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chine learning and Bayesian statistics in his course on data analytics and visualization, as without it I would
have never had the confidence to apply the statistical methods I did during this project. Also, as my second
supervisor his insights into probabilistics proved valuable for my research, while his interest with the soci-
etal aspects of the research helped shape my final analysis for the better. Also, I would like to thank Remco
Verzijlbergh, as his knowledge and insight in the topic at hand, combined with his contagious enthusiasm
and the confidence he placed in my ability to solve the problems I faced along the way proved decisive in the
direction and success of my research. Especially the literature he suggested has provided me with valuable
insights, which ultimately defined my research. Furthermore, the great atmosphere at his company Whiffle
provided my with a lot of energy and enthusiasm, which at times inspired me in tackling some of the chal-
lenges I faced.

I would also like to thank Stijn van Langen, my first supervisor at my internship at Essent, for his interest,
patience and knowledge of the real world considerations of those participating on the electricity market. The
freedom I got at Essent to pursue my interests and ideas were valuable in the process of forming the final
research project. Furthermore, his down to earth attitude to theoretical concepts proved often right and
definitely fruitful in making decisions with regards to my research. Without these suggestions I would not
have made the choices I made, which ultimately influenced my research for the better. Also, I would like to
thank Taco Kuipers, my second supervisor at Essent, for many fruitful discussions, great table soccer matches,
although less fruitful, and for multiple opportunities he set up for me to interact with other departments, to
get their take on the matter. This extends to the colleagues of Taco and Stijn in the short-term forecasting
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energy company, a great working environment and who made me feel part of the team.

Finally, I would like to thank my roommates, friends and family for their tremendous support. Specifically
I would like to thank my friend Aubin for his seemingly limitless patience in discussing complex statistical
concepts, especially those involving Copula models. Furthermore, I am very grateful to my sister Hieke, who
greatly helped me in organizing my research during the most challenging final phase of my research and my
brother Volkert and his girlfriend Annelieke for their great hospitality and support.

Gerrit Deen
Delft, March 2019

iii





Summary

One of the most significant challenges facing mankind today is that of the Grand Challenge of Climate Change.
An important mitigation strategy in recent years has been the upscaling of zero and low carbon electricity
generation, with an important role for wind power. A main driver behind the successful upscaling of wind
power generation has been cost reduction. However, as wind power producers (WPP) are increasingly ex-
posed to market conditions as support policies are starting to reduce, cost alone is not anymore the only fac-
tor driving its business case. Regarding the market value of wind power, a significant decrease is projected,
which is mainly due to two effects. First, wind power is highly correlated within a single market, which results
in decreased electricity prices when output is high, as it is often collectively high for all WPPs simultaneously.
Second, as WPPs are highly correlated, they are often collectively wrong in their predictions, which lead to
strong grid imbalances, for which they are increasingly required to pay themselves.

As these factors lead to a decreased value of wind power and this effect is predicted to further decrease as
market penetration of wind power increases, this study chooses to focus on what a WPP can do to increase
its market value. A review of the literature shows that the best way to do so is to alter the way WPPs offer their
electricity on the electricity markets. Hence, the main research question of the research is:

To what extent can WPPs improve the market value of their wind power generation through improved of-
fering strategies?

In order to answer this question a case study is performed on a 147.6MW Belgian offshore wind farm, for
which advanced bidding strategies are constructed, aimed at increasing the market value of its generation.
Several market strategies are optimized for the day-ahead market and the balancing market. The intraday
market is not considered in this study due to its low liquidity. With the conventional market strategy as a
reference, multiple market strategies are constructed using two stochastic optimization models and one an-
alytic model. As the reference strategy for a WPP entails offering the wind power forecast on the day-ahead
market, three different forecasts are analyzed, both as alternative reference strategies and as alternative in-
puts to more advanced strategies. The first forecast is the one currently operationally used, the second and
third are provided by Whiffle, a company specialized in ultra-high resolution forecasts.

Several inputs are required for the models, which are forecasts for the wind farm, the day-ahead price,
the imbalance price and the effect the WPP has on the balancing market (price-maker effect). As only wind
power forecasts were available, this study introduces a method is introduced which uses a univariate kernel
density model, a robust regression model and a seasonal auto-regressive moving average model to generate
forecasts for all three price series. Although this study does not provide a comparison with other methods,
when used as inputs to the offering strategies, these forecast are able to reliably increase value.

Regarding the stochastic optimization models, two models are considered. The first is a price-taker model,
which assumes the WPP has no influence on the imbalance price. The second is a new formulation of a price-
maker model found in literature, which assumes a linear influence on the imbalance price as a stochastic
process. Stochastic optimization aims at finding an optimum for an uncertain problem, where all uncertain
parameters are represented by a discrete set of scenarios. For this purpose this study introduces a model-
ing framework. This framework uses applies two modeling steps. First, a conditional multivariate kernel
density model is used to quantify the uncertainty surrounding the forecasts of wind power, the day-ahead
price, the imbalance price and the price-maker effect. These stochastic processes are then combined in a
Gaussian Copula model, which models the dependency between these stochastic processes using the multi-
variate conditional kernel density models and a multivariate Gaussian distribution. This allows the modeling
of the interactions between all of these processes stochastically, which results in a more realistic scenario set.
Conventionally, scenario sets for stochastic optimization are constructed using scenario reduction, which
assumes all processes are independent from each other. To be able to identify the value of the dependent
modeling of the stochastic processes introduced in this framework, the Copula coupled scenario set is bench-
marked against a conventionally reduced scenario set.

To be ale to judge the quality and reliability of the inputs of the modeling framework, the modeling itself
and the outputs it produces, this study also introduces an evaluation framework. The purpose of this frame-

v



vi Summary

work is to empower WPPs to make informed decisions with regards to the modeling process, enabling higher
quality decision making. The evaluation of the modeling process shows that the model is able to accurately
and reliably capture the uncertainty surrounding all stochastic processes, although less so for the price-maker
effect. For the analysis of the performance of the different strategies, two different analyses are carried out.
The first assumes that a difference in offering strategy does not influence the imbalance price (price-taker
assumption), while the second assumes it does (price-maker assumption). Section 8.2 shows that under the
price-taker assumption the price-taker optimization model strongly outperforms the other models on ex-
pected value, albeit with much higher risk. However, section 2.3 concludes that a change in strategy does
in fact influence the imbalance price, for which the mechanism is explained in section 3.4, while section 3.1
shows that the price-taker model results in extreme bidding strategies, which leads to large volumes being
traded on the imbalance market. Section 8.3 shows that when the effect on the imbalance price is taken into
account, the price-taker optimization model in fact leads to a strongly lowered revenue. This analysis shows
that the real-world performance of the price-taker optimization model is strongly negative, both on the ex-
pected difference in revenue, as well as on risk. The price-maker models both take the effect of their strategy
on the imbalance price into account, which is explained in sections 3.2 and 3.3. However, only the optimiza-
tion model using the Copula coupled scenario set shows to be able to achieve an increase in revenue with
regards to the reference strategy, where a large difference exists between the three forecasts, with one Whiffle
forecast clearly outperforming the other two forecasts.

Section 8.4 quantifies the effect the different strategies have on the system imbalance. This analysis shows
that all price-taker strategies lead to significant increases in average expected system imbalance, risk for large
imbalances and imbalance volatility. All price-maker models positively impact the system imbalance in all
three respects. Of the price-maker strategies, again the one using the Copula coupled scenario set outper-
forms the others. Section 8.5 quantifies the effect of the strategies on the opportunity cost of the system as
a whole through trading on the balancing market. This shows that the price-maker strategy using the Cop-
ula coupled scenario set is likely to have a positive effect on the system as a whole. This effect is likely to be
larger in reality, as a successful strategy results in a dampened imbalance price, which is not captured in this
analysis.

In conclusion, this study found a possibility for a 1.17% increase in revenue, from choosing the strategy
using the price-maker optimization model using the Copula coupled scenario set with a change in forecast.
Based on the results, this study presents several recommendations. First, this study found a large difference
compared to other studies found in literature. This is due to the fact that most studies in literature applied
the price-taker analysis, whereas this study applied a price-maker analysis for its final conclusions. Although
improvements can and should be made to the algorithm this study applies to recreate imbalance prices, not
taking the price-maker effect into account significantly skews results, which can result in dramatic negative
performance in reality both for the WPP as on a system level. Hence, this study strongly recommends to first
find a method to reliably recreate prices before drawing conclusions. Second, this study found that only the
price-maker optimization model using the Copula coupled scenario set was able to produce a strategy that
outperformed the reference strategy in the price-maker analysis. The other strategies resulted in a varying
degree of negative performance. As the processes are dependent, not respecting the dependencies results in
an unrealistic scenario set, which results in an unrealistic optimization. Hence, it is strongly recommended to
build on the dependency modeling introduced in the modeling framework, when applying the model opera-
tionally. The third recommendation regards the formulation of the price-maker optimization model. Section
3.4.1 showed that the sign of the quarter hourly average volume of balancing bids (NRV) activated to counter
system imbalances plays a crucial role in determining the imbalance price. This in fact explains the switch-
ing behavior of the imbalance price, which is shown in section ??. Incorporating this effect allows for the
modeling of the imbalance price in two separate components as well as the endogenization of the switch-
ing behavior of the imbalance price in the optimization model through the NRV process. This increase in
resolution of the uncertain processes driving the decision-making process seems a likely source of improve-
ment for the optimization. Furthermore, the positive impact on the total system opportunity cost from the
price-maker optimization strategy using the Copula coupled scenario set is explained by the fact that it offers
too aggressively, as it causes a switch in the imbalance price when prices are high. This is due to the non-
inclusion of the NRV signal in the optimization. Hence, it is strongly recommended to include these effects if
the model is to be used operationally.



Contents

1 Introduction 1
1.1 Research Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 On improving forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 On Improved Forecast Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Main research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Research approach and sub research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Sub questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Research Relevance and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 SystemOverview 11
2.1 Electricity Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Market actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Short Term Electricity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Market design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Day-Ahead Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Balancing Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Balancing Market Pricing Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Revenue Realization for Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Stochastic OptimizationModel 23
3.1 Price-Taker Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Price-Maker Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Price-Maker Analytic Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Evaluating Strategy Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Imbalance Price Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Revenue Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Strategy and market quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 System Effects and System Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Framework for Stochastic ProcessModeling 35
4.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Construction of Density Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Constructing a probabilistic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Constructing a density forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Scenario generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Scenario Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Scenario Reduction and Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Copula Coupled Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Framework for Evaluation of Stochastic ProcessModeling 47
5.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Point Forecast Statistical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Reliability of Stochastic Process Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Reliability of Predictive Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Reliability of Dependency Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Skill of Stochastic Process Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



viii Contents

6 Construction of Price Forecasts 55
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 The Day-Ahead Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 The Imbalance Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 The Price-Maker Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Results Stochastic ProcessModeling 67
7.1 Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Wind Power Point Forecast Performance. . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.2 Wind Power Stochastic Process Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1.3 Wind Power Stochastic Process Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Day-Ahead Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Imbalance Price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Price-Maker Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 Scenario Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.1 Conventional Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5.2 Copula Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Results Stochastic Optimization 89
8.1 Optimized Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Price-Taker Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Price-maker analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4 System Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.5 System Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9 Conclusions, Discussion and Recommendations 103
9.1 Sub conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Main conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10 Reflection 113
10.1 Quality of Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.2 Strategic Interests of Market Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.3 System Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.4 Short-Term Electricity Market Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Appendix 119
A.1 Predictive Linear Model Day-Ahead Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 Predictive Linear Model Imbalance Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.3 Predictive Linear Model Price-Maker Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B Appendix 127
B.1 Price-Taker Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.2 Price-Maker Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.3 System Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.4 System Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 133



Glossary

FSP Forecast Service Provider

DA Data Assimilation

BRP Balance Responsible Party

WPP Wind Power Producer

PTU Programme Time Unit

MIB Marginal Incremental Bid

MIP Marginal Incremental Price

MDB Marginal Decremental Bid

MDP Marginal Decremental Price

NRV Net Regulation Volume

SI System Imbalance

α Additional incentive imbalance price

λ+ Long imbalance price

λ− Short imbalance price

λD Day-ahead price

λImb Imbalance price

λ∆ Imbalance difference price

γ∆ Price-maker effect

P D Power offered on the day-ahead market

P∆ Power offered on the balancing market

P Observed power

P max Rated power

t Time of day

k Forecast horizon

ω Scenario index

ix



x Glossary

dt Timestep

R Revenue

πω Scenario probability

CVaRα Conditional Value at Risk at level α

λ∆
+

Long opportunity price

λ∆
−

Short opportunity price

R∆
+

Long opportunity revenue

R∆
−

Short opportunity revenue

R∆ Total opportunity revenue

P∆
+

Long volume

P∆
−

Short volume

λ
∆+

Average long opportunity price

λ
∆+

Average short opportunity price

λ
∆

Average opportunity price

σ Volatility

RSI+ System long opportunity revenue

RSI− System short opportunity revenue

RSI System opportunity revenue

εt+k|t Forecast error for forecast issued at time t , for forecast horizon k.

yt+k Observation of process y
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1
Introduction

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change states that it is "extremely
likely that human influence has been the dominant cause of the observed warming since the mid-20th cen-
tury (95-100% likely) [55]. One of the main components of this human influence is the emission of anthro-
pogenic greenhouse gasses, which increased by 81% in the period between 1970 and 2010. Due to human
influence on climate change, it is projected that the surface temperature will rise and it is deemed "very
likely that heat waves will occur more often and last longer, and that extreme precipitation events will be-
come more intense and frequent in many regions (90-100%). The ocean will continue to warm and acidify,
and global mean sea level will rise" [55]. These developments are projected to increase risk for "people, as-
sets, economies and ecosystems, including risks from heat stress, storms, extreme precipitation, inland and
coastal flooding, landslides, air pollution, drought, water scarcity, sea level rise and storm surges (90-100%
likely). Fortunately, mitigation strategies can reduce the likelihood of these effects happening. An important
mitigation strategy is the decarbonization of the electricity and heat production sector, as it was responsible
for 25% of all anthropogenic greenhouse gas emissions in 2010. This requires the upscaling of low- and zero-
carbon electricity generation technologies. There is a long way to go, as the share of low-carbon electricity
supply must increase from 30% in 2010 to 80% in 2050 in order to achieve a 50% likelihood of limiting global
warming to 2°C in the majority of scenarios drawn up by the IPCC, which is the agreed upon limit which
should help reduce the most severe risks [55]. Furthermore, the main driver behind the human influence
is cumulative CO2 emissions, which is due to the fact that CO2 remains in the atmosphere for a very long
time. Because of this fact short-term mitigation strategies have a higher weight in mitigation strategies, as
delayed mitigation will require much more severe medium to long term mitigation strategies, which would
lead to significantly higher mitigation costs in the medium to long term. In recent years one of the main tech-
nologies driving the short-term decarbonization of the electricity sector has been wind power. In terms of all
electricity generated by renewables in 2017 wind energy was second only to hydro in 2017 [28]. However, as
wind power only generated 4.4% of the world’s electricity in 2017, while it is one of the main technologies for
the short-term upscaling of low carbon electricity generation, there is still a long way to go [6]. Wind power
is currently an important energy technology due to its technological maturity, low cost and relatively stable
power output compared to solar. Although it has clear benefits as a method for electricity generation, it also
has a downside, which is often referred to as ‘integration cost’ [25]. This consists of increased grid costs,
increased costs to balance the grid and reduced utilization of the capital in thermal plants. Although these
effects are not considered in this study, considerations with respect to these integration costs are discussed
in the reflection.

To drive investment in wind energy, policies have provided various incentives. For instance, subsidies
have been awarded to tenders or parties participating with wind power in electricity markets have been ex-
empted from certain penalties, such as paying for grid imbalances [42]. However, recently wind farms have
been increasingly participating in the electricity markets. This means they are exposed to certain risks, such
as uncertain and volatile market prices and uncertainties in their output. Furthermore, support policies have
been steadily reduced, in part motivated by high policy costs, but also due to cost reductions in wind tech-
nology, which reduces the need for such support policies [42]. Although this reduction in cost is projected to
continue towards the future, a study by Hirth, Ueckerdt and Edenhofer emphasizes a need to not only focus
on the cost perspective, but also on the value perspective [25]. This is proposed shift in perspective is not only
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Figure 1.1: The system base price is depicted in the left bar and the market value of wind power is
depicted in the right bar. The difference between them can be decomposed into ’Profile’, ’Balancing,

and ’Grid-related costs [25].

motivated by the increasing reliance on the market value to drive investment, but also due to a corresponding
decrease in market value as the installed capacity increases. Hirth et al. present three factors that influence
this value most [25], as visualized in figure 1.1: 1) Profile costs, 2) Balancing costs and 3) Grid-related costs.
Firstly, profile costs consist of two elements, the ’merit-order effect’ and the ’correlation factor’. Both have to
do with the average electricity price wind power obtains. The main electricity price in most markets today is
the day-ahead price, which for most European countries, including Belgium, consists of a centralized auction
process, where all price-quantity offer bids are arranged in a increasing order to form the aggregate supply
curve and all price-quantity demand bids are arranged in a decreasing order to form the aggregate demand
curve. Where these two curves intersect, the market clearing price is determined. This process is explained
more in-depth in section 2.2. Due to the near-zero marginal cost of wind power, its offers enter the supply
curve on the left-hand side, which means that these bids (and other near-zero marginal bids) are accepted
before higher priced bids, directly shifting the aggregate supply curve to the right and thus directly influ-
encing the price as a result, which is visualized through figure 1.2 [24]. This ’merit order effect’ means that
when wind energy experiences high output, less expensive generators are activated by the market, leading
to a decrease in the electricity price. Unfortunately, wind farms operating within a single market have highly
correlated power outputs, which means that this ’renewable shift’ in the price is likely to be high when a wind
farm experiences high output, thus reducing the price it receives proportionally to its output. The second
profile cost factor for wind energy is the ’correlation factor’, which stands for the correlation between wind
output and demand [24]. When this factor is high, wind output is high in times of high demand, thus realizing
a relatively high price for its output. Unfortunately, this correlation is rather low, which further decreases the
price for wind energy. This drop in market value due to ’Profile costs’ is expected to increase as penetration
of wind energy increases, as shown in figure 1.3 [24]. Hirth et al. found this value drop in Germany from 2001
to 2013 to be 17% [24]. Unfortunately, as the output for a wind power producer is uncontrollable and storage
is not yet a viable option, ’Profile costs’ can currently not be reduced by wind farms.
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Figure 1.2: The impact of the near-zero marginal cost of renewables on the merit-order. The dotted
line indicates the shift caused by renewable offers entering the supply curve on the left-hand side,

reducing the price as a result.
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Figure 1.3: Development of the Value Factor as a function of wind market share, where the Value
Factor (dimensionless) on the y-axis is defined as the Ratio of average wind revenue in €

MWh versus average market revenue in €

Mwh. The long-term trend shows the effect of added flexibility in the electricity market, e.g.
electricity storage.

The second factor contributing to the decrease in market value for wind energy is ’Balancing costs’. These
are costs associated with deviations between what a wind power producer (WPP) offers on the day-ahead
market and what it generates in real-time. As mentioned above, due to their near-zero marginal cost WPPs
offer their generation at a zero price to the day-ahead market. The party responsible for the wind farms power
balance (Balance Responsible Party (BRP)) then has to inform the Transmission System Operator (TSO),
which is responsible for balancing the grid, on its scheduled generation. In the Belgian system, the day-
ahead market closes at 12:00AM, which means that the wind farm must at a minimum forecast its generation
between 12 and 36 hours ahead. The quantity the WPP bids depends on what a farm expects to generate the
next day. As wind power output is a direct function of wind speed and wind speed is inherently uncertain, this
expected output cannot be known perfectly, which means that the expected output nearly never equals the
actual output. The deviation between this forecast and the observed output is called the WPP’s ’imbalance’.
Depending on whether the overall system imbalance of the electricity grid as a whole was hurt or helped by
the WPP’s imbalance, the WPP must buy back its shortage or sell its surplus at the ’imbalance price’, which
can be favorable or unfavorable for the WPP. This price is a result of the TSO activating balancing power bids
in order to maintain a balanced grid. This is important as imbalances can lead to component failures, which
results in a decreased security of supply, which can have severe economic consequences.

Unfortunately, this price is on average unfavorable, which makes these imbalances constitute as a cost
for the wind farm, further decreasing its overall market value. The severity of these costs was analyzed in
a study by Mazzi Pinson from 2017 [39]. They studied the impact of uncertainty on market revenue for a
21MW wind farm located in Western Denmark for 2014, which found that when using a typical point forecast
the cost due to imbalance was 5% of total revenue. As WPPs currently obtain very slim profit margins if
any, this is considerable. This effect is explained more in-depth in section 2.2. The third effect, ’Grid-related
costs’, relates to transmission constraints, which in some markets lead to locational prices: As wind energy is
often generated at locations relatively far from where the demand is located and the grid doesn’t always allow
certain flows of generated electricity, some markets apply prices that differ between areas. However, as this is
not the case in the Belgian market, these effects are not taken into account.

In conclusion, in the Belgian case, wind power’s market value is decreased mainly by the first two factors,
’Profile costs’ and ’Balancing costs’. As wind farms cannot currently influence ’Profile costs’, the main problem
in the context of decreasing market value consists of ’Balancing cost’. The next section focuses on ways WPPs
can influence this problem.
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1.1. Research Problem
The following section provides an overview of research into the problem, after which it concludes by formu-
lating the knowledge gaps and the main research question. The previous section concluded that WPPs can
increase the value of wind energy by decreasing balancing costs. It also explained how forecast errors cause
these imbalances. A possible solution could be to improve these forecasts and therefore reduce their errors.
In a review on the state of the art in wind power forecasting Giebel and Kariniotakis mention that forecasts
can also be used in more advanced ways which can enhance value [16]. Hence, two options for increasing
value are considered here, firstly through the improvement of forecasts and secondly through the improved
utilization of these forecasts. The next two sections discuss the literate on both.

1.1.1. On improving forecasts
This first part discusses the state of the art of wind speed and power forecasting and where possibilities for
improvement lie, based on the review by Giebel and Kariniotakis [16]. Forecasts are playing an increasingly
important role in today’s electricity markets and grids. Especially since in most European countries, the main
market is cleared around noon. This means that accurate forecasts crucial for the efficient functioning of the
electricity market. Furthermore, forecasts are becoming a central tool to keep the grid balanced, for which the
TSO is responsible. To maintain grid balance, the TSO requires market parties to communicate a balanced
schedule of their supply and demand typically sometime shortly after closure of the day-ahead market, de-
pending on the specific market. It then bases its balancing strategy on the schedules communicated to it
by the different market parties. As these schedules contain both uncertain demand and uncertain supply
(e.g. wind or solar power), the actual supply and demand often deviates from these schedules, which means
that the grid is often imbalanced. The quality of the forecasts for the uncertain parts of the schedule thus
determines the magnitude of these imbalances. The TSO continuously monitors the grid for these imbal-
ances and activates or deactivates generators or flexible demand to maintain balance. Currently, balancing
actions are mostly executed by conventional generators, which need to ramp their generation up or down.
Unfortunately, such ramping causes the lifetime and efficiency of generators to go down to varying degrees
depending on the ramp rate, frequency of ramping and the kind of generator. For the market participants
forecasts are also of importance, as they dictate the amount to be bought or sold to ensure a balanced sched-
ule. In the case of imbalances with regards to its schedule, the market participant is forced to participate on
the balancing market, on which it on average incurs unfavorable prices. Hence, the quality of its forecast has
a direct impact on the performance of its market strategy.

For wind energy, there is a large variety of forecasts being used. The first distinction to be made between
them is whether or not a Numerical Weather Prediction (NWP) model is involved. This distinction leads to
the first class of forecasts, one that relies solely on time series approaches using statistical models. This type
of forecast generally performs well up to a 6 hour horizon (Giebel Kariniotakis, 2017). It relies on historical
data, with the main input being Supervisory Control and Data Acquisition (SCADA) data, which consists of
measurement data from the generating unit(s), either meteorological or power. As this approach is outper-
formed strongly after a look-ahead time of 3h, the remainder of this section focuses on forecasts involving
NWP’s.

The second class is the one that incorporates data from NWPs. The NWP models leverage the equations
of motion, known as the Navier-Stokes equations and integrate them forward in time [16]. An important part
of this process is the initialization of the equations of the model with the best estimate of the initial atmo-
spheric state. For the determination of these initial conditions Data Assimilation (DA) is applied. This is a
process in which observations distributed in time and space are merged together with a dynamical numeri-
cal model in order to determine the initial state of the atmosphere as accurately as possible, captured in the
initial conditions. NWP’s perform well up to a forecast horizon of about 2 weeks, with gradually degrading
performance as the forecast horizon increases. An important limiting factor was found by Lorentz: He found
that the equations are extremely sensitive to differences in initial conditions, which can cause large devia-
tions in the conditions of the flow at a later time [37]. Part of the loss in forecast performance is hence due to
the fact that we cannot perfectly know the conditions at all places at the initial time. This is why currently im-
portant improvements in the performance of these models are due to improvements in measurements and
the DA process [22]. Due to the highly specialized nature and the scale of the task of data collection and DA,
this is not considered within the scope of the WPP.

There is a large variation between the methods employed by the different companies offering forecasts
(Forecast Service Providers (FSP)). Generally speaking, operational forecasts provided by FSPs employ a com-
bination of physics and statistics as both are needed for valuable forecasts [16]. Also, there are different chains
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in the forecast industry. The first one consists of the global scale NWPs, like the one by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). A global scale models start by determining their initial
conditions from many different types of measures, the Data Assimilation (DA) step. Then the model is run,
producing output at a given temporal resolution at certain (low) grid resolution.

The output from these models is then used in several different ways [16]. There are different meso-scale
or micro-scale NWPs which use the output from larger scale NWPs to determine the initial and boundary
conditions of their own models, where the first refers to the initial state of the atmosphere, while the second
refers to the state of the edges of the domain of the smaller-scale model at later times. These NWPs can add
value by simulating at a higher grid resolution, at a higher temporal resolution and/or by incorporating their
own DA process, with the aim of improving initial conditions. Generally speaking, such a model simulates
what happens within the coarser grid of the larger scale NWP. There are many different lower level NWPs,
each with different performance in different areas.

Another way forecasts from NWP models can be improved is through post-processing [16]. A first part
of this process is the removal of bias. Models have multiple inherent biases and once defined these can
be corrected using statistical or machine learning approaches. The standard mean of improvement in this
aspect is through model output statistics (MOS). This is generally a statistical regression model aimed at
removing biases [17]. Other methods are also used to provide corrections to models, such as Artificial Neural
Networks (ANN), autoregressive statistical (AR) models and others. Also used is ensemble MOS, which is used
to both correct the individual models and to optimize weights for the blending of forecasts from multiple
models. Postprocessing can be applied at any stage of the forecasting chain. While both post-processing and
ensemble MOS is something a WPP could do, the purchasing of multiple forecasts can lead to high costs for a
WPP, while many FSPs already employ the ensemble method, local conditions and other specialized methods
to improve their forecasts, as it is their core business to increase the performance of their forecasts.

Any of these NWPs can be used as input to additional statistical models, where the aim is to find relation-
ships between multiple explanatory variables, for instance between NWPs and (online) Supervisory Control
And Data Acquisition (SCADA) data, which consists of measurements of observed meteorological conditions
and / or power generation [16]. These models can have the form of explicit grey-box statistical models us-
ing advanced autoregressive statistical methods or black-box models such as ANN. The main value of these
models lies in the use of historical SCADA data to calibrate themselves, which can be advantageous for the
resulting forecast performance. Also, if online SCADA data is available, a self-calibrating recursive model can
be advantageous, as it can take advantage of constant updates. This is something that can be within the scope
of WPPs, as some are not willing to share SCADA data with FSPs.

Concerning the conversion of wind speed to power, often similar statistical methods are used, which can
also take advantage of (online) SCADA power data. Such methods should capture the non-linearities in the
relationship between weather data and power data, some due to the shape of the power curve, some due
to the characteristics of the terrain or the lay-out of the wind farm itself [16]. Also, it is suggested that NWP
models may be able to model power conversion better by making use of a higher temporal resolution, which
can impact power value because of the non-linearity of the relationship between wind speed and power out-
put. This can be achieved through statistical or artificial intelligence methods or by incorporating a physical
representation of a wind farm directly inside an NWP model.

Regarding the output of the different methods, there are multiple possibilities, which are especially rele-
vant when forecasts are used in more advanced applications. Firstly, the forecasts can be provided as either
power forecasts or wind speed forecasts. Secondly, some FSPs provide forecasts with a single value for each
time step, referred to as point forecasts, some provide forecasts accompanied by a certain confidence interval,
referred to as interval forecasts, while others provide an approximation of the complete probability density
at each time step, referred to as density forecasts [42]. Furthermore, all NWP models can produce approxi-
mations of the uncertainty of the forecast by generating multiple disturbed simulations using different values
for uncertain input parameters / initial conditions, which some do provide in the form of scenarios. How-
ever, in practice the distributions of these scenarios currently tend to be relatively narrow, when compared to
statistical methods of distribution density estimation, thus they tend to underestimate uncertainty [16].

Concerning the performance of different forecasts several factors need to be taken into account. Firstly,
while forecasts can be directly used in their point forecast form, when using more advanced bidding strate-
gies, the value of such forecasts may change a lot. Furthermore, more advanced higher resolution forecasts
often perform worse on conventional tests, like the Root Mean Square Error (RMSE) or Mean Average Error
(MAE), while they perform better on skill scores when used in a probabilistic context, which are more ad-
vanced metrics [42]. It might be that those that show higher skill may perform better when used in more
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advanced bidding strategies, but worse when used as point forecasts. Also, some FSPs provide density fore-
casts directly, which may be interesting, as multiple methods exist for determining forecasts’ uncertainty,
implying that higher quality density forecasts may be available [16]. However, most forecasts are provided in
point form, which means that in order to judge their performance in more advanced use cases, they would
first need to be transformed.

Concerning the role of the WPP in improving forecasts, several possibilities for improvement are identi-
fied. Firstly, SCADA (online) data can be shared with FSPs, providing them the opportunity to provide a bet-
ter calibrated forecast. Secondly, WPPs can improve their own statistical postprocessing using SCADA data.
Thirdly, the modeling of power conversion can be improved, either by improving the WPPs power conversion
models or by providing FSPs the opportunity to directly forecast power by sharing power data. Lastly, when
used in more advanced applications, some FSPs provide some information on the uncertainty surrounding
the forecast. However, it is currently still common to provide only a point forecast, while the scenarios men-
tioned before are not (currently) an accurate description of the underlying uncertainty. Although BRPs have
multiple possibilities to improve forecasts, Giebel and Kariniotakis (2017) conclude in their review that the
main error in short term forecasting models stems from the NWP models. Hence, this research limits the
scope of improving forecasts to the higly specialized work of FSPs. As many FSPs exist, each producing dif-
ferent performing forecasts, which can rank differently whether used as point forecasts or as more advanced
transformed forecasts such as interval or density forecasts, it seems more relevant for a WPP to best judge the
performance of each in their intended use case.

1.1.2. On Improved Forecast Utilization
This section discusses the literate on how WPPs can improve the usage of forecasts with the aim to improve
the value of their wind energy portfolio. As mentioned in the previous section, some forecasts may rank
differently when judged on conventional metrics, compared to metrics relating to more advanced use cases.
Within the scope of this research the best use case of forecasts is the one that leads to the highest market
value. The methods with this specific aim are referred to as advanced bidding strategies.

The most straightforward bidding strategy, which is considered the reference strategy, is where forecasts
are considered deterministic, thus the forecast power is offered directly on the day-ahead market at a zero
price [10]. Fortunately, more advanced strategies exist which show a strong potential in value improvement
over the reference strategy. The first study to look at improving bidding for wind power in a more advanced
probabilistic framework is that of Matevosyan and Söder from 2006 [38]. In this study the day-ahead mar-
ket and the imbalance market of the Nordic system are considered to minimize imbalance costs. They con-
structed scenarios for wind power and imbalance price scenarios as input to a stochastic optimization model.
This study modeled the inputs to the optimization using an autoregressive moving average (ARMA) model,
where the modeled processes were assumed to be independent from each other. They simulated this strategy
for January 2003 for a Danish wind park and they found it led to an increase in total revenue of 5.2%.

A later study that dealt with imbalance costs in a probabilistic framework is that of Pinson, Chevallier and
Kariniotakis [47]. This study presents a method to use stochastic information in the form of quantiles from
probabilistic forecasts to decrease imbalance costs, where a loss function is specified that includes the cu-
mulative distribution function of the expected power generation and an estimate of imbalance prices in its
terms, which were chosen to either be a yearly average (strategy 1) or a quarterly average (strategy 2). Simu-
lation of the method for a year for the Dutch day-ahead and imbalance market showed a decrease in average
imbalance cost from €9.13/MWh for the reference strategy, to €6.74/MWh for strategy 1 and €4.04/MWh for
strategy 2. The main conclusion of this paper was that stochastic information can be a powerful tool towards
combating imbalance costs. In their discussion they mention that the strong performance boost by simply
taking quarterly differences of the imbalance price into account should be seen as an indicator that increasing
the quality of the inputs strongly improves the outcome of such an optimization.

A study that mostly built on the methods introduced by Matevosyan and Söder is that of Morales, Conejo
and Pérez-Ruiz from 2010[43]. Here improvements were made to the underlying mathematical principles
of the stochastic optimization model and the options are added to leverage the intra-day market as well as
control risk using the Conditional Value-at-Risk at confidence level α (CVaRα) [43]. Furthermore, using this
model in different setups, incorporating a single intra-day market or not, as well as other variations are an-
alyzed in a comparative study for the months February, April, July and November of 2008 for the Spanish
electricity market [51]. This study also modeled the inputs to the optimization using an ARMA model, where
the modeled processes were assumed to be independent from each other. The day-ahead market in this study
closed at 12:00AM and the intra-day market closed at 11:00PM, one hour before the next day. This study firstly
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found that all advanced strategies outperformed the reference strategy. Secondly, it found that offering the
difference between the forecast used for the day-ahead market and an updated forecast used for the intra-day
market provided a 0.7% increase in total revenue. Thirdly, a strategy where an optimized bid for the day-ahead
market was applied as a result of the optimization without risk aversion provided a 2.0% increase in revenue.
Fourth, incorporating the possbility of intra-day trading in the optimization model without risk aversion led
to a 2.7% increase in value. Finally, the paper showed that for all but one month the strategy of optimized
bidding without risk aversion on both the day-ahead and the intra-day market yielded the highest result. The
month where this was not the case, a strategy that incorporated risk aversion through the CVaR was still supe-
rior over the reference strategy. The authors state that this month had much more volatile imbalance prices,
which led to the increase in value from risk aversion.

A similar study was carried out by Chaves Avila, Hakvoort and Ramos [9] for the Dutch market, where they
simulated risk neutral strategies using the model from Morales et al. (2010) [43] for December 2010 for the
Dutch day-ahead market, an hourly intra-day market and the Dutch imbalance market. This study [9] also
modeled the inputs to the optimization using an ARMA model, where the modeled processes were assumed
to be independent from each other. This study firstly found an increase in revenue of 4.5% when optimizing
bids for the day-ahead market without considering the intra-day market. Secondly, when optimizing bids for
the day-ahead market and adjusting the bids using updated forecasts for the intra-day market revenue was
increased by 15% with regards to the reference strategy. Lastly, it found for the strategy where both the day-
ahead and the intra-day market are incorporated in the optimization revenue rose by 21%. Chaves Avila et al.
conclude their study by stating that the intra-day market is not very liquid and therefore the revenue increase
from participating in it will in practice be lower. Also, this study concludes by stating that improvements in the
quality of input to the model is are expected to further increase the value of the strategies, while mentioning
that liquidity in the intra-day market is expected to remain a problem for future applications.

Another study that used the model developed by Morales et al. (2010) to study the effects of optimizing
bids for yet another market is that by Bertrand and Papavasiliou (2017) [4]. This study also modeled the inputs
to the optimization using an ARMA model, where the modeled processes were assumed to be independent
from each other. This study researched the effect of optimized bidding when used in the Belgian day-ahead
and imbalance market. It does not incorporate the intra-day market in its optimization due to low liquidity.
The optimization model by Morales et al. is expanded through the incorporation of a price-maker effect
for the imbalance market, for which Bertrand and Papavasiliou [4] claim an analytic solution. Where all
previously mentioned studies assume that the wind farm has no effect on the price in both the day-ahead
and imbalance market, this study emphasizes the need to model this effect for the imbalance market as larger
wind farms can in fact have a strong influence on the imbalance price. It also states that evaluating the value
of an optimized bidding strategy without considering the effect the strategy would have had on the market
price is invalid, as the price can be strongly influenced by the choice of strategy, especially when the price-
maker effect is not incorporated in the optimization. By recreating the imbalance price the study found the
difference between a price-taker and price-maker model to be more than five-fold, meaning that a price-taker
strategy according to their study would earn less than 20% of the revenue from the price-maker strategy. The
price-maker version of their model was simulated for the period between October 2013 and December of
2015 and the revenue was found to increase by 41% compared to the reference strategy.

In conclusion, first multiple studies found significant increases in revenue through the application of
advanced bidding strategies. Secondly, several conclude that it is important for the optimization which gen-
erates the optimized forecast to use high-quality inputs, which is indicated to be able to improve the perfor-
mance of the strategy. Thirdly, the incorporation of an intra-day market depends on the liquidity of the spe-
cific market in question. Fourth, for some markets it may be important to implement a price-maker version
of the optimization model. This was emphasized in the study by Bertrand and Papavasiliou (2017) [4], but as
the similarity between the Dutch mixed-pricing imbalance market studied by Chaves Avila et al. (2013) and
the Belgian single-pricing imbalance market is strong, the conclusion by [4] implies that results may be dif-
ferent if the imbalance price were also recreated for the analysis in that study. This raises a question whether
or not this could also be the case for other studies, as all studies considered here use the observed prices to
perform their value analysis, while in fact these prices would in practice possibly be influenced, depending
on the size of the wind farm. Finally, all of these studies have in common that the methods used to model
the inputs use highly similar models of the ARMA class, which is a relatively simplistic method for modeling
stochastic processes. Furthermore, these studies assume independence between the processes, which seems
improbable as they are coupled through the electricity market.
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1.1.3. Research Gaps
From section 1.1.1 it can be concluded that most of the improvement in forecasts lies with FSPs, as most
improvements comes from improvements in the estimation of initial conditions or with the functioning in
the NWP model itself. As this is a highly specialized task, this is left out of scope. However, there are some
possibilities for improving forecasts that do lie with FSPs. Most notably allowing the FSPs to better calibrate
their models using (online) SCADA data, allowing FSPs the opportunity to model power conversion or by
WPPs improving calibration using (online) SCADA data or by improving power conversion modeling using
(online) SCADA data. However, as any improvements made by an WPP seem to also lie within the scope of
FSPs, it is left out of scope in this study.

From section 1.1.2 the main conclusion is that there seems to be significant potential for value improve-
ments through more advanced bidding strategies, which better utilize wind power forecasts. However, choos-
ing the correct model for a specific market seems important as it can lead to significant differences in revenue,
as shown in the study by Bertrand and Papavasiliou (2017) [4]. Furthermore, depending on the size of the
wind farm in question, the value obtained through a changed strategy cannot directly be determined by ap-
plying observed prices, as the change in strategy can impact the price. Hence, not only needs the model be
chosen correctly, the evaluation of the optimization results should ideally incorporate the changed prices.

In section 1.1.1 it is mentioned that some forecasts may differ in rank on conventional metrics used to
evaluate them in point forecast form, compared to when they are used in a probabilistic context, like in
stochastic optimization. How to choose the best one as input to the strategy that provides most value there-
fore becomes increasingly difficult. For this, the BRP should have insight on how each forecast compares
not only on performance in different forms, but also on how each compares in value when applied in dif-
ferent use cases. This is also brought up in 1.1.2 where the 2007 paper by Pinson et al., as well as the 2013
study by Chaves Avila et al. explicitly mention the importance of using high quality inputs to an optimization
with the purpose of improving the result. Hence, being able to rank these inputs is an important task for the
WPP. Also mentioned in section 1.1.1, some FSPs provide information regarding the uncertainty surrounding
their forecasts. However, not all FSPs provide such information, while some FSPs provide information that
is not reliable. Hence, even if an FSP can provide such input, being able to judge the reliability and quality
of the stochastic information is a task that the WPP needs to be able to perform. Also, as not all FSPs pro-
vide information that can be used as input to stochastic optimization, the choice of FSP could be limited,
while some forecasts may provide higher quality probabilistic information when transformed to the appro-
priate form. Hence, it seems like an important skill for WPPs to have. Since the importance of the quality
of the inputs is emphasized, transforming these forecasts should be done intelligently with a clear path for
improvement, for which clear evaluation guidelines are needed. While the studies mentioned do provide a
method to construct the inputs for the advanced offering models, the method used is rather simplistic for
modeling stochastic processes, while the studies also assume the processes to be independent, which seems
unlikely. Improving the modeling of these processes seems like a likely source of improvement of the result,
where a method ideally should accurately and reliably capture the uncertainty surrounding these processes
as well as their interdependence.

In conclusion, several concepts seems important for WPPs in order to maximize the value of their wind
power generation. First, WPPs need to be able to choose and apply the right model for their market. Second,
WPPs need to be able to judge the quality of forecasts from WPPs for their purpose. Third, WPPs need to be
able to transform these forecasts so they can be used in more advanced bidding strategies. Last, WPPs need
to be able to reliably judge each strategy’s value.

