory presented above has been validated for the resulting lift in Ref. [28]. Figure 2.4 is presented
here to illustrate the agreement between theory and experiments. One can see that the numerical values for
this NACA 0015 rectangular wing the results are within 10% of the experimental values.

In the same fashion as the vorticity distribution of the wing is used to calculate the downwash at each of
the sections, the system of vortices can be used to evaluate the direction and magnitude of the flow in any
point of space. This can be done by applying Equation (2.2) to each of the vortex lines. If the induced velocity
is evaluated for every point of a propeller disk, the inflow field of the propeller is determined and can be used
for further analysis. This approach does neglect the influence of the propeller on the wing lift distribution.

The approach used by Anderson [27] limits the wing to be a straight line. If a wing would have a dihedral
angle, or any sweep, the method could not be used. An adaptation to this method can be found in Ref. [29],
where the influence of the neighbouring lifting line sections’ vorticity is taken into account when evaluating
the local αi . The method is then applicable to both dihedral and sweep, where the lift coefficient of highly
swept back wings (45 deg) is in agreement with experimental data. The drag coefficient however is more
accurate than other methods as a panel method, yet over-predicts the drag by 25%, where the error was
minimal for a straight wing. This method is implemented in the remainder of this thesis, adding the
possibility of evaluating a wing with dihedral and/or moderate sweep with high accuracy.

2.2. Propeller Forces Calculation Methods

Figure 2.5: Most important forces and
moments acting on a propeller [6]

A propeller uses two or more rotating blades. These blades can be viewed
as wings; each blade has a lift and a drag force. The forces of each blade
combined result in a thrust force and a torque if the flow is parallel to the
rotation axis. If this is not the case, in general one could say there would
be forces and moments in all three axes. The propeller moments are small
in comparison to the moments of an aircraft, and will therefore not be
treated in detail [6]. The forces and moment that should be taken into
account are depicted in Figure 2.5. These are:

• Thrust force, can be used for yaw control on tip mounted engines
• Normal force, has an influence on the lift coefficient and potentially

rolling moment
• Torque, key driver for power consumption

In this research a propeller will be used when generating thrust, yet
also when generating negative thrust, hence drag. This is a propeller that
can be compared with a wind-mill, i.e. extracting energy from the airflow.

To understand how a propeller is evaluated, first actuator disk theory is
presented. This is a momentum theory that does not take into account the
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blade shape. This will then be combined with blade-element momentum
theory describes how the blade shape determines the performance. Finally, vortex theory describes the wake
of the propeller, from which a more accurate expression of the drag can be derived.

Actuator Disk
Actuator disk theory is the basis theory of the propeller. It is profoundly described in numerous text books
and articles, so only the assumptions and outcome will be stated here. The assumptions are as follows
(McCormick [30]):

• The thrust loading is uniform over the propeller disk. This implies the limiting case of an infinite
number of blades.

• There is no rotation imparted to the flow. This would be approximated by a pair of counterrotating
propellers.

• A well-defined slipstream separates the flow passing through the propeller disk from that outside the
disk.

• Far ahead of/behind the propeller disk the static pressure in and out of the slipstream is equal to the
undisturbed free-stream static pressure.

The propeller and its slipstream inside a control surface is depicted in Figure 2.6. When applying
conservation of momentum, using the difference of momentum flux in and out, one arrives at Equation (2.5)
for the propeller thrust. The theoretical power needed for this acceleration of fluid can be obtained from
conservation of kinetic energy.

T = ρπr 2V2 (V2 −V0) (2.5)

This theory gives insight in theoretical ideal propeller performance, as this can be used for ideal
efficiencies and thrust variance with forward speed approximations. The theory does not depend on the
propeller used; It assumes an infinitely thin actuator disk that does nothing but increase the total pressure of
the flow across the disk. Therefore, for specific propeller performance evaluation the theory should be
extended with some propeller characteristics. For more information on actuator disk theory, the reader is
referred to Refs. [30–32].

Blade-Element Momentum Theory
In order to analyse the propeller itself, its geometry must be analysed. From this geometry, one can split the
propeller into finite elements, calculate the performance of all sections and sum them together. This can be
done with the following assumptions.

• The blade is split up into aerodynamically independent strips.
• Only axial and angular velocity components exist.

Figure 2.6: Idealised propeller model for classical momentum theory [30]
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Figure 2.7: Blade element indication on
propeller [33, p. 348] Figure 2.8: Blade element section forces and velocities [33, p. 348]

Blade element momentum theory splits a blade into elements. Such an element is illustrated in Figure
2.7, at radius r with width dr . The forces and velocities acting on such an element are depicted in Figure 2.8,
and will be described below.

These elements (airfoils) have their own lift and drag characteristics, indicated with dL and dD . These
should be calculated or measured, and tabulated. For each element, the local angle of attack is calculated
and its element’s performance evaluated. These can then be summed over the span and multiplied by the
amount of blades, and a total propeller performance results. This idea was first described by Drzewiecki [34].

When a propeller has no forward velocity, there is still air moving through the propeller. In the theory as
described above, there is no explanation for that. This problem can be solved when combining the blade
element and momentum theories, as is most likely first done by Orville and Wilbur Wright [1]. When using
this approach induced axial and tangential velocities need to be solved for. This induced velocity is
indicated by w in Figure 2.8. As the effective angle of attack for the airfoil is reduced by the induced velocity,
aforementioned lift and drag characteristics are altered. The characteristics corresponding to the effective
angle of attack need to be obtained from the aforementioned tabulated values, which leads to a new induced
velocity. This process needs to be repeated until a solution is found.

This method does not take the loss of lift at the blade tips into account. One way to incorporate this
effect is to either neglect the outboard 3-5% of the blade, or force the lift to zero at the tip using some tip
correction [35]. Furthermore, if angular momentum is taken into consideration, the slipstream rotation can
be modelled.

For a more detailed explanation and implementation-ready equations the reader is referred to text books
as written by Theodorsen [31] and McCormick [30, 33].

Combined Blade-Element Momentum Vortex Theory
At the basis of the vortex theory for propellers is Prandtl’s classical lifting-line theory, as described in Section
2.1. This theory assumes that a wing can be split in elements that have their own circulation and two trailing
vortices. When these are all summed, this leads to a lift of the wing and an induced drag due to the downwash.
This theory was extended for ideal propellers by Goldstein [36] by solving a potential flow problem of a helix
immersed in a uniform stream.

When applying the lifting line theory to a propeller, a helicoidal vortex sheet will form since the propeller
is a rotating wing. An illustration can be found in Figure 2.9. The trailing blade vortex sheet is indicated right
behind the propeller. In the far-field this sheet will have rolled up into a set of tip vortices and a central vortex
in opposite direction as indicated, yet this is not accounted for in the numerical analysis as its influence is
small.

As an elliptically loaded wing passes through the air, the resulting far-field wake is a line moving down.
The same holds for an ideally loaded propeller, only in a helicoidal form as described by Wald [32]. In other
words, if the propeller is ideally loaded, the wake sheet will not deform, hence the trailing blade vortex sheet
from Figure 2.9 will remain as-is. This can be formulated in a potential function. Goldstein found a solution
to this potential problem, and tabulated his results [36]. Prandtl devised an approximate solution to the
potential flow problem, which became known as the "tip loss factor". Especially for lower advance ratios and
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Figure 2.9: Helicoidal trailing vortex sheet [6, p. 17]

a higher blade number it is a good approximation.
If the ideal propeller assumption is not valid, the wake will deform, as all radial stations of the propeller

do not necessarily have the same downwash velocity. This would imply that the blade vortex sheet drawn
in Figure 2.9 would not be valid anymore. However, if one assumes that for every radial station the trailing
vortex sheet does not deform, performance calculations on the propeller are still possible. When compared
to experiments, this assumption appears to be valid [37]. As with the original lifting-line method, an iterative
method is used to solve for the downwash at each radial station.

For the full solution procedure the reader is referred to the works of Wald [32], where methods for ideal
propeller design, off-design performance and interaction with other bodies are given. It must be stated that
his work is rather complete, yet extremely compact.

Empirical Non-axial Inflow Effect Estimation
The theory mentioned above is not necessarily applicable to account for non-axial inflows. Certainly, at each
of the blade elements a velocity component can be added by assuming the flow will flow in at the same angle
as the general angle of attack of the free-stream. Whether this is true still has to be validated.

Another way of obtaining the propeller thrust and normal force is by applying empirical relations by
De Young [38] based on the works of Ribner [39]. The equations formulated in these papers are obtained
from the method described above, hence propagating free-stream velocity correction angles through a
theoretical propeller model. This method will give a mathematical proportionality relation, where a scaling
factor is still needed. The scaling factor is then determined empirically, leading to the following equations.
The accuracy is good, especially for angles of attack smaller than 30%. After this point divergence occurs,
depending on the blade shape. As the method is an empirical one, the normal and thrust force trends of an
propeller subjected to an angle of attack are captured. For this thesis, where the thrust and normal force
variations of a propeller with non-axial inflow should be modelled accurately, the method is applicable. Yet if
the highest accuracy of the resulting forces is wished for, one should either follow the method proposed and
determine the statistical parameters for that exact propeller, or divert to some other more accurate method.

First of all, the following relations use imperial units. The exact definitions and units of the symbols can be
obtained from Ref. [38]. The thrust force and power of the propeller due to some propeller angle of attack αp

are determined by Equations (2.7) and (2.8). Key parameters are the advance ratio’s for zero thrust and zero
power, the blade pitch βp , the propeller angle of attack with respect to the free-stream αp , and the effective
blade solidity σe . The zero thrust and zero power advance ratio’s can either be determined experimentally
or by empirical relations. σe follows from geometrical relations of the blade, and depends on the span wise
chord distribution, the diameter and the number of blades.

σe = b̄′

b′
0.75

(
4R

3π

b′
0.75

D

)
(2.6)

CT (αp , J cosαp )

CT (0, J cosαp )
= 1+ 3(J cosαp /J0T )2

4
(
1− (

J cosαp /J0T
)) sin(βp +5)

[
tan(βp +5)+

σe

(
1+ (

1+ (2/σe ) tan(βp +5)
)1/2

)
(1−cosαp )

]
tan2αp (2.7)
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CP (αp , J cosαp )

CP (0, J cosαp )
= 1+ 3(J cosαp /J0P )2

4
(
1− (

J cosαp /J0P
)) sin(βp +5)

[
tan(βp +5)+

σe

(
1+ (

1+ (2/σe ) tan(βp +5)
)1/2

)
(1−cosαp )

]
tan2αp (2.8)

In the following equations a prime, e.g. TC ′ , denotes that the coefficient is nondimensionalised with
respect to free-stream conditions and the propeller disk area, hence dividing by q ·π · (D/2)2. If a coefficient
denotes no prime, as CY , the coefficient is nondimensionalised by the propeller properties as ρn2D4. The
propeller normal force Y can be obtained from (2.9).

CY (αp , J cosαp )

CYαp
(0, J cosαp )

= tanαp (2.9)

CY ′
αp

= 4.25σe

1+2σe
sin(βp +8)

(
1+ 3Tc ′

8
(
1+ 2

3 Tc ′
)1/2

)
(2.10)

This method only takes into account a single propeller angle of attack. It is inherently a 2D method. Since
the method will be used in a 3D problem, velocities should be compiled to a single magnitude and an inflow
angle, and the output decomposed again.

Sense of rotation
One should note that when the propeller advance ratio progresses into the wind-milling region (where the
local angle of attack on the blade becomes less than 0◦) the rotation direction of the wake reverses. So if
the propeller is delivering thrust and the swirl direction is counter-tip-vortex, then when the propeller is
recuperating the swirl direction will be co-rotating with the tip vortex [5]. This means that induced drag will
be increased, which is detrimental to the energy efficiency of the aircraft. A possible solution could be to
rotate the blades in such a fashion that the propeller will start turning in the opposite sense; the angle of
attack once again becomes positive. For clarity, Figure 2.10 depicts this process. Since this is a feasibility
study both positive and negative angle of attack should be researched. Practical implications as a system that
is able to rotate a blade for such a large angle and flight mechanics during transition of propeller rotation
direction are left for future research.

Figure 2.10: Propeller blade rotation for maximum efficiency

2.3. Tip-mounted Propeller - Wing Interaction
For the sake of completeness, let us briefly review the general tip-mounted propulsion theory. As a propeller
leaves a helical vortex as wake this inherently means an efficiency loss. The rotational loss might be recovered
using swirl recovery vanes [40], or counter this tip vortex by creating another vortex in opposing direction.
The most prominent vortex on an aircraft is its tip vortex, which might be (partially) compensated by the
propeller swirl. In this section we will focus on the propeller-wing interaction, how it has been modelled in
previous research and the effect of a pusher propeller on the wing lift distribution.
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The simplest method the author was able to find is presented in Ref. [5], where the wing is modelled as
an elliptically loaded lifting line, and the tip-mounted rotor modelled as an elliptically loaded vorticity tube.
Still, numerical results showed the same trend as the experimental results, and are surprisingly accurate
considering the aforementioned assumptions. Their comparison of experimental NASA results and their
numerical results can be found in Figure 2.11. Numerous assumptions and simplifications were made,
starting with assuming that the propeller and wing load distributions are ideal, yet the theoretical results
have the same trend as the experimental results. By the definition of the vorticity tube as propeller, the
location of the propeller was irrelevant.

Figure 2.11: Comparison of experimental and numerical results of ideal tip mounted propulsion model [5]

Let us now continue with some well-known propeller-wing interaction works at the TU Delft.
Aerodynamic interaction effects between a tractor propeller and wing have been tested experimentally and
compared to numerical results from a vortex lattice method (VLM), a panel method and RANS simulations
by Veldhuis [6]. The VLM calculation already appears to accurately predict the overall propeller-wing
combination performance. When specific small scale interaction effects are needed, RANS simulations show
very accurate results. This research led to an optimisation scheme to optimise the coupling between a
tractor propeller and wing if the spanwise position of the engine was already chosen. Interaction effects for
tip mounted propellers specifically have been researched in an experimental fashion by Sinnige [9]. The
focus of this research was on aerodynamic and aeroacoustic interaction effects, for both tractor and pusher
configurations. It should be noted that this research is not intended as a comparative analysis between
pusher and tractor configurations. This was used as validation data of numerical methods by Stokkermans
et al. [8]. Different models were used and compared for propeller and wing, resulting in an accurate RANS
CFD model that is capable of modelling the performance of a wing tip mounted tractor propeller. Sinnige
et al. [41] continued with an experimental campaign to gain more insight into the aerodynamic interaction
effects of tip-mounted propellers for tractor configuration. This was done by local force measurements and
flow field evaluations. Furthermore, a validation dataset is provided. Latest research also focusses on the
negative thrust regime, where a tractor propeller is evaluated experimentally and numerically, by Sinnige
et al. [42].

Tractor propeller
A tractor propeller is positioned upstream of its support. This configuration has numerously been researched,
as for example in Refs. [2, 3, 6, 9, 41, 43]. Its key interaction effects are listed in Table 2.1. Each interaction
effect has a consequence, which is relevant to some index. From this table the performance aspects are of
interest for the research. A schematic overview of the altered lift distribution and interaction of vortices is
given in Figure 2.12. With respect to numerical analysis by lifting line, especially the slipstream wash is a very
complex point when taking yaw angles into consideration: this will lead to asymmetric loading conditions
and might prove to be not negligible. Furthermore, recent research shows that in this tractor configuration,
the wing performance is significantly reduced when recuperating [42].
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Table 2.1: Key tip mounted tractor propeller-wing interaction effects [9, p. 21]

Interaction effect Consequence Relevance

Slipstream wash Lift augmentation Increased performance
Scrubbing drag Decreased performance
Separation delay (low Re) Increased performance

Swirl recovery Induced-drag reduction Increased performance
Tip-vortex attenuation Induced-drag reduction Increased performance
Slipstream impingement Unsteady wing loading Increased vibrations
Blockage and upwash Unsteady propeller loading Increased Noise

Figure 2.12: Lift-distribution variation due to shed vorticity [41]

Table 2.2: Key tip mounted pusher propeller-wing interaction effects [9, p. 26]

Interaction effect Consequence Relevance

Wake impingement Unsteady propeller loading Increased noise
Tip-vortex recovery Propeller power reduction Increased performance
Propeller suction Unsteady pylon loading Increased vibrations

Separation delay Increased performance
Drag penalty (high-speed) Decreased performance

Figure 2.13: Schematic overview of wing tip vortex and propeller [44, p. 12]
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Pusher propeller
Numerous studies into the pusher configuration are conducted as well, as in Refs. [4, 7, 9, 44]. A schematic
overview of the interaction between tip vortex and the propeller is given in Figure 2.13. One can see the
increase in local blade angle of attack, leading to a more forward tilted lift vector, causing more thrust for the
same amount of power input. Hence, the same amount of thrust can be produced for less power. In Table 2.2
the interaction effects of the pusher propeller are given. The main penalty of using a pusher configuration is
its noise increase. For low thrust loading this noise penalty could be as severe as 24 dB [9].

The performance aspects are once again of importance for this research. Wake impingement effect
(responsible for the noise penalty) on time-averaged performance is negligible [9, ch. 8]. In this case,
rotational flow can be readily modelled using the methods as described in Section 2.2. The propeller suction,
which alleviates the adverse pressure gradient at the trailing edge, has been documented for different pusher
propeller positions on a 2D wing (wall-to-wall wind tunnel test) [45]. Furthermore, this research suggests
that for a take-off thrust setting the increase in cl is only 0.2 of the affected wing area for the most favourable
interaction position, where the largest effect of the propeller suction was on the trailing edge of the wing.

In this research, the propeller will provide drag forces and thrust forces. A tractor configuration
significantly degrades the performance of the wing when the propeller is recuperating. A pusher
configuration will lead to increased noise, and has a small effect on the wing performance. Since the effects
of the propeller forces on directional stability and control are wished to be known, where an increase in
noise does not affect our ability to answer the research question, a pusher configuration is chosen for this
research. This implies that the effect of the wing-induced flow-field must be taken into account, and that the
effect of the propeller on the wing can be neglected.

2.4. Flight Dynamics
Forces and moments act on the aircraft. These have an influence on the motion of the aircraft. In this section
a theory is presented to calculate the motion of an aircraft when subjected to some force and moment, and to
keep track of the aircraft in space. This theory is then linearised, to obtain information on what parameters
determine the eigenmotion behaviour of the aircraft.

2.4.1. Reference Frames
In this thesis, four reference frames will be used. First, the body-fixed reference frame which is depicted
in Figure 2.14. The centre is located at the quarter chord point of the wing, located at its MAC. The X-axis
is aligned with the nose of the aircraft, the Y-axis is directed to the right wing and the Z-axis is downward,
aligned with the symmetric plane. Inflow angles angle of attack (α) and side slip angle (βs ) are also indicated
in the figure. The state of the aircraft is defined in the body-fixed frame. Hence, u, v , w are the X, Y and Z
velocities in the body-fixed frame, and p, q , r are the X, Y and Z angular velocities in the body-fixed frame.

Figure 2.15 denotes the definitions of the lifting line reference frame (LL) and the propeller reference
frame (p). The body reference frame is also indicated with its orientation, as just explained the centre of the
body-fixed reference frame is at the quarter chord of the MAC line. In this figure it is drawn at the same point
as the propeller reference frame, to indicate the definition of the toe-in angle εT MP .

For the lifting line reference frame, the X-axis points toward the tail of the aircraft, the Y-axis is aligned
with the body-fixed Y-axis, and the Z-axis is upward in the plane of symmetry. The propeller reference frame’s
Z-axis is aligned with the body-fixed Z-axis, yet the X- and Y-axis of the propeller reference frame are rotated
by εT MP , which is defined as a counter-clockwise rotation on the right wing tip. On the left wing tip, it is
defined as a clockwise rotation. Hence, a positive toe-in angle rotates both propellers inwards.

