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Abstract
PPP-RTK corrections, aiding GNSS users to achieve single-receiver integer ambiguity-resolved parameter solutions, are often
estimated in a recursive manner by a provider. Such recursive, multi-epoch, estimation of the corrections relies on a set of
S-basis parameters that are chosen by the provider so as tomake the underlyingmeasurement setup solvable.As a consequence,
the provider can only estimate estimable forms of the corrections rather than the original corrections themselves. It is the goal
of the present contribution to address the consequence of the corrections’ dependency on the provider’s S-basis, showcasing
the characteristics of their multi-epoch solutions, thereby identifying potential pitfalls which the PPP-RTK user should avoid
when evaluating such solutions. To this end, we develop a simulation platform that allows one to have full control over the
properties of PPP-RTK corrections and demonstrate various misleading temporal behaviors that exist when interpreting the
multi-epoch solutions of their estimable forms. The roles of the correction latency and time correlation in the multi-epoch
user positioning performance are quantified, while the deviation of the user-reported positioning precision description from
its user-actual counterpart is measured under a misspecified user stochastic model.

Keywords Global navigation satellite systems (GNSS) · PPP-RTK corrections · Multi-epoch filtering · Correction latency ·
Time correlation · Integer ambiguity resolution (IAR)

1 Introduction

The transition from the precise point positioning (PPP) con-
cept (Heroux and Kouba 1995; Zumberge et al. 1997) to
its integer ambiguity resolution-enabled variant (PPP-RTK;
Wübbena et al. 2005) is realized by providing single-receiver
users, next to the network-derived satellite orbits and clocks,
with information about the satellite biases. Their role is
to construct integer-estimable user ambiguities and enable
single-receiver carrier-phase ambiguity resolution. The set of
the PPP-RTK corrections may also optionally contain atmo-
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spheric delays so as to speed up the user convergence (Li et al.
2011; Psychas andVerhagen 2020;Zha et al. 2021). Such cor-
rections can be determined and delivered to the users from
a provider that may utilize either a multi- or a single-station
setup (Khodabandeh andTeunissen 2015). Several PPP-RTK
methods have been formulated and proposed in the past, see,
e.g., Ge et al. (2008), Collins (2008), Mervart et al. (2008),
Laurichesse et al. (2009), Teunissen et al. (2010), Geng et al.
(2012) and Odijk et al. (2016).
Although each model provides a different set of corrections,
the estimability analysis of Teunissen and Khodabandeh
(2015) showed, first, that a careful interpretation of the
estimable corrections is crucial in properly understanding the
PPP-RTK mechanization and, second, that their information
content is the same. Despite the different parametrizations
used, the corresponding estimable parameters act as if they
are the original parameters with which the users need to cor-
rect their observables. However, this does not necessarily
imply that such estimable parameters will have the same first
moment and behavior as those of their original counterparts.
This is because of the various offsets by which the origi-
nal parameters are biased and the dynamic model settings
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used by the providers’ filter. While one can infer the sta-
tistical characteristics of such estimable parameter solutions
from their closed-form variance matrices (Khodabandeh and
Teunissen 2015), we will show that a cursory numerical
illustration of their characteristics over time can become
misleading. Misleading impressions would be caused by
interpreting only a single sample of the PPP-RTK solutions
out of infinitely many ‘realizations’ whose time correlation
is considerably large. To effectively pinpoint potential pit-
falls when interpreting the solutions, one may therefore take
recourse to a simulation platform, generating a large number
of such realizations. This is the approach that will be pursued
by the present contribution.

Correction providers often establish multi-epoch filter
setups to compute individual PPP-RTK solutions and dis-
seminate a subset of the solutions (i.e., the corrections) to
users, see, e.g., Henkel et al. (2010), Zhang et al. (2011) and
Wang et al. (2017). Multi-epoch filtering is employed for
two main reasons: first, to enable the corrections to become
more precise over time and, second, to augment velocity (or
drift) parameters by which users are able to bridge the gap
between the correction generation time and the user position-
ing time, thereby also reducing the corrections’ transmission
rate. An analysis of the quality of the PPP-RTK corrections
and how this is driven by the information content and adjust-
ment of a network setup has been presented in Khodabandeh
and Teunissen (2015), highlighting also the high correlation
between the individual corrections. The impact of discarding
the stochasticity of the PPP-RTK corrections has been shown
to be considerable in both the ambiguity resolution (Khod-
abandeh 2021) and the positioning domain (Psychas et al.
2022) under large latencies in a single-epoch user setup.

When it comes to a user multi-epoch formulation, one
needs to recall that the usage of a dynamic model in the
provider-filter will deliver parameter solutions that are inher-
ently correlated in time. This property is often neglected in
the user-filter as it is tacitly assumed that the temporal cor-
relation of the corrections decays rapidly over time and does
not significantly impact the user parameter solutions and,
therefore, can be safely ignored. Despite often neglecting
this stochastic contribution, there are studies demonstrating
that ambiguity resolution can still be successfully realized,
see, e.g., Duong et al. (2019), Psychas and Verhagen (2020),
Geng et al. (2022), Hou and Zhang (2023). Khodabandeh
et al. (2023) has developed a user-filter able to deliver close-
to-minimum-variance solutions, by treating the corrections
as additional observations, given that the duration of the
provider-filter initialization is sufficiently large. Would the
PPP-RTK user want to obtain minimum-variance parame-
ter solutions in a multi-epoch setup, the correctly-specified
stochastic model of the corrected data, including time corre-
lation, needs to be incorporated into the estimation process.

The present contribution aims to provide a systematic
analysis of the multi-epoch filtered PPP-RTK corrections
and their characteristics by presenting a precision and tem-
poral correlation analysis as a function of their latency and
the provider’s dynamic model settings. Next to the insight
provided by the analysis, we demonstrate the pitfalls that
exist when analyzing only a single sample of the estimable
parameter solutions at the undifferenced level. This is real-
ized through a simulation environment we developed that
allows one to have full control over the observation model
and the (known and estimated) GNSS parameters, thereby
giving one the capability to evaluate the consequences of the
assumptions made on the temporal behavior of the parame-
ters. Particular emphasis is then given to the aspect of time
correlation that the multi-epoch-filtered corrections are sub-
ject to. To this end, we numerically demonstrate whether or
not this property can be safely ignored and to what extent
the user-reported quality information under a misspecified
correctional stochastic regime differs from its user-actual
counterpart.

2 Simulation platform

In this section, we present the underlying measurement and
dynamic models on which our simulation platform is based.
The functionality of the platform is twofold. First, multi-
ple time-series of the parameters and the measurements are
generated and registered as true values. Second, a Kalman
filter is formulated to recursively compute estimable forms
of the parameters, thereby evaluating the parameter estima-
tion errors through the comparison of the estimated values
with their true versions. The way both the sets of parameters
and measurements are simulated is discussed, followed by
the structure of the Kalman filter setup employed.

