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1

INTRODUCTION

Both humans and machines are able to learn from examples. In humans this happens
naturally: repeated experiences lead to associations of input from the senses, to certain
concepts or words (“mom”). “Mom” may look slightly different or say different things
every day, but a child is able to generalize such variations of input and assign all of
these to what “mom” means to the child.

In machine learning, the process of learning from examples is called supervised learn-
ing. Supervised learning consists of using labeled examples (such as faces, which are
labeled with a person’s name) to generalize input data, in order to be able to identify
these concepts (faces) in previously unseen examples (other photographs). Other ex-
amples include spam filtering, computer aided diagnosis, drug discovery, and many
others. In all of these problems, supervised learning requires (a) being able to describe
each example by a finite number of measurements called features, and (b) being able to
provide a label or category for each example. With these prerequisites, we can build a
classifier, which, in turn, can label previously unseen examples, described by the same
features as in (a). An example of a supervised classifier is shown in Fig. 1.1(a).

Unfortunately, standard supervised learning has many limitations, starting with defin-
ing discriminative features. For example, how does one represent a face? When describ-
ing a person, one could try to use high-level descriptions, such as “blue eyes”, “round
nose”, or more low-level features such as the coordinates of interest points (such as eye
and lip corners). However, during this process, information can be lost, i.e., represent-
ing faces of different people with the same feature vector, or noise can be introduced,
i.e., representing faces of the same person with different feature vectors. It is challeng-
ing to define good features for a particular problem, because it is often unclear how a
human performs the same recognition problem.

As an alternative to inventing features, the dissimilarity representation, where each ex-
ample is described by (dis)similarities to a set of reference prototypes, has been intro-
duced [133, 137]. Dissimilarities can be defined directly on examples, by asking an
expert, or by measuring the amount of deformation that is needed to transform one ex-
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(a) Supervised learning (b) Supervised learning in dissimilarity space

(c) Multiple instance learning (d) Multiple instance learning in dissimilarity
space

Figure 1.1: Supervised and multiple instance learning. (a) Feature space in 2 dimensions with
labeled instances (colored triangles) which are used to train a classifier f , which in
turn can be used to classify unlabeled instances (white triangles). (b) Dissimilarity
representation for a supervised problem, with two instances as prototypes. (c) Same
feature space as in (a), but with labeled bags (colored blobs) of instances. Bag classi-
fiers do not operate in this space. (d) Dissimilarity representation for a MIL problem,
with two bags as prototypes. Here a bag classifier F can be trained.
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Figure 1.2: Two labeled bags (groups) of unlabeled instances (faces). Both bags are labeled
“Marco is in the picture”. Given that information only about the left picture, you
cannot say who Marco is, but given the extra information about the right picture,
you should be able to say whether Marco is in a different picture you have never
seen before

ample into another. Although this decreases the need for features, it becomes necessary
to define a dissimilarity function and to choose a set of prototypes. Schematically, a
dissimilarity representation can be depicted as in in Fig. 1.1(b).

A further limitation is that the classification task might not even fit into the standard
supervised learning paradigm. In particular, in real life we can encounter situations
where labels are not available for examples, but only for groups of examples. For exam-
ple, with the information that Marco is in both pictures in Fig. 1.2, you are able to learn
who Marco is, even though you are not provided with pictures of Marco alone.

In supervised learning terminology, the examples are called instances and the groups
are called bags. The learning scenario (or rather, scenarios) where only labeled bags are
available is called multiple instance learning or MIL. In MIL, the standard assumption is
that a bag is positive if and only if at least one of the instances is positive. In the face example,
this is true: if I tell you that Marco is in the picture, it means that at least one of the faces
corresponds to Marco. A schematic example is shown in Fig. 1.1(c). Here only the bags
are labeled, but using the standard assumption we could still infer the instance labels as
shown in Fig. 1.1(a).

