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A B S T R A C T

Wind loading is an essential aspect in the design and assessment of long-span bridges, but it
is often not well-known and cannot be measured directly. Most structural health monitoring
systems can easily measure structural responses at discrete locations using accelerometers. This
data can be combined with reduced-order modal models in Kalman filter-based algorithms for
an inverse estimation of wind loads and system states. As a further development, this work
investigates the incorporation of Gaussian process latent force models (GP-LFMs), which can
characterize the evolution of the wind loading. The Hardanger Bridge, a 1310 m long suspension
bridge instrumented with a monitoring system for wind and vibrations, is used as a case study.
It is shown how the LFMs can be enriched with physical information about the stochastic wind
loads using monitoring anemometer data and aerodynamic coefficients from wind tunnel tests.
It is found that the estimates of the modal wind loads and modal states obtained from a Kalman
filter and Rauch–Tung–Striebel smoother are stable for acceleration output only, thus avoiding
the accumulation of errors. The proposed approach demonstrates how physical or environmental
data can be injected as valuable information for global monitoring strategies and virtual sensing
in bridges.

. Introduction

Live loadings on large structures such as bridges, tall buildings, and wind turbines are not always well-known due to their
tochastic nature, limited information concerning site-specific conditions, and other uncertainties in the existing load models.
educing these uncertainties is an important objective in structural health monitoring (SHM)-based infrastructure management [1],
s the loads are important inputs in calculations for fatigue, extreme values, and serviceability criteria. Since direct measurements
f loads are not viable for large-scale structures in operation, an appealing alternative is indirect force identification by using a
imited number of measured structural responses to reconstruct the forces and the states in a dynamic system.

To this end, a number of methods have been proposed. In the past decade, broad attention has been given to different Kalman
ilter variants for state and input estimation [2–7]. A more recent proposal was the fusion of latent force models (LFMs) [8] into
lassic force identification, which considers the unknown forces as random Gaussian processes that can be characterized by tunable
ovariance functions acting as a non-parametric representation of the underlying physics behind the dynamic evolution of the loads.
he LFM approach also brings new light to a key challenge in force identification, namely, the instabilities related to filtering based
n acceleration output only, for which remedies have also been proposed in other notable works [2,9,10]. The use of LFMs has also
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been extended to system identification for structures with unknown inputs [11], as well as proposals for bridge response estimation
from on-vehicle measurements [12].

In this paper, the focus is placed on the application of LFMs in the estimation of wind loads acting on long-span bridges, where the
ind-induced response always persistently remains a critical factor due to the low natural frequencies of such structures. In the field
f wind engineering, wind load models used in bridge design are mainly based on theoretical formulas, environmental data, wind
unnel tests, and computational simulations. However, these data sources do not always account for the environmental complexities
eading to the actual load conditions on a specific bridge. This can lead to discrepancies between predicted and measured behaviours
s noted in several studies [13–20], indicating gaps in the models. Missing environmental data can also be the culprit since dense
ind measurements are difficult for very large structures. The wind load inputs are rarely precisely known for real structures,
lthough their effect is observable and typical in the form of dynamic responses due to turbulence or vortex-induced vibrations that
an be measured at discrete locations; accelerometers are the most popular option for recording these observations. The numerous
ncertainties in wind loading, as well as moving loads in bridges with heavy traffic volume, have led to a high number of monitoring
ystems being installed on long-span bridges; see, for instance, the reviews in [21–24].

In the present investigation, data collected from the Hardanger Bridge is used [25]. This bridge has been a subject of previous
tudies on similar topics [26,27]. As a further development, aerodynamic data from wind tunnel tests and environmental data in
he form of measured wind velocities from the bridge monitoring system are used to augment the LFMs with information about the
tochastic wind loading. The use of LFMs in a force identification context provides a flexible way to impose physics-based temporal
r frequency characteristics of the loading such as smoothness or periodicity. In recent terminology, the term physics-informed
achine learning has been used to describe the grey-box approach where data-based machine learning algorithms are enriched
ith physical relations; see, for example, [28]. Finally, the acceleration response measurements are used in a Kalman filter and

moother for identification of the modal wind loads and states.
Section 2 presents classic formulations for wind loading on bridges and then introduces the LFM theory. Section 3 presents the

ase study, going through the steps of wind field analysis, generating the LFM for the wind loads, and finally performing the state
nd load estimation. Conclusions are given in Section 4.

. Theoretical background

.1. Classic modelling of static and buffeting wind loads on bridge decks

This section presents the main equations for the wind loading on bridges by assuming linearized theory for the wind-induced
uffeting response (i.e. dynamics due to turbulent wind), which we will refer to as the classic wind model (CWM). For a more
omprehensive background on modelling of wind loads on structures, the reader is referred to books on this subject [29–31]. The
inear equation of motion for the response 𝐫(𝑡) reads as follows:

𝐌0�̈�(𝑡) + (𝐂0 − 𝐂ae)�̇�(𝑡) + (𝐊0 −𝐊ae)𝐫(𝑡) = 𝐟b(𝑡) (1)

where subscripts 0 and 𝑎𝑒 respectively denote contributions from still-air structural properties and aeroelastic properties. The
subscript 𝑏 for the load vector denote buffeting (fluctuating) forces. The self-excited forces are taken into account by the stiffness and
damping matrices 𝐊ae and 𝐂ae, which are assumed to be constant for a time window with stationary wind conditions. For bridges
mainly loaded by wind actions, the response is dominated by low-frequent vibrations. In the model order reduction 𝐫(𝑡) ≈ Φ𝐳(𝑡),
a selected set of nm still-air vibration modes (solved from the still-air undamped eigenvalue problem considering 𝐌0 and 𝐊0) are
used as generalized shape functions. The generalized equation of motion then reads:

�̃�0�̈�(𝑡) + (�̃�0 − �̃�ae)�̇�(𝑡) + (�̃�0 − �̃�ae)𝐳(𝑡) = ΦT𝐟b(𝑡) (2)

where the notation ̃(⋅) denotes the generalized system matrices. By introducing the modal state vector 𝐱(𝑡) = [𝐳(𝑡)T �̇�(𝑡)T]T, the
quation above can be reformulated in state-space form as follows:

�̇�(𝑡) = 𝐀c𝐱(𝑡) + 𝐁c𝐩(𝑡) (3)

𝐀c =
[

𝟎 𝐈
−�̃�−1

0 (�̃�0 − �̃�ae) −�̃�−1
0 (�̃�0 − �̃�ae)

]

, 𝐁c =
[

𝟎
�̃�−1

0

]

(4)

where 𝐩(𝑡) = ΦT𝐟b(𝑡) are designated as the modal buffeting loads. To ease verification, the effective modal properties are given by
the eigenvalue problem:

[

𝐀c − 𝜆𝑗𝐈
]

[

𝝍 𝑗
𝝍 𝑗𝜆𝑗

]

= 𝟎 and
[

𝐀c − 𝜆∗𝑗 𝐈
]

[

𝝍∗
𝑗

𝝍∗
𝑗 𝜆

∗
𝑗

]

= 𝟎 (5)

here the eigenvalues have the complex conjugate form 𝜆𝑗 , 𝜆∗𝑗 = −𝜉𝑗𝜔𝑗 ± 𝑖𝜔𝑗

√

1 − 𝜉2𝑗 , so that the undamped natural frequency (in

rad/s) is 𝜔𝑗 = |𝜆𝑗 | and the critical damping ratio is 𝜉𝑗 = −Real(𝜆𝑗 )∕|𝜆𝑗 |. 𝝍 𝑗 alters the still-air mode shapes Φ so that the in-wind
modes are given by [𝝍 ,… ,𝝍 ]Φ.
2

1 nm
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Fig. 1. Wind velocity field and resulting buffeting loads acting on the bridge deck.