2.1 Parameters generated as random processes

Although one is allowed to make any plausible assumption
on the temporal behavior of the involved parameters in a
simulation framework, we attempt in our simulation to align
with temporal characteristics that have already been reported
in the literature. Accordingly, the carrier-phase integer ambi-
guities fromsatellite s (s = 1, . . . ,m) to the provider receiver
r , on frequency j ( j = 1, . . . , f ), are denoted by asr , j and
assumed to be constant in time, unless cycle slips occur.
On the other hand, the frequency-dependent phase receiver
and satellite biases, at epoch k, are denoted by δr , j (k) and
δs, j (k), and assumed to behave stable over time. A random-
walk constant-state process with a zero-mean system noise
is utilized to model their temporal behavior. Likewise, the
temporal behavior of the corresponding code biases dr , j (k)
and ds, j (k) is captured by constant-state processes (Komjathy
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et al. 2005; Zhang et al. 2018). The stated parameters can
therefore be simulated over time as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

asr , j (k) = asr , j (arbitrary integer)
δr , j (k) = δr , j (k − 1) + nδr , j (k)
δs, j (k) = δs, j (k − 1) + nδs, j

(k)

dr , j (k) = dr , j (k − 1) + ndr , j (k)
ds, j (k) = ds, j (k − 1) + nds, j (k)

(1)

for k = 2, . . . , K , with K being the total number of epochs.
The system noise of parameter (·) is denoted by n(·) which
can be sampled from zero-mean Gaussian noises (Teunissen
2007). Arbitrary initial values are assigned to each parameter
at epoch k = 1. The system noise standard deviations of the
code and phase biases are set to zero.
As for the satellite clocks dts(k) and first-order slant iono-
spheric delays ιsr (k), a constant-velocity process with extra
velocity parameters (∂dts and ∂ιsr ) is utilized to model their
time-variation (Wang et al. 2017). However, it is assumed
that constant-velocity processesmay not properly capture the
highly dynamic time-variability of the receiver clock dtr (k),
leaving dtr (k) with no dynamic model. The time series of
these parameters is therefore generated as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dtr (k) = arbitrary value at every epoch
dts(k) = dts(k − 1) + �t ∂dts(k − 1) + ndts (k)
∂dts(k) = ∂dts(k − 1) + n∂dts (k)
ιsr (k) = ιsr (k − 1) + �t ∂ιsr (k − 1) + nιsr

(k)
∂ιsr (k) = ∂ιsr (k − 1) + n∂ιsr

(k)

(2)

for k = 2, . . . , K , with �t being the sampling interval.
As with (1), arbitrary initial values are assigned to each
parameter at epoch k = 1, while the corresponding sys-
tem noises follow the zero-mean Gaussian distribution. The
system noise standard deviations of the clock and iono-
spheric acceleration parameters are set to 3 mm/

√
s3 and

0.5 mm/
√
s3, respectively. It is important to remark that the

system noises are required to be uncorrelated over time in
accordance with the Kalman filter’s standard assumptions.
Here and in the following, the receiver and satellite position
vectors, xr and xs , are assumed to be known.

2.2 Forming themeasurements

Once the true values of the parameters are simulated, one
can follow the GNSS observation equations (Teunissen
and Montenbruck 2017) and structure the corresponding
measurements. Let φs

r , j (k) and psr , j (k) denote the carrier-
phase and pseudo-range (code) measurements, respectively.
By computing the geometric satellite-to-receiver distance
||xr − xs ||, lumped with the slant tropospheric delay τ sr , i.e.,
ρs
r = ||xr − xs ||+τ sr , the stated measurements are simulated

as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φs
r , j (k) = ρs

r (k) +dtr (k)−dts(k) − μ j ι
s
r (k)

+λ j (δr , j (k) − δs, j (k) + asr , j ) + εφs
r , j

(k);
psr , j (k) = ρs

r (k) +dtr (k)−dts(k) +μ j ι
s
r (k)

+dr , j (k) − ds, j (k) + εpsr , j
(k)

(3)

for k = 1, . . . , K . The first-order slant ionospheric delay ιsr
is linked to the measurements via the frequency-dependent
ratios μ j = λ2j/λ

2
1 that are driven by the wavelengths λ j

( j = 1, . . . , f ). Note, apart from δr , j , δs, j and asr , j that are
expressed in cycles, that the rest of the quantities are all in
units of length. To accommodate the Kalman filter’s standard
assumptions, the Gaussian zero-mean measurement noises
εφs

r , j
(k) and εpsr , j

(k) are assumed to be ‘uncorrelated’ in time
and uncorrelated with the parameters’ system noises. Their
standard deviations (STDs) are assumed to be dependent on
satellite elevation and are considered equal at all frequen-
cies. An exponential elevation weighting strategy with the
zenith-referenced STDs of 2mm (phase) and 20cm (code) is
employed to model the STDs of the measurement noises.

2.3 Kalman filter’s measurement and dynamic
models

Now that the simulatedmeasurements (3) are formed, the task
is to estimate the parameters with the aid of the multi-epoch
dynamic models (1) and (2). Ideally, one aims at estimating
all the parameters involved. Due to the existing rank defi-
ciencies in the system of undifferenced GNSS observation
equations (3), one can, however, only estimate a subset of
the parameters. The remaining parameters have to be held
fixed as S-basis so as to form the minimum constraints of
the model (Odijk et al. 2016). As a consequence, the S-basis
parameters will be absorbed by the estimable parameters,
forming a full-rank system of measurement and dynamic
models that can be applicable to a Kalman filter setup.

Let �φs
r , j (k) = φs

r , j (k) − ρs
r and �psr , j (k) = psr , j (k) −

ρs
r be the ‘observed-minus-computed’ measurements. The

provider filter’s measurement model, in its full-rank form,
reads (Khodabandeh 2021)

Measurement model (k = 1, . . . , K )
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φs
r , j (k) = dt̃r (k) − dt̃s(k) − μ j ι̃

s
r (k)

+λ j (δ̃r , j (k) − δ̃s, j (k)) + εφs
r , j

(k);
�psr , j (k) = dt̃r (k) − dt̃s(k) + μ j ι̃

s
r (k)

+d̃r , j (k) − d̃s, j (k) + εpsr , j
(k)

(4)

that is accompanied by the provider filter’s dynamic models
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Table 1 Estimable parameters and S-basis parameters of the single-system, multi-frequency, single-station provider model, in case of the constant-
velocity setup for the satellite clocks and ionospheric delays

Parameter Interpretation

Rec. clocks dt̃r (k) = dtr (k) − dtr (1) − [k − 1]�t ∂dt̄r

Sat. clocks dt̃s(k) = dts(k) + ds,IF(1) − dtr (1) − dr ,IF(1) − [k − 1]�t ∂dt̄r − τ sr (k)

Ionospheric delays ι̃sr (k) = ιsr (k) + dr ,GF(1) − ds,GF(1)

Rec. phase biases δ̃r , j (k) = δr , j (k) − δr , j (1)

Sat. phase biases δ̃s, j (k) = δs, j (k) + 1
λ j

(
μ j [ds,GF(1) − dr ,GF(1)] − [ds,IF(1) − dr ,IF(1)]

)
− δr , j (1) − asr , j

Rec. code biases d̃r , j (k) = dr , j (k) − dr , j (1)