In these examples, the bags (photographs) are labeled, but it is assumed that the in-
stances (faces) have labels, which are not given. This is also the case for many other
classification tasks where labels are available only for bags, such as:

• Drug activity prediction. Each drug (molecule) is represented by its conformations
(shapes the molecule can fold into). Each drug is a bag, each conformation is
an instance. Labels (active or not active, i.e., binds to a particular molecule) are
available on for on drug level.
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Figure 1.3: Representing a document in the MIL framework. The k-th paragraph of the i-th pa-
per is described by a feature vector xik based on counts of different words (class,
dimension, etc). The red paragraph is positive for a particular topic (“overfitting”)
while the blue ones are not. However, the classifier is only provided with the infor-
mation that the whole paper is relevant for “overfitting”, i.e., the bag is positive or
yi = +1.

• Document categorization. A document (such as a conference paper or a news
item) is represented by several paragraphs, which are described by a histogram
over dictionary words. Each document is a bag, and each paragraph is an instance.
An example is shown in Fig. 1.3.

• Computer aided diagnosis. A medical image, such as a computed tomography
(CT) scan, is represented by several image patches. The scan is labeled with a
disease type, but not where in the image this disease is present.

One important difference in these examples is the relationship of the bag labels and the
(hidden) instance labels. In drug activity prediction, a molecule is active as soon as at
least one of its conformers is active, therefore the standard assumption holds. In docu-
ment categorization, however, it is not as clear where a single paragraph on a particular
topic is sufficient to assign that topic label to the whole document. For example, while
this thesis contains a biography, it would be (hopefully) inappropriate to label the whole
thesis as “biography”.

Another important difference is the goal of the classifier. In document categorization,
the end goal might be to label recently published articles, i.e., bags. In computer aided
diagnosis, the end goal might be to provide a diagnosis for a new patient’s CT scan.
However, from a diagnostic point of view, it is also interesting to examine which patches
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are responsible for this diagnosis, i.e., examine the instance labels.

The assumptions and goals of a problem largely determine the learning strategy of a
classifier, and, in turn, affect factors such as computational complexity, and the type
and interpretability of the output (bag and/or instance labels). For example, under the
standard assumption, a reasonable learning strategy is to search for the concept: an in-
stance that is present in all positive bags, but is not present in any negative bags. This
process is computationally challenging, but is able to provide instance labels, which can
be explained in terms of the instances’ similarity to the discovered concept. Under the
assumption that all instances contribute to the bag label, a strategy could be to compare
bags on a higher level, for instance by averaging the instances. This approach is com-
putationally very efficient because each bag is represented as single feature vector, but
all interpretability of the provided bag labels is lost.

The dissimilarity representation offers an approach that is attractive both in terms of
computation and interpretability. By representing each bag by dissimilarities to refer-
ence bags (Fig. 1.1(d)), the problem is transformed into a supervised learning problem.
However, this representation allows the provided bag labels to be explained as a com-
bination of dissimilarities to reference prototypes. As with any dissimilarity represen-
tation, there are several important questions in this process:

• How to define a dissimilarity function?

• How to choose a reference set of prototypes?

• What can this representation tell us about the problem?

The main goal of this work is to study these and related questions for the multiple
instance learning problem. After a brief explanation of supervised learning, we will
explain multiple instance learning and the dissimilarity representation in more detail.
The remaining chapters of this thesis will focus on elaborating the link between the two
techniques and on answering the questions above.

1.1 Supervised Learning

In a supervised learning problem, we have a dataset of objects T = {(xi, yi)|i =
1, . . . , N} where the feature vectors xi ∈ Rm are the m measurements describing each
object, and the labels yi ∈ Y indicate the category that the object belongs to. X = Rm is
the input space and Y is the label space. Here we consider the binary case Y = {−1,+1}
because problems with multiple classes can be decomposed into binary problems [68].