Next, the classic theory for the modelling of wind loads due to turbulence is considered. In accordance with Fig. 1 the distributed
buffeting forces acting on the bridge deck are given by [30]:

⎡

⎢

⎢

⎣

𝑞b,𝑦(𝑥, 𝑡)
𝑞b,𝑧(𝑥, 𝑡)
𝑞b,𝜃(𝑥, 𝑡)

⎤

⎥

⎥

⎦

= 1
2
𝜌�̄� (𝑥, 𝑡)𝐵

⎡

⎢

⎢

⎣

2(𝐷∕𝐵)�̄�𝐷 (𝐷∕𝐵)𝐶 ′
𝐷 − �̄�𝐿

2�̄�𝐿 𝐶 ′
𝐿 + (𝐷∕𝐵)�̄�𝐷

2𝐵�̄�𝑀 𝐵𝐶 ′
𝑀

⎤

⎥

⎥

⎦

[

𝑢(𝑥, 𝑡)
𝑤(𝑥, 𝑡)

]

(6)

or written compactly as:

𝐪b(𝑥, 𝑡) = 𝐁𝐪(𝑥)𝐯(𝑥, 𝑡) (7)

where 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) are the alongwind and vertical turbulence components. Furthermore, 𝜌 is the air density, �̄� (𝑥, 𝑡) is the
mean alongwind velocity, �̄� (𝑥, 𝑡) is the vertical velocity, and 𝐷 and 𝐵 are the height and width of the bridge deck. {�̄�𝐷, �̄�𝐿, �̄�𝑀}
and {𝐶 ′

𝐷, 𝐶
′
𝐿, 𝐶

′
𝑀} are the linearized mean and slope of coefficients for drag, lift and pitching moment, which are commonly

obtained in wind tunnel experiments using scale section models or sometimes using computational fluid dynamics. Aerodynamic
admittance (transfer functions relating surface pressures to wind forces) have been omitted from Eq. (6) due to a lack of data, but
this phenomenon effectively acts as a low-pass filter [32].

In the stochastic characterization of a wind field, a two-point statistical description of the wind velocity is commonly expressed
using a cross-spectral density format as follows:

𝐒𝐯𝐯(𝜔, 𝑥1, 𝑥2) =
[

𝑆𝑢𝑢(𝜔, 𝑥1, 𝑥2) 𝑆𝑢𝑤(𝜔, 𝑥1, 𝑥2)
𝑆𝑤𝑢(𝜔, 𝑥1, 𝑥2) 𝑆𝑤𝑤(𝜔, 𝑥1, 𝑥2)

]

=

[√

𝑆𝑢(𝜔, 𝑥1)𝑆𝑢(𝜔, 𝑥2)𝐶𝑢𝑢(𝜔, 𝛥𝑥)
√

𝑆𝑢(𝜔, 𝑥1)𝑆𝑤(𝜔, 𝑥2)𝐶𝑢𝑤(𝜔, 𝛥𝑥)
√

𝑆𝑢(𝜔, 𝑥2)𝑆𝑤(𝜔, 𝑥1)𝐶𝑢𝑤(𝜔, 𝛥𝑥)
√

𝑆𝑤(𝜔, 𝑥1)𝑆𝑤(𝜔, 𝑥2)𝐶𝑤𝑤(𝜔, 𝛥𝑥)

]

(8)

where 𝛥𝑥 = |𝑥1 − 𝑥2| is the span-wise distance between the two points. 𝑆𝑢(𝜔) and 𝑆𝑤(𝜔) are single-point spectral densities. 𝐶𝑢𝑢(𝜔, 𝛥𝑥)
and 𝐶𝑤𝑤(𝜔, 𝛥𝑥) are root-coherence functions for which the commonly applied Davenport model reads [33]:

𝐶𝑚𝑚(𝜔, 𝛥𝑥) = exp
(

−𝐾𝑚
𝜔 𝛥𝑥
2𝜋�̄�

)

, 𝑚 ∈ {𝑢,𝑤} (9)

which relies on given decay coefficients 𝐾𝑢 and 𝐾𝑤. This expression has the critiqued shortcoming of assuming a value close to
unity for frequencies close to zero, even for large spatial separations, which is not physical. However, this approach remains heavily
used due to its simplicity and lack of proper alternatives, except for a few more sophisticated models that have been proposed [34].
We also assume 𝐶𝑢𝑤(𝜔, 𝛥𝑥) = 0, i.e., no significant correlation among 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡).

By integrating the buffeting forces along the whole span, the spectral density matrix for modal buffeting loads can then be
calculated by:

𝐒𝐩𝐩(𝜔) = ∫

𝐿

0 ∫

𝐿

0
Φae(𝑥1)T𝐁𝐪(𝑥1) 𝐒𝐯𝐯(𝜔, 𝑥1, 𝑥2) 𝐁𝐪(𝑥2)T Φae(𝑥2) d𝑥1 d𝑥2 (10)

where Φae(𝑥) is a matrix containing the modal values in the lateral (𝑦), vertical (𝑧), and pitching (𝜃) degrees of freedom (DOFs) of
the box girder:

Φae(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜙(1)
𝑦 (𝑥) … 𝜙(nm)

𝑦 (𝑥)

𝜙(1)
𝑧 (𝑥) … 𝜙(nm)

𝑧 (𝑥)

𝜙(1)
𝜃 (𝑥) … 𝜙(nm)

𝜃 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑥 ∈ [0, 𝐿] (11)

The cross-covariance matrix, which will be used later, is calculated by the inverse Fourier transform:

𝜿𝐩𝐩(𝜏) = ∫

∞

−∞
𝐒𝐩𝐩(𝜔) exp(𝑖𝜔𝜏) d𝜔 (12)

Although the loading on the cables is small in comparison, the linearized distributed drag load on the main cables can be
expressed as:

𝑞b,𝑐𝑎𝑏𝑙𝑒,𝑦(𝑥, 𝑡) = 𝜌�̄� (𝑥, 𝑡)𝐻𝑐𝑎𝑏𝑙𝑒𝐶𝐷,𝑐𝑎𝑏𝑙𝑒𝑢(𝑥, 𝑡) (13)

where 𝐻𝑐𝑎𝑏𝑙𝑒 is the diameter and 𝐶𝐷,𝑐𝑎𝑏𝑙𝑒 is a cylindrical drag coefficient. Similarly, these forces can be transformed to the modal
domain and added to the spectral density for the modal load.
3
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In classic wind engineering analysis for bridges, a quantification of the bridge response is usually the objective. When the spectral
ensity of the load is available (Eq. (10)), the stochastic description of the modal dynamic response is also straightforward:

𝐒𝐳𝐳(𝜔) = �̃�𝐩𝐳(𝜔)𝐒𝐩𝐩(𝜔)�̃�H
𝐩𝐳(𝜔) (14)

where the transfer function of the modal system in Eq. (2) is defined as:

�̃�𝐩𝐳(𝜔) = [−𝜔2�̃�0 + 𝑖𝜔(�̃�0 − �̃�ae) + (�̃�0 − �̃�ae)]−1 (15)

This can promptly be transformed back to the spectral densities of displacement or acceleration responses:

𝐒𝐫𝐫 (𝜔) = Φ𝐒𝐳𝐳(𝜔)ΦT, 𝐒�̈��̈� (𝜔) = 𝜔4𝐒𝐫𝐫 (𝜔) (16)

The methodology in this section is based on assumed models for the stochastic wind loads. Although these models are widely
applied, it is also accepted that they rarely result in perfect predictions of the dynamic response [19,35]. In the next section, a
framework for inverse identification of the wind loads is introduced.

2.2. Gaussian process latent force model

Gaussian process (GP) regression is a powerful tool in the analysis of distributed data such as time series [36], and it briefly
presented in the following. Let 𝑓 (𝑡) be a GP prior with mean 𝜇(𝑡) and covariance function 𝜅(𝑡, 𝑡′). Next, it is assumed we have 𝑁 noisy
observations 𝑦(𝑡𝑘) = 𝑓 (𝑡𝑘) + 𝑣𝑘 available at time instants 𝐭 = {𝑡1, 𝑡2,… , 𝑡𝑁}, which are collected in the vector 𝐲 = [𝑦(𝑡1),… , 𝑦(𝑡𝑁 )]T,

here E[𝑣2𝑘] = 𝜎2𝑛 is the variance of the Gaussian noise. The GP regression deals with the problem of inferring the function value
(𝑡∗) for the new point 𝑡∗. Conditioned on the observed data, it can be shown that the posterior distribution for 𝑓 (𝑡∗) also is Gaussian
ith the following mean and covariance:

E[𝑓 (𝑡∗) | 𝐲] = 𝜿(𝑡∗, 𝐭)
(

𝜿(𝐭, 𝐭) + 𝜎2𝑛𝐈
)−1(𝐲 − 𝝁(𝐭)

)

+ 𝜇(𝑡∗) (17)

Cov[𝑓 (𝑡∗) | 𝐲] = 𝜅(𝑡∗, 𝑡∗) − 𝜿(𝑡∗, 𝐭)
(

𝜿(𝐭, 𝐭) + 𝜎2𝑛𝐈
)−1𝜿(𝑡∗, 𝐭)T (18)

Further details can be found in [37]. Whereas the classic GP regression suffers from scaling problems since it eventually involves
inverting very large matrices (proportional to the number of training data points), the discrete state-space formulation of the GP-LFM
discussed in the following has the benefit of a first-order Markov property (i.e., compact recursive formulations). This allows very
long time series to be processed without problems related to the scale of the data set.