Sat. code biases d̃s, j (k) =
{
ds, j (k) − ds, j (1); j = 1, 2

[ds, j (k) − (ds,IF(1) + μ j ds,GF(1))] − [dr , j (1) − (dr ,IF(1) + μ j dr ,GF(1))]; j > 2

Ionospheric velocities ∂ι̃sr (k) = ∂ιsr (k)

Sat. clock velocities ∂dt̃s(k) = ∂dts(k) − ∂dt̄r

Rec. clock velocities∗ ∂dt̃r (k) = ∂dtr (k) − ∂dt̄r (∗if a constant-velocity setup is assumed for dtr as well)

S-basis parameters dtr (1), dtr (2), dr , j (1), δr , j (1), ds, j=1,2(1), asr , j

(·),IF = 1
μ2−μ1

[μ2 (·),1 − μ1 (·),2]; (·),GF = 1
μ2−μ1

[(·),2 − (·),1], ∂dt̄r = 1
�t

[dtr (2) − dtr (1)]

Dynamic model (k = 2, . . . , K )
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ̃r , j (k) = δ̃r , j (k − 1) + nδr , j (k)
δ̃s, j (k) = δ̃s, j (k − 1) + nδs, j

(k)

d̃r , j (k) = d̃r , j (k − 1) + ndr , j (k)
d̃s, j (k) = d̃s, j (k − 1) + nds, j (k)

(5)

and

⎧
⎪⎪⎨

⎪⎪⎩

dt̃s(k) = dt̃s(k − 1) + �t ∂dt̃s(k − 1) + ndts (k)
∂dt̃s(k) = ∂dt̃s(k − 1) + n∂dts (k)
ι̃sr (k) = ι̃sr (k − 1) + �t ∂ι̃sr (k − 1) + nιsr

(k)
∂ι̃sr (k) = ∂ι̃sr (k − 1) + n∂ιsr

(k)

(6)

In the systemof equations (4), (5) and (6), the role of the origi-
nal parameters is takenby their estimable formsdistinguished
by the tilde symbol ·̃. They are formed by a choice ofS-basis.
Table 1 presents such S-basis parameters and shows how
these estimable parameters are linked to their original coun-
terparts. For instance, the table indicates that the ionosphere
velocity parameters can be unbiasedly determined by the
provider filter, that is ∂ι̃sr (k) = ∂ιsr (k). This is, however, not
the casewith the satellite clock velocity parameters. Since the
receiver clock parameters of the first two epochs dtr (k) (k =
1, 2) are taken as S-basis, they are absorbed by the estimable
clock velocity parameters as ∂dt̃s(k) = ∂dts(k) − ∂dt̄r ,
where ∂dt̄r = [dtr (2) − dtr (1)]/�t . In the next section, it
is illustrated why such subtle differences between the inter-
pretations of the PPP-RTK estimable parameters need to be
properly accounted for.

3 Corrections and their solutions

Considering the simulated parameters in (1) and (2) as true
values, the estimation performance of the provider filter in
delivering PPP-RTK corrections can now be investigated.
Such investigation is infeasible in real-world experiments
due to the fact that the original and estimable parameters are
unknown. We present the single-station PPP-RTK parameter
solutions and analyze their temporal behavior, consistency
with their original counterparts and their time correlation
feature. Although here we made use of a single-station cor-
rection provider setup, this does not affect the generality of
our analysis, as the aforementioned concept can be naturally
carried over to the multi-station setup.

3.1 Provider parameter solutions

Although only the estimators of the PPP-RTK corrections are
relevant for aiding the user in realizing single-receiver ambi-
guity resolution, a comprehensive analysis of the estimable
receiver clock, as part of the PPP-RTK parameter solutions,
takes place in this section to identify and characterize any
potential pitfalls one may be led to in, e.g., timing appli-
cations. The principal advantage of the current simulation
analysis over a real-data experiment is that we have com-
plete control over the properties to be studied. Next to that,
such an analysis can shed light into the errors of the estimated
parameters since the true parameters are a priori known in
the simulation platform.
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Fig. 1 Time-series of the receiver clock estimation error (solid line)
and its 99.9% confidence interval (dashed lines) for the single-station
provider, under a constant-velocity setup for the satellite clocks

3.1.1 Receiver clock

We commence our analysis with the receiver clock parame-
ter solutions. Our initial assumption on an unlinked-in-time
receiver clock led to the estimable parameters shown in
Table 1, in which the receiver clock that the Kalman fil-
ter delivers is biased by the clock value at the first epoch
and an ever-increasing second term that involves the receiver
clock velocity term ∂dt̄r . Since the estimable receiver clock
dt̃r (k) at any epoch k has been determined from the com-
bination of the parameters dtr (k), dtr (1), and dtr (2), one

may be inclined to expect its Kalman-filter estimate d ˆ̃tr (k)
to converge to its true value dt̃r (k). However, Fig. 1 refutes
such expectation. The figure shows that the time-series of

the estimation error d ˆ̃tr (k) − dt̃r (k) systematically diverges
from the expected zero value over time. This behavior is also
echoed by the confidence intervals of the estimable receiver
clock. With reference to the unbiasedness property of the
solutions output by the provider filter, a cursory glance at
the time-series in Fig. 1 may incline one to conclude that the
provider filter is misspecified, delivering biased solutions.
However, one should be noted that the unbiasedness prop-

erty E(d ˆ̃tr (k)) = E(dt̃r (k)), with E(·) being the expectation

operator, states that the clock estimation error d ˆ̃tr (k)−dt̃r (k)
must be zero mean at a given single epoch k.

This apparent paradox can be addressed by the fact
that multi-epoch parameter solutions are random processes,
while the filter only delivers a sample out of their infinitely

many realizations. Therefore, the propertyE(d ˆ̃tr (k)−dt̃r (k)) =
0 can be visualized only after accumulating multiple Kalman
filter realizations, as shown in Fig. 2.We simulated 100 inde-
pendent sets of GNSS observables under the same setup. As
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Fig. 2 Time-series of the receiver clock estimation error (gray solid
lines) and its 99.9% confidence interval for independent Kalman filter
realizations of 100 normally-distributed observation samples, under a
constant-velocity setup for the satellite clocks. Their mean value is
indicated by the black solid line. The line highlighted in red depicts
the single realization of the receiver clock solutions shown in Fig. 1

shown, their mean value is close to zero (black solid line).
That the realizations of the receiver clock solution diverge
from their expected value indicates that the variance of the
receiver clock solution incrementally increases over time
under the measurement and dynamic models (4) and (5).