The last reference frame is the 2D propeller reference frame. It is used to apply the empirical non-axial
inflow equations from the previous section. The reference frame is depicted in Figure 2.16. The thrust T is
aligned with the rotational axis of the propeller, and the normal force Y is normal to that. The angle between
the inflow and the rotational axis is the propeller angle of attack αp .

Rotating back and forth between these reference frames is done using Euler angles and their
corresponding transformation matrices. This matrix complies with the following Equation (2.11), where T21

is the transformation matrix.

v2
x

v2
y

v2
z

=T21

v1
x

v1
y

v1
z

 (2.11)
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Figure 2.14: Body-fixed reference frame definition [46]

Figure 2.15: Lifting Line (LL) and Propeller (p) reference frame definition

Figure 2.16: 2D propeller reference frame definition
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This matrix is composed of three rotations, multiplied with each other. The matrix depends on the order
of rotation. So, if the rotation is as φz →φy →φx , one should multiply Equations (2.12) - (2.14) in that order.
φ is in this case the right-handed rotation angle over that axis, and the shown rotation matrices are valid for a
right-handed axis system.

Tx =
1 0 0

0 cosφx sinφx

0 −sinφx cosφx

 (2.12)

Ty =
cosφy 0 −sinφy

0 1 0
sinφy 0 cosφy

 (2.13)

Tz =
 cosφz sinφz 0
−sinφz cosφz 0

0 0 1

 (2.14)

2.4.2. Discrete Time-response Simulation
The implemented flight mechanics model has a discrete time step. This means that the forces and moments
acting on the aircraft are evaluated at every point in time, from which accelerations are obtained and
propagated throughout the model. With this information, the next point is calculated. The cycle then
repeats. This is mathematically stated for a 3D space in Equation (2.15). Here, a, v, r respectively denote
acceleration, velocity and the position. α,ω,θ respectively denote the angular acceleration, velocity and
position.

~a = ~F /m

~v = ~vol d +~a∆t

~r = ~rol d +~v∆t

~α= ~M/~I

~ω= ~ωol d +~α∆t

~θ = ~θol d +~ω∆t

(2.15)

The Piper Seneca model is implemented into Simulink in this fashion. This will lead to accurate motion
simulations if the time step is small enough. Unfortunately, this method does not give any insight into the
motions in advance. The model, in this case, behaves as a ’black box’. Inputs go in, and some time-response
follows as output.

2.4.3. Simplified Linearised Eigenmotions
To gain an insight into the behaviour of the model, a model can be linearised. This means that one assumes
that deviations from the original state can be calculated in a linear fashion. A linearisation procedure for an
aircraft is done in Ref. [46]. First the equations of motion for the aircraft are obtained, followed by obtaining
the derivatives of the states with respect to its inputs. These can then be written in a matrix form. Since the
linearised equations will not be used in the thesis, except to help understand what parameters are important
in the eigenmotions, only the assumptions and the output matrix are shown here. For the full linearisation
procedure and state-space discussion, the reader is referred to Ref. [46].

The linearisation assumptions used in the method are stated below.

• The vehicle is a rigid body
• The vehicle does not vary in mass
• The earth is flat
• The earth does not rotate
• The body-fixed reference frame is chosen in such a way that Ix y and Iy z are zero
• Effects of rotating masses are neglected



2.4. Flight Dynamics 17

The linearised asymmetric equations of motions are given in Equation (2.16). The symmetric version is
given in Equation (2.17). From the left-hand matrices eigenvalues can be obtained, leading to the
eigenmotions. Subscripts denote derivatives, so for example CXu denotes the nondimensional force in X,
differentiated with respect to u. µ, K and D denote mass, inertia and time-differentiator respectively.


CYβ +

(
CYβ̇

−2µb

)
Db CL CYp CYr −4µb

0 − 1
2 Db 1 0

Clβ 0 Clp −4µbK 2
X Db Clr +4µbKX Z Db

Cnβ +Cnβ̇
Db 0 Cnp +4µbKX Z Db Cnr −4µbK 2

Z Db



β

φ
pb
2V
r b
2V

=


−CYδa

−CYδr

0 0
−Clδa

−Clδr

−Cnδa
−Cnδr

[
δa

δr

]

(2.16)


CXu −2µc Dc CXα CZ0 CXq

CZu CZα +
(
CZα̇ −2µc

)
Dc −CX0 CZq +2µc

0 0 −Dc 1
Cmu Cmα +Cmα̇Dc 0 Cmq −2µc K 2

Y Dc




û
α

θ
qc̄
V

=


−CXδe

−CXδt

−CZδe
−CZδt

0 0
−Cmδe

−Cmδt


[
δe

δt

]
(2.17)

Eigenmotions in the asymmetric equation are two aperiodic modes, the heavily damped aperiodic rolling
motion and the aperiodic spiral motion, and one periodic mode which is the Dutch roll. From these three
only the Dutch roll motion will be discussed here, as TMPs will have a large influence on this motion, and
requirements on this motion are strict. The rolling motion is of little interest, since the propellers will not
be used for roll. General eigenmotions for the symmetric equation are the short period oscillation and the
phugoid oscillation.

Heavily simplified state-space systems will now be used to obtain the most important parameters for
each of the motions. The assumptions to obtain this solution will be stated, along with equations to obtain
the damping factor ζ and the natural frequency ωn . As said before, these simplified formulas will only be
used briefly to discuss the most important parameters affecting each motion. Therefore the full derivation of
these simplified equations are not stated. The full derivation can be found in Ref. [46, Ch. 5 & Ch. 6].

Dutch roll
The Dutch roll is a motion where the aircraft sideslips, yaws and rolls. The motion can be approximated by
assuming that the aircraft does not roll in this motion, as the involvement of roll in the Y and N equations is

small. Hence, φ= pb
2V = 0. This leaves the state-space system as in Equation (2.18).[

CYp −2µbDb −4µb

Cnp Cnr −4µbK 2
Z Db

][
β
r b
2V

]
=~0 (2.18)

The eigenvalues can then be written as in Equations (2.19) and (2.20). From this linearised version the
parameters Cnβ and Cnr are the most important, and CYβ is involved as a second order parameter.

ζ=
p

2
(
2K 2

Z CYβ +Cnr

)
4

√
K 2

Z

(
CYβCnr +4µbCnβ

) (2.19)

ωn = V

4b

√√√√2
CYβCnr +4µbCnβ

µ2
bK 2

Z

(2.20)

Phugoid
The phugoid mode is a slow oscillation in height and velocity. Since the mode is so slow, and variations in
α are very small, the pitch rate and α are set to zero. Hence, q̇ = α = 0. The reduced state-space system is
presented in Equation (2.21).  CXu −2µc Dc CZ0 0

CZu 0 2µc

0 −Dc 1

 û
θ
qc̄
V

=~0 (2.21)
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The eigenvalues than become as in Equations (2.22) and (2.23). In these equations CZ0 will not be affected
by the TMPs, as the aircraft should still provide the same amount of lift. Therefore, CXu and CZu are the driving
parameters for this motion.

ζ= −CXu

2
√

CZu CZ0

(2.22)

ωn = V

c̄

√
CZu CZ0

4µ2
c

(2.23)

Short period
The short period mode is a heavily damped mode with a high frequency, where α and q vary. Since the
motion is so quick, the airspeed and the flight path angle can be assumed constant. Hence, V = constant and
γ= constant. This leaves the state-space system as in Equation (2.24).[

CZα +
(
CZα̇ −2µc

)
Dc CZq +2µc

Cmα +Cmα̇Dc Cmq −2µc K 2
Y Dc

][
α
qc̄
V

]
=~0 (2.24)

Eigenvalues are then obtained from Equations (2.25) and (2.26). According to the formulae, Cmα̇ ,Cmq ,Cmα

are the key parameters for this motion.

ζ=−
Cmα̇ +Cmq

2
√
−2µc K 2

Y Cmα

(2.25)

ωn = V

b

√
− Cmα

2µc K 2
Y

(2.26)

2.4.4. Controllability
Dynamic stability of an aircraft can be determined using the equations in the previous section. This is then
the response of the aircraft to for example a gust. In some sense, one could also argue that the deflection of
control surfaces is a disturbance. A very stable aircraft would therefore not respond very well to its control
surfaces, unless the resultant force or moment would be very large due to a large control surface. An unstable
aircraft on the other hand would respond very quickly to control inputs. Therefore, design choices have to be
made whether the aircraft should be very stable and suitable for e.g. beginner flights, or very controllable and
designed for e.g. air combat.

If one would add an extra control device, the output of the device should be formatted as a resultant force
and a resultant moment. These should then be added to ~F and ~M respectively in Equation (2.15).



3
Numerical Model Setup

In this chapter the setup of the tip-mounted propeller forces model will be discussed. In the end, the forces
of the propeller have to be integrated into a non-linear flight mechanics model. Therefore, first the wing
evaluation program will be described, which gives a velocity distribution around the wing. This distribution
is then used as a velocity field input to the propeller disk, and the propeller forces evaluation will be discussed
next. Finally, the implementation of the propeller forces into the flight mechanics model is explained.

3.1. Wing-induced Flow Field
In order to estimate the inflow field for the propeller, a lifting line solver is written. This section includes a
brief description of the program and its implementation details, the verification process and its validation,
where the resulting lifting line velocity field is compared with a CFD velocity field.

3.1.1. Lifting Line Solver Implementation
The theory of the lifting line as presented in Section 2.1 is implemented in a Python program. Lifting line
equations are solved using the numerical lifting line implementation scheme presented by Anderson [27,
Sec. 5.4]. This scheme is graphically represented in Figure 3.1. At first a Γ distribution is assumed, from
which Vi nd is calculated. Combined with V∞, this leads to an effective angle of attack on the wing section
αe . XFOIL then returns a lift coefficient cl . Using the local velocity at that airfoil, a new Γ is obtained. If the
maximum absolute error of the old and new Γ distributions is larger than some predefined limit, Equation
(3.1) is applied to acquire a new Γ distribution, and the cycle is repeated. If, on the other hand, the error
is smaller than that predefined limit, the Γ distribution is returned and the program is terminated. D in
Equation (3.1) is a damping factor. Anderson [27] suggests a value of 0.05. This works well, yet sometimes
unnecessarily low and therefore can result in slower convergence. Therefore, it is implemented as a dynamic
varying factor for faster convergence. The maximum error for convergence is set to 1e−3 for the rest of this
thesis, unless specifically mentioned otherwise.

Γi nput = Γol d +D (Γnew −Γol d ) (3.1)

Using the solution of the program described above, the induced velocity due to the lifting lines can be
calculated at any point in space. A collection of points on the propeller disk can then be evaluated, and used
as input for the propeller forces evaluation program XROTOR, which will be properly introduced in Section
3.2 .

3.1.2. Induced Velocity Verification
In order to verify the code, Python tests have been written. The most relevant tests for our purposes are
described in this section. This includes the induced velocity due to a single horseshoe vortex, a swept back
lifting line and a dihedral lifting line. To be clear, the theory as presented in Section 2.1 is implemented. This
theory is valid for swept and dihedral wings [29].

All cases are wings, represented by a lifting line as discussed in the previous section. Simple unit test cases
are drawn up and tested in the program. In all of the upcoming cases, the wing consists of two lifting lines.

19
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Figure 3.1: Lifting line method solver flowchart
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For example, in Figure 3.3 a verification case is depicted. One lifting line, consisting of one section, is defined
from the left tip (most negative y point) to the origin. The other lifting line is defined from the origin to the
right tip. For each of the lifting lines, the amount of sections per lifting line N= 1. Hence, the lifting line is not
split up in multiple sections. Equation (3.2) is used to draw up unit test values.

Γ= V∞ · c · cl

2
(3.2)

The values to fill this equation are given in Table 3.1. Now an airfoil is needed with cl= 1 at α= 0◦. In that
way, the trailing vortices that stretch into infinity are aligned with the x axis, to simplify calculations. The
value h is a span parameter, and will be indicated in a figure corresponding to a verification case.

Table 3.1: Unit test values

Variable Value

V∞ 1
c 1
cl 1
h 1
Γ 1

2

The most basic case is a single horseshoe vortex with strength Γ and semi-span h, as drawn in Figure 3.2.
The induced velocity by the lifting line is evaluated at point A. The total velocity at point A is V∞ + Vi nd . This
is calculated analytically by hand and numerically by the program. A similar comparison is made for a
sweep case depicted in Figure 3.3, and a dihedral case displayed in Figure 3.4. The results of the comparison
are stated in Table 3.2. The analytical results are expressed as exact numbers if space permitted; Otherwise
rounded to six decimals. As one can see in the rightmost column, the difference, obtained as analytical
number divided by the numerical number times 100, is zero and therefore the lifting lines themselves are
considered to be verified.

Table 3.2: Lifting line verification velocity values at point A

Case Axis Analytical Numerical Difference [%]

x 1 1.0 0
Basic y 0 0.0 -

z − 1
4π -0.079577 0

x 1 1.0 0
Sweep y 0 0.0 -

z -0.129789 -0.129789 0

x 1.071176 1.071176 0
Dihedral y -0.045016 -0.045016 0

z -0.090032 -0.090032 0

The solver is verified by entering a value for the lift coefficient at zero angle of attack cl0 and the lift curve
slope clα . The margin to solve is set to 1e−7, whereas Anderson [27] indicates that 0.01 is enough. This is done
to increase verification accuracy. cl 0 is chosen in such a fashion, that the downwash produced by a lifting line
of strength Γ= 0.5 will result in cl= 1. For example, in the basic case the local angle of attack due to the
downwash is tan−1

(−0.079577
1

)=−4.55◦. The lift curve slope Clα is an arbitrary value of 0.11deg−1. Therefore,
cl0 = 1+4.55 ·0.11 = 1.5005. The results are presented in Table 3.3. One can see in the rightmost column that
the difference is marginal, and therefore the solver is considered verified.

Convergence of number of sections
In the past few cases only one section was used per lifting line. In reality, to obtain a satisfactory lift
distribution from the lifting line method, a line has to be split into numerous sections. Let us determine how
many sections are needed for a whole wing. The result will be used throughout the thesis.



22 3. Numerical Model Setup

Table 3.3: Solver verification velocity values at point A

Case cl 0 Clα [deg−1] Axis Analytical Numerical Difference [%]

x 1 1.0 0
Basic 1.500500 0.11 y 0 0.0 -

z − 1
4π -0.079577 9.830e-4

x 1 1.0 0
Sweep 1.813453 0.11 y 0 0.0 -

z -0.129789 -0.129789 6.619e-5

x 1.071176 1.071176 -3.978e-7
Dihedral 1.560375 0.11 y -0.045016 -0.045016 -5.987e-6

z -0.090032 -0.090032 -5.987e-6

Figure 3.2: Basic horseshoe vortex verification configuration
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Figure 3.3: Sweep horseshoe vortex verification configuration

Figure 3.4: Dihedral horseshoe vortex verification configuration
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In order to be able to estimate the amount of sections needed for the whole wing, convergence for an
elliptic wing is studied. The maximum residual, obtained by comparing the exact Γ solution and the
numerical one, after the solver converged (where the convergence criteria was set to 1e−4) is shown in
Figure 3.5. Since the computational time increases for larger N , the accuracy increase after N= 60 is not
considered to be worthwhile for our applications. Therefore, for a whole wing 60 sections is assumed to be
enough for an accurate solution.

20 40 60 80 100

10−4.00

10−3.00

N

|Γ e
x

a
ct

/Γ
n

u
m
−1

| m
a

x

Figure 3.5: Residual convergence for an elliptic wing
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Figure 3.6: Symmetric AVL verification

AVL roll- and yaw-rate verification
The lifting line code has also been compared with a vortex-lattice method solver , AVL 1, to verify a rolling
and yawing wing solution. It is verified with AVL since an analytical solution for these cases would be hard
to obtain. The evaluated wing has a span of 10 m, a root chord of 1.5 m and a tip chord of 0.5 m. A NACA
2404 airfoil is used at an angle of attack of 0 deg, without any twist, dihedral or sweep. The thin airfoil is used
as an attempt to reduce thickness effects to a minimum, which are neglected by AVL. As this will never truly
succeed, the lifting line code will overestimate CL with respect to AVL. A thicker profile will increase the lift
slope by attaining higher velocities over the airfoil. The symmetric inflow wing lift distribution is shown in
Figure 3.6.
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Figure 3.7: Asymmetric p AVL verification
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Figure 3.8: Asymmetric r AVL verification

As one can see there is a small discrepancy between the lifting line and AVL. The lifting line structurally
over-estimates the lift coefficient, as is expected. Since the lifting line method will be validated in the

1http://web.mit.edu/drela/Public/web/avl/ ; Accessed 16-01-2020

http://web.mit.edu/drela/Public/web/avl/
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upcoming section, no further attention will be directed to this discrepancy since it is not relevant for our
case. The goal of this section however, is to compare roll rate and yaw rate behaviour. Resulting lift
distributions due to roll and yaw rate are depicted in Figures 3.7 and 3.8 respectively. In both cases, the
lifting line code overestimates the lift distribution slightly. This only confirms the trend set in the symmetric
case.

For the rolling wing, p = 20 [deg ·s−1]. The right wing is going downward, increasing its angle of attack. This
will lead to an increased lift coefficient on the right wing. The left wing will have a negative lift distribution,
as confirmed in Figure 3.7. A small discrepancy is visible, yet is comparable with the discrepancy for the
symmetric case. Therefore the solution with respect to roll rate is considered verified.

For the yawing wing, r = 20 [deg ·s−1]. The left wing will have extra velocity, increasing its lift coefficient
with respect to V∞. The right wing will have less velocity, and a decreased CL . This behaviour is confirmed
in Figure 3.7. A small discrepancy is visible, yet is comparable with the discrepancy for the symmetric case.
Therefore the solution with respect to yaw rate is considered verified as well.

3.1.3. CFD Validation
As the lifting line solution will be used to calculate the inflow field on a tip-mounted propeller, the flow field
around the tip of a lifting line wing should be compared to the flow field around the tip of a real wing. Since
such measurements on a full scale wing are very hard to attain, the lifting line solution is compared with a
CFD case. This will lead to discrepancies, as CFD is a viscous simulation, whereas the lifting line is a potential
method, where only sectional viscous effects are incorporated. This CFD solution has been used in Ref. [47],
for the analysis and design of a wing-tip mounted pusher propeller. The that is analysed is the wing of the
Tecnam P2012 Traveller. A top view, where three lifting lines are indicated, is presented in Figure 3.9. This top
view is an altered image from Tecnam2.

Figure 3.9: Validation wing top view including three lifting lines

To be able to validate the lifting line model of the Tecnam wing, the convergence of the model needs to be
determined. Any discontinuities in a wing alter the smoothness of the lift distribution. Therefore, the node
grid needs to be denser near discontinuities. The wing is split up into three lines, called the left tip line, mid
line and the right tip line. Each line then ends at a discontinuity. It is split into sections using cosine spacing,
increasing grid density at the line ends.

The flow field around the wing is largely dependent on the lift distribution. CL convergence is first checked
in Figure 3.10. N is the number of sections per lifting line. Since the wing consists of three lifting lines in this
case, N= 20 means a total of 60 sections over the whole wing. As concluded before, in the convergence study
for the number of sections, 60 sections indicates a converged lift distribution.

Lift distributions resulting from CFD analysis and the lifting line model is presented in Figure 3.11. The
lifting line model overestimates the CL somewhat, however it is close and the shapes are the same. This
indicates that the vorticity created by the wing in both models is comparable, which builds confidence in the
reliability of calculated induced velocities.