In the context of this paper, the GP-LFM represents the stochastic evolution of the excitation forces on the structure. In this work,
to design the LFM, we assume the wind loading is stationary for a 10-min time window, meaning that the GPs can be characterized
by first- and second-order statistical moments, i.e. a mean value usually equal to zero and a stationary covariance function. The
wind loads are treated as a realization of a white noise GP denoted �̃�(𝑡) with variance 𝜎2�̃� = E[�̃�(𝑡)2] that is filtered through a
esigned kernel (not to be confused with the vertical turbulence 𝑤(𝑥, 𝑡)). In the presented application, we have found the Matérn
ernel suitable. This is a common class of flexible functions that can effectively regulate smoothness. Specifically, we use the one-half
atérn kernel, meaning each modal force 𝑝𝑗 (𝑡) (𝑗 = 1,… ,nm) is treated as the output of a first-order stochastic differential equation:

�̇�𝑗 (𝑡) = −𝜆𝑗𝑠𝑗 (𝑡) + �̃�𝑗 (𝑡) (19)

𝑝𝑗 (𝑡) = 𝑠𝑗 (𝑡) (20)

n the multivariate case where multiple modal loads are present, it is easiest to consider each of the components independently by
onstructing the LFM as a block-diagonal system in the following continuous state-space format [8,38]:

⎡

⎢

⎢

⎣

�̇�1(𝑡)
⋮

�̇�nm (𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐹c,1
⋱

𝐹c,nm

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑠1(𝑡)
⋮

𝑠nm (𝑡)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐿c,1
⋱

𝐿c,nm

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̃�1(𝑡)
⋮

�̃�nm (𝑡)

⎤

⎥

⎥

⎦

(21)

⎡

⎢

⎢

⎣

𝑝1(𝑡)
⋮

𝑝nm (𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐻c,1
⋱

𝐻c,nm

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑠1(𝑡)
⋮

𝑠nm (𝑡)

⎤

⎥

⎥

⎦

(22)

where 𝐹c,𝑗 = −𝜆𝑗 , 𝐿c,𝑗 = 1, 𝐻c,𝑗 = 1, and the subscript 𝑐 denotes system matrices in continuous time. In compact notation, the LFM
is defined as:

�̇�(𝑡) = 𝐅c𝐬(𝑡) + 𝐋c�̃�(𝑡) (23)

𝐩(𝑡) = 𝐇c𝐬(𝑡) (24)

Casting GPs into a state-space form is particularly useful, as this allows the LFM to be incorporated into a Kalman filtering
4

framework [39], which can also be coupled with mechanical state-space models. In general, the matrices 𝐅c, 𝐋c, and 𝐇c can be
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Fig. 2. Example of LFM approximation of the wind load.

parameterized through a wide range of available kernel types [8], which can be tailored to the specific problem to control the
characteristics of the force, such as periodicity and smoothness. For structural engineering problems, it can be meaningful to consider
both the temporal and frequency properties of the LFM. Eqs. (19) and (20) lead to a (two-sided) force spectral density on the form:

𝑆𝑝,𝑗 (𝜔) =
𝜎2�̃�,𝑗

2𝜋(𝜆2𝑗 + 𝜔2)
(25)

The equivalent time-domain representation is the following covariance function:

𝜅𝑝,𝑗 (𝜏) = E[𝑝𝑗 (𝑡)𝑝𝑗 (𝑡 + 𝜏)] =
𝜎2�̃�,𝑗

2𝜆𝑗
exp(−𝜆𝑗 |𝜏|) = 𝜎2𝑝,𝑗 exp(−𝜆𝑗 |𝜏|) (26)

hich is also known as the Ornstein–Uhlenbeck kernel. In the last step, the hyperparameters are re-parameterized slightly by instead
sing the set 𝜽𝑗 = {𝜆𝑗 , 𝜎𝑝,𝑗} > 0 for each modal load, where we introduce the variable 𝜎2𝑝,𝑗 = 𝜎2�̃�,𝑗∕(2𝜆𝑗 ). In addition to the magnitude

actor 𝜎𝑝,𝑗 , it is apparent that the hyperparameter 𝜆𝑗 serves the role of inverse length scale in the covariance function Eq. (26). This
odel can be reasonable for wind engineering problems relating to atmospheric turbulence where the wind loads typically have a

lowly decaying covariance function.
Next, the question of properly selecting the values of the LFM hyperparameters arises. In GP regression, the hyperparameters

re usually selected from a training data set, using for instance maximum likelihood methods and sometimes cross-validation [37].
ne other possibility explored here is utilizing the CWM described in Section 2.1, which here is deemed the best qualified guess for
stochastic characterization of the load.

As an illustration, consider Fig. 2 which shows realistic examples of covariance functions of two wind loads as predicted by the
WM in Section 2.1 for a given set of stationary wind velocity conditions. The figure also shows exponential covariance functions

rom Eq. (26). The actual selection of the hyperparameter values is based on fitting of equivalent autoregressive models of order 1
see equations shown in Appendix B). The magnitude and decay behaviour of the covariance functions can be approximated well,
ut the figure also shows that small compromises are made: for instance, the exponential covariance function in the LFM cannot
odel the slight negative values in Fig. 2(b). Nevertheless, it is possible to use very simple LFMs to assign a realistic prior belief

n the load characteristics. In this context, the wind load prediction from the CWM thus serves as a nominal basis for the expected
oad. Note that a new set of hyperparameters are obtained for each 10-min period in which the wind loading is assumed to be
tationary.

The concept could also be extended to other types of natural loads encountered for structures. For more cyclic or quasi-periodic
xcitation such as vortex-induced wind forces on cables, narrow-banded wave loading on marine structures, or rotating machinery
n wind turbines, it can be expected that kernels with periodicity features [40–42] or sparsity in the frequency domain would be
uitable in load identification problems. However, it is necessary that the kernel admits a state-space representation, or can be
pproximated as such [43,44], in order to seamlessly fuse the LFM with the system response equations as shown later. For the
ridge under consideration in this paper, global vortex-induced vibrations are not a particular issue, and this work mainly deals
ith wind buffeting forces due to turbulence, so the LFM in Eqs. (19)–(20) is deemed sufficient to model the wind load in the

dentification.
To complete the equations for LFM in matrix form, expressions for autocovariance functions and spectral densities can be found.

or the matrix system in Eqs. (23)–(24), it can be shown that the vector 𝐩(𝑡) is a GP with cross-covariance matrix 𝜿𝐩𝐩(𝜏), which can
e calculated as follows [8]:

𝜿𝐩𝐩(𝜏) = 𝐇c𝐏∞
c exp(𝐅c𝜏)T𝐇T

c , 𝜏 ≥ 0 (27)

he matrix 𝐏∞
c is solved from the state-steady condition of Eqs. (23) and (24) by the algebraic Ricatti equation:

∞ ∞ T T
5

𝐅c𝐏c + 𝐏c 𝐅c + 𝐋c𝐐�̃�c𝐋c = 𝟎 (28)
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where 𝐐�̃�c is a diagonal covariance matrix populated with the variances 𝜎2�̃�,𝑗 . Alternatively, the cross-covariance matrix can be
alculated via the inverse Fourier transform as 𝜿𝐩𝐩(𝜏) = ∫ ∞

−∞ 𝐒𝐩𝐩(𝜔) exp(𝑖𝜔𝜏) d𝜔, where the spectral density of the latent forces is
iven by:

𝐒𝐩𝐩(𝜔) = 𝐇�̃�𝐩(𝜔)𝐒�̃��̃�(𝜔)𝐇H
�̃�𝐩(𝜔) (29)

𝐇�̃�𝐩(𝜔) = [𝐇c(−𝐅c + 𝑖𝜔𝐈)−1𝐋c] (30)

Here, 𝐒�̃��̃�(𝜔) is a diagonal matrix populated with 𝜎2�̃�,𝑗∕(2𝜋). Since the LFM in Eqs. (21)–(22) is a diagonal system, 𝜿𝐩𝐩(𝜏) and 𝐒𝐩𝐩(𝜔)

ill be diagonal matrices with uncoupled elements that can be directly calculated from Eqs. (25)–(26).
Pursuing the option of physics-designed LFMs naturally demands that proper wind field models and aerodynamic coefficients

re available for the CWM, or at least that reasonable engineering assumptions are used where specific data are missing. In cases
here no specific information on hyperparameters is viable, it is also possible to tune these via optimization of maximum likelihood

o the measured output data, which is explained in Section 3.4.
Finally, we believe it can also be argued that, although they represent the same quantity, a methodological distinction should

e made between the loading according to the CWM theory (Section 2.1) and the load characterization in the LFM (Section 2.2).
he former can be considered a direct modelling approach based on environmental and aerodynamic data with idealized load
ssumptions such as homogeneity, stationarity, and linearity. The LFM can be seen as a tool for including prior knowledge of the
orces in an inverse identification context or learning from real-life data.