The first part of the introduction and the first paragraph of section 1.1.1 mention that the effects of re-
newable energy on the electricity grid as a whole can be significant. Also, as the Belgian study showed [4],
the influence a wind farm has on prices can, depending on the specific strategy and size of the wind farm,
be significant. As these prices are changed for the market as a whole, this could mean that while the WPP
wins individually, the market as a whole loses. Hence, it seems important to identify what the total imbalance
costs will be for the market under strategic bidding. Also, as the WPP bids strategically by indirectly altering its
imbalances, the system imbalance is also influenced. As one of the major concerns surrounding renewable
energy is the effect it will have on the balance and subsequent reliability of the electricity grid, it is important
to not only evaluate what the effects of a value improvement strategy are for for WPPs, but also what the ef-
fects will be on the total grid imbalance. Finally, as market design differs between countries, specifics of the
market may have important implications with regards to the choice of strategy and its performance. Hence,
it is important to provide insight in the relationship between market specifics and strategic offering by WPPs.
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1.1.4. Main research question
Section 2.2 concludes in the formulation of four needs. Each of these needs helps address the WPPs need to
improve the value of their wind power generation. Hence the main research question is formulated as follows:

To what extent can WPPs improve the market value of their wind power generation through improved of-
fering strategies?

1.2. Research approach and sub research questions
To answer the main research question a case study approach is applied. As explained, the research gaps
relate to the value that can be obtained both from different forecasts and bidding strategies that leverage
the information from these forecasts. These differences will be evaluated in an analysis on real data of a
wind farm currently operating in the Belgian market. This wind farm consists of 24 Senvion 6.15 MW wind
turbines, as part of an offshore farm on the Thorntonbank in Belgium (see cover), which has a Power Purchase
Agreement (PPA) with Essent N.V. and for which Essent N.V. is the Balance Responsible Party. Also, three
different wind power forecasts are provided, one provided by Essent and two provided by Whiffle, a company
specialized in ultra-high resolution forecasts.

1.2.1. Sub questions
In order to answer the main research question, the following sub-questions are formulated:

• What model is best suited for constructing bidding strategies for the Belgian case? The Belgian market
has specific characteristics which require a specific choice of model. The choice of model also dictates
the inputs that are required to determine the optimal strategy.

• What methods can be applied to provide price forecasts? The models applied in this study require spe-
cific forecasts for electricity prices. As these are not provided a modeling method is needed to construct
these.

• What methods can be applied to transform point forecasts to the form required for stochastic optimiza-
tion? The optimization model requires specific inputs which need to be provided in specific form. For
this purpose a method for transformation is needed.

• What measures are best able to judge forecasts on performance? To both guide the choice of FSP for
WPPs, as well as guide the choices for choosing methods to transform point forecasts to their proba-
bilistic form, insight is needed in both the performance and the reliability of forecasts in all forms.

• How can the different strategies be ranked on value? As pointed out by the study by Bertrand and Pasivil-
iou (2017) [4], judging strategies by assuming prices do not change seems unreasonable in the Belgian
context, especially since the size of the wind farm in this case study is even larger. Hence, a method is
needed to both accurately recreate prices as well as on how the resulting revenues can be ranked.

• What are the effects of strategic bidding on the imbalance costs of the market as a whole and the total
system imbalance? Using the same methods to rank strategies on value, the differences in effect they
have on the total market imbalance cost and system imbalance can be ranked. This should provide
insight in the societal value of such strategies.

• What are the effects of market specifics on the composition and performance of bidding strategies? As
the choice of model is dictated by the specifics of the market, insight should be obtained on how these
specifics influence the bidding strategy. This should provide insight in design considerations for the
markets, as well as insights for market participants on how to formulate their strategy.

1.3. Thesis outline
Before these questions can be answered, several steps need to be carried out. First, as the BRP operates
in several markets on which it is dependent for its revenue, insight needs to be obtained on these markets
and the system they are a part of, specifically on the mechanisms involved and the actors involved. This is
discussed in chapter 2.

Second, insight is needed on the mechanism through which wind power forecasts lead to value, how BRPs
use them and how they can be used. This includes the before mentioned advanced bidding strategies, how
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these work and which inputs are needed. Also, a method that incorporates the influence these strategies have
on imbalance prices need to be taken into account. This is discussed in chapter 3.

Thirdly, a framework is needed for the construction of the inputs for such advanced bidding strategies.
This should provide BRPs with a structured methodology, while providing insight on how and where oppor-
tunities for future improvements lie. This can be found in chapter 4.

Fourth, a framework is needed to evaluate the construction of said inputs. This includes the evaluation of
the point forecasts, which form the basis for the aforementioned transformation. It should also include clear
metrics to evaluate the quality and reliability of the transformations involved in constructing the inputs for
the more advanced bidding strategies, thus providing a clear structured methodology, which can guide BRP’s
towards reaching higher quality inputs. This is presented in chapter 5.

Fifth, as price forecasts are needed as a basis for the more advanced inputs to advanced bidding strategies,
a methodology is needed to construct these. This is explained in chapter 6.

Chapter 7 presents the results and evaluation of the modeling of the inputs for the advanced bidding
strategies. Chapter 8 presents the results of the simulation of advanced bidding strategies, both on the value
they create for the WPP as well as on the effects they have on the market and system as a whole. Chapter
9 presents conclusions to the research questions, discusses these and provides recommendations for future
research. Finally, chapter 10 presents reflections on the research, including societal aspects and implications
for the electricity market, its actors and the way the imbalance market currently functions.

1.4. Research Relevance and Goals
As mentioned in the first part of the introduction, the premise of this research is the need for short term
up-scaling of low-carbon electricity generation. As the increase in value could potentially improve the short-
term profitability of investment in wind farms and help dampen the medium to long-term value decrease,
it aims to be a contribution to the Grand Challenge of Climate Change. Furthermore, the analysis of the
effects on the electricity grid and the electricity market as a whole in considering strategies aims to provide
insight in the societal value of such strategies, while providing insights for potential market improvements.
Also, as the construction of the inputs for the advanced bidding strategy means insight is obtained in the
future uncertainty of both the generation of the wind farm as well as the electricity prices involved, decision-
makers in the electricity market as well as those responsible for balancing the grid are provided with tools to
increase the quality of decision-making. Furthermore, these tools are not limited to the scope of advanced
bidding strategies for wind power, as these can be applied to an entire portfolio, including wind, wave, solar,
electricity demand and conventional power generation. Furthermore, it both provides private actors the tools
to improve the value of their portfolio, which is of societal importance, while providing public actors insight
in how their markets might be improved to help achieve societal goals.

Finally, the main goals of this research are to provide WPPs a clear framework they can use to model
processes related to those discussed in this research, to provide a clear framework on how to improve any
step of the modelling process and to use these to determine advanced bidding strategies. With the aim to
empower WPPs to utilize these more advanced techniques. Furthermore, the final stochastic optimization
can be operationally used and it can easily be extended to incorporate other generation resources. Lastly, the
value analysis should give the BRP confidence that the choices it makes anywhere in the modeling process
provides real-world value, while providing the tools to reliably rank and evaluate them.
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System Overview

2.1. Electricity Market
Formerly EU electricity markets were vertically integrated monopolies, where a single party was responsible
generating, transmitting, distributing and supplying electricity. Gradually these vertically integrated compa-
nies were unbundled through three pieces of EU legislation in 1996, 2003 and the latest in 2009 [34]. The
vertical unbundling led to transmission and distribution becoming regulated natural monopolies, while gen-
erators and consumers of electricity compete in a liberalized electricity market. In this market, generators
compete to sell electricity to suppliers and large industrial consumers, while suppliers compete in the retail
market to sell electricity to consumers. In figure 2.1 an overview is given of the various markets and the actors
participating in them.

DA

FM

MO / OTC

ID

RM

MO / Pool / OTC

BM

TSO / OTC

TSO / Pool

BRP / Supplier

Generators

BRP 

Industrial Consumers

BRP 

Suppliers

Consumers

Figure 2.1: The flow of electricity through the electricity market is depicted by the arrows. The upper
right corner of each square field indicates what the properties of a market or market party are, where

those in bold always apply, while those in regular font can apply. BRP: Balance Responsible Party.
MO: Market Organizer. TSO: Transmission Systems Operator. OTC: Over The Counter. FM: Futures
and forward Market. ID: Intra-Day market. DA: Day-Ahead market. RM: Reserves -and regulation

Market. BM: Balancing Market.

The next sections discuss the content of figure 2.1. Firstly, the different markets are discussed. Secondly,
the different actors in the market are discussed. Although this is done with regards to the Belgian market, the
general concepts apply to most EU markets.

11
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2.1.1. Markets
Firstly, a timeline of the electricity market in Belgium is shown in figure 2.2. It shows that some markets start
long before delivery starts, while some end after delivery. Below, these markets are discussed in sequential
order.

Forward and Future 
Market Day-Ahead Market

Balancing Market:
Imbalance 
Settlement

Balancing Market:
Procurement and activation of Reserves

Intra-Day Market

Moment of delivery

Figure 2.2: The diagram shows when markets start trade relative to the moment of delivery. Note that
the Day-Ahead market closes before delivery starts, the Intra-Day market remains open even when

delivery has started and closes 2PM after the day of delivery to provide market players the
opportunity to close financial transactions. Reserves are procured long before delivery up to the

moment of delivery. Activation occurs at the moment of delivery. Imbalances are settled after
delivery.

• The first type of market is the futures and forward market (FM). This type of market runs from years
before delivery up to the day of delivery. The products traded on these markets consist of contracts to
deliver or consume a certain amount of electricity at an agreed upon price at a certain time in the fu-
ture. Futures are standardized contracts which can be traded on power exchanges, which are managed
by market organizers (MO) and trades are made through organized over-the-counter (OTC) trading.
The main power exchange for such contracts in the Belgian market are the ICE Endex and the Euro-
pean Energy Exchange (EEX). Forward contracts on the other hand are not standardized and can be
freely defined by those involved and these are mainly traded bilaterally OTC without the involvement
of a MO. The main motivation for market parties to trade on forward and future markets is to ensure
future sales or to reduce their exposure to future price decreases or increases. Such risk-reducing be-
havior is referred to as hedging. Such markets are not very relevant for WPPs, as the product on this
market mainly consist of weekly, monthly, quarterly or yearly base or peak contracts. Base in this con-
text indicates all hours of the time span of the product, while peak indicates peak hours, typically from
8AM to 7PM, also for the time span of the product [10]. As a WPP cannot guarantee its generation
day-ahead it certainly cannot for longer time spans, making this market irrelevant for this study.

• The second type of market is the day-ahead market (DA). Market participants interact with this market
the day before delivery. This market is of vital importance to the electricity grid, as the market zone
has to be balanced after the DA closes at 12:00PM, where the market zone refers to the Belgian market
as a whole. This balance requirement means that the sum of scheduled and forecast generation has to
equal the forecast demand in the market zone. Electricity on the DA can be traded bilaterally OTC or
on the power exchange, which is a pool-based electricity market and is managed by a MO. This means
that buyers and sellers submit bids to the market, after which the MO orders all bids to determine a
single price for each hour of the next day, which is explained in section 2.2. In Belgium the MO is the
Belpex Day-Ahead market (BAM). The prices published by this power exchange serve as an important
reference price for all other markets. This market is especially relevant for wind power producers, as it
is highly liquid and forecasts for the day-ahead horizon are generally quite reliable.

• The third type of market is the intra-day market (ID). This is a market where electricity is traded contin-
uously after the DA has closed. This allows market participants to correct for changes in their day-ahead
schedule, for instance due to updated forecasts for wind power or unexpected outages of power plants.
In Belgium the main ID is the Belpex Continuous intra-day Market (CIM). This market is an organized
OTC market and is cleared continuously. In theory the ID would be of particular interest for wind power
producers, as it would allow them to use updated forecasts to adjust their market position. However,
this market for the Belgian context is not very liquid, which results in it not clearing for multiple hours
in a day [4, 34].
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• The fourth type of market is the regulation market (RM). This market handles the procurement side of
the mechanism designed to maintain grid balance. The RM is different from the previous markets as
not only energy is traded but also capacity. The MO is Elia, which is the Transmission Systems Operator
(TSO) in Belgium, the party responsible for maintaining grid balance. Elia acts as a single buyer in this
market, where it contracts market parties to provide balancing services through various mechanisms.
The procurement of reserves can vary from a year before delivery up to a day before delivery. Some sell-
ers are remunerated for their reserved capacity, while some are remunerated only for generation. This
market is mainly interesting for generators that can vary their generation at will or for large consumers
that can adjust their consumption to a certain extent. It is currently not of interest for wind power pro-
ducers. Although wind power producers could offer asymmetrical reserves, the fact that the capacity
of the reserves needs to be communicated at least one day in advance makes it a high-risk procedure
both for the TSO and the wind power producer.

• The fifth type of market is the balancing market (BM). This market handles the settlement of imbal-
ances and is organized by the TSO Elia. As market parties’ actual generation or consumption deviate
from their scheduled, imbalances occur which have an effect on the grid. Whenever total generation
deviates from total consumption, the grid frequency starts to deviate, which ultimately can result in a
system collapse. The BM is designed to reward those that help reduce system imbalance, either un-
intentionally through deviations from their schedule (passive balancing) or intentionally as reserves
are activated by Elia on an increasing price basis (active balancing), where the most or least expensive
activated bid sets the imbalance price, depending on the sign of the average balancing power. Those
that cause an increase in system imbalance have to pay an unfavourable price for this restorative ac-
tion, which is determined through the imbalance price. All participants with an imbalanced portfolio
are forced to buy or sell their imbalance on this market, where imbalances are settled ex-post. This ex-
post settling of imbalances is due to the fact that on the day itself market parties are allowed to trade,
which they can then communicate to the TSO up till 2:00PM the next day, after which all imbalances
are settled. The BM is of particular importance as wind power producers cannot know what their actual
generation will be when they bid on the DA. This means that they almost always end up participating in
the BM. They could provide passive balancing services to this market by applying asymmetrical down-
ward adjustments to their generation, which for instance is offered to wind power producers by a Dutch
company named Peeeks. However, this is not considered in this study.

2.1.2. Market actors
• First, there are several institutional actors active in the electricity market. These are acting as market

operators (MO), with a special task reserved for the Transmission Systems Operator (TSO) Elia. The
MO is typically a nonprofit organization, which manages the marketplace. This task includes the ad-
ministering of market rules, the clearing of the market and the determination of market prices and the
traded quantities of electricity. In the Belgian context there are several MOs active, most notably the ICE
Endex, the EEX, the BAM and the CIM. Their main goal is to ensure an effectively functioning market.
Elia has a slightly different task, as the markets it operates are geared towards maintaining grid balance,
which is Elia’s main responsibility in the market context, as Elia’s main goal is to ensure a stable secure
grid at a low cost.

• Second, there is the private legal entity called the Balance Responsible Party (BRP). The BRP has a re-
sponsibility for maintaining a balanced portfolio, which can consist of its own generation, own con-
sumption, but also of electricity traded with other BRPs. It can represent multiple producers, suppliers
and industrial consumers. A BRP has to send a program with its so-called nominations for the next
day to the TSO. This program contains the planned generation or consumption for every unit that falls
under the legal responsibility of the BRP. This legal entity is obligated to send this balanced portfolio
each day to Elia at 2:00PM, after which it can only alter its portfolio on the ID, after which it is forced to
settle its final imbalance on the BM.

• Third, there are several parties actively trading on the electricity market. First, there are producers.
These are entities that own generation units and are in charge of their functioning. A producer can own
multiple generation units or be owned by a supplier. It can sell electricity to the market or it can be
contracted bilaterally by a supplier. The main goal of a producer is to maximize its profits from the sale
of electricity through any interaction with markets, consumers and / or suppliers. It can participate in
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the FM, ID, DA, RM and BM. An important type of producer in the context of this research is one that
has non-dispatchable generation (e.g. wind or solar). If a producer has non-dispatchable generation, it
must cope with the uncertainty of its generation. A producer with such generation needs to participate
in short-term markets (DA, ID and BM) to deal with this uncertainty, as it can take advantage of the
increased accuracy of shorter term forecasts of its generation. A producer can be a BRP, but it can also
have another party acts as BRP. Nonetheless, it must always be part of a BRP’s portfolio as its generation
directly impacts grid balance. Second, there are industrial consumers. These end-users can participate
directly on the electricity market, or they can buy their electricity from suppliers. If they are active on
the electricity market they can participate in the FM, DA, ID, BM and RM, where its balancing services
consist of demand-response services. If it participates on the RM its consumption is controlled to help
balance the grid. If it participates in the electricity market directly, it must be a BRP or have another
party act as BRP for its portfolio. Its goal is to maximize utility and minimize cost from its electricity
consumption. Third, there are suppliers. These provide electricity to consumers, including industrial
consumers. They can buy their electricity by contracting generators bilaterally, by owning generators
themselves or by buying electricity from the market. It can also sell electricity from specific generators
to specific markets to optimize the profit from its portfolio, as it can occur that electricity can be bought
cheaper than it can generate it using its generation units. Its main goal is to maximize the profit it
obtains from selling electricity to its customers, while minimizing its cost of procurement. Generally,
its profit margin is narrow, which means it is important for this party to buy or generate its electricity at
the lowest possible price. This is important, as in a liberalized electricity market customers may change
supplier when a lower price can be obtained by switching. Last, there are consumers, which can also
include large industrial consumers. These have contracts with suppliers to obtain their electricity. A
consumer aims to minimize their cost from electricity and to maximize its utility from its usage.

2.2. Short Term Electricity Markets
This section discusses the main mechanisms involved in the markets most relevant to WPPs in Belgium and it
aims to provide insight in how the main electricity prices are determined. As mentioned in the previous sec-
tor, producers with non-dispatchable generators are highly dependent on short-term markets, as they cannot
guarantee accurate planning of their generation in the long-term. In practice this leaves WPPs dependent on
three markets, which are the DA, ID and BM. As mentioned in section 1.1.2, the ID unfortunately still suffer
from limited liquidity and is not always cleared. Because of this reason the next section limits itself to the
DA and the BM. First, the main economic principles behind the electricity market are discussed, with a focus
on European markets. Second, specifics for the DA in Belgium are discussed. Third, specific for the BM in
Belgium are discussed. Lastly, differences with other pricing mechanisms for the BM are discussed.

2.2.1. Market design
This section discussed the fundamental principles behind the design of the electricity market, based on the
book ‘Economics of Electricity Markets’ by Biggar and Hesamzadeh (2014) [5]. The objective of an electricity
market is to maximize economic welfare. Although different formulations of economic welfare are possible,
it generally refers to the sum of economic benefits and costs. Any arrangement that maximizes this sum is
said to be efficient. This economic efficiency can be broken down into short-run and long-run efficiency,
where short-run refers to maximizing welfare using the existing stock of assets and long-run efficiency refers
to changing the stock of assets such that welfare is maximized over time. Several means exist with the aim of
achieving the end of economic efficiency, such as competitive markets, but also other institutional arrange-
ments.

The problem of dealing with economic efficiency for electricity markets is referred to as the problem of
optimal dispatch. There are many tasks that need to be performed efficiently if an electricity industry is to
achieve an overall efficient outcome. Said tasks include the efficient usage of and investment in production,
consumption and network resources. Different markets have differences in how this is arranged in terms of
responsibility, incentives, information and governance. The main differences in how the market processes
are arranged are between the extent to which network constraints are taken into account, the time period of
operation of the wholesale market and the realization of real-time balancing.

Concerning long-run efficiency, a well predictable wholesale market price, when the result of an effi-
ciently functioning market, provides a clear and efficient incentive for the need for investments. Although
some issues may occur concerning long-run efficiency in electricity markets, the focus of this section lies
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with the short-term efficiency, as it to a large extent determines long-run efficiency, while this research fo-
cuses on short term strategy decisions rather than investment decisions.

Concerning short-run efficiency, in the case of electric energy, where the good is homogenous and the
market participant is assumed to be a price-taker, consumers will consume where their marginal utility
equals the market price and producers will produce where their marginal cost equals the market price. This
market price then needs to be at a level where welfare is maximized. This short-run welfare maximum tends
towards an equilibrium where the aggregate marginal utility and the aggregate marginal cost are the same. In
a competitive market the price that achieves this equilibrium is set through an adjustment process, through
adjustments in the market price. If this price is too high, the rate of production exceeds the rate of consump-
tion, where some producers will not be able to sell the amount they want at that price. This leads to some
producers cutting their price, which results in a decrease of the market price. If the price is too low, the rate of
consumption exceeds the rate of production, where some consumers will not be able to buy the amount they
want at that price. This leads to some consumers increasing the price of their bids, resulting in an increased
market price. This process means that a decentralized market process will lead to an economically efficient
outcome, provided participants are price-takers, where the price signal can be regarded as the ‘invisible hand’
coordinating the market towards economic efficiency.

In the case where physical constraints are incorporated in the market process, such a decentralized mar-
ket process is not able to achieve economic efficiency. To be able to achieve economic efficiency in this case,
a smart market is required involving a central market operator. This market operator collects the marginal
cost and marginal utility curves of the participants and performs a constrained optimization to maximize
economic welfare, which results in prices that determine the rates of production and consumption for each
participant. Given the constraints, the prices can differ, depending on whether constraints are binding or
not, which is referred to as locational pricing. However, in Europe there are no wholesale markets that take
network constraints into account, as each market typically has a price that holds for the market as a whole,
where each country is a market zone. This is typically referred to as zonal pricing. As no physical constraints
are incorporated in the market process within a zone, there is not an explicit need for a central market op-
erator. However, as transaction costs are low when the market process is centralized and automated, there
is typically high liquidity in the centrally organized wholesale market. As the market price is approximated
well by the wholesale price, bilateral trades tend to bid strategically with respect to their expectation of the
wholesale price, which means that bilateral trades tend towards an equilibrium. Hence, when pool trading
is not mandatory, which is when network constraints are not taken into account, bilateral trades and pool
trades tend to achieve the same result. Hence, the main differentiation in European market lies with shorter
term markets.

The wholesale market referred to is the day-ahead market, which in Europe typically closes around noon
the day before delivery. The reason it does so is because the electricity market has historically been domi-
nated by conventional controllable generation, which have material costs associated with transitioning from
shut-down to operational and vice-versa. Due to this reason the optimal dispatch task is actually an intertem-
poral dispatch task, which is why forecasts are so important for the current electricity market. Hence, for an
efficient electricity industry, efficiently using a given set of generation and consumption assets, information is
required on ramp rates, minimal capacity and start-up costs and on projected generation and demand. These
non-convexities make the task of optimal dispatch difficult, as there may be no feasible solution. Although it
is believed that organizing the process of optimal dispatch centrally can result in economic efficiency, achiev-
ing efficient incentives in large vertically integrated organizations is difficult in practice. Hence, the market
reforms mentioned earlier were directed at achieving a competitive market, aiming to provide proper incen-
tives to increase economic efficiency. This allows for market participants to incorporate the non-convexities
in their bid, which theoretically should lead to market efficiency, given adequate levels of competition. Un-
fortunately, information exchange between market parties is limited, while the electricity grid requires a con-
stant balance between supply and demand. Although a centrally limited market process could theoretically
clear the market at a high resolution continuously, limits to information exchange mean this currently results
in too high transaction costs. Hence, the wholesale market is cleared at a limited resolution, typically between
one hour and 5 minutes, which means a supplementary mechanism is required to ensure real-time balance
for the grid.

As the main market is cleared day-ahead, power systems deal with imbalances due to forecast errors and
unplanned interruptions in supply and demand. The real-time balancing of the grid could in theory also be
achieved by the optimal dispatch process, but high frequency application of this process is currently not feasi-
ble. Because of this, TSOs are tasked to deal with these contingencies on a continuous basis. Although ideally,
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shorter-term markets could help alleviate some of these imbalances, currently their liquidity is still relatively
low, as supply and especially generation are currently relatively well predictable and the uncertain compo-
nent within aggregate generation is still relatively small. Hence, most of the deviation between day-ahead
schedules and real-time observations is dealt with by the TSO. The TSO currently activates balancing services
by responding to changes in the frequency and observations deviations through constant grid metering. For
the provision of these balancing services the TSO often contracts balancing service providers some time be-
fore delivery. Unfortunately, because these contracts are mostly determined some time before delivery, the
activation prices of balancing services do not reflect the actual real time price of electric energy, which intro-
duces an inefficiency. Although procurement of balancing services is an important aspect of the balancing
market, for the WPP interest lies with the allocation of costs of the balancing process. This is where in Euro-
pean market the main differentiation lies between markets and which has the most significant implications
for a WPPs offering strategy. Hence, this main difference is further discussed in section 2.2.4.

2.2.2. Day-Ahead Market
Although bilateral trading is strictly also part of the day-ahead market, this section limits itself to discussing
the BAM, as the price resulting from trades on the BAM serves as a reference for other markets. The Belgian
day-ahead price λD results from a trading process where electricity is traded one day before actual delivery.
Participants to the BAM can submit their orders in hourly blocks each day until 12PM the day before delivery.
After this market is settled, each BRP has to submit a balanced portfolio to the TSO (Elia) by 2:00PM the
day before delivery, containing all planned generation or consumption on a plant level at a quarter-hourly
resolution.

The day-ahead price is a result of the following market mechanism: All participants submit their gener-
ation and demand bids to the market stating quantities on offer for specific prices, after which these price-
quantity pairs are aggregated and sorted, building offer and demand curves. This is done for each programme
time unit (PTU) of the market, which in the case of the BAM means for each hour of the following day. The
market-price is then the point where these two curves intersect, thus the price which clears the market. This
determines the quantities to be generated and consumed along with their corresponding price. This is a
single price market, meaning that a single price applies to all trades within a single time period. Below an
example of demand and offer curves for the BAM is provided. The point where the two curves intersect de-
termines the price, which in this case was €67.65.
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Figure 2.3: Day-ahead supply and demand curves for 2018-12-11 hour 16. Where the two curves
intersect the market-clearing price is determined, where λD = £67.65

2.2.3. Balancing Market
This price is a result of the process which aims to keep the grid balanced, which it hardly ever is without in-
tervention by the TSO through this market. This is due to the fact that many BRPs have sources of uncertainty
in their portfolios, as they for instance contain uncertain demand or uncertain (renewable) generation. To
keep the grid balanced these imbalances need to be compensated for by balancing services. In order to com-
pensate market parties for their services a market is managed by Elia, the Belgian TSO. Although this market
consists of different types of reserves (primary, secondary and tertiary), the main basis behind its function-
ing is as follows. As the system becomes unbalanced regulation volume is activated by the TSO to offset the
imbalance. Although most balancing service is procured through various contracts and market mechanisms,
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these can be aggregated to form offering curves, as Elia activates reserve bids on an increasing price basis.
An example of such a curve is shown in figure 2.4. Demand consists of power demand (not energy) to the
extent that Elia needs to continuously compensate any imbalance. This is distinctly different from the day-
ahead market in the following respect: The marginal price setting bid for the BAM is set by the last activated
generator within a certain PTU. Although BRPs’ imbalances are determined on a quarterhourly resolution,
the actual balancing action occurs at a higher resolution. The marginal price setting bid is determined by
the most expensive generator needed for balancing action within a PTU. This can result in a price setting bid
which differs substantially from the average power being delivered by the balancing services. This is visual-
ized in figure 2.4, which is explained below.
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Figure 2.4: Imbalance market offer and Demand curves for 2018-01-05 from 07:30-07:45. MIB =
Marginal Incremental Bid. MIP = Marginal Incremental Price = €86.17. MDB = Marginal Decremental

Bid. MDP = Marginal Decremental Price = €6.59. SI = System Imbalance average. NRV = Net
Regulation Volume average.

Figure 2.4 shows the supply curve for a specific quarterhour period in 2018, for which the data is published
by Elia daily at 5:00PM the day before delivery. The NRV line shows the average Net Regulation Volume, which
is the volume generated by reserves needed to compensate the system imbalance for this specific PTU. This
is determined for each PTU. A positive NRV refers to an overall increase in grid injections or decrease in grid-
offtakes, while a negative NRV refers to an overall decrease in grid injections or increase in grid-offtakes. The
prices for each PTU are determined according to two prices: 1) The Marginal Incremental Price (MIP), which
is the highest price paid by Elia for upward activations for a PTU, referred to as the Marginal Incremental Bid
(MIB). 2) The Marginal Decremental Price (MDP), which is the lowest price received by Elia for downward
activations for a given PTU, referred to as the Marginal Decremental Bid (MDB). The imbalance price is then
set as the MIP if the NRV for the PTU is positive, meaning on average power was injected to the grid to help
restore balance. It is set as the MDP if the NRV is negative for the PTU, meaning on average power was taken
off from the grid to help restore balance. The demand curve in figure 2.4 consists thus of both the MDB and
the MIB, which are always vertical lines, as demand is inelastic and determined by the minimum or maximum
of the NRV signal within a PTU.

As balancing services operate at a high resolution, often within a PTU both positive and negative activa-
tions occur. In figure 2.4 the marginal bids are shown as the dotted lines, which show that for this specific
PTU this was indeed the case, where both a MDB and a MIB existed. It also shows that although the average
system imbalance was -77.7MW, the average NRV was only 47.5MW. Furthermore, even though the NRV was
47.5MW, the MIB was much higher at 143.5MW. This means that the higher resolution signal of the balancing
power being activated within a PTU that actually determines the price can be very different from the average
volume of activated reserves, the NRV. Furthermore, it can occur that the MDP and MIP are very different
within a PTU, even when the NRV is quite small. In such a case, the influence of a single generator can deter-
mine whether the MDP or the MIP actually sets the price, resulting in a very difference imbalance price for
that PTU.

Looking at the curve itself, several observations can be made. As with the day-ahead supply curve, it is
a step function, which explains why the imbalance price is quite stable as long as the sign of the NRV does
not change, even though the price setting bids do change relatively strongly between PTUs. Note that the
resolution of the supply curve shown is 100MW, while in reality it consists of more steps. Unfortunately, a
higher resolution supply curve is not made available, which means that the one shown should be considered
a rough estimate of the curve.
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Finally, in Belgium there are formally two prices, the short price λ−, which applies to all negative imbal-
ances of BRPs, and the long price λ+, which applies to all positive imbalances of BRPs. These prices only
differ when the absolute system imbalance exceeds a threshold of 140MW, when Elia can apply an additional
incentive α, which means that the Belgian balancing market applies a single pricing system, whereas the
Dutch market applies a mixed pricing system and the Spanish and Danish markets apply a dual pricing sys-
tem, which are discussed in the next section. As the absolute SI exceeded 140MW for the situation shown
in figure 2.4, α was set by Elia, which was €2.61/MWh in this case, resulting in λ+ at €310.00/MWh and λ−
at €312.61/MWh. Table 2.1 shows what BRPs pay or receive in different system situations. Afterwards, each
BRPs’ imbalances for a given quarter-hour are aggregated after which it pays according to the volume of its
total imbalance and a price determined by the mechanism explained above.

BRP situation Net downward regulation Net upward regulation
Long MDP-α MIP
Short MDP MIP+α

Table 2.1: Imbalance price definitions

2.2.4. Balancing Market Pricing Mechanisms
The main designs for imbalance market pricing mechanisms are the dual pricing, mixed pricing and single
pricing systems. This section discusses their specifics, with a specific focus on effects on passive balancing
by the WPP. Their functioning is illustrated through figure 2.5.
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Figure 2.5: Illustration of the NRV and SI signals for 2018-01-03. The change in imbalance of 50MW
causes a shift in average NRV from 10.65MW to -39.34MW. Figure shows the Net Regulation Volume

(NRV), System Imbalance (SI), Marginal Incremental Bid (MIB) and Marginal Decremental Bid
(MDB).

In a dual pricing system, two prices are determined by the sign of either the system imbalance or NRV. For
clarity, the NRV is assumed. When a WPP has a positive imbalance in the non-shifted situation of figure 2.5,
the WPP sells its imbalance at the day-ahead price. When it has a negative imbalance, it buys it back at the
long price. This means the WPP can optimize to minimize its loss from trading on the balancing market. In
the case of the 50MW shift in the NRV signal, the NRV changes sign which means the result for the WPP shifts.
This mechanism results in a revenue for the TSO, as passive balancing is not rewarded while it does create
value.

In a mixed pricing system, there are also two prices, which are determined by the existence the MDP and
MIP. If there is an upward regulation bid and a downward regulation bid, two prices exist. This means that
whatever imbalance a WPP has, it always incurs a loss if two prices exist, where one price is likely to be less
favorable than the other, as the supply curve to the balancing market is asymmetric. If there is only an upward
regulation or a downward regulation bid, both the long and short price assume the price resulting from that
single bid. This means that in this case the mixed pricing system has the same price as the single pricing
ceteris paribus. However, because the existence of an opposite regulating bid determines the existence of a
negative opportunity price versus a positive opportunity price, the WPP must be much more careful with its
strategy. This means the WPP both aims to minimize its losses and maximize its gains. In the non-shifted
case in figure 2.5, there would be two prices in the mixed pricing system, where the extent to which the WPP
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is penalized for its imbalance depends on the specific imbalance price with respect to the day-ahead price the
WPP incurred for that PTU. If the WPP were to be have a positive imbalance in this situation, the WPP would
be hurt by the 50MW shift, as the MDB increases in amplitude, which influence the price in an unfavorable
direction.

In a single pricing system, there is one price, although sometimes a penalty can be applied. In the sin-
gle pricing system, the sign of the NRV determines whether the MDP or the MIP is the price setting bid.
This means that it can choose a strategy that provides as much balancing power but does not lead to a sign
change in the NRV, thus maximizing its gains. The mechanism of the single-pricing system means it func-
tions similarly to the dual-pricing system, except for the fact that it does not incur the day-ahead price when
it successfully provides passive balancing, but incurs the imbalance price, which will be favorable in the case
of successful passive balancing.

Summarizing, for the dual and single pricing systems, the sign of the NRV determines whether or not the
WPP incurs a penalty for its imbalance bid, where in the single pricing system it is rewarded if it helps the
system and in the dual pricing system it is not. This makes it ceteris paribus more attractive for a WPP to
operate in a single pricing system over a dual pricing system. As in an optimization passive balancing is given
a higher weight in the single pricing case versus the dual pricing case, it is expected that passive balancing
will be more significant in a single pricing system. With regards to the mixed pricing system, all depends on
how likely it is for two prices to occur. If there are two prices, the aim of the WPP will be to minimize its losses,
but it will always lose. If there is a single price, it aims to obtain an opportunity gain, but is less likely to do so
due to the higher likelihood of a opposite bid to occur versus the sign of the NRV to switch.

2.3. Revenue Realization for Wind Power
Concerning the value of wind power generation, the most straightforward tool used to judge its performance
is by applying the reference strategy, as introduced in section 1.1.2. This means the forecast is offered on
the day-ahead market at a zero price, after which the total revenue from both the day-ahead market and
the balancing market is calculated. The realization of this process can be observed in figure 2.6, which is
discussed below.
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Figure 2.6: a: Belgian Electricity market prices for 2018-01-02.
b: Power values for the Essent forecast.

c: Market revenue for the wind farm
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First, figure 2.6a shows the three main electricity prices that most affect the revenue of a wind farm. In
summary, these effect the WPP as follows:

• The day-ahead price λD . This price is currently the most important electricity price, as it serves as a
reference for many market transactions. The noon closure of the market is the reason why day-ahead
forecasts are issued in the morning before the closure of the day-ahead market.

• The long price λ+. This price is the real-time electricity price, which is used to price grid imbalances.
Each day before noon each BRP is required to inform the grid operator how much it is going to produce
or consume for each generating unit, which for WPPs is the amount sold on the day-ahead market. If
the market participant deviates from this plan, real-time imbalances occur, for which the market par-
ticipant has to pay. These deviations are determined in blocks of 15 minutes. If the market participant
produces more or consumes less than it had communicated, it is forced to sell this excess at λ+.

• The short price λ−. This price is also the real-time electricity price, but applies when a market partic-
ipant produces less or consumes more than it had informed the grid operator. It is then forced to buy
the shortage at λ−. As can be observed in figure 2.6a, this price is mostly equal to or very similar to λ+.
This is also true for longer periods, as it hardly ever deviates (strongly) from λ+ in the Belgian system,
as the SI not often exceeds |150| MW.
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Figure 2.7: a: Belgian Electricity market prices for 2018-01-02.
b: Power values for a perfect forecast.
c: Market revenue for the wind farm

Figure 2.6b shows the amount the wind farm submitted to the DA, which for wind farms is currently
always offered at a zero price, to guarantee that all electricity is sold. Alternatively a wind farm could offer
no electricity to the day-ahead market and sell everything on the real-time balancing market, but in practice
this option is much less profitable. The convention for determining the quantity to offer is to offer the best
forecast, in order to minimize imbalances. From the figure, a step function can be observed, which is due
to the fact that the bids to the day-ahead market are required to be in hourly blocks. The red line shows the
actual generation by the wind farm, which is much less smooth and deviates from the forecast. This deviation
is the amount a wind farm is forced to sell or buy on the balancing market. This means the following power
variables are involved in determining the revenue:
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• P D : The amount offered on the day-ahead market. In the reference strategy this is the forecast.

• P : The amount actually generated.

• P −P D = P∆: The deviation between what was offered and was was generated. In the reference strategy
this is the forecast error.

Figure 2.6c shows the market revenues as a result of each price and power volume. The first thing to note
is that it is possible for a wind farm to profit from its own imbalances, for instance if in a specific period the
wind farm generated more than it sold on the day-ahead market (the producer is long) and λ+ for that period
is higher than λD , meaning it sold its excess generation at a higher price than it would have gotten on the
day-ahead market. This situation can be observed around the 8:00 mark. It is also possible to lose heavily due
to imbalances, which can be observed around the 12:00 mark. Here the forecast error is large and negative
(the producer is short), while λ− is higher than the day-ahead price, meaning it has to buy back its shortage at
a price that is higher than it would have cost to sell less on the day-ahead market. This results in a significant
net loss for that period, even though the wind farm did in fact contribute electricity to the grid.

When it comes to comparing forecasts, an interesting comparison is that between a specific forecast and
the theoretical perfect forecast, as this allows one to identify the theoretical value of improving them. For this
purpose a perfect forecast is constructed, which can be observed in figure 2.7b.

The first thing to note is that the forecast error in figure 2.7b is often nonzero, which is due to the market
rules, as bids to the day-ahead market are submitted in hourly blocks, whereas imbalances are determined at
a quarter hourly resolution. The second thing to note is that the total revenue is very close to the day-ahead
revenue in figure 2.7c. Clearly, both negative and positive peaks in revenue from the imbalance market are
mostly avoided by this perfect forecast. Overall, for this specific day the total market revenue for the forecast
in figure 2.6 was 11% lower compared to the forecast in figure 2.7. This makes it possible to compute revenue
loss due to forecast errors. For instance, for 2017 this specific loss in revenue due to forecast errors for the
Essent forecast was 6.5%.
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Figure 2.8: a: Belgian Electricity market prices for 2018-01-02.
b: Power values for a perfect bidding strategy.

c: Market revenue for the wind farm

The basic working principle behind the advanced bidding strategies, which were briefly discussed in sec-
tion 1.1.2, can best be explained visually through figure 2.8, which shows the theoretical optimal bidding

Gerrit Deen


Gerrit Deen


Gerrit Deen




22 2. System Overview

strategy for the same day in 2017. Here the hourly bid to the day-ahead market was either the maximum
capacity of the farm P max, which is the maximum bid the market operator allows, or zero. The rationality be-
hind the optimal bid is that of arbitrage opportunity. This is the simultaneous purchase and sale of a product
on two different markets to take advantage of a price difference. So a wind power producer can profit from
buying power from the day-ahead market and selling it on the balancing market when λD is higher than λ+.
On the other hand it can profit from buying from the balancing market and selling on the day-ahead market
when λ− is lower than λD . Of course, the purchase and sale of electricity on these two markets is not simul-
taneous, which makes it a temporal arbitrage opportunity. This bidding strategy does take into account that
bids are on an hourly resolution, so a power producer would only buy from the day-ahead market and sell on
the balancing market and vice versa when it is profitable to do so for the entire hour. Compared to the refer-
ence strategy, the revenue from this theoretical optimal bid was 55% higher for the day depicted in figure 2.8.
When considering the whole of 2017, the revenue increase from using this optimal bidding strategy would
have been 98% compared to the reference strategy.

Unfortunately, not only does a market participant not know these prices in advance, it also influences
the prices, especially since the wind farm in this study is quite large. As was shown in section 2.2.3 on the
mechanism determining the imbalance price, it is entirely possible if a wind power producer anticipates a
certain arbitrage opportunity, that it changes the sign of the NRV, which means that an opportunity becomes
a threat: When the NRV is positive, the imbalance price is determined by the MIP. However, if a WPP strategi-
cally provides much balancing power it is possible to shift the sign of the NRV to negative, which means the
imbalance price is determined by the MDP. The situation in figure 2.4 is not uncommon, as often within a
PTU both incremental and decremental bids are activated, where the difference between the MDP and MIP
is large. While the WPP would successfully provide balancing power in the case of an initially positive NRV, if
the sign of the NRV changes, it will be paid a much lower price than it would have, had the sign of the NRV
not changed. This means it ends up hurting itself through its effect on the imbalance price. As the revenues
reported in this section do not take the effect a producer has on the price into account, even under perfect
information these revenues are not realistic. However, the quantities presented here do provide some indi-
cation that value can be obtained. As value improvement from forecast improvement is limited and forecast
improvement is marginal and the process of improvement is mostly exogenous to the WPP, it seems valid to
try and obtain some of the large potential value increase from arbitrage opportunity. Hence, the next chapter
focuses on how this can be done through advanced bidding strategies.
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Stochastic Optimization Model

As discussed in section 1.1.2, one of the first studies on this subject is that of Matevosyan and Söder from 2006
[38]. A study that made important innovations on the methods introduced by Matevosyan and Söder is that
of Morales, Conejo and Pérez-Ruiz from 2010. This study introduced improvements to the underlying math-
ematical principles and included the option to leverage the ID as well as control risk using the Conditional
Value-at-Risk at confidence level α (CVaRα) [43]. These models are designed for dual-pricing systems under
a price-taker assumption. So far there have been two case studies that implemented a form of this model
in markets similar to the one studied here. Those are the one by Chaves Avila et al. [8], which implemented
a price-taker model in the Dutch market, a mixed pricing imbalance market, and the one by Bertrand and
Papavasiliou (2017), where both a price-taker and a price-maker model were implemented for the Belgian
single pricing market [4]. This study both applies the price-taker version of the model by Morales et al.(2010)
[43] and a reformulated price-maker version of the model. In their study, Bertrand and Papavasiliou also
claim a closed form solution to the price-maker version of the model. For completeness sake this study will
also test their claim and study this version of the model. In the next section the price-taker of the model is
explained. Secondly, a price-taker version of the model is discussed. Lastly, the closed form solution to the
price-maker model is discussed. The tools used for implementing these models are the Pyomo[21], Numpy
and Scipy libraries in Python. The optimization models are solved using the CPLEX solver from IBM, which
interfaces with the model implemented using Pyomo.