Flow Field Comparison
Now that the convergence of the lifting line method for the validation wing is established, the velocity fields
resulting from CFD and the lifting line can be compared. Since the tip area of the wing is relevant to this
research, the centre point of the analysis is defined as 0.07x/c behind the trailing edge of the left tip. By
comparing the induced velocity at different locations behind the wing, the error between the induced
velocities for the CFD and the lifting line case was largest just behind the wing. Therefore this point just

2https://p2012.tecnam.org/technical-specs/specifications/ ; Accessed 12-01-2020

https://p2012.tecnam.org/technical-specs/specifications/
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Figure 3.11: Spanwise lift distribution

behind the wing tip has been chosen, to show the worst case here. Around this centre point tangential and
axial velocities are depicted in Figures 3.12 - 3.15.
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Figure 3.12: CFD induced velocities in t at x/c = 0.07
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Figure 3.13: Lifting line induced velocities in t at x/c = 0.07

Tangential velocities are quite comparable between the two models. The same trends and shapes are
shown, where a circumferential shape can be distinguished for the tangential velocity in Figures 3.12 and
3.13. This does not hold for the wake of the wing. In the CFD case, a wake can be seen in the axial velocity
plots, whereas this wake is not present in the lifting line case. This is because CFD runs a viscous simulation
where a wake forms, and the lifting line method is a potential method, and therefore does not. The ’wake’
of the lifting line case however, which are the trailing vortices, can be clearly seen in the tangential case.
Discontinuities are clearly visible in Figure 3.13. Let us asses the influence of the singularities resulting from
the lifting line code, by comparing the induced velocity of the lifting line code to the CFD case. This is done
by choosing a line from the centre point outwards, where the radial coordinate is described by r/b and the
angle by ξ, as in Figure 3.16, and evaluate the induced velocity on each point of that line.

For ξ = 0,π/4,−π/4 Vi ndt has been evaluated in Figures 3.17 - 3.19. As expected, for ξ = 0[rad] the
singularities have a large influence on Vi ndt . The trend is the same as the CFD line, yet sharp peaks arise. For
ξ= 0.79 or ξ= 5.5, the discontinuities caused by the trailing vortices are absent.

At this point, it is not clear whether the singularities will influence the solution of the propeller force
evaluator. Let us therefore investigate what the influence is on the average cylindrical induced velocity
distribution. Two approaches can be used, and both will be tested further on. The first is to simply average
the induced velocities including the velocities close to the singularities, and the second one is to filter them
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Figure 3.14: CFD induced velocities in z at x/c = 0.07
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Figure 3.15: Lifting line induced velocities in z at x/c = 0.07

Figure 3.16: Induced velocity plots definitions
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Figure 3.17: Induced velocities in t at x/c = 0.07 and ξ=0.0
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Figure 3.19: Induced velocities in t at x/c = 0.07 and
ξ=−π/4 [rad]

out. In the filtered version, since at ξ = π/4 and ξ = −π/4 the influence of the singularities is absent, t and z
velocity components are cylindrically averaged between ξ = π/4 and ξ = −π/4. This filtered version will be
denoted by "Lifting line filtered" in the following analysis.

In Figures 3.20 and 3.21, the averaged cylindrical velocities in t and z are displayed. As expected from the
contour figures, the trend of the average velocities in t is the same as for the CFD case, except very close to
the tip vortex’ core. Around r/b= 0.01, the three lines nearly overlap. With increasing r, lifting line and CFD
agree more and more, where the filtered lifting line is underestimating Vi ndt compared to CFD. Even though
discontinuities due to the trailing vortices are clearly visible, the unfiltered lifting line seems to perform better
than the filtered version.

With respect to the axial velocity component, these do not match as well since the turbulent wake is not
present in the lifting line model. However, the effect of the axial component with respect to the free-stream
is very small. The largest is error is also near the vortex core. At larger values of r the induced axial velocity is
degrading, and the lifting line and CFD method indicate it to reduce to 0.
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Figure 3.20: Averaged induced velocities in t at x/c = 0.07
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Figure 3.21: Averaged induced velocities in z at x/c = 0.07

The effect of the discrepancy between the CFD induced velocity solution and the one obtained by the
lifting line solver will be evaluated by comparing the solution of the resulting propeller force and power due
to these two inflow fields. The propeller force and power will be evaluated using a program, which is defined
in the following section. This program is XROTOR, where a combined blade-element momentum vortex
method is used. Even though the program has not yet been properly introduced, it will be used to evaluate
the thrust and power coefficient on the propeller to compare the CFD and lifting line inflow fields. In this
thesis the decision is made to first close the lifting line subject, before moving on to the propeller. If the
reader wishes more information about XROTOR before this comparison, the reader is referred to Section 3.2.

Effect on XROTOR output
The flow fields (filtered and unfiltered) due to the lifting line wing are known. The validation data from CFD
is also a flow field, which differs slightly from the lifting line flow field. Since the flow field is used for
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propeller force and power estimations, these force and power parameters will be used to quantify the impact
of differences in the induced flow-fields on the resulting computed propeller forces.

The flow fields have been averaged into single values per radial station, which is the input format for
XROTOR. Since the error is largest for a small propeller diameter and close to the wing, the analysis is done at
X=1.13 (around 10cm behind the wing trailing edge), with a propeller diameter of 1m and a propeller blade
pitch of 30 [deg]. The following flows are analysed:

• CFD
• Lifting line
• Lifting line (filtered)
• Uniform inflow field of V∞

CT and CP values for the previously described propeller and location for the aforementioned flow fields
can be found in Tables 3.4 and 3.5 respectively.

Table 3.4: XROTOR CT values for different inflow fields at X=1.13

J=1.0 J=1.2 J=1.4 J=1.6 J=1.8

CFD 0.27011 0.17574 0.07925 -0.02463 -0.13931
Lifting line 0.26736 0.17148 0.07321 -0.03299 -0.14959
Lifting line (filtered) 0.26551 0.16964 0.07141 -0.03484 -0.15115
None 0.23951 0.14029 0.03748 -0.07298 -0.19307

Table 3.5: XROTOR CP values for different inflow fields at X=1.13

J=1.0 J=1.2 J=1.4 J=1.6 J=1.8

CFD 0.34782 0.24037 0.14318 0.03546 -0.08785
Lifting line 0.34533 0.23647 0.13738 0.02718 -0.09855
Lifting line (filtered) 0.34309 0.23421 0.13501 0.02457 -0.10121
None 0.31246 0.20208 0.09687 -0.02014 -0.15311

For both the positive as the negative CT regime, the values correspond quite well, where the thrust
coefficients from the unfiltered lifting line inflow field correspond best with the CFD inflow field.
Furthermore, one can conclude that it is worthwhile to include the inflow field for the propeller analysis as
the uniform inflow field is structurally off in CT and CP estimation. A normal operating condition for this
propeller would be an advance ratio of 1 and a blade pitch of 30 [deg]. At that point the discrepancy between
the lifting line method and CFD is very small. Larger errors are introduced when the blade is far off its
normal operating point. In that case the blade angle is far into the negative regime, and XROTOR is working
with stalled polars. Small fluctuations in Vi ndt and Vi ndax will be amplified at this point by XROTOR. Even so,
the trend is still correct.

The induced velocity fields by the lifting line method and CFD are comparable with a small discrepancy.
This small discrepancy leads to a 3e−3 error in CT for normal operating conditions, and a 1e−2 error for
extreme off-design operating conditions. For the scope if this study such errors are considered to be small, as
only low-fidelity tools will be used. The accuracy of this method does not prevent us from drawing credible
conclusions from trends of parameter sweeps. For a quantitative analysis of the inflow field the lifting line
method is therefore considered validated.

3.2. Propeller Forces with Blade-element Analysis
From the lifting line model in the previous section a velocity field is obtained. This has to be used as input for
XROTOR 3, which will evaluate the thrust and power of the propeller. The resulting force and power can then
be applied to a flight mechanics model.

In this section first a tool will be selected with which the forces and the power on the propeller can be
evaluated. All the inputs will then be defined, along with the fashion in which outputs are handled and saved.

3http://web.mit.edu/drela/Public/web/xrotor/ ; Accessed 16-01-2020

http://web.mit.edu/drela/Public/web/xrotor/
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3.2.1. Evaluation Tool Selection
Section 2.2 presented multiple methods to evaluate the forces on a propeller. These methods have been
implemented in computer programs, that allow for quick evaluation of propeller forces. As both thrust and
drag (reverse thrust) are important parameters for this thesis, a method should be selected that calculates
thrust and drag in an accurate manner. Tools that incorporate these methods from Section 2.2 are JavaProp,
XROTOR and an in-house tool. JavaProp uses a simple blade element momentum method. XROTOR
incorporates multiple options; A graded momentum formulation that is suitable for low advance ratios
and/or many blades, and a potential formulation that is more computationally expensive. This incorporates
an extension of Goldstein’s two and four blade solution for the helically-symmetric potential flow about a
rigid helicoidal wake. Furthermore, a BEM program is available as presented by Veldhuis [6] in his doctorate
thesis, which (in contrast to JavaProp and XROTOR) can handle yawed inflow angles. This tool however is
not as widely used as XROTOR.

A comparison between blade-element models of propellers has been done by Gur and Rosen [35]. This
is an in-depth validation of methods described by Theodorsen, McCormick, a simplified momentum, and a
lifting line method. The article recommends to use the simplified-momentum model, as it is computationally
efficient with reasonably high quality results. One should turn to the lifting line free wake method for highly
loaded propellers or in static operation as the wake is then more important. As stated previously, XROTOR
incorporates both methods.

XROTOR has been used extensively at the TU Delft. Examples of this tool being used in-house can be
found in Ref. [48, p. 31] and Ref. [49, p. 8]. Here, XROTOR is validated with respect to test measurements
of the N250 propeller, and shows deviations of CT and CP of 10% at most. JavaProp has been tested as well,
and shows worse performance than XROTOR. XROTOR evaluates a propeller in a matter of seconds, which
enables large design space explorations and allows accurate tabulation of aerodynamic forces and derivatives.
Therefore, XROTOR is chosen as the propeller evaluation tool.

Theoretically, the methods presented in Section 2.2 are valid for both propulsive as
drag-generating/recuperating propellers. The differences are that for recuperating propellers the local blade
angle of attack generally is negative, and that the slipstream is expanding instead of contracting. Therefore,
theoretically, the tools mentioned above should be valid in the recuperative regime. XROTOR has been
compared with CFD in a recuperating regime. In Figure 3.22 one can see that discrepancies for CT are small
(i.e. within 10%), however deviations for CP are larger. For this research the extracted power from the flow is
not relevant. For further validation data the reader is referred to Ref. [50], where the propeller used is
described in Ref. [51].

Figure 3.22: Wind-milling propeller performance CFD - XROTOR comparison [42]



3.2. Propeller Forces with Blade-element Analysis 31

3.2.2. Isolated Propeller Performance
Since the research is a feasibility study, and general forces are important, the propeller should be applicable to
the situation chosen. It does not necessarily have to be the propeller of the base-line aircraft, as the aircraft is
modified and not redesigned. It is important that the propeller geometry is known, and that its performance
can be validated. Therefore, the N250 propeller geometry is chosen as it is available in-house and used for
multiple studies (e.g. Ref. [52] and the references mentioned above). It is depicted in Figure 3.23, where the
mentioned dimensions are in millimetres. For our purposes the propeller is scaled along all axes to some
diameter.

Figure 3.23: N250 propeller layout from Ref. [52]

The propeller will be evaluated over a large range of βp and J . To be able to judge whether calculated
thrust is feasible, the isolated propeller should first be evaluated. This will also give an indication of the
intended operation range of the propeller.
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Figure 3.24: Isolated N250 performance parameters

In Figure 3.24 the performance (CT and CP ) of the N250 propeller is depicted. Used parameters are D=
1[m], and V∞= 40[m/s]. It becomes clear that XROTOR is capable of solving a wide range of βp and J . In the
right graph, CP is plotted. The slope is quite linear at some points, yet it begins or ends with a curve. When
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Figure 3.25: Isolated N250 efficiency

the line starts to curve, the blade is starting to stall. First of all, the stalled range is inefficient and should
therefore not be used. However, within the stalled regime the BEM method’s accuracy becomes questionable
as 3D effects become more prominent. Therefore, bounds are introduced on βp and J to remain confident
in the results for the propeller’s performance. These are tabulated in Table 3.6, and selected by the suspected
reliability of convergence, based on the variability of neighbouring solutions. The values are obtained by
inspection from Figure 3.24.

Table 3.6: N250 propeller operating boundaries

βp [deg] J mi n[−] J max [−]

5.0 0.5 1.5
10.0 0.5 1.8
15.0 0.5 1.8
20.0 0.5 2.3
25.0 0.5 -
30.0 0.5 -
35.0 0.5 -
40.0 0.5 -

ηp = J · CT

CP
(3.3)

Propeller efficiencyηp is plotted in Figure 3.25 using Equation (3.3). The legend of Figure 3.24 is applicable
to this figure as well. Lower blade pitches are more efficient at low advance ratio’s, and higher blade pitches at
higher advance ratio’s. This graph can be used during this thesis to check whether an operating point of the
propeller is a nominal operating point or not. According to this graph, anywhere between J= 0.7 and J= 1.8
nominal operating points can be obtained by varying βp .

3.2.3. Propeller Force Parameter Definition
The wing’s lift distribution alters the inflow field of the propeller. An inviscid vortex method is used to
calculate the flow field around the wing, to alter the inflow of the propeller. The output of this flow field
should be compatible with the input format of XROTOR. This format is described in Table 3.7, where radial
profiles of axial and tangential induced velocity without circumferential variations are indicated. Therefore
the wing flow field needs to be converted into this format, by one of the following two options.

1. Sum all trailing vortices to two wing tip trailing vortices and use the velocity field resulting from these
vortices
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2. Calculate the velocity field from the trailing vortices as in Section 2.1, and average the input to a single
radial distribution

Since the lifting line method is the chosen method to evaluate the wing, where its trailing vortex sheet can
be readily evaluated for the second method, this method is chosen. The images of Section 3.1.3 show that
circumferentially averaging the tangential and axial velocities is a good option.

Table 3.7: XROTOR slipstream input format 4

R(1) Vaxi al (1) Vt ang (1)
...

...
...

R(N) Vaxi al (N ) Vt ang (N )

Propeller forces need to be obtained for the dataset to be filled. This needs to be done with respect to the
input of the wing flow field, which is a function of α, p and V∞, and all propeller geometry and thrust setting
inputs. Except for blade pitch angle βp and diameter D , these inputs can be formatted to a short form, as the
speed vectors, rotations around the rotational axis, and RPM input can be compiled into a propeller angle
of attack αp and advance ratio J . Effects of rotations normal to the rotational axis are assumed to be small
in comparison with the incoming flow velocity. The propeller inputs are summarised in Equation (3.4). The
outputs are thrust T , power P and normal force Y . The normal force does not necessarily have to be in the
y direction as the normal force can always be expressed as a single force magnitude. Pitching and yawing
moments produced up to an angle of attack of 30◦ are considered negligibly small [53].

T,Y ,P → f
(
α(t ), p(t ),V∞(t ),βp (t ),αp (t ), J (t ),D

)
(3.4)

A limitation of XROTOR is that it can not be used for yawed inflow angles. An engineering method is
presented by De Young [38] based on the work of Ribner [39]. This empirical method is compared with
experimental values for the normal force coefficient [6] as in Figure 3.26. The experimental values are
obtained from the references indicated in this figure, where R1 denotes the propeller used in the reference
indicated by R1. One can see that for R1 and R3 results are accurate; Unfortunately the document of R2
could not be retraced. Table 3.8 gives the parameter range in which this method is acceptable (typical errors
within 15%). The values in this table appear to be determined experimentally. It should be noted that
negative values for the thrust coefficient are outside of the parameter range. The formulas presented are
obtained from Ref. [39], where no limitations are imposed on the empirical formulae. It is therefore assumed
that negative values are simply not tested. For validation data for this method the reader is referred to Refs.
[38, 39, 53–57].

Table 3.8: Yawed propeller inflow estimation method parameter range [6, p. 46]

Parameter Range
Number of blades, B 2 ≤ 10
Effective solidity, σe f f /B 0 ≤σe f f /B ≤ 0.08
Propeller effective AoA, αp αp≤ 20[deg]
Mach number, M M ≤ 0.4
Thrust coefficient, CT CT > 0
Blade pitch angle, βp βp≥ 5[deg]
Loading Low to moderate

XROTOR is called from a Matlab wrapper. By varying all input parameters over some range using a Python
object, a 7D table is filled containing T , P and Y . The axes of this table are the variables on the right hand
side of Equation (3.4). The table will only be evaluated for the right wing tip, since the left hand side can then
be simply mirrored to extract the corresponding forces.

Output Dataset Post-processing
When the dataset is evaluated, XROTOR sometimes fails to solve the propeller situation. These are values
that should be readily solvable by XROTOR, however apparently are not. Such values are interpolated, since

4http://web.mit.edu/drela/Public/web/xrotor/xrotor_doc.txt ; Accessed 04-10-2018

http://web.mit.edu/drela/Public/web/xrotor/xrotor_doc.txt
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Figure 3.26: Normal force coefficient variation with angle of attack. R1=Ref.[54], R3=Ref.[55]. Obtained from [6, p. 47]

the trends in the propeller forces will appear to be very predictable in Chapter 4. This interpolation is done
in a cubic fashion in a plane of J and βp , using SciPy’s interpolation software 5. Before this interpolation
is performed, first data points outside of the propeller boundaries determined in Table 3.6 are deleted. For
blade pitches that are not incorporated in the table, the corresponding advance ratios have been linearly
interpolated. Then, only holes that have larger and smaller solved values in J and/or βp are interpolated. An
example is given in Appendix A. The corrected dataset as defined here is used in the remainder of this report.

3.3. Implementing Propeller Forces into a Non-linear Flight Mechanics
Model

Propeller forces should be implemented in the flight mechanics model. This is done by generating a dataset
in the fashion described by the previous section. The inputs of this database, as stated in the aforementioned
section and defined in Equation (3.4), should be linked to the states that are available within the aircraft’s
flight mechanics model. This is a modelling step. Therefore, first we will discuss what effect the aircraft state
has on the force of the propeller. We then arrive naturally at the assumptions, which then is followed by how
the remaining effects are implemented in what fashion. The section will be concluded by the transformation
of the propeller forces to the aircraft’s body frame.

Influence of the Aircraft State on the Propeller Forces
In the used flight mechanics model, there are 12 aircraft states. The ones relevant for this section are listed
below.

• u : Aircraft X-velocity in the body frame
• v : Aircraft Y-velocity in the body frame
• w : Aircraft Z-velocity in the body frame
• p : Aircraft angular velocity along X-axis in the body frame
• q : Aircraft angular velocity along Y-axis in the body frame
• r : Aircraft angular velocity along Z-axis in the body frame

The remaining six state variables, which are the aircraft’s orientation in space, are not directly relevant for
the forces on the propeller.

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html ; Accessed 12-12-2019

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
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Angles are easier to visualise than decomposed velocities. Therefore V∞, α and βs offer a more natural
perspective of discussion, and these will be used in this section as state variables instead of u, v and w . For
each of the relevant state variables, the effect on what the propeller experiences is stated in Table 3.9.

Table 3.9: State variable implications on propeller forces

State Effect

V∞ The free-stream airspeed directly influences the mass flow through the propeller disk. Furthermore,
if the propeller RPM is kept constant, the advance ratio is affected. Finally, the free-stream airspeed
directly influences the induced velocities around the wing.

α Alters the wing lift distribution, and hence the induced velocities. Furthermore, the angle of attack
on the propeller is influenced.