In understanding the behavior of the formal error variance
of the receiver clock, let us make a few simplifications for
the sake of presentation. According to Table 1, the estimable
receiver biases δ̃r , j (k) and d̃r , j (k) are in fact the time dif-
ferences of their original counterparts. They are therefore
constrained to be zero when setting their system noises to
zero. For this special case, such biases are thus absent.
This is also the case with satellite code biases on the first
two frequencies j = 1, 2. Moreover, as the geometry-free
(GF) combined measurements serve for the determination
of the estimable ionospheric delays, we only focus on the
(ionosphere-free) IF combined measurements. Likewise, the
epoch argument k is omitted for the satellite biases as they
are assumed to be time-constant. Accordingly, the IF version
of the full-rank version of (4) reads

E(�φs
r ,IF(k)) = dt̃r (k) − dt̃s(k) − δ̃s,IF

E(�psr ,IF(k)) = dt̃r (k) − dt̃s(k)
(7)

According to the canonical differencing transformation
(Khodabandeh and Teunissen 2017), the estimable satellite
clocks dt̃s are formed as the summation of their satellite-
averaged component dt̃ s̄ = (1/m)

∑m
i=1 dt̃

i and their
single-differenced (SD) component dt̃ s̄s = dt̃s −dt̃ s̄ , that is,
dt̃s = dt̃ s̄s + dt̃ s̄ . We now show that it is the solution’s vari-
ance of the satellite-averaged component dt̃ s̄ that increases
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in time, leading to variance increase in both the estimable
receiver and satellite clocks dt̃r and dt̃s , respectively. In the
absence of the phase observations, the system of equations
corresponding to the filter’s initialization (k = 1, 2) reads

E(�ps̄r ,IF(1)) = −dt̃ s̄(1)
E(�ps̄r ,IF(2)) = −dt̃ s̄(2)
E(ndt s̄ (2)) = +dt̃ s̄(2) − dt̃ s̄(1) − �t ∂dt̃ s̄(1)
E(n∂dt s̄ (2)) = +∂dt̃ s̄(2) − ∂dt̃ s̄(1)

(8)

As the number of unknowns are equal to the number of
equations, the solution follows from direct substitution,

that is, d ˆ̃t s̄(k) = −�ps̄r ,IF(k) (k = 1, 2), ∂d ˆ̃t s̄(1) =
(1/�t)(d ˆ̃t s̄(2)−d ˆ̃t s̄(1)−ndt s̄ (2)), and ∂d ˆ̃t s̄(2) = ∂d ˆ̃t s̄(1)+
n∂dt s̄ (2). From the third epoch onward (k ≥ 3), the
new unknowns dt̃r (k) come into play. As a consequence,
the observations �ps̄r ,IF(k), and the pseudo-observations

ndt s̄ (k) and n∂dt s̄ (k) are fully reserved for dt̃r (k), dt̃
s̄(k) and

∂dt̃ s̄(k), respectively. This means, in the absence of phase
observations, that there is no redundancy in the system of
satellite-averaged IF code observations. Therefore, the solu-
tion for the satellite-averaged component follows as

d ˆ̃t s̄(k) = d ˆ̃t s̄(k − 1) + �t ∂d ˆ̃t s̄(k − 1) + ndt s̄ (k)

= d ˆ̃t s̄(2) + �t(
k−1∑

i=2
∂d ˆ̃t s̄(i)) +

k∑

i=3
ndt s̄ (i),

(9)

while the receiver clock solutions read d ˆ̃tr (k) = �ps̄r ,IF(k)+
d ˆ̃t s̄(k). According to the second expression of (9), the pro-
cess noises ndt s̄ (i) (i = 3, . . . , k) are cumulatively added to

the solution of d ˆ̃t s̄(k), increasing its variance in time. Now
assume that the phase observations �φ s̄

r ,IF(k) are present.
Their time-averaged version are reserved for the estimable
phase biases δ̃s̄,IF. As a result, only their time differences

E(�φ s̄
r ,IF(k)−�φ s̄

r ,IF(k−1)) = (dt̃r (k) − dt̃ s̄(k))
−(dt̃r (k−1) − dt̃ s̄(k−1))

(10)

contribute to the clock solutions. Substitution of the equal-

ities d ˆ̃tr (i) − d ˆ̃t s̄(i) = �ps̄r ,IF(i) (i = k − 1, k) into the
preceding equation gives the condition equation

E({�φ s̄
r ,IF(k) − �φ s̄

r ,IF(k − 1)}
−{�ps̄r ,IF(k) − �ps̄r ,IF(k − 1)}) = 0

(11)

The misclosure, formed by the above condition equations
is, however, uncorrelated with the process noises ndt s̄ (i)
(i = 3, . . . , k), thus not stopping the variance increase of

the solution d ˆ̃t s̄(k). One concludes, therefore, that it is the
variance increase of the satellite-averaged component d ˆ̃t s̄(k)

that leads to variance increase of both the estimable satellite
and receiver clock solutions d ˆ̃t s(k) and d ˆ̃tr (k), respectively.

The dependency of the solutions of the estimable clock

parameters on the satellite-averaged component d ˆ̃t s̄(k) has
another consequence. Since the interpretation of the average
dt̃ s̄(k) changes if the number of tracked satellites changes,
one would expect to observe a change in the clock solutions
upon tracking new satellites. Figures1 and 2 only show time-
series of the receiver clock estimation error over the first
900 epochs where no newly tracked satellites are present.
To show the role of such satellites on the clock estimation
error, we extend the time span of the time series to 3600
epochs in Fig. 3, left panel. As shown, the presence of newly
tracked satellites causes jumps in the receiver clock estimates
as well as in their error variances around epochs 900 and
1800. As soon as a new satellite is involved in the process-
ing, the provider filter needs to account for the estimation of
the new unknown parameters corresponding to the satellite,

changing the solution d ˆ̃t s̄(k), thereby causing an increase in
the variance of the clock solutions.

Let us assume now that the correction provider has its
GNSS receiver connected to a more stable external clock,
e.g., a high-quality hydrogen maser clock. In this case, one
can do away with the assumption of a highly time-varying
clock and model its temporal behavior with a constant-
velocity setup similar to that of the satellite clocks. Table 1
also presents the additional estimable parameters that occur
by switching from a time-unlinked to a time-linked receiver
clock under a constant-velocity setup. As shown, the inclu-
sion of a receiver clock dynamic model does not change
the parameters’ estimability, but just introduces an extra
unknown parameter, i.e., the estimable receiver clock veloci-
ties ∂dt̃r (k). Similar to the satellite clock velocities inTable 1,
the original receiver counterparts are also biased by the
receiver clock term. Therefore, in this setup, one can exploit
the temporal stability provided by the external atomic clock
and determine more precise solutions of the receiver clock
that can serve in timing applications. As will be shown later
on, though, care must be exercised to correctly interpret the
determined clock solutions and their quality information.