We are interested in finding a function f : X → Y which can provide labels for pre-
viously unseen feature vectors. Typically this is achieved by choosing a function class
or a model, and then using T to estimate the model parameters. For example, in a
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linear classifier (such as the classifiers shown in Fig. 1.1(a)) the label is modeled as
f (x) = sgn(wᵀx). The parameters, or weights w are estimated by minimizing a function
which consists of a loss term L and a penalty term Ω:

min
w

N

∑
i=1

L(yi, wᵀxi) + λΩ(w) (1.1)

where λ controls the trade-off of the two terms. Different choices for L result in different
classifiers, for example the logistic loss L(yi, wᵀxi) = log(1 + exp(−yiw

ᵀx)) leads to
logistic regression, and the hinge loss L(yi, wᵀxi) = max{0, 1 − yiw

ᵀx)} leads to the
support vector machine (SVM). The term Ω regularizes the classifier by controlling the
complexity of the weight vector w and is frequently defined as a norm of w.

A classifier with a very different strategy is the nearest neighbor (NN) classifier. This
classifier assigns previously unseen objects the label of the closest objects in the training
data T. Whereas in linear classifiers, T is used to find a weight vector w which can
generalize (and T is no longer needed), in NN the classifier is fully defined by T. This
results in a non-linear boundary, such as the example in Fig. 1.4. This example uses the
Euclidean distance to define the closeness of the feature vectors, however, NN can even
be used with distances defined on non-vectorial objects, such as graphs.

Figure 1.4: Nearest neighbor classifier.

Further explanations of these and other supervised classifiers can be found in [54, 68].
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1.2 Dissimilarity Representation

Rather than representing an object in an absolute way by features, we can represent it in
a relative way by dissimilarities to prototype objects in a representation set R. R is often
taken to be a subset of T, although this is not strictly necessary, for example, prototypes
from the test data may be used in a transductive learning setting [51]. For simplicity,
here we let R = T.

Let d be a dissimilarity function d : X × X → R. For example, when X = Rm we
can simply use the Euclidean distance as d. We can then represent each object xi as a
vector of dissimilarities di = [d(xi, r1), . . . , d(xi, rN)]. As a result, each object is now
represented in an N-dimensional space, the j-th feature corresponds to the dissimilarity
to the j-th prototype. In this space, supervised classifiers can be trained as described in
the previous section. A linear classifier in the dissimilarity space is a non-linear classifier
in the original space.

The dissimilarity representation allows supervised learning on non-vectorial spaces X ,
because all that is needed is a function d. Due to this, the dissimilarity representation
has frequently been applied to structural pattern recognition problems [27, 58]. Al-
though the dissimilarity function d may be a distance metric, it is not the case that only
metric dissimilarities are suitable as choices for d [136]. In many cases, using d in the
dissimilarity space outperforms using d together with a nearest neighbor classifier.

1.3 Multiple Instance Learning

In multiple instance learning (MIL), an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ Rm of ni feature vectors or instances. The training set T = {(Bi, yi)|i =
1, ...N} now consists of positive (yi = +1) and negative (yi = −1) bags.

The standard assumption for MIL is that there exist instance labels zik which relate to the
bag labels as follows: a bag is positive if and only if it contains at least one positive, or
concept instance [49]. More general assumptions have also been proposed [65, 157, 188].

MIL methods can be broadly divided into two categories: instance-based and bag-
based. This is a categorization we use in our work [40] as well as a slightly later pub-
lished survey of MIL [3]. Instance-based methods use the constraints posed by the bag
labels and the MIL assumptions to build an instance classifier, and combine instance
classifications to classify bags [5, 114, 183, 195]. On the other hand, bag-based methods
aim to classify bags directly by defining distances or kernels [71], or by transforming
the data into a supervised problem [171, 194]. We explain the classifiers in more detail
in the following sections.
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1.3.1 Instance-based Classifiers

Instance-based classifiers use assumptions about how the instance and bag labels are
related to build an instance classifier f . Bags can then be classified by classifying that
bag’s instances, and combining the instance labels. For example, the noisy-or rule,

p(y = 1|Bi)

p(y = −1|Bi)
=

1 − ∏ni
k=1(1 − p(zik = 1|xik))

∏ni
k=1 p(zik = −1|xik)

(1.2)

reflects the standard assumption that a bag is positive if and only if at least one of the
instances is positive.