βs Alters the wing lift distribution by introducing extra downwash on the lee semi-wing, and hence the
induced velocities. Furthermore, the angle of attack on the propeller is influenced.

p Alters the wing lift distribution and hence the induced velocities by increasing the local angle of attack
on the down-going wing, and decreasing the local angle of attack on the up-going wing. Furthermore,
the angle of attack on the propeller is influenced. Finally, influences the thrust on the propeller due
to rotational motion.

q Influences the thrust on the propeller due to rotational motion.
r Alters the wing lift distribution, and hence the induced velocities by adding velocity to the forward-

going wing and decreasing velocity on the aft-going wing. Also influences the velocity felt by the
propeller, and therefore its advance ratio and thrust.

Propeller Model Assumptions
The state of the model has to be linked to forces on the propeller by the input variables as described in Section
3.2. Some assumptions have to be made with respect to the interaction of the wing and propeller, where the
largest effects are incorporated into the model. Other assumptions are included to keep the size of the dataset
manageable, where also the largest effects are taken into account. All assumptions will be checked for their
validity in Section 4.2. These assumptions are listed below, followed by a brief discussion on the expected
effect of these assumptions:

• The propeller has no influence on the flow field around the wing. This means that the upstream
effect of the pusher propeller is neglected, resulting in an incorrect circulation over the wing. The error
is expected to be small, since most velocity effects are right in front of the propeller [45]. In Ref. [45]
section measurements are done with a pusher propeller with a high thrust setting to simulate take-off
conditions, where the increment in cl was between 0.1 and 0.2.

• The angle of attack of the propeller with respect to the free-stream is equal to the wing angle of
attack. As the tip vortex of a wing folds up, it generally travels in the direction of the free-stream [29].
Therefore, the effect of this assumption is deemed small

• The yaw angle of the whole aircraft is the same as the local yaw angle at the propeller. According
to lifting line theory as described in Section 2.1, whether a wing is in yaw or not does not change the
airflow. The flow will not be axially accelerated by the trailing vortices of the lifting line, yet the flow will
be accelerated in spanwise directions (outboard acceleration on the lower side of the wing, and vice
versa on the top side of the wing). Therefore the average local angle of sideslip over the propeller disk
will be equal to βs .

• The propeller inflow field is not influenced by yaw-rate. As the tip speed variation due to yaw-rates
with respect to the free-stream is small, the influence on the lift distribution is small as well. However,
the advance ratio J that the propeller feels is different, resulting in a different thrust. Therefore, the
variation of J due to r will be implemented in the model, yet the induced velocity inflow field for the
propeller will not be implemented. By converting yaw-rate to a new J , the resulting thrust alterations
due to r are believed to be captured.

These assumptions will be reflected upon in Section 4.2.



36 3. Numerical Model Setup

Obtaining Propeller Input from State Variables
As the effect of the states on the propeller inflow field is now known, one can move to deciding how to
incorporate each of these effects, or whether an effect is too small and therefore can be neglected. The
propeller input needs to be calculated from the aircraft’s state. This step is the modelling step, and hence a
crucial one. Therefore the implementation of obtaining the propeller inputs from the aircraft’s state are
described in Table 3.10 for a clear overview on this modelling step. The variable ’wing induced velocities’
denotes the inflow field which is used by XROTOR to calculate the propeller forces, and which is a result of
the induced velocities due to the lift of the wing.

Table 3.10: Propeller input modelling description with respect to state variables

Variable description Modelling description Simplifications

Wing induced velocities The wing lift distribution is obtained
using the aforementioned lifting line
method in Section 3.1. The lift
distribution depends on α, p, V∞ and
ρ, where the last two are used to
calculate Re. V∞ is also used to obtain
the induced velocities Vi nd .

Effect of the propeller on the wing lift
distribution is neglected.

Propeller inflow speed Equal to V∞. Is used to
nondimensionalise the wing-induced
velocities.

Total airspeed changes due to p, q and
r are neglected so the velocity inflow
field remains the same as assumed.
These effects are small in comparison
to V∞.

Propeller advance ratio Depends on the local true airspeed of
the propeller and the rotation speed of
the propeller. The local true advance
ratio is obtained by correcting the free-
stream airspeed using r , as in Equation
(3.9).

-

Propeller angle of attack Must be a total, absolute angle of
attack. It depends on the angles α, βs ,
εT MP , and the angle resulting from p.
All these angles are compiled to a single
absolute propeller angle of attack.

As the effect of q is marginal due to
the small moment arm, it is neglected.
Since the contribution of r to the total
velocity is neglected, the contribution
in the total angle of attack is neglected
as well.

Now that the modelling and implementation is described, the mathematical relations that are
implemented into the flight mechanics model are presented here. All parameters that are an input for the
dataset resulting from (3.4), are listed below. As said before, the dataset is generated for the right wing tip
only. Therefore the following list will describe how the inputs are linked for the right wing tip. For the left
wing tip v , p, r is the right tip value multiplied by -1. The subscript t denotes the tip, where the axis system is
oriented as a body fixed frame, yet translated to the wing tip.

• α : From Equation (3.5).
• V∞ : From Equation (3.6).
• p : From aircraft state.
• αp : The total propeller angle of attack is obtained from Equation (3.7), where the subscript t denotes

the wing tip. u, v , w are obtained from Equation (3.8).
• βp : From the input variables.
• J : From Equation (3.9), where n and D are input variables.

α= arctan
( w

u

)
(3.5)

V∞ =
√

u2 + v2 +w2 (3.6)
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arctan


√

v2
t +w2

t

ut

 (3.7)

ut = u ∗cos(εT MP )− v ∗ sin(εT MP )

vt = u ∗ sin(εT MP )+ v ∗cos(εT MP )

wt = w +p ·b/2

(3.8)

J = v∞− r ·b/2

n ·D
(3.9)

Resultant Force and Moment in Aircraft Body Frame
Propeller thrust T , normal force Y and power P can now be calculated. Since the dataset only contains values
at the nodes of the dataset, the values need to be interpolated. This is done linearly by Matlab, using the built-
in function griddedInterpolant6. If the aircraft goes outside of the range determined by the dataset, values are
extrapolated only if at least the last two entries of the dataset in that axis are filled.

These values returned by the dataset are magnitudes without a direction. The forces are decomposed in
the propeller reference frame by Equation (3.10). To avoid a singularity in Simulink, the decomposition of Y
is only used if it is larger than 1e−13.

Now they need to be rotated back to the body fixed frame. This is done using Equation (3.11).
Corresponding moments are evaluated using Equation (3.13), where the tip mounted force is defined as in
Equation (3.12). For the left wing, Yb is multiplied by -1.

Xp = T

Yp =
Y · vt√

v2
t +w2

t

, if Y ≥ 1e−13

0, otherwise

Zp =
Y · wt√

v2
t +w2

t

, if Y ≥ 1e−13

0, otherwise

(3.10)

Xb = Xp ·cos(εT MP )−Yp · sin(εT MP )

Yb = Xp · sin(εT MP )+Yp ·cos(εT MP )

Zb = Zp

(3.11)

~FT MP =
Xb

Yb

Zb

 (3.12)

~MT MP =
(

~rT MPle f t − ~rcg

)
× ~FT MPle f t +

(
~rT MPr i g ht − ~rcg

)
× ~FT MPr i g ht (3.13)

The output force and moment of these equations can be readily used as an input for the original Simulink
Piper Seneca model.

The whole method described above has another benefit. The TMP forces and moments are implemented
as a module, which can be easily enabled, disabled and parametrised. This makes it easy to implement on any
other aircraft that is defined in Simulink. Furthermore, since the original model is untouched, the relations
between the verified and validated aircraft model, and the propeller model are very clear. This enhances
confidence in the model’s accuracy, as the neglected influence of the propeller on the rest of the aircraft is
small.

On the other hand, this limits the ability to parametrise aircraft parameters in the model. The original
model is based upon Ref. [24], which does not state the fashion in which all force and moment coefficients
are obtained. Therefore, if any changes to the aircraft itself are wished to be made, all other parameters have
to be re-evaluated.
6https://nl.mathworks.com/help/matlab/ref/griddedinterpolant.html ; Accessed 29-12-2019

https://nl.mathworks.com/help/matlab/ref/griddedinterpolant.html
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3.3.1. Verification by a Trim Analysis
The flight mechanics model is verified by selecting multiple points from a flight path, and calculating the
inputs for the TMPs by hand from the aircraft’s state. The values found matched the ones that were used as
input for the propeller forces in the model. Then, the dataset interpolation at these points was compared
with values from Python, which also were the same. Finally, the resultant forces and moments for both the
left as right are cross-referenced in Python and Matlab. These matched as well.

To see whether the new forces were integrated correctly in the trim module, a trim analysis is performed.
In Figure 3.27 one can see trimmed required roll angle φ for a steady side-slipping flight with βs= 20[deg] on
the left, and the trimmed flight path angle forβs= 0[deg] on the right, where in both cases the original engines
are set to idle. In both analysis the blade pitch βp is varied as the control variable for the propeller. The flight
speed is set to 40 m/s, corresponding to the landing speed. The dotted line indicates the trimmed angle of
the original aircraft, denoted by a propeller diameter of 0 in the legend.
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Figure 3.27: Trimmed flight angle variations due to βp

In the left figure, where the roll angle is denoted, one can see that more roll angle is needed with respect
to the original aircraft, irrespective whether the propeller is generating thrust or drag. More thrust does
indicate more roll angle in a linear fashion, which is favourable for control purposes as stated in Ref. [58]. At
propeller pitch angles between 30[deg] ≤βp≤ 35[deg] the trimming routine attains other local minima,
where apparently the normal force in the dataset is a bit lower. Since the rest of the graph is so extremely
linear, outliers are spotted quickly and will not form a problem.

The right figure shows the trimmed flight path angle without any sideslip. The minimum attainable glide
slope gives an idea of TMP as air brakes. According to the slope of the graph when approaching βp= 10deg,
the slope can be even lower if the propeller is set to a finer pitch setting.



4
Analysis of Propeller Force Inputs

The model to obtain propeller forces in Section 3.2 is evaluated, resulting in a 7D dataset. This dataset will
be applied to the flight mechanics model. In order to understand what is happening in the flight mechanics
model, we need to understand the sensitivity of the propeller forces to the different variables considered.
These variables are defined in the previous chapter, and are as follows:

• α, wing angle of attack
• V∞, magnitude of the free-stream velocity
• p, aircraft roll rate around the x-axis in the body frame
• D , propeller diameter
• αp , local propeller angle of attack
• βp , propeller blade pitch
• J , propeller advance ratio

This chapter will provide insight into the behaviour of the propeller dataset, and discuss its viability and
limitations. Then the forces will be converted to a yawing moment, to discuss the control force potential of
tip-mounted propellers.

4.1. Parametric Propeller Force Dataset Visualisation
The forces dataset that is passed to the flight mechanics module is a 7D table. If the dataset is simply
integrated to the flight mechanics model, the table becomes a black box. Therefore it is important to verify
the found values, and to locate potential flaws.

To see the influence of different parameters on the resulting propeller force, a parametric sweep is done
along all the seven axes. Since propeller parameters might give a different behaviour in different flight
situations, multiple flight cases are evaluated. During flight the speed will vary, which is why a slow and a
fast case are evaluated. However, as the propeller might be counter- or co-rotating with respect to the
wing-tip vortex (explained in Section 2.2), the two rotation senses are evaluated as well. This will therefore
lead to four different cases:

• Slow flight (40 m/s), counter-rotation
• Fast flight (80 m/s), counter-rotation
• Slow flight (40 m/s), co-rotation
• Fast flight (80 m/s), co-rotation

The corresponding flight speeds have been obtained from the Piper Seneca aircraft manual [26], where
the slow speeds are obtained from the landing phase, and fast speeds from the fast cruise point. At these
typical flight points, the sensitivity to parameters is the most important. This is indicated by the equations in
Section 2.4.3, where the simplified linearised eigenmotion solutions indicate what force and moment
derivatives influence the eigenmotions. To show the force variation throughout the range of the dataset, one
parameter is varied over the range of the dataset, and the other variables are kept constant at some
predefined point in the dataset. This is insightful, yet will not offer insights in the interactions between

39
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parameters. All ranges are composed in such a way that the entire flight envelope should be reachable. The
ranges and initial values are tabulated in Table 4.1. Initial, mid point values are determined arbitrarily, such
that feasible numbers will be obtained.

Table 4.1: Initial values and bounds for propeller dataset

Unit Low speed High speed Range min Range max

α [deg] 5.0 0.0 0.0 15.0
V∞ [m/s] 40.0 80.0 30.0 80.0
p [rad/s] 0.0 0.0 -0.52 0.52
D [m] 1.25 1.25 0.5 2.0
αp [deg] 0.0 0.0 0.0 60.0
βp [deg] 30.0 40.0 10.0 40.0
J [-] 0.9 1.4 0.4 2.5

All parameters are nondimensionalised in the upcoming visualisation. This is done by applying Equation
(4.1), where f is the parameter fraction, and peval is the to-be evaluated parameter value. Since this parameter
fraction will be used throughout the thesis, let us review its working with a short example. In Table 4.1 the
range for α is defined from 0 [deg] till 15 [deg]. For this parameter, f = 0 denotes the minimum of the range,
hence 0[deg]. On the other hand, f = 1 denotes the maximum point of the range, 15[deg]. A value of f = 0.33
would result in α= 5[deg].

f = peval −pmi n

pmax −pmi n
(4.1)

Figures that result from this sensitivity analysis can be found throughout Figures 4.1 - 4.4. All data points
are indicated with a marker. One should note that the gradient due to some variable should always be
interpreted with respect to the range it is defined on. If in one of the graphs a line shows a steep gradient,
this might be due to a large range for that parameter.
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Figure 4.1: Low speed counter-rotating propeller force parameter sweep

The results provided in Figure 4.1 follow the expected trends. Table 4.2 summarises the trend for each
parameter individually. When applying the expectations from this table with the aforementioned figure, all
of the listed points behave as expected. At high βp the TC∗ response curve becomes curved due to stall onset.
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Furthermore, at low J either no solution was found, or it was limited by the boundaries as defined by Table
3.6, where a confidence-region was defined for βp and J combinations.

Table 4.2: Expected parameter effect on propeller thrust force for counter- and co-rotation

Parameter Propeller force influence

α A higher angle of attack will increase the local lift coefficient on the wing sections. Since the
lift distribution will go to zero at the tips, the decay in lift distribution towards the tip will be
stronger. This will result in a stronger tip vortex. Since the propeller is rotating in an opposite
sense to the wing tip vortex, this will in turn increase the local blade angle of the propeller, and
hence increase the thrust. In a co-rotation case, the opposite is expected.

V∞ TC∗ is nondimensionalised. The impact of V∞ is therefore expected to be limited. However,
as the flight speed does influence the Reynolds number, TC∗ might change with V∞. As
generally a higher Reynolds number leads to a higher CL , the circulation of the tip vortex will
be increased. Furthermore, as the advance ratio is kept constant in this analysis, and the flight
speed increased, the Reynolds number of the propeller will go up as well. This might also lead
to additional thrust.

p As the propeller is only evaluated at the right wing tip, the more positive p, the higher the local
α at the right wing tip. As the wing tip vortex increases in strength with increasing α, the thrust
is expected to increase with roll rate. The opposite will happen for the co-rotating case.

D Increasing diameter will increase the propeller disk area. If all geometric and inflow properties
stay the same, this will also scale the thrust. Also, if the diameter gets larger, the the tips of the
propeller will be farther away from the wing tip vortex core. Since the propeller gains thrust
performance with enhanced tip circulation, the farther away from the wing tip vortex core, the
less thrust on that blade section. Therefore, enhancement of the propeller performance will
degrade with increasing propeller diameter. If the propeller performance is degraded by the tip
vortex, increasing the diameter will increase propeller performance.

αp The thrust is expected to increase with the local angle of attack on the propeller, following the
applied empirical formulae obtained from Ref. [38].

βp The higher the blade pitch, the higher the local angle of attack on any blade section. Therefore
the thrust of the propeller is expected to increase with blade pitch, until the blade section begins
to stall. This stalling can happen for both positive and negative inflow angles. So stall can occur
at both high and low βp values.

J Thrust decreases with increasing advance ratio, as the average inflow angle on the blade
decreases.

Figure 4.2 shows a slightly sparser dataset. This is an indication to a limitation of the approach used. If
values are out of bounds according to the N250 propeller limits as defined by Table 3.6, or were not solvable
nor interpolatable, nan values are returned by the dataset. This occurs for example at low J values. Since
TC∗ due to some αp is calculated from CT at the effective advance ratio J ·cosαp as defined in Equation (2.7),
the curve of αp is also limited. With respect to the slow curve, the effect of p has decreased. This is because
the parameter p is given as a dimensional parameter to the dataset creator. The nondimensionalised version
p ·b/(2 ·V ) would have been better, yet the line that can be fitted through these points (for the slow case in
Figure 4.1) is so straight that extrapolation is believed to be reliable. Since α is a nondimensional value, its
effect is maintained for this fast case. One should note that the evaluated points are all parameter sweeps
from some midpoint. Hence since βs is now set to 40 [deg], low J values are not attainable. However, if the
blade pitch is decreased, lower advance ratios will become available.

In the co-rotation case, the whole dataset is shifted down, since the propeller now rotates with the tip
vortex instead. This is detrimental to the thrust, yet boosts the performance in the drag regime.

The trends for the input parameters are the same for co-rotation, except for α and p. The TC∗ variations
due to the input parameters are depicted in Figure 4.3. With increasing angle of attack, the tip vortex becomes
stronger, and since the propeller is now rotating along with the tip vortex, the thrust will decrease. The same
holds for p.

Figure 4.4 provides us with another insight. If the D line is followed, a slightly sharper slope change with
increasing D than in Figure 4.2 is observed, hence the sensitivity of TC∗ with D has increased. This can be
explained that the tips of the propeller blade reside in air that is less influenced by the tip vortex, hence air
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Figure 4.2: High speed propeller force variations, counter-rotation
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Figure 4.3: Low speed propeller force variations, co-rotation
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with less negative effects of co-rotation, resulting in more thrust.
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Figure 4.4: High speed propeller force variations, co-rotation

Since the parameters behave as expected, confidence is built to use these propeller forces in the upcoming
analyses. As the magnitudes of the forces is now known, we can review the validity of the assumptions made
to enhance our confidence in the propeller forces.

4.2. Assumptions Review
Now that the propeller forces are calculated, we can reflect on the assumptions stated in Section 3.3. In order
to do so, a typical situation is chosen and evaluated to see whether the violation of the assumptions is within
reasonable bounds. One has to note that this section is not meant as a definitive proof that the assumptions
hold, yet more as a sanity check. Wherever applicable, simulations are done in this section with the original
wing of the Piper Seneca, and/or the N250 propeller with D= 1.25[m].

Propeller influence on wing flow
As the propeller is situated behind the wing, the influence of the propeller on the aerodynamic forces on the
wing is considered to be limited [45]. This assumption has effect on the lift and drag of the tip of the wing.
The drag of the wing itself will affect the flight performance most and have limited effect on the stability and
control behaviour. Therefore, we will focus on the wing lift change. A simple and rough calculation of the
wing lift change and its implications will follow.

The lift change of the wing due to added velocity of a single TMP, hence for either the left or right
tip-mounted propeller, can be calculated using Equation (4.2), where K denotes the fraction of total speed
change occurs at the aerodynamic centre of the airfoil. As half of the airflow speed change occurs before the
propeller, and half after, in the worst case K = 0.5. Since the top part of the fraction is largest when the
aircraft is flying slow, an airspeed of 40 [m/s] is used in the following analysis.