Now the question is whether the solution’s behavior of
the receiver clock remains invariant under the assumption
of having an ultra-stable receiver clock, i.e., one that can be
linked in time based on a constant-velocity setup. The right
panel of Fig. 3 depicts the estimated receiver clock error
and its confidence intervals for system noise STD equal to
0.1 mm/

√
s3. One can observe that the more stringent the

system noise characteristics are, the tighter the confidence
intervals become. When it comes to the receiver clock error
itself, no direct comparison can be done as the two solutions
comprise different realizations of dt̃r , even though onewould
expect that the divergence becomes smaller with a decreased
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Fig. 3 Time-series of the
receiver clock estimation error
(solid line) and its 99.9%
confidence interval (dashed
lines) without a dynamic model
(left) and with a
constant-velocity model (right)
for the temporal behavior of the
receiver clock. The acceleration
system noise STD used in the
latter case is 0.1 mm/

√
s3
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Fig. 4 Time-series of the
satellite clock estimation errors
(colored dots) and their 99.9%
confidence intervals (black
dashed lines) under two different
S-system choices: the receiver
clock is minimum-constrained
as S-basis, i.e., only at the first
two epochs (top) and
constrained as S-basis at every
processing epoch (bottom). Left:
Undifferenced clocks. Right:
Between-satellite
single-differenced clocks. A
constant-velocity setup has been
used to model the temporal
behavior of the satellite clocks.
The confidence intervals refer to
the clock of a representative
satellite that is tracked since the
provider-filter initialization.
Each color represents a different
GPS satellite

systemnoise variance. In addition, themagnitude of the intro-
duced jumps because of newly arrived satellites seems to go
in accordance with the clock system noise variance. The rea-
son lies in the fact that a smaller systemnoise variance implies
that more confidence is placed on the dynamic model rather
than the introduced measurements at every epoch.

It should be remarked that the above results were obtained
using a forward-only Kalman filter which is often utilized in
real-time applications. In a post-processing exercise where
one is able to perform a forward–backward filter approach,
the error variance of the smoothed receiver clock estimates
would never be larger than that of the forward-only-based
estimates.

3.1.2 Individual corrections

Satellite clocks
The first subset of the positioning corrections to aid the
PPP-RTK user consists of the estimable satellite clocks. In
our simulation setup, the single-stationprovider data process-
ing resulted in the satellite clock errors and their STDs shown
at the top-left panel of Fig. 4, which includes the state errors
for all observedGPS satellites during the processed one hour.
Note that these results refer to the undifferenced version of
the clocks. One can immediately observe that the satellite
clock results fully resemble those shown for the receiver
clock (cf. Fig. 1) and are consistent for all observed GPS
satellites. The question is now whether the component of the
satellite clocks, contributing to user positioning, can be pre-
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cisely determined in a constant-velocity setup. As we will
see in the following, the answer is affirmative.

In the attempt to evaluate the quality of the estimated
satellite clocks, one may be inclined to defy the usage of
a single-station provider to determine the estimable satel-
lite clocks, due to the nonzero-mean state errors and their
increasing variances over time. As shown by (9), the vari-
ance of the satellite-averaged satellite clock will experience
an increase over time as a result of its accumulated system
noise. One should also study the variance behavior of its
satellite-differenced component in order to fully character-
ize the variance behavior of the satellite clocks.

Considering now that there exists redundancy in the sys-
tem of satellite-differenced IF code observations from the
third epoch onwards, due to the absence of the receiver clock,
one can infer that themulti-epoch satellite-differenced clocks
will experience a precision improvement over time. Com-
bined with our finding in Sect. 3.1.1, it becomes clear that the
variance behavior of the satellite clocksdt̃s will be dominated
by the variance-increase of their satellite-averaged counter-
parts. These conclusions can be graphically demonstrated in
Fig. 4. At the top-right panel of the figure, one can observe
that the single-differenced satellite clocks become indeed
more precise over time and converge to their true values.
The effectiveness of the between-satellite single-differenced
PPP-RTK corrections on the user level has also been dis-
cussed in Khodabandeh and Teunissen (2015). As with the
receiver clock solution, it is the increase in the solutions’
variance over time that increases the probability that the
undifferenced satellite clock estimation errors diverge from
their expected value (i.e., zero). In case the provider makes
use of an S-basis that includes the receiver clock dtr (i)
at every epoch, as is usually the case in the analysis cen-
ters of the International GNSS Service (Steigenberger et al.
2015), onewould end upwith the undifferenced and satellite-
differenced satellite clock estimation errors at the bottom-left
and bottom-right panels, respectively, of Fig. 4.

At this point, one may still wonder whether these seem-
ingly imprecise undifferenced satellite clock estimates can
actually be utilized by the PPP-RTK positioning users to
achieve centimeter-level positioning. The fact that the user
receiver clock is assumed to be unlinked in time allows us
to reasonably expect the increasing error variance of the
satellite clocks, due to their satellite-averaged version, to be
mapped to the user receiver clock. This practically means
that the seemingly imprecise satellite clock estimates do not
impact the user ambiguity and position parameters, leaving
ambiguity-fixed positioning unaffected.

Now consider the case in which the user employs a
dynamic model for his receiver clock parameter, e.g., a
constant-velocity setup, for which the system noise of the
receiver clock velocity is known. Although one would expect
in such a setup to obtain improved performance for his

receiver clock, e.g., for timing applications, this would not

be true given the satellite clock corrections d ˆ̃t s(k). This is
due to the fact that the latter are lumped with the parame-
ter [k − 1]�t∂dt̄r (cf. Table 1), which was introduced after
assigning a constant-velocity setup for the satellite clocks.
Consequently, the behavior of the user’s receiver clock,
regardless if its temporal behavior is modeled by the user
through the user’s dynamic model, will also be governed by
the single-station provider’s satellite clock corrections.

Satellite phase biases
We now turn our attention to the key correction component
needed for recovering the integerness of user ambiguities
and, therefore, achieving single-receiver integer ambiguity
resolution, namely the satellite phase biases. The resulting
L1 satellite phase bias errors and their STDs, as estimated
in our simulated single-station setup, are depicted in Fig. 5.
After convergence, the satellite phase bias estimation errors
approach the zero value and are shown to completely lie
within the confidence interval. Instead of showing the satel-
lite phase biases for L2 as well, the figure shows their
difference, namely thewide-lane (WL) satellite phase biases,

i.e., ˆ̃
δs,WL = ˆ̃

δs,1 − ˆ̃
δs,2. The WL biases are more precise than

their uncombined counterparts due to the high correlation
between the latter, with a 30-fold precision improvement
after convergence.
In providing phase bias estimates to the user, one may opt

for either the originally estimated states ˆ̃
δs, j or their fractional

part frac( ˆ̃δs, j ), as is the case in the fractional cycle bias (FCB)
model (Ge et al. 2008). The fractional operator is defined as
frac(x) = x − �x�, where the symbol �x� denotes rounding
to the nearest integer of x . Ideally, when there is no ‘random-
ness’ involved in �x�, the integer shifting x − �x� would not
impact the distribution of x other than its location. In that
case, application of the fractional operator to the phase bias
solutions maintains the integerness of the user ambiguities.
However, the phase bias solutions and their integer-rounding
estimators are functions of the randomGNSSmeasurements.
Consequently, the distributional properties of the phase bias
solutions will be affected by the fractional operator due to the
non-integer mean of the phase biases, the larger the level of
randomness becomes in the integer-rounding estimator �x�.
For instance, consider Fig. 6 in which the histograms of the
L1 and WL satellite phase bias estimation errors, together
with their fractional versions, are depicted for a represen-
tative satellite using 100 observable samples. In the case of
WL phase biases, the fractional estimator exhibits estimation
errors almost the same as those of the originalWL phase bias
estimator. This is due to the rather high precision of the WL
phase bias solutions. In the case of L1 phase biases, however,
the estimation errors of the fractional estimator fail to be sym-
metric around zero, indicating that the fractional estimator
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Fig. 5 Time-series of the L1 (top) and WL (bottom) satellite phase
bias estimation errors (colored dots) and their 99.9% confidence inter-
vals (black dashed lines). The confidence intervals refer to the phase
bias of a representative satellite that is tracked since the provider-filter
initialization. Each color represents a different GPS satellite

delivers non-Gaussian-distributed phase bias solutions. This
illustrative example highlights the serious pitfall that exists
when delivering the fractional version of the phase biases to
the users and underlines the importance of exercising proper
care in the evaluation of statistics for the user-corrected phase
measurements, see also (Teunissen and Khodabandeh 2015).