One group of instance-based classifiers works by finding the concept: a region in the
feature space which contains at least one instance from each positive bag, but no in-
stances from negative bags. The original class of MIL methods used an axis-parallel
hyper-rectangle (APR) [49] as a model for the concept. A related technique is to express
the “concept-ness” of a point t in the feature space as a density. For example, Diverse
Density [114] DD(t) is based on ratio between the number of positive bags which have
instances near t, and the distance of the negative instances to t. The instance classifier f
is then based on the presence of instances in the optimal APR, or on the distance from
the target concept t∗ = arg maxt DD(t). Illustrations of these methods are shown in
Fig. 1.5.

(a) Axis-parallel hyper-rectangle model (b) Diverse density model

Figure 1.5: Instance-based classifiers APR (left) and Diverse Density (right). Triangles are in-
stances, red blobs are positive bags and blue blobs are negative bags. APR searches
the instance space to find a region where only instances from positive bags, but not
negative bags are contained. DD is a density based on the ratio of instances from
positive bags close to a point t, and distances of negative instances to t.
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Another group of instance-based classifiers works by finding the instance labels. These
classifiers start with an initial hypothesis for instance labels, and thus the classifier f ,
and use the constraints posed by bag label assumptions to update the instance labels,
and in turn, the classifier. These classifiers are typically supervised classifiers extended
to work in the MIL setting, such as support vector machines (mi-SVM [5]), boosting
(MILBoost [183]) or random forests (MIForest [107]).

Last but not least, a way to learn in MIL problems is to propagate the bag labels to the
instances (thus assuming all instances in the bag have the same label), and use super-
vised learners on these propagated labels. We call this approach SimpleMIL. To obtain a
bag label from predicted instance labels, the instance labels have to be combined. Here,
the noisy OR rule or other combining methods can be used [108, 111]. For example the
average rule,

p(y = 1|Bi)

p(y = −1|Bi)
=

∑ni
k=1 p(zik = 1|xik)

∑ni
k=1 p(zik = −1|xik)

(1.3)

assumes that all instances contribute to the bag label.

1.3.2 Bag-based Classifiers

Bag-based methods generally assume that bags of the same class are more similar to
each other than bags from different classes, and thus build a bag classifier F directly. An
early classifier adopting this approach is Citation-kNN [186], which uses the Hausdorff
distance as a bag distance, and an adaptation of the nearest neighbor classifier, to clas-
sify previously unseen bags. In [71], a bag kernel is defined as a sum of the instance
(linear or radial basis) kernels. The way a distance or kernel is defined affects which
(implicit) assumptions are made about the problem. A drawback for real-world appli-
cations is that metricity or positive-definiteness requirements for distances or kernels
exclude some domain-specific similarity functions.

Other bag-based methods have addressed MIL by representing each bag by a sin-
gle feature vector. This can be done in an absolute manner, such as by summariz-
ing instance statistics of each bag [71], or in a relative manner, by representing each
bag by (dis)similarities to a set of prototypes R = {R1, . . . , RM} in a so-called dis-
similarity space [133]. Therefore, each bag is represented by a single feature vector
d(Bi,R) = [d(Bi, R1), . . . , d(Bi, RM)], where d is a (dis)similarity measure. The proto-
types can be chosen to be bags [42, 194] or instances [36, 67]. In this space, any super-
vised classifier can be used.