.3. Augmented system formulation

Following [8] and reproduced here for completeness, the augmented format is obtained by combining the linear dynamic system
n Eq. (3) and the LFM in Eqs. (23) and (24):

[

�̇�(𝑡)
�̇�(𝑡)

]

=
[

𝐀c 𝐁c𝐇c
𝟎 𝐅c

] [

𝐱(𝑡)
𝐬(𝑡)

]

+
[

𝟎
𝐋c�̃�(𝑡)

]

(31)

or simply:

�̇�a
c (𝑡) = 𝐅ac𝐱a

c (𝑡) + �̃�a
c(𝑡) (32)

The response measurements 𝐲(𝑡), which can be accelerations or displacements, are assembled as follows:

𝐲(𝑡) = 𝐒acc�̈�(𝑡) + 𝐒disp𝐫(𝑡) (33)

or converted to the state-space format:

𝐲(𝑡) = 𝐆c𝐱(𝑡) + 𝐉c𝐩(𝑡) =
[

𝐆c 𝐉c𝐇c
]

[

𝐱(𝑡)
𝐬(𝑡)

]

= 𝐇ac𝐱a
c (𝑡) (34)

where the following matrices are defined:

𝐆c =
[

𝐒dispΦ − 𝐒accΦ�̃�−1
0 (�̃�0 − �̃�ae) −𝐒accΦ�̃�−1

0 (�̃�0 − �̃�ae)
]

(35)

𝐉c =
[

𝐒accΦ
]

(36)

Finally, following the standard time-discretization scheme (𝑡𝑘 = 𝑘𝛥𝑡) in [8] and adding stochastic noise to both the state and
output equation, Eqs. (31) and (34) now read as follows:

𝐱a
𝑘+1 = 𝐅ad𝐱a

𝑘 + 𝐰a
𝑘, 𝐱a

𝑘 = [𝐱(𝑡𝑘)T 𝐬(𝑡𝑘)T]T (37)

𝐲𝑘 = 𝐇ad𝐱a
𝑘 + 𝐯𝑘 (38)

Here, the subscript 𝑑 denotes system matrices in discrete time, and the system matrices are:

𝐅ad = exp(𝐅ac𝛥𝑡), 𝐇ad = 𝐇ac (39)

The covariances of the noise processes are given as follows:

E[𝐯𝑘𝐯T
𝑘 ] = 𝐑 (40)

The covariance of the augmented process noise (𝐐ad = E[𝐰a
𝑘𝐰

a
𝑘]) consists of an integration term relating to the LFM and an added

term 𝐐xd that accounts for unmodelled dynamics or other noise:

𝐐ad =
𝛥𝑡
exp

(

𝐅ac(𝛥𝑡 − 𝜏)
)

𝐐ac exp
(

𝐅ac(𝛥𝑡 − 𝜏)T
)

d𝜏 +
[

𝐐xd 𝟎
]

(41)
6

∫0 𝟎 𝟎
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Fig. 3. The Hardanger Bridge (Photo: Aksel Fenerci/NTNU).

Fig. 4. Position of sensors on the bridge: accelerometers (denoted H/T) and anemometers (denoted A).

where we define:

𝐐ac =
[

𝟎 𝟎
𝟎 𝐋c𝐐�̃�c𝐋T

c

]

(42)

This state-space model is used in a classic Kalman filter (KF) [45] and subsequently a backward Rauch–Tung–Striebel (RTS)
smoother [46] to estimate the augmented state vector �̂�a

𝑘 (see equations in Appendix A), from which the modal state estimate �̂�(𝑡)
and modal load estimate �̂�(𝑡) = 𝐇c �̂�(𝑡) are available.

3. Utilizing environmental and acceleration data for identification of modal loads and responses

3.1. Monitoring data from the Hardanger Bridge

The Hardanger Bridge (Fig. 3) is a long-span suspension bridge (𝐿 = 1310 m). This structure has been monitored since 2013 to
study both the wind conditions and wind-induced dynamic responses, which are highly important for bridges of such scales. In the
monitoring campaign, accelerations from 20 triaxial accelerometers and wind velocities from 9 sonic anemometers were recorded.
Fig. 4 shows the positions of the sensors, and details about the instrumentation setup can be found in [25,47]. The monitoring data
from this bridge is also made available, and we refer to [25] for details on accessing the data repository.

In this application, a time series that is 3.5 h long is chosen. The measurement data is resampled down to a rate of 20 Hz
(𝛥𝑡 = 0.05 s). The time series is divided into 10-min intervals for which all steps in the analysis are performed. In the following
sections, the analysis and processing steps of the different data are explained. The crafting of the models and the different data
sources is summarized in Fig. 5.

3.2. Analysis of wind data

The wind measurements at the mid-span of the bride are shown in Fig. 6. The statistics for the mean wind velocities (�̄� , �̄� )
for 10-min intervals and turbulence intensities (𝐼𝑢 = 𝜎𝑢∕�̄� , 𝐼𝑤 = 𝜎𝑤∕�̄�) from anemometer A2–A8 are shown in Fig. 7 (data from
anemometer A1 was not available). As a general trend, both the mean wind velocity and the turbulence are greater in the last
half of this time series, which can be expected to also influence the bridge response accordingly. For the location of the bridge, a
Kaimal-type (one-sided) spectrum [48] has been shown to adequately model the single-point statistics of the wind turbulence [47]:

𝑆𝑚(𝑓 )𝑓
2

=
𝐴𝑚𝑓𝑧

5∕3
, 𝑓𝑧 =

𝑓𝑧
, 𝑚 ∈ {𝑢,𝑤} (43)
7

𝜎𝑚 (1 + 1.5𝐴𝑚𝑓𝑧) �̄�
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Fig. 5. Main steps in the processing of the models and data leading to the load and state estimates.

Fig. 6. Measured with velocities at the anemometer in the mid-span of the bridge. The circled numbers and dashed vertical lines indicate the 10-min period
windows.

Here, 𝑧 = 60 m is the bridge deck elevation above the water. For each of the anemometers A2–A8, the spectral density of the

turbulence 𝑢(𝑡) and 𝑤(𝑡) is calculated from the Welch method (using Hamming windows with a length of 120 s and 50% overlap),
8
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a

Fig. 7. Wind statistics from anemometer A2–A8: (a) mean alongwind velocity; (b) mean vertical wind velocity; (c) alongwind turbulence intensity; (d) vertical
turbulence intensity.

Fig. 8. Fit of Kaimal spectrum of wind turbulence for a typical 10-min period shown for anemometers A2–A5: (a–d): alongwind turbulence; (e–h): vertical
turbulence.

Fig. 9. Fitted coefficients for spectral densities and coherence functions using data from anemometer A2–A7: (a) shape parameter for alongwind turbulence; (b)
shape parameter for vertical wind turbulence; (c) coherence parameter for alongwind turbulence; (d) coherence parameter for vertical turbulence.

which is used to estimate the parameters 𝐴𝑢 and 𝐴𝑤 by fitting Eq. (43). These parameters are obtained by the least square fit
rgmin𝐴𝑢

∫ 1 Hz
0

(

log10
(

𝑆𝑢(𝑓,𝐴𝑢)
)

− log10(𝑆Welch
𝑢 (𝑓 ))

)2
d𝑓 , which is repeated similarly for 𝑆𝑤(𝑓,𝐴𝑤). Fig. 8 shows the fit for a typical

10-min period, which indicates that a good model agreement is found. Fig. 9(a)–(b) shows the resulting coefficients for the whole
9
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T
b
e

Fig. 10. Fit of exponential decay function for wind coherence for a typical 10-min period for anemometer pairs: (a–d): alongwind turbulence; (e–h): vertical
turbulence.

time series. In general, a larger scatter is observed within one 10-min period for the vertical turbulence 𝑤(𝑡) than the horizontal
turbulence 𝑢(𝑡), indicating weak inhomogeneity.