3.1.3 Combined corrections

The analysis of the individual corrections is useful if one
wants to study the temporal characteristics and estimation
quality of the individual parameters. However, when the
user ambiguity-resolved positioning performance is con-
cerned, our earlier contributions show that such a quality
judgment disguises key information, resulting in serious
pitfalls (Khodabandeh and Teunissen 2015; Psychas et al.

Fig. 6 Histograms of theL1 (top) andWL (bottom) phase biases in their
original (green) and fractional (blue) versions, along with the formal
PDF (red) of the original phase biases, based on independent Kalman
filter realizations of 100 normally-distributed observable samples. The
dark-green color occurs due to the full or partial overlap of the two
histograms. The results correspond to the estimated L1 and WL phase
biases of an individual GPS satellite at 3600s since the provider-filter
initialization

2022). What matters is their combined effect, revealing the
role of high correlation that exists between the individual cor-
rections. The combined phase and code corrections ĉsφ, j (k)
and ĉsp, j (k) are, respectively, given by

[
ĉsφ, j (k)
ĉsp, j (k)

]

=
⎡

⎣
d ˆ̃t s(k) + μ j ˆ̃ιsr (k) + λ j

ˆ̃
δs, j (k)

d ˆ̃t s(k) − μ j ˆ̃ιsr (k) + ˆ̃ds, j (k)

⎤

⎦ (12)

That both the code and phase PPP-RTK corrections con-
tain the satellite clock and ionospheric delay estimates
implies the presence of correlation between them, a prop-
erty thatmay often be overlooked in positioning applications.
Whether this correlation remains constant or to what extent
it increases as a function of latency remains a topic of analy-
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Fig. 7 Formal STDs of the
between-satellite combined
PPP-RTK code (top-left) and
phase (top-right) corrections,
along with the code/phase
correlation (bottom), as a
function of time and correction
latency. The results correspond
to an individual GPS satellite
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sis in this subsection. Figure 7 shows the formal STD of the
PPP-RTK code and phase combined corrections of a repre-
sentative satellite, as well as the correlation between them,
in their satellite-differenced version. Since the undifferenced
corrections experience a variance increase due to the vari-
ance increase of the estimable satellite clocks, we do not
present the formal STDs of the undifferenced corrections
for brevity. To highlight the role played by the correction
latency, we also compute these formal measures for nonzero
latencies up to 30s with a time-prediction step as in Khoda-
bandeh et al. (2023). In the case of an instantaneous delivery
of the corrections to the users, i.e., without any time delay, the
satellite-differenced PPP-RTK code and phase correctional
uncertainties lie in the few cm and mm levels, while one
can observe one order of magnitude increase for a latency
of 30s. The code-phase correction correlation with a zero
latency shown at the bottom row of the figure shows an
increase over time, which is due to the increasing precision
of the combined corrections over time, the rate of which was
found to be higher compared to the one of the almost time-
invariant code-phase correction covariance. When latency is
introduced between the correction generation and their appli-
cation at the user side, it can be seen that the correlation
increases with increasing latency. This is attributed to the
uncertainty amplification that takes place in the corrections’
time-prediction step.After the steady state has been achieved,
the correlation values reach the 0.6−0.9 level, indicating that
they are non-negligible contributors to the user stochastic
model.

3.1.4 Time correlation

We have so far focused on the correctional uncertainty that
has been shown to get amplified in the presence of nonzero
latencies and, as such, rigorous parameter estimation at the
PPP-RTK user level needs to consider such uncertainty.
Another interesting property of the multi-epoch position-
ing corrections that is often overlooked or ignored is their
time correlation. It is reminded here that the multi-epoch
filtered corrections are inherently correlated in time. The rea-
son behind neglecting such a property is of twofold nature.
First, the autocorrelation of the multi-epoch filtered correc-
tions is reasonably assumed to vanish over considerable time
spans. Second, the realization of multi-epoch recursive esti-
mators, such as the Kalman filter, relies on diagonal weight
matrices and, as a result, the presence of nonzero time cor-
relation in the filtered corrections and subsequently to the
user-corrected data leads to a misspecified user filter that
delivers sub-optimal results in the minimum-variance sense.
In obtaining rigorous parameter estimation based onmultiple
epochs of data, one should take recourse tomulti-epoch batch
estimators that are not favorable in real-time applications.

To better understand the results presented in the follow-
ing, we present here how fast the temporal correlation of the
PPP-RTK combined corrections decays over time. Figure 8
depicts the temporal correlation of the satellite-differenced
PPP-RTK code corrections for latencies ranging from 0 to
30s. Since similar behavior between the temporal correla-
tion of the code and phase corrections was observed, we do
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Fig. 8 Time correlation of the estimated between-satellite combined
PPP-RTKcode corrections as function of time lagwith a latency ranging
from 0 to 30s. The results correspond to an individual GPS satellite.
The legend of Fig. 7 is applicable here

not present the time-series of the latter for brevity. One imme-
diately observes that, regardless of the latency applied, the
correlation decays over timewith the rate of decrease becom-
ing more pronounced the longer the latency is. As a result,
the assumption of a vanishing temporal correlation is plau-
sible, with its minimum being brought only after a certain
number of epochs. Whether neglecting the time correlation
of the user-corrected measurements has an impact or not on
the expected user performance is left to be investigated in the
following section.

4 User impact

As the goal of PPP-RTK is in principle to enable single-
receiver user integer ambiguity resolution aiming to obtain
centimeter-level positioning, we will, in this section, present
and analyze the impact the precision, time correlation and
latency of the corrections have on the quality description of
the user position and ambiguity solutions, as that would be
observed from the provider.We perform this analysis for both
the single-epoch and multi-epoch user setups. The distance
between the provider and user receivers is assumed to be
short enough so that they both experience the same atmo-
spheric delays and have approximately equal line-of-sight
unit vectors.