An advantage of bag-based methods is that the standard assumption might be too strict
for certain types of MIL problems. By relying on similarity, more relaxed assump-
tions [157, 188], such as multiple concepts, can be captured.
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Classifier Type Robustness Complexity Instance
labels

APR [49] Instance, concept – – – – +
Diverse Density [114] Instance, concept – – – +
EM-DD [195] Instance, concept – – – +
miSVM [5] Instance, labels –/+ –/+ +
MILBoost [183] Instance, labels –/+ –/+ +
SimpleMIL Instance, labels + + +
Citation k-NN [186] Bag, direct + –/+ –
Set kernel [71] Bag, direct + + –
mean-inst [71] Bag, absolute ++ ++ –
extremes [71] Bag, absolute ++ ++ –
MILES [36] Bag, relative +/++ –/+ +
Proposed (Chapter 3) Bag, relative ++ + –
Proposed (Chapter 4) Bag, relative ++ –/+ +

Table 1.1: MIL classifiers. The type describes the strategy used: finding the concept or the in-
stance labels for instance-based classifiers, and a direct, or absolute or relative repre-
sentation for bag-based classifiers. Robustness indicates the ability to perform reason-
ably across different problems. Complexity expresses the computational complexity
of training the classifier. Instance labels indicates whether the classifier is able to pro-
duce instance labels or not.

1.3.3 Summary

An overview of several instance-based and bag-based classifiers used in this thesis is
shown in Table 1.1. Here we rank the classifiers based on properties that we feel are
important when choosing a MIL classifier: robustness, computational complexity, and
the ability to produce instance labels. While the computational complexity and instance
labels are relatively straightforward, the robustness property requires additional expla-
nation. With robustness, we try to express the classifier’s ability to perform reasonably
across different types of MIL problems. Although largely consistent with findings in
a recent survey [3], these ranks reflect our own experiences with these classifiers. The
goal is therefore to offer a sneak preview for the findings in the other chapters of this
thesis.

1.4 Contributions

The main contributions of this thesis address a number of mismatches of problems and
solutions in MIL. A problem here can be an abstract classification task or a particular
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dataset. A solution can be an additional assumption, a learning strategy or a specific
classifier. It seems needless to say that the solution must fit the problem. Therefore,
the answers to questions such as “How to define a dissimilarity function?” or “How to
choose a reference set of prototypes?” must invariably start with “It depends on your
data”.

Our first contribution is an overview of several extensions of supervised learning, in-
cluding MIL. We show that the idea of representing training or test objects as sets of
feature vectors has been used in several other learning scenarios and explain how these
scenarios relate to MIL. Furthermore, we show that in machine learning literature, MIL
in fact encompasses two different learning scenarios: MIL with the goal of labeling bags,
and MIL with the goal of labeling instances. (Chapter 2)

Our second contribution is an understanding of a wide range of MIL problems: how the
data is distributed, which assumptions might be more suitable and hence which classi-
fiers might be more successful in each case. Through our investigations, we conclude
that MIL (with the goal of labeling bags) also encompasses more types of problems than
it was originally intended for. Furthermore, as we demonstrate with a real-life dataset of
chronic obstructive pulmonary disease, our intuition about the fit of MIL to a particular
application may not always be correct. (Chapters 3 and 6)

The third contribution of this thesis is a comparison of different bag dissimilarity mea-
sures. To define a bag dissimilarity measure, the first step is to define a model for the
bag. The instances in a bag can be seen as a discrete point set, as a sampling from
an underlying instance distribution, or as the nodes of a graph. Each model has sev-
eral corresponding choices for the dissimilarity function: a measure of overlap between
point sets, a distribution distance, or a graph distance. Next to affecting the computa-
tional complexity of computing the dissimilarities, these choices affect what information
about the data is preserved, and therefore the classification performance. (Chapters 3
and 7)