The coherence parameters 𝐾𝑢 and 𝐾𝑤 from Eq. (9) are also fitted using the cross-spectral density for each of the four anemometers
pairs A2/A3, A3/A4, A3/A5, and A4/A5 with maximum interdistance 𝛥𝑥 ≤ 60 m. Also, these parameters are obtained by the
least squares fit argmin𝐾𝑢

∫ 0.5
0

(

𝐶𝑢𝑢(𝑓, 𝛥𝑥,𝐾𝑢) − 𝐶Welch
𝑢𝑢 (𝑓, 𝛥𝑥)

)2 d(𝑓𝛥𝑥∕�̄� ) over the nondimensional frequency axis, and similarly for
𝐶𝑤𝑤(𝑓, 𝛥𝑥,𝐾𝑤). Fig. 10 shows a typical result. For most pairs, the curve fit is far from a perfect match. In fact, the estimation of
coherence parameters is not a straightforward task since coherence models in wind engineering are known to be imperfect when
compared to observations [49,50]. Fig. 9(c)–(d) show the resulting values for the whole time series. After discarding a few outlier
values, 𝐾𝑢 and 𝐾𝑤 seem relatively consistent among the four cross-pairs. Although the obtained values for 𝐾𝑢 and 𝐾𝑤 agree well
with a previous analysis of long-term data from this bridge [19], the coherence functions remain a significant source of uncertainty
in the modelling of the wind field.

Finally, in the numerical modelling of the turbulent wind field for the whole bridge, the mean values for {�̄� , 𝜎𝑢, 𝜎𝑤, 𝐴𝑢, 𝐴𝑤, 𝐾𝑢, 𝐾𝑤}
as shown in Figs. 7 and 9 are for simplicity adopted for the whole span, thus assuming a homogeneous wind field. Note that, despite
the introduced simplified assumptions such as stationary and homogeneity in the characterization of the wind field, the actual wind
loads need not strongly conform to these assumptions. The inverse load estimation in the Kalman filter and RTS smoother is still
strongly driven by the measured response data, which inevitably reflect the true and unidealized load conditions of the structure.

3.3. System submodels: finite element model and aeroelasticity model

As apparent from Eq. (2), the system model is separated into contributions from the structure and aeroelasticity. The structural
part is generated from a FE model, where the still-air modes and corresponding natural frequencies are calculated. This is a FE
model that was previously updated with respect to identified modal properties [51]. Proportional structural damping was adopted
by using previously identified damping ratios, leading to the classic relations for the modal system matrices:

�̃�0 = 𝐈, �̃�0 = 2Ξ0Ω0, �̃�0 = Ω2
0 (44)

where Ω0 and Ξ0 are diagonal matrices assigned the (still-air) natural frequencies and damping ratios, respectively. A total of
nm = 15 vibrations modes are used, with natural frequencies from 0.05 Hz for the lowest and 0.41 Hz for the highest mode. The
aeroelastic system contributions are found from modified quasi-steady theory [52], meaning that linearized distributed self-excited
forces on the box girder in Fig. 1 can be expressed as:

⎡

⎢

⎢

⎣

𝑞𝑠𝑒,𝑦(𝑥, 𝑡)
𝑞𝑠𝑒,𝑧(𝑥, 𝑡)
𝑞𝑠𝑒,𝜃(𝑥, 𝑡)

⎤

⎥

⎥

⎦

= 1
2
𝜌�̄� (𝑥, 𝑡)2

⎡

⎢

⎢

⎣

𝑝4 𝑝6 𝑝3𝐵
ℎ6 ℎ4 ℎ3𝐵
𝑎6𝐵 𝑎4𝐵 𝑎3𝐵2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑟𝑦(𝑥, 𝑡)
𝑟𝑧(𝑥, 𝑡)
𝑟𝜃(𝑥, 𝑡)

⎤

⎥

⎥

⎦

+ 1
2
𝜌𝐵�̄� (𝑥, 𝑡)

⎡

⎢

⎢

⎣

𝑝1 𝑝5 𝑝2𝐵
ℎ5 ℎ1 ℎ2𝐵
𝑎5𝐵 𝑎1𝐵 𝑎2𝐵2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̇�𝑦(𝑥, 𝑡)
�̇�𝑧(𝑥, 𝑡)
�̇�𝜃(𝑥, 𝑡)

⎤

⎥

⎥

⎦

(45)

he 18 dimensionless coefficients {𝑎𝑖, ℎ𝑖, 𝑝𝑖} (𝑖 = 1…6) are obtained from previous wind tunnel tests using a section model of the
ox girder [53] and are reported in Table 1. By integration along the span of the bridge, Eq. (45) leads to the following modal
xpressions for the aeroelastic stiffness and damping:

�̃�ae = ∫

𝐿

0

1
2
𝜌�̄� (𝑥)2 Φae(𝑥)T

⎡

⎢

⎢

⎣

𝑝4 𝑝6 𝑝3𝐵
ℎ6 ℎ4 ℎ3𝐵
𝑎6𝐵 𝑎4𝐵 𝑎3𝐵2

⎤

⎥

⎥

⎦

Φae(𝑥) d𝑥 (46)

�̃�ae = ∫

𝐿

0

1
2
𝜌𝐵�̄� (𝑥)Φae(𝑥)T

⎡

⎢

⎢

𝑝1 𝑝5 𝑝2𝐵
ℎ5 ℎ1 ℎ2𝐵

2

⎤

⎥

⎥

Φae(𝑥) d𝑥 (47)
10
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Fig. 11. Natural frequencies in the state space model compared to identified values. Two modes were not identified.

Table 1
Coefficients in modified quasi-steady theory for aeroelastic behaviour in bridges, wind tunnel
tests of a section model of the Hardanger bridge.
Variable Value Variable Value Variable Value

𝑎1 −0.853 ℎ1 −2.871 𝑝1 −0.313
𝑎2 −0.313 ℎ2 −0.081 𝑝2 −0.051
𝑎3 0.907 ℎ3 3.062 𝑝3 −0.030
𝑎4 −0.048 ℎ4 −0.379 𝑝4 0.004
𝑎5 −0.015 ℎ5 0.813 𝑝5 −0.247
𝑎6 0.007 ℎ6 −0.055 𝑝6 −0.024

The effective modal properties obtained from the eigenvalues of 𝐀c (see Eqs. (4) and (5)) are of particular interest to verify that
is system model is adequate. Figs. 11 and 12 show the modelled natural frequencies and damping for the considered time series
in 10-min discrete intervals, both the still-air values and the effective (in-wind) values that vary with �̄� (𝑡). It should be mentioned
hat the aeroelastic effects for the wind velocities under consideration mainly contribute to added damping; the change in natural
requencies is minor.

Since this is a study with operational (non-synthetic) data, some model imperfections are expected. Thus, for model verification
urposes, an output-only system identification (covariance-based stochastic subspace identification [54]) is performed using the
ame time series. Note that this technique assumes a white noise excitation which strictly is violated in systems dominated by wind
oads. This is overcome by overspecifying the model order in the modal identification, which separates the structural modes from
purious numerical modes arising from the coloured inputs (see e.g. [55]).

Figs. 11 and 12 also show identified damping ratios as estimated mean values and one standard deviation uncertainty bounds.
The shift in the natural frequencies due to aeroelastic stiffness is almost negligible but is still included here for completeness. As

xpected, the effective natural frequencies in the model mostly agree with the identified frequencies. On the other hand, (aeroelastic)
amping is a far more complex (but vital) phenomenon that is more difficult both to model properly and identify from time series
n operational modal analysis. Note that the uncertainty bounds in the identified damping values are quite wide compared to the
requencies. This can be expected in an operational case study where a number of uncertainties are present, such as measurement
oise, limited length of data and slow variations in the mean wind velocity, which influences the aeroelastic damping. More detailed
tudies of environmental influences on damping for long-span bridges are worthy of further investigation but are not within the
cope of this paper. The aerodynamic load coefficients used are reported in Table 2, which originate from state of the art wind
unnel tests of section models [53].