∆L = D
(
(Vinf +K ·∆V )2 −V 2

inf

)
4

ρCLc (4.2)

T = ṁ ·∆V (4.3)

Combining this equation with Equation (4.3) for the speed change∆V , and taking a total thrust of 2000[N],
combined with a slow-flying cruise CL = 1.05 at ground level, the change in lift is 971[N], which is 4.9% of
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the total wing lift. In symmetric situations, this is then comparable to a change of ∆α = ∆CL/CLα = (1.05 ·
0.049)/0.11 = 0.46[deg]. Considering that this evaluation is the most extreme case encountered, neglects that
the lift coefficient at the tips will drop, and takes the maximum value possible for K , this angle of attack
change is considered small and hence negligible. The value of 2000[N] comes from taking the reference mass
of the aircraft (2000[kg] [26]), dividing over a lift over drag ratio of 10. Now, considering that the increase in
cl for the wing section that is affected by the pusher propeller is limited to 0.2 according to Ref. [45], where
the effect on cl for a pusher propeller with a larger diameter than the chord was tested with take-off thrust
settings, whereas in our example the cl has increased with 1.05, the assumed factor K is greatly overestimated.
Since even in the most extreme case the influence is negligible, the assumption is considered valid.

For an asymmetric case, only one engine provides the aforementioned thrust, and the other one zero
thrust. Since the aircraft will now roll due to the asymmetric lift distribution, it is convenient to express the
correcting roll moment by what angular roll velocity would be needed to achieve the same effect. Therefore
balancing the moment due to roll velocity and the asymmetric lift results in Equation (4.4), assuming that the
lift force for one semi-wing acts at b/4.

(∆CL) ·
(

b

2

)
= 2 ·

(
p · b

4
CLα

)
·
(

p · b

4

)
(4.4)

Solving this equation for the roll rate yields p= 0.16[deg ·s−1]. This is very small in comparison with the
roll moment created due to the resulting yaw moment that this assumption is considered valid, especially
considering the over-estimation of K .

Propeller angle of attack
According to the lifting line theory, the wake extends in the direction of the free-stream. Therefore the wing-
tip vortex will extend in the direction of the free-stream. A suitable approximation might be to assume that
the average angle of attack for a propeller in the wing tip vortex is equal to the free-stream angle of attack.
To check this assumption using the lifting line theory, would yield a trivial case: Only right behind the lifting
line, where the circulation due to the lifting line is strong, the flow would bend downwards, and follow the
free stream afterwards.

Therefore, the angle of attack behaviour right behind the wing is checked for a single case using the CFD
case from Section 3.1.3. The wing is subjected to α= 3deg. In Figure 4.5 the local angle of attack is plotted
in a polar plot, along a circle with R = 0.47[m]. The plot is drawn as a rear view image, and the centre of the
image is located at the right wing tip. α is calculated by arctan(Vz /Vx ). One can see that at the right of the
image, the local angle of attack is more than six degrees, where the tip vortex increases the up wash. On the
other hand, at the left part of the image, the angle of attack is -2 degrees, where the tip vortex enhances the
down wash. One can see that, at the left hand side, the local angle of attack increases quickly below the wake.
When averaging the angle of attack, an angle of attack of 3.2[deg] is returned. Therefore, one can say that in
this case the global angle of attack is roughly the same as the angle of attack at the propeller disk.

Figure 4.5: Polar graph of local α where R = 0.47[m], at right wing tip, rear view. Global α= 3deg

This reference case is believed to be representative for the cases that have been evaluated in this thesis.
The check here is just a single check, and it is not believed to be completely verified. However, since the
average angle of attack is even more than the free-stream angle of attack, the assumption that the inflow on
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the propeller would always be parallel to the trailing edge of the wing is incorrect in this case. Furthermore,
the velocity field change due to the tip vortex is far greater than the effect of this average angle of attack.
Therefore, the effect of this assumption is small in any case. As for this case the free-stream angle of attack is
close to the CFD solution, the assumption is considered acceptable for non-stalled attached flows.

Propeller yaw angle equals aircraft yaw angle
The trailing vortex sheet of a wing induces a flow outward over the top of the sheet, and inward over the
bottom of the sheet. Therefore one could argue that yaw that the pusher propeller sees would be the same as
the whole aircraft sees. As Figures 4.6 and 4.7 indicate, this is indeed the case.

This figure is set up in the same fashion as Figure 4.5, yet now denoting βs . At the right side of the figure,
one can clearly see the cross-over from outflow (lower βs ) to inflow (higher βs ), where βs= −Vy /Vx . At the
right hand side, the transfer is pushed down a bit by the downwash of the wing.

Figure 4.6: Polar graph of local βs where R = 0.47[m], at left wing
tip, rear view. Global βs= 20deg

Figure 4.7: Polar graph of local βs where R = 0.47[m], at right wing
tip, rear view. Global βs= 20deg

The assumption used will be valid as long as the inertial forces are more prominent on the airflow than
the viscous forces. Therefore, for high Reynolds numbers, the assumption is considered to be valid. In the
remainder of this thesis encountered Reynolds numbers are such that inertial forces dominate.

Yaw-rate’s effect on the propeller
The effective advance ratio is changed in the model due to yaw rate, however the lift distribution along the
lifting line is not. Therefore, to prove that this effect is small, the same tip mounted propeller is evaluated
in two situations: One where the lifting line is a solution for some yaw rate, and one where this effect is
neglected. The resulting thrust coefficients are shown in Table 4.3.

Table 4.3: Thrust coefficient variation with yaw rate

No yaw rate Yaw rate included

Yaw rate r [deg/s] 0.00000 -20.00000
CT 0.31971 0.32228

As one can see, the CT variation is less than 1%. This is comparable to the error obtained when evaluating
the different inflow fields in Table 3.4. To place this value into context, refer for example to Figure 4.1. The
variation in TC∗ due to J is far larger than this minimal error concluded upon here. The largest effect is
therefore believed to be captured. Furthermore, adding an extra dimensions would increase the size of the
propeller dataset, and thereby significantly increase the amount of time needed to evaluate it. For this thesis,
as 1% is a very small error taking into consideration the magnitude of forces involved, this assumption is
deemed acceptable as well.

Now that all assumptions have been briefly checked for their validity in cases that are likely to be
encountered in the rest of the thesis according to the situations sketched in this chapter, we can proceed and
simulate the flight mechanical behaviour of the propellers when applied to a reference aircraft.
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4.3. Propeller Forces’ Contribution to Control
The propeller force can be used as directional control force. This would then indicate whether the aircraft
can be controllable in certain situations, hence if enough control power is available. This control force can be
directly related to the amount of directional control force the rudder is able to produce. Since the thrust force
available in the recuperating power regime is important for failure safe modes, forces of the propeller will be
depicted for all available power settings, with a contour drawn in the image to indicate the negative power
regime. As J and βs are viewed in this section as the input variables for control with a tip-mounted propeller,
the other five parameters are constant at the same values as in the previous section, as defined in Table 4.1.

Using Equation (4.5) the propeller forces are converted to CnT MP , which is the nondimensional yaw
moment coefficient due to TMP thrust. It is obtained by multiplying the propeller thrust by the semispan,
which is the moment arm of the TMP.

CnT MP = T b

2qSb
= T

2qS
(4.5)

Kp = Pr eq

Pr e f
(4.6)

In Figures 4.8 - 4.11 the yaw moment coefficients have been plotted with respect to the inputs βp and
J . The resulting values are only for the right tip-mounted propeller, where all forces on the left engine are
equal to zero. Contour lines are indicating the calculated power needed by the propeller, as fraction KP . This
fraction KP is defined as the input power required on the tip-mounted propeller with respect to the power that
is available on a single engine of the reference aircraft. This factor is calculated using Equation (4.6), where
Pr eq denotes the required input power to the tip-mounted propeller, and Pr e f denotes the reference power
of the original Seneca engine. This reference power is rated at Pr e f = 200[BHP] [24, 26]. One has to note that
the figures are made for a tip-mounted propeller of D= 1.25[m], whereas the propeller on the original engine
has a diameter of 2[m]. To place the resulting CnT MP into perspective, the average Cnδr

of the Piper Seneca is

−0.00095[deg−1], and the maximum rudder deflection is 35deg [24]. Therefore, the maximum Cn attainable
by the rudder is ±0.03325.

When comparing the scales of all four figures, one can see that the range of CnT MP is larger for lower speeds
than for higher speeds. However, when the speed is high, the available range of positive values for CnT MP is
larger compared to lower speeds. This is as expected, as a positive CnT MP indicates negative thrust on the
right engine, which is easier to achieve at high speeds.

In Figures 4.8 and 4.10 the maximum absolute control power for a single propeller is three to four times
as effective as the conventional rudder. One has to note that this is without taking the required power into
account. More feasible would be to suggest that KP has to be smaller than 1, indicating that the tip-mounted
engine would have the same power available as the reference engine. This would yield a negative CnT MP of
-0.06.

In order to get the same yaw control power as the rudder, the yaw moment coefficient, summed for both
engines, has to be CnT MP = 0.03325. From the previous analysis we know that matching the reference yaw
moment with TMP possible, yet attaining this reference yaw moment with a feasible power setting is. Let us
therefore review whether matching the reference maximum rudder yaw moment with TMP is feasible with
respect to the power needed, expressed as a fraction of the reference aircraft’s engine power KP . The drag-
generating engine can obtain a value of around 0.01 at J= 1. and βp= 10[deg]. To then get the remainder, one
needs to add thrust with the other engine. Since CnT MP would have to be around 0.025, a value of around
KP= 0.2 is needed. Hence, matching the rudder control power of the reference aircraft is feasible with TMP
for this slow case.

At high speeds the control power needed is easier obtained from a drag-generating propeller. According
to the most positive value on the scale of Figure 4.9, CnT MP = 0.018 as maximum value. This leaves 0.015 to be
obtained from the thrust generating engine. For KP= 0.5 this seems feasible. However, any thrust needed to
maintain cruise then has to be provided by other engines. Therefore, from this analysis, only if the required
thrust for cruise is provided by some other means than TMP, using TMP as the only means of control is
feasible.

If an engine is unable to produce thrust, only the regimes between the KP= 0 lines can be used for
control. This is assuming that both engines are restricted to negative input powers. For low speeds a single
engine CnT MP reduces to only a third of the maximum rudder yawing moment coefficient. Therefore, if one
would only use TMP for directional control, control would be seriously limited in a OEI situation. It would
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Figure 4.8: Low speed counter-tip-vortex rotation yaw moment coefficient map due to right TMP where KP is the power fraction of the
reference engine
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Figure 4.9: High speed counter-tip-vortex rotation yaw moment coefficient map due to right TMP where KP is the power fraction of the
reference engine
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Figure 4.10: Low speed co-tip-vortex rotation yaw moment coefficient map due to right TMP with a where KP is the power fraction of
the reference engine
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be a smaller issue in the high speed case, as the maximum CnT MP is 0.018, which is more than half the
original maximum rudder yaw moment coefficient. A possible workaround would therefore be to simply fly
faster in OEI situations by increasing the descent angle, and accepting that the maximum control forces
have degraded.

The co-rotating propellers in Figures 4.10 and 4.11 have more J and βp combinations within the negative
power regime, since this sense of rotation is more efficient when recuperating, as determined in Section 2.2.
The maximum CnT MP does not differ much from their counter-rotating counterparts. Therefore, if the sense
of rotation would be set to co-rotation on descent, this would be done for more power output only, since the
yaw moments that can be generated do not increase. If the thrust generating values are taken into account,
the maximum CnT MP has decreased as the engines can simply provide less thrust in the co-rotating case.
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Figure 4.11: High speed co-tip-vortex rotation yaw moment coefficient map due to right TMP with a where KP is the power fraction of
the reference engine

The previous analyses show that tip-mounted propellers can be used as control devices. The
effectiveness depends on the airspeed, the maximum power of the engine and the magnitude of the
demanded yaw moment. If the engines are not necessarily required to provide thrust for sustained flight, the
method seems feasible. However, if this is not the case, it will be up to the designer of the aircraft whether
the TMP direction control authority is sufficient or not. If the designer decides that the available control
power is insufficient, a hybrid solution of TMP and some other directional control actuating system can be
implemented. As the maximal yaw moments attainable by the TMP configuration can enhance the
reference maximum yaw moment, the rudder size can potentially be reduced.



5
Sensitivity Analysis of Stability

Contribution

Stability is a requirement for an aircraft. If an aircraft is unstable, it will be impossible or uncomfortable for
the pilot to fly. An aircraft also will not be certified if the aircraft is not statically stable longitudinally, or
dynamically stable [58]. Therefore the effects of TMPs on the stability parameters of the reference aircraft will
be reviewed in this chapter.

This is done in the same parametrised fashion as in Chapter 4. The variables for parametrisation are now
the TMP geometric and control details: D , J , βp and εT MP . First the chosen cases and parameter ranges
will be explained, followed by an example of the fit method used to extract eigenvalues, after which the three
eigenmotions and their corresponding analysis will follow.

The aircraft does not show the same behaviour in all flight situations. Since this is a first study to the
non-linear behaviour of TMP on an aircraft, basic flight situations of cruise and descent are discussed. The
slow- and fast flight cases are proposed in Chapter 4, and will be copied here. In that section, counter- and
co-rotation cases have been discussed as well, where in this section only the counter-rotation case will be
evaluated. The stability depends on the variation of a force due to some disturbance, hence the trend of a
force with varying for example J . Since the trends for the different parameters in the counter- and co-rotation
datasets have proven to be the same, except for a marginal influence of α and p, it does not seem worthwhile
to embark on an investigative tour discussing marginal differences in stability for co- and counter-rotation
cases. Since the tip mounted propellers can be used as spoilers, a recuperative condition might be interesting.
Therefore cruise and descent cases will be evaluated.

To be able to do a parameter study, for each of the cases a suitable midpoint needs to be chosen, after
which the ranges can be evaluated. The parametric fractions are evaluated as in Equation (4.1). The chosen
midpoints and ranges can be found in Table 5.1. Since only three points exist in the dataset for the propeller
diameter, this value is set to the middle value and is the same for all cases. The value of D= 0[m] is included,
indicating no TMP, hence the reference case. For the cruise cases, a point is chosen where the thrust is just
enough to sustain level flight, and where the power fraction of the engine KP is smaller than 0.5. For the fast
cruise case this was not possible, so the maximum thrust value with KP≤ 0.5 is chosen. The descent cases
have been chosen in order to extract maximum power from the airflow. The ranges are chosen in such a
fashion that all values that are deemed realistic by the author are evaluated, or so far as the dataset permits.

Table 5.1: Parametric stability analysis midpoints and corresponding ranges

Phase Unit Cruise Descent Range min Range max
V∞ [m/s] 40. 80. 40. 80. - -

βp [deg] 30.00 40.00 12.50 15.00 10.00 40.00
J [-] 0.90 1.80 1.20 1.40 0.40 2.00
D [m] 1.25 1.25 1.25 1.25 0.00 2.00
εT MP [deg] 0.00 0.00 0.00 0.00 -20.00 20.00

49
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5.1. Static Stability Analysis
Static stability means that if an aircraft is in a steady flight, any disturbance will be corrected by the resulting
forces and moments on the aircraft. For example, if the aircraft is subjected to a gust in v , which increases the
angle of sideslip βs , the resulting moment will be such that the βs is decreased.

This will therefore result in a moment derivative due to some angle. The relevant moment is different
for directional static stability than for longitudinal static stability. Both will be evaluated in the upcoming
subsections. Derivatives are determined from the isolated propeller forces and its position with respect to
the CG. Differentiation is done using the central differencing scheme. An example is given in Equation (5.1).(

δCn

δβ

)
β=0

= 1
1
2ρV 2∞Sb

Nβ=∆β−Nβ=−∆β
2∆β

(5.1)

In the upcoming parametric analyses, the ranges and midpoint as defined in Table 5.1 are used. Especially
the trend for this parameter sweep will be evaluated and discussed. As said before, the stability depends on
the variation of forces while varying an aircraft state parameter. Since the propeller forces’ variation due to
inflow angles are the same for both thrust and drag-generating cases, by definition of the propeller incidence
equations of De Young [38] and observed in Section 4.1, only the cruise cases will be evaluated for the static
stability.

5.1.1. Directional
If an aircraft gets a positive sideslip angle, βs becomes positive. To correct this motion, the nose should be
pushed to the right, hence a positive moment. Therefore, Cnβ> 0 is necessary for directional static stability.

The reference aircraft is statically stable (otherwise it would not come through certification). If we assume
that TMPs do not have an effect on the aerodynamic behaviour of the aircraft itself, Cnβ of the TMP aircraft
would equal the summation of Cnβ r e f and CnβT MP .

This analysis results in Figures 5.1 and 5.2. Resulting curves are relatively smooth, yet especially at the end
of the εT MP curves some small zig-zag patterns can be observed. This is due to the larger step size in εT MP for
the propeller forces dataset at larger αp . When the step size for determining the derivative (∆β in Equation
(5.1)) is smaller than the step size in the dataset, such zig-zag patterns can occur. This is why the pattern does
not occur in the middle, as close to αp= 0[deg] the dataset is very dense according to for example Figure 4.1.
As the trend shown is not broken, and the zig-zag small compared to the absolute value, this is not expected
to give rise to any complications.
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Figure 5.1: Slow cruise, TMP contribution to Cnβ
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Figure 5.2: Fast cruise, TMP contribution to Cnβ

First of all, the magnitudes of Cnβ in the slow and fast cases are not equal. This is because the derivative
is not nondimensionalised with respect to the propeller, but with respect to the aircraft parameters. This will
imply that the flight mechanical behaviour of the propellers is different for both slow and fast cases.

In our case, the aircraft is fitted with pusher TMPs. Since a positive βs will introduce normal forces on the
engines to the left, which are located behind the CG, the correcting moment will be positive. This is indicated
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Figure 5.3: Restoring moment N due to positive βs

in Figure 5.3. Hence, the mid-point contribution of the TMPs to Cnβ is positive. Let us shortly discuss the
influence of the different parameters:

• εT MP : Larger αp will amplify the thrust and normal force. For positive toe-in angles, for a positive
sideslip, the left engine will decrease the angle of attack and the right engine will increase its angle of
attack. Therefore the right engine will provide more thrust, and more normal force inward, and the left
one the opposite. Therefore, if the thrust forces are dominant the resulting moment is negative, hence
destabilising. When the normal forces are dominant (very high toe-in or toe-out angles), a toe-in angle
will be stabilising.

• D : The diameter amplifies the absolute value of Cnβ by scaling the thrust and normal force. Whether
increasing the diameter is stabilising or destabilising depends on the design point. If Cnβ is positive,
increasing D will make Cnβ more positive, and vice-versa.

• βp : Increasing the blade pitch increases the thrust and normal force slope with αp , according to the
empirical formulae incorporated [38], and is therefore stabilising.

• J : The advance ratio has a small effect on the thrust due to an angle of attack, and a larger effect of
the normal force slope with αp . High thrust values will increase both. Since increasing advance ratio
decreases thrust, increasing the advance ratio is destabilising.

For all parameters the parametric sweeps show the same trends for all variables. The most apparent
difference in the figures are the ends of the εT MP curves. According to the analysis above, where the lines are
curving indicate a point where the normal forces are increasingly important. An optimum can be found for
each flight situation with respect to εT MP .

To put the current numbers obtained into perspective, zero thrust
Cnβ r e f = 0.000642[deg−1] = 0.0368[rad−1] for the reference aircraft for α= 4[deg] [24]. Therefore, the TMPs
have a significant influence on the Cnβ of the whole aircraft, as the largest value of Cnβ found in Figure 5.1 is
more than 67% of the aircraft’s reference value.