3.1. Price-Taker Optimization Model
The model from Morales et al. (2010)[43] assumes two prices exist in the balancing market. As this strictly
speaking is the case for the Belgian balancing market, Bertrand and Papavasiliou did not change the original
model. However, for the first half of 2018, λ+ and λ− only diverged 0.31% of the time. Furthermore, the
average value of the penalty α where α is nonzero was €2.73, which is relatively small as the mean absolute
value of the imbalance price without α was €47.90. Hence, given the limited divergence of both prices and
the limited impact of α on the imbalance price, this study does not take α into account. A further change this
study introduces with regards to the formulation by Morales et al.(2010) [43] is the resolution of the model,
which is increased to a quarterhourly resolution from an hourly resolution. As forecast errors and imbalance
prices can be volatile, when peaks of both line up the hourly mean of both can give a skewed result of their
interaction. The model is formulated as follows:

MaximizeP D
t ,∀t ;P∆tω,∀t ,∀ω

ξ{R} =
NΩ∑
ω=1

NT∑
t=1

πωdt (P D
t λ

D
tω+P∆tωλ
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tω ) (3.1)
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Where P D
t is the amount that is bid on the day-ahead market for time t , πω is the probability of scenario

ω and P∆tω the imbalance at time t for scenario ω. Equation 3.4 provides the added constraint necessary to
deal with the difference in resolution between the variables and parameters for the day-ahead market part of
the model and the variables and parameters for the balancing market part of the model.

In the optimization model, P D
t only has one index, which means that the optimization determines the

value for P D
t that optimizes the overall profit, given all possible realizations of the stochastic processes in-

dexed by both t and ω, for the entire scenario set of size NΩ. This method of optimization, where uncer-
tain parameters are represent by a discrete scenario set of size Nω is called stochastic optimization. This
method is shown to outperform similarly defined robust optimization counterparts in terms of robustness of
its outcomes, especially when risk is controlled inside the stochastic optimization model [42]. Furthermore,
it provides a guaranteed single optimum contrary to a robust optimization model, given that the stochastic
processes are modeled correctly and are accurately represented by the scenario set [42]. Finally, the model
can be extended to include risk measures, but also other processes of interest, thus providing a flexible frame-
work on which WPPs can build.
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Figure 3.1: a: Linear optimization lines for P D
t

b: Linear optimal bid for 2018-01-02

Compared to the original version of the model, which was designed by Morales et al. (2010) [43] to be used
in a dual pricing system, the functioning of this model is different. In a dual pricing system, passive balancing
is not rewarded, as the balancing price for successful passive balancing is set to be the corresponding day-
ahead price for that PTU, while the penalty for unsuccessful passive balancing is set at the imbalance price.
Hence, the optimum of the linear model lies there where as much of the cost from imbalances is avoided,
which means it is never rewarding to go beyond the point where most unfavorable imbalance revenue is
avoided. This means that the optimum for the original model can be seen as a cost minimization model,
which is also how it is reformulated in chapter 7 of ’Integrating Renewables in Electricity Markets’ [42]. How-
ever, as passive balancing is rewarded in single and mixed pricing systems, the model becomes a revenue
maximization model, which has important implications for the linear version of the model. This means that
the optimum always lies at either 0 or P max, which is in accordance with the arbitrage logic as presented in
section 2.3. This is illustrated in figure 3.1, where for 2018-01-02 the optimization is approximated by varying
P D

t for each timestep in steps of size 1 MW.
As the capacity of the wind farm in this study is 147.6MW and the mean absolute system imbalance in

Belgium for the first half of 2018 was 119MW, it seems irrational to adopt this price-taker assumption. Espe-
cially as it seems likely that the sign of the NRV can change given the magnitude of the strategic bids, thus
converting opportunities into threats, which was also one of the main conclusions of the paper by Bertrand
and Papavasiliou (2017) [4]. Hence the next section focuses on the price-maker formulation of the model.

3.2. Price-Maker Optimization Model
Bertrand and Papavasiliou [4] extend the model by Morales et al.(2010) [43] by incorporating a price-maker
term in the model. They model this term as a static parameter by evaluating the relationship presented
in the scatter in figure 3.2. This scatter shows a ordinary least square linear regression line with intercept,
from which a linear coefficient can be obtained. For the data for the first half of 2018 this coefficient was -
0.2189 €

MW h2 . This coefficient can be interpreted as follows: If a producer increases the system imbalance, the
price will decrease, as more downward regulation needs to be activated. These downward regulation bids are
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willing to pay for not generating electricity, albeit at a lower price than they had sold their electricity on the
day-ahead market. As bids are activated in a price increasing order, bids are first activated that are willing to
pay a high price for not having to produce. Simultaneously, some consumers may be willing to increase their
consumption at a favorable price. However, as more bids are activated, at some point base load generators
will be required to reduce their output, which for them may represent a cost as it is difficult to ramp back up,
their efficiency reduces or variable output may hurt the generation unit. For upward regulation bids the logic
is straightforward, as when more bids are activated for upward regulation, more expensive generators need
to become active, while consumers will ask for a higher price to adjust their consumption downward, as this
will reduce their utility.

−500 0 500 1000

System Imbalance (MW)

−200

0

200

400

600

λ
+

(€
/
M

W
h
)

Linear fit

Figure 3.2: Scatter plot of System Imbalance versus λ+ for observed data from 2018-01-01-2018 -
2018-06-30.

The model formulated by Bertrand and Papavasiliou (2017) [4] incorporates the price-maker term as the
slope of the linear influence of the system imbalance on λ+. The model from that study still contains two
prices and is at an hourly resolution. However, as with the linear version of the model, this study assumes a
single price and increases the resolution of the model. This leads to the following formulation of the model:
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Where γ∆tω is the price-maker term with unit €

MWh2 , which represents linearly what the influence of the
park imbalance is on the imbalance price.

This study presents another change from the model by Bertrand and Papavasiliou (2017) [4]. Whereas they
represent the price-maker term γ∆t ,ω as a constant, this study proposes to model this term as a stochastic pro-
cess. This is a common method for modeling price-maker effects in stochastic optimization, as is explained
in a conventional power producer example in chapter 5 of ’Decision Making Under Uncertainty in Electricity
Markets’ by Conejo, Carrión and Morales(2010) [10]. Conejo et al. (2010) model this term as the slope of the
inverse ordered supply curve to the balancing market. As an approximation to the supply curve to the bal-
ancing market is published daily at 5:00PM day-ahead by the TSO Elia, this method can also be applied here.
This seems like a likely improvement to the model by Bertrand and Papavasiliou, as the 2007 study by Pinson,
Chevallier and Kariniotakis [47] concluded that an increased resolution of uncertain parameters involved in
the optimization is an important source for increased value from the optimization. Furthermore, both stud-
ies by Chaves Avila, Hakvoort and Ramos (2013) and by Rahimiyan, Morales, and Conejo (2010) indicate that
important improvements to the solution are to be expected as the quality of the modeling of the stochastic
processes involved increases [9, 51]. As the price-maker effect is published at a quarter hourly resolution,
while Bertrand and Papavasiliou model it as a constant, this seems like a likely source of improvement to the
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optimization. Hence, this study models this term as the slope of a least squares linear representation of the
supply curve to the balancing market, as visualized in figure 3.3.
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Figure 3.3: Inverse ordered supply curve to the balancing market for 2018-01-01 00:15:00

This formulation with γ∆tω as a stochastic process is a combination of the price-maker formulation, as
introduced in equation 3.1 with a price-maker model for conventional generators, as presented in chapter
5 of ’Decision Making Under Uncertainty in Electricity Markets’ [10]. Below the new quadratic price-maker
optimization is illustrated, where the optimization is approximated by steps of 1MW for 2018-01-02.
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Figure 3.4: a: Quadratic optimization lines for P D
t

b: Quadratic optimal bid for 2018-01-02

The figure shows that the optimum bid stays closer to the original forecast. The expectation is that this
will result in more realistic optimal offers, meaning better real-world performance. Even though the linear
approximation to the supply curve is an abstraction, the inclusion of the price-maker effect as a stochastic
process is expected to add quality to the optimization in several ways. The first is on the resolution of the
term, as was shown by Pinson, Chevallier and Kariniotakis [47]. The price-maker effect as specified here
should increase as less regulation capacity is available, which would force the optimization to bid more con-
servatively. Vice-versa, the term should decrease when more regulation capacity is available, which should
result in more opportunist bids. The second is on the inclusion of it as a stochastic process, which is analo-
gous to moving from a deterministic optimization to a stochastic optimization, where the second is shown to
be superior when stochastic processes are involved [42].
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3.3. Price-Maker Analytic Model
For completeness, this section discusses the analytic version of model 3.5, which according to Bertrand and
Papavasiliou (2017) [4] solves the problem under the assumptions that the imbalance price can be represent
by one price, that the stochastic processes can be considered independent and that the probability weighted
sum of the scenarios result in their respective forecast. The result of this, for which the proof can be found in
their paper, is as follows:

P D
t = P̂t +

λ̂Imb
t − λ̂D

t

2γ̂∆t
(3.9)

Where P̂t is the forecast for wind power, λ̂Imb
t is the forecast for the imbalance price, λ̂D

t is the forecast for
the day-ahead price and γ̂∆t is the forecast for the price-maker term.

Although the version of the model by Bertrand and Papavasiliou (2017) again presents γ̂∆t as a static term,
here it is assumed to be dynamic at the same resolution as λ̂Imb

t . However, as the bid is made at an hourly
resolution, P D

t is resampled as its hourly mean. The closed form reformulation can be interpreted as follows.
The numerator is the expected difference between the imbalance price and the day-ahead price, which rep-
resents the expected reward when the WPP decides to alter its bid away from the forecast. The denominator
represents the influence the WPP has on the imbalance price. The larger this term becomes, the closer the
altered bid will be to the forecast. This formulation allows the bid to exceed the minimum and maximum
capacity of the wind farm, which is why when this occurs, the optimal solution is projected on the interval
within its minimum and maximum capacity, thus respecting constraint 3.6.

3.4. Evaluating Strategy Performance
Concerning the evaluation of the performance of each strategy, the studies by Rahimiyan et al. (2011) and
Chaves Avila et al. (2013) applied a price-taker recreation of revenues [9, 51], after which they compared the
total revenues. However, this method firstly does not provide insight in the statistical differences between
the revenue of one strategy over the other. Secondly, these assume a difference in strategy has no influence
on the price. Thirdly, the performance of the strategy is not explained by the sum of the revenue. Fourth, no
insight is obtained on the system effects or societal value of the strategy. This section addresses these issues
by first presenting a method to reconstruct the price to obtain more realistic revenues, secondly by presenting
a method to compare different sets of revenues statistically, thirdly by introducing a method to explain the
performance of a strategy and finally by presenting a method to determine system effects and societal value.

3.4.1. Imbalance Price Reconstruction
The method of computing revenues as done in the studies by Rahimiyan et al. (2011) and Chaves Avila et
al. (2013) is explained in 2.3 [9, 51]. However, as in mixed pricing and especially in single pricing balancing
markets the WPP is incentivized to provide passive balancing, its optimal bid can result in much larger devi-
ations from its forecast compared to dual pricing balancing markets. Therefore, the assumption that prices
are not influenced seems unreasonable. This is especially relevant in the case of the linear version of the
model, where either 0 or the maximum power of the wind farm is bid. Furthermore, the extent to which a
wind farm successfully provides passive balancing determines the extent to which the price is influenced un-
favourably for the WPP. This is due to the fact that when passive balancing is provided, fewer reserves need
to be activated, thus the price is dampened. To be able to provide a fair comparison between more aggres-
sive and more conservative approaches to the optimization, the imbalance price needs to be reconstructed.
Because of this Bertrand and Papavasiliou (2017) presented a method to reconstruct the price for wind farms
of different sizes in order to compute a corrected revenue [4]. The supply curve shown in figure 3.3 was used
to construct a piece-wise linear function, thus enabling the usage of the published supply curve for each
PTU of the balancing market to recreate the imbalance price. However, they did not take into account that
a shift in NRV changes the price setting bid. Furthermore, the supply curve to the balancing market is not a
piece-wise linear function, but a step function, as the price can remain constant while the price setting bid
fluctuates strongly within the bounds of a single step, which explains the relative stability of the imbalance
price between switches. Hence, here a revised version of their algorithm is presented.

As explained in section 2.2.3, the price is determined by the sign of the Net Regulation Volume (NRV) and
the price setting incremental (MIB) or decremental bid (MDB), through the price determined by the supply
curve to the balancing market together with an optional value for α. The final price can be increased by
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α by the TSO when the absolute system imbalance exceeds 140MW. Using this knowledge an algorithm is
introduced to model the influence a difference in strategy would have had on the balancing price. The main
principle behind the mechanism presented here is that the change in strategy directly alters the magnitude
of the price setting MDB and MIB. An approximation to these bids can be obtained as the TSO publishes
the NRV signal at resolution of one minute, thus allowing the computation of the MDB and the MIB as the
minimum and maximum of the signal within a PTU. This principle is visualized in figure 3.5a, which shows
how a change in strategy of a single WPP would have altered the SI, NRV, MIB and MDB for a single PTU of
the balancing market. As an altered bid would not have changed the electrical signal of the WPP and thus not
that of the total system imbalance at a higher resolution than that of the PTU, but only alter the imbalance
by a constant for a PTU, the SI for that PTU would be altered by that constant. As the NRV and thus the
MDB and MIB are a direct response to the SI, the assumption behind the price reconstruction model is that
they are altered by the same amount opposite to the change in SI. This altered SI, NRV, MDB and MIB then
allow the reconstruction of the price. A limitation in this algorithm is that the supply curve published by
Elia is an approximation of the actual supply curve to the balancing market, with step sizes of 100MW, which
means that the price-maker effect is quite crude. Furthermore, Elia mentions on its site that some constraints
may change the shape of the actual curve compared to the published curve, mainly grid constraints and
the resolution of the approximation, which make the approximated supply curve not a reliable function for
simulation of prices. However, it may allow for additional insights in the real-world performance of a strategy
relative to the price-taker revenue evaluation.

As for each PTU the NRV signal is published at a minute resolution by Elia, together with the approximated
supply curve, the price can be recreated by first obtaining the MDB and MIB by determining the minimum
and maximum of the NRV signal. This bid can then be altered by the inverse amount the strategy is altered,
after which the supply curve can be applied to obtain the recreated price. This is visualized in figure ??b,
which shows what the effect would have been on the MDB, MDP, MIB and MIP if a bid to the day-ahead
market had been 50MW lower, resulting in a 50MW increase in system imbalance and a 50MW decrease
in NRV, MDB and MIB. The figure shows that the differences in steps of the supply curve lead to different
impacts on the MDP and MIP. Taking the possible sign change of the NRV into account, this may allow for
a more realistic recreation of the balancing price. As Elia also publishes the value for α for each PTU, the
algorithm also checks whether or not α should still be applied, depending on whether or not the absolute
value of the system imbalance exceeds 140MW.
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Figure 3.5: Illustration of price recreation of the imbalance price for 2018-01-03. The change in
imbalance of 50MW causes a shift in average NRV from 10.65MW to -39.34MW.

a: Net Regulation Volume (NRV), System Imbalance (SI), Marginal Incremental Bid (MIB) and
Marginal Decremental Bid (MDB).

b: Supply curve to the balancing market with the MDB and MIB, where the MDB remains the same at
€0.74/MWh, the MIP goes from €315.00/MWh to €76.71/MWh, and the price goes from

€315.00/MWh to €0.74/MWh.

3.4.2. Revenue Comparison
The studies by by Rahimiyan et al. (2011), Chaves Avila et al. (2013), Bertrand and Papavasiliou (2017) all
present their conclusions based on the total revenue of a certain strategy for a certain time period [4, 9, 51].
While this is an important indicator for the existence of a difference between strategies, there are more ro-
bust measures to indicate statistical differences between strategies. As the total revenues are the sums of all
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revenues for a time period, these can be seen as part of a statistical distribution, focus is shifted to the distri-
butions of those revenues. In econometrics it is common to compare different sets of revenues rather than
their sums. This provides insight whether the difference in sum is due to a structural difference between two
sets of distributions. This can be determined through the concept of stochastic dominance. This concept is
introduced by Hadar Russell (1969), where first order stochastic dominance determines whether distribution
F (x) should be preferred over distribution G(y) by evaluating:

F (x) ≤G(y)∀x, y ∈ [a,b] (3.10)

Where a is min(x, y) and b is max(x, y). This means that the cumulative distribution function F(X) must
lie under cumulative distribution function G(Y) for all values of x and y . This case is shown in figure 3.6b for
distribution f1(x). This figure shows that the cumulative density functions can be used to determine whether
or not a distributions of revenues is shifted towards the right, which means it would consistently result in
higher revenues.
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Figure 3.6: Visualization of determining first -and second-order stochastic dominance, where
f1(x)=N(1,2) and g (y)=N(0,2).

a: Probability Density Functions.
b: Cumulative Density Functions and expected difference of the mean.

c: Conditional value at risk.

A problem with the first-order stochastic dominance test in equation 3.10 is that often cumulative distri-
bution functions intersect, which means that this test often does not hold. However, it may still be the case
that one distribution is shifted to the right of the other, which means that one would result in a higher revenue
than the other. This case is shown in figure 3.7 for distribution f2(x). Distribution f2(x) is clearly to the right
of distribution g (y) and will result in a higher expected revenue, but does not strictly first-order dominate
distribution g (y).
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Figure 3.7: Visualization of determining first -and second-order stochastic dominance, where
f2(x)=N(1,1) and g (y)=N(0,2).

a: Probability Density Functions.
b: Cumulative Density Functions and expected difference of the mean.

c: Conditional value at risk.
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In the case of the strategies in this study, especially when comparing those from similar wind power fore-
casts, gains in revenue are marginal and revenue distributions can be very close, which can lead to intersect-
ing cumulative density functions, which means that there is no strict first-order dominance but there is more
revenue to be expected from one over the other. To still get a measure on the quantity of the shift in revenue,
this magnitude of this shift can be quantified by the expected difference of the mean:

E [X −Y ] =
∫ b

a
(G(y)−F (x))d x (3.11)

Where E [X −Y ] is the expected difference of the mean, a is min(x, y) and b is max(x, y). This score is
the surface area of the difference between G(x) and F(x) and is regarded as the main ranking criterion of
the strategies. Conveniently, E [X −Y ] is the expected mean difference between the two strategies’ revenues,
which means that this integral reduces to the difference of the average of the two revenue samples:

E [X −Y ] = 1

n

n∑
i=1

xi − 1

n

n∑
i=1

yi (3.12)

Although this provides insight in what magnitude of difference in revenue can be expected between the
strategies, the value of one strategy over the other can also lie in its risk. For instance, if two strategies have the
same expected mean, one may have a smaller spread. Such a smaller spread in revenue, without a reduced
mean would be interesting for market participants, as it would reduce risk without sacrificing revenue. An
example of such a case is shown in figure 3.8 for distribution f3(x). Especially a distribution which does not
only have a shift in mean but also a reduced spread would be preferred, as it would result in a reduced risk,
combined with an increased expected revenue, which is the case for distribution f2(x) as shown in figure 3.7.
A concept for testing this effect is the Conditional Value at Risk (CVaR), which is expressed as [42]:

CVaRα =
∫ F−1(α)

a
x f (x)d x (3.13)

Where f (x) is the probability density function of the revenue distribution,α is the confidence level, where
0 ≤α≤ 1, F−1(x) is the inverse cumulative distribution function of f (x) and a is the minimum value of sample
X . This means that the conditional value at risk is the expected value of the α% lowest revenues. This means
it provides a suitable metric for risk-averse producers, as it quantifies the expectation for low revenues. For
the samples in this study, this reduces to the mean of the lowest α% of the revenues:

CVaRα = 1

nα

nα∑
i=1

xi∀xi ∈ {xi , xi+1, ..., xnα } : xi+1 ≥ xi (3.14)

Where nα is the number of samples in set X of size n, which equates toαn. This means that the the CVaRα
for a discrete sample reduces to the mean of the 5% lowest values.
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Figure 3.8: Visualization of determining first -and second-order stochastic dominance, where
f3(x)=N(0,1) and g(x)=N(0,2).

a: Probability Density Functions.
b: Cumulative Density Functions and expected difference of the mean.

c: Conditional value at risk.
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In conclusion, the shift of one distribution of revenues can be quantified by the expected difference of the
mean, while risk can be quantified by the Conditional Value at Risk. For the three distributions f1(x), f2(x)
and f3(x) table 3.1 shows in the differences in expected mean and CVaRα compared to distribution g (y),
where α is chosen as 5%. Both distributions f1(x) and f2(x) show the same shift in mean, but since f2(x)
has a smaller spread it results in a higher increase in CVaRα, making it the preferred strategy. Distribution
f3(x) shows no increase in expected mean, but does show a significant increase in CVaRα, greater than that
for distribution f1(x). This means that a risk-averse producer may want to consider the strategy resulting in
revenue distribution f3(x).

Distribution E [X −Y ] ∆ CVaRα
f1(x) 1 0.05
f2(x) 1 0.15
f3(x) 0 0.10

Table 3.1: Differences between the three distributions in figures 3.6, 3.7 and 3.8 and reference
distribution g (x).

3.4.3. Strategy and market quantities

Although the revenue comparison provides insight in which strategy to choose, interest also lies with the
composition of each strategy. To analyze the composition of each strategy an analysis is introduced, which
aims to provide insight in the interaction between the strategy and the market, thus explaining its perfor-
mance. First, imbalance prices are redefined as opportunity prices relative to the day-ahead price as follows
[42]:

λ∆
+ =λ+−λD

λ∆
− =λ−λD

(3.15)

The first thing to note is that this redefinition is based on the characteristics of the imbalance price, which
is typically higher than the day-ahead price when the system is in up-regulation and lower than the day-
ahead price when the system is in down-regulation. This means that the balancing prices are strongly related
to the day-ahead price and system imbalances. Thus, when looking at relationships between forecasts and
the imbalance price, these should be redefined in order to help identify these relationships. The second
thing to note about the redefinition is that the second definition is positive when λ− is higher than the day-
ahead price, meaning that when this term is positive it hurts to be short as the park is forced to buy back its
imbalance at a higher price than it would have had to pay on the day-ahead market. By defining it in this
way, it becomes easier to identify the valence of the relationship a specific forecast has with market prices.
Secondly, a negative imbalance indicates that the producer has to buy on the balancing market. When the
producer sells a negative amount and it pays a negative λ∆

−
, the buy results in a positive opportunity.

The redefined opportunity prices help explain how a strategy can help the revenue of a WPP. Firstly, a
WPP experiences opportunities and threats. It seizes an opportunity when it can buy back what it is short at
a lower price than it has sold it at on the day-ahead market or when it can sell what it is long at a price that is
higher than what it would have sold it at on the day-ahead market. It experiences threats when it buys back
at a higher price or sell at a lower price relative to the day-ahead price. The strategy can help the revenue
for a WPP in four ways. First, it can reduce its threats when short by being short less and less often when
λ∆

− ≥ 0. Second, it can seize opportunities by being short more and more often at when λ− ≤ 0. Third, it
can reduce its threats when long by being long less and less often when λ∆

+ ≤ 0. Fourth, it can increase its
opportunities by being long more and more often when λ∆

+ ≥ 0. The extent to which it reduces threats or
increases opportunities can be quantified by computing the opportunity revenues it incurs for being short,
long and in total:
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R∆
+ =

Nt∑
t=1

P∆
+

t λ∆
+

t

R∆
− =

Nt∑
t=1

P∆
−

t λ∆
−

t

R∆ = R++R−

(3.16)

Where P∆
+

t are imbalance where P∆t > 0, P∆
−

t t are imbalance where P∆t < 0. This can then be split in the
volume traded through being short or being long by computing the total volume:

P∆
+ =

Nt∑
t=1

P∆
+

t

P∆
− =

Nt∑
t=1

P∆
−

t

P∆ =
Nt∑

t=1
P∆t

(3.17)

This can then be used to compute the average opportunity price the producer incurs for being long, short
and on average, which provides insight in the extent to which it manages to reduce threats and increase
opportunities for being short and long seperately:

λ
∆+

= R+

P∆+

λ
∆−

= R−

|P∆− |
λ
∆ = R

P∆+ +|P∆− |

(3.18)

If a producer is better able to seize opportunities more and experience threats less, the relationship be-
tween its imbalance and its experienced opportunity is positive. When it less able the relationship between
its imbalance and its experienced opportunity is negative.

Another relationship that is analyzed is that between the strategy and the system imbalance. The logic
behind this is as follows: when the SI is positive, i.e. the system is long, the net regulation volume (NRV)
is typically negative relative to this imbalance and vice versa. This means that NRV represents the volume
increased or decreased to the grid to offset system imbalances. Coming back to the earlier statement that
balancing prices tend to increase relative to the day-ahead price as the NRV becomes increasingly positive
and that they tend to decrease relative to the day-ahead price as the NRV becomes increasingly negative, it
is likely that there is a clear relationship between system imbalances and balancing prices. Hence, as a fore-
cast’s errors strongly correlate with the SI, there is a strong correlation with less favorable previously defined
prices. Hence, correlations between forecast errors and the system imbalance are also analyzed, where a
lower correlation implies a more beneficial relationship.

The main method for this analysis consists of the evaluation of correlations, which are defined as:

ρx,y = corr(x, y) = cov(x, y)

σxσy
(3.19)

Correlation is a standardized measure, which makes it easy to interpret.

3.4.4. System Effects and System Costs
The last sub question in section 1.2 states the need for insight on the impacts of a strategy on the system as a
whole. To this effect, firstly, analyses are carried with respect to the system imbalance. The system imbalance
can be influenced in several ways. First, the system imbalance can be dampened by a strategy, which means
that on average it helps reduce system imbalance. As the system imbalance is centered around 0MW, this
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is analyzed for the absolute system imbalance. As the system imbalance is known, as well as the imbalance
caused by the Essent forecast, the system imbalance for each strategy can be directly computed. Then the
expected difference of the mean can be computed, using equation 3.12, which allows for the comparison
between strategies. Second, the absolute system imbalance, like the revenue, has tails to its distribution.
Unlike the revenue distributions, the least favourable values lie in its right tail, as these contain the extreme
imbalances, which lead to an increased risk of blackouts. To this end the CVaRα is computed for the highest
α% of system imbalances as follows:

CVaRα = 1

nα

nα∑
i=1

xi∀xi ∈ {xi , xi+1, ..., xnα } : xi+1 ≤ xi (3.20)

Finally, an important issue with system imbalances consists of its volatility, as due to ramp constraints of
balancing generators this places a lot of strain on the system. To this end, volatility of the system imbalance
at the quarterhourly resolution is an important metric. Volatility in time series is measured by the standard
deviation:

σ=
√∑N

i=1(xi −x)2

N −1
(3.21)

Concerning system costs, these can be computed as the total opportunity loss of the system as a whole.
For this purpose the redefined opportunity prices from section 3.4.1 can be used. For the system as a whole,
much of the opportunity cost is offset by positive opportunities, as many parties profit and many parties
lose out within a single PTU, the net opportunity loss or gain is determined by the excess system imbalance,
which is the sum of all negative and positive imbalances within a PTU. This means that the opportunity for
the system as a whole can be computed as:

RSI+ = SI+λ∆
+

RSI− = SI−λ∆
−

RSI = RSI+ +RSI−

(3.22)

This means that the opportunity for the system as a whole are computed identically to the opportunities
for the WPP. This opportunity is in practice a negative value, as imbalances represent a cost for the system.
This results in a sample of opportunity costs for the system as a whole, which are influenced by the strategies
through λImb and through the system imbalance itself, which means that the opportunity costs can be used
to infer the influence of the strategy on the societal costs of system imbalances. For this purpose the expected
difference of the mean and CVaRα are used.





4
Framework for Stochastic Process

Modeling

To be able to obtain the maximum value from of a forecast, it first needs to be transformed to a scenario fore-
cast, as this enables the user to apply stochastic optimization [42]. The stochastic optimization models from
chapter 3 require a structured scenario set as input, which forms a representation of all stochastic processes
involved in the optimization. This chapter aims to provide a framework on the modelling process leading
to this scenario set. First, in section 4.1 an oversight is given on the modelling steps involved. Second, in
section 4.2.1 the first step is discussed, which is the construction of density forecasts. Third, the second step
is discussed in section 4.3, which is the generation of scenarios. Last, the final step is discussed in section 4.4,
which is the construction of a scenario tree. The tools used for implementing the models in this chapter are
the Statsmodels, Numpy and Scipy libraries in Python.

4.1. High Level Overview
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Figure 4.1: Framework for Stochastic Process Modeling. Numbers on the left show which section of
chapter 4 discusses the steps. Each step is shown as a rounded rectangle. Where a step is inside a

larger rectangle, the model or method involved is shown in bold. To the right of each step, the output
of the step is indicated.
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Most forecasts are produced as single value forecasts, aiming to provide the best estimate of future values
of a stochastic process [15]. However, stochastic optimization in the case of wind power bidding has shown
that significant gains can be made when information on the uncertainty of the stochastic processes is accu-
rately captured and utilized, as discussed in section 1.1.2. The method of stochastic optimization requires
that these stochastic processes are represented by a set of discrete scenarios, where these scenarios capture
how uncertainty evolves in amplitude and between timesteps. In order to move from a point-forecast to such
a scenario set, several models need to be applied in several steps, which are shown in diagram 4.1. The first
model needed is a probabilistic model, which describes the probability distribution around the forecast, pro-
viding the uncertainty in amplitude. The second model needed is a model that captures the interdependence
of the uncertainty between timesteps. The third model needed is a model that combines stochastic processes
in a scenario tree, which can be directly used in stochastic optimization.

4.2. Construction of Density Forecasts
Regarding the construction of probabilistic forecasts from point forecasts, much research has been carried
out in recent years. Methods applied in these studies can be divided in parametric and non-parametric meth-
ods. A non-parametric methods makes no assumption on the shape of the underlying distribution, whereas
a parametric methods fits a distribution defined by only a few parameters to the data. A recent review on
probabilistic wind power forecasting concluded that although parametric approaches can be computation-
ally advantageous, the assumption that the underlying distribution depends only on a few parameters does
not seem reasonable in the case of wind power [63]. Furthermore, Pinson and Kariniotakis (2010) concluded
in a study on prediction intervals for wind power forecasts that the non linearity of the power curve makes
the underlying distribution not subject to any known parameter type distribution, which makes the perfor-
mance of the non-parametric method in practice superior [49]. Finally, as this study focuses on a single wind
farm, computational intensity is less of an issue as a limited number of predictive models is needed. Further-
more, as this framework also aims to construct models for electricity price processes, the added flexibility
from non-parametric methods seems appropriate. Hence, focus is turned to non-parametric methods.

Two methods with proven performance in wind power density forecasting are quantile regression and
kernel density estimation. The first has been successfully applied to the wind power case by Møller, Aalborg
Nielsen and Madsen (2008) [] and to day-ahead electricity prices by Jónsson, Pinson, Madsen and Aalborg
Nielsen (2014) [30]. This method consists of approximating a probability density function by constructing a
discrete set of quantiles, after which through interpolation a density function can be approximated. Although
quantile regression is shown to be successful at density forecasting in these cases, there are some reasons
why this method may not be particularly suitable for a generalized framework. First, an arbitrary number of
splines can be applied in the regression framework, with varying risk of crossing quantiles, which makes the
construction of reliable predictive densities difficult. Second, the choice of the number of discrete quantiles
used to approximate the density function determines the resolution of the approximation. When more com-
plex density shapes are approximated, preventing quantile crossing can become difficult as more quantiles
are needed to accurately capture the underlying distribution [33]. This may prove troublesome in the case
of the imbalance price, which has a more complex underlying distribution. Although the method of quantile
regression has shown to be successful in applications in wind power density forecasting and day-ahead elec-
tricity price density forecasting, the difficulty of using an arbitrary number of splines and an arbitrary number
of discrete quantiles to accurately capture more complex shapes, while preventing quantile crossing, makes
it difficultly generalizable.

The second method, kernel density estimation, has been successfully applied to wind power density fore-
casting by Taylor and Jeon in two studies [29, 56]. In the 2015 study by Taylor and Jeon [56], their kernel
density method is tested against the quantile regression method. The main conclusion from this study with
regards to their difference is that in terms of performance the two methods are very similar. Also they con-
clude that although the quantile regression approach is competitive in terms of performance, the issue of
crossing quantiles makes it difficult to implement and in need of significant more validation before it can be
applied, compared to the kernel density estimation method. On the other hand, the kernel density method
can be easily applied to other more complex shapes, as it provides a continuous approximation of the un-
derlying density function, rather than a discrete approximation. Especially when dealing with more complex
shapes it can provide well performing density forecasts with little effort. This is important for the current
framework, as it should not only capture wind power forecast and day-ahead forecast probability densities,
but also those of the imbalance price and the price-maker effect. However, a downside to this method is
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the need for many data points, especially when estimating densities in higher dimensions, as data sparsity
increases. A downside to the method of kernel density estimation is that the choice of the specific kernel func-
tion and the bandwidth of this kernel used to estimate probabilities can lead to different results. However, the
more flexible and more easily generalizable method of kernel density estimation seems like a more suitable
choice for this framework. Hence, the choice is made to apply the method of kernel density estimation, which
is explained in the next section.

4.2.1. Constructing a probabilistic model
The specific method applied here is conditional kernel density estimation (CKD), which was successfully
applied by Jeon and Taylor to the case of wind power [29, 56]. This method allows the modelling of a specific
dependent variable, conditional on one or more independent variables. The dependent variable here is the
forecast error, rather than the observation. This is because the forecast error is an approximately zero mean
process and has reduced variance, making it easier to model compared to the observation. This leads to the
first transformation, which determines the forecast errors (step 1.1):

εt+k|t = yt+k − ŷt+k|t (4.1)

Where index t stands for the time at which the forecast was issued, index k stands for the forecast horizon,
yt+k is the observation of process y , ŷt+k|t stands for the forecast of process y issued at time t and εt+k|t stands
for the observed forecast error. The notation t +k|t stands for the fact each forecast value is conditional on
the knowledge of the stochastic process up to time t , where the | is the conditional symbol from probability
theory.

Although the forecast error has better statistical properties than the target variable, the error data can
show varying distributions, which for instance in the case of wind power means that for high or low forecast
power the distribution is relatively narrow and skewed, whereas for intermediate forecast power the error
distributions are relatively wide and centered. Also, the skewness does not vary smoothly for varying values
of ŷt+k|t . This is where the flexibility of CKD is beneficial, as a quantile regression model would require an
arbitrary number of splines to obtain satisfactory sharpness, with a varying risk of crossing quantiles, making
it harder to accurately capture the underlying distribution and to capture it to sufficient detail. As CKD does
not have such limitations, the expectation is that with relatively little effort a satisfactory sharpness can be
obtained, resulting in a user friendly yet competitive framework.

Regarding the factors that can be used to predict the error, a review on uncertainty analysis of wind power
forecasting by Yan et al. (2015) found that wind speed together with the power curve and forecast horizon are
the most influential sources explaining the uncertainty [62]. As the forecasts in this study consist of power
data, which already incorporates the transformation from wind speed through the power curve, the model
is made conditional on the forecast ŷt and the forecast horizon k. Alternatively, in the case of wind power
the model could be applied to wind speed instead of power, as the method is also suitable for stochastic
power modelling [56]. However, when using it for stochastic power modelling, binning of data or having
variable kernel bandwidths becomes more important, as the spread of power values for varying wind speed
values varies greatly [56]. This is less an issue when applying the model directly to power values, as all values
fall within a specified domain. A downside to applying it directly to power values is that the uncertainty
from power modelling is not captured directly, which seems a likely source for increased sharpness of the
probabilistic forecast, which is now not captured.

CKD estimation of the conditional probability density function of the forecast error Et = ε, given forecast
Ŷt = ŷ and time of day Kt = k can be expressed as follows [56] (step 1.2):

F (ε|ŷ ,h) =
∑n

t=1 Khε (Et −ε)Kh ŷ (Ŷt − ŷ)Khk
(Kt ,k)∑n

t=1 Kh ŷ (Ŷt − ŷ)Khk
(Kt ,k)

(4.2)

Where F (ε|ŷ ,h) is a cumulative density function, n is the sample size and Kh(·) is a kernel function with
bandwidth h. Note that for the estimation of the model the forecast horizon index k is excluded, which is
because the index is included itself as an independent variable. The kernel used for Ŷt and Et is a Gaussian
and the kernel for Kt is the Aitchison-Aitken kernel. The former is also applied successfully in the studies by
Jeon and Taylor, while the second is a kernel function specifically designed for discrete variables [2, 29, 56].
The inclusion of the forecast horizon as a discrete variable is an alternative to the binning of data applied by
Jeon and Taylor [29, 56]. The former allows for information sharing between time horizons, while binning
leads to a strong reduction in data points, which hurts estimation of multidimensional densities, as data



38 4. Framework for Stochastic Process Modeling

sparsity is an important issue with kernel density estimation. This added dimension from using the forecast
horizon as a conditional variable can be seen as applying information sharing between different forecast
horizons. For wind power this added dimension does not hurt performance, mostly due to the fact that wind
power is a process that has two bounds, 0 and P max . However, in the case of electricity price processes, there
are no such bounds, which makes it difficult to achieve reliable predictive densities, as data sparsity is much
more an issue with these processes. Hence, for these processes conditional variable Kt may be excluded,
resulting in the following model:

F (ε|ŷ) =
∑n

t=1 Khε (Et −ε)Kh ŷ (Ŷt − ŷ)∑n
t=1 Kh ŷ (Ŷt − ŷ)

(4.3)

The kernel bandwidth was determined by Silverman’s rule of thumb, which is common for multivariate
kernel density estimation and is given by:

√
hi =

(
4

d +2

) 1
d+4

n−1/(d+4)σi (4.4)

Where σi is the standard deviation of the i t variable, d is the number of variables, and n is the number of
data points.

An alternative to this rule of thumb is to apply cross validation. Using this method, the model is fit to part
of the data, after which a metric such as maximum likelihood is computed to determine how well this model
fits the remaining data. Such an empirical approach to the selection of model parameters is very flexible, and
can be used independent from the underlying distribution of the data, whereas Silverman’s rule assumes the
variables to be Gaussian. However, using Silverman’s rule of thumb, computational gains are very significant
while performance is satisfactory. Even in the case where the data are not Gaussian, use of Silverman’s rule
often results in an accurate representation of the distribution.

4.2.2. Constructing a density forecast
A full description of future values of a stochastic process is given by a density forecast, which is expressed as
F̂t+k|t , which is issued at time t for forecast horizon t +k, conditional on all information up to time t [42].
This means that the model specified in equation 4.2 is estimated using data up to time t , after which it is used
to specify future probability density functions for given values for forecast horizon k and forecast value ŷ .
Although the model specified in equation 4.2 can provide a continuous density forecast, for visualization and
validation purposes it is common to construct a density forecast as a set of discrete quantiles. To construct
the density forecast, the cumulative distribution function F̂t+k|t is used. This is directly provided by the CKD
model as the kernel functions are cumulative density functions. A quantile with nominal level α is specified
as follows:

P [yt+k ≤ q̂ (α)
t+k|t ] =α (4.5)

Which means that the probability of yt+k being less or equal than quantile q̂ (α)
t+k|t is α. In order to extract

quantiles using the cumulative distribution function F̂t+k|t , the following transformation needs to be carried
out:

q̂ (α)
t+k|t = F̂−1

t+k|t (α) (4.6)

Where F̂−1
t+k|t is the inverse of the cumulative density function or quantile function, and α is the quantile

to be extracted, which in this study range from 0.05 to 0.95 with a 0.05 increment. Using a Beta distribution
with α= 1.5 and β= 5, this transformation is visualized in figure 4.2.

To be able to apply the function, the quantile function F̂−1
t+k|t needs to be known, which is not the case with

the non-parametric CKD model. Hence, this quantile function needs to be approximated. A typical numerical
method to do so is by using a root-finding algorithm, which functions based on the following principle:

F−1(α) = inf{x ∈R :α≤ F (x)} (4.7)

Where the quantile function F−1(·) returns a threshold value for a quantile 0 <α< 1 below which random
draws from the distribution function would fall an α fraction of the time.
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Figure 4.2: Extraction of quantiles for α=0.4,0.6 and 0.8 for a Beta(1.5,5) distribution.