.4. Latent force models

As will be explained in the following, three different LFMs are tested as summarized in Table 3. LFM1 uses first-order Matérn
ernels whose hyperparameters are obtained by a model fit to the predicted modal wind loads from the CWM (Appendix B). For the
11
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Fig. 12. Damping ratios in the state space model compared to identified values. Two modes were not identified.

Table 2
Values for bridge deck geometry in full scale, and linearized load coefficients for drag, lift, and pitching moment obtained from
wind tunnel tests of a section model of the Hardanger bridge.
Geometry Value Drag coeff. Value Lift coeff. Value Pitch coeff. Value

𝐵 18.3 m �̄�𝐷 0.850 �̄�𝐿 −0.382 �̄�𝑀 0
𝐷 3.25 m 𝐶 ′

𝐷 1.389 𝐶 ′
𝐿 2.929 𝐶 ′

𝑀 0.903

Table 3
The three different LFMs that are tested.
Model no. Tuning method Kernel type Tunable hyperparameters

LFM1 Fit to predicted wind loads in CWM 1st order Matérn 𝜆𝑗 × 15, 𝜎𝑝,𝑗 × 15
LFM2 Maximum likelihood of output data in Kalman filter 1st order Matérn 𝜎𝑝 × 1, 𝛼𝑄, 𝛼𝑅
LFM3 Maximum likelihood of output data in Kalman filter 1st order Matérn 𝜎𝑝 × 3, 𝛼𝑄, 𝛼𝑅

15 modes, this yields a total of 30 free hyperparameters. The corresponding fit of the covariance functions and spectral densities is
shown for the 10-min period 𝑡 ∈ [6600, 7200] in Figs. 13 and 14, and a similar goodness of fit is obtained for the other time periods.

Whereas LFM1 is directly specified based on prior engineering assumptions (i.e. physical models), LFM2 and LFM3 are tuned by
maximum likelihood methods as explained in the following. Neglecting constants, the log marginal likelihood of the output data
given the hyperparameter set, commonly written in the notation 𝑝

(

𝐲[1∶𝑁]|𝜽
)

, is given as follows [56]:

log(𝐿) = −1
2

𝑁
∑

𝑘=1

(

log(|𝐒𝑘|) + 𝐞𝑇𝑘 𝐒
−1
𝑘 𝐞𝑘

)

(48)

Here, 𝐒𝑘 is the covariance matrix of the innovation vector 𝐞𝑘 in the Kalman filter; see Eqs. (A.1) and (A.2) in Appendix A. The
objective function in Eq. (48) intrinsically balances the trade-off between the penalties related to the complexity and the fit to the
observed data. This approach does require the number of hyperparameters to be limited in order to reduce computational time. The
choice of parameterization is not trivial, however.

As an initial example, consider for simplicity the case where the same value of 𝜆 and 𝜎𝑝 is used for all modal loads. Using
data from a typical 10-min period, Fig. 15 shows a plot of the negative log-likelihood function for a naive grid search where 𝜆
and 𝜎𝑝 are varied with fixed logarithmic spacing. In Fig. 15(a), a diagonal ridge is observed where the log-likelihood function is
equally optimal, so no distinct hyperparameter solution can be preferred. Along this ridge, the value of 𝜆𝜎2𝑝 is constant. In fact,
in GP regression, it is known that neither 𝜆 or 𝜎𝑝 for the Matérn covariance function (in Eq. (26)) can be consistently estimated,
only the product 𝜆𝜎2𝑝 [57,58] (for data in a bounded region, aka. fixed-domain asymptotics). Furthermore, for a chosen fixed value
𝜆∗, the estimate of 𝜆∗�̂�2𝑝 will converge towards the true value of 𝜆𝜎2𝑝 . The state and load estimates are not necessarily equal for all
pairs {𝜆, 𝜎𝑝} on this ridge, however. For instance, if one chooses a small 𝜆 (and correspondingly large 𝜎𝑝), spurious low-frequent
fluctuation is introduced in the state and load estimates, as 𝜆 dictates the tail behaviour of the spectral density in Eq. (25) when 𝜔
is close to zero.
12



Mechanical Systems and Signal Processing 170 (2022) 108742ØW. Petersen et al.

o
o
a
o
f
I

Fig. 13. Covariance functions of the modal loads from the CWM compared to the fitted LFM1 with a Matérn kernel. Results are taken from a typical 10-min
period.

Fig. 14. One-sided spectral density of the modal loads from the CWM compared to the fitted LFM1 with a Matérn kernel. Results are taken from a typical
10-min period.

One option is to consider a fixed value 𝜆∗ and then find the optimal estimate for �̂�𝑝 only. This approach also leads to fewer
ptimization variables, which reduces the computational burden. At the same time, this also means that some physical significance
f the covariance function is lost since the estimate �̂�𝑝 then depends on the guessed value 𝜆∗. This is not necessarily a limitation,
s in applications of GP regression, the hyperparameters are not always rooted in a direct physical meaning but merely used as
ptimal values that best fit the underlying structure of the given data set. For this reason, LFM2 and LFM3 utilize the fixed values
or 𝜆 from LFM1. The magnitude factor 𝜎𝑝 is kept as a free hyperparameter; in LFM2, the same value is used for all modal loads.
n LFM3, 𝜎𝑝 is shared within the following three groups: (i) lateral and torsional modes, (ii) vertical modes, and (iii) other modes.

This choice is made because the modal loads within these groups roughly tend to have the same magnitude.
In addition, the values of 𝐑 and 𝐐xd are included as tunable parameters by the scale factors 𝛼𝑄 and 𝛼𝑅, as the magnitudes of these

covariance matrices are also found to influence the likelihood function. This yields a total of three and five tunable hyperparameters
13

in LFM2 and LFM3, respectively, which is summarized in Table 3. The likelihood function can also suffer from solutions that are
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Fig. 15. Grid search of − log(𝐿) by varying 𝜆 and 𝜎𝑝. The values of the covariance matrices 𝐐xd and 𝐑 are fixed. The purple lines are isolines. (a) the negative
likelihood function − log(𝐿); (b) contribution from the model complexity penalty term (log(|𝐒𝑘|) in Eq. (48)); (c) contribution from the data fit penalty term
(𝐞𝑇𝑘 𝐒

−1
𝑘 𝐞𝑘 in Eq. (48)).

only locally optimal, so a broad search considering multiple initial points was employed to locate the global optimum with a high
degree of confidence. To this end, the GlobalSearch function in Matlab was used, which was configured to run the gradient-based
minimization routine fmincon for 100 random initial points. In order to ease the optimization and prevent unreasonable initial points,
parameter bounds were enforced. These were selected as [10−3, 10] for 𝜆 and [10−1, 103] for 𝜎𝑝, which corresponds approximately
lower and upper limits respectively 1∕100 and 100 times the parameter values that were predicted by the CWM. Similarly, 𝛼𝑄 and
𝛼𝑅 were bounded between 1∕100 and 100.

3.5. Identification of wind loads and global responses for initial and optimized latent force models

When the augmented state-space models are established, the state estimation is performed with a classic Kalman filter (KF) [45]
and subsequently a backward Rauch–Tung–Striebel (RTS) smoother [46]. Only acceleration data is used in the output vector
(𝐒disp = 𝟎). The data from two sensors in the mid span (H5E and H5W, see Fig. 4) are not included in the output but left as
reference data for virtual sensing comparisons. The state 𝐱a

0 is set to zero initially, and the steady-state solutions in the KF and RTS
algorithms are used to process each 10-min interval of data sequentially.

The tuning of the covariance matrices is known to be important, as they must account for additional (white noise) excitation,
model errors, and sensor noise. For LFM1, the covariance matrices are initially tuned manually; 𝐑 = 10−6 ⋅ 𝐈 is assigned to
the measurement errors and 𝐐xd is set to 10 ⋅ 𝐈. LFM2 and LFM3 use the same covariance matrices but are scaled by tunable
hyperparameters, i.e. 𝛼𝑅𝐑 and 𝛼𝑄𝐐xd. A diagonal structure is used for these covariance matrices due to lack of knowledge to the
nature and form of the unmodelled dynamics and noises that may be present in the data. Prospects for better suited and robust
alternatives are, in our opinion, a point of possible improvement in the application of stochastic state-space models to complex
cases where the residual dynamics are not fully understood.