5.1.2. Longitudinal
The same analysis as for directional stability is conducted, yet now for Cmα . If a perturbation increases the
angle of attack, this should be decreased. The pitching moment should therefore be downwards. This is a
negative moment, hence Cmα< 0 for longitudinal static stability. Resulting figures from the analysis for both
the slow and fast cases are shown in Figures 5.4 and 5.4 respectively.

Since the engines are positioned above the CG, an increase inαwill increase the thrust (assuming that the
aircraft flies at a positive angle of attack). This will push the aircraft over, hence produce a negative pitching
moment which is stabilising. Furthermore, normal forces will increase, and also contribute with a pitch-
down moment. Therefore, the mid-point contribution to Cmα is negative. Let us, as with the directional static
stability, shortly discuss the influence of the different parameters:

• εT MP : Larger εT MP will amplify the thrust and normal force, yet also decrease the propeller force in
Xb . This force in Xb is a summation of the decomposed propeller thrust and normal forces. Therefore
any increase in absolute εT MP will degrade the absolute Cnβ contribution, as in Figure 5.4. The
opposite happens in Figure 5.5, since the propeller normal force variation is small with αp (depends
on TC∗ according to De Young [38], which is lower now compared to the slow case). Due to this small
normal force variation, the decomposed Xb force remains larger compared to the slow case. The slope
of normal force variation does get bigger with larger α, as has been indicated in for example Figure 4.1,
where the αp curve get steeper on the right-hand side. Since the penalty on the Xb force is smaller,
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Figure 5.4: Slow cruise, TMP contribution to Cmα
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Figure 5.5: Fast cruise, TMP contribution to Cmα

and the normal force slope get higher with αp , increasing the absolute value of εT MP now actually
increases the static stability. Therefore, for high TC∗ values this parameter will be destabilising, and
for low TC∗ values increasing the absolute value for εT MP will be stabilising.

• D : The diameter amplifies Cmα by scaling the thrust and normal force. Whether increasing the
diameter is stabilising or destabilising depends on the design point. So if Cmα is positive, increasing D
will increase Cmα , and vice-versa.

• βp : Increasing the blade pitch increases the thrust and normal force slope with αp , according to the
empirical formulae incorporated [38], and is therefore stabilising.

• J : The advance ratio has a small effect on the thrust due to an angle of attack, and a larger effect of
the normal force slope with αp . High thrust values will increase both. Since increasing advance ratio
decreases thrust, increasing the advance ratio is destabilising.

In this case, the last three variables yielded the exact same answer as for the directional stability case. The
first variable, εT MP , did raise a very interesting issue, since the trend of increasing the absolute εT MP value in
the slow case was opposite to the fast case. It has to be noted, in contrast to the directional stability, εT MP has
a limited effect to Cmα . The thrust variables are far more influential to Cmα .

Figure 5.4 displays a kink in the line of J . According to Figure 4.1, f = 0.6 corresponds to the zero thrust
value for α= 5[deg]. Such a point is harder to solve for XROTOR, since both positive and negative local blade
section lift coefficients can be obtained. This can lead to small sinus-like oscillations, and XROTOR may or
may not converge to such a solution. The same holds for the βp line in Figure 5.5, where just below f = 0.4
another non-linearity is indicated. This also corresponds to slightly negative values in Figure 4.2. Therefore,
even though the trends shown in Chapter 4 are smooth, unexpected data-points can show up in the dataset.
Fortunately, these are quite visible, and very small for the scale where they are applied upon.

5.2. Dynamic Stability
In this section the eigenmotions Dutch roll, phugoid and short-period will be evaluated, according to the
flight situations defined in Table 5.1. The tip-mounted propellers will have the largest effect on the Dutch
roll compared to a conventional lay-out, since the engines are now much more effective in this motion due
to their large moment arm. As for the phugoid and short-period, the engines are now simply positioned at
another lateral position, yet the longitudinal and vertical moment arms will not really change with respect
to conventional configurations. Therefore the phugoid and short-period analysis will be included briefly in
this section, to test the applicability of the method to longitudinal analysis. For phugoid this works rather
well, since it is a first order motion like the Dutch roll, yet the second order short-period motion displays the
limitations of the method used.

5.2.1. Motion Damping and Frequency Extraction Approach
When subjecting the trimmed and stable aircraft to a disturbance, a motion will be initiated. This motion
is called an eigenmotion. If the motion is periodic, two parameters can be obtained: the damping factor ζ
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and the natural frequency ωn , which characterise the damped oscillatory motion. These can be obtained by
fitting an exponential curve to a relevant state variable’s time-response curve due to some disturbance.

The relevant state variable’s time-response curve is fitted to Equation (5.2) using SciPy’s optimisation
package. This exponential curve has first and second order modes fitted, since in for example the Dutch roll
βs response, both the spiral motion and the Dutch roll motion are captured. An example of this fitting
procedure is given in Figure 5.6, where βs is the aforementioned relevant state variable. The three lines are
the reference aircraft, denoted by ’No TMP’, a TMP version, and its fitted curve. The error on the fitted curve
is marginal as one can determine by inspection. Damping and the natural frequency have increased in the
TMP flight path. After applying Equations (5.3) and (5.4), the values in Table 5.2 are obtained. Both the
damping factor and the natural frequency changed as expected. By this analysis the method of fitting this
curve to obtain ζ and ωn is considered verified.

y = a ·expb·t ·cos(c(t +d))+e ·exp f ·t +g (5.2)

ωn =
√

b2 + c2 (5.3)

ζ= −b

ωn
(5.4)
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Figure 5.6: Dutch roll response curve fit example

Table 5.2: Dutch roll eigenvalues example

No TMP TMP

ζ 0.166 0.251
ωn 1.697 1.791

This method of fitting a curve to the non-linear time response allows to include non-linear behaviour in
the analysis. That this therefore is a better method than first linearising the model and consequently
obtaining ζ and ωn is defensible. However, it might be interesting to see how this method of fitting a curve
compares to the Dutch roll eigenvalues from the linearised model. Since non-linearities are more common
at low speeds than higher speeds, ζ and ωn are compared for these two cases. The result is tabulated in Table
5.3.

The resulting ζ and ωn are very comparable, where the largest error is obtained for ζ in the slow case.
Since at higher speeds in a steady flight situation all lifting surfaces are in the linear regime and have clear
measurable forces, the eigenvalues are expected to be very close to the linear solution. In the slow
configuration the wing has separation at some points, and therefore introduces non-linearities. According to
Table 5.3, ωn for the non-linear case is still very close to the linear value, indicating that directional
behaviour is rather linear in the non-linear flight model. ζ is less accurate, since the wing is prone to lose
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responsiveness at these speeds. In the remainder of this section only the non-linear model is used to obtain
ζ and ωn , since non-linearities will then be taken into account, increasing the accuracy of the model.

Table 5.3: Fit method verification for Dutch Roll

Case Parameter Linear Non-linear

Slow ωn 1.6974 1.6973
ζ 0.1743 0.1660

Fast ωn 2.7867 2.7700
ζ 0.1895 0.1847

The flight situations as defined in the beginning of this chapter are dynamically evaluated in this section.
These situations are listed in Table 5.1. For each of these situations, the aircraft is first trimmed, and
consequently the aircraft’s state time history after some disturbance is obtained. For all cases, the original
engines of the reference aircraft are set to idle. This also means that in the upcoming analysis the aircraft
state does not necessarily have to be the same. For example, if the TMPs are set to a high thrust setting, γ will
be higher than for a low thrust setting. In all graphs, ζ and ωn are obtained using the method described
above. In all figures, the reference case of the unmodified aircraft is indicated as a dashed line,
corresponding to D= 0[m], where its engines are set to idle.

5.2.2. Dutch Roll
Since the Dutch roll is the motion where the largest impact is expected for the tip mounted propellers, all
cases from Table 5.1 will be shown and discussed here. First the motion’s theory is discussed, after which the
parameter sweep plots for ζ andωn will be shown. The motion here is introduced by a pulse rudder deflection
of δr= 5[deg] for 1s. Equation (5.2) is fitted to the time response of βs , as graphically represented in Figure
5.6.

In the previous section the difference between linear and non-linear models is discussed, where it was
concluded that a non-linear model includes more effects and is therefore more complete. The linear model
does offer a significant advantage: using some simplifications an easy-to-use equation for the eigenvalues
can be obtained. This equation in turn indicates the most important parameters. These parameters can then
help us understand the time response of the aircraft. According to the simplified Dutch roll Equations (2.19)
and (2.20) for ζ and ωn respectively, Cnβ and Cnr are the key drivers of the Dutch roll response, and CYβ is
second order. In order to explain physically what is happening in the Dutch roll, the effect of TMP on the
various parameters is tabulated in Table 5.4.

Now that the theory is established, the resulting parameter studies can be evaluated. The two thrust
generating cases are depicted in Figures 5.7 and 5.8. The mid case, easiest to find by f = 0.5 for the εT MP line,
shows an increase in ζ and ωn with respect to the reference aircraft. The increase in ωn is mainly due to the
side-force of the propellers, increasing the static stability. The increase in ζ is mainly due to the damping of
the propellers with yaw rate.

Both figures show the same parameter trends for each of the four variables. In general, the higher TC∗
results in higher values for ζ and ωn . Without a toe-in angle, Cnβ is always increased. Even so, the frequency
for low blade pitches has decreased with respect to the reference case in Figure 5.8. This is since the blade
is beyond stall, so the Cnr due to TMP is positive, hence destabilising. In Figure 5.7, the points for εT MP=
±6.67[deg] are omitted since these led to trimming problems, where the final speed of the aircraft would be
20% higher than intended.

Since the slopes of ζ and ωn for all parameters except εT MP show the same trend in Figures 5.7 and 5.8,
one can conclude that both Cnr and Cnβ due to TMP have an impact on the Dutch roll motion: according
to Equations (2.20) and (2.19), the frequency increases with Cnβ , and the damping factor decreases with Cnβ .
Since both the damping factor and the natural frequency increase in the aforementioned figures, the absolute
value of Cnr must be increased by the tip mounted propellers. From Table 5.4 we know that this is true,
especially for high values of TC∗.

For a further discussion on the applicability of these simplified Dutch roll Equations (2.19) and (2.20), a
parametric TMP contribution to Cnr analysis is included in Figures 5.9 and 5.10. When combined with Cnβ
from Figures 5.1 and 5.2, all parameters of the simplified Dutch roll equation are present. Since ωn depends
on Cnβ only, this should reflect the exact same trends in Figure 5.7, which it does. The parametric line for J is
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Table 5.4: TMP effect on Dutch roll parameters

Parameter TMP force TMP effect

Cnβ Thrust Xp If both the engines are aligned with the aircraft, no asymmetry due to sideslip
will occur. However, when introducing a toe-in angle for the engines of εT MP ,
asymmetry will arise, and the moment arm to the engines will decrease. Let
us consider a positive toe-in angle. If the aircraft gets a positive sideslip, the
left propeller will lose thrust since αp at that engine reduces, whereas the right
propeller will gain thrust. Therefore, for positive εT MP , the thrust contribution to
Cnβ is destabilising. For negative εT MP , the opposite will happen, and the stability
will be increased.

Cnβ Normal Yp Without any toe-in angle, the side force from both the propellers produce a
restoring moment due to sideslip if the engines are located behind the CG. When
a positive toe-in angle is introduced, the same will happen, yet the moment arm
of the propeller side force has increased. A negative toe-in angle will decrease the
moment arm. For pusher propellers, if the toe-out angle is increased to such an
extent that the correcting moment switches sign, the contribution of the normal
force can even become destabilising.

Cnr Thrust Xp Consider εT MP is zero. If the aircraft has a positive yaw rate, the advance
ratio on the left engine will increase, hence lose thrust. This results in a
stabilising moment. Only when the blade is stalled, the resulting moment can
be destabilising. In this case, a higher advance ratio will decrease the local angle
of attack on the blade, allowing the flow to re-attach to the propeller and increase
thrust instead of decrease thrust. A toe-in angle will decrease the arm of the thrust
force and decrease the effective advance ratio change.

Cnr Normal Yp The normal force depends on the thrust coefficient and αp . Let us consider a
positive εT MP . For a positive yaw rate the thrust of the right engine is increased,
increasing its normal force in negative Y direction, resulting in a destabilising
moment. The opposite happens with εT MP< 0.

CYβ Thrust Xp The contribution of the thrust force to Yb will be negative for both positive as
negative εT MP , unless the propellers are generating drag. No toe-in angle equals
no contribution by definition.

CYβ Normal Yp This contribution will always be negative. Toe-in or -out angles will reduce this
effect.
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Figure 5.7: Slow cruise Dutch roll oscillation characteristics sensitivity analysis
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Figure 5.8: Fast cruise Dutch roll oscillation characteristics sensitivity analysis

not as straight as the Cnβ curve is. This is because the non-linear model moves through small thrust
variations as discussed in Section 5.1, which do not limit us in our ability to conclude on the effect of varying
thrust parameters. Comparing Cnr in Figure 5.9 and ζ in Figure 5.7, one can see that the trends of Cnr are
copied exactly in an inverted fashion, as a more negative Cnr increases the damping. This means that the
contribution of the TMPs to Cnr is larger than the contribution to Cnβ . An analogous approach can be
followed for the fast case, yielding the exact same result and conclusion. That the contribution of Cnr can
become destabilising is portrayed in 5.8, where both ζ and ωn decrease due to TMP for f < 0.4 for the βs line.
From Figure 5.10 we can obtain that the contribution of Cnr indeed flips sign around f = 0.4. This effect is
explained in Table 5.4, at Cnr for Xp .

In cruise, we can conclude that both the damping as the natural frequency increase for the Dutch roll
motion. To increase the frequency a negative toe-in angle should be attained, and more thrust increases both
the frequency and the damping.
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Figure 5.9: Slow cruise, TMP contribution to Cnr
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Figure 5.10: Fast cruise, TMP contribution to Cnr

The descent cases, where the propellers are generating drag, in Figures 5.11 and 5.12 show more complex
behaviour. Since the blades are configured for maximum power output and not for maximum performance in
drag conditions, the range of available J is limited, as in for example Figure 4.9. Since in the descent case drag
is generated, the side forces involved are small, by definition of Equation (2.10). Therefore the contribution
of the tip mounted propellers to Cnβ is small. For higher values of J , the blade might be (partially) stalled
as discussed previously, hence increase thrust with increasing advance ratio. This is true according to 4.9,
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leading to a local minimum in Cnβ , visualised by the ωn curve as observed on the right hand side in Figure
5.12.
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Figure 5.11: Slow descent Dutch roll oscillation characteristics sensitivity analysis
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Figure 5.12: Fast descent Dutch roll oscillation characteristics sensitivity analysis

Even so, in the descent case, the parameter trends remain the same in comparison with the thrust
generating case, unless hindered by stall phenomena. This does not hold for the toe-in angle. As in the
thrust generating case the line corresponding to εT MP was nearly a straight line for ζ, it becomes a curve for
the descent in Figures 5.11 and 5.12. The explanation for this comes from the contribution of the TMP to
Cnr , as previously stated in Table 5.4. Since the blade is so close to stall, where the thrust slope reverses with
even higher advance ratios (for example visible in Figure 4.9, where for low blade pitches increasing J yields
higher CnT MP , hence more thrust), the contribution of the tip mounted propellers to Cnr becomes
destabilising. This explains the curve for ζ as a function of εT MP . To further support this conclusion, Cnr for
the descent cases is included here in Figures 5.13 and 5.14. Now that Cnr is substantially smaller in
magnitude than in the thrust-generating cases, the influence of Cnβ and Cnr is both visible. For example, for
ζ in Figure 5.12, the right hand side of the εT MP line is higher than the left hand side due to Cnβ . Yet the
curve of Cnr is also clearly visible, efficiently setting the minimum point for εT MP at f = 0.3. As in the
thrust-generating case, the diameter amplifies both Cnr and Cnβ . In the descent figures, the contribution of
D to ζ is first negative, then positive. From the ωn figures in these cases, we know that Cnβ is very small up to
D= 1.25[m], hence letting Cnr determine the trend. When the magnitude of Cnβ does get larger, the
contribution of Cnβ is dominant, and sets the trend upward again. Since with increasing D the influence of
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the tip vortex gets smaller, where the tip vortex is detrimental to the propeller performance for a
counter-rotating case compared to its isolated performance as discussed in Section 2.2, the propeller starts
generating more thrust and hence more normal force for larger D in the drag-generating case.
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Figure 5.13: Slow descent, TMP contribution to Cnr
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Figure 5.14: Fast descent, TMP contribution to Cnr

As a note, one should not be tempted to say that the drag generating regime will degrade the Dutch roll
performance. For example, in Figure 5.12, at βp= 17.5deg (fourth point from the left), the propeller is still
generating drag. However, the damping factor of the Dutch roll is higher than the reference value, proving
that drag generation does not necessarily degrade dynamic stability. The performance of the stalled propeller
must be evaluated in the same fashion as done here, as a propeller can hypothetically stall in flight. Whether
this gives rise to hazardous situations has to be researched. Since this is not in the scope of the current
research, this is left as recommendation.

Finally, in Figure 5.11 for βp= 25[deg] the thrust value in the dataset was incorrect. The value returned by
the dataset was around half the magnitude that βp= 22.5[deg] or βp= 27.5[deg] returned, and therefore the
point is removed as an outlier. Since for all other blade pitches the trend is so coherent, this incorrect value
does not influence our ability to draw conclusions from Figure 5.11.

5.2.3. Phugoid
The phugoid motion is a motion where potential and kinetic energy are interchanged. The rate at which
each of these exchange energy determines the frequency, and the rate in which the energy dissipates per
cycle gives the damping. As one can imagine, the engine plays are large role in this balancing act if the thrust
is not assumed to be constant. Since the TMP engines are not necessarily different with respect to the
vertical positioning than any other engine, an investigation into the behaviour of the phugoid in different
thrust cases would not yield surprising nor unexpected results. Therefore this part is kept rather brief to
discuss the applicability of the evaluation method for the phugoid, and only the parameter study for the
most interesting case is shown, the other cases can be found in Appendix B. Since most cases only show
straight trends in the phugoid, the fast cruise case is chosen to discuss due to its curved βp trend. It is
depicted in Figure 5.15. The motion is initiated by a step input of δe= −0.2865[deg], and Equation (5.2) is
fitted to the time response of θ.

In Figure 5.15 one can see that all parameters have a considerable impact, except for the toe-in angle. Let
us first review the ωn graph. The responsiveness can be described as the amount of time the aircraft needs to
respond to a change in velocity by changing the altitude, hence convert kinetic energy into potential energy.
Therefore a key parameter is the derivative of Zb with respect u. According to the graph, the higher the thrust,
the higher ωn and thus the responsiveness. With higher thrust, a larger pitch down moment is created since
the engine is positioned above the CG. Therefore the elevator needs to be deflected upwards to counter this
moment. Due to this extra loss in lift created, α of the wing needs to be higher. The higher the angle of attack
of the wing, the higher the CL of the wing, the higher the difference of Zb with u. Hence, more thrust will
increase ωn .

The damping ratio ζ depends on the ratio between extra drag and extra lift due to some velocity
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Figure 5.15: Fast cruise phugoid oscillation characteristics sensitivity analysis

disturbance. The extra lift contribution has just been discussed for ωn . The change in drag due to velocity is
somewhat easier to determine. Intuitively, we can say that if the advance ratio is increased, the local angle of
attack on the blade decreases, decreasing TC∗, resulting in less thrust. This is a stabilising contribution.
From Figure 5.15 we see that TC∗ gets negative for f ≤ 0.6 for the βp curve. This is exactly where the ζ curve
starts flattening in Figure 5.15. The derivative of T with V∞ is given in Equation (5.5). Normally the
rightmost part, δTC ∗/δV < 0 according to Section 4.1. However, at very low blade pitches and high advance
ratios, this trend reverses, as with the Dutch roll and its Cnr contribution. This explains the left hand part of
the βp curve in Figure 5.15. In all other cases, higher thrust values are destabilising. Finally, εT MP degrades
the TMP propeller Xb force. All mentioned effects are magnified, since this thrust force will create a moment
due to the engine’s placement above the CG. A decrement in thrust is converted to a positive moment
change, pitching up the aircraft. Hence, more thrust will increase the responsiveness and decrease the
damping in the phugoid.