4.1 Single-epoch setup

To show how the user parameter solutions are impacted
by the combined corrections (12), we make use of their
vectorial forms. Accordingly, the vector of corrections at

epoch k is defined as ĉk = [ĉsφ,1(k), ĉ
s
p,1(k), . . . , ĉ

s
φ, j (k),

ĉsp, j (k), . . . , ĉ
s
φ, f (k), ĉ

s
p, f (k)] for s = 1, . . . ,m and j =

1, . . . , f . Adding this vector to the user observation vector
at epoch k, say yk , gives the user observation equations in
their linearized form as follows

E(yk + ĉk) = Ak xk (13)

where the user unknown parameter vector xk is linked to the
corrected observation vector (yk + ĉk) through the full-rank
design matrix Ak .
We now analyze the single-epoch user ambiguity resolu-
tion and positioning performances as functions of correction
latency. Judging from the results shown in the previous sec-
tion, one can expect both the ambiguity resolution and the
positioning performance to be largely driven from the uncer-
tainty of the corrections and the latency the latter are provided
with. Assuming the user correctly specifies his stochastic
model, he performs a best estimation in the minimum-
variance sense:

Qx̂k = A+
k Qỹk A

+T
k , A+

k = (AT
k Q

−1
ỹk

Ak)
−1AT

k Q
−1
ỹk

(14)

where Qỹk = Qyk + Qĉk is the variance matrix of the cor-
rected observation vector (yk + ĉk). The user data variance
matrix is evaluated as Qyk = blkdiag(Cφφ,Cpp) ⊗ W−1

k ,
with ⊗ being the Kronecker matrix product. The matri-
ces Cφφ and Cpp are the covariance matrices of the phase
and code observables, respectively, at zenith. The zenith-
referenced STDs of the user phase and code data have
been set to 3mm and 30cm, respectively, assuming that the
user receiver provides measurements of lower quality com-
pared to those of the provider receiver. The m × m matrix
Wk = diag(w1

k , . . . , w
m
k ) contains the elevation dependent

weights of the satellites tracked by the user at epoch k.
To provide insight into the user performance,we evaluated

the user Ambiguity Dilution Of Precision (ADOP; Teunissen
1997), as the geometric average of the sequential conditional
STDs of ambiguities, and ambiguity-float and ambiguity-
fixedpositioning precision as shown inFig. 9.Note that, since
ambiguity resolutionmay have different responses to various
functions of the position parameters, we have employed the
square root of the position variancematrix’ determinant taken
to the power one over three, which represents the average
positioning precision.

Starting with the instantaneous minimum-variance user
solutions at the top panel of Fig. 9, one can clearly observe
how the user ADOP is driven by the correction latency, with a
30s timedelay bringing it to anADOP ranging from0.5 to 0.6
cycles. As a rule of thumb, ADOP values smaller than about
0.12 cycle correspond with success rates larger than 0.999
(Odijk and Teunissen 2008). The increase in the ADOP val-
ues stems from the fact that, given that the user phase data are
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Fig. 9 GPS L1/L2 single-epoch user ADOP (top) and geometric mean
of the float position conditional STDs (bottom; solid lines) with their
float-to-fixed ratios (bottom; dashed lines) as a function of latencywhen
considering the correct user-measurement variance matrix. The hori-
zontal dashed line in the top-panel denotes the value of 0.12 cycles

reserved for the phase ambiguities and thus for the resulting
ADOP, the combined phase corrections become less precise
than the phase data with increasing latency (cf. Fig. 7). As
for the float average positioning precision, no considerable
impact can be seen unless larger latencies are used. This is
in fact expected, since the code data, which are less precise
than the combined code corrections for larger time delays (cf.
Fig. 7), drives the float position estimates in a single-epoch
user setup. Assuming now that the phase ambiguities can be
correctly fixed, the dashed lines in the bottom panel of the
figure show how many times the precision of the ambiguity-
float position solutions improves. Since in this case it is the
user phase data that govern the fixed position precision, one
would expect an about two orders of magnitude precision

improvement, which is actually not the case except for the
zero-latency case. This is due to the fact that the phase data
are affected by the uncertainty of time-predicted PPP-RTK
corrections, thereby limiting the range of improvement.

4.2 Multi-epoch setup

So far we based our analysis on the single-epoch user setup,
where data at each epoch are processed independently to
produce epoch-by-epoch user parameter estimates, and for
which promising results have been demonstrated for instan-
taneous user ambiguity resolution and positioning even for
high latencies (Khodabandeh 2021; Psychas et al. 2022). One
may also opt for a multi-epoch processing exploiting the
time stability of the phase ambiguities in a dynamic model
using either a Kalman filter (Kalman 1960) or its generalized
version with a relaxed dynamic model that involves only
a subset of the state vector (Teunissen et al. 2021). Once
a (generalized) Kalman filter is employed by the user, the
ambiguity-float user parameter solutions will get more pre-
cise over time due to an implicit accumulation of data over
epochs.

In this case, one would want to ensure that the filter’s
underlying stochastic assumptions are valid for the execution
of a rigorous multi-epoch processing. However, the applica-
tion of the multi-epoch filtered corrections to the normally
distributed user data violates one of the Kalman filter mea-
surement model’s assumptions in that the user-measurement
noise ceases to be uncorrelated in time. The reason lies in
the fact that the single-station provider processed the code
and phase measurements in a Kalman filter and, as such, the
determined corrections are inherently correlated in time. To
circumvent this limitation, Khodabandeh et al. (2023) pro-
posed a new multi-epoch formulation of the PPP-RTK user
filter that can outperform its commonly used counterpart and
deliver close-to-minimum-variance solutions.

In practice, the PPP-RTK corrections are often treated
as nonrandom (deterministic) quantities, mainly due to the
excessive amount of quality description information that
needs to be transmitted to the user (Odijk et al. 2014),
thereby neglecting both their uncertainty and their tempo-
ral correlation. Since the existing user filter formulations
becomemisspecified and provide an incorrect or sub-optimal
quality description, we determine and analyze the user-
optimal expected performance using a batch formulation of
the Kalman filter, which considers both the uncertainty and
time correlation of the provided corrections. In carrying out
this analysis, we form the user-measurement variance matrix
as follows:
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Fig. 10 GPS L1/L2 multi-epoch user ADOP (top row) and average
positioning precision with float (middle row) and fixed (bottom row)
ambiguities for 10 epochs of data as a function of correction latency.
The figures in the first column refer to the optimal minimum-variance
solution where the user considers the correctional uncertainty and time
correlation (Case 1). The second columnfigures refer to the sub-optimal
solution where the user considers only the correctional uncertainty, thus

neglecting the time correlation (Case 2). The third column figures refer
to the often computed solution where the user ignores the correctional
uncertainty and time correlation (Case 3). The solid and dashed lines
represent the reported and actual formal measures, with the latter being
estimated based on correct variance propagation. The correction gen-
eration starting time is 09:25:00, while the user parameter estimation
begins at 09:26:00
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. . . Qĉk+K |k+K−τ

⎤

⎥
⎥
⎦

(15)

The user position and receiver clock parameters are assumed
to be unlinked in time, while the remaining parameters are
treated as time-constant parameters.