The estimated modal forces are shown in Fig. 16. Although a direct verification of these estimates is nearly impossible, it is
possible to distinguish the load effect of strong wind gusts; in swift comparison with Fig. 6, it can be seen that the largest loads
appear approximately concurrently with strong wind gusts, which is expected. A zoom of the load estimates is shown in Fig. 17,
where one standard deviation of uncertainty is also superimposed, which is obtained from the covariance of the smoothing estimate
(see Eq. (A.10)). This type of uncertainty quantification is a strength of the identification methods based on Kalman filters. The
uncertainty seems to greatly vary between the estimated from different LFMs, mostly since these uncertainties depend on the
variation in the tuned noise statistics 𝐑 and 𝐐ad (see Section 3.6), which are not always easy to define for structures where
model errors, additional excitation, and sensor noise all simultaneously play a role. Similarly, Fig. 18 shows the state estimate
for the lowermost six modes with standard deviation uncertainty bounds. Also here uncertainty variation between the LFMs are
observed. Nevertheless, the uncertainty appears to be rather small for some components, such as mode 1, and relatively large for
others, such as modes 5 and 6.

Unfortunately, displacement measurements are not incorporated in this monitoring system. The validity of the state estimates
can, to some extent, still be probed via an estimation of displacements in the bridge deck, denoted as �̂�(𝑡). This quantity is obtained
directly from the state estimate as follows by selecting the desired DOFs with the matrix 𝐒′:

�̂�(𝑡) =
[

𝐒′Φ 𝟎
]

�̂�(𝑡) (49)

The displacements in the mid span are examined in Fig. 19. This figure also shows the pseudo displacements obtained from the
direct numerical integration of the acceleration data from sensors at this position (H5E and H5 W, see Fig. 4). This exercise requires
a carefully designed high-pass filter (Chebyshev Type II, 0.025 Hz stopband frequency) that eliminates the accumulated integration
errors but does not disturb the dynamic content from the lowest vibration mode at 0.05 Hz. In bridge aerodynamics, it is common
to evaluate bridge deck responses in terms of lateral, vertical, and torsion motion. For a clearer illustration of these degrees of
freedom, the signals from the sensors pair in the mid span are transformed into a lateral, vertical and torsional component for the
reference point in the centre of the bridge deck (see Fig. 1).
14
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Fig. 16. Time history of estimated modal forces.

Fig. 17. Modal load estimates for mode 1–6 (zoomed time axis) with one standard deviation of uncertainty.
15
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Fig. 18. State estimates for mode 1–6 (zoomed time axis) with one standard deviation of uncertainty.

Fig. 19. Time history of estimated response in the mid span of the bridge: (a) lateral displacement; (b) vertical displacement; (c) torsional rotation.
16
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Fig. 20. Spectral density of the bridge deck at mid-span for the 10-min period 𝑡 ∈ [4800, 5400] s: (a) lateral acceleration; (b) vertical acceleration; (c) torsional
acceleration.

As expected, state estimates and the direct integration lead to similar time histories, except for the lateral displacements in
Fig. 19(a). In [8] it was shown that fusion of the LFMs into Kalman filters eliminates the instabilities that would otherwise occur
in the case of acceleration output only, which is also confirmed here. This theoretical result does not exclude the possibility that
in reality some low-frequency fluctuations in the estimates can still occur due to insensitivity in the accelerometers to quasi-static
behaviour, which can be caused by slow-varying changes in the wind velocity. For this bridge, this mainly influences the lateral
motion and not the vertical or torsional motion of the bridge deck shown in Fig. 19(b)–(c). The resonance component in Fig. 19(a),
which is dominated by the lowest natural frequency with a period 20 s, still seems well represented. To obtain a complete response
reconstruction of the wind loads, some static reference measurements (such as strains, inclinations, or GPS data) could still be
preferred.

A further validation of the obtained displacement results is highly desirable but currently not feasible due to the lack of data from
this bridge. The authors have also recently instrumented another suspension bridge of similar scale where also strain gauges have
been included in the sensor network [59], which may give further insight into the low-frequent wind-induced response behaviour.

Next, the difference between the predicted response and the actual response of the bridge is highlighted. Since the CWM and
LFM treat the loads and responses as stochastic and stationary, comparisons with the actual bridge response are performed in the
frequency domain using spectral densities. As discussed in Section 2.2, the introduction of LFMs into the KF-RTS load estimation
implies that an assumed spectral density for the loads (Eq. (29)) is adopted, hence it is also implicitly assumed a prior form of
spectral density for the bridge response.

Figs. 20 and 21 compare the acceleration spectral density in the mid-span for two different 10-min periods. These figures also
show the spectral density of the measured accelerations and the extrapolated accelerations from the KF-RTS in the same degrees
of freedom, where Welch’s method has been applied to the time-domain signals to produce the spectra. In Fig. 20, the prediction
from the CWM matches the measured accelerations quite well. Thus the environmental load model is a decent predictor for the
actual bridge response for this 10-min period. A different situation is observed in Fig. 21, where the measured accelerations are
generally much greater than the spectral density from the predictions that rely on environmental and aerodynamic data. This is true
in particular for the vertical (Fig. 21b) and torsional (Fig. 21c) motion, but also to some extent for the lateral motion (Fig. 21a).
This result reflects the level of uncertainty in the current load models wind engineering, and their propagation to bridge response
predictions. It is noted that the accelerations that are extrapolated from the KF-RTS unsurprisingly match well with the measured
reference accelerations. Thus, the nominal response prediction from the LFM serves as a prior which can effectively be updated in
the KF-RTS routine with the information provided by the measured acceleration.

Note that there are also small but notable disparities between the LFM1 and CWM predictions in Figs. 20 and 21; the peak values
at the natural frequencies have slight differences in their magnitudes. This again comes down to the fitting of covariance functions
in LFM1, and as shown in Fig. 14 small differences in the two models are present. As an alternative to the proposed LFM fitting
that is applied here (Appendix B), one could also choose to emphasize the LFM frequency content for each modal load around its
natural frequency, as this band accounts for most of the contribution to the modal response.

3.6. Optimized hyperparameters

It is also interesting to compare the obtained values for the hyperparameters. Fig. 22(a)–(c) shows the hyperparameter 𝜎𝑝 for all
LFMs. Interestingly, for the lateral modes (Fig. 22(a)), the optimal values in LFM2 and LFM3 are very close to the mean value for all
modes from LFM1. For the vertical modes in Fig. 22(b), a larger discrepancy is seen; LFM2 and LFM3 both consistently yield lower
values than predictions from the CWM in LFM1. The scale factors for the covariance matrices in Fig. 22(d)–(e) also change a fairly
large amount, which could be expected since the initial covariance values were crudely and manually tuned initially. As noted by
other researchers [11], the spectral density of the LFM (and thus indirectly the hyperparameters) does not necessarily match the
17
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Fig. 21. Spectral density of the bridge deck at mid-span for the 10-min period 𝑡 ∈ [8400, 9000] s: (a) lateral acceleration; (b) vertical acceleration; (c) torsional
acceleration.

Fig. 22. (a)–(e): Hyperparameters; (f): negative likelihood objective function Eq. (48).

in Eq. (37). It should be mentioned that recently proposed methods also attempt an updating of the covariance matrices within the
Kalman filter [6]. However, this was not attempted here.

Fig. 22(f) shows the negative log-likelihood function (Eq. (48)) for all three LFMs. Note that LFM1 is not optimized with respect
to this objective function but is still included here for comparison. LFM2 and LFM3 generally perform equally well, even though the
number of hyperparameters is different, which illustrates that a compressed set of hyperparameters may yield satisfactory results
compared to a more complicated model. Furthermore, whereas LFM2 and LFM3 are comparably equal to LFM1 in the first half of the
time series (period 1–11 and onwards), the greatest change in the objective function occurs in the last half (period 12 and onwards).
This trend also coincides with the periods with the most violent gusts in Fig. 6, which may indicate that these periods have the
largest discrepancies between the real data and the underlying predictions from the CWM, which was used in LFM1. The CWM is
a prediction based on idealized linear theory, and Eq. (6) neglects, for instance, higher-order effects of the wind loading such as
terms proportional to the turbulence squared (𝑢(𝑥, 𝑡)2 and 𝑤(𝑥, 𝑡)2). This is an appealing argument as to why the identification of
wind loads could bring further refinement in the characterization of wind loads and wind-induced responses.