δT

δV
= 1

2ρS

(
2 ·V ·TC ∗+δTC∗

δV
V 2

)
(5.5)

5.2.4. Short Period
In contrast to the previous two motions, the short period is a second order motion. This means that the first
order motion needs to be subtracted from the time-history, and that the short period motion can be fitted
upon that resulting curve. As one can imagine, this method is highly dependent upon the fit of the first order
motion. From the previous sections, the Dutch roll and phugoid, confidence is built in the first order motion
fit. However this section will suggest that the second order motion fit is unreliable, yet still the theory of this
motion will be discussed. The motion is initiated by a step input of δe= −0.2865[deg], and Equation (5.2) is
fitted to the time response of q .

The short period is so rapid and so heavily damped, that the limits of the used method are reached. For
the four situations, only the slow cruise case shows some trends, since for the other situations the method
did not necessarily converge to an optimum line fit. These trends can be explained, yet for some jumps the
author was not able to provide a solid line of argumentation. It is suspected that the inexplicable points are
errors that propagate from fitting an equation to the result of subtracting the q response of the first order
motion from the original q response. This is also hard to prove, since the found values are so close to each
other. In such a fast and heavily damped motion differences are near impossible to analyse by hand.

The short period motion is a motion where the angle of attack and pitch rate vary rapidly. As one can
imagine, the parameter Cmα is very important, since this determines the aggressiveness of the stability. With
a large Cmα , a small disturbance in alpha will lead to a large force correcting this motion, hence leading to a
rapid response. A discussion on the parameter effects on Cmα has already been conducted in Section 5.1.

The effect of mounting the Piper Seneca with the tip-mounted propellers is displayed in Figure 5.16.
Overall, the application of TMP decreased the damping ζ and increased the frequency ωn compared to the



60 5. Sensitivity Analysis of Stability Contribution

base-line case without TMP. When comparing Figure 5.4 and ωn for the short period, the same trends are
found. Theoretically, with a large absolute Cmα , the frequency should be high. To some extent this builds
confidence in this second order fitting method. However, when reviewing the βp line on the ωn plot, an
unexpected jump occurs at f = 0.83, after which the trend continues. This does not make any physical sense,
and no explanation can be found in the analysis of the flight paths either. The aircraft is correctly trimmed at
the start of the motion, and the input is correctly given.
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Figure 5.16: Slow cruise short-period oscillation characteristics sensitivity analysis

To illustrate the complexity of measuring this motion, the two responses for J=0.9 and J=1.6 are plotted
in Figure 5.17. One should note that this is one of the largest differences attainable for either ζ and ωn within
this parameter sweep. In order to measure the damping, the ’desired’ value for q for Time = 30 [s] has to be
extrapolated from the rightmost part of the figure. We see that the curve for J= 1.6 has a higher peak than
J= 0.9, yet the curve on the rightmost part of the graph is steeper for J= 1.6 than J= 0.9 as well. Even the
frequency is hard to measure: the steeper the curve on the rightmost part of Figure 5.17, the longer the period
will look since the dip after the first peak is then shifted right. This effect can be illustrated by looking for
example at the curve y = cos x − x. For y = cos x the minimum would be at x = π, yet for y = cos x − x one
would intuitively say that the minimum occurs around x = 4. Hence, the Short period cannot be credibly
analysed by fitting an exponential curve to the remainder of subtracting a first order curve from the original
curve of q , nor by inspection from the time-history graph.
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Figure 5.17: Slow cruise δe=−0.005[rad] step input time response

Whenever the natural frequency is increasing, the damping factor should decrease. Since the motion
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responds faster, and the swinging is not trivially dissipated faster, the amount of dissipation per cycle
decreases. Overall this is true for Figure 5.16, yet most points remain inexplicable. εT MP shows a curve that
resembles an M, where no scientific explanation can be found for. Furthermore, the jump in βp is also
present here, yet also for ζ no explanation can be given.

Since second order curves are very hard to fit, the line-fitting method to evaluate eigenmotion
parameters does not work well. A better, well-proven method for this second order method would be a linear
model, where eigenvalues can be readily extracted. This approach is not followed in this research, as the
tip-mounted propeller implementation into Simulink did not allow for linearisation. Furthermore, the
added value to this thesis would be small, as the effect of tip-mounted propellers will be relatively small on
this longitudinal motion compared to a conventional configuration, since the vertical distance between the
CG and propeller axis is similar. The linearised approach would force to accept that non-linearities would be
disregarded, yet a solution will always be obtained. The exponential curve-fitting method does work well for
first order motions. Since the fashion of fitting the curve is fundamentally different for the second order
motion, the poor performance in the second order motion does not degrade the credibility of the first order
motion conclusions.





6
Typical Stability and Control Contribution

Assessment

Tip-mounted propellers have a significant effect on the dynamic stability of an aircraft, as presented in
Chapter 5, where the contribution of TMP to directional stability is a design choice. Also the contribution to
directional control can be significant, as stated in Section 4.3, where the amount of control power available
is a design choice. To be able to see the actual contribution of TMP to the directional stability and control of
an aircraft, a non-optimised typical design will be evaluated for directional static stability, directional
dynamic stability, directional control, and compared with the reference aircraft. An attempt is done to relate
the enhancement of directional stability and control to a reduction in VTP size, which will lead to a
reduction in mass, drag and hence overall energy consumption.

First the design will be presented, followed by a discussion on the static directional stability impact, where
empirical formulae will be used to relate the change in static directional stability to the VTP size. Then the
change in Dutch roll eigenvalues will be discussed, along with a hypothetical discussion on how this could
impact the VTP size, since a smaller VTP size can not be implemented to the flight mechanics model. Finally,
time-history trajectories will be shown where a maximum rudder input of the original aircraft is compared
with a non-optimised maximum TMP input by changing the propeller blade pitch.

Tip-mounted Propeller Diameter
The original Piper Seneca III has two engines. This original version will be referred to as the reference aircraft
in the remainder of this chapter. As the new aircraft has to be fitted with tip mounted propellers, the amount
of engines could still be two. However, it is not beneficial to the wing structural weight to move the engines
to the tip. Therefore the original engines are left as they are, and two additional engines at the tip are added,
which are also able to recuperate energy. This leads to the configuration as in Figure 1.5. This ’new’ aircraft,
having four engines of which two are driving a TMP, is referred to as the TMP aircraft in the remainder of this
chapter.

The diameter of the propeller will determine the disk area, which has an influence on the thrust loading.
Since the reference aircraft has two engines, where the TMP version has four, it is assumed that the needed
power of the engines is simply divided over four instead of two. Hence, the maximum output power of the
TMP engines is the original power of one engine divided by two, i.e. KP≤ 0.5.

Assuming that the thrust to power ratio of the TMP engines, and the disk loading of the tip mounted
propellers will be the same, only half of the original disk area per propeller is needed. Since the original
propeller has a diameter of D = 1.93[m], the diameter of the TMP is calculated by Equation (6.1). This yields
a value of 1.36[m], which is rounded to D= 1.4[m].

2π

(
DT MP

2

)2

=π
(

Dr e f

2

)2

(6.1)

Tip-mounted Propeller Toe-in Angle
The toe-in angle is a key parameter for this design, as Cnβ is largely influenced by this angle. To what extent
can be obtained from Figure 5.1. If the goal is to make Cnβ as large as possible, we would choose for the most
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negative value in this figure, which is εT MP= −20[deg]. With such a negative toe-in angle, the engine would
also produce an outward force Yb . This is inherently lost energy, as both engines produce an opposing Yb and
will cancel each other out. This could therefore compensate the added benefits from placing the engine in
the tip vortex. Furthermore, the exact interaction between the tip vortex and the propeller at a large toe-in
angle has not been thoroughly investigated, and might therefore degrade the accuracy of the results.

As the diameter is set to D= 1.4[m], the εT MP curve in Figure 5.1 is scaled upward since this curve is drawn
with D= 1.25[m]. What we now would like to know, is how much drag it saves to reduce the VTP size due to
the enhanced Cnβ , and how much extra thrust is needed to compensate for the lost thrust in Yb . This would
quickly result in a large design mission, which is not the scope of this thesis. Since the cosine of 20 degrees
indicates 6% loss in thrust (not taking into account increased thrust forces due to yaw, nor the added drag
force due to propeller normal force), its loss is deemed to large. 10 degrees on the other hand, indicates
a thrust loss of 1.5%. This is considered acceptable in comparison to the Cnβ gain indicated in Figure 5.1.
Therefore, the toe-in angle is set to εT MP=−10[deg].

Flight Cases Definition
Now that the design is defined, just as in Section 5.2, it must be evaluated in different flight cases to be
analysed. First of all, the aircraft must be analysed in cruise. Since slow and fast cruise appeared to have
different behaviour and demands for TMP, the slow and fast cases will be analysed here as well.
Furthermore, the propellers can be used as spoilers, in a recuperation mode. Since the most negative power
setting has proven to have high demands due to a positive Cnr contribution of the propellers, this situation
will be analysed as well. One has to keep in mind that this is a worst case scenario, and can easily be avoided
by using a less negative thrust setting. Since the TMP aircraft will fly slow when extra drag is needed for
descent slope control (e.g. during the landing phase), only the slow case is evaluated.

Table 6.1 state the engine settings for the three chosen cases. For completeness, D and εT MP are included
as well, and will be the same in all cases. In contrast to Section 5.2, the main engines are now enabled for
both the reference aircraft as the TMP aircraft. Since the trim and autopilot routines oscillate slightly for a
power-on situation at airspeeds lower than 40 [m/s], an airspeed of 45 [m/s] is chosen for the slow cases. The
fast cruise case is still at 80 [m/s].

Table 6.1: Evaluation cases definition

Case Unit Slow cruise Fast cruise Slow descent

V∞ [m/s] 45.0 80.0 45.0
βp [deg] 30.0 40.0 12.5
J [-] 1.0 1.8 1.3
D [m] 1.4 1.4 1.4
εT MP [deg] -10.0 -10.0 -10.0

The chosen engine settings are done in a similar fashion as in Section 5.2. For specifics on how βs and
J are obtained the reader is referred to Chapter 5, where the engine settings for the flight situations in Table
5.1 are obtained. In short, the slow cruise case uses only the tip mounted propellers for thrust, so the main
engines are idle. For the fast cruise case, not enough thrust is available by the TMP for sustained level flight.
Therefore the maximum thrust is chosen, where the required engine power is smaller than half the original
value, hence KP≤ 0.5. The descent case is chosen upon maximum output power.

6.1. Static Stability
For directional static stability, Cnβ must be larger than zero for an aircraft. This value needs to be positive,
as for any positive disturbance in βs , the correcting yaw moment must be positive as well. The contribution
of the VTP to Cnβ is positive, hence if we wish to increase the static stability of the aircraft, the TMP should
contribute to a positive Cnβ .

If the static stability is increased by increasing Cnβ , one could decrease the size of the VTP to obtain the

original Cnβ . According to Torenbeek [59, Ch. 9]1, Cnβ of the whole aircraft can be estimated with Equation

1The symbols that are used in this section are only used in this section, and are therefore not included in the glossary. If any confusion
arises with respect to the symbols, the reader is referred to the glossary in Ref. [59]
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(6.2). The rightmost part is then the contribution of the VTP. This leaves two unknowns, CYV T Pα
and

(
VV T P

V

)
.

The product of these two unknowns can be interpreted as a VTP efficiency factor. It is obtained by using the
remainder of Torenbeek [59] his formulas in Equations (6.3) - (6.5). Used inputs values for the formulae can
be found in Table 6.2. Values are obtained from Refs. [24, 26]. All units are used as defined by Torenbeek [59].

The analysis results in CYV T Pα

(
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V

)2 = 1.46.
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Table 6.2: Input values for directional stability estimation Equations (6.2) - (6.5)

Name Value Name Value

S f s 6.870 b f2 0.727
l f 8.480 lcg 3.376
S 19.390 Bp 2.000
b 11.860 lp 2.160
h fmax 1.185 Dp 1.930
h f1 0.919 ∆iCnβ 0.024
h f2 0.925 SV T P 1.801
b f1 1.177 lV T P 4.040

With this VTP efficiency factor, the contribution of the VTP to Cnβ can be calculated. When reducing SV T P ,
Cnβ of the whole aircraft will decrease. This behaviour is depicted in Figure 6.1. The horizontal axis represents
the fraction of the VTP that is mounted. From this figure one can obtain that the total contribution of the VTP
to Cnβ is 0.0463.
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Figure 6.1: Cnβ of reference aircraft with varying VTP area
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In Section 5.1 the contribution of tip mounted propellers to Cnβ is evaluated and depicted in Figure 5.1. If
one would select a value of εT MP =−10[deg], Cnβ would be around 0.15. This is scaled up a bit since that graph
was for D=1.25[m], and the design has D = 1.4[m]. Using Equation (6.6) the resulting value of Cnβ due to TMP
can be converted to a fractional reduction of SV T P . This potential reduction of the VTP can be analysed for
the previously defined cases, as Cnβ due to tip mounted propellers will vary with thrust settings (as indicated
in Figure 5.1). The result of this evaluation is tabulated in Table 6.3.

Table 6.3: VTP reduction parameters

Case Slow cruise Fast cruise Slow descent

CnβT MP 0.022 0.018 0.017
∆ SV T P / SV T P r e f -0.484 -0.386 -0.367

The largest contribution of the tip mounted propellers to Cnβ is in the slow cruise case, where only nearly
half of the reference SV T P would suffice to keep Cnβ constant. In the fast cruise as slow descent cases, the
fractions drop to 39% and 37% respectively. Therefore, to keep Cnβ at least the same as the reference aircraft,
the TMP aircraft would need to have only 63% of the reference area of the reference VTP, hence reducing
mass, drag and the overall energy consumption.

6.2. Dynamic Stability
The previous section has shown that tip-mounted propellers have a stabilising contribution to directional
static stability, and thus enable a reduction in vertical tailplane size without sacrificing directional static
stability performance. In this section the impact on dynamic directional stability will be investigated, by
analysing the Dutch roll behaviour for the cases defined in the beginning of this chapter, in Table 6.1.

As a conclusion of the previous section, the gain in Cnβ was related to a potential decrease of SV T P .
Unfortunately, due to the way the Piper Seneca Simulink model is built, it is not possible to decrease the size
of the VTP in the flight mechanics model. All moment and force coefficients that are influenced by the VTP,
would need to be manually edited, since the model is not built in a parametrised fashion. As the linearised
state-space system suggests in Equations (2.16) and (2.17), this would require editing numerous parameters.
This is impossible to do within the time scope of this thesis. The feasible way to explore such an option,
would be to build such a model from the ground up, and verify and validate it with the Piper Seneca model.
This is placed as a recommendation for future research.

The dynamic stability analyses are performed without reduction in SV T P , for reasons just explained. Since
in Section 5.2 the Dutch roll eigenvalues seemed to correspond well with expectations from the linearised
simplified Dutch roll Equations (2.19) and (2.20), an effort will be done to estimate a VTP size reduction from
state derivatives as for example Cnβ .

In the same fashion as described in Section 5.2, ζ and ωn are obtained for the different flight cases. The
results are tabulated in Table 6.4. In slow cruise ζ is increased the most with respect to the reference aircraft,
followed by fast cruise, and has decreased in the slow descent case. For all cases ωn has increased.

Table 6.4: Dutch roll eigenvalues

ζ ωn

Configuration Reference TMP Reference TMP

Slow cruise 0.168 0.294 1.734 2.040
Fast cruise 0.183 0.235 2.739 3.140
Slow descent 0.167 0.138 1.706 1.934

This result is comparable with the results obtained in Section 5.2, where in the slow cruise configuration
the largest gain was found in both ζ andωn . This gain was smaller in the fast cruise case, and even negative in
the descent cases. However it was also mentioned there this behaviour in the descent case is because of the
reversal of the TMP contribution to Cnr . A higher thrust setting, i.e. less drag, would overcome this problem.
Therefore, if one would wish to obtain at least the same damping, some negative thrust boundary must be set
and not crossed in flight. This thrust boundary may be well into the negative thrust regime, as not all negative
thrust values degrade the damping factor, yet only the thrust values near minimum power. For example,
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Figure 5.11 states that for βp≥ 15[deg] (corresponding to f ≥ 0.15 for the βp line), the TMP contribution to ζ
is positive with respect to the reference aircraft. Figure 4.8 indicates that βp ≥ 15[deg] and J= 1.3 is still far
into the negative power regime. Therefore, the recuperation abilities of the TMP are not compromised, yet
slightly limited.

Dutch roll approximation formulas, which were used to support the theory described in Section 5.2, found
in Equations (2.19) and (2.20), can be of help relating the enhancement in ζ andωn to a possible reduction in
SV T P . Since the Dutch roll trends for TMP in Section 5.2 conformed quite well to these equations, they can
give a rough approximation for a possible reduction of SV T P . For ωn this yields a simple approximation, as it
scales with the root of Cnβ (Equation (2.20)). To keep ωn the same, one should strive to set Cnβ the same as
the reference aircraft. This analysis is done in the previous section, where static stability was evaluated. The
damping factor depends in this very simple approximation on three factors, Cnβ , CYβ and Cnr in Equation
(2.19). In the following analysis we will assume that the aircraft moves along a straight line, reducing CYβ to
zero. Increasing Cnβ decreases the damping factor, yet in Table 6.4 the damping factor has increased. Since
we know from the previous section that Cnβ increased, this suggests that the Cnr contribution of TMP is large,
hence the required contribution of the VTP to Cnr decreases.

So let us review that the effect of reducing SV T P is on Cnr . The isolated Cnβ of the VTP can be used to
calculate Cnr of the VTP: a flight speed and yaw rate combined result in some inflow angle, which can be
related to βs . Hence, both are derived from a VTP having some inflow angle. One can convert the derivatives
using Equation (6.7), obtained from mathematically manipulating the definitions of Cnr and Cnβ for the
isolated VTP. For the reference aircraft 2lV T P /b = 0.68. Now, let us obtain the relation between Cnr and Cnβ
for the TMP. This can be determined from for example Figure 5.9 for Cnr . The contribution of the TMPs to
Cnr is around −0.2. The contribution of Cnβ can be obtained from Table 6.3, around 0.02. Hence, the
contribution of TMP to Cnr is an order of magnitude larger than the contribution to Cnβ . Therefore, if one
decreases SV T P to restore the TMP aircraft’s Cnβ to the reference value, the damping factor in Equation
(2.19) will always get higher since the enhancement of TMP in Cnr is much stronger than the enhancement
of the VTP in Cnr .

CnrV T P
=−2 · lV T P

b
·CnβV T P

(6.7)

Let us apply this methodology to the fast cruise case in Table 6.4. From Table 6.3 we can obtain that the
contribution of TMP to Cnβ = 0.018. This can be brought down to the original value by decreasing SV T P with
38.6%. The increase in Cnr will then be −0.68 ·−0.018 = 0.01224, yet Figure 5.10 indicates Cnr has decreased
with a value around −0.05 (no exact value can be obtained from this figure since the figure is obtained from
a slightly different simulation case). Since Cnr has increased more by the contribution of the TMPs than
reduced by reducing SV T P , the damping factor ζwill still have increased with respect to the reference aircraft.
This means that in this case the SV T P reduction advice from Table 6.3 can be copied.