Unfortunately, this method is computationally expensive, especially when applying such a method to
the amount of data needed for the construction of scenarios. For instance, in the scenario generation process
described later, for each timestep N scenarios are generated, meaning that the method needs to be applied N
times, where N ≥ 1000. Hence, an alternative method is applied, which is based on interpolation and can be
evaluated much faster compared to the root finding method. This method approximates F̂−1

t+k|t by sampling

from F̂t+k|t on a specific interval at a specific resolution. The accuracy of this method is dependent on the
resolution of the sampling, which is why a comparison between several different resolutions is made, where
the resolution is varied by taking three different fractions of the Silverman’s rule of thumb kernel bandwidth h
for a sample size of 35,040 samples from the Beta(1.5,5) distribution, which is equivalent to a year of data for
the stochastic processes involved in this study. The kernel bandwidth is used as it is a good indicator of the
scale and resolution of the distribution estimated by the CKD model. The root finding method used is Brent’s
method, which finds the root of the function f on the sign changing interval [a , b] and claims guaranteed
convergence within the interval, as long as the function can be evaluated [7]. The comparison is depicted
in figure 4.3,which shows that varying resolutions yield varying accuracy of the approximation. Although no
strict rule exists for the accuracy, given the increase in accuracy between the three resolutions, the resolution
chosen is h/4. Although still some accuracy is lost, the final accuracy is deemed acceptable, as computational
intensity increases strongly with further increases in resolution.
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Figure 4.3: a: Cumulative distribution function for Beta(1.5,5).
b: Approximation of quantile function for Beta(1.5,5).

c: Absolute difference between quantiles from root finding and interpolation for varying resolutions
as a fraction of the Silverman’s rule of thumb kernel bandwidth h. The quantiles range from 0.05 to

0.95 in steps of 0.05.

4.3. Scenario generation
The scenarios used as input to the stochastic optimization models should not only honor the previously de-
termined probabilistic description of the stochastic processes, but also honor the temporal correlation be-
tween time steps. This temporal correlation means that if for instance a forecast error is high at time t +k,
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there is a certain likelihood that it will be high at time t +k +1. If this correlation is weak, then forecast errors
for future times can be seen as relatively independent from previous forecast errors. However, in the cases
of wind power and electricity prices, this correlation is quite high, making it an important characteristic of
the stochastic process. The most basic scenarios are in the form of time trajectories. However, one can in-
corporate dependencies with other stochastic processes as well, e.g. wave-wind, wind-solar or other related
trajectories. The function which generates these trajectories is the multivariate random variable Zt [42]:

Zt = {Yt+k ,k = 1, ...,K } (4.8)

This means that Zt is a random variable which combines the random variable Yt at different lead times k
and specifies their interdependence structure. J time trajectories can then be issued using model Zt , at time
t for a set of K successive lead times:

ẑ( j ) = [ŷ ( j )
t+1|t , ŷ ( j )

t+2|t , ..., ŷ ( j )
t+K |t ]> (4.9)

This joint predictive density F̂Zt can be obtained by combining marginal predictive densities with an in-
terdependence structure, where the marginal predictive density is a density for given conditional values of
Kt and Ŷt for the CKD model specified in equation 4.2, or for a given conditional value of Ŷt for the CKD
model specified in equation 4.3. This combining of the marginal densities can be achieved using a Copula
model, where a set of marginal predictive density functions {F̂t+k|t } for time horizons K are coupled through
the Copula model:

F̂Zt =
{
{F̂t+k|t },C (δk)

}
(4.10)

Where the Copula model C (δk) provides the interdependence between the different lead times k. This
function permits us to define the joint cumulative distribution function F̂Zt on the condition that each marginal
density is calibrated. The specific Copula model applied here is a Gaussian copula, which is the simplest and
most convenient one. This model consists of three steps. First, it consists of transforming each variable to
uniform space by applying the marginal density functions Ft+k|t to the observations of the dependent vari-
able εt+k|t . Second, the uniform random variable Ut+k|t is transformed to standard Gaussian using the in-
verse cumulative density function φ−1 of a standard Gaussian distribution, which is analytically known. This
results in the Copula transformation:

Ut+k|t = Ft+k|t (Yt+k )~U [0,1] (4.11)

Nt+k|t =φ−1(Ut+k|t )~N (0,1) (4.12)

This transformation is visualized in figure 4.4. This shows how using a marginal cumulative distribution
function, here represented by a Beta(1.5,5) distribution, can be used to transform observations to their stan-
dard Gaussian counterpart. This can be thought of as the removal of the influence of the forecast horizon k
and the forecast ŷ from the error.
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Figure 4.4: a: Cumulative distribution function of Beta(1.5,5).
b: Cumulative distribution function of N(0,1).

The green lines visualize the transformation in equation 4.11
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Next, the Gaussian Copula model summarizes the entire interdependence structure in a covariance struc-
ture, which is used to define a multivariate normal distribution. This is because a multivariate normal distri-
bution is completely defined by a mean vector and a symmetric covariance matrix. This can also be referred
to as a correlation structure, as the variables Yt+k are transformed to Nt+k|t , which are standard Gaussian
variables, which means they all have unit variance. The fact that all variables Nt+k|t are standard Gaussian
also means that the mean vector of the multivariate normal distribution is a zero vector. This means that the
last step in defining the Copula model F̂Zt is defining the covariance matrix Σ, which describes the relation-
ship between each vector Nt+k|t :

C (δk) =Σ(Nt+i |t , Nt+ j |t ), i , j ∈ {1,2, ...,K } (4.13)

The determination of such a covariance matrix is visualized in figure 4.5. This shows how Nt+k|t variables
can be related to each other through a covariance structure. On the diagonal, the variance is determined of
each standard Gaussian variable, while the other values in the matrix quantify the covariance each standard
Gaussian variable has with each other standard Gaussian variable. The figure also shows how the covariance
weakens as the difference in forecast horizon increases.
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Figure 4.5: Scatter plots of samples of Nt+k|t for k ∈ 1,2,3,4. The plots show how the covariance
between each variable is related to each other variable.
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This correlation structure can easily be extended to cover multiple Gaussian variables, such as different
types of renewable generation and different locations, capturing space-time and other dependencies. More-
over, when the dimension is low, this can be done through a single correlation matrix Σ = ρi j , where each
element ρi j may inform of interdependence between locations, times and different source of generation.
However, as the number of dimensions increases, a more sophisticated covariance model may need to be
employed. However, in this study 96 different forecast horizons are used, where the 96x96 matrix consisting
of 9126 correlations is computationally insignificant.

Based on the Copula model defined in equation 4.10, scenarios of the stochastic process can be generated.
This is done by first defining a multivariate Gaussian random variable Z, with mean vector 0 and covariance
matrix Σ defined in equation 4.13:

Z ~N (0,Σ) (4.14)

This variable Z can then be used to generate J standard normal trajectories, resulting in the set {z j , j =
1, ..., J }. Using the standard Gaussian cumulative distribution function φ and the marginal inverse predic-
tive cumulative density functions F̂−1

t+k|t . For every lead time the multivariate Gaussian trajectories can be
transformed into trajectories of the dependent variable εt+k|t through the following transformation:

ẑ( j ) = F̂−1
t+k|t (φ(z( j ))), j = 1, ..., J (4.15)

Where ẑ( j ) is a single scenario from Copula model F̂Zt , as defined in equation 4.10. This proces is visual-
ized in figure 4.6, which shows how a single trajectory from a multivariate normal distribution is transformed
using marginal densities. The densities shown in the figure are 96 Beta distribution where α varies between
0.5 and 1.5 and β is 5. This transformation needs to be applied to all J trajectories using k approximations of
the inverse marginal cumulative density function F̂−1

t+k|t .
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Figure 4.6: a: Gaussian trajectory generated using Z from equation 4.14
b: Transformed trajectory.

c: Corresponding standard Gaussian cumulative density function φ.
d: 96 Beta density functions, representing the Marginal density functions. α is varied between 0.5

and 1.5, β= 5
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4.4. Scenario Tree Construction
After scenarios are constructed for all stochastic processes of interest, another step is needed before the sce-
narios can be used in stochastic optimization. Stochastic processes as input to stochastic optimization are
conventionally modeled through a symmetric scenario tree, where each scenario of each process is combined
with each scenario of each other process. For S processes with J scenarios, this results in J S tree scenarios.
Conventionally, the first step consists of scenario reduction, where the number of scenarios is reduced to a
number that can be optimized in an appropriate execution time, addressing the problem of tractability [43].
After this reduction, the remaining scenarios are structured in a scenario tree. These two steps are discussed
in the next section. The section after that presents an alternative method, which preserves the relationships
between the four processes using Copula modeling, which does not require scenario reduction or the con-
struction of a symmetric scenario tree.

4.4.1. Scenario Reduction and Tree Construction
In stochastic programming problems, it is possible to reduce the original scenario set to a reduced set, which
is close to the original set in terms of a probability distance. Chapter 3 of ’Decision Making Under Uncertainty
in Electricity Markets’ [10] states that when two sets of scenarios are sufficiently close in terms of probability
distance, the optimal value of the solution to the problem from the reduced set is close to the value of the one
from the original set. For more information on this relationship and the notion of probability distance, please
see [12]. According to Conejo et al. (2010) [10], the most common probability distance used in stochastic
programming is the Kantorovich distance. Here a reduced version of the Kantorovich distance is used, which
is determined as:

DK (Q,Q ′) = ∑
ω∈Ω\ΩS

πω min
ω′∈ΩS

v(ω,ω′) (4.16)

Where DK (·) is the Kantorovich distance, v is a cost function, Q and Q ′ are two probability distributions,
πω represents the probability of scenarioω in setΩ, according to the probability distribution Q. The summa-
tion in equation 4.16 is performed over the relative complement of setΩS with respect to setΩ, also referred
to as the difference of sets Ω and ΩS , which is expressed as Ω\ΩS . This is the set of elements in Ω but not in
ΩS . Regarding the Kantorovich distance as defined here, strictly speaking, it can only be called Kantorovich
distance if the cost function v is given by a mathematical norm, in this case the l 1 norm. This means that the
cost function is specified as:

v(ω,ω′) = ‖ω−ω′‖1 (4.17)

Where ‖ ·‖1 stands for the l1 norm, which is computed as:

‖ω−ω′‖1 =
n∑

i=1
|ωi −ω′

i | (4.18)

Where n is the number of elements in vectorω. Applying such a metric can be done in several ways, most
commonly by applying backward reduction or forward selection, where the former means that the reduced
set is built by eliminating scenarios, whereas the latter means that the reduced set is built by selecting sce-
narios. Due to the amount of variables involved in electricity market problems solved through stochastic
programming such as the one here, a strong reduction is needed, in which case forward selection exhibits
better performance according to Conejo et al. (2010) [10], which is why the remainder of this section focuses
on this heuristic.

This heuristic starts with an empty set,ΩS , where for each pair of scenarios the cost function v(·) is com-
puted, resulting in a symmetric matrix with a zero diagonal, V. Then a starting scenario is chosen, which is
the scenario from which the reduced subsetΩS is built. The remaining set is depicted byΩJ . The starting sce-
nario is the scenario which is most equidistant from all other scenarios, in other words: The average scenario.
This first step is mathematically obtained for iteration i = 1 through evaluating:

ωi = arg{min
ω′∈Ω

∑
ω∈Ω

πωv(ω,ω′)} (4.19)

This means that the selected scenario has the smallest summed l1 norm with all other scenarios as all
scenarios are equiprobable, hence the most equidistant in probability distance. After selecting the first sce-
nario, the heuristic continues by iterating over the cost matrix V containing all values of function v , when for
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each candidate scenario ω the corresponding row of the cost matrix is updated, where each existing value
of v(ω,ω′) is compared with its cost to the scenario chosen in the previous iteration, depicted by ω′′, thus
v(ω,ω′′), resulting in matrix V′. This means that for each value in the cost matrix the following function is
evaluated for the row corresponding to scenario ω:

v(ω,ω′) = min{v(ω,ω′), v(ω,ω′′),∀ω,ω′ ∈ΩJ (4.20)

Then the following equation is evaluated for all columns of the remaining scenarios of setΩJ :

ωi = arg{ min
ω′∈ΩJ

∑
ω∈ΩJ

πωv(ω,ω′)} (4.21)

This means that the scenario is chosen which minimizes the Kantorovich distance between the reduced
and original set. The reason this technique is a heuristic, is that there is no guarantee that the reduced set
is the closest possible set in terms of Kantorovich distance. Also, there is no guarantee that the reduced set
gives a good approximation to the optimal value of the optimization problem. The reason this technique is
applied is because empirical cases in literature report good performance in practice [13, 23, 44].

This iteration of evaluating equations 4.20 and 4.21 is continued for J iterations. After the orginal set is
reduced, the probabilities of the remaining scenarios in setΩJ need to be transferred to the reduced set. This
is accomplished by iterating over the original cost matrix V and for each remaining scenario’s row choosing
the chosen scenario’s column where the cost is lowest. Doing so for all scenarios can be expressed as:

πω =πω+
∑

ω′∈J (ω)

π′
ω,∀ω ∈ΩS ,whereJ (ω) = {ω′ ∈ΩJ |ω= j (ω′)}, j (ω′) ∈ arg min

ω′′∈ΩS

v(ω′′,ω′) (4.22)

After scenario reduction, according to convention the scenarios need to be combined in a scenario tree
[43]. This means they are arranged in a symmetric tree. The figure below illustrates the way this is done:
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Figure 4.7: a: Scenario tree
b: Zoomed in view of the scenario tree

This shows that for each variable, each scenario is coupled with each scenario of each other variables
to form a coupled tree scenario. As each scenario of each variable has a specific probability, these proba-
bilities are recomputed for each scenario in the scenario tree as the product of the three variable scenarios’
probabilities in that specific tree scenario. A downside to this way of tree construction is that the underlying
assumption is that every combination of the variables is equally probable, where the probability of the tree
scenario only says something about the probability of the individual variable scenarios in that tree scenario,
not on their combination, thus assuming independence between the processes. Furthermore, as the number
of variables dictates the required reduction in order to maintain tractability, much information can get lost
from reducing the set. This means that the number of scenarios becomes too small to guarantee a stable
solution to the optimization problem. For instance, for the linear version of the optimization model, it was
found that the solution to the optimization stabilizes when the set is reduced to 50 scenarios per variable.
This was found through experimentally determining the size where the solution from the optimization sta-
bilizes [42]. Lastly, if one would want to incorporate new variables in the optimization model this problem
increases further as the number of scenarios in a tree increases exponentially using this technique. For these
reasons the next section discusses a method that aims to overcome these problems through the use of an
extended Copula model.
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4.4.2. Copula Coupled Scenario Tree
Given the reduction of information in the scenario tree, both on individual variables as on their relationship,
as independence between processes is assumed, a new method for tree construction is introduced. The as-
sumption of independence seems incorrect as all stochastic processes in the optimization model are coupled
through the electricity market. As explained in section 4.2.1, an effective method to couple related processes
is through the use of Copula modelling. Chapter 2 of ’Integrating Renewables in Electricity Markets’ explains
how this coupling is of importance when generating scenarios for multiple sources of interrelated renewable
generation, like wind and wave installations, but also when generating scenarios for generation units that
have a spatial correlation, like neighbouring wind farms [42]. However, this technique is not limited to these
processes. They can also be used to couple other related processes and make sure that their interdependence
is respected when generating scenarios. As explained in section 4.2.1, when the dimension of these interde-
pendent processes is low, this can be done through a single correlation matrix. As the price-maker version of
the optimization model contains 4 stochastic parameters, of which 3 are of an quarterhourly resolution and
one is of an hourly resolution, the resulting matrix is of size (96+96+96+24)2 = 97,344, which is computa-
tionally inexpensive to compute. This means the multivariate random variable Zt is reformulated to include
S added random variables for each forecast horizon k:

Zt = {Ys,t+k , s = 1, ...,S,k = 1, ...,K } (4.23)

Where index s indicates the stochastic process. For simplicity, all stochastic processes are assumed to
have the same number of forecast horizons k. This leads to the following reformulation of the Copula model
from equation 4.10:

F̂Zs,t =
{
{F̂s,t+k|t },C (δk,δs)

}
(4.24)

This means that the extended Copula model only differs from the previously formulated model through
the inclusion of all marginal density functions F̂s,t+k|t from all stochastic process s for all forecast horizon k
and through the extension of the covariance matrix Σ to include all stochastic processes s:

C (δk,δs) =Σ(Na,t+i |t , Nb,t+ j |t ), for a,b ∈ {1,2, ...,S}, for i , j ∈ {1,2, ...,K } (4.25)

Where Ns , t + i |k are standard Gaussian variables, obtained through the Copula transformation in equa-
tion 4.10. The covariance matrix can then be used to generate J trajectories using Gaussian random variable
Z , as defined in equation 4.14. The resulting set of Gaussian trajectories {z( j ), j = 1, ..., J } can then be trans-
formed through the following transformation:

ẑ( j ) = F̂−1
s,t+k|t (φ(z( j ))), j = 1, ..., J (4.26)

This results in J trajectories where both time dependence as well as dependence between the processes
are respected. As J equiprobable scenarios are generated simultaneously with a prespecified ordering through
the Copula model, reduction should not be applied, as this would remove the explicit dependencies present
in the scenario set. This means no further steps are required, so the scenario set can directly be used as input
to the stochastic optimization.





5
Framework for Evaluation of Stochastic

Process Modeling

As the solution provided by the stochastic optimization is strongly contingent on the quality of the scenario
set, this chapter introduces a framework which can be used to evaluate the inputs, the modeling process
and the outputs from the modeling framework introduced in chapter 4. This evaluation framework allows
the modeller to make informed decisions on improvements to each stage of the modeling process, with the
aim to improve the quality of the modelling. The first section introduces the framework. The second section
discusses the quality of point forecasts, which form the inputs to the modelling process. The third section
discusses how to assess the reliability of each modeling step, while the final section discusses how to assess
the skill of each product from the modeling steps. The tools used for computation in this chapter are the
Numpy and Scipy libraries in Python.

5.1. High Level Overview

5.3 Probabilistic Model

5.4 Probabilistic Model

Dependency Model

Probability Integral Transform

Net Quantile Score

Continuous Ranked Probability Score

Energy Score / Price Score

Discrepancy Index

Reliability
Skill

Dependency Model

Minimum Spanning Tree Rank Histogram

5.2 Point Forecasts

Mean Absolute Error

Root Mean Square Error

Bias

Input Q
uality

Figure 5.1: Framework for Evaluation of Stochastic Process Modeling. Numbers on the left show
which section of chapter 5 discusses the steps. Each step is shown as a rounded rectangle. Where a
step is inside a larger rectangle, the model involved is shown in bold. To the right of each step the

aspect of evaluation is indicated.

As the previous chapter discussed how to construct scenarios from point forecasts, the first step in eval-
uating this process starts with evaluating point forecasts. This is a first step which can provide insight in
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the statistical properties of each forecast, which can both be used to improve point forecasts and improve
the stochastic process modeling. The second step in evaluating the modeling process is the evaluation of its
reliability. This needs to be done for each model involved in the process. After the models are found to be
reliable, the next step is the assessment of their skill. This gives the modeler the tools to make choices with
regards to modeling, as well as which inputs to use for the modeling.

5.2. Point Forecast Statistical Performance
Regarding the statistical evaluation of point forecasts, several research projects have been carried out. One
is project ANEMOS, which is a bench-marking exercise carried out in the period 2003-2004, with the aim
to analyze the performance of state-of-the-art wind power prediction systems [32]. The main metric used
in this study to rank forecasts is the Mean Absolute Error (MAE), which was evaluated as a function of the
forecast horizon, enabling evaluation for each time step within the forecast horizon. The second project
is the WIRE benchmark, which was carried out in 2015 with the aim to develop a bench-marking platform
[54]. Here the main ranking criterion used is also the MAE. Chapter two of the book ’Integrating Renewables
in Electricity Markets’ presents additional metrics that can be used for the analysis of point forecasts, most
notably the Bias and the Root Mean Square Error (RMSE) [42]. As the focus of the analysis in this study lies
on performance within the day-ahead window, forecasts are only judged on their performance within this
window, even though they are often issued before this window, typically around 9:00AM in the morning before
the day-ahead window. This is an important choice, as performance outside this window is not relevant for
the optimization. The MAE is specified as follows:

MAE(k) = 1

T

T∑
t=1

|εt+k|t | (5.1)

Which means that for each forecast horizon k, the MAE is determined as the average of the absolute
forecast errors over an evaluation set of length T . For instance, for an evaluation set of length 1 year, for
each lead time k within the day ahead window, the absolute error is determined, summed and divided by the
number of values.

Next is the Root Mean Square Error (RMSE), expressed as:

RMSE(k) =
√√√√ 1

T

T∑
t=1

(εt+k|t )2 (5.2)

Which is defined as the square root of the sum of squared errors over an evaluation set of length T for
each forecast horizon k. The RMSE gives higher weight to larger errors, which means it provides insight in
the spread of forecast errors, while it is expressed in the original unit.

Next is the bias, which is expressed as:

bias(k) = 1

T

T∑
t=1

εt+k|t (5.3)

Which is defined as the mean of all errors over the evaluation period of length T for each forecast horizon
k. This is an important metric, as it provides insight into the existence of a structural bias. Furthermore, for
statistical modelling, it is important that in-sample and out-of-sample data are consistent in their statistical
properties, especially the bias, as it can introduce a structural error in subsequent transformations. While this
also holds for the previous two metrics, it is especially important for the bias. Insight in how these measures
evolve over time can thus also help guide modeling choices.

5.3. Reliability of Stochastic Process Modelling
The measure of the performance of a transformed point forecast (to probabilistic form) can be divided into
two categories, one related to the probabilistic reliability of the method and one related to the skill of the
probabilistic forecast [50]. The former relates to how well the method works, whereas the latter relates to how
well the transformed forecast performs overall. The first category is important, as high reliability ensures
that the probabilistic forecast is probabilistically calibrated, which is required for preventing sub-optimality
when used in optimization. Regarding the second category, high skill means the predictive interval is rela-
tively narrow. This means the interval is more informative. Pinson et al. (2007) [50] point out that reliability
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should be the primary requirement of probabilistic forecasts and should be evaluated first. Hence this section
firstly discusses how the reliability of predictive densities are determined and secondly how the reliability of
scenario forecasts are determined.

5.3.1. Reliability of Predictive Densities
Methods that evaluate reliability of predictive densities are the Probability Integral Transform (PIT), and reli-
ability diagram, which is based on the discrepancy index, which is defined later in this section [45, 50, 58].

Probabilistic calibration or reliability is said to be met if the predictive density F̂t+k|t meets the following
requirement:

F̂t+k|t (Yt+k )~U [0,1] (5.4)

Which means that application of the predictive cumulative density function on realizations of the stochas-
tic process it describes should result in uniformly distributed data. This requirement is evaluated through a
Probability Integral Transform (PIT), which is typically evaluated using a histogram as depicted below in fig-
ure 5.2. The reason the predictive density is applied, which is estimated on data preceding the observation, is
because the interest of the modeler should lie on how well the model captures the stochastic characteristics
of out-of-sample data, not how well the model describes in-sample data. Ideally the PIT should look like the
one in figure 5.2, which shows a sample of size 180∗24∗4 = 17,280 drawn from a standard distribution. The
sample has the same number of data points as each stochastic variable in the out-of-sample data set.
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Figure 5.2: Histogram of a sample drawn from a standard uniform distribution.

Although the PIT is a good way of determining overall reliability of a model, it is not easily interpreted.
This means it is not easy to use as a tool for identifying where things go wrong. For this purpose, a different
metric is introduced: the indicator variable ξαt ,k [42]:

ξαt ,k = 1(yt+k < q̂ (α)
t+k|t ) =

{
1, if yt+k < q̂ (α)

t+k|t
0, otherwise

(5.5)

Where q̂ (α)
t+k|t is a specific quantile, as introduced in section 4.2.2, and yt+k is the observation.

This definition means that ξαt ,k is a binary variable, which equates to 1 if the quantile actually covers the
measurement or 0 if it does not. This variable allows for the determination of the empirical level α̂k of quantile
α by calculating the mean of the indicator value for a given period:

α̂k = 1

T

T∑
t=1

ξαt ,k (5.6)

This allows the calculation of the deviation of each quantile from perfect calibration:

∆qm =αm − α̂αm
k (5.7)
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The overall deviation from perfect calibration can then be measures by the discrepancy index ∆|q | for m
quantiles:

∆|q | = 1

m

m∑
i=1

|αi − α̂αi
k | (5.8)

Where αi is between 0 and 1 an indicates what level α̂αi
k should be. These values are calculated and the

empirical versus nominal levels can then be displayed through a reliability diagram, an example of which is
shown below in figure 5.3.
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Figure 5.3: Reliability diagram for quantiles of a sample drawn from a standard uniform distribution.

Figure 5.3 displays the empirical quantiles of the same sample used in figure, compared to perfect quan-
tiles for a standard uniform distribution 5.2. Although these are point quantiles, which are determined once
for the entire sample, instead of the dynamic quantiles from the predictive densities, where the quantiles con-
sist of one point for each time step in the dataset, it provides the opportunity to illustrate its interpretation:
Most quantiles are too high, which means that too many datapoints are below the quantiles. Furthermore,
there is a higher deviation for middle quantiles compared to lower and higher quantiles. This indicates that
the density is skewed towards higher values.

5.3.2. Reliability of Dependency Models
Next, the reliability of the added modeling step converting densities into scenarios needs to be evaluated.
This is done based on the concept of ranks. Gombos (2007) and Gneiting et al. (2008) propose the use of rank
histograms for the evaluation of joint probabilities of multiple variables [18, 19]. In the case of the scenarios in
this study, the number of variables is 96, as the multivariate model consists of 96 forecast horizons. To judge
the calibration of the model, a Minimum Spanning Tree Rank Historgram (MST RH) is used, as introduced by
Wilks (2014) [61]. This tool consists of two concepts, the first is the minimum spanning tree. The trees in this
context is a vector representing a scenario. To determine the lengths of the trees, the Euclidian distance (l2

norm) is used, which is the square root of the sum of the squared values of a vector:

‖x‖2 =
√

n∑
i=1

x2
i (5.9)

This norm is determined for each scenario ẑ( j )
t ( j = 1, ..., J ) and observation zt , where each of these vectors

contain K elements, where K stands for the forecast horizon. This results in two sets of l2 norms, those of the
scenarios and those of the observations. The next concept in the MST RH is that of the rank histogram.

A rank histogram for the two sets of norms is a histogram where the bins are determined in such a way that
the resulting histogram for a sample of observations is perfectly uniform, after which the spread of a sample
of ensembles can be evaluated against the spread of the observations. In this case this means the sample of
l2 norms of observation vectors {zt , t = 1, ...,T } are used to determine the bins for the rank histogram. This
means that the bins are determined based on the empirical quantiles of the observed norms, which are found
by evaluating equation 4.7. The rank histogram is then made by evaluating the counts of the ensemble within
the previously determined bins, where the ensemble in this case consists of the sample of l2 norms of scenario

vectors ẑ( j )
t ( j = 1, ..., J ). This concept is visualized in figure 5.4.
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Figure 5.4: a: Histogram of 180 samples from a Beta(1.5,5) distribution, representing observations.
b: Rank Histogram of observed samples.

c: Histogram of 180,000 samples from a Beta(0.5,5) distribution, representing scenarios.
d: Rank Histogram of scenarios.

Figure 5.4a and 5.4c show two distributions, which are distinctly different. In the application here figure
5.4a shows the lengths of observations of a stochastic process, while figure 5.4c shows the lengths of scenar-
ios generated by a stochastic model. Figure 5.4b shows the rank histogram determined by the observation
sample shown in figure 5.4a, which shows a perfect uniform distribution, as each bin is determined by the
corresponding empirical quantiles for the distribution in figure 5.4a. Figure 5.4d shows the counts of the dis-
tribution in figure 5.4c within the bins of the rank histogram. This can then be interpreted as follows: There is
a clear downward trend in the rank histogram, which means that on average the scenarios have a lower value
for their l2 norm. This means that on average the scenarios are shorter than the observations, which means
that the dependency model overestimates the covariance.

After being confirmed reliable, comparative assessment should involve sharpness, which can be evalu-
ated through skill scores.

5.4. Skill of Stochastic Process Modelling
The leading metric for skill is the continuous ranked probability score (CRPS). Another metric often used is
the negative quantile score (NQS). The difference between them is that the NQS assesses the quality of the
quantiles, which were obtained through equation 4.6, whereas the CRPS assesses the quality of the entire
probability function. Hence, the CRPS should be seen as the main ranking criterion. However, for com-
pleteness the NQS is also discussed, as some BRP’s might only have quantile forecasts available, without the
underlying predictive density that generated them.

Hence, the first measure to look at is the negative quantile-based score (NQS). This is defined as [42]:

NQS(k) = 1

T

1

m

T∑
t=1

m∑
i=1

(αi −ξ(αi )
t ,k )(yt+k − q̂ (αi )

t+k|t ) (5.10)

Where q̂ (αi )
t+k|t is a set of quantile forecasts with nominals levelsαi , i = 1, ...,m, yt+k is a set of corresponding

measurements and ξ(αi )
t ,k is defined in equation 5.5. ξ(αi )

t ,k evaluates to one if quantile i at time t ,k is above the
observations yt+k , so the term within the first set of parentheses is positive if the quantile is lower than the
indicator variable. The term within the second set of parentheses is positive if the quantile is lower than the
observation. This means that the NQS for a specific horizon is high if many quantiles are wrong, while the
extent to which they are wrong is large. This makes it a negatively oriented skill score, where 0 indicates a
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perfect quantile forecast.
The CRPS for predictive densities F̂t and the corresponding measurements yt is calculated as [42]:

CRPS = 1

T

T∑
t=1

∫
x

(F̂t (x)−H(x − yt ))2d x (5.11)

Where H is the Heaviside step function, which evaluates to 1 for x ≥ yt and 0 otherwise. The CRPS es-
timates the area between the predictive cumulative density function and the cumulative density function
of the observation, which is represented by the Heaviside function. The computation of the CRPS can be
thought of as computing the area between the predictive density function and the density function related to
the observation. This is visualized in figure 5.5.

Figure 5.5: Calculation of CRPS for Beta(1.5,5), where yt = 0.25. The red area is is the surface area
used to compute the CRPS.

The CRPS is represented in figure 5.5, where the area is indicated in red. This area increases in size when
the observation is further from the center of the density function and when the density function itself is less
steep. This means that both a good forecast is needed around which densities are constructed, but also a
sharp density in order to achieve a good CRPS score. As said, the CRPS assesses the quality of the entire
predictive density. As the number of quantiles used to calculate the NQS tends towards infinity, it holds that
CRPS=2NQS [42]. This means that if a predictive density has a smooth shape, it can be evaluated well by the
NQS. However, when a predictive density has a more complex shape, the difference between the CRPS and
NQS can become significant.

To be able to evaluate the skill of the dependency model, a multivariate version of the CRPS is proposed
by Gneiting et al. (2008) [18]. This score is referred to as the energy score (Es), which is a direct generalization
of the CRPS. The energy score is defined as follows:

For a given set of scenarios ẑ( j )
t j = 1, ..., J , issued at time t , the energy score E st is given by:

E st = 1

J

J∑
j=1

‖zt − ẑ( j )
t ‖2 − 1

2J 2

J∑
i=1

J∑
j=1

‖ẑ(i )
t − ẑ( j )

t ‖2 (5.12)

Where ‖.‖2 is the Euclidean norm (or l 2 norm), which is often used in the context of probability distance.
This score is then calculated and averaged over an evaluation set of length T ,

E s = 1

T

T∑
t=1

E st (5.13)

Similar to the CRPS, the energy score is averaged over the T forecast series of the evaluation set. This
score is minimal when the trajectories are generated using the true underlying distribution. The E s score is
negatively-oriented and it has the same unit as the unit of the trajectories. A lower score on E s means the
scenario forecast in question has higher skill. Hence it provides an evaluation tool for improving any part of
the forecasting process leading to scenario trajectories. This makes it is a valuable tool in choosing which
methods and inputs are to be used to construct the scenarios. In the context of the current study, this means
that it can also be used to directly compare different forecasts as a basis for scenarios.

As the current study not only models wind power processes, but also electricity price processes, another
metric is introduced. Although the E s was proposed for scenarios of renewable energy processes, there is no
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reason why it cannot also be applied to price processes. Hence the price score or Ps is also quantified using
equations 5.12 and 5.13.





6
Construction of Price Forecasts

Important inputs to the optimization model are the day-ahead market price λD , the balancing market prices
λ+ and λ− represented by λImb and the price-maker effect γ∆. For this study no point forecasts were available
for these price processes. Hence, the goal of this chapter is to construct point forecasts for each. Firstly,
the methodology is discussed based on the literature on forecasting electricity prices. The second section
discusses its application to λD . The third section discusses its application to λImb. The final section discusses
its application to γ∆. The tools used in this chapter are the Statsmodels, Numpy and Scipy libraries in Python
and the forecast package in R.

6.1. Methodology
Different methods exist for forecasting electricity prices, which can be classified into three groups, as ex-
plained in a study by Aggerwal, Saini and Kumar (2009) [1], which provides an overview of methods used for
this purpose. The first group is based on game theory, which includes models such as Nash equiblibrium,
Cournot model, Bertrand model and supply function equilibrium. These models focus on the modeling of
strategies of market participants in order to find an optimal solution. The second group is based on simu-
lation methods, which aim to mimic the dispatch of generators in the system, based on the physical state of
the system within its physical constraints. The third group consists of time series methods, which utilize past
behavior of price series combined with explanatory variables to forecast future prices.

Although each of these methods has its merits, achieving accurate results using the first method requires
a deep understanding of the actors and their means and motives. Although the second method can provide
detailed insights into the mechanics of the price signal, its implementation is complex and has high com-
putational cost, while it is not able to capture strategic aspects of the market. Lastly, the third group is more
straightforward in its implementation, while offering the ability to accurately capture underlying dynamics of
the market through explanatory variables. Hence, this study chooses to apply methods from the third group.

Within this third group a distinction can be made between artificial intelligence (AI) and statistical meth-
ods. The former have shown to be able to provide an accurate prediction of electricity prices, see for instance
the 2014 study by Weron or the 2009 study by Aggerwal et al., which provide an overview of different meth-
ods, including indications of their relative performance [1, 59]. Their main drawbacks are that their black-box
nature makes them hard to interpret and achieving higher performance compared to their more straightfor-
ward statistical counterparts requires considerable effort. As the scope of this study is limited and statistical
methods have a proven track record in reliably providing strong performing forecasts, focus is shifted to this
second group.

Time series methods have been widely applied in practice and contain among other methods such as
autoregressive (AR), moving average (MA), ARMA, and ARMA with exogenous regressors (ARMAX). These
method can be extended in multiple ways, including the incorporation of seasonal terms, as well as by com-
bining them with other methods. The advantage of these types of methods is the simplicity and explicitness
of their model structure and the proven accuracy of their predictions, see for instance the comparison study
by Weron (2014) [59]. Disadvantages are that these type of models require linearity, stationarity, homoscedas-
ticity and normality. The first one relates to the model terms which are restricted to modeling linear relation-
ships, the second refers to the mean of the series, which is required to be stable throughout the time series.
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The third relates to the variance of the residuals, which is also required to be stable throughout the time se-
ries. The last requirement entails that the residuals should be normally distributed. A typical method to help
stabilize series and meet these requirements is by doing an initial transformation before the models are ap-
plied. The transformation applied here is the normal inverse transformation using a univariate kernel density
model. The kernel density model is constructed as follows [36]:

F (y) =
n∑

t=1
Kh(y − yt ) (6.1)

As in section 4.2.1, the kernel bandwidth is determined by Silverman’s rule of thumb and the kernel is
Gaussian. Using the kernel density model the inverse cumulative distribution function can be determined,
as explained in section 4.2.2, after which the following transformation can be applied:

Ut = F−1(Yt )~U [0,1] (6.2)

Nt =φ−1(Ut )~N (0,1) (6.3)

After this initial transformation, a method inspired by Joónsson, Pinson, H. Nielsen, Madsen and T. Nielsen
(2013) [31] is applied, which is explained in the next section. Although this method is applied to all three se-
ries, for balancing prices other statistical models have been applied successfully, for instance through com-
bining SARIMA and Markov proccesses [46]. The study by Weron (2014) [59] contains an extensive overview
of different model combinations for different price series. However, because of their proven ability to forecast
each of these series successfully also shown in the study by Weron (2014) [59], as well as the goal to provide a
single methodology, a single method is applied to all three series.

The model is built up of two different components. Inspired by Jónsson et al. (2013) [31], first a model is
constructed that captures the influence of explanatory variables on the price process, which in their model
are the day-ahead forecast of aggregate wind and the load. Although the model used by Joónsson et al. [31]
captures these influences as nonlinear using a polynomial of order 2, the model applied here is a linear re-
gression model, which is defined as:

Nt =β0 +
n∑
0
βn xn,t +ηt (6.4)

With intercept β0, coefficients βn , explanatory variables xn,t and error term ηt , where a requirement is
that ηt ∼ N (0,σ).

Jónsson et al. did not include additional seasonal components in their model, as they state that all sea-
sonality of the price should be captured by the load forecast, which they included as an explanatory variable.
However, this study does include additional seasonal components in the regression model in the form of
dummy variables for daily seasonality, dummy variables for weekly seasonality and Fourrier series for longer
seasonal periods, which are more suitable for longer periods than dummy variables [27]. The rationality be-
hind the Fourrier series is that a series of sine and cosine terms of different frequencies can approximate any
periodic function. Hence the following Fourrier terms are included, where m is the seasonal period, which is
1 year:

x1,t = sin(
2∗π∗ t

m
) (6.5)

x2,t = cos(
2∗π∗ t

m
), (6.6)

x3,t = si n(
4∗π∗ t

m
) (6.7)

x4,t = cos(
4∗π∗ t

m
) (6.8)

The inclusion of these seasonal terms allows for identification of the influence of exogenous variables
such as the load outside of their seasonal patterns. Several exogenous variables are included in the terms of
the linear model. The variables considered are day-ahead forecasts for Belgian aggregate demand, aggregate
wind generation, aggregate solar generation and available generation capacity aggregated by fuel type. These
forecasts are all published daily on the website of Belgian Transmission System Operator (TSO) Elia. Finally,
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dummy variables for holidays and vacation periods are also considered for the regression model. To accom-
modate such influences these exogenous variables are included in the terms of the linear model. An overview
of the explanatory variables considered is given in table 6.1. The daily, weekly, yearly, vacation and holiday
variables are considered decomposition variables, which aim to decompose the original signal of seasonal
components and trends, revealing the decomposed signal which can then be explained by autocorrelation
and exogenous influences [27]. In this study decomposition is included within the regression model with the
exogenous variables.

Variable Number of variables Domain
Daily seasonality 96 ∈ {0,1}
Weekly seasonality 52 ∈ {0,1}
Yearly seasonality 4 ∈ [−1,1]
Vacation periods 1 ∈ {0,1}
Holidays 1 ∈ {0,1}
Aggregate demand forecast 1 ∈R
Aggregate wind forecast 1 ∈R
Aggregate solar forecast 1 ∈R
Generation capacity forecast 1 ∈R

Table 6.1: Explanatory variables for regression model

Although the series are stabilized by the transformation by the univariate kernel density model, the ex-
planatory variables are not transformed and contain extreme values, which in ordinary least squares regres-
sion can still lead to unstable coefficients. To deal with this issue, a robust linear model is fitted using itera-
tively reweighted least squares estimation, given a robust criterion estimator, which means that outliers are
downweighted, thus reducing their influence. The robust criterion used here is Huber’s t, which is based on
the median absolute deviation [26]. The advantage of using this metric over the standard deviation is that it
is more robust to sample size and the influence of extreme outliers.

Explanatory variables are selected using a process of backward reduction, where the selection criterion is
Akaike’s Information Criterion (AIC). Significance is not taken into account as a criterion, because statistical
significance does not indicate predictive value. Instead, cross-validation or measures such as Bayes Infor-
mation Criterion (BIC) and AIC are preferred. Here AIC was used as an indicator, which generally is a good
indicator whether or not the removal of a variable can increase predictive value, while being computationally
advantageous compared to cross-validation [27].

The second component of the model aims to explain the residuals from the previous model, represent
by the error term ηt . The error term ηt is modelled as a SARMA process, similar to the approach by Jónsson
et al., where the residuals are modelled as a seasonal AR model. Although Jónsson et al. applied robust and
adaptive estimation for the model parameters, here a simpler approach was applied: The model is estimated
daily with a moving window of one year of data, where model terms are estimated using least squares by
minimizing the conditional sum of squares function (CSS), a typical method for this class of model [59]. The
model components are chosen once in the initial analysis. An overview of possible model terms is obtained
by inspecting the autocorrelation plot and the partial autocorrelation plot. The former shows the correlation
the series has with its own lags, the latter shows the correlation series has with its lags, where the influence of
the correlation of earlier lags is removed.

After obtaining an overview of possible SARMA model configurations a gridsearch is performed to select
final model components. The criterion on which the model components are selected is the bias corrected
version of the Akaike Information Criterion (AICc). While cross-validation is generally preferred, the AICc
approaches results from using cross-validation while computational gains are significant [27]. The reason
no attention was given to statistical significance tests for choosing model orders or components is because
statistical significance is generally a poor indicator for out-of-sample performance, as removing terms or
variables from linear models based on significance often hurts out-of-sample predictive performance [27].
The equation for this model is as follows:

ηt =
p∑

i=1
φi yt−i +εt −

q∑
j=1

θ j εt− j (6.9)

With autoregressive parameters φp and moving average parameters θq . εt is assumed to be an normally
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distributed stochastic process with zero mean and variance σ2, with no significant autocorrelation. Models
6.1, 6.4 and 6.9 are estimated separately, where the kernel density model is estimated first, the robust regres-
sion model is estimated second, after which the SARMA-model is estimated on the residuals.