4. Conclusions

In this paper, an application of inverse estimation for wind loads on bridges was presented. The use of GP-LFMs in Kalman
filter-based force identification was explored. Specifically, it was proposed to design the LFMs using information from existing wind
loads models based on aerodynamic coefficients from wind tunnel tests and wind parameters from the structural monitoring system
18
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In a case study, using data from the Hardanger Bridge, the modal responses and modal wind loads were estimated from
easured accelerations. The use of physics-informed GP-LFMs in force identification gives the possibility to include prior knowledge

bout the unknown forces while still actively depending on the measured responses for the reconstruction of the actual dynamic
ehaviour. Several LFMs with first-order Matérn kernels were tested, which were tuned by standard evidence methods of log-
ikelihood maximization. The results showed that the complexity of the LFMs can be kept low; simple models with relatively few
ree hyperparameters yields satisfactory estimates. It was found that the estimation is stable for acceleration output only, although
tatic measurements could still be preferred to accurately capture the effects of quasi-static wind loads.
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Appendix A. Equations for Kalman filter and RTS smoother

The following summarizes the equations for filtering and smoothing for the system model in Eqs. (37) and (38) with the notation
used in this paper. The notation �̂�a

𝑘|𝑙 for the augmented state denotes the estimate at time step 𝑘 using observation data up to time
step 𝑙; the associated covariance matrix is denoted as �̂�a

𝑘|𝑙. The filter is initiated by the prior estimate �̂�a
1|0 for the augmented state

and covariance matrix 𝐏a
1|0. Note that the Kalman filter has a steady-state solution that can be found by the discrete algebraic Ricatti

equation (see, for instance, [60,61]) so that the matrices 𝐒𝑘, 𝐊𝑘, 𝐏a
𝑘|𝑘, and 𝐏a

𝑘+1|𝑘 need only be calculated once. Likewise, Lyaponov
equations for the RTS smoother yields the steady-state solution for the matrices 𝐍𝑘 and 𝐏a

𝑘|𝑁 .
Kalman filter, measurement update (𝑘 = 1, 2,… , 𝑁):

𝐞𝑘 = 𝐲𝑘 −𝐇ad�̂�a
𝑘|𝑘−1 (A.1)

𝐒𝑘 = 𝐇ad𝐏a
𝑘|𝑘−1𝐇

T
ad + 𝐑 (A.2)

𝐊𝑘 = 𝐏𝑘|𝑘−1𝐇T
ad𝐒

−1
𝑘 (A.3)

�̂�a
𝑘|𝑘 = �̂�a

𝑘|𝑘−1 +𝐊𝑘𝐞𝑘 (A.4)

𝐏a
𝑘|𝑘 = 𝐏a

𝑘|𝑘−1 −𝐊𝑘𝐒𝑘𝐊T
𝑘 (A.5)

alman filter, time update:

�̂�a
𝑘+1|𝑘 = 𝐅ad�̂�a

𝑘|𝑘 (A.6)

𝐏a
𝑘+1|𝑘 = 𝐅ad𝐏a

𝑘|𝑘𝐅
T
ad +𝐐ad (A.7)

auch–Tung–Striebel smoother, backward pass (𝑘 = 𝑁,𝑁 − 1,… , 1):

𝐍𝑘 = 𝐏a
𝑘|𝑘𝐅

T
ad(𝐏

a
𝑘+1|𝑘)

−1 (A.8)

�̂�a
𝑘|𝑁 = �̂�a

𝑘|𝑘 + 𝐍𝑘(�̂�a
𝑘+1|𝑁 − �̂�a

𝑘+1|𝑘) (A.9)

𝐏a = 𝐏a + 𝐍 (𝐏a − 𝐏a )𝐍T (A.10)
19

𝑘|𝑁 𝑘|𝑘 𝑘 𝑘+1|𝑁 𝑘+1|𝑘 𝑘



Mechanical Systems and Signal Processing 170 (2022) 108742ØW. Petersen et al.

c
m

S

a
c
t

o

c

T
u

Appendix B. Equations for fit of first-order LFMs

Consider a stationary process 𝑓 (𝑡), which is modelled by the first-order stochastic differential equation:

̇𝑓 (𝑡) = −𝜆𝑓 (𝑡) + �̃�(𝑡) (B.1)

where 𝜎2�̃� is the variance of the stochastic Gaussian noise �̃�(𝑡). Eq. (B.1) can be converted to discrete time with intersample time ℎ,
which forms an autoregressive (AR) model of order 1:

𝑓𝑘+1 = 𝜙1𝑓𝑘 + �̃�𝑘 (B.2)

where the AR(1) coefficient is 𝜙1 = exp(−𝜆ℎ). The variance of �̃�𝑘 is given by [62]:

E[�̃�2
𝑘] =

𝜎2�̃�
2𝜆

(1 − exp(−2𝜆ℎ)) =
𝜎2�̃�
2𝜆

(1 − 𝜙2
1) (B.3)

Next, we wish to fit the parameters of the AR model, assuming that an autocovariance function 𝜅𝑓 (𝜏) for 𝑓 (𝑡) is available, which
an be estimated from observed data or obtained from physical models. The parameter estimation is performed by the method of
oments. When Eq. (B.2) is multiplied by 𝑓𝑘, the following is obtained:

E[𝑓𝑘𝑓𝑘+1] = 𝜙1E[𝑓 2
𝑘 ] + E[�̃�𝑘𝑓𝑘] (B.4)

ince �̃�𝑘 and 𝑓𝑘 are uncorrelated, the AR(1) coefficient estimate can simply be expressed as:

�̂�1 =
E[𝑓𝑘𝑓𝑘+1]
E[𝑓 2

𝑘 ]
=

𝜅𝑓 (ℎ)
𝜅𝑓 (0)

(B.5)

The same result is obtained by the well-known Yule–Walker equations for AR models [63]. The corresponding estimate for 𝜆 thus
becomes:

�̂� = − 1
ℎ
log(�̂�1) = − 1

ℎ
log(

𝜅𝑓 (ℎ)
𝜅𝑓 (0)

) (B.6)

The noise parameter variance can be found from Eq. (B.2) by squaring this equation:

E[(𝑓𝑘+1 − 𝜙1𝑓𝑘)2] = E[𝑓 2
𝑘+1] + 𝜙2

1E[𝑓
2
𝑘 ] − 2𝜙1E[𝑓𝑘𝑓𝑘+1] = E[�̃�2

𝑘] (B.7)

Because of stationarity, E[𝑓 2
𝑘+1] = E[𝑓 2

𝑘 ] = 𝜅𝑓 (0). From Eq. (B.4) it is seen that E[𝑓𝑘𝑓𝑘+1] = 𝜙1E[𝑓 2
𝑘 ]. Combined with Eq. (B.3) and

(B.7) this lead to leads to:

𝜅𝑓 (0)(1 − 𝜙2
1) =

𝜎2�̃�
2𝜆

(1 − 𝜙2
1) (B.8)

so that the estimate of the new parameter 𝜎2𝑝 = 𝜎2�̃�∕(2𝜆) simply becomes:

�̂�2𝑝 = 𝜅𝑓 (0) (B.9)

Eq. (B.5) has the drawback that it only considers one time lag (𝜏 = ℎ), which can give a poor fit for long memories. To obtain
better fit, a broader estimation can be performed by considering a time lag up to 𝜏 = 𝑚ℎ, where the integer 𝑚 ≥ 1 must be

hosen. The expression for the covariance function of the AR(1) model is 𝑅𝑓 (𝑘ℎ) = 𝜙𝑘
1𝑅𝑓 (0), where the integer 𝑘 ≥ 1. It is possible

o consider a system of 𝑚 time lags as follows:

⎡

⎢

⎢

⎢

⎢

⎣

𝑅𝑓 (0)
𝑅𝑓 (ℎ)

⋮
𝑅𝑓 ((𝑚 − 1)ℎ)

⎤

⎥

⎥

⎥

⎥

⎦

𝜙1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅𝑓 (ℎ)
𝑅𝑓 (2ℎ)

⋮
𝑅𝑓 (𝑚ℎ)

⎤

⎥

⎥

⎥

⎥

⎦

(B.10)

r compactly

Γ𝐦𝜙1 = 𝜸𝒎 (B.11)

When Γ𝐦 and 𝜸𝒎 are populated with the autocovariance function 𝜅𝑓 (𝜏), Eq. (B.10) represents an overdetermined system, which
an be solved in the least square sense for 𝜙1 by the pseudo-inverse operation:

�̂�1 = (ΓT
𝐦Γ𝐦)−1ΓT

𝐦𝜸𝒎 (B.12)

he above equations can also be extended to fitting of AR models of higher orders [64], although only the first-order AR model is
20

sed in this paper.
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