To gain an insight into the impact that neglecting the
correction uncertainty and time correlation has on the
user parameter precision description, the formal measures
describing the ambiguity resolution strength and positioning
quality are visualized and analyzed below. Shown in Fig. 10
are the time-series of the user ADOP (top row) and the aver-
age positioning precision with float (middle row) and fixed
(bottom row) ambiguities for batches up to 10 epochs of data
and for correction latencies up to 30s.We consider here three
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distinct cases regarding the error variance-matrix of the time-
predicted PPP-RTK corrections that the user makes use of:

• Case 1 considering both the uncertainty and the time cor-
relation of the corrections (left column), which results in
the minimum-variance solutions

• Case 2 considering only the uncertainty of the corrections
(middle column)

• Case 3 neglecting both the uncertainty and the time cor-
relation of the corrections (right column), which is the
strategy often adopted in practice

Note that in the presence of a misspecified stochastic model,
i.e., Cases 2 and 3 (middle and right columns), the actual
formal measures are evaluated with a correct variance prop-
agation and are shown in the figure with dashed lines, while
the reported counterparts with solid lines.

Let us first focus on Case 1, where the user has access
to the complete characterization of the correctional stochas-
tic information and can obtain optimal solutions in the
minimum-variance sense. In the left-column panels of
Fig. 10, one can observe that the ADOP and ambiguity-
float position standard deviation decrease over time, but get
amplified in the presence of nonzero latencies. The first find-
ing is due to the accumulation of multiple epochs of data
that strengthens the underlying user model, thereby leading
to more precise parameter solutions, while the second one is
also expected since the user-corrected data are affected by the
uncertainty of the corrections that increase as the latency gets
higher.When it comes to the ambiguity-fixed results (bottom
row), the sensitivity of the positioning precision description
to the correction latency is evident as a result of the fact
that the phase data are affected by the amplified correctional
uncertainty. However, the ambiguity-fixed position standard
deviations are shown not to be sensitive to the number of
epochs as the former are only function of the ambiguity-fixed
phase data uncertainty. Notable is the fact that the ambiguity-
fixed precision under a 30 s correction latency is about 35 cm
compared to the 4 mm level achieved with instantaneously
delivered corrections.

When the PPP-RTK user neglects or has no access to the
time correlation of the corrections (Case 2), the reported
ADOP values shown in the middle column of Fig. 10 get
falsely smaller than the minimum-variance counterparts, and
the difference with the actual formal measures becomes
more evident the higher the latency becomes. This is not
the case, though, with the position standard deviations that
show negligible changes for both float and fixed solutions.
This practically indicates that, from a quality description
point of view, neglecting the correctional time correlation
does not significantly impact the average positioning preci-
sion, which almost mimics the one of the minimum-variance
solution. The close agreement between the Case 2 and close-

to-minimum-variance solutions has also been reported in
Khodabandeh et al. (2023).

Shown at the right column of Fig. 10 are the results of
Case 3, i.e., when the user is not provided with or neglects
both the corrections’ uncertainty and time correlation. One
can then observe that, regardless of the correction latency, the
reported ADOP and positioning precision exhibit the same
high level of performance. However, we recall here that these
results reflect the assumed user performance, which describe
a misleading and incorrect quality description. Given that the
correction provider has access to the full correction uncer-
tainty information, a correct variance propagation leads to the
actual user performance that is in fact achieved by the user.
Observing the rightmost panels, one can notice the consider-
able gap between the actual and incorrect formal ambiguity
resolution and positioning quality description that becomes
more pronounced with increasing correction latency. As an
example, note that with 10 epochs of data the user is mis-
led as he is provided with an ADOP of 0.02 cycles and an
ambiguity-fixed positioning precision of about 3 mm, indi-
cating successful ambiguity-resolved solutions, while in fact
the actual measures are 0.32 cycles and 38 cm, respectively.
This implies that neglecting both of these stochastic contri-
butions has an adverse impact on the user performance as it
leads to incorrect and over-optimistic quality description of
the user parameter solutions.

5 Summary and conclusions

In this contribution, we studied and presented the intrica-
cies inherent in multi-epoch filtered PPP-RTK corrections
that aid users in realizing single-receiver integer ambiguity-
resolved positioning and, thus, require a careful examination.
Although one is able to analytically infer the statistical prop-
erties of their estimable parameter solutions, it was shown
that one can be in fact misled by analyzing solely their char-
acteristics and behavior over time. To highlight the pitfalls
and effectively identify their root causes,we developed a sim-
ulation platform that allows one to have full control over the
properties under investigation. Our main findings are sum-
marized as follows:

• Misleading impressions through single realizations. We
started off by discussing how a single realization of the
estimable clock parameter solutions can be misleading
due to the nonzero-mean estimation error time-series
one could be confronted with. It was highlighted that
multi-epoch parameter solutions are random processes,
while the Kalman filter only delivers a sample out of their
infinitelymany realizations. After accumulatingmultiple
independent Kalman filter realizations, we demonstrated
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that the unbiasedness property of the estimable parame-
ters holds.

• Variance-increase of clocks. The divergence of the clock
estimation errors from the expected zero value over time
was also reflected on the formal confidence intervals
of their estimable forms. In explaining this phenomenal
behavior, analytical expressions were presented showing
that the contributing factor to such a behavior is the solu-
tion’s variance of the satellite-averaged component of the
undifferenced satellite clocks as a result of accumulated
systemnoise and the absenceof redundancy. Itwas shown
that the satellite-differenced clocks, being the ones that
take an active role for user positioning, becomemore pre-
cise over time due to the presence of redundancy in the
satellite-differenced system of observation equations.

• The fractional estimator delivers non-Gaussian-
distributed solutions. The widely used FCB model for
PPP-RTKwas evaluated as to whether the fractional esti-
mator can deliver proper phase bias solutions, for which
the level of randomness involved in the integer-rounding
estimator plays a decisive role. By means of an illus-
trative example, we demonstrated that the application
of the fractional operator on the Gaussian-distributed
frequency-specific satellite phase bias solutions can alter
their distributional properties, thereby delivering non-
Gaussian-distributed phase bias solutions to the users and
subsequently affecting the distribution of the user float
ambiguities.

• Role of the correction latency and time correlation. Since
it is the combined form of the PPP-RTK corrections
that matters for user positioning, their sensitivity to the
latency was analyzed. It was shown that the larger the
latency, the larger the combined correctional uncertainty
and the code/phase correctional correlation become. On
the contrary, the time correlation underlying the multi-
epoch filtered corrections experienced a reduction over
time, especially in the presence of large latencies, indicat-
ing that the assumption of a rapidly vanishing temporal
correlation employed in user positioning setups is plau-
sible.

• Sub-optimal user performance. Supported by the numer-
ical results, our analysis showed that the reported quality
description of the user ambiguity resolution and posi-
tioning performance, as that would be observed from a
provider, can be misleading and incorrect upon ignor-
ing the correctional uncertainty, with the effect being
more pronounced for larger latencies. Neglecting only
the time correlation information, though, exhibited only
slight deviations between the user-reported and user-
actual ADOP, while the positioning precision was shown
to resemble the one achieved in the minimum-variance
solution. Addressing the extent to which the user perfor-
mance may be further affected by neglecting other parts

of the corrections’ stochastic information, such as the
between-satellite correctional covariance, is a topic of
future work.
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