These models are estimated daily using a rolling window of one year of data. Each day the models are
estimated, after which one day-ahead forecast is issued at 11:15PM, including data up to 11:00PM. This is
because forecasts for aggregate wind and solar are published daily by Elia at 11:00AM. The day-ahead price
and the price-maker effect for the current day are known, while the imbalance price is only known up to
11:00PM. The final forecast is obtained by combining the univariate kernel density model from equation 6.1,
the regression model from equation 6.4 and the SARMA model from equation 6.9:

yt = F (φ−1(Nt +ηt )) (6.10)

This provides the same starting position as for the wind power process, allowing the modelling of the
forecast error in chapter 7.

6.2. The Day-Ahead Price
Data for λD is publicly available via the website of the European Network of Transmission System Operators
(ENTSO-E). The initial in-sample data used for initial estimation of the models consists of 2016 data for all
exogenous variables andλD . The out-of-sample data consists of values from January 2017 up to and including
June 2018. The original time series for the in-sample period for λD is depicted below in figure 6.1a. The first
thing to note is that although the mean seems relatively stable over time (no overall growth or decrease), the
variance seems to be quite heteroscedastic, meaning the variance varies over time. This is a problem for a
linear model, as this leads to unstable model parameters. Secondly, there are quite some extreme values,
which are also problematic for linear models as this skews results.
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Figure 6.1: a: Belgian λD time series for 2016.
b: Zoomed-in view of λD
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Shifting attention to a zoomed-in version of the original time series, visible in figure 6.1b, additional in-
formation can be obtained. Clear seasonal patterns can be observed, both daily and weekly. The weekly
pattern is best visible in the last two days in this figure, which are part of the weekend, where there is a clear
dip in the price. Also, a clear typical peak can be observed for Saturday evening. A daily pattern can also be
observed. On average during the night there is a strong decrease in price due to lower demand and relatively
high inexpensive wind output. In the morning there is a strong peak and during the day the price levels off
only to increase again for the evening peak. This midday leveling off is among other things a combination
of inexpensive solar output rising, along with the effect of many people residing together at work, reducing
household demand. From these initial observations it seems reasonable to hypothesize that seasonality as
well as exogenous variables like aggregate demand and aggregate intermittent renewable output may have
an impact on the price.

The first modeling step is to carry out an initial transformation on the data. Looking at the distribution
of the values in figure 6.2a, several observations can be made. Firstly, there seem to be long thick tails and
signficant outliers, consistent with the series in figure 6.1. Secondly, although not a strict condition for a linear
model, the distribution seems skewed. Application of the normal transformation using univariate kernel
density estimation corrects for these, as visible in the transformed distribution in figure 6.2b.
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Figure 6.3: a: Residuals from robust regression for λD

b: Autocorrelation plot residuals
c: Partial autocorrelation plot residuals

The next modeling step is fitting the robust regression model, as explained in the methodology section.
The coefficients for the variables can be found in appendix A.1. This table shows that some variables are not
significant. However, as focus is on the predictive quality of the model, backward reduction based on AIC
is applied. This heuristic removed three hourly dummy variables. Next, the SARMA model is specified and
fitted.

Looking at the series itself in figure 6.3a, there is clearly some structure remaining, which is partly ex-
plained by the autocorrelation and partial autocorrelation of the residuals. Starting with the autocorrelation
in figure 6.3b, there is a lot of signficant autocorrelation present which tails off during the first day, after which
there is a strong peak at the 24-hour mark. Furthermore, many peaks can be observed at every multitude of
the 24-hour lag. This suggests either a SARMA or an AR model. Moving to the partial autocorrelation func-
tion, depicted in figure 6.3c, a significant peak can be observed at lag 1 and less so around the 24-hour lag.
Furthermore, there seem to be multiple significant lags around the 24 hour lag. These observations com-
bined imply at least one AR component combined with at least one seasonal AR and MA component. To
select the final model components a gridsearch is carried out, choosing a model by adjusted AIC (AICc). This
search provided a SARMA model with specification (3,0,1)(1,0,1)24, meaning 3 AR, 1 MA, 1 seasonal AR and
1 seasonal MA component are included in the model.

An example of a forecast is shown in figure 6.4. This figure shows how each step of the model adds pre-
dictive ability to the forecast. Firstly, the partial regression model, which only contains the decomposition
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variables, already captures much of the price behavior. Secondly, the complete robust regression model pro-
vides additional predictive ability by including the influence of explanatory variables. Thirdly, much remain-
ing structure is captured by the SARMA model, which further increases the predictive ability. Although these
observations are made for this single day, the specific performance improvements also hold for the whole
out-of-sample dataset.
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Figure 6.4: Forecast of λD for 2018-01-02. The partial regression is a robust regression model using
only the decomposition variables. Complete regression includes all variables. Complete model

includes the SARMA model.

6.3. The Imbalance Price
As explained in section 3.1 the imbalance price is considered a single price as λ+ and λ− hardly ever differ
in the Belgian market. Hence the imbalance price without penalty α is chosen to continue the analysis with.
As α is never applied to λ+ in the train or test sample, λ+ is chosen to represent the imbalance price in this
study.

A second choice regarding the imbalance price relates to λD . If a market player participates on the day-
ahead market and is then asked to provide positive regulation volume, it makes sense that this player would
need to be payed a price that is higher than the price it received on the day-ahead price, as it would have
offered price quantity pairs according to the marginal prices in his portfolio. In other words: Resources that
are left after settling the day-ahead market are more expensive. Thus, if there is a postive NRV, λ+ would
be higher than λD and vice-versa. Furthermore, when more expensive resources are activated through the
settlement of the day-ahead market, downward regulation bids would require a higher price for not having
to generate. Because of this hypothesized shift in the imbalance price by the day-ahead price, the difference
price λ∆ is defined as:

λ∆ =λ+−λD (6.11)

This difference price is chosen over directly modelling λ+, because much of the reserve generation is
contracted after the day-ahead market is closed, indicating a strong dependency of λ∆ on λD . Data for the
imbalance price for Belgium is publicly available through the website of the Belgian Transmission Systems
Operator (TSO) Elia. Next, the predictive model is specified for λ∆. Again, the in-sample data consists of
2016 data for all explanatory variables and λ∆. The test sample consists of values from January 2017 up to
and including June 2018. The original time series for the training period for λ∆ is depicted in figure 6.5a. The
first thing to note is that although the mean seems relatively stable over time, the variance seems to be quite
heteroscedastic. This is a problem for a linear model, as this leads to unstable model parameters. Secondly,
there are quite some extreme values, which are also problematic for linear models as this skews results.

Shifting attention to a zoomed-in version of the original time series, visible in figure 6.5b, additional in-
formation can be obtained. Unlike with λD , no clear seasonal patterns can be observed, daily nor weekly.
However, this does not mean no seasonal pattern exists. For instance, as there are multiple ramps in demand,
most notably during the morning and evening, there is often a distinct saw-tooth pattern in the imbalance
price. This is caused by the difference in resolution between the day-ahead market and the balancing market,
which causes generation profiles of BRPs to be balanced at an hourly resolution but not at a quarter hourly
resolution. An example of this effect is shown in figure 6.6a: As electricity is bought to cover demand at an
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Figure 6.5: a: Belgian λ∆ time series for 2016. b: Zoomed-in view of λ∆.

hourly resolution, due to the upward ramp the market is collectively long during the start of each hour, while
the market is collectively short near the end of each hour, which leads to a saw-tooth pattern in the system
imbalance, which leads to an opposing NRV and a saw-tooth pattern in the imbalance price, which is shown
in figure 6.6b.
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Figure 6.6: Illustration of saw-tooth patterns in the balancing market for 2018-01-03.
a: System Imbalance (SI) and Net Regulation Volume (NRV).

B: λ+.

Figure 6.6a clearly shows a repeating hourly pattern. Such seasonality can be captured by the robust re-
gression model. Furthermore, although visually not much else can be concluded, the model fitting process
will reveal if value can be obtained from seasonal or exogenous variables. Hence it still seems reasonable to
hypothesize that seasonality as well as explanatory variables like aggregate demand and aggregate intermit-
tent renewable output have an impact on the price.
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The first step in the modelling process is again to carry out an initial transformation on the data. Looking
at the distribution of the values in figure 6.7a, there seems to be a clear bimodal distribution. Furthermore,
long tails seems present, which may lead to unstable model parameters. The kernel density model is able to
help with the long tails, but some slight bimodality is still present in the transformed data, as shown in figure
6.7. This is mainly due to the fact that Silverman’s rule of thumb used to determine the kernel bandwidth
assumes a Gaussian distribution, which this clearly is not. Although the resulting distribution is not perfectly
Gaussian, it is more suitable for a linear model than the untransformed data.
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Figure 6.8: a: Residuals from robust regression for ∆

b: Autocorrelation plot residuals
c: Partial autocorrelation plot residuals

The next step is fitting the robust regression model. Based on the backward reduction process seven
hourly dummy variables were removed. The model components are listed in appendix A.2. Next, the SARMA
model is specified and fitted.
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Figure 6.9: Forecast of λ∆ for 2018-01-02. The partial regression is a robust regression model using
only the decomposition variables. Complete regression includes all variables. Complete model

includes the SARMA model.

Looking at the series itself in figure 6.8a, there is still some structure present, which is partly explained
by the autocorrelation and partial autocorrelation of the residuals. Starting with the autocorrelation in fig-
ure 6.8b, there is a lot of signficant autocorrelation present which tails off during the first day, after which
there is a strong peak at the 24-hour mark (lag 96). Furthermore, one other peak can be observed at lag 192.
This suggests either a SARMA or an SAR model. Moving to the partial autocorrelation function, depicted
in figure 6.8c, significant peaks can be observed at lags 1,2,3,4,5 and 6 and less so around the 24-hour lag.
Furthermore, there seem to be negative lags and multiple significant lags around the 24-hour lag. These
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observations combined imply at least one AR component combined with at least one seasonal AR and MA
component. Although these plots provide an indication what kind of model may be suitable, for forecast-
ing purposes it is more appropriate to apply a gridsearch, choosing a model by adjusted AIC (AICc). This
search provided a SARMA model with specification (4,0,1)(1,0,1)96, meaning 4 AR, 1 MA, 1 seasonal AR and
1 seasonal MA components

An example of a forecast is shown in figure 6.9. This figure shows the influence of each of the modelling
steps. It also shows how λ∆ can shift strongly between time periods. The forecast is not very similar to the ob-
servation, as this shifting is rather symmetrical, as it occurs in both directions and the linear model forecasts
the mean value.

6.4. The Price-Maker Effect
As explained in section 2.3, a wind farm of this size is in fact a price-maker and not a price-taker on the
Belgian imbalance market. Hence, it makes sense to include a variable which is able to capture the effect a
wind farm has on the imbalance price. Conejo et al. (2010) [10] describe the price-maker effect as the slope
of the inverse ordered supply curve to the balancing market. To estimate this slope, this supply curve needs
to be known. Fortunately, an approximation of this supply curve in 100MW blocks is published by Elia. This
curve goes from -800MW up to 800MW in regulation capacity. However, as shown in figure 6.10, the system
imbalance rarely exceeds the boundaries of -500MW and 500MW. For the entire dataset this occured only
0.7% of the time. For this reason only the part of the supply curve between -500MW and 500MW was used
to determine the slope of the inverse ordered supply curve. This is illustrated through an example using the
same supply curve as in figure 3.3, which is shown in figure 6.10b.
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Figure 6.10: a: Histogram of system imbalance for 2016.
b: Inverse ordered supply curve with linear regression for 2018-01-01 0:00-0:15.
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Figure 6.11: a: Belgian γ∆ time series for 2016. b: Zoomed-in version of γ∆ time series.

Next, the predictive model is specified for γ∆. Again, the initial in-sample data consists of 2016 values for
all explanatory variables and γ∆. The out-of-sample data consists of values from January 2017 up to and in-
cluding June 2018. The original time series for the training period for γ∆ is depicted below in figure 6.11a. The
first thing to note is that the mean seems relatively unstable over time, while the variance seems to be quite
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heteroscedastic, which again is a problem for the linear model, as this leads to unstable model parameters.
Secondly, there are quite some extreme values, which are also problematic for the linear model as this skews
results.

Shifting attention to a zoomed-in version of the original time series, shown in figure 6.11b, additional in-
formation can be obtained. A clear seasonal pattern can be observed, mostly daily. The can be explained as
on average during the night there is a strong decrease in demand, leaving more power available for balancing
services. Although the seasonality seems less pronounced than was the case for λD , still it seems reasonable
to hypothesize that seasonality as well as exogenous variables like aggregate demand and aggregate intermit-
tent renewable output have an impact on γ∆, which will be tested through the regression model.
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Figure 6.12: a: Histogram of γ∆.
b: Histogram of normalized γ∆.

The first step is again to carry out an initial transformation on the data. Looking at the distribution of
the values in figure 6.12a, there seems to be no clearly defined distribution. As the distribution is also far
from a normal distribution, application of the inverse normal transformation using univariate kernel density
estimation seems appropriate. As with the imbalance price model, the kernel density model is not able to
capture the underlying distribution well, resulting in a non perfect Gaussian distribution in figure 6.12. How-
ever, as the transformation results in a more stable mean, more homoscedastic variance and fewer outliers,
the transformed dataset is used.
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Figure 6.13: a: Residuals from robust regression for γ∆

b: Autocorrelation plot residuals
c: Partial autocorrelation plot residuals

The next step is fitting the robust regression model. Based on the backward reduction process two types
of variables are removed, which are the wind power capacity forecast and three hourly dummy variables. A
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list of the model components can be found in appendix A.3.
Looking at the residual series in figure 6.13a, there is clearly still much structure present, which is partly

explained by the autocorrelation and partial autocorrelation of the residuals. Starting with the autocorrela-
tion in figure 6.13b, there is a lot of signficant autocorrelation present which tails off during the first day, after
which there is a strong peak at the 24-hour mark (lag 96). Furthermore, one other peak can be observed at lag
192. This suggests either a SARMA or a SAR model. Moving to the partial autocorrelation function, depicted
in figure 6.13c, significant peaks can be observed at lags 1, and 2 and less so around the 24-hour lag (lag 96).
These observations combined imply at least one AR component combined with at least one seasonal AR and
MA component. Although these plots provide a clear indication what kind of model may be suitable, for fore-
casting purposes it is more appropriate to apply a gridsearch, choosing a model by adjusted AIC (AICc). This
search provided a SARMA model with specification (4,0,1)(1,0,1)96, meaning 4 AR, 1 MA, 1 seasonal AR and
1 seasonal MA component.

An example of a forecast is shown in figure 6.14. This figure shows how each step of the model adds to the
forecast. While less pronounced than with λ∆, the observation shows a strong shift between one time period
to the next. Furthermore, this particular day does not show clear signs of seasonality. Lastly, each model
again shows a particular distinct forecast, where the more complex models for this day seems to outperform
the less complex models, which is also true for the out-of-sample set.
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Figure 6.14: Forecast of γ∆ for 2018-01-02. The partial regression is a robust regression model using
only the decomposition variables. Complete regression includes all variables. Complete model

includes the SARMA model.





7
Results Stochastic Process Modeling

This chapter takes the frameworks from chapters 4 and 5 and applies it to wind power forecasts and the price
forecasts generated in chapter 6. First the three wind power forecasts are discussed in section 7.1. Second, the
day-ahead price forecast is discussed in section 7.2. Third, the imbalance price forecast is discussed in section
7.3. Fourth, the price-maker effect forecast is discussed in section 7.4. Last, construction of the scenario tree
is discussed in section 7.5

7.1. Wind Power
As mentioned in section 1.2, three different wind power forecasts are analyzed and modelled. This provides
the opportunity to show how the evaluation framework presented in chapter 5 can be used to make choices
with regards to inputs to the stochastic process modelling. The three forecasts being compared are one pro-
vided by Essent and two provided by Whiffle, which are forecasts generated by a higher resolution NWP
model, based on Large Eddy Simulation (LES) [53]. The first Whiffle forecast consist of the raw output out
of their own NWP model, while the second combines the first with information from several different sources
to provide a statistically optimized version. Below these three forecasts are analyzed on their statistical per-
formance. Note that power values are normalized by the nominal power of the park, which is 147.6MW (24
turbines of 6.15MW each). This is done because it allows for comparison of forecasts between different park
setups, independent of the installed capacity, increasing interpretability. First, the statistical performance
of the different point forecasts is analyzed in section 7.1.1. Second, the stochastic models are discussed in
section 7.1.2. Last, their performance is evaluated in section 7.1.3.

7.1.1. Wind Power Point Forecast Performance
First, the point forecasts are judged on the main ranking criterion, the Mean Absolute Error (MAE) as pre-
sented in equation 5.1. Looking at the results for the three forecasts in figure 7.1, several conclusions can be
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Figure 7.1: Mean Absolute Error for 2018-01-01 - 2018-06-30. The 2017 MAE for Whiffle was 8.98%,
for Whiffle raw 9.35% and for Essent 9.17%.
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drawn. First, a clear diurnal pattern can be identified in all, which is quite similar in shape between them.
This pattern is characterized by a relatively large MAE during the night relative to daytime, which is explained
by the fact that at night the wind speed on average is higher, resulting in larger absolute errors [54]. As all anal-
yses are in local time, which is subject to day-light saving, this effect is offset slightly as the atmosphere does
not conform to day-light saving. Second, the Whiffle raw forecast performs worse to a varying degree relative
to the Whiffle forecast throughout the day. Second, from the 10 hour until the 20 hour mark, the Whiffle and
Essent forecast seem very close in performance. Outside of this interval the Whiffle forecast outperforms the
Essent forecast, most notably during the night, which implies that the Whiffle forecast better at forecasting
higher wind speeds. Last, as the MAE is the main ranking criterion, the Whiffle forecast is ranked highest, the
Essent forecast second and the Whiffle raw forecast third.
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Figure 7.2: Root Mean Square Error for 2018-01-01 - 2018-06-30. The 2017 RMSE for Whiffle was
13.51%, for Whiffle raw 14.30% and for Essent 14.06%.

Second, the forecasts are judged on the Root Mean Square Error, as presented in equation 5.2. Looking at
the results in figure 7.2, several conclusions can be drawn. Firstly, as the RMSE is a quadratic loss function,
it is more sensitive to a larger spread in errors, giving more weight to larger errors. Figure 7.2 shows that
the difference between the Whiffle raw forecast and the others is much larger when compared to the MAE.
This means that the Whiffle raw forecast has a large spread in its errors than the others, indicating greater
consistency for the other two. Comparing the better performing two, their difference in RMSE earlier in
the day seems smaller when compared to the MAE. Also, percentage wise the improvement of the Whiffle
forecast over the Essent forecast is only 0.85%, which is smaller than the 1.42% in MAE. This indicates that
the performance improvement lies less in the reduction of the variability of its errors, but more in absolute
performance.
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Figure 7.3: Bias for 2018-01-01 - 2018-06-30. The 2017 Bias for Whiffle was -0.49%, for Whiffle raw
-0.79% and for Essent -1.69%.

Last, the forecasts are judged on the bias, as presented in equation 5.3. Figure 7.3 does not provide much
insight into the absolute performance of the forecast, but it does allow one to gain insight in the existence
of systematic errors, which can be corrected in post-processing using statistical methods. Overall the Essent
forecast does a better job at processing out the systemic part of the error. Interestingly, both the Essent and



7.1. Wind Power 69

the Whiffle and Whiffle raw forecasts seem to have a similar trend in their bias. This indicates that there are
some underlying similarities to the models generating these forecasts. This makes sense, as typically lower
level NWP models use the output from higher level NWP models to determine their inititial and boundary
conditions, as explained in section 1.1.1.

In conclusion, on all statistical performance measures the Whiffle forecast tends to outperform the other
forecasts. When ranking them on statistical performance the initial ranking is derived from looking at the
MAE, which means the Whiffle forecast performs best. However, evaluating the statistical performance of
point forecasts is not sufficient when considering one forecast over another, as ultimately its performance in
its specific use case is most important.

7.1.2. Wind Power Stochastic Process Modelling
First, the models used for generating density and scenario forecasts are discussed. Second, their performance
is evaluated using the framework from chapter 5. The conditional kernel density (CKD) model, as presented
in equation 4.2, is constructed with forecast error εt+k|t as the dependent variable and forecast ŷt+k|t and
forecast horizon k as the independent variables. In the CKD model the numerator of equation 4.2 is the joint
distribution of F (ε, ŷ ,k). This can be thought of as looking in 3d space and estimating the probability density
function based on local densities. This is done by placing Gaussian cylinders (kernels) with a 3-dimensional
size defined by the bandwidth parameters on each data point in space, after which the individual kernels are
summed to form the kernel density estimate. This estimation in three dimensions does suffer from sparsity,
specifically for medium to high values for ŷt+k|t , as high power values occur less often than lower power val-
ues. This is why increasing dimensionality in kernel density estimation can quickly decrease the validity of
the resulting estimated distribution and the performance of the model. Also, with differences in data density,
binning the data or applying variable bandwidths for different areas becomes important, where binning in-
creases performance as for each region of the data a specific kernel bandwidth can be determined. However,
as the wind power process has clearly defined boundaries between 0 and 1, constant bandwidths work well.

Figure 7.4: CKD models for Essent Wind Power. Lighter colors indicate higher probabilities.
a: Essent Wind Power CKD model f (ε|ŷ).
b: Essent Wind Power CKD model f (ε|k).

The first relationship being analyzed is that of the probability of the normalized error εt+k|t , conditional
on forecast power ŷt+k|t . The first thing to notice from figure 7.4a is that the distribution of the errors is very
narrow and skewed both for low and high values of ŷt+k|t , while it is wide and centered for middle values.
The second relationship is that of the probability of the εt+k|t , conditional on forecast horizon k, of which
the probability density function is shown in figure 7.4b. This figure shows that the distribution of errors is
relatively narrow for early lead times and then becomes wider later in the day, which is the same pattern
as for the MAE and RMSE, although it is difficult to notice in figure 7.4b due to it being quite a nuanced
difference. This means that later in the day the forecast starts to perform worse, which is consistent with
figure 7.1. Although figures 7.4a and 7.4b shows two separate CKD models, each with a single independent
variable, the complete CKD model uses two independent variables. This results in shifted probabilities for the
data points shown in the figures. Their probabilities are shifted because of the added explanatory conditional
variable. The stronger this shift, the more influential an added independent variable is.

For the initial estimation of the CKD model 2017 data is used, after which quantiles are constructed for the
following 6 months of data. The CKD model is estimated daily using a rolling window of the past 12 months
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Figure 7.5: Quantile forecast Essent for 2018-01-02. The forecast shows quantiles 5% up to 95% in 5%
increments.

of data. Figure 7.5 shows a density forecasts for the Essent forecast. This figure shows much detail in the
quantiles, indicating heterogeneous marginal predictive densities. Furthermore, it shows that the observed
power is much more volatile than the forecast, indicating that neither the forecast, nor the quantiles are
realistic representations of the underlying stochastic process. Last, there is a significant difference between
the original forecast, which forecasts the mean, and the 50% quantile, which is due to the skewness in the
density, which leads to a difference between the mean and the 50% quantile.
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Figure 7.6: Covariance for Gaussian Essent errors for 2017.

The second model is the Copula model, as introduced in equation 4.10. The first part of the Copula model
consists of the marginal predictive densities, which are obtained from the model shown in figure 7.4. These
marginal predictive densities are used to transform all observations for εt+k|t by applying equation 4.11. The
second part of the Copula model is the covariance matrix, which captures the dependency between the Gaus-
sian variables as expressed in equation 4.13. This matrix is shown in figure 7.6, where lighter colors indicate
a higher covariance. This matrix can be interpreted as follows: First, the diagonal represents the covariance
between each Gaussian vector with itself, which is its variance. Second, it is a strictly symmetric matrix along
the diagonal, where the covariance between each Gaussian vector of each forecast horizon with every other
Gaussian vector of each other forecast horizon is represented in the matrix. The matrix shows quite some
covariance between different forecast horizons, which makes sense, as the wind power process has limited
volatility.

To adequately represent the stochastic process, a sufficient number of scenarios needs to be generated to
cover the most plausible realizations of the process. A typical number used for this type of decision making
problem is 1000 [10]. An example of a scenario forecast for 1000 scenarios is shown below in figure 7.7. Al-
though this figure has clear similarities with its quantile counterpart, it is not as easily interpretable. As the
marginal densities have long tails, the range of scenarios is significantly wider. Furthermore, it is difficult to
see the density of scenarios in different areas. This shows that although scenarios are the desired input for
optimization purposes, for decision-makers value can also be obtained by visual inspection of more easily
interpreted quantile forecasts. Next, the quality of the modeling process is evaluated.
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Figure 7.7: Scenario forecast for 2018-01-02

7.1.3. Wind Power Stochastic Process Evaluation
The first modelling step that needs to be evaluated is that of the construction of density forecasts by the CKD
model. The first analysis is that of the Probability Integral Transform, which evaluates equation 5.4. The
histogram for each density forecast is shown in figure 7.8, which is used to evaluate the PIT. The histograms
for all three forecasts in figure 7.8 show that the predictive models are not perfectly calibrated. Although they
differ somewhat in shape, the overall trend is similar. The hump shape present in all three histograms indicate
on average too wide predictions intervals, which means that the predictive distributions are overdispersed.
Although this provides an initial insight in whether or not the predictive density is calibrated, it is not easily
interpreted, nor can it directly give insight whether or not the model should be re-calibrated or can be safely
applied in an operational context.
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Figure 7.8: a: PIT for Whiffle density forecast.
b: PIT for Whiffle raw density forecast.

c: PIT for Essent forecast.

The reliability diagram is shown in figure 7.8. This shows how the 19 quantiles perform individually. This
enable the user to make further inferences on its calibration. First, when quantiles are on average too low,
less than the nominal fraction of observations indicated on the x-axis is observed below the specific quantile,
resulting in a negative value for ∆qm . All three show this for quantiles 50% and lower. When quantiles are on
average too high, more than the nominal fraction of observations is observed below the quantile, resulting
in a positive value for ∆qm . All three show this as well for higher quantiles. This pattern is consistent with
the conclusion from the PIT histogram, as it indicates overdispersed predictive distributions, where the pre-
dictive intervals are too wide on average. Second, although all three show a similar trend, the Essent forecast
is most symmetric around the 50% quantile, while the other two show a slightly more asymmetrical trend,
especially the Whiffle forecast. This means that the Whiffle predictive density is most skewed, the Whiffle raw
is slightly less skewed and the Essent forecasts is quite symmetrical. Thirdly, the Whiffle forecasts both seem
shifted downward relative to the Essent forecast, which indicates a bias in the predictive density as on aver-
age it predicts too low quantiles. As the model is estimated on observations and it should remove any bias
present in the data, which it does for the Essent forecast, this indicates that either the model is not successful
at removing the bias for the Whiffle raw and Whiffle forecasts or that there is an inconsistency between the
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in-sample and out-of-sample data. Figure 7.3 reports the 2017 bias values for the three forecasts, which are
most different for the Whiffle raw and Whiffle forecasts relative to the Essent forecast. As the model is esti-
mated daily on the past year of data, a shift in bias between in-sample and out-of-sample data leads to a bias
in the predictive density.

Last, although these detailed observations provide insights that can be used to improve the probabilistic
model, the discrepancy index provides a concrete measure on which to judge the reliability of the overall
model. For all three it is near 2%, where the Essent predictive density is most reliable, the Whiffle raw is
second and the Whiffle predictive density is least reliable. Although there are no clear guidlines on what is an
acceptable value, Morales et al. (2014) [42] deem a discrepancy index of 1.2% to be very good. Although 2% is
higher than 1.2%, as there are no strong biases present in the predictive density, the predictive densities are
deemed reliable.
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Figure 7.9: Reliability diagram for the Whiffle, WHiffle raw and Essent forecasts. Positive values
indicate too high quantiles, as a higher percentage than the nominal fraction is below them and

vice-versa.

The final reliability test is that of the Minimum Spanning Tree Rank Histogram (MST RH), as presented in
section 5.3.2. The MST RHs for all three forecasts are shown in figure 7.10. Compared to the example MST RH
in figure 5.4, all three histograms seem quite irregular. This is due to the fact that the underlying probabilistic
models are significantly more complex than the Beta distributions used for sampling the data for figure 5.4.
The purpose of the MST RH for complex distributions with a limited sample size is not to test perfect uni-
formity, but to identify possible trends in the ranking of the MSTs of the ensembles versus the observations,
where the scenarios are the ensembles and the observations are the observations of the stochastic process.
In the example there was a clear trend present, which in this case would indicate that the dependency model
overestimates the covariance. However, all three show no clear downward or upward trend. This indicates
that the dependency model accurately captures the covariance between the different forecast horizons, which
means that both the predictive density and the dependency model are deemed reliable.
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Figure 7.10: Minimum Spanning Tree Rank Histogram for 2018-01 - 2018-06 scenarios. Based on
scenario forecast consisting of 1000 scenarios.

a: Whiffle MST RH. b: Whiffle Raw MST RH.
c: Essent MST RH.
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As the models for all three forecasts are deemed reliable, focus is shifted to their performance. The first
performance metric is the Net Quantile Score (NQS) as discussed in section 5.4. This measure computes a
metric from the 19 quantiles generated by the predictive density. The results for this metric are shown in
figure 7.11. The overall trend in this figure is very similar to the MAE shown in figure 7.1. Moreover, the rank-
ing between the three forecasts is preserved in their quantile form. However, the percentage wise difference
between the Essent and Whiffle forecast is much smaller in their quantile form. This can be explained by the
bias shown in the reliability diagram. As the NQS penalizes wrong quantiles as well as the extent to which
they are wrong, the added sharpness from the point forecast is hurt by the larger bias present in the predic-
tive density. This effect is also present in the difference between the Essent and Whiffle raw forecast, as the
percentage wise different in MAE is smaller than the difference in NQS, again showing the penalty placed on
inferior calibration. Overall, the Whiffle raw forecast is still the best performing predictive density, albeit with
a smaller margin.
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Figure 7.11: Net Quantile Scores as a function of forecast horizon for the Whiffle, Whiffle Raw and
Essent forecasts for 2018-01 - 2018-06.

The main ranking criterion of predictive densities, the Continuous Ranked Probability Score is also in-
troduced in section 5.4. As this is computed over the entire predictive density, this should provide the most
accurate judgment on which predictive density is superior. The difference between the NQS and CRPS is ex-
pected to be large when the underlying predictive density is more complex and of a higher resolution. As the
model producing the predictive densities is continuous, the CRPS is considered important, whereas it would
not be if the density would have been generated by a discrete model, such as a quantile regression model. The
CRPS score, displayed in figure 7.12 again shows a very similar trend to the MAE and NQS. However, the dif-
ferences between the three forecasts are more similar to the differences in MAE. This indicates that the NQS
can result in skewed results, due to a lack of resolution. The conclusion from the CRPS is again that overall
the Whiffle forecast is superior, with the Essent forecast coming in second and the Whiffle raw forecast in
third. All three predictive densities’ CRPS score is lower than its MAE score, which can be interpreted as the
predictive densities adding skill to the point forecast [42]. This is because the MAE is the same as the CRPS
when the CRPS is computed for a step function representation of the point forecast.
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Figure 7.12: Continuous Ranked Probability Score as a function of forecast horizon for the Whiffle,
Whiffle Raw and Essent forecasts for 2018-01 - 2018-06.
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The last ranking criterion is the Energy Score (E s), as introduced in section 5.4. This is also a strictly
negatively-oriented score and evaluates to 0 if the scenarios perfectly capture the underlying distribution. As
the energy score evaluates scenarios, which are a result of a point forecast, a predictive density and a depen-
dency model, this can be used for decisions on improving any step in the process of constructing scenarios.
Figure 7.13 shows the E s distributions for the different forecasts. On average the Whiffle forecast is again
superior to the other forecasts, with the Essent forecast again coming in second and the Whiffle raw forecast
in third. However, for this final metric, the difference is smaller compared to the difference in CRPS. As this is
the final ranking metric, the Whiffle forecast is considered superior as input to the optimization model, with
the Essent forecast slightly behind it and the Whiffle raw forecast a distant third. In an absolute sense the
energy scores are acceptable, compared to scenarios analyzed in a 2012 study by Girard and Pinson, where
the best scenario forecast achieved a score of 1.130 [48]. However, as that was a different case, it should only
serve as an indication that the scenarios perform well, it cannot be used to conclude that these scenarios are
superior to those in the Girard and Pinson study.
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Figure 7.13: Continuous Ranked Probability Score as a function of forecast horizon for the Whiffle,
Whiffle Raw and Essent forecasts for 2018-01 - 2018-06.

7.2. Day-Ahead Price
The first step in the modeling process is again judging the performance of the point forecasts. Especially
in the case of the price forecasts, which can be easily generated by WPPs themselves, for instance using the
method introduced in chapter 6, this initial evaluation can provide insights in how point forecasts can be
improved. In figure 7.14 the performance of the forecast of λD is presented.
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Figure 7.14: Statistical performance of point forecast for λD .
a: Mean Absolute Error. 2017 MAE=€6.11.

b: Root Mean Squared Error. 2017 RMSE=€10.36
c: Bias. 2017 Bias=€1.47.

The left panel shows the performance on the main ranking criterion, the MAE. Unfortunately, unlike with
the wind power forecasts, no reference is available. However, it does show some interesting characteristics
of the underlying process. The forecast error is low early in the day, then rises during the morning ramp.



7.2. Day-Ahead Price 75

It decreases slightly during the day, only to sharply increase during the evening ramp. This is analogous to
the MAE rising for wind power during the night. As wind speeds are on average higher during the night, the
absolute forecast error naturally increases. This is also the case for the day-ahead price, as the pattern can be
explained by the price behaviour driven by the morning and evening ramps. This same pattern is also visible
for the RMSE in figure 7.14b. Looking at the bias in figure 7.14c, an interesting observation can be made. First,
the bias is positive and quite large relative to the MAE. Fortunately, the probabilistic model should be able to
correct for this as long as the bias is consistent between in-sample and out-of-sample data. Second, it shows
the same pattern as do the MAE and RMSE. This indicates that the model consistently underestimates the
price, which scales with the height of the price. This could mean that higher prices are caused by non-linear
effects, which the model is not able to capture.

The next step is the application of the stochastic model. The conditional kernel density (CKD) model
is again estimated with the forecast error εt+k|t as a dependent variable. The independent variable for the
model for the day-ahead price is limited to the forecast ŷt+k|t . Although for wind power forecast errors also
the time of day is considered, here it is not. Because the forecast error for the price data is distributed less
uniformly and has no strict boundaries, adding the forecast horizon as independent variable hurt the model’s
ability to reliably capture the uncertainty. This is due to the fact that data is much more sparse at the extremes
with this unbounded process than it is with wind forecast errors. Fortunately, the distinct daily pattern of the
day-ahead price means that the forecast value itself is already a helpful indicator for how the shape of the
distribution is related to the time of day.

Figure 7.15: a: CKD model for the day-ahead price. Lighter colors indicate higher probabilities.
b: Covariance matrix for Gaussian day-ahead price errors for 2017.

Looking at figures 7.15a, several conclusions can be drawn. First, The distribution has a very distinct
shape, as it is very narrow for lower forecasts, while it becomes increasingly wide as forecast values increase.
This is in line with the analysis of the point forecast, which indicated that for higher prices the forecast error
increases. Secondly, there is a slight skewness present in the model, with a slight negative deviation for higher
forecast values. Such particularities are difficult to capture with less flexible methods, while the highly flex-
ible CKD model adequately captures such aspects of a distribution. For higher forecast values data sparsity
becomes an important issue. As the kernel bandwidth is estimated on the entire data set, having such sparse
data becomes an issue for the model, as it leads to oversmoothing for denser areas and undersmoothing for
more sparse areas.

In figure 7.15b the Copula model is visualized. Again, the Gaussian Copula is represented by a single
covariance matrix. From it several conclusions can be drawn about the day-ahead price process. First, overall
it is quite bright compared to the wind power errors, indicating that there is significantly more temporal
dependence present in the process. Second, there are some square structures to be observed within the
matrix, most notably between morning and afternoon values. This indicates that there are different regimes
in the stochastic process between these two periods, which the Copula model shows to be able to capture.

In figure 7.16 the quantile and scenario forecasts are shown, generated by the models from figure 7.15.
Again, the models were estimated daily using the past year of data. For the scenario forecast, each day 1000
scenarios were generated. In the figure, the quantiles seem significantly narrower than the scenarios, which
indicates that the marginal predictive densities from the CKD model have quite long tails. Again, the quan-
tile forecast is more easily interpreted, while the scenario forecast is difficult to interpret. For the quantile
forecast, the 50% quantile does not seem to deviate much from the forecast, which indicates that overall the
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Figure 7.16: a: λD Quantile forecast for 2018-02-05.
b: λD Scenario forecast for 2018-02-05.

underlying density forecast is not very skewed, which is also observable in figure 7.15a for the model itself.
Certainly compared to the wind power model, the model is quite symmetric, resulting in a 50% quantile that
is close to the mean forecast.

The next step is verification. To this end the three metrics applied to evaluate reliability are shown in figure
7.17. Firstly, figure 7.17a shows the PIT in a histogram. Contrary to the wind power case, the histogram shows
a convex trend. This indicates underdispersed predictive densities, where the predictive intervals are too
narrow on average. Figure 7.17b paints a more nuanced picture. It shows that higher quantiles increasingly
underestimate the quantiles. This trend in the reliability diagram indicates that the model is also skewed
towards lower values, resulting in underestimated predictive quantiles. The reliability diagram also shows a
slight upward trend for the two higher quantiles, which makes it relatively wide in the higher quantile region.
However, as the overall trend is quite linear the predictive is considered too narrow and skewed towards lower
values. However, the discrepancy index ∆|q | of 2.87% is relatively good. Although no reference cases are
found, when compared to the well calibrated wind power models, 2.87% is deemed acceptable, although
it must be noted that the model is slightly biased by its skewness. In figure 7.17c, the Minimum Spanning
Tree Rank Histogram shows quite a uniform distribution. As it shows no clear indication of a trend, which
means that the Copula model is able to capture the underlying dependence structure well, the Copula model
is deemed reliable. In conclusion, although the predictive density shows a slight bias, its reliability is deemed
acceptable. As the Copula model seems reliable as well, the modelling process for λD is deemed reliable.
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Figure 7.17: Reliability evaluation of forecast for λD .
a: PIT histogram.

b: Reliability diagram.
c: Minimum Spanning Tree Rank Histogram.

The performance of the predictive density and scenario forecast is shown in figure 7.18. Figure 7.18a
shows the Net Quantile Score for λD . Compared to the CRPS shown in figure 7.18b, it seems very similar in
overall trend, which is an indicator that the 19 discrete quantiles represent the underlying predictive density
well. Second, a slight diurnal pattern can be observed in the NQS and CRPS, although it is quite different
from the MAE of the point forecast in figure 7.14, as the large peak has shifted from the evening ramp to the
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morning ramp, which indicates that it adds more skill in the time around the evening ramp than the time
around the morning ramp. Third, the CRPS score is significantly lower than the MAE score, which indicates
that the predictive density adds skill. Unfortunately, direct comparison with other cases is not possible as
prices change a lot between countries and periods. So again, this measure serves better as a comparison
between methods on a single case. Last, the Price Score (Ps) is shown in figure 7.18, which has the exact same
definition as the Es introduced in section 5.4. As with the Es this score carries the same unit as the scenarios
from which it is computed. Again, this measure is a negatively oriented score, making it a good skill score
to analyze the influence of changes in each step of the modeling process. Here an average value of €29.94 is
achieved, which serves as a benchmark for future improvement.
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Figure 7.18: Performance evaluation of λD process.
a: Net Quantile Score.

b: Continuous Ranked Probability Score.
c: Price Score (Ps).

7.3. Imbalance Price
As with the day-ahead price, the first step is the performance assessment of the point forecasts. The perfor-
mance metrics for λ∆ are shown in figure 7.19.
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Figure 7.19: Statistical performance of point forecast for λ∆.
a: Mean Absolute Error. 2017 MAE=€31.92.

b: Root Mean Squared Error. 2017 RMSE=€52.53
c: Bias. 2017 Bias=€3.28.

First, the MAE in figure 7.19a shows a distinct diurnal pattern which is similar in shape to the MAE of the
day-ahead price. The explanation for this is the same as for the day-ahead price. More extreme prices occur
during the morning and evening ramps. As absolute errors are naturally higher on average for higher prices,
the pattern is to be expected. The RMSE in figure 7.19b is relatively different from the MAE in shape, com-
pared to wind power and the day-ahead price. This is due to the fact that the imbalance price is significantly
more volatile, which results in a larger spread in errors. Finally, the bias displayed in figure 7.19c shows to be
positive, again with a pattern that is similar to the MAE and RMSE. Compared to the day-ahead price the bias
relative to the MAE is relatively small. The caption of figure 7.19 shows the statistics for 2017, which are quite
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different from the out-of-sample set. Especially the bias is significantly larger, which could lead to problems
for the predictive density.

The next step is the application of the stochastic model. The dependent variable is again the forecast
error εt+k|t . As an independent variable the forecast ŷt+k|t was considered. However, this model setup was
not able to reliably capture the distinct diurnal uncertainty that is characteristic of the imbalance price, as
shown in figure 7.19a. Hence, the forecast for λD is used as the independent variable. Again, the forecast
horizon is not used as an independent variable, as data sparsity is even more an issue for λ∆. Fortunately, the
daily pattern of λD again means that the forecast value itself is already a helpful indicator for how the shape
of the distribution is related to the forecast horizon.