This advice will hold for the cruise cases, yet the tabulated result from Table 6.3 does not hold for the slow
descent case, as it suffers from a destabilising Cnr contribution from the TMP. However, if this flight situation
of large negative thrust is simply not entered, one can neglect this constraint. A thrust boundary should then
be set where the Cnr contribution of the TMPs equals the reduction in Cnr due to decreasing SV T P . Such a
design step to evaluate the limits of the aircraft is left for future work, as the focus of this thesis is to show the
contribution of TMP to directional stability, as we have just done.

6.3. Directional Control Comparison
A first analysis into the control forces that are attainable with TMP was done in Section 4.3. It was concluded
that the reachable moment coefficients with tip mounted propellers are comparable with the ones created by
the original rudder. However, this does not show the flight mechanics behaviour of applying such a control
force. Furthermore, it was stated that the determination of the amount of control force needed is a design
problem. Now that an initial design is chosen, the behaviour of the aircraft subjected to a control force by tip
mounted propellers can be analysed. This is done by reviewing a graphical representation of the aircraft state
for one second after a maximum input. The purpose of this section is to review the flight behaviour due to
a maximum control input by comparing state angles and angular rates for the TMP design and the reference
aircraft. The reference aircraft will only use the rudder to yaw, and the TMP aircraft will only use βp to yaw.

The directional control force coefficient of the TMPs varies with airspeed and engine settings, as indicated
in Section 4.3. In this section, the same cases as for the dynamic motions in Section 6.2 are evaluated, defined
in Table 6.1. Apart from these cases, two OEI cases are added. In these cases the maximum control deflections
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must be reachable without any input power, as if one engine fails in a TMP configuration both TMP must be
switched off. Therefore this is the most restrictive case encountered when using TMP for directional control.
For all cases, the model is first allowed to fly for 60 seconds, after which the desired input is given.

In the cruise and descent cases, both positive and negative input power can be used, where the positive
input power is limited to KP≤ 0.5. In the OEI cases positive input power is limited to KP≤ 0.

The maximum control deflections are obtained from the propeller dataset, such that the resulting engine
setting complies with the constraints posted above. Furthermore, the rotational speed n of the propeller is
kept constant, so the only input variable to change the force on the propeller is the blade pitch βp . Along this
axis in the propeller dataset, a minimum and a maximum force is obtained, where the corresponding blade
pitches are used as input. So for example the slow cruise case, will operate at the conditions described by
Table 6.1. At this point in the propeller forces dataset, a maximum and a minimum thrust along the blade
pitch axis is obtained, subjected to the power constraint mentioned above. The rudder is not deflected in the
TMP case. For the reference aircraft, always a full rudder deflection is used, hence δr=−35[deg].

In the remainder of this section, the new design will be referred to as ’TMP’, and the reference aircraft
without TMP as ’Ref’.

Yaw control response in slow cruise
In this case all power that is needed for a steady horizontal flight path can be supplied by the tip mounted
propellers. For the TMP aircraft the original engines are set to zero power conditions, i.e. idle power setting.
For the reference aircraft the power setting on the engines for a steady horizontal flight is set by the trim
routine and the autopilot. The blade pitch deflection is βp= 30[deg] and βp= 10[deg] for the left and right
TMP respectively. This is the maximum deflection attainable by the approach just described. Since βp was
already 30[deg] according to Table 6.1, only extra drag and no extra thrust is generated.

The resulting flight path due to the maximum TMP βp by means of an angular representation of the
aircraft state is depicted in Figures 6.2 and 6.3. In this case the TMP case can yaw quicker than the reference
case can, attaining 115% of βs of the reference aircraft after one second of full deflection.
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Figure 6.2: Slow cruise inflow angle response
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Figure 6.3: Slow cruise state angle response

As the propeller was not able to provide extra thrust for this advance ratio, the propeller could only be
used as spoiler. Due to the deceleration, decreasing the flight velocity u, the angle of attack is increasing.
Since the thrust force that was pushing the nose of the aircraft down is traded in for a drag force that is pulling
the nose up, the aircraft starts pitching up, shown by the θ line in Figure 6.3.

When the rudder is negatively deflected, a negative moment is created along the X-axis in the body frame,
hence a negative roll rate p is introduced as in Figure 6.4. Due to the yawing motion where the left wing is
providing more lift than the right one, this roll rate is quickly reversed. Since the moment created along the
X-axis in the body frame due to the TMP deflection is negligible, this adverse roll tendency is not present with
the TMP aircraft. As the adverse roll is not present, the aircraft will directly have a positive roll rate. Therefore,
the response in roll with a TMP control input is quicker for the TMP aircraft than the reference aircraft. Due
to the pitch moment of the drag-generating engine, a strong pitch up motion develops, which is quickly more
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than compensated for by the increase in α. At the end of the analysis this even leads to a more aggressive
pitch down motion than the reference case. For both aircraft α is increasing, as it is defined by tan−1(w/u).
The u component will decrease with increasing βs , increasing the angle of attack.
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Figure 6.4: Slow cruise angular rate response
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Figure 6.5: Slow cruise Cartesian normal accelerations

From Figure 6.5 the differences in Cartesian accelerations are readily obtained, as felt by the
pilot/passenger of the aircraft, hence including gravity. Due to the sudden drag generation of the tip
mounted propeller the aircraft decelerates. A small acceleration in Y is present since the thrust on the left
engine is now higher, resulting in a force to the left (negative Y). The pilot therefore feels that he is pulled to
the right (positive Y). For the reference case, the Y acceleration is due to the rudder input. This acceleration
is much larger than the one created by the tip mounted propellers. Since the angle of attack is increasing,
more lift is generated, which is increasing anzb

and increasing γ. Apparently the dihedral of the wing is
providing enough lift when yawing that can compensate the loss of lift due to pitch rate.

Yaw control response in fast cruise
In the fast cruise case not enough thrust is available by the smaller tip mounted propellers to overcome the
drag. Therefore the tip mounted propellers are set to a maximum thrust setting where KP≤ 0.5, and the
remainder of thrust needed is set by the trim routine on the main engines. The reference aircraft simply uses
its main engines for thrust.

Since the TMP are set to a maximum thrust setting, no more thrust can be used to yaw, so only drag can
be used. The yaw control capabilities will be smaller than in the slow cruise case since the minimum βp that
can be used in the propeller dataset is larger now. The blade pitch deflection is βp= 40[deg] and βp= 20[deg]
for the left and right TMP respectively. The resulting flight angles are presented in Figures 6.6 and 6.7. As the
angular rates and Cartesian accelerations for the fast cruise case are a scaling of the slow cruise case, these
are not shown here.

In this fast cruise case the tip mounted propellers prove to be less efficient than the rudder for yaw control,
since βs after 1 second is 52% of the reference aircraft’s βs after 1 second. At such high speeds the propellers
are unable to provide a large amount of thrust, resulting in lower thrust ranges than the slow cruise case.
Furthermore, since the angle of attack is less than zero in Figure 6.6, and hence the local lift coefficient on
the tips is less than zero, the tip vortex is degrading the propeller performance since the propeller will now
co-rotate with the tip vortex.

The same trends due to the same influences are obtained in this fast cruise case as in the slow cruise case.
Since the TMP yaw response is approximately half the yaw response of the reference aircraft, the development
of state angles is somewhat more nuanced in Figure 6.7. So with respect to state trend development the slow
and fast cruise cases are similar.

Yaw control response in descent
In this descent case, the propellers are set to a maximum power output setting for the TMP aircraft, so
recuperating conditions. The propellers are thus generating drag. The reference aircraft is simply gliding
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Figure 6.6: Fast cruise inflow angle response
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Figure 6.7: Fast cruise state angle response

with idle engines. The airspeed is set to 40 [m/s] in this case. The blade pitch deflection is βp= 40[deg] and
βp= 10[deg] for the left and right TMP respectively.

The yaw control performance should be comparable with the slow cruise case, as the maximum inputs
attainable should be comparable at similar flight speeds. The βs response curve suggests that this is true in
Figure 6.8, where βs after one second of full deflection is 128% of the reference aircraft’s βs . However, the tip
mounted propellers are now generating drag instead of thrust, resulting in a different pitch moment. Since
drag will now be reversed to thrust, a pitch down motion is expected instead of first a pitch up motion, and
then a pitch down motion. This expected behaviour is confirmed in Figure 6.9. In contrast to the slow cruise
case, γ now declines for the TMP aircraft. The glide slope that the TMP aircraft attains is more than −10[deg],
whereas γ is −6[deg] for the reference aircraft

59.50 60.00 60.50 61.00

−20.00

−10.00

0.00

Time [s]

A
n

gl
e

[d
eg

]

α Ref
βs Ref
α TMP
βs TMP

Figure 6.8: Slow descent inflow angle response
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Figure 6.9: Slow descent state angle response

Figure 6.10 shows that q first goes down, remains constant, and slopes down again. When comparing this
behaviour withα in Figure 6.8, the moment that q decreases again is the same moment whenα is increasing.
This also holds for the reference case. Hence, the aircraft behaves slightly different than the reference aircraft
by a heavier pitch down manoeuvre and a larger roll response.

Yaw control response with one engine inoperative
Since TMP are rather inconvenient when one engine is inoperative, a critical part of the applicability of TMP
for directional control is when a OEI situation arises. In this OEI case it is assumed that the rotational speed
of the propeller can still be controlled, yet the power input to the propellers must be below zero. Hence,
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Figure 6.10: Slow descent angular rate response

the propellers are in recuperating conditions. Again a slow and a fast configuration is chosen, yet the fast
configuration is now set to 60 [m/s]. This is done since it does not make sense necessarily to fly any faster
with an engine inoperative. The blade pitch deflection is βp= 21.5[deg] and βp= 10[deg] for the left and right
TMP respectively for the slow case, and βp= 22[deg] and βp= 10[deg] for the left and right TMP respectively
for the fast case.

The corresponding angles for α and βs are presented in Figures 6.11 and 6.12 for the slow and fast
configurations respectively. The behaviour of the aircraft is similar to the descent case, where the propellers
were producing drag as well. Since it is assumed that the propeller cannot produce thrust in this case, the
yaw control performance is weaker. In the slow and fast cases the attained yaw angle after a second of full
TMP deflection is 44% and 49% respectively of the reference aircraft’s yaw angle after a second of full rudder
deflection.
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Figure 6.11: Slow OEI inflow angle response
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Figure 6.12: Fast OEI inflow angle response

In both cases the trimmed angle of attack for the TMP aircraft is smaller than the trimmed α for the
reference aircraft. Due to the large drag force of the propellers, the TMP aircraft must compensate for this
pitch up moment by deflecting its elevator downwards, resulting in a lift force up, alleviating the required α

on the wings.
Since the input power to the propellers must be negative, the time history of the tip-mounted propellers

input power is interesting as well. A static input to the blade pitch is given in the model. According to Figures
6.13 and 6.14, after the input is given, the left input power decreases. This indicates that the blade pitch could
be increased, resulting in less drag, and therefore increase the yaw rate.
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Figure 6.13: Slow OEI power fraction response
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Figure 6.14: Fast OEI power fraction response

As one can see, in this very limiting case, the yaw angles attained are still around half of what the
conventional aircraft can do. If one considers that the situation that is depicted here is not the analysis of a
fully optimised design, this is a promising result for an aircraft fitted with TMP in a OEI situation.

Yaw control response reflection
In cases where thrust and drag forces are within operational range, as the slow cruise and slow descent
cases, yaw control response to TMP is adequate. In more limiting cases, as the fast cruise and both OEI
cases, observed TMP yaw control performance was around half the yaw control performance of the
reference aircraft. All yaw control deflections using TMP were done without any optimisation, where only βp

could be varied. If a proper design study is to be undertaken, the yaw control performance of TMP would
increase. If more directional control force is desired, the conventional rudder can still be used. This
concludes the analysis on nominal operating conditions. However, if an aircraft enters a spin, sufficient yaw
control authority must be present to recover from this flight situation. This study is not valid for this flight
situation since (amongst other reasons) the inflow field on the propeller is not valid since the lifting line
code cannot handle separated flow, nor is it relevant to the objective of this thesis. To extend the validity of
this model into the stalled regime is left as recommendation.

Furthermore, if one would decrease the VTP area, the yaw performance of the TMP would be increased.
If the goal is to reduce the VTP size, this must be possible from a control point of view. Based on the results
of the yaw control response study, the VTP area can be reduced by 44% based on βs T MP / βs Re f response
fractions, if one assumes that the amount of βs attained after a second of deflection is proportional to the
rudder size. Finally, the descent angle for maximum recuperation γ= −10[deg], where the reference aircraft
has a descent angle of γ =−6[deg]. This indicates that the TMPs can be used as descent slope controllers as
well.



7
Conclusion & Recommendations

First the conclusion will be presented, followed by recommendations for future research.

Conclusion
The research question was formulated in Chapter 1. To be able to answer this question, four objectives are
identified:

1. Develop a program that calculates the forces on a propeller that resides in the wing-tip vortex.
2. Evaluate the static stability contribution of tip-mounted propellers.
3. Simulate the dynamic response to a perturbation of an aircraft fitted with tip-mounted propellers.
4. Compare the time-response of a conventional rudder deflection and a tip-mounted propeller

deflection for both positive and negative input power.

For each of these objectives the results will be summarised here. When combining these results a final
conclusion can be formulated, as an answer to the research question.

Develop a program that calculates the forces on a propeller that resides in the wing-tip vortex
A lifting line program is written to estimate the velocity inflow field on a pusher propeller. The lifting line
velocity field is validated by comparing it to a velocity field resulting from CFD analysis. The thrust and
power are obtained from a combined blade-element momentum vortex model, which is widely used within
the TU Delft. Empirical formulae are used to obtain the thrust, normal force and power when the propeller is
subjected to an angle of attack. All assumptions are checked, and are shown to be applicable.

Evaluate the static stability contribution of tip-mounted propellers
A sensitivity study of the input parameters for the forces on the propeller is conducted. The input parameters
are linked to the state of the aircraft by mathematical relations. Again a sensitivity study is conducted, yet
now on the static stability contribution. Cnβ and Cmα are evaluated. For the asymmetric case, the toe-in
angle εT MP has a large influence, where a negative εT MP increases Cnβ . When considering the size of typical
propellers for this TMP configuration, an indicative (no optimisation study is performed) vertical tailplane
area reduction of 37% is obtained. For the symmetric case, the magnitude of thrust is the most important
parameter. Higher thrust values make Cmα more negative as the propeller axis is positioned above the centre
of gravity. In a design study, the vertical distance between the propeller axis and the centre of gravity of the
aircraft is an important parameter due to its large influence on Cmα .

Simulate the dynamic response to a perturbation of an aircraft fitted with tip-mounted propellers
An exponential curve is fitted to the time-response curves of the flight mechanics model extended with
tip-mounted propeller forces. Three motions are simulated: Dutch roll, Phugoid and Short period. The
exponential curve method works well for the first order motions Dutch roll and Phugoid, yet degrades in
accuracy for the second order motion Short period. For the Dutch roll motion, the toe-in angle εT MP has a
large influence on the frequency ωn of the motion, yet has a smaller influence on the damping ratio ζ. The
main influence of thrust is on ζ, where more thrust increases ζ. For the Phugoid motion, higher thrust will
increase ωn and decrease ζ. For both motions, if the propeller is recuperating and hence generating negative
thrust, a further attempt to decrease the thrust may destabilise the motion.
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Compare the time-response of a conventional rudder deflection and a tip-mounted propeller deflection for
both positive and negative input power
Since the propeller axis is positioned above the centre of gravity, a pitch moment is introduced when
’deflecting the TMP controls’, hence changing the thrust of the propellers by changing the blade pitch βp .
Therefore the angle of attack increases more - with respect to a conventional rudder - when the TMPs are
producing thrust, and decreases when the TMPs are recuperating. The roll rate over yaw rate fraction is
larger in the TMP case, as the initial adverse roll (since the rudder is positioned above the CG) is absent.
When a maximum deflection is initiated with TMP, where the highest respectively lowest thrust value at
some advance ratio for the left respectively right TMP is selected, the yaw rate response r outperforms the
conventional rudder when flying slow. When flying fast, the attained TMP sideslip angle βs after one second
is half the βs produced by the rudder after one second. This is similar to the result obtained for a one-engine
inoperative case, where βs due to TMP deflection is a bit less than half βs due to rudder deflection.

This leaves us with the research question.

Can tip-mounted propellers enhance the directional stability and controllability of an aircraft?
Yes. To enhance the directional stability, the rotation axis of the tip-mounted propellers should be placed
outwards, hence with a toe-out angle. With respect to static stability, the vertical tailplane surface area can be
reduced, depending on the design. A typical, not optimised design indicates that the vertical tailplane area
can be reduced with 37%. With respect to control, a typical design shows that tip-mounted propellers can be
more effective directional control devices than the conventional rudder. This control effectiveness compared
to a conventional rudder decreases to 52% with increasing flight speed, and 44% when only negative propeller
input power can be used, when for example one engine is inoperable.

Recommendations
This research is a first step towards a synergistic strategy of using tip-mounted propellers not only for
enhanced propeller or wing performance, yet also for enhanced directional stability and control. This can
reduce the size of the vertical tailplane, reducing drag and mass, and hence reduce overall energy
consumption. Furthermore, the tip-mounted propellers can be used to recuperate energy on descent,
reducing the overall energy consumption even further. This also offers glide-slope control possibilities. To
work towards the implementation of TMP for stability and control, the following two areas of research
should be investigated.

Extend propeller-wing model for stalled-regime validity
The rudder has a very important function that is not addressed in this thesis: if an aircraft enters a spin (one
wing is stalled and the other one produces lift, resulting in a spiralling motion towards earth), the rudder is
used to halt the spinning motion. Furthermore, as the TMP contribution to the Dutch roll damping becomes
negative when sections of the propeller blade begin to stall, this regime might introduce hazardous situations
by badly-damped eigenmotions or even departure. It is therefore of utmost importance to obtain a model that
is valid in a stalled-wing/propeller regime.

Parametrise the vertical tailplane in flight mechanics model
To reduce the VTP size, the dynamic performance of a TMP aircraft with a reduced VTP size needs to be
analysed. In the current model non-linear responses could not be obtained for a reduced VTP size. Only
an enhancement/degradation with respect to the original aircraft could be measured. A flight mechanics
model where the VTP is parametrised needs to be obtained. This can be done either by modifying the Piper
Seneca model, or using/building a new parametrised model that can be verified by comparing it with the
Piper Seneca model.



A
Propeller Forces Post-processing

In Section 3.2.3 the dataset post-processing using interpolation and application of βp and J limits from Table
3.6 is explained. To visualise this interpolation, TMP yaw moment coefficient plots are used. The physical
meaning of this plots is not repeated here, the sole purpose is to show the post-processing step. The dataset
without interpolation results in Figure A.1, and after the post-processing step in Figure A.2. Values outside of
the confidence-intervals ofβp and J are removed, and the values at J= 0.5 forβp= 12.5,15,20 are interpolated
as intended.
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Figure A.1: Original TMP yaw moment coefficients
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Figure A.2: Post-processed TMP yaw moment coefficients
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B
Phugoid Sensitivity Analysis (cntnd.)

As the longitudinal motions are no necessary subject to answer the research question, yet might be interesting
for the reader, the three remaining cases of the parametric phugoid motion analysis that were not included
in Section 5.2.3 are presented here throughout Figures B.1 - B.3. Generally it can be stated that more thrust
decreases the damping ratio, and increases the natural frequency.
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Figure B.1: Slow cruise phugoid oscillation characteristics sensitivity analysis
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Figure B.2: Slow descent phugoid oscillation characteristics sensitivity analysis
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Figure B.3: Fast descent phugoid oscillation characteristics sensitivity analysis
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