The fourth contribution is a comparison of different choices of reference prototypes for
the dissimilarity representation. A challenge in MIL is that prototypes can be bags or
instances. There are several trade-offs here. Choosing prototypes as instances leads
to a richer dissimilarity representation, but increases the dimensionality significantly.
Despite the rich representation, the information about the origin of the instances is dis-
carded, which may not be desirable in some problems. On the other hand, considering
a bag as a single prototype can lead to a more robust representation, due to low di-
mensionality and/or the fact that the instances in a bag are considered jointly. Another
trade-off here is that with instance prototypes, labeling instances is a possibility. We
propose a classifier that combines the advantages of both methods. (Chapter 4)

The fifth contribution circles back to the two different goals in MIL: that of labeling
bags, and that of labeling instances. Classifiers that optimize performance on bags, may
not provide the best possible instance labels. Furthermore, these instance labels may be
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unstable under different variations of the training data. This is dangerous, especially in
cases where the instance labels carry biological or medical significance. We investigate
the stability of instance labels provided by several MIL classifiers, and propose a stabil-
ity measure which, in conjunction with a bag-level supervised measure, can be used to
compare classifiers. (Chapter 5)



2

ON CLASSIFICATION WITH BAGS,
GROUPS AND SETS

Many classification problems may be difficult to formulate in the traditional supervised
setting, where both training and test samples are individual feature vectors. It may be
the case that samples are better described by sets of feature vectors, that labels are only
available for sets rather than individual samples, or, if individual labels are available,
that these are not independent. To better deal with such problems, several extensions of
supervised learning have been proposed, where either training and/or test objects are
sets of feature vectors. However, such extensions are often proposed independently, dis-
regarding important similarities and differences with other existing classification prob-
lems. In this work, we provide an overview of such learning scenarios, propose a tax-
onomy to illustrate the relationships between them, and discuss directions for further
research in these areas.

This chapter is accepted for publication as:
Veronika Cheplygina, David M. J. Tax, Marco Loog. On Classification with Bags, Groups and Sets. Pattern
Recognition Letters
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2.1 Introduction

Some pattern recognition problems are difficult to formulate as regular supervised clas-
sification problems where (feature vector, label) pairs are available to train a classifier
that, in turn, can predict labels for previously unseen feature vectors. In such cases, the
objects are, in fact, not individual feature vectors, but sets or bags of feature vectors or
instances. Although terminology differs in different fields, we use the terms bags and
instances in the rest of this paper.

The first reason for using a bag of instances is that a single feature vector is often too
restrictive to describe an object. For example, in drug activity prediction, an application
originally addressed in multiple instance learning [49], we are interested in classifying
molecules as having the desired effect (active) or not. However, a molecule is not just
a list of its elements: most molecules can fold into different shapes or conformations,
which may have an influence on the activity of that molecule. Furthermore, the number
of stable shapes is different per molecule. A more logical choice is therefore to represent
a molecule as a set of its conformations.

The second reason is that labels on the level of feature vectors are difficult, costly and/or
time-consuming to obtain, but labels on a coarser level may be obtained more easily. For
computer aided diagnosis applications, it can be very expensive for a radiologist to label
individual pixels or voxels in an image as healthy or diseased, while it is more feasible
to label a full image, or large image regions. Such coarsely labeled scans or regions can
then be used for predicting labels on bag level by labeling new patient scans or, on a
finer grained instance level, by labeling individual pixels or voxels.

Another reason to consider the labeling of bags of instances, instead of single feature
vectors, is that there may be structure in the labels of the instances. For example, in
face verification, where a video of a person is available, considering all the video frames
jointly can provide more confident predictions than labeling each of the frames indi-
vidually and combining the decisions. Similarly, neighboring objects in images, videos,
sounds, time series and so forth are typically very correlated, and thus should not be
classified independently.

For all these reasons it may be advantageous to represent the objects by bags of in-
stances. Different applications may ask for different representations in the training and
the test phase. All possibilities shown in Fig. 2.1 occur: both training and test objects
may be bags or instances. Traditional supervised learning is in the SI-SI scenario in the
top left, where both training and test objects are instances. Predicting molecule activity
is in the MI-MI scenario, where both training and test objects are bags. Image classi-