Figure 7.20: a: CKD model for λ∆. Lighter colors indicate higher probabilities.
b: Covariance matrix for Gaussian imbalance price errors for 2017.

The CKD model for λ∆ is shown in figures 7.20a. From it several conclusions can be drawn. First, the
distribution has a distinct bimodal shape, which varies strongly for different forecast values. Also, there is a
strong negative peak for low forecast values, which means that for low forecast values for λD , for 2017 there
was a high probability of negative forecast errors for λ∆. Lastly, the distribution shows a downward trend,
indicating a higher probability for negative forecast errors for higher forecast value ofλD . Overall, the forecast
for λD seems well able to predict the uncertainty around the forecast for λ∆.

Moving to the Gaussian Copula model, the covariance matrix is shown in figure 7.20b. Firstly, it is much
darker when compared to the previous covariance matrices, indicating little temporal dependence, which
makes sense as imbalance prices are highly volatile. Lastly, as with λD some square structures can be ob-
served, indicating a change in regime between morning, mid-day and night, which the Copula model shows
to be able to capture. Figure 7.21 shows examples of quantile and scenario forecast, generated using the
models depicted in figure 7.20. For the scenario forecast, each day 1000 scenarios were generated.
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Figure 7.21: a: Quantile forecast for λ∆ for 2018-02-05.
b: Scenario forecast for λ∆ for 2018-02-05.

From figure 7.21 several conclusions can be drawn. First, it shows that the model predicts strong upward
uncertainty around the morning and evening ramps. This is where the value of the model lies, as the an-
ticipation of such events are important to the optimization. The quantiles seem significantly narrower than
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the scenarios, which indicates that the distributions from the CKD model have very long tails, which makes
sense as many extreme values can be observed in figure 7.20a. As with wind power and the day-ahead price,
the quantile forecast is more easily interpreted, informing on the uncertainty surrounding the price forecast.
Next focus is turned to reliability of the models, for which the relevant metrics are displayed in figure 7.22.
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Figure 7.22: Reliability evaluation of forecast for λ∆.
a: Probability Integral Transform histogram.

b: Reliability diagram.
c: Minimium Spanning Tree Rank Histogram.

Firstly, from figures 7.22a a very slight convex trend can be observed, as the histogram shows slightly
higher counts toward the edges. This suggests slightly underdispersed predictive distributions, where the
predictive intervals are too narrow on average. This is confirmed through the reliability plot in figure 7.22b.
This plot shows that lower quantiles are slightly overestimated, while higher quantiles are slightly underesti-
mated. Overall there is a slight bias in the predictive density, as it is skewed towards higher values. However,
the discrepancy index is very good at 0.925%. This deems the model very well calibrated. In the case of
prices, a possible explanation for the skewness could lie in the rapid change of the underlying market dy-
namics, which means that older data may not well represent today’s uncertainty, as was shown in the point
forecast analysis. The last test for reliability is shown in figure 7.22c, which shows the MST RH. Contrary to
the day-ahead price and wind power, this MST RH does show a clear distinct shape. Its bimodal shape is
directly related to the behavior of the price signal. As can be observed in figure 7.21a, the price can be stable
or it can switch strongly. This is coherent with the explanation in section 2.2.3, which explains that as the sign
of the Net Regulation Volume changes, the price changes abruptly. However, when the sign of the NRV stays
the same for multiple PTUs, the price is significantly less volatile. As the dependency model applied here
only models covariance over time, this switching behaviour is not considered seperately. So while the predic-
tive densities are well able to provide the Gaussian data used to estimate the covariance matrix, the method
of covariance estimation is not able to capture the switching behaviour. This means that for days with few
switches in the price signal the model underestimates the covariance, while for days with many switches the
model overestimates the covariance, resulting in the shape in figure 7.22c. However, the deviation from per-
fect calibration is not very large, which is why the model is accepted as sufficiently reliable, albeit with the
note that a slight bias exists due to the nature of the price signal and the limitations of the Gaussian Copula.

Figure 7.23 shows the performance metrics for the predictive densities and the scenario forecasts. From
figure 7.23a and 7.23b several conclusions can be drawn. First, the NQS curve does not seem to approximate
the CRPS well, indicating that the 19 quantiles between 0.05 and 0.95 approximate the full distribution poorly.
This is important if one wants to model the distribution through a discrete approximation, a higher number
of quantiles seems appropriate than the 19 extracted here, in order to accurately capture the distribution.
Second, a slight diurnal pattern can be observed, which is quite similar to the forecast performance in figure
7.19a. Direct comparison is again not possible as prices change quite a lot between countries and periods.
So again, this measure serves better as a comparison between methods on a single case. Concerning the
difference between the MAE and the CRPS, again a significant difference is achieved, which indicates that
skill is added to the forecast. Lastly, on the Ps an average value of €379.38 is achieved, which currently cannot
be compared to one in literature, thus again serving as a benchmark for future improvement
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Figure 7.23: a: CRPS and NQS for ∆

b: λs for ∆

7.4. Price-Maker Effect
The first step in the process of modelling the price-maker effect, defined as the slope of the inverse ordered
supply curve to the balancing market in section 6.4, is analyzing its point forecast performance. First, the
Mean Absolute Error in figure 7.24a shows some similarity with the other two processes. This shape can
again be related to the aggregate load, which is highest during the morning and evening and lowest during
the night. When the load is high, more generation capacity is used to cover the load and less is available for
balancing services. This leaves more expensive generation for balancing services and thus a steeper supply
curve. A similar trend is present in the RMSE in figure 7.24b. The bias is shown in figure 7.24c, which is
relatively large relative to the MAE, indicating a moderately calibrated predictive model. Furthermore, as
mentioned in the caption of figure 7.24, the bias for the out-of-sample dataset is significantly larger than for
the in-sample dataset, which could be problematic for the probabilistic model.
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Figure 7.24: Statistical performance of the forecast for γ∆ for 2018-01 - 2018-06.
a: Mean Absolute Error. 2017 MAE=€0.14.

b: Root Mean Squared Error. 2017 RMSE=€0.36.
c: Bias 2017 Bias=€-0.007.

The next step is the application of the stochastic model. The dependent variable is the forecast error
εt+k|t . As independent variable the forecast for γ∆ is used. Again, the forecast horizon is not considered as a
explanatory variable, due to the same problems as with λD and λ∆. Unfortunately, the lack of a daily pattern
for the forecast for γ∆ means that the forecast value itself is not a helpful indicator for how the shape of the
distribution is related to the time of day.

The CKD model is shown in figure 7.25a. There are some outliers, as 0.48% of the time in the in-sample
data, error values fell outside the range from the y-axis in the figure. These are included in the model esti-
mation, but for interpretation purposes, these points are not displayed in the figure. From the figure several
conclusions can be drawn. Firstly, the distribution has a distinct shape, which can be related to the wind
power case. The similarity is that for high and for low forecast values there is distinct skewness, while for
medium forecast values the distribution is much flatter and symmetric. Overall, this distribution shows less
of a distinctive shape than the other distributions defined earlier.
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Figure 7.25: a: CKD model for γ∆. Lighter colors indicate higher probabilities.
b: Covariance matrix for Gaussian price-maker forecast errors for 2017.

Moving to the Gaussian Copula model, the covariance matrix is shown in figure 7.25b. This matrix is much
lighter when compared to the other covariance matrices, indicating strong temporal dependence. Again,
some square structures can be observed, although this time much more pronounced. This again indicates a
change in regime between morning and mid day and less so between mid day and night, which the Copula
model again shows to be able to capture. Next, quantile and scenario forecasts are generated, for which
an example is shown in figure for 2018-01-02 7.26. For the scenario forecast, each day 1000 scenarios were
generated.
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Figure 7.26: a: quantile forecast for γ∆ for 2018-01-02.
b: scenario forecast for γ∆ for 2018-01-02.

From the quantile forecast in figure 7.26a, several conclusions can be drawn. First, the shape of the pre-
dictive density is not very distinct, compared to the former predictive densities. This is coherent with the
CKD model shown in figure 7.25a, which also does not have a particularly distinct shape. The observation
of the process shows to have some similarities to the imbalance price, with distinct switches between time
periods, but relative stability between them. However, it is much less volatile than the imbalance price. Com-
pared to the imbalance price, the scale of the y-axis in figure 7.25b is relatively similar to that of the quantile
forecast, indicating relatively short tails. However, as there are some occurrences of extreme values, there will
sometimes be long tails to the predictive density, resulting in extreme scenarios.

Next focus is turned to reliability of the models, for which the relevant metrics are displayed in figure
7.27. Firstly, looking at figure 7.27a, which displays the histogram for the PIT, a clear downward trend can be
observed. This indicates that the predictive density is shifted towards higher values. From figure 7.27b, this
observation can be confirmed. It shows that on average quantiles are overestimated, indicating a negative
bias in the predictive density. It also shows that lower quantiles are quite accurate, middle quantiles are esti-
mated too high, while higher quantiles again are relatively accurate. This means that there is also skewness
towards higher values. Due to its bias its average discrepancy index of 5.46% the model is deemed moder-
ately reliable. The last reliability test is that of the MST RH, shown in figure 7.27c. There is a slight downward
trend in the histogram, which indicates that the temporal dependency is overestimated. This can partly be
explained by the negative trend in the PIT, which indicates that the transformed Gaussian errors do not meet
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Figure 7.27: a: Quantile-Quantile diagram of forecast for γ∆

b: Reliability diagram
c: MST rank histogram

the requirement of normality well, which is a strict requirement for the Gaussian Copula model. Last, the
Gaussian Copula is not able to capture the switching characteristic of the process well, which also contributes
to the non-uniformity of the MST RH. With regards to overall reliability, some cause for improvement seems
appropriate before operational implementation.
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Figure 7.28: a: CRPS and NQS for γ∆

b: λs for γ∆

Figure 7.28 shows the performance metrics for the predictive densities and the scenario forecasts. From
figure 7.28a and 7.28b several conclusions can be drawn. First, again the NQS seems to approximate the
CRPS poorly, indicating that the 19 quantiles between 0.05 and 0.95 approximate the full distribution poorly.
Second, a slight diurnal pattern can be observed, which is quite similar to the forecast performance in figure
7.24. Third, the CRPS is again significantly lower than the MAE, indicating that again skill is added by the
probabilistic model. Last, the score on the Price Score (Ps) is shown in figure 7.28c. An average value of 1.514
is achieved, which currently cannot be compared to one in literature, again only serving as a benchmark for
future improvement.

7.5. Scenario Tree Construction
The next step in the modeling process is combining all processes in a scenario tree, as discussed in section
4.4. The modeling framework presents two options for this step. The first is to apply the methods of sce-
nario reduction and tree construction, which are the conventional methods in stochastic optimization, as
explained in section 4.4.1. The second method is the method of extending the dependency model, which is
explained in section 4.4.2. The next section discusses application of the first method, after which application
of the second method is discussed.
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7.5.1. Conventional Scenario Tree
Section 4.4.1 explains how to choose scenarios and also how many scenarios are to be chosen in orderto
achieve a stable solution to the optimization problem, which for the linear version of the model is 50. How-
ever, as the conventional scenario tree is constructed by coupling all scenarios of each variable with all sce-
narios of each other variable, this means that for S variables and J scenarios the scenario tree will contain J S

scenarios. For the price-taker version of the model this would result in 503 = 125,000 scenarios, making the
optimization computationally very expensive. For the price-maker version of the model this would result in
504 = 6,250,000 scenarios, making the optimization nearly intractable. However, one of the assumptions be-
hind this method of scenario tree construction is that all processes are independent. As there is no statistical
link between any of the scenarios, the definition of the imbalance price in section 6.4 provides a partial solu-
tion to the problem of tractability. As the scenarios for the imbalance price are always relative to the scenarios
for the day-ahead price, the solution does not change with the addition of multiple day-ahead price scenar-
ios. This means that the following redefinition can be made for the day-ahead parameter in the definition of
the price-taker model in equation 3.1 and the price-maker optimization model in equation 3.5:

λD
t ,ω = λ̂D

t (7.1)

Where λ̂D
t is the point forecast for the day-ahead price. This means that because of the definition of the

imbalance price, no day-ahead price scenarios are needed for the optimizations using the reduced scenario
sets. This means that for the price-taker model the scenario tree contains 502 = 2,500 scenarios, which is
computationally tractable, and for the price-maker model 503 = 125,000 scenarios are required, which still
makes it computationally too intensive. Hence, for the price-maker model the number of scenarios still needs
to be lowered below the recommended number of 50 scenarios for each stochastic process. For this purpose a
ranking criterion is proposed, which ranks the three remaining processes on the extent to which the stochas-
tic process is captured by the scenarios. The criterion is defined as:

µ|y | = 1

K

1

T

Nk∑
k

Nt∑
t
|yt+k | (7.2)

a = X s

µ|y |
(7.3)

Where X s is either the Energy Score Es or the Price Score Ps and a is the ranking score. This definition
means that a represents the ratio of the Es/Ps as a fraction of the mean absolute value of the stochastic pro-
cess. This allows for the comparison of skill between the mostly positive processes of wind power and the
day-ahead price, the switching process of the imbalance price and the mostly negative process of the price-
maker effect, as it is corrected for scale by the mean absolute value. These values are shown in table 7.1 for
the out-of-sample data set, including the value for the day-ahead price for completeness.

Stochastic Process a
Whiffle 2.44
Whiffle raw 2.56
Essent 2.44
Day-ahead Price 0.67
Imbalance Price 9.86
Price-maker effect 2.97

Table 7.1: Score of Stochastic Process Sharpness

The table shows the relative skill of the scenarios for the different processes. This study hypothesizes
that scenarios with higher skill better describe the uncertainty in the stochastic process and therefore need
fewer scenarios to accurately represent the underlying uncertainty. Based on this hypothesis, the day-ahead
price would need the lowest number of scenarios, with the three wind power processes coming in second,
the price-maker effect coming in third and the imbalance price a distant fourth. As a discrete number of
scenarios is needed for each process, the ratio of the price-maker effect process to the wind power process
is approximated as 1:1. The ratio of these to the imbalance-price is approximated as 1:3. For tractability, the
limit for the total number of scenarios is chosen as 6000. This leaves j = 12 for wind power and the price-
maker effect and j = 36 for the imbalance price, resulting in 5,184 scenarios in the scenario tree.
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With the number of scenarios chosen for the scenario reduction of the processes, the three scenario sets
can be reduced. Figure 7.29 shows the original scenario set for the Essent wind power process, with the re-
duced set in colored lines of variable lightness, where brighter scenarios indicate a higher probability. The
number of scenarios in the reduced set for this figure is j = 12. The figure shows that the reduced set cov-
ers much of the range of the original set, but certainly not the entire range. This indicates that although the
heuristic has proven performance, the degree of reduction perhaps leads to a too significant loss of informa-
tion.
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Figure 7.29: Reduced set for Essent wind power scenarios for 2018-01-08 in colored lines, where
lighter colors indicate a higher associated probability. Original set is depicted in light grey.

Figure 7.30, shows the original scenario set for the imbalance price process, with the reduced set in col-
ored lines of variable lightness, where the brightest scenario is the most probable scenario in the set. The
number of scenarios in the reduced set for this figure is j = 36. The reduced set seems to cover much more of
the range of the original scenarios. However, again, not the entire range of the original scenario set is covered.
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Figure 7.30: Reduced set for Imbalance price scenarios for 2018-01-08 in colored lines, where lighter
colors indicate a higher associated probability. Original set is depicted in light grey.

Figure 7.31 shows the original scenario set for the price-maker effect process, with the reduced set in
colored lines of variable lightness, where the brightest scenario is the most probable scenario in the set. The
number of scenarios in the reduced set for this figure is j = 12. Again, the heuristic seems to cover much of
the uncertainty of the underlying process, but much information is left out of the underlying set.

Figures 7.29 and 7.31 show that the strong reduction required to obtain a tractable optimization, leads to
a lot of loss of information. Although further testing would be required to make any claims on the stability of
the specific price-maker optimization result for such a strong reduction, it seems probable that the solution
can improve in terms of stability if such a strong reduction can be avoided. Although this is not an issue for
the price-taker version of the optimization, there is another limiting factor to this method. Namely, these
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Figure 7.31: Reduced set for the price-maker effect scenarios for 2018-01-08 in colored lines, where
lighter colors indicate a higher associated probability. Original set is depicted in light grey.

scenarios are coupled in the scenario tree under the assumption that they are independent, which given
their relationship through the electricity market seems improbable, as explained in section 4.4.2. For these
reasons, an alternative method is applied in the next section.

7.5.2. Copula Scenario Tree
A method with the aim to overcome the problem of information loss due to scenario reduction and the limit-
ing assumption of independence between processes was introduced in section 4.4.2. This method works by
extending the Guassian Copula model, used to model dependencies between forecast horizons, to include
the dependencies between processes. The covariance matrix for this model is shown in figure 7.32. The
mapping of the colors in this matrix is different from the earlier matrices, in order to highlight dependencies
between the processes.
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Figure 7.32: Extended covariance matrix for all processes.

From the covariance matrix several conclusions can be drawn. Firstly, there is one strong and distinct
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relationship visible, which is between Pn and λ∆. This negative covariance relationship can be seen in the di-
agonal of the Pn ,λ∆ matrix. This negative covariance exists because when the forecast error for Pn is positive,
the wind power producer is long on the balancing market. As the WPP has a strong covariance with all other
WPPs within the Belgian market, the likelihood of a positive system imbalance is increased. As a positive sys-
tem imbalance requires negative balancing action, λ∆ likely decreases. Secondl, a slight negative covariance
during the middle part of the day exists between λD and λ∆, which is visible on the diagonal of the λD ,λ∆
matrix. This implies that when there is a positive forecast error for λD , a lower forecast error for λ∆ is likely.
As λ∆ is defined as λ+−λD , this negative covariance implies that positive forecast errors for λD do not lead
to equivalent positive forecast errors for λ∆. Third, there is significant covariance between λD and γ∆. This
can be observed in the λD ,γ∆ matrix. This pattern shows that when there is a positive forecast error for λD

for the entire day, the forecast error for the price-maker effect is decreased during the morning and increased
during the rest of the day. This increase in price-maker effect means that the supply curve becomes flatter.
This effect is shifted upward for positive forecast errors for λD later in the day, meaning that the negative
covariance with earlier time periods is nearing zero, while the positive covariance is shifted upward. The fact
that these relationships are not present on the diagonal indicates that the day-ahead price has a relatively
uniform effect for the entire day. Note that these relationships imply no causality, but are simply based on
what was observed in the data. The other variables show no clear relationships. This is also valuable, as when
trajectories are generated using this covariance matrix, this independence is ensured.
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Figure 7.33: a: Original combined covariance matrix.
b: Covariance matrix of 1000 samples.

c: Difference matrix.

In earlier sections the number of scenarios generated were determined by a rule of thumb, which stated
that 1000 scenarios for these variables accurately represent their underlying stochastic process. However,
this does not provide a concrete measure on how well the scenario set represents the covariance matrix of the
observations. To provide an answer on the question on how many samples is sufficient to accurately represent
the dependencies found in the covariance matrix, the metrics MAE, RMSE and bias are applied, as introduced
in chapter 5. When generating samples using the covariance matrix, a new matrix can be determined on these
samples. Using these two matrices, a difference matrix can be computed, which represents how well the
samples capture the dependence in the original matrix. Seeing as this matrix contains all sampling errors,
the three metrics can be computed. This provides an indicator of the influence of the sample size on the
preservation of dependencies, enabling a more informed choice for the sample size. First, in figure 7.33a the
combined covariance matrix of the observed Guassian errors is shown, in figure 7.33b the covariance matrix
of 1000 samples drawn using the covariance matrix in 7.33a is shown, and in figure 7.33c the difference matrix
is shown. The range of the colormap for 7.33a and 7.33b is the same as the one used in figure 7.32, while figure
7.33c uses the scale of the colorbar to its right. This is done to be able to provide insight in the differences.

The difference matrix shows a significant difference in covariance for the wind power errors, which indi-
cates that a sample size of 1000 does not ensure an accurate representation of the covariance for this process.
Although the other processes are less affected, other parts of the combined matrix also shows signficiant
differences. These differences can also be observed by comparing the interaction matrices between the pro-
cesses, using the difference matrix as a guide. These significant differences indicate that a sample size of 1000
may not be sufficient to ensure the dependencies are well represented in the scenario set. Using the concept
of the difference matrix, for different sample sizes the MAE, RMSE and Bias are computed.

Figures 7.34a, 7.34b and 7.34c show that sample size is important when it comes to the preservation of
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Figure 7.34: Performance metrics for different sample sizes. Scatter points indicate the performance
of the reference sample size of J = 1000 and for the chosen sample size of J = 5000.

a: Mean Absolute Error.
b: Root Mean Square Error.

c: Bias.

the dependence structure. The round markers in figure 7.34 show the MAE, RMSE and Bias for the reference
sample size. Although the reference sample size is not meant for such a large dependence model and it may
result in adequate performance for a smaller dependency model, for this model it is not adequate. Looking
at the performance, it seems the bias stabilizes gradually, while the decrease in MAE and RMSE is initially
steep, but on this scale stabilizes around the 10,000 sample size mark. The bias seems to stabilize around
the 3000 sample size mark. Although the choice in sample size is arbitrary, here a sample size of 5000 is
chosen. This sample size results in a tractable optimization problem and it is of a similar size as the reduced
set for the price-maker model, which allows for a fair comparison. This sample size significantly improves
the preservation of dependence compared to a sample size of 1000. As no reduction is applied, all samples
are equiprobable, which means there is no need to compute probabilities.
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Figure 7.35: Copula Coupled Scenarios for 2018-06-30. Each scenario of equal color is generated
concurrently by the dependency model.

a: Scenarios for the Essent wind power forecast.
b: Scenarios for the day-ahead price.
c: Scenarios for the imbalance price.

d: Scenarios for the price-maker effect.

These trajectories are Copula coupled, meaning that each of these is extracted from a single Gaussian
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trajectory of length 96+ 24+ 96+ 96 = 312. This method of scenario generation respects the covariance a
variable has with each forecast horizon, as well as the covariance it has with all other variables’ forecast for
each forecast horizon. As mentioned in the previous section, conventionally scenarios are reduced based
on probability distance or solution stability. However, the reasoning behind it is that tractability needs to
be achieved, while keeping as much information as possible. Here the covariance matrix ensures that all
relationships are respected, meaning the scenarios don’t need to be separately coupled through a tree. Hence,
tractability is much less an issue.
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This chapter discusses the results from simulating the bidding strategies from chapter 3, using both the re-
duced scenario set and the Copula coupled scenario set from chapter 7. Section 8.1 discusses the different
strategies that are analyzed. Section 8.2 discusses the performance of all strategies under the price-taker
assumption. Section 8.3 repeats the analysis from section 8.2 under the price-maker assumption. Section
8.4 discusses the effects of the strategies on the system imbalance. Section 8.5 discusses the effects of the
strategies on the opportunity cost for the market as a whole.

8.1. Optimized Bids
Chapter 3 introduced three different methods for determining optimized bidding strategies. The first, as
discussed in section 3.1, consists of a linear optimization model which assumes that the WPP has no influence
on the imbalance price. The second, discussed in section 3.2, consists of a quadratic optimization model
which assumes the WPP has an influence on the price, which is modelled as a linear relationship. The last,
discussed in section 3.3, proposes a closed form reformulation of the model from section 3.2.
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Figure 8.1: Optimized bids from all different strategies for the Essent forecast for 2018-01-05.

An example of the strategies based on the Essent wind power forecast is shown in figure 8.1. This figure
shows that the different combinations of methods can result in quite different strategies. First, the price-taker
optimized bid using the Copula coupled scenario set, which is referred to as the price-taker Copula strategy,
results in a much longer period with a zero-bid compared to the one using the reduced scenario set, which
is referred to as the price-taker reduced strategy. Second, the price-maker optimized bid shows periods with
large differences between the one using the Copula coupled scenario set and the reduced scenario set, the
former of which is referred to as the price-maker Copula strategy and the latter as the price-maker reduced
strategy. Third, the optimized bid from the analytic model, referred to as the price-maker analytic strategy,
seems significantly different from the two bids from the price-maker optimization model. This indicates that
although the study by Bertrand and Papavasiliou [4] stated that the price-maker optimization model can be
reformulated as an analytic model, in practice results differ from the stochastic optimization version of the
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model. This is due to two assumptions underlying their reformulation. First, they state that the probability
weighted average of the scenarios of the stochastic processes in the optimization model equals their respec-
tive forecasts. This is not the case, as the scenarios have different statistical properties due to their transfor-
mations from point forecasts to scenario forecasts. Furthermore, although the scenario set resulting from
scenario reduction is statistically close to the original scenario set, due to the extent of reduction they differ
in practice. Second, they assume that the stochastic processes are independent from each other. However,
the price-maker Copula strategy assumes dependence between the processes, which results in a significant
difference.

Concerning the inputs, three different forecasts are used as inputs for the modeling of wind power as a
stochastic process, as discussed in section 7.1. Furthermore, section 7.5 presents two different methods for
constructing the scenario set, which form the input to the two optimization models from sections 3.1 and
3.2. This leaves three different models for determining the optimal bid, three different wind power forecasts
used as input and two different methods to construct the scenario tree. Furthermore, the reference strategy,
as introduced in section 2.3, represents the conventional strategy. This means that for each of the forecasts a
reference strategy, a price-taker reduced strategy, a price-taker Copula strategy, a price-maker reduced strat-
egy, a price-maker Copula strategy and a price-maker analytic strategy needs to be analyzed. This means
that 18 different strategies need to be tested and compared against each other. The aim of this analysis is to
provide insights in the value of the different inputs, but also in the different methods used.

Each of the strategies is simulated for the period from 2018-01-01 up to and including 2018-06-30. Section
8.2 analyzes the bids from the strategies using the method applied in the studies by Rahimiyan et al. (2011)
[51] and Chaves Avila et al. (2013) [9], as explained in section 2.3. Section 8.3 analyzes the strategies based on
the method introduced in section 3.4. The statistical methods for comparison are explained in section 3.4.2
and 3.4.3.

8.2. Price-Taker Analysis
The first comparison of the results between the different strategies and inputs applies the price-taker analysis.
This means that the revenues for all optimized bids are computed using the method from section 2.3, which
assumes that the price does not change as a result of a change in strategy. Table 8.1 shows the total revenues
for the different strategies and forecasts as a percentage of the reference strategy for the Essent forecast, which
was operationally used for this period.

Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 100.82 101.62 100.00
Price-Taker Reduced 111.58 111.58 111.58
Price-Taker Copula 111.67 111.79 111.63
Price-Maker Reduced 102.35 103.30 101.71
Price-Maker Copula 101.87 102.77 101.09
Analytic 101.68 102.44 100.88

Table 8.1: Total market revenue for 2018-01 - 2018-06 in % of Essent reference strategy.

Several conclusions can be drawn from table 8.1. Firstly, concerning the strategies, the price-taker strat-
egy seems to outperform all others by a large margin. Within these, the price-taker Copula strategy results
in a higher revenue than the price-taker reduced strategy. Concerning the price-maker version of the opti-
mization, the strategies using the optimization model outperform the analytic model, while the price-maker
reduced strategy outperforms the price-maker Copula strategy. Concerning the different forecasts, the Whif-
fle raw forecast outperforms all other forecasts on revenue in all strategies. The Whiffle forecast comes in
second in all strategies, while the Essent forecast comes in third in all strategies.

Figures 8.2a and 8.2b show the relationship between the MAE and the revenue. For clarity only the Es-
sent non-reference strategies are shown. This figure shows that the price-taker strategies provide a far worse
forecast compared to the others. Figure 8.2b shows that the three forecasts are very similar on the MAE, but
are quite distinct in terms of revenue. Of all strategies, the price-maker strategy using the Copula coupled
scenario set is most similar to the original forecast on MAE. As all strategies are strongly outperformed by
the price-taker strategies, the remainder of this analysis focuses on the price-taker strategies. Results for all
strategies can be found in appendix B.1.
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Figure 8.2: Mean Absolute Error (MAE) versus total price-taker revenue as a percentage of the
reference strategy using the Essent forecast.

a: Whiffle, Whiffle raw and Essent reference strategies and Essent price-maker strategies.
b: Whiffle and Whiffle raw reference strategies and all Essent strategies.

Figure 8.3 shows results for the expected difference of the mean or shift of the revenue distribution, as
introduced in section 3.4.2. The table shows the scale of the shift in € on the colorbar and the relative per-
centage of this shift in % in the cells. This indicates the difference in expected revenue per PTU, which in
this case is a quarter hour. Although the shift in revenue distribution is relatively minor, it shows that the
price-maker Copula strategy outperforms all price-maker reduced strategies. Of all forecasts, the Copula sce-
nario set built using the Whiffle raw forecast outperforms all other forecasts. Based on these observations, the
strategy from the price-taker optimization model using the Copula coupled scenario set with the Whiffle raw
forecast is likely the most valuable. It also shows that there is no difference between the different forecasts
used in the price-taker reduced strategy. This is due to the fact that there is no difference in price scenarios
between these scenario sets and the wind power forecast plays little role in the price-taker optimization.
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Figure 8.3: Expected price-taker difference of the mean for the price-taker strategies. The colorbar
indicates the difference in €. The cells indicate the value as a percentage of the scale of the colorbar,

where 100%=€1.13. The expected difference is computed for rows over columns.

Figure 8.4 shows the Conditional Value at Risk (CVaRα) scores, where α = 5%. As the CVaR5% value in-
dicates the expected value for the 5% lowest revenues, it provides insight in the risk of a strategy. Figure 8.4
shows that the difference in CVaR5% is much greater than the difference in expected mean. Again, the price-
taker strategies using the Copula coupled scenario set outperform the strategies using the reduced scenario
set. Although the differences percentage wise are much less significant compared to the expected difference
of the mean, again the strategy using the Whiffle raw forecast outperforms the other strategies. Based on
these observations, both on expected value and on risk the price-taker strategy using the Copula coupled
scenario set with the Whiffle raw forecast is to be preferred.

Figure 8.5a shows the average opportunity price the strategies obtain for their short volume, long volume
and total imbalance volume. Several observations can be made. First, the price-taker Copula strategies in-
cur a worse average opportunity price (λ∆

−
) for being short, although the one using the Whiffle raw forecast

incurs the least disadvantageous λ∆
−

. Second, the price-taker reduced strategies also incur the most advan-
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tageous average opportunity price (λ∆
+

) for being long.
Figure 8.5b shows the short volume, long volume and total volume. First, it shows that the price-taker

Copula strategies have a much smaller short volume than the strategies using the reduced set. Second, the
strategies using the Copula coupled scenario set have a much larger long volume than the strategies using
the reduced set. Thirdly, the strategies using the reduced set are much more short in total than the strategies
using the Copula coupled scenario set.

Figure 8.5c shows the total opportunity revenue from being short, long and in total. The first column
shows that the price-taker Copula strategy with the Whiffle raw forecast realized the smallest opportunity loss
from being short. The second column shows that the price-taker Copula strategy using the Whiffle and Essent
forecasts realize the highest opportunity from being long, while the Copula strategy using the Whiffle raw
forecast realizes the smallest opportunity from being long. The final column shows that on total opportunity
revenue the price-taker Copula strategy using the Whiffle raw forecast realizes the smallest loss, making it the
most valuable strategy under the price-taker assumption.
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Figure 8.5: Market quantities for the price-taker strategies. The colorbars indicate quantities in the
original unit of measurement. The cells indicate quantities as a percentage of the scale of the color

bars.
a: Average opportunity price realized for short volume, long volume and total imbalance volume.

100%=€0.86/MWh.
b: Short volume, long volume and total imbalance volume. 100%=231,122MWh.

c: Realized opportunity for being short, long and total. 100%=€130,022.

The observations from figure 8.5 can be used to explain the superior performance of price-taker Copula
strategy using the Whiffle raw forecast. First, although it realizes the least favorable opportunity price for
being long, because it realizes a relatively favorable short opportunity price and it has a relatively small short
volume, on average it realizes the most favorable opportunity price. Its difference with the other strategies
using a Copula coupled scenario set on volume is relatively minor, which leads to the conclusion that the
Whiffle raw forecast distinguishes itself by its favorable correlation with favorable opportunity prices when
short. On the other hand, the other strategies using the Copula coupled scenario set incur relatively unfa-
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vorable prices compared to the strategies using the reduced scenario set, but still perform better due to the
fact that they have a smaller short volume. This indicates that having a large short volume is unfavorable.
This makes sense, as upward regulation is more expensive than downward regulation, resulting in a rela-
tively unfavorable short opportunity price. The reason the strategies using Copula coupled scenario set are
so different is due to the dependency model. This dependency model leads to relatively low imbalance price
scenarios when the wind power scenarios are relatively high and vice versa. Because it already includes the
effect of aggregate wind power on the imbalance indirectly through this dependency model, its scenario set
is more realistic, which results in a better optimization.

To explain this influence of the Copula coupling on the result, insight is needed from sections 7.1.3 and
7.3. On average, the Essent forecast for this wind farm for 2018 is 38% of normalized power. Figure 7.4, which
shows the conditional kernel density model for the Essent forecast error, shows that this means that the error
distribution for wind power on average tends to be skewed towards higher values. On average, the forecast for
the day-ahead price λD was €42.82/MWh. Figure 7.20, which shows the conditional kernel density model for
the imbalance difference price λ∆ forecast error, shows that this means that on average it is skewed towards
higher values. Given the negative correlation between the Gaussian forecast errors of these two processes,
which is shown in figure 7.32, this means that relatively small negative forecast errors for wind power on av-
erage result in relatively large positive forecast errors for λ∆, while relatively large positive forecast errors for
wind power on average result in relatively small negative forecast errors for λ∆. This makes sense, as up-
ward regulation is more expensive than downward regulation. Combining these two observations, using the
Copula coupled scenario set the optimization is less likely to profit from being short relative to the reduced
set, while it is also less likely to profit from being long relative to the reduced set, thus placing an empiri-
cally derived penalty in the composition of the Copula coupled scenario set. This leads to more conservative
strategies with the Copula coupled scenario set. However, given the fact that the price-taker strategy only
offers 0 or P max, this conservative bidding does not occur. Hence, the conservative effect is that the price-
taker Copula strategy has a smaller short volume. This is because the coupling is non-existent in the reduced
set, meaning that negative wind power forecast errors are just as likely to be in a tree scenario with a small
positive λ∆ forecast error as a small negative λ∆ error, which is not the case in reality. On the other hand,
55% of all scenarios for λ∆ for the out-of-sample set were negative, which implies that being short pays off.
In optimization, on average, moving towards being short is thus penalized more heavily in total revenue for
the Copula coupled scenario set, while being long is penalized less, thus resulting in a smaller short position
on average for the Copula coupled scenario set.

Table 8.2 shows the correlations with the system imbalance. It shows that the price-taker strategies have
a distinctly different correlation compared to the other strategies. Furthermore, the price-taker strategy with
the Copula coupled scenario set has a lower correlation with the SI compared to the reduced price-taker
strategy, which indicates that is more likely to provide passive balancing successfully, although it is not sig-
nificantly rewarded for its increased passive balancing.

Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 0.232 0.205 0.240
Price-Taker Reduced 0.037 0.037 0.037
Price-Taker Copula -0.013 -0.014 -0.016
Price-Maker Reduced 0.174 0.156 0.191
Price-Maker Copula 0.177 0.155 0.197
Analytic 0.196 0.175 0.204

Table 8.2: Correlations between price-taker strategy imbalances and the system imbalance (SI) for
2018-01 - 2018-06.

In conclusion, under the price-taker assumption the price-taker strategies strongly outperformed all other
strategies, where the strategy with the Copula coupled set slightly outperform the strategy with the reduced
coupled set. However, as explained in chapter 3, the imbalance price is influenced by the WPP, which is why
the price-taker assumption does not hold. For this reason the next section discusses the price-maker analysis.
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8.3. Price-maker analysis
Before the results from the price-maker analysis can be discussed, first the performance of the price recon-
struction described in section 3.4 is discussed.

Figure 8.6: When NRV<0, Bias=€51.95. When NRV>0, Bias=€-120.03.
a: Scatter of λ− versus reconstructed λ−. Bias=€-28.02.
b: Scatter of λ+ versus reconstructed λ+. Bias=€-28.01

In figure 8.6 two scatter plots are shown, which show the performance of the price reconstruction algo-
rithm for 2018-01 - 2018-06, assuming no change in strategy. It shows that the price is not reconstructed
particularly well and results in a MAE of 28.02€/MWh for the λ−-reconstruction and -28.01€/MWh for the
λ+-reconstruction. This is due to two things. First, as the published supply curve is a crude approximation
to the actual supply curve, it results in plateaus in the scatter plot, which means that prices are assumed not
to change, while in practice they do change because of a smaller step size in the actual supply curve. Second,
the MDB and MIB are assumed to be the minimum and maximum values of the NRV signal at a one-minute
resolution for each PTU, which they are not in practice, due to higher resolution bids and due to grid con-
straints.

Unfortunately, the reconstructed price is biased very differently when the NRV is negative, versus when
the NRV is positive. This would strongly favor strategies that are more often long than short, as being long is
overly rewarded. Because of the poor performance of reconstructing the price using the approximated supply
curve with the approximated MDB and MIB, the reconstructed price is not used. However, as both the MDP
and MIP are published together with the SI and NRV, one can still recreate the effect of sign changes of the NRV
on the imbalance price. As shown in figure 3.5b, the sign change of the NRV is one of the strongest influences
on the price, as it causes the switching behavior. Furthermore, the imbalance price is characterized by relative
stability when the sign of the NRV does not switch between PTUs, which is due to the the supply curve being
a step function. As the price-maker bids are relatively similar to the reference strategy, as can be observed
in figures 8.1 and 8.2, it seems fair to assume no change in price other than the possible switch caused by a
change in NRV. Hence, revenues are reconstructed based on the sign of the NRV, which should allow a more
accurate depiction of real-world performance. In table 8.3 the revenues using the price-reconstruction are
shown.

Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 100.53 100.74 100.00
Price-Taker Reduced 37.24 37.24 37.24
Price-Taker Copula 55.42 55.42 55.42
Price-Maker Reduced 99.93 100.21 99.55
Price-Maker Copula 100.97 101.17 100.75
Analytic 100.32 100.54 99.65

Table 8.3: Total market revenue for 2018-01 - 2018-06 in % of Essent reference strategy.

Several conclusions can be drawn from table 8.3. First, the price-taker strategies perform significantly
worse. This is due to the mechanism by which the price is influenced: When the strategy provides too much
balancing power, the sign of the NRV changes, which turns an opportunity gain into an opportunity loss,
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thus hurting the revenue for the strategy. Of the price-maker strategies, only the price-maker Copula strategy
leads to a consequent increase in revenue compared to the reference strategies, while the other two price-
maker strategies lead to a decrease in revenue. The only successful non-reference strategy is the price-maker
Copula strategy, where the Whiffle raw forecast obtains the most significant increase in revenue. All price-
maker strategies perform worse compared to the price-taker analysis. This is due to the fact that when a
strategy provides too much balancing power, in the price-taker analysis, the sign of the NRV does not change,
while it does in the price-maker analysis. Whenever such a change occurs, the price changes strongly due to
the large step in the supply curve between decremental and incremental bids.
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Figure 8.7: Mean Absolute Error (MAE) versus total price-maker revenue as a percentage of the
reference strategy using the Essent forecast.

a: Whiffle, Whiffle raw and Essent reference strategies and Essent price-maker strategies.
b: Whiffle and Whiffle raw reference strategies and all Essent strategies.

Figures 8.7a and 8.7b shows the relationship between the MAE and the revenue. For clarity only the Essent
non-reference strategies are shown. Figure 8.7b again shows that the price-taker strategies provide a far worse
forecast compared to the others, which in the price-maker analysis leads to a strong decrease in revenue. Of
all non-reference strategies, the price-maker Copula strategy is most successful both in terms of revenue and
MAE. As the price-taker strategies are strongly outperformed by the reference and price-maker strategies, the
remainder of this analysis focuses on the reference and price-maker strategies. Results for all strategies can
be found in appendix B.2.

Figure 8.8 shows the expected differences of the mean for the reference and price-maker strategies, which
confirms the results from the table. Several observations can be made. First, it shows that only the price-
maker Copula strategy is able to consequently realize a positive shift of the revenue distribution from the
reference strategies. Second, the two Whiffle reference strategies already provide a strong increase in rev-
enue. Third, the price-maker Copula strategies are all ranked higher than the highest ranked reference strat-
egy. Based on these observations, the preferred strategy would be the price-maker Copula strategy using the
Whiffle raw forecast.

Figure 8.9 shows the Conditional Value at Risk scores, where α= 5%. Figure 8.9 shows that the difference
in CVaR5% is again much greater than the expected difference in mean. Unlike the expected difference in
mean, the price-maker Copula strategy does not always outperform the reference strategies on risk. Although
the one using the Essent forecast does outperform its reference strategy, the one using the Whiffle forecast
underperforms its reference strategy relatively strongly and the one using the Whiffle raw forecast slightly
underperforms its reference strategy. Based on these observations, the choice of strategy depends on the risk
preference of the WPP, as the price-maker Copula strategy using the Whiffle raw forecast outperforms the
Essent one on expected mean value, whereas the Essent one performs better on risk.

Figure 8.10a shows the average opportunity price the strategies obtain for their short volume, long volume
and total imbalance volume. From it, several observations can be made. First, the reference strategies incur
a worse λ∆

−
for being short compared to the optimized strategies, of which the price-maker Copula strategy

incurs the least advantageous price. Second, the reference strategy also incurs the least advantageous λ∆
+

for
being long, where the price-maker reduced and the price-maker Copula obtain the most favourable prices.

Figure 8.10b shows the short volume, long volume and total volume. First, it shows that the price-maker
Copula strategies have a significantly smaller short volume than the other optimized strategies, although
larger than the volume for all reference strategies. Second, the price-maker Copula strategies have a signif-
icantly larger long volume than the other strategies. Third, the other optimized strategies are significantly
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Figure 8.8: Expected price-maker difference of the mean for the price-maker strategies. The colorbar
indicates the difference in €. The cells indicate the value as a percentage of the scale of the colorbar,

where 100%=€8.57. The expected difference is computed for rows over columns.
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Figure 8.10: Market quantities for the reference and price-maker strategies. The colorbars indicate
quantities in the original unit of measurement. The cells indicate quantities as a percentage of the

scale of the colorbars.
a: Average opportunity price realized for short volume, long volume and total imbalance volume in

€/MWh. 100%=€25.16/MWh.
b: Short volume, long volume and totale imbalance volume in MWh. 100%=45,505.65MWh.

c: Realized opportunity for being short, long and total in €. 100%=€970,972.00.

more short in total than the reference strategy or the price-maker Copula strategy.
Figure 8.10c shows the total opportunity revenue from being short, long and in total. The first column

shows that the price-maker Copula strategy using the Whiffle raw forecast realized the smallest opportunity
loss from being short. The second column shows that the price-maker analytic strategy realizes the smallest
opportunity from being long, while the price-maker Copula strategies realize the highest opportunity loss
from being long. The final column shows that on total opportunity revenue the strategy using the Copula
coupled scenario set with the Whiffle raw forecast realizes the smallest loss, making it the most valuable
strategy under the price-maker assumption.

The reason the price-maker Copula strategies outperform the other strategies seems to lie with the fact
that the former avoid opportunity costs from being short. This is in contrast with the other non-reference
strategies as these choose to increase their short volume relative to their long volume. This is due to the fact
that the more realistic Copula scenario sets already include a penalty on being short, which was explained in
section 8.2.

Table 8.4 shows the correlations with the reconstructed system imbalance. The computation of the effect
a strategy has on the system imbalance is straightforward, as the imbalance of the operationally used Essent
reference strategy is known. The imbalance of this strategy in MW is subtracted from the SI, after which
the imbalance of the other strategies can be computed. The table shows that the price-taker strategies have
a distinctly different correlation compared to the other strategies, as they to a large extent determine the
sign and amplitude of the imbalance, which helps explain their poor eonomic performance. Concerning the
price-maker strategies, the strategy using the Copula coupled scenario set shows the smallest correlation with
the system imbalance.

In conclusion, it seems more risky and more difficult to profit from λ∆
−

than from λ∆
+

. The Copula strate-
gies recognize this and are the only ones that avoid the relatively unfavorable short opportunity prices suc-
cessfully. This leads to a smaller opportunity loss from being short while maintaining a relatively favourable
opportunity loss from being long. Of the forecasts, the Whiffle raw forecast is superior to the others, both
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Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 0.250 0.240 0.240
Price-Taker Reduced 0.489 0.489 0.489
Price-Taker Copula 0.458 0.457 0.456
Price-Maker Reduced 0.232 0.229 0.231
Price-Maker Copula 0.215 0.209 0.215
Analytic 0.233 0.226 0.224

Table 8.4: Correlations between price-maker strategy imbalances and the system imbalance (SI) for
2018-01 - 2018-06.

when used as a reference strategy and when used as input to the price-maker optimization. Based on all
observations, it seems that the Copula based optimization model is best able to reliably provide passive bal-
ancing and is therefore deemed most likely to perform well when applied operationally.

8.4. System Effects
This section discusses the physical effects of the strategies on the grid. This effect is captured by the price-
maker system imbalance (SI). As explained in 3.4.3, interest lies not with the sum of all imbalances, but with
the sum of all absolute values of the SI, as the SI is centered around zero.

Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 100.36 100.36 100.00
Price-Taker Reduced 118.92 118.92 118.92
Price-Taker Copula 112.78 112.75 112.75
Price-Maker Reduced 100.08 100.13 99.98
Price-Maker Copula 99.89 99.95 99.77
Price-Maker Analytic 100.03 100.03 99.72

Table 8.5: Reconstructed total absolute system imbalance for 2018-01 - 2018-06 in % of Essent
reference strategy.

Table 8.5 show the values for the reconstructed sum of the absolute system imbalance for all strategies.
Several conclusions can be drawn from the table. First, the price-maker Copula strategy is on average most
successful in the provision of balancing power. Given how the imbalance price is modelled in the optimiza-
tion model, the price seems to provide a good indicator on the need for passive balancing. Surprisingly,
the price-maker analytic strategy using the Essent forecast performs best in terms of total SI. Of the three
forecasts, the Essent forecast seems to consequently result in the largest decrease in imbalance. The price-
taker strategies show a significant increase in absolute imbalance, which indicates that these are not capable
of providing balancing power. As the price-taker strategies are strongly outperformed by the reference and
price-maker strategies, the remainder of this analysis focuses on the latter two. Results for all strategies can
be found in appendix B.3.

Figure 8.11 shows the expected difference in mean system imbalance per PTU. It confirms the results
of table 8.5, where the price-maker Copula strategies outperform all other strategies on average, except for
the price-maker analytic strategy using the Essent forecast. It also shows that the price-maker Copula strategy
manages to realize a greater reduction in imbalance using the Whiffle and Whiffle raw forecast than with using
the Essent forecast relative to their reference strategies. This may be caused by the specific bias remaining
in the Whiffle and Whiffle raw scenarios or by the different correlations present in its Copula model. Last,
the figure shows that based on the reduction of absolute system imbalance, the price-maker analytic strategy
using the Essent forecast is deemed superior.

Figure 8.12 shows the conditional value at risk atα= 5% (CVaR5%), which is computed differently from the
previous CVaR5%, according to equation 3.20. This means it shows the difference in expected value of the 5%
highest absolute system imbalances for each strategy. Several observations can be made. First, the reference
strategy for the Whiffle and Whiffle raw forecast show a significant decrease compared to the operationally
used Essent reference strategy. Of all strategies, the price-maker strategies using the Copula coupled scenario
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Figure 8.11: Expected price-maker difference of the mean system imbalance for the reference and
price-maker strategies. The cells indicate the value as a percentage of the scale of the colorbar, where

100%=0.75MW. The expected difference is computed for rows over columns.
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Figure 8.13: Expected price-maker difference of the volatility of the system imbalance for the
reference and price-maker strategies. The colorbar indicates the difference in MW. The cells indicate
the value as a percentage of the scale of the colorbar, where 100%=0.45MW. The expected difference

is computed for rows over columns.

set show the largest decrease relative to all other strategies, including the price-maker analytic strategy using
the Essent forecast. Also, the version using the Whiffle raw forecast significantly outperforms those using the
other forecasts, which was to be expected given its lower correlation with the system imbalance shown in
table 8.4.

Figure 8.13 shows the volatility of the strategies in MW, as computed through equation 3.21. First, it again
shows that the Whiffle and Whiffle raw reference strategies already provide an improvement over the Essent
reference strategy. Second, of all strategies, the price-maker strategy using the Copula coupled scenario set
again outperforms all other strategies.

In conclusion, the price-maker Copula strategy consistently performs best, except on expected difference
of the mean system imbalance, where it is outperformed by one specific strategy, the price-maker analytic
strategy using the Essent forecast. These results make sense because of how the price-maker optimization
model works: The model anticipates prices rather than imbalances, where high volatility and extreme im-
balances are more likely to coincide with extreme prices. This is due to the fact that in situations with high
volatility more expensive generators need to be activated, sometimes even out of merit order due to ramp-rate
constraints. Furthermore, extreme imbalances are always more expensive to balance. Of forecasts used for
the Copula coupled scenario set, the Whiffle raw outperformed the other scenario sets, which makes sense,
given its lower correlation with the system imbalance, as presented in table 8.4. In conclusion, as the opti-
mization model does not aim to counter system imbalances, but aims to anticipate expensive imbalances,
the effect of the optimization on the average system imbalance may not be beneficial, while the effect on
the cost of countering imbalances will be, given a successful optimization, such as the price-maker Copula
strategy using the Whiffle raw forecast.

8.5. System Costs
This section discussed the effects of the strategies on the total opportunity revenue of the market as a whole,
as discussed in section 3.4 and computed through equation 3.22. This revenue represents the value the mar-
ket as a whole obtains from trading on the balancing market. For each strategy this value is different, as
strategies both influence the total system imbalance and the imbalance price, through the switching of the
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sign of the NRV.

Strategy Forecast
Whiffle Whiffle Raw Essent

Reference 100.00 99.81 100.00
Price-Taker Reduced 112.38 112.38 112.38
Price-Taker Copula 106.70 106.76 106.85
Price-Maker Reduced 99.85 99.60 99.78
Price-Maker Copula 99.47 99.17 99.41
Price-Maker Analytic 99.90 99.70 99.95

Table 8.6: Reconstructed total system revenues for 2018-01 - 2018-06 in % of Essent reference strategy.

Table 8.6 shows the values for the sum of the total system opportunity revenue. As the total system op-
portunity revenue is negative, lower values indicate a positive effect. Several conclusions can be drawn from
it. Firstly, the price-taker strategies lead to significant increases in total system cost. Concerning the price-
maker strategies, the strategy using the Copula coupled scenario set is able to reduce opportunity cost for the
system as a whole the most. While this is partly due to its own increase in opportunity revenue, it is the only
one that also increases opportunity revenue for the system as a whole outside of its own increase. Of the three
forecasts, the reference strategies of the Whiffle raw forecast already has a positive impact on the market as
a whole, which increases when it is used in the price-maker Copula strategy. As the price-taker strategies are
significantly outperformed by the reference and price-maker strategies, the remainder of the analysis only
discusses the latter two. Results for all strategies can be found in appendix B.4.
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Figure 8.14: Expected price-maker difference of the mean system opportunity for the reference and
price-maker strategies. The colorbar indicates the difference in €. The cells indicate the value as a

percentage of the scale of the colorbar, where 100%=€9.71. The expected difference is computed for
rows over columns.

Figure 8.14 shows the expected difference of the mean between the relevant strategies. It shows that of
the reference strategies the one using the Whiffle raw forecast is superior in terms of opportunity revenue.
Furthermore, it shows that the application of the price-maker Copula strategy increases it further. Last, it
shows that the other price-maker strategies lead to a significant decrease in opportunity revenue.
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Figure 8.15: Expected price-maker difference of the CVaR5% for the reference and price-maker
strategies of the system opportunity. The colorbar indicates the difference in €. The cells indicate the
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Figure 8.15 shows the difference of the conditional value at risk at α=5% for the system opportunity rev-
enue. This indicates the difference in expected value of the 5% lowest revenues. First, it shows that the Whiffle
and Whiffle raw reference strategies already lead to a significant decrease in risk. Second, it shows that the
price-maker Copulastrategy is again able to further reduce risk.

In conclusion, the price-maker Copula strategy results in a significant increase in opportunity revenue for
the system as a whole. This indicates that these strategies are successful at their interaction with the imbal-
ance price. As explained in section 3.4.4, strategies can be successful in four ways. All of these ways entail
that the imbalance price is dampened, which has a positive effect on the system as a whole. Unfortunately,
this dampening could not be quantified in this analysis. However, as the optimized strategies try to provide
balancing power when the imbalance price is favorable, without regarding the effect of the change in sign
of the NRV, the decrease in revenue from the price-taker to the price-maker assumption can be explained as
follows: As the switch in NRV does not result in a switch of the imbalance price in the optimization, the opti-
mization leads to a too high volume of balancing power when relatively high imbalance prices are predicted.
This results in an unwanted sign change of the NRV, which changes the price from the MIP to the MDP and
vice-versa. As this overly aggressive provision of balancing power occurs when either the MIP is high of the
MDP is low, the switch in NRV leads to a dampened opportunity price, thus lowering total system opportunity
cost beyond the lowering of its own opportunity cost. As the price in practice will be dampened by a strategy
that is successful at providing passive balancing power, the system cost is expected to be lowered further than
shown here.



9
Conclusions, Discussion and

Recommendations

This research set out to identify the extent to which the value of wind power can be increased through im-
proved offering strategies. For this purpose, multiple strategies were constructed and simulated for the period
2018-01-01 – 2018-06-30. Chapter 3 introduced three different methods for determining optimized offering
strategies. The first, as discussed in section 3.1, consists of a linear optimization model which assumes that
the wind power producer (WPP) has no influence on the imbalance price. The second, discussed in section
3.2, consists of a quadratic optimization model which assumes the WPP does have an influence on the price,
which is modeled as a linear relationship. The last, discussed in section 3.3, is a closed form reformulation
of the model from section 3.2. Concerning the inputs, three different forecasts are used as inputs for the
modeling of wind power as a stochastic process, as discussed in section 7.1. Furthermore, section presents
two different methods for constructing the inputs to the optimization models in 7.5. These inputs in the
cases found in literature are constructed in a symmetric scenario tree using scenario reduction. This study
introduces an alternative method, which applies an extended Gaussian Copula model and compares it to the
method using the reduced scenario set. This leaves three different models for determining the optimal bid,
three different wind power forecasts used as input and two different methods to construct the scenario tree.
Furthermore, the reference strategy, as introduced in section 2.3, represents the conventional strategy, which
consists of offering the wind power forecast on the day-ahead market. Hence, for each of the forecasts this
study researched a reference strategy, a price-taker reduced strategy, a price-taker Copula strategy, a price-
maker reduced strategy, a price-maker Copula strategy and a price-maker analytic strategy. The aim of this
research was to provide insights in the value of the different inputs, but also in the different methods used.
This chapter presents conclusions on the methods themselves, the performance of the strategies and how to
assess performance, the impact these strategies have on the system and the market as a whole and how mar-
ket characteristics influence the strategies and their performance. First, 9.1 presents conclusions on the sub
research question. Second, the conclusions are tied together in order to answer the main research question
in section 9.2. Third, the research is discussed. Last, recommendations are made in 9.4.

9.1. Sub conclusions
(1) What model is best suited for constructing bidding strategies for the Belgian case?

Section 8.2 shows that the price-taker model strongly outperforms all other models under the price-taker
assumption, resulting in a strongly increased revenue compared to the reference strategy. Table 8.1 shows
that both the price-taker as well as the price-maker models successfully anticipate opportunities, as both
win more than they lose, both resulting in an increase in revenue, where the price-taker strategies result in
an overall larger expected increase in revenue. However, the price-taker strategies are characterized by more
extreme bidding, which means that the wins and losses are larger, which leads to a substantial increase in risk.
Section 2.3 concludes that a wind farm can in fact influence the imbalance price, for which the mechanism
is explained in section 3.4, while 3.1 showed that the price-taker model results in extreme bidding strategies,
which leads to large volumes being traded on the imbalance market. Section 8.3 shows that this leads to a
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strong decrease in revenue compared to the reference strategy, which is because of its negative impact on
the imbalance price. This can mainly be explained by the fact that the successful bids under the price-taker
assumption result in shifts in the sign of the NRV, resulting in fewer and smaller wins and more and larger
losses.

Section 8.3 shows that of the price-maker strategies, only the price-maker Copula strategy is able to real-
ize positive expected difference in mean, compared to the reference strategy. Furthermore, the price-maker
analytic strategies and the price-maker reduced strategies lead to a substantial increase in risk. Although all
price-maker strategies take the effect their strategy has on the imbalance price into account, both the price-
maker analytic and the price-maker reduced strategies assume that the processes of wind power, day-ahead
price, imbalance price and price-maker effect can be seen as independent from each other. The implication
of this assumption is discussed in the conclusion on the third sub question.

In conclusion, concerning specifically the difference between the price-taker and price-maker model, the
difference between them in performance, both on the expected difference in revenue as well as on risk is sub-
stantial. This shows that in a single-price imbalance market it is crucial to capture the effect on the market.
The only strategy with a positive expected difference in revenue is the price-maker Copula strategy. However,
there is a strong negative shift in performance for the winning strategy shift from the price-taker analysis to
the price-maker analysis, which requires further explanation. This shift in performance can be explained
by the fact that the shift in price by change of sign of the NRV is not incorporated in the optimization. This
means that the optimization model expects the price to behave according to the price-maker formulation of
the effect in chapter 3. This means that it expects the price to decrease or increase up to a certain optimum,
which does in fact help the system, but in practice often lead to an unfavorable sign change of the NRV. Due
to the exclusion of the influence of the sign change of the NRV, the strategy results in too aggressive passive
balancing, which hurts its own revenue. As the model does not anticipates this sign change, the price in real-
ity shifts, which makes the price very undesirable for the WPP. This means that the optimization model needs
to endogenize the NRV, MIP and MDP, which is expected to improve the results of the optimization. Fur-
thermore, this would allow the modelling of the price-maker effect in two sections, and the modelling of two
imbalance prices separately, which would significantly add resolution to the optimization. Finally, if there is
a large ramp of the NRV signal within a PTU, a switch in the sign of the mean NRV within that PTU will result
in a large effect on the price. This can be captured stochastically by separately forecasting the NRV, MIP and
MDP. Hence, the final conclusion is that for a single price market a price-maker model is needed that is able
to captures the dependencies between processes as well as its effect on the NRV.

(2) What methods can be applied to provide price forecasts?

Although many different methods can be used to generate point forecasts for electricity prices, the method
introduced in chapter 6 shows to be able to be generally applicable to all three electricity price processes.
Second, section 7.2,7.3 and 7.4 show that these forecasts can be used to construct reliable scenarios. Third,
section 8.3 shows that when used to construct offering strategies, the resulting strategies consequently lead
to both an increase in expected value and a decrease in risk for the price-maker Copula strategy. Hence, the
price forecasts generated by the method form a valuable input when used in advanced bidding strategies.
Unfortunately, the forecasts generated by the model cannot be compared to forecasts from other methods
as the comparison with other methods is left out of scope and the performance of other methods reported
in literature cannot be compared to the method applied, as market conditions differ strongly between mar-
kets and periods. In conclusion, although no comparison is made to other methods, the method introduced
shows to be able to forecast all relevant price series, which form a valuable basis for improved offering strate-
gies.

(3) What methods can be applied to transform point forecasts to the form required for stochastic optimiza-
tion?

The first modeling step of transforming point forecasts to predictive densities is carried out using a con-
ditional kernel density model. Chapter 7 shows that this method is able to reliably generate densities for
all series, making it generally applicable, although it is less successful for the price-maker effect. The sec-
ond modeling step of transforming predictive densities to scenario forecasts is carried out using a Gaussian
Copula model. This model shows that it is capable of reliably generating scenarios for wind power and the
day-ahead price. However, it is not able to capture switching behavior, which is present in the imbalance
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price and the price-maker effect. Section 4.4.2 presents an innovation in the form of constructing a scenario
set by extending the dependency model. Section 8.3 shows that this final step of the modeling framework
is crucial for real-world performance, as the only strategy that improves the expected revenue compared to
the reference strategy is the price-maker Copula strategy. The performance evaluation of the price-maker
reduced strategy showed that the modeling of the dependencies between the processes is an important step
in constructing a successful bidding strategy, as its performance both on expected value and on risk is signif-
icantly worse than the price-maker Copula strategy.

This can be explained by the fact that the covariance matrix in section 7.5.2 shows significant covariance
between the Guassian forecast errors of all series. This means that the assumption of independence un-
derlying both the reduced set as well as the price-maker analytic strategy does not hold. Furthermore, the
covariance matrix shows very specific relationships between the processes, which are empirically derived.
Hence, when these dependencies are not captured by a model, the resulting scenario set is unrealistic. This
means that for instance a scenario with a high error for the WPP is just as likely to be in a tree scenario with a
high error for the imbalance price as with a low error for the imbalance price. The Copula coupled scenario
set on the other hand has more tree scenarios with high errors for wind power with low errors for the imbal-
ance price than with high errors for the imbalance price, due to their negative covariance. As this leads to a
significant difference in the scenario set, the outcome of the optimization changes as well. For instance, even
though the scenarios of the individual processes in the scenario tree are quite similar between the reduced
set and the Copula coupled set, in the price-maker analysis the price-maker reduced strategy is significantly
outperformed.

The coupling between the wind power forecast error and the imbalance price forecast error can be seen
as indirectly capturing the effect of the aggregate wind power forecast error on the imbalance price. As the
’correlation effect’ (chapter 1) is known to be high, one can expect that a scenario where the WPP’s forecast
error is low, the imbalance price is likely to be high. Even though the price-maker optimization model does
capture the effect the wind farm itself has on the market, it assumes that this is the only effect on the im-
balance price, while the ’correlation effect’ teaches us that this is not the case. The Copula coupled scenario
set corrects for such assumptions by modeling all these relationships stochastically through the covariance
between their Gaussian errors.

In conclusion, the transformation of point forecasts to predictive forecasts can reliably be achieved for all
processes by conditional kernel density estimation. The modeling of dependencies between time steps can
be modelled by a Gaussian copula, although less successfully for processes that show switching behaviour.
However, in the case of strategic bidding, it is important to capture the dependencies between the processes,
otherwise no improvement in expected revenue or risk is to be expected.

(4) What measures are best able to judge forecasts on performance?

Concerning statistical performance, different types of forecasts should be judged differently. First, when
interest lies with the performance of a point forecast, its statistical performance can be ranked on the mean
absolute error. Concerning the more advanced predictive densities and scenario forecasts, judgment be-
comes complex. Concerning the former, an important factor is the point forecast which is used as input to
the predictive densities. Section 7.1.3 shows that the lower reliability of the Whiffle and Whiffle raw predictive
densities hurts their relative performance on the continuous ranked probability score relative to their point
forecast performance. This is mainly due to a relatively large difference in bias between the in-sample and
out-of-sample data for these two forecasts compared to the Essent forecast. This means that when models
are made to generate predictive densities, reliability is an important indicator of performance. Furthermore,
having the knowledge that the change over time of the statistical properties of the point forecast leads to a
lowered reliability means a modeler may choose for a modelling method that allows for older data to be grad-
ually forgotten. Concerning the second, section 7.3 shows that the predictive density for the imbalance price
is reliable. However, it also shows that the dependency model is less reliable in capturing the dependency be-
tween different forecast horizons. This means a modeler may choose to experiment with different methods to
capture this dependency, after which its impact can be evaluated by the price score. In conclusion, judgment
of the statistical performance is dependent on the form in which the forecast is to be used. Point forecasts
may be ranked on the mean absolute error, predictive densities on the continuous ranked probability score
and scenario forecasts on the energy or price score. However, when one is responsible for constructing these,
judgment of its inputs should not be overlooked, while assessing reliability can help guide modeling choices.

Although statistical performance is an important aspect of the different types of forecasts, sections 7.1
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and 8.3 show that when point forecasts are used with the purpose of directly determining the amount to
bid, which is the reference strategy, the performance on the main ranking criterion the mean absolute error
(MAE) is a poor indicator of economic performance. The Whiffle raw forecast performs worst on the MAE,
but strongly outperforms the other forecasts on expected difference in revenue as well as on the ability to
reduce risk. This can be explained by the fact that it has a more favorable correlation with opportunity prices.
This shows that when choosing a forecast, its performance for its specific use case should be evaluated before
a decision is made. This also applies to more advanced use cases. In scenario form the Whiffle raw scenarios
also perform worst on energy score, but in all advanced uses, the Whiffle raw scenarios lead to the highest
performance ánd to the lowest risk.

In conclusion, while statistical performance evaluation provides tools for making choices between inputs
and modeling methods, performance in its use case should always be considered when making choices, as
statistical performance is a poor indicator for performance in a market application.

(5) How can the different strategies be ranked on value?

The conclusion from sub question (1) is that a price-maker model is a requirement for achieving an im-
provement in expected revenue. Second, sub question (4) concludes that the price-maker optimization using
the Copula coupled scenario set outperforms the reduced scenario set. Third, sub question (4) concludes
that the Whiffle raw forecast outperforms all other forecasts in all strategies. Finally, the price-maker analytic
strategy is significantly outperformed by the price-maker Copula strategy, both on expected revenue as well
as on risk. The analysis in section 8.3 shows that the largest improvement on the expected revenue as well
as on reducing risk can be made by using the Whiffle raw forecast, while applying the price-maker Copula
strategy further enhances performance.

Unfortunately, this is not the final ranking, as a final ranking should incorporate the complete influence a
strategy has on the price. The method for determining such an influence applied in this study proved insuf-
ficiently reliable. Hence, a new method is required which is able to reliably reconstruct the imbalance price.

(6) What are the effects of strategic bidding on the imbalance costs of the market as a whole and the total
system imbalance?

First, section 8.4 shows that the price-maker strategies lead to a decrease in expected absolute system im-
balance, of which the price-maker analytic strategy using the Essent forecast led the largest decrease. How-
ever, the price-maker Copula strategies are best able to reduce the risk of extreme system imbalance as reduce
the volatility of the system imbalance. As more extreme system imbalances require larger balancing action,
while high volatility require high-ramp rate, it is expected that these aspects of the system imbalances repre-
sent a higher cost of balancing. As the improved offering strategies anticipate imbalance prices rather than
imbalances, it seems the price-maker Copula strategy is most successful at alleviating costly system imbal-
ances.

Concerning the total system cost of imbalances, the price-maker strategy with the Copula coupled sce-
nario set manages to reduce the expected cost and to reduce risk. As the total costs are actually decreased
beyond the decrease in cost of the WPP itself, strategic bidding shows promise for the system as a whole.
Although the dampening effect on the imbalance price was not quantified outside of the effect of the sign
change of the NRV, this effect is expected to be larger in an operational context. This is due to the fact that
successful passive balancing influences the imbalance price in two ways. First, by providing passive balanc-
ing when the cost of active balancing is high. Second, it is successful in reducing its negative influence on the
imbalance price when it loses. This means that if successful it has a dampening effect on the imbalance price,
thus resulting in lower imbalance costs for the system as a whole. The reason the price-maker Copula strategy
results in a positive influence on the opportunity cost for the market as a whole, is because the optimization
aims to take advantage of high imbalance prices, which means it often causes a sign change of the NRV in the
case of a higher likelihood of either high or low imbalance prices, which hurt its own profits, but helps the
market as a whole. If one were to incorporate the NRV in the optimization, this loss is expected to be reduced
for the WPP, while the price is still dampened, which should result in an opportunity gain for the market as a
whole without the WPP losing out.

In conclusion, the price-maker Copula strategy results in an increase in opportunity revenue for the sys-
tem as a whole, by providing passive balancing when the cost of active balancing is highest. This indicates
that these strategies are successful at their interaction with the imbalance price. As explained in section 3.4.4,
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strategies can be successful in four ways. All of these ways entail that the imbalance price is dampened, which
has a positive effect on the system as a whole. Unfortunately, this dampening could not be quantified in this
analysis.

(7) What are the effects of market specifics on the composition and performance of bidding strategies?

Section 2.2.4 discussed the main design characteristic of the short-term electricity markets in Europe and
concluded that the main differentiating characteristic lies with the pricing mechanism of the balancing mar-
ket. Section 2.2.4 discussed the specifics of imbalance price mechanisms and provided several insights. First,
for WPPs a single pricing system seems most appealing, as it provides the WPP an opportunity to compete on
the provision of balancing power and be rewarded for it. Regarding second place, it depends on the likelihood
of two prices to occur in the mixed-pricing system. If there are hardly ever two prices, while it requires much
balancing power before an opposite regulation bid is activated, a mixed-pricing system is more attractive, as
it allows for an opportunity gain from the provision of passive balancing. If there are often two prices, while
it requires little balancing power before an opposite regulation bid is activated, a dual pricing system seems
more attractive.

In terms of optimization, for the mixed-pricing system one needs to generate scenarios on the lower
bound and upper bound of the NRV within a PTU, as it indicates whether one can expect two prices. As
the NRV is the average volume of activated regulation, it provides a clear indication whether or not down-
ward or upward regulation can be expected, and thus whether or not one needs to consider two prices. As
it is common for TSOs to only publishes the upward NRV and downward NRV, but not how close it was to
activating the bids within a PTU, one should approximate the MDB and MIB from a higher resolution NRV
signal. This means that if a TSO wants to incentivize WPPs to effectively provide passive balancing power it
should provide this data at a sufficient resolution or publish the lower and upper bounds of activated bids
per PTU. This implies that for WPPs it is more beneficial to be in a single pricing system rather than a mixed
pricing system, as it simplifies operations and it can still profit when there is both upward and down regula-
tion within a PTU, thus incentivizing it to provide passive balancing. The mixed-pricing system on the other
hand punishes all those who have an imbalance when there are two prices, while it is more likely to cause
two prices to occur when one bids strategically, thus realizing the unfavorable shift in price sooner, making
it harder for wind power producers to profit. This means that the mixed pricing system provides less of an
incentive to provide balancing power. This could be seen as negative for the TSO, as the successful provision
of balancing power at the quarterhour resolution means that the imbalance price is dampened. Last, the dual
pricing system never rewards the provision of passive balancing as one is payed the day-ahead price when
one does so successfully. This means that one is incentivized to provide balancing power, but not rewarded
for doing so.

9.2. Main conclusion
The main research question is:

To what extent can BRP’s improve the market value of their wind power portfolio?

The best estimate for this case is 1.17%, which is the price-maker increase in expected mean revenue
from switching from the currently used Essent reference strategy to the price-maker Copula strategy using
the Whiffle raw forecast. This result is contingent on multiple factors. First, the forecasts used as input to
the modeling. Secondly, the modeling methods applied and third, the currently applied strategy. However, as
most WPPs currently apply the reference strategy, the framework presented is likely to be able to help WPPs
increase the value of their wind power portfolio.

9.3. Discussion
Section 1.1.3 discusses the main research gaps. The first gap relates to the choice of model. This research
contributes to this aspect in multiple ways. First, it shows that the price-taker version of the stochastic op-
timization model is entirely unsuited for a single-price market. This extends to the mixed-pricing market
studied in [9], as the Dutch market often has one-sided balancing within one PTU. For PTUs with one-sided
balancing a mixed-pricing market is equivalent to a single-pricing market, which is when results are similar
for that market. Hence, a price-taker model seems inappropriate for such a market. Second, this study fur-
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ther adds to this discussion by showing that although price recreation is difficult for the imbalance price, the
simple method of incorporating the effect of a sign change of the NRV signal in the performance evaluation
already shows that improved offering strategies often do not improve economic performance. Also, this study
emphasizes the mechanism determining the imbalance price, as it has such a large influence on the price. In
hindsight it seems inappropriate not having endogenized this effect inside the price. Not only does it explain
the switching behavior on the imbalance price, it is likely it would also alter the results from the optimization.

The second gap relates to the methods used to model the stochastic processes, used as input to the
stochastic optimization. While the studies discussed in 1.1.2 all apply simplistic methods to construct them,
this study introduces the method of extending the Gaussian Copula to directly generate a scenario tree and it
is the first case study to apply it. Although the price-taker analysis showed no improvement over conventional
methods, specifically the price-maker analytic version and the price-maker reduced version, the price-maker
analysis showed a significant difference. Furthermore, the price-maker Copula strategy showed to be the only
offering strategy to consequently improve the economic performance relative to the reference strategy. Fur-
ther still, analysis on a system level showed that it is the only one helping reduce expensive balancing action.
Hence, this study shows the empirical dependence through inspection of the covariance between Gaussian
forecast errors and shows through simulating offering strategies that respecting these dependencies is cru-
cial for strategy performance. Furthermore, application of conventional scenario reduction illustrated that
the conventional method of constructed a symmetric scenario tree dictates the number of stochastic pro-
cesses being incorporated in the optimization, which is highly limiting. The introduction of the method of
the Copula coupled scenario tree enables the incorporation of many more stochastic process inside the opti-
mization. Without this method, the recommendation to incorporate the effect of the sign change within the
model would not be possible, as the number of processes inside the optimization increases by two. Without
the method introduced in this study the exponential increase of scenario in a symmetric scenario tree would
lead to an intractable optimization.

Finally, it is important to emphasize that this study has important operational implications. First, it shows
that the method of evaluating strategy performance is crucial to prevent significant cost to the individual WPP
and the market as a whole. This is especially true for the price-taker strategies, but also for the other strategies.
Although cases in literature showed improved economic performance for the price-maker reduced strategies,
the price-maker analytic strategies and the price-taker strategies, this study found a negative impact on eco-
nomic performance for these strategies. This means that without a price-maker effect inside the optimization
specifically combined with the Copula coupled scenario set, negative performance is likely, again emphasiz-
ing the importance of proper dependency modeling.

9.4. Recommendations
Balance responsible parties tend to have demand in their portfolio, which often includes decentralized solar
power generation, which is also a stochastic process. Although demand can be forecast relatively well, the
solar power component that is included in the demand is more difficult to forecast. Furthermore, wind power
and solar power are shown to be negatively correlated, an indirect correlation is present between wind power
and demand [60]. This means that if demand with solar power either directly or indirectly were to be included
in the optimization, further gains in revenue are likely to be made. Also, conventional generation can be used
to offset imbalances of the stochastic parts of a balance responsible parties portfolio. These additions can be
realized through the concept of a virtual power plant [42]. A recommendation is not to separately optimize
bids for different parts of a balance responsible parties portfolio, although it may help to anticipate strategic
offers from optimizing demand through incorporating aggregate demand in the Copula coupled scenario
set, thus capturing the effect of demand on the imbalance price. However, the gain of optimizing over both is
likely to be larger as they have some correlation through decentralized solar power generation. As one of the
main conclusions of this research is that capturing dependencies in the scenario set increases value, this is a
clear recommendation.

To help improve the outcome of the optimization, it may be beneficial to include Gaussian forecast errors
for aggregate wind and aggregate solar in the dependency model, as this allows one to directly model the ef-
fect of the market as a whole on the imbalance price, instead of modeling it indirectly through the ’correlation
effect’. The correlation between aggregate wind and solar and the imbalance price should also to some effect
capture strategic bids from competing market parties. This is due to the fact that this correlation should
decrease when they do so successfully, as it would have a dampening effect on the imbalance price. This
dampening effect indicates that even when other parties successfully bid strategically, all other parties tend
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to profit from it, as the imbalance price is increasingly dampened by it. However, a better alternative would
be to incorporate the NRV in the optimization combined with both the MDP and MIP. This would allow the
WPP to anticipate strategic bids through the NRV, which is shown to be crucially important in determining
the revenue of a strategy. Furthermore, the current model is betting on predictions of prices in which the Es-
sent forecast had an influence. Ideally, one should remove the influence of the Essent bid from the imbalance
bid. As one makes the influence on the imbalance price endogenous in the optimization model, one should
use an imbalance price without the influence of the park. This would also allow the Copula model to better
estimate the influence of other parks. Furthermore, if the NRV is to be incorporated in the optimization, the
influence of the operational strategy should be removed from the NRV, as this would allow the WPP to model
the influence of its competitors.

Concerning the methods applied in this study, several directions for improvement are identified. Firstly,
section 7.1.3 mentioned that a difference in bias between the in-sample data and out-of-sample data for some
forecasts led to decreased reliability of their resulting predictive densities. A solution to this problem would be
to incorporate a forgetting factor, which places a weight on each sample which decreases over time. This way,
new information has a higher weight on determining the shape of the probabilistic model, thus ensuring
that changes in the statistical properties of the underlying stochastic error process are learned faster. This
also helps with the stochastic processes related to the electricity market, as the electricity market is especially
dynamic, where relationships tend to change over time.

Secondly, the kernel density model could be improved by researching the impact of cross-validation of
the kernel bandwidths, different kernel functions, variable kernel bandwidths or Copula kernel density es-
timation. Another option for improving the predictive densities lies with the application of other methods.
One promising method for estimating predictive densities consists of quantiles from a generalized additive
model, which is discussed in a study by Gaillard, Goude and Nedellec (2016) [14].

Thirdly, improvements can be made to the dependency model. Inclusion of all processes in the depen-
dency model is shown to be crucial for the performance of the optimized strategy. When it is preferable to
control risk, which is discussed below, scenarios of different processes cannot be decomposed by timestep
in the optimization as risk control is modeled using an inter-temporal constraint, which means that realistic
trajectories for all processes become crucially important [10]. As shown in sections 7.3 and 7.4, the switching
behaviour of both the imbalance price and the price-maker effect is not captured well by the Gaussian Cop-
ula model, which leaves room for improvement. However, when choosing a model with the aim to generate
more realistic trajectories, the need for modeling all dependencies should be respected, as it is shown to be
key for real-world performance.

Fifth, improvements can be made to the optimization model. Straightforward additions are the incorpo-
ration of risk control and bidding curves, as introduced by Morales, Conejo and Pérez-Ruiz (2010). These can
be modeled simply by adding additional constraints to the existing optimization model. For the modeling
of the bidding curve, it is crucial however to have scenarios for the day-ahead price. This means that strong
scenario reduction would be required without a dependency model. This combined with possible incorpora-
tion of other stochastic processes such as demand again shows the value of the dependency model. Another
possible valuable addition is the incorporation of the supply curve to the balancing market as a stochastic
process. This is done for the day-ahead market by Mitridati and Pinson who incorporate the supply curve
as a piece-wise function in their optimization model (2018) [41]. One would then also need to forecast and
model the marginal decremental bids, marginal incremental bids and the NRV as stochastic processes. As
shown in the price-maker analysis, the NRV is crucially important for the revenue of a strategy. Incorporat-
ing it into the price-maker analysis should significantly help increase revenue. Furthermore, the price-maker
effect as a linear term is an overly simplifying assumption, as the imbalance price is quite stable when the
NRV does not switch sign. Hence, a better approximation of the supply curve should help improve revenue
as well, while also providing a better tool to determine the real-world performance of a strategy. Recreating
prices using the slope of the supply curve overly influences everything a strategy does, thus resulting in an
unrealistic result for the strategy. This has important implications for the optimization, as it too uses this
principle. The main aim of this is to result in a more realistic optimization. However, this author hypothe-
sizes that changing the linear effect to a realistic piece-wise supply curve should result in much better results.
Also, an important factor determining the profit of a strategy is the sign of the NRV. As this is not taken into
account in the optimization, results are rather underwhelming. Using two prices instead of one with the NRV
in the optimization is believed to lead to significant improvements to the optimization.

Sixth, as was shown by the two Whiffle forecast, much value can be obtained by different point forecasts as
input to the modeling process. While no comparison was made on different forecasts for the electricity price
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processes, it seems likely that additional gains in revenue can be obtained by choosing different methods for
generating these forecasts. Promising methods include long short-term memory neural networks, which is
a machine learning method specifically powerful in forecasting time-series and is capable of capturing non
linearities as well as delayed effects between multiple time series, or generalized additive models, which are
capable of capturing non linear effects while remaining highly interpretable due to their additive nature.

Finally, the price-maker strategy using the Copula scenario set showed in section 8.4 that it is able to de-
crease the highest 5% of absolute system imbalances, while reducing the volatility of the system imbalance.
As the model optimizes over the imbalance price, which is an important indicator of the system imbalance, it
seems likely that performing a root-finding optimization over the system imbalance without taking revenue
into account would provide a guide to anticipate system imbalances. This could provide TSOs with a tool
to trade power on the day-ahead market to anticipate system imbalances, reducing the need of short-term
balancing actions and avoid steeper ramps at the quarterhourly resolution, helping prevent wear and tear of
the generators providing balancing action. Especially considering the strain short term balancing require-
ments place on conventional generators and the system as a whole, this could prove an important tool for
TSOs. Furthermore, the price-maker strategy using the Copula scenario set proved particularly capable of
decreasing the expected value of the highest 5% of absolute system imbalance, which may prove valuable as
the ’correlation effect’ entails that wind power producers are often wrong simultaneously, increasing the risk
of extreme imbalances.

On a macro-level it would be interesting to research the effects on individual revenues if multiple market
parties apply optimized bidding independently or through centralized optimized bidding through an external
agent. A study on this was conducted by Guerrero-Mestre, de la Niete, Contreras and Catalão for the Spanish
(dual pricing) market in 2016, who found that centralized optimization by an external agent signficantly im-
proved revenue for all [20]. In the Belgian single price case, when processes in the optimization are Copula
coupled and a forgetting factor is implemented, this author expects that when significance of the covari-
ance between the wind power forecast error and the imbalance price forecast error reduces due to successful
strategic bidding, the gain from strategic bidding reduces for individual market parties, but the dampening
effect on the imbalance price leads to an increase in revenue for all. Hence, if successful, the optimal passive
balancing from wind farms would reduce the impact of wind power forecast errors on the system imbalance.

Concerning the operational implementation of the algorithms, several recommendations are formulated.
First, the tools used to implement the algorithms are mentioned at the start of each chapter, which should en-
able experts to implement them. Furthermore, although the frameworks in this research are formulated with
the goal of empowering WPPs to implement the concepts themselves, further details and practical aspects
can be found in the referenced literature, specifically [42] and [10]. However, the framework structures the
lessons from these and multiple sources in such a way that it lends itself well for use in an operational context,
enabling both the tools to model the stochastic processes, as providing evaluation tools to improve said mod-
eling. Furthermore, the price-maker stochastic optimization model provides a starting point, from which the
operational user can depart. The concept of a virtual powerplant can then be applied to incorporate other
parts of its portfolio. This author does wish to emphasize several concrete points of improvement, before
operational implementation. First, a forgetting factor seems crucial for obtaining satisfactory reliability and
fast learning for all models, both predictive and stochastic. Second, although the price recreation algorithm
was not sufficiently reliable, the difference between the price-taker and the price-maker performance anal-
ysis shows that proper performance analysis is crucial before making any decision with regards to strategy.
Hence, before any operational implementation, a method must be found to recreate the impact a strategy
has, preferably on all price processes. One way to do so, would be to implement a stochastic method, which
incorporates the uncertainties surrounding the impact. Third, all explanatory variables used for the predic-
tive models are public and can be used operationally. Unfortunately, the aggregate wind power and aggregate
solar power forecasts are published at 11:00AM, which for some WPPs is considered too late to formulate their
bid. In this case these can be replaced by the irradiation and wind power forecasts used operationally, which
due to the ‘correlation factor’ already capture much of the influence of their aggregate counterpart. Fourth,
continuous monitoring of performance seems in order, to keep evaluate the value of strategies. It may be
appropriate to test strategies in parallel, in order to improve decision making. Fifth, in the recommendation
section, multiple methods for improvement are mentioned. One important one is the implementation of the
NRV signal as endogenous to the optimization, which allows for the WPP to anticipate strategic bidding from
competitors. Also, using the frameworks presented in chapters 4 and 5, the improvements to the stochastic
process modeling can be continuously tested, which should empower the process of continuous improve-
ment. Sixth, the addition of risk control should go hand in hand with the easily interpreted quantile forecasts
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combined with the experience of traders, to identify risks and apply appropriate risk control. For instance, a
daily dashboard could be constructed, which allows traders to visually examine the stochastic processes on a
daily basis, which helps them to gradually develop a feel for the algorithm and its worth, while also developing
appropriate levels of trust. This is an important benefit of the offering strategy, as this distinguishes it from
a black box method, making it explicitly white box. Finally, concerning professionals less familiar with the
methods applied in this thesis, it may be appropriate to acquire knowledge by consulting statistical modelers
or mathematical modelers with both experience in stochastic process modeling as in stochastic optimization,
which are the main fields of expertise required for operational implementation.
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Reflection

The purpose of this chapter is to reflect on some of the implications of the findings. First, the quality of the
decision-making is discussed in section 10.1. Second, the interests of the actors introduced in chapter 2.1.2
are discussed in section 10.2. Third, the implications on system optimality are discussed in section 10.3.
Finally, the implications on market design are discussed in section 10.4

10.1. Quality of Decision-Making
The decision-maker in the context of this research is the WPP. The decision to be made is on which amount
to be offered on the day-ahead market. The conventional strategy for this type of decision is to offer the ex-
pected amount. However, due to the stochastic nature of wind power, the WPP is forced to participate on the
balancing market, where it experiences negative market outcomes, decreasing its revenue. The fact that this
strategy of participation on the balancing market results in a negative market outcome for WPPs calls for a
more informed decision on this participation. Visual inspection of the stochastic processes involved in deter-
mining the strategy, presented as quantile forecasts in sections 7.1, 7.2, 7.3 and 7.4, already provides the WPP
with additional information, allowing for a more informed decision. Its decision will then be based on its
knowledge on the mechanics of the two electricity markets involved. As these mechanics can be summarized
mathematically and are expressed as such in the price-maker optimization model discussed in section 3.2,
the ability of such a model to honor the considerations of the WPP should inspire confidence in the model.
Furthermore, as the WPP would base its strategy on the information presented visually through the quantile
forecasts and the optimization model uses the same data similarly to derive its strategy, this again should
inspire confidence in the strategy it produces. A third factor the WPP should take into account are the cor-
relations between the stochastic processes, as this leads to a superior strategy, as was shown in section 8.3.
This can be visually presented as scatter plots, providing the WPP with a feel of all the interactions it should
take into account when determining its strategy. Seeing as the model takes these relationships into account
as well, confidence should be inspired in the strategy it produces.

Concerning the measurable quality of the strategy the model produces, this study shows that the strategy
produced by the model can be simulated, after which the quality of a strategy can be quantified, making the
confidence of the WPP in the model an informed confidence. Section 8.3 provides two measures on which
this quality can be evaluated. Unfortunately, section 8.3 also shows that the imbalance price could not be
reconstructed accurately, while the difference in results between section 8.2 and 8.3 shows that capturing
the effect a strategy has on the price strongly influences the evaluation of the quality of the decision. As
the recreated price only captures two factors that determine the price, which already strongly changes the
quality of the decision, for a definitive quality evaluation the ability to accurately recreate the imbalance
price is crucial. However, given the fact that the price-maker strategy using the Copula coupled scenario
set on average only deviates by a small amount from the Essent reference strategy and imbalance prices are
relatively stable when the sign of the NRV is stable, it does seem likely that there are multiple strategies that
increase the quality of the decision, both on risk and on expected revenue. Finally, the extension of the model
to include the control of risk through the conditional value of risk, should provide the decision-maker with
an added tool to further enhance the quality of its decision-making, as it allows the decision-maker to use its
experience on when risk-aversion is appropriate.

113
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In conclusion, the white-box nature of the model producing the strategy allows the decision-maker to
validate each step of the process. This means it aids the decision-maker in the formulation of intelligent
complex strategies without trading-off on interpretability. Unfortunately, although measures are introduced
that enable the decision-maker to evaluate the quality of the decision, without an accurate recreation of the
imbalance price, no definitive evaluation of said quality can be given.

10.2. Strategic Interests of Market Actors
Concerning the strategic interests of market actors, which are introduced in section 2.1.2, several implications
are made by the research.

The first regards the day-ahead market operator, which is interested in ensuring an effectively functioning
market. Seeing as not much changes for the day-ahead market operator, other than slightly altered bids,
which does not impact its goal of an effectively functioning market, the impact on this actor is neutral.

Second, the TSO, which is also a market operator, is responsible for maintaining grid stability at low cost.
Seeing as the price-maker Copula strategy helps stabilize the grid, while reducing the imbalance costs for
the market as a whole, the TSO is expected to welcome such a strategy. Especially since the penetration of
intermittent stochastic generation is expected to increase towards the future, which places additional strains
on the grid and balancing power.

Third, the BRP is discussed. Seeing as the BRP can have a varying composition, it makes sense to discuss
the impact on each actor separately. First, there are conventional power producers, which are interested in
obtaining the highest possible profit from their generation. In this sense, it will profit from an increase of the
day-ahead electricity price, irrespective of its marginal costs or its place in the merit order. A higher price
would result in its offer either being accepted more often, or it receiving a higher price for its generation.
This means that it stands to benefit if the WPP were to offer less on the day-ahead market, due to the price
decreasing effect of wind power (see chapter 1). Current market conditions lead to this effect, seeing as the
best strategy results in the wind power producer being long more often, as it is more expensive to be short
on average. This is due to the asymmetry in the supply curve to the balancing market. This strategy of being
long could change in the future if the supply curve would become more symmetric, e.g. through an increase
in electricity storage and demand-response.

The second type of power producers are the stochastic producers, with uncertain generation. When these
maintain a conventional bidding strategy, these stand to profit from the increase in the day-ahead market
price. Furthermore, as such a producer is forced to participate on the balancing market, where it incurs a
decrease in revenue, it also benefits from the dampened imbalance price, although the extent to which would
depend on its specific correlation with the imbalance price. When it also successfully bids strategically, it
should help increase this dampening effect, while it would also increase its own revenue through the success
of its strategy. If it were to bid strategically without success, this would mean it would not properly anticipate
strategic bids from other stochastic producers, which means it would hurt revenues for all participants to the
balancing market.

Third, there is the supplier with demand in its portfolio. When only demand is considered, there are
several expected effects. First, the increased price on the day-ahead market would increase its costs. Second,
demand is stochastic, which means it is also forced to participate on the balancing market, where it would
profit from the dampened imbalance price. Seeing as the day-ahead market is highly liquid and the balancing
market is relatively illiquid and has a steep supply curve, it is expected that the benefit from lower balancing
costs will outweigh the disadvantage incurred on the day-ahead market. This same reasoning applies to large
industrial consumers.

Last, there are the end-users, or consumers, which do not directly interact with the electricity market,
but have contracts with suppliers. As mentioned in section 2.1.2, consumers are able to switch suppliers to
obtain a more favorable price for their electricity consumption. Assuming a well-functioning market with
a high degree of competition between suppliers, some of the economic gains should eventually result in a
decreased price for consumers, meaning they incur a positive impact as well.

Concerning the regulation market and actors providing active balancing power, some decrease in its price
and the resulting revenues are to be expected. However, as the societal goal of the electricity market is to
ensure a reliable and affordable electricity supply, both of which are addressed by the bidding strategy, the
interests of the few actors that profit from increased imbalances fall behind those of the majority of market
participants and society as a whole. Furthermore, often producers providing balancing power are part of
a larger supplier whose profits are hurt by increased imbalance costs. Finally, balancing power is mostly
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provided by fossil powered conventional generators. As this implies that such carbon intensive generators’
profit is decreased at the benefit of low carbon intensive wind power, this could be considered a societal gain.

10.3. System Optimality
Concerning the optimality of the solution for the system as a whole as it currently functions, several impli-
cations can be derived from this research. To discuss the optimality, the economic theory of second best is
used [35]. This theory concerns situations where any number of optimality conditions cannot be satisfied.
These optimality conditions are what according to general equilibrium theory define a perfect market [3, 40].
These conditions are collectively referred to as perfect competition, where perfect competition should result
in a long-run equilibrium where social welfare is maximized. These conditions include but are not limited to:

• A large number of buyers and sellers

• Perfect information

• Homogeneous products

• Every participant is a price-taker

The balancing market does not seem to satisfy multiple such conditions, as not all information is available
and participants are price-makers. The theory of second best states that if such market distortions cannot be
removed, other distortions to the market may in fact lead to a more efficient market. Hence, focus should not
only lie with removing such distortions, but rather with making rational situation specific interventions.

Maximizing welfare in the case of the balancing market entails minimizing the cost from participating on
the balancing market. First, the effects of the strategies in this research are discussed. Second, possibilities
for improvement with respect to system optimality are discussed.

Focusing on the price-maker analysis of opportunity cost for the system as a whole (see section 8.5, there
are clear indications which strategies move the system away from optimality and which help the system move
towards optimality. Specifically, the price-maker strategies all help the system move towards system optimal-
ity. Of the price-maker strategies only the Copula strategy actually realizes an increase in revenue, according
to the price-maker analysis in section 8.3. As this is also the strategy that is most optimal in the aggregate, it is
likely that a strategy that is successful for the individual market participant is also successful for the system as
a whole. This is due to the fact that a successful strategy dampens the imbalance price. However, it is impor-
tant to emphasize that without a proper method for evaluating price-maker performance, system optimality
is reduced strongly. Section 8.2 shows that the price-taker strategies perform best by far, which according
to the analysis in section 8.5 results in a significantly reduced system optimality. As the common method of
the case studies in literature is to apply the price-taker analysis, there is a risk that some market participants
will in fact hurt system optimality. Hence, a first improvement would be to enable market participants to
accurately reconstruct imbalance prices, which would help their strategy and help system optimality.

Although it seems likely that the price-maker Copula strategy will help the system towards optimality,
there are multiple ways in which optimality can be increased further. First, multiple studies researched the
impact of information sharing and coordinated bidding between WPPs. In terms of information sharing, the
benefit is that the information can be used to obtain strategic information from it, or that it can help improve
aggregate forecasts. A recent study by Guerrero-Mestre, Sánchez de la Nieta, Contreras and Catalão (2016)
[20] found that jointly offering to the day-ahead market can lead to an increase in overall revenue compared
to individual offering. However, this model assumes a price-taker analysis and is carried out for the Span-
ish dual-pricing market. Furthermore, strategic-bidding is simulated in a boolean fashion, where it either is
applied or not at all for the same time period, while in real-world applications, advanced strategic bidding
is expected to evolve over time, while aggregate wind power forecasts enable wind power producers to an-
ticipate strategic bids from other wind farms, as these can be used to help forecast the NRV signal. However,
both from an economic and governance perspective it does make sense that as information scarcity decreases
through information sharing, while collective action enables more effective decisions for the aggregate, sys-
tem optimality should increase. However, in the case of the WPP the attainment of such optimality would
require a central agent orchestrating the collective action or distributed governance with complete informa-
tion sharing. Unfortunately, competing market parties are not likely to share information, while collective
action would entail that wins and losses are shared equally, which also does not seem realistic.
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To help alleviate some of the constraints and empower market participants to be more successful at their
bidding, member states of the European Union are required to publish data of aggregate wind power genera-
tion for each ptu of the following day, following EU regulation No 543/2013 [57]. This data is also used in this
study to forecast the price series. This seems like a likely source of improvement for system optimality, as it
allows WPPs to better anticipate rival bids, to improve forecasts of prices and of the NRV signal.

Still, the main conclusion is that simultaneous offering for multiple wind farms seems reasonable, as sep-
arate wind farms are highly correlated over space and time, which allows for a higher quality bid. Optimizing
bidding strategies for a large share of the market would likely lead to a higher total revenue. However, the re-
ality is that market actors are not willing to do so, as they compete and an advantage in information provides
a competitive edge. However, this research showed that strategic bids can be anticipated both through the
indirect correlation of wind power with the imbalance price and through the NRV signal, as aggregate level
forecasts are available, anticipating rival bids may be modeled accurately through the NRV signal. Lastly, as
successful strategic bids should result in a dampened electricity price, increased system optimality should be
possible without information sharing.

Furthermore, as more market players start bidding strategically, the effect on the NRV will be gradual.
Recursive learning models predicting the NRV should pick up this effect, which means that strategic bidding
of competitors should be picked up. When the market as a whole is not successful in strategic bidding, the
system imbalance and on opportunity cost for the system in will be negatively affected. However, if market
players compete on NRV, the expectation is that the effect will be beneficial for the market as a whole, as all
market players aim to optimize the NRV with regards to their specific portfolio.

Last, the anticipation of the price signal should be seen as rational behavior of the BRP and as an incentive
from the market to prevent expensive balancing action. As the successful price-maker Copula strategy is long
on average hence seems rational. The improved offering strategy concept could be seen as an increase of ra-
tionality, for which the balancing market communicates a clear signal through the imbalance price. However,
if grid constraints are increasingly binding in the activation of balancing services, it may prove more efficient
for the TSO to ban passive balancing. Especially for a large offshore WPP, which has a strong impact on system
imbalance and grid congestion. In such a case implementing locational prices would seem more efficient to
incentivize a balanced grid, which is discussed in the next section.

10.4. Short-Term Electricity Market Improvement
There are certain future developments which should increase economic efficiency for electricity markets.
First, the main market is currently the day-ahead market, which operates at a limited resolution. This re-
search showed that the limit in resolution of the day-ahead market leads to specific imbalances on the bal-
ancing market, which can be alleviated by an increased resolution. Research on the future requirements of
the electricity market indicates that higher resolution markets should help with a more efficient market [52].
Second, as some generation assets require longer term planning of their schedule, while some can deal with
very short-term schedules, research on the future needs for restructuring electricity markets [11] suggests
that multiple markets should be implemented with different horizons. For instance, a week ahead market
for base-load generators, a day-ahead market for intermediate load generators and a one-hour ahead market
for peak load markets. Ideally, these markets should have no price caps and should be energy-only markets,
where price signals reflect the true price of electricity, thus providing proper incentives to market parties.

Concerning a more fundamental aspect of the current market design in Europe, zonal pricing is believed
to decrease market efficiency as grid constraints become increasingly binding. As markets in zonal pricing
systems are cleared without taking physical constraints into account, after which generators are redispatched
to alleviate possible grid congestion, the true underlying price of grid constraints is not revealed. Having a
clear price on grid constraints would help with the spatial allocation of generation and demand assets, as well
as help identify efficient investments in grid capacity.

Combining locational pricing with short term high frequency markets should also increase market effi-
ciency. First, because the utilization of the grid is currently quite low. This is due to the process by which
grid constraints are taken into account after clearing the day-ahead market. As high frequency optimal dis-
patch including grid constraints can computationally become very intensive, it is not currently carried out
at a high frequency. This means that the grid cannot be utilized efficiently, as it in practice is always utilized
up to a level where a certain likelihood of an extreme event can still be managed by the grid. This means the
grid must be managed as if a network outage has already occurred [5]. If locational real-time prices from the
high frequency optimal dispatch were a reality, market parties would respond to these prices, thus efficiently
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alleviating any such grid constraints, which should increase the utilization of the grid.





A
Appendix

119



120 A. Appendix

A.1. Predictive Linear Model Day-Ahead Price

coef std err z P>|z| [0.025 0.975]

const -3.9077 0.112 -34.908 0.000 -4.127 -3.688
0 -0.1872 0.019 -9.796 0.000 -0.225 -0.150
1 -0.2358 0.020 -11.794 0.000 -0.275 -0.197
2 -0.2080 0.021 -9.933 0.000 -0.249 -0.167
3 -0.2970 0.021 -13.877 0.000 -0.339 -0.255
4 -0.3446 0.021 -16.192 0.000 -0.386 -0.303
5 -0.3060 0.020 -14.988 0.000 -0.346 -0.266
6 -0.2024 0.019 -10.691 0.000 -0.239 -0.165
7 -0.0754 0.019 -4.027 0.000 -0.112 -0.039
8 -0.0654 0.019 -3.389 0.001 -0.103 -0.028
9 -0.0681 0.020 -3.347 0.001 -0.108 -0.028
10 -0.0795 0.022 -3.690 0.000 -0.122 -0.037
11 -0.1054 0.023 -4.609 0.000 -0.150 -0.061
12 -0.0995 0.023 -4.327 0.000 -0.145 -0.054
13 -0.1502 0.023 -6.630 0.000 -0.195 -0.106
14 -0.2185 0.022 -10.038 0.000 -0.261 -0.176
15 -0.2951 0.021 -14.199 0.000 -0.336 -0.254
16 -0.3218 0.020 -16.113 0.000 -0.361 -0.283
17 -0.2605 0.020 -12.888 0.000 -0.300 -0.221
18 -0.1079 0.021 -5.260 0.000 -0.148 -0.068
19 0.0216 0.020 1.075 0.283 -0.018 0.061
20 -0.0078 0.020 -0.399 0.690 -0.046 0.030
21 -0.0760 0.019 -3.977 0.000 -0.113 -0.039
22 -0.0728 0.019 -3.805 0.000 -0.110 -0.035
23 -0.1445 0.019 -7.623 0.000 -0.182 -0.107
mon -0.5132 0.019 -26.635 0.000 -0.551 -0.475
tue -0.5347 0.020 -26.512 0.000 -0.574 -0.495
wen -0.5318 0.021 -25.745 0.000 -0.572 -0.491
thu -0.5162 0.020 -25.555 0.000 -0.556 -0.477
fri -0.5030 0.020 -25.610 0.000 -0.541 -0.464
sat -0.5446 0.017 -32.894 0.000 -0.577 -0.512
sun -0.7642 0.016 -47.458 0.000 -0.796 -0.733
sin1 -0.6211 0.013 -46.534 0.000 -0.647 -0.595
cos1 -0.2211 0.016 -13.620 0.000 -0.253 -0.189
sin2 -0.1689 0.012 -14.126 0.000 -0.192 -0.145
cos2 0.0873 0.008 10.613 0.000 0.071 0.103
holiday 0.0251 0.019 1.301 0.193 -0.013 0.063
vacation -0.3230 0.021 -15.442 0.000 -0.364 -0.282
Aggregate_Wind -0.0004 9.19e-06 -46.567 0.000 -0.000 -0.000
Aggregate_Solar -0.0004 1.35e-05 -26.438 0.000 -0.000 -0.000
Aggregate_Load 0.0005 7.76e-06 58.535 0.000 0.000 0.000
LF 0.0008 0.000 2.427 0.015 0.000 0.001
NG 0.0001 1.62e-05 8.852 0.000 0.000 0.000
NU -0.0001 8.31e-06 -12.084 0.000 -0.000 -8.42e-05
WA 0.0001 3.17e-05 4.362 0.000 7.62e-05 0.000
WI 0.0011 7.05e-05 16.160 0.000 0.001 0.001
Other -0.0002 4.35e-05 -4.852 0.000 -0.000 -0.000

Table A.1: Table of model coefficients for the Robust Linear Regression Model. LF = Liquid Fuel, NG =
Natural Gas, NU = Nuclear, WA = Water, WI = Wind.
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A.2. Predictive Linear Model Imbalance Price
coef std err z P>|z| [0.025 0.975]

const 0.6595 0.151 4.358 0.000 0.363 0.956
0.0 0.1906 0.049 3.913 0.000 0.095 0.286
0.25 0.0772 0.049 1.579 0.114 -0.019 0.173
0.5 -0.1285 0.049 -2.620 0.009 -0.225 -0.032
0.75 -0.3307 0.049 -6.712 0.000 -0.427 -0.234
1.0 0.3973 0.049 8.037 0.000 0.300 0.494
1.25 0.0817 0.050 1.643 0.100 -0.016 0.179
1.5 -0.1095 0.050 -2.192 0.028 -0.207 -0.012
1.75 -0.2933 0.050 -5.844 0.000 -0.392 -0.195
2.0 0.2164 0.050 4.295 0.000 0.118 0.315
2.25 0.0744 0.051 1.471 0.141 -0.025 0.174
2.5 -0.0018 0.051 -0.036 0.971 -0.101 0.098
2.75 -0.0825 0.051 -1.622 0.105 -0.182 0.017
3.0 0.1244 0.051 2.443 0.015 0.025 0.224
3.25 0.0860 0.051 1.687 0.092 -0.014 0.186
3.5 0.0947 0.051 1.854 0.064 -0.005 0.195
3.75 0.0647 0.051 1.266 0.205 -0.035 0.165
4.0 0.0586 0.051 1.148 0.251 -0.041 0.159
4.25 0.1309 0.051 2.567 0.010 0.031 0.231
4.5 0.1767 0.051 3.472 0.001 0.077 0.276
4.75 0.3152 0.051 6.211 0.000 0.216 0.415
5.0 -0.0577 0.050 -1.143 0.253 -0.157 0.041
5.25 -0.0223 0.050 -0.443 0.658 -0.121 0.076
5.5 0.1294 0.050 2.582 0.010 0.031 0.228
5.75 0.2672 0.050 5.363 0.000 0.170 0.365
6.0 -0.3578 0.049 -7.263 0.000 -0.454 -0.261
6.25 -0.1415 0.049 -2.894 0.004 -0.237 -0.046
6.5 0.2697 0.049 5.541 0.000 0.174 0.365
6.75 0.4490 0.049 9.257 0.000 0.354 0.544
7.0 -0.2111 0.048 -4.362 0.000 -0.306 -0.116
7.25 -0.1084 0.048 -2.243 0.025 -0.203 -0.014
7.5 0.2565 0.048 5.309 0.000 0.162 0.351
7.75 0.3063 0.048 6.340 0.000 0.212 0.401
8.0 -0.0279 0.048 -0.578 0.563 -0.123 0.067
8.25 -0.1659 0.048 -3.429 0.001 -0.261 -0.071
8.5 0.0427 0.048 0.880 0.379 -0.052 0.138
8.75 0.0443 0.049 0.913 0.361 -0.051 0.139
9.0 0.0699 0.049 1.436 0.151 -0.026 0.165
9.25 -0.0298 0.049 -0.610 0.542 -0.126 0.066
9.5 0.0589 0.049 1.201 0.230 -0.037 0.155
9.75 -0.0938 0.049 -1.903 0.057 -0.190 0.003
10.0 0.1696 0.049 3.430 0.001 0.073 0.266
10.25 0.0068 0.050 0.138 0.891 -0.090 0.104
10.5 0.0020 0.050 0.040 0.968 -0.096 0.100
10.75 -0.1271 0.050 -2.538 0.011 -0.225 -0.029
11.0 0.0490 0.050 0.974 0.330 -0.050 0.148
11.25 0.0401 0.051 0.794 0.427 -0.059 0.139
11.5 0.0834 0.051 1.642 0.101 -0.016 0.183
11.75 0.0027 0.051 0.054 0.957 -0.097 0.103
12.0 0.2735 0.051 5.380 0.000 0.174 0.373
12.25 -0.0326 0.051 -0.642 0.521 -0.132 0.067
12.5 -0.0232 0.051 -0.456 0.648 -0.123 0.076
12.75 -0.0563 0.051 -1.108 0.268 -0.156 0.043
13.0 0.1907 0.051 3.757 0.000 0.091 0.290
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coef std err z P>|z| [0.025 0.975]

13.25 0.0611 0.051 1.207 0.227 -0.038 0.160
13.5 0.0428 0.051 0.847 0.397 -0.056 0.142
13.75 -0.1337 0.050 -2.652 0.008 -0.233 -0.035
14.0 -0.0929 0.050 -1.848 0.065 -0.191 0.006
14.25 -0.0457 0.050 -0.913 0.361 -0.144 0.052
14.5 -0.0153 0.050 -0.305 0.760 -0.113 0.083
14.75 -0.0199 0.050 -0.401 0.689 -0.117 0.078
15.0 -0.1126 0.050 -2.269 0.023 -0.210 -0.015
15.25 -0.0323 0.049 -0.653 0.514 -0.129 0.065
15.5 0.0730 0.049 1.482 0.138 -0.024 0.170
15.75 0.0210 0.049 0.427 0.669 -0.075 0.117
16.0 -0.2138 0.049 -4.367 0.000 -0.310 -0.118
16.25 -0.0712 0.049 -1.459 0.145 -0.167 0.024
16.5 0.1001 0.049 2.055 0.040 0.005 0.196
16.75 0.3035 0.049 6.229 0.000 0.208 0.399
17.0 -0.5145 0.049 -10.558 0.000 -0.610 -0.419
17.25 -0.1779 0.049 -3.646 0.000 -0.274 -0.082
17.5 0.2955 0.049 6.039 0.000 0.200 0.391
17.75 0.4898 0.049 9.990 0.000 0.394 0.586
18.0 -0.1985 0.049 -4.049 0.000 -0.295 -0.102
18.25 -0.0969 0.049 -1.975 0.048 -0.193 -0.001
18.5 0.0557 0.049 1.137 0.256 -0.040 0.152
18.75 0.0061 0.049 0.124 0.901 -0.090 0.102
19.0 0.1435 0.049 2.931 0.003 0.048 0.239
19.25 0.0677 0.049 1.386 0.166 -0.028 0.163
19.5 -0.1602 0.049 -3.282 0.001 -0.256 -0.065
19.75 -0.2864 0.049 -5.876 0.000 -0.382 -0.191
20.0 0.3010 0.049 6.181 0.000 0.206 0.396
20.25 0.1699 0.049 3.494 0.000 0.075 0.265
20.5 -0.1209 0.049 -2.490 0.013 -0.216 -0.026
20.75 -0.3967 0.049 -8.175 0.000 -0.492 -0.302
21.0 0.1078 0.048 2.222 0.026 0.013 0.203
21.25 0.0268 0.048 0.552 0.581 -0.068 0.122
21.5 -0.2671 0.048 -5.511 0.000 -0.362 -0.172
21.75 -0.4143 0.048 -8.548 0.000 -0.509 -0.319
22.0 -0.2735 0.048 -5.641 0.000 -0.368 -0.178
22.25 0.0732 0.049 1.508 0.131 -0.022 0.168
22.5 0.0537 0.048 1.107 0.268 -0.041 0.149
22.75 -0.1388 0.048 -2.863 0.004 -0.234 -0.044
23.0 0.4995 0.048 10.301 0.000 0.404 0.595
23.25 0.1507 0.048 3.110 0.002 0.056 0.246
23.5 -0.4362 0.049 -8.994 0.000 -0.531 -0.341
23.75 -0.5626 0.049 -11.581 0.000 -0.658 -0.467
mon -0.0498 0.026 -1.924 0.054 -0.100 0.001
tue -0.0081 0.027 -0.298 0.765 -0.061 0.045
wen 0.0389 0.028 1.405 0.160 -0.015 0.093
thu 0.0453 0.027 1.674 0.094 -0.008 0.098
fri 0.1302 0.026 4.939 0.000 0.079 0.182
sat 0.2389 0.022 10.724 0.000 0.195 0.283
sun 0.2640 0.022 12.198 0.000 0.222 0.306
sin1 0.1048 0.018 5.950 0.000 0.070 0.139
cos1 -0.0373 0.021 -1.745 0.081 -0.079 0.005
sin2 -0.1310 0.016 -8.305 0.000 -0.162 -0.100
cos2 0.0403 0.011 3.711 0.000 0.019 0.062
holiday -0.1394 0.025 -5.484 0.000 -0.189 -0.090
vacation 0.3133 0.028 11.354 0.000 0.259 0.367
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coef std err z P>|z| [0.025 0.975]
Aggregate_Wind 9.843e-05 1.21e-05 8.124 0.000 7.47e-05 0.000
Aggregate_Solar -0.0001 1.78e-05 -7.892 0.000 -0.000 -0.000
Aggregate_Load -9.504e-05 1.02e-05 -9.352 0.000 -0.000 -7.51e-05
LF -0.0007 0.000 -1.531 0.126 -0.001 0.000
NG 6.481e-05 2.13e-05 3.042 0.002 2.3e-05 0.000
NU 8.254e-05 1.1e-05 7.528 0.000 6.1e-05 0.000
WA -0.0002 4.18e-05 -5.267 0.000 -0.000 -0.000
WI -0.0004 9.3e-05 -4.206 0.000 -0.001 -0.000
Other -0.0003 5.74e-05 -4.369 0.000 -0.000 -0.000

Table A.2: Table of model coefficients for the Robust Linear Regression Model. LF = Liquid Fuel, NG =
Natural Gas, NU = Nuclear, WA = Water, WI = Wind.
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A.3. Predictive Linear Model Price-Maker Effect
coef std err z P>|z| [0.025 0.975]

const -4.1406 0.136 -30.525 0.000 -4.406 -3.875
0.0 0.1286 0.044 2.946 0.003 0.043 0.214
0.25 0.0718 0.044 1.638 0.101 -0.014 0.158
0.5 0.0658 0.044 1.497 0.134 -0.020 0.152
0.75 0.1221 0.044 2.765 0.006 0.036 0.209
1.0 0.0658 0.044 1.484 0.138 -0.021 0.153
1.25 0.0345 0.045 0.775 0.439 -0.053 0.122
1.5 0.0569 0.045 1.271 0.204 -0.031 0.145
1.75 0.1104 0.045 2.455 0.014 0.022 0.199
2.0 0.0970 0.045 2.146 0.032 0.008 0.185
2.25 0.0935 0.045 2.063 0.039 0.005 0.182
2.5 0.1170 0.045 2.573 0.010 0.028 0.206
2.75 0.1410 0.046 3.093 0.002 0.052 0.230
3.0 0.1421 0.046 3.112 0.002 0.053 0.232
3.25 0.1607 0.046 3.515 0.000 0.071 0.250
3.5 0.1752 0.046 3.828 0.000 0.086 0.265
3.75 0.1780 0.046 3.887 0.000 0.088 0.268
4.0 0.2020 0.046 4.415 0.000 0.112 0.292
4.25 0.2090 0.046 4.573 0.000 0.119 0.299
4.5 0.2069 0.046 4.534 0.000 0.117 0.296
4.75 0.2074 0.045 4.559 0.000 0.118 0.297
5.0 0.2671 0.045 5.902 0.000 0.178 0.356
5.25 0.2351 0.045 5.213 0.000 0.147 0.324
5.5 0.1912 0.045 4.258 0.000 0.103 0.279
5.75 0.1818 0.045 4.071 0.000 0.094 0.269
6.0 0.2186 0.044 4.949 0.000 0.132 0.305
6.25 0.1861 0.044 4.244 0.000 0.100 0.272
6.5 0.1340 0.044 3.072 0.002 0.048 0.220
6.75 0.0883 0.043 2.032 0.042 0.003 0.174
7.0 0.1192 0.043 2.747 0.006 0.034 0.204
7.25 0.0358 0.043 0.827 0.408 -0.049 0.121
7.5 -0.0083 0.043 -0.192 0.848 -0.093 0.077
7.75 -0.0618 0.043 -1.426 0.154 -0.147 0.023
8.0 -0.1165 0.043 -2.689 0.007 -0.201 -0.032
8.25 -0.1250 0.043 -2.882 0.004 -0.210 -0.040
8.5 -0.1434 0.043 -3.300 0.001 -0.229 -0.058
8.75 -0.1400 0.044 -3.216 0.001 -0.225 -0.055
9.0 -0.1648 0.044 -3.773 0.000 -0.250 -0.079
9.25 -0.1664 0.044 -3.799 0.000 -0.252 -0.081
9.5 -0.1837 0.044 -4.175 0.000 -0.270 -0.097
9.75 -0.1717 0.044 -3.887 0.000 -0.258 -0.085
10.0 -0.1296 0.044 -2.924 0.003 -0.216 -0.043
10.25 -0.1302 0.044 -2.928 0.003 -0.217 -0.043
10.5 -0.1528 0.045 -3.420 0.001 -0.240 -0.065
10.75 -0.1548 0.045 -3.450 0.001 -0.243 -0.067
11.0 -0.1762 0.045 -3.907 0.000 -0.265 -0.088
11.25 -0.1690 0.045 -3.728 0.000 -0.258 -0.080
11.5 -0.1817 0.046 -3.988 0.000 -0.271 -0.092
11.75 -0.1766 0.046 -3.865 0.000 -0.266 -0.087
12.0 -0.1142 0.046 -2.507 0.012 -0.204 -0.025
12.25 -0.1448 0.046 -3.182 0.001 -0.234 -0.056
12.5 -0.1403 0.046 -3.081 0.002 -0.230 -0.051
12.75 -0.1430 0.046 -3.140 0.002 -0.232 -0.054
13.0 -0.1806 0.045 -3.969 0.000 -0.270 -0.091



A.3. Predictive Linear Model Price-Maker Effect 125

coef std err z P>|z| [0.025 0.975]

13.25 -0.1611 0.045 -3.548 0.000 -0.250 -0.072
13.5 -0.1414 0.045 -3.120 0.002 -0.230 -0.053
13.75 -0.1268 0.045 -2.805 0.005 -0.215 -0.038
14.0 -0.1551 0.045 -3.443 0.001 -0.243 -0.067
14.25 -0.1460 0.045 -3.251 0.001 -0.234 -0.058
14.5 -0.1567 0.045 -3.501 0.000 -0.244 -0.069
14.75 -0.1249 0.045 -2.799 0.005 -0.212 -0.037
15.0 -0.1308 0.044 -2.940 0.003 -0.218 -0.044
15.25 -0.1289 0.044 -2.907 0.004 -0.216 -0.042
15.5 -0.1370 0.044 -3.102 0.002 -0.224 -0.050
15.75 -0.1403 0.044 -3.188 0.001 -0.227 -0.054
16.0 -0.1270 0.044 -2.894 0.004 -0.213 -0.041
16.25 -0.1381 0.044 -3.155 0.002 -0.224 -0.052
16.5 -0.1453 0.044 -3.326 0.001 -0.231 -0.060
16.75 -0.1540 0.044 -3.525 0.000 -0.240 -0.068
17.0 -0.1923 0.044 -4.402 0.000 -0.278 -0.107
17.25 -0.2510 0.044 -5.739 0.000 -0.337 -0.165
17.5 -0.2800 0.044 -6.385 0.000 -0.366 -0.194
17.75 -0.2840 0.044 -6.462 0.000 -0.370 -0.198
18.0 -0.3192 0.044 -7.262 0.000 -0.405 -0.233
18.25 -0.3195 0.044 -7.269 0.000 -0.406 -0.233
18.5 -0.3208 0.044 -7.300 0.000 -0.407 -0.235
18.75 -0.3033 0.044 -6.906 0.000 -0.389 -0.217
19.0 -0.2746 0.044 -6.257 0.000 -0.361 -0.189
19.25 -0.2559 0.044 -5.843 0.000 -0.342 -0.170
19.5 -0.2481 0.044 -5.671 0.000 -0.334 -0.162
19.75 -0.2278 0.044 -5.213 0.000 -0.313 -0.142
20.0 -0.1314 0.044 -3.010 0.003 -0.217 -0.046
20.25 -0.1031 0.044 -2.365 0.018 -0.189 -0.018
20.5 -0.1104 0.044 -2.536 0.011 -0.196 -0.025
20.75 -0.0592 0.044 -1.360 0.174 -0.144 0.026
21.0 -0.0079 0.043 -0.182 0.856 -0.093 0.077
21.25 0.0046 0.043 0.106 0.916 -0.081 0.090
21.5 0.0130 0.043 0.299 0.765 -0.072 0.098
21.75 0.0456 0.043 1.050 0.294 -0.040 0.131
22.0 0.0834 0.043 1.920 0.055 -0.002 0.169
22.25 0.0395 0.043 0.909 0.364 -0.046 0.125
22.5 0.0379 0.043 0.872 0.383 -0.047 0.123
22.75 0.0621 0.043 1.429 0.153 -0.023 0.147
23.0 0.0602 0.043 1.386 0.166 -0.025 0.145
23.25 0.0759 0.043 1.747 0.081 -0.009 0.161
23.5 0.1025 0.043 2.357 0.018 0.017 0.188
23.75 0.1690 0.044 3.881 0.000 0.084 0.254
mon -0.5112 0.023 -22.053 0.000 -0.557 -0.466
tue -0.5117 0.024 -21.110 0.000 -0.559 -0.464
wen -0.5028 0.025 -20.257 0.000 -0.551 -0.454
thu -0.6431 0.024 -26.488 0.000 -0.691 -0.595
fri -0.6167 0.024 -26.099 0.000 -0.663 -0.570
sat -0.7598 0.020 -38.039 0.000 -0.799 -0.721
sun -0.5954 0.019 -30.693 0.000 -0.633 -0.557
sin1 -0.1149 0.016 -7.279 0.000 -0.146 -0.084
cos1 -0.1189 0.019 -6.206 0.000 -0.156 -0.081
sin2 -0.3304 0.014 -23.362 0.000 -0.358 -0.303
cos2 -0.5697 0.010 -58.553 0.000 -0.589 -0.551
holiday 0.0450 0.023 1.975 0.048 0.000 0.090
vacation 0.4560 0.025 18.435 0.000 0.408 0.505
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coef std err z P>|z| [0.025 0.975]

Aggregate_Wind -0.0001 1.09e-05 -13.544 0.000 -0.000 -0.000
Aggregate_Solar -6.844e-05 1.59e-05 -4.299 0.000 -9.96e-05 -3.72e-05
Aggregate_Load 0.0003 9.11e-06 28.400 0.000 0.000 0.000
LF 0.0136 0.000 35.307 0.000 0.013 0.014
NG 0.0002 1.91e-05 8.821 0.000 0.000 0.000
NU -6.968e-05 9.83e-06 -7.089 0.000 -8.89e-05 -5.04e-05
WA -0.0010 3.75e-05 -26.803 0.000 -0.001 -0.001
WI -0.0006 8.34e-05 -6.829 0.000 -0.001 -0.000
Other 0.0010 5.15e-05 18.926 0.000 0.001 0.001

Table A.3: Table of model coefficients for the Robust Linear Regression Model. LF = Liquid Fuel, NG =
Natural Gas, NU = Nuclear, WA = Water, WI = Wind.
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B.1. Price-Taker Analysis
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Figure B.1: Expected price-taker difference of the mean for all strategies. The cells indicate the value
as a percentage of the scale of the colorbar, where 100%=€61.83. The expected difference is

computed for rows over columns.
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Figure B.2: Price-taker difference of CVaR5% for all strategies. The cells indicate the value as a
percentage of the scale of the colorbar, where 100%=€2222.75. The expected difference is computed

for rows over columns.
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Figure B.3: Market quantities for all strategies. The colorbars indicate quantities in the original unit
of measurement. The cells indicate quantities as a percentage of the scale of the colorbars.

a: Average opportunity price realized for short volume, long volume and total imbalance volume in
€/MWh. 100%=€24.69/MWh.

b: Short volume, long volume and totale imbalance volume in MWh. 100%=231,122MWh.
c: Realized opportunity for being short, long and total in €. 100%=€996,021.
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Figure B.4: Expected price-maker difference of the mean for all strategies. The colorbar indicates the
difference in €. The cells indicate the value as a percentage of the scale of the colorbar, where

100%=€337.83. The expected difference is computed for rows over columns.
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Figure B.5: Price-taker difference of CVaR5% for all strategies. The colorbar indicates the difference in
€. The cells indicate the value as a percentage of the scale of the colorbar, where 100%=€2,383.95. The

expected difference is computed for rows over columns.
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Figure B.6: Market quantities for all strategies. The colorbars indicate quantities in the original unit
of measurement. The cells indicate quantities as a percentage of the scale of the colorbars.

a: Average opportunity price realized for short volume, long volume and total imbalance volume in
€/MWh. 100%=€25.16/MWh.

b: Short volume, long volume and totale imbalance volume in MWh. 100%=231,122MWh.
c: Realized opportunity for being short, long and total in €. 100%=€,5838,701.28.

B.3. System Effects
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Figure B.7: Expected price-maker difference of the mean system imbalance for the reference and
price-maker strategies. The colorbar indicates the difference in MW. The cells indicate the value as a
percentage of the scale of the colorbar, where 100%=22.72MW. The expected difference is computed

for rows over columns.
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Figure B.8: Expected price-maker difference of the CVaR5% of the system imbalance for the reference
and price-maker strategies. The colorbar indicates the difference in MW. The cells indicate the value

as a percentage of the scale of the colorbar, where 100%=26.41MW. The expected difference is
computed for rows over columns.
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Figure B.9: Expected price-maker difference of the volatility of the system imbalance for the
reference and price-maker strategies. The colorbar indicates the difference in MW. The cells indicate
the value as a percentage of the scale of the colorbar, where 100%=8.19MW. The expected difference

is computed for rows over columns.
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B.4. System Costs
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Figure B.10: Expected price-maker difference of the mean system opportunity for the reference and
price-maker strategies. The colorbar indicates the difference in €. The cells indicate the value as a

percentage of the scale of the colorbar, where 100%=€155.20. The expected difference is computed
for rows over columns.
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Figure B.11: Expected price-maker difference of the CVaR5% for the reference and price-maker
strategies. The colorbar indicates the difference in €. The cells indicate the value as a percentage of

the scale of the colorbar, where 100%=€1,133.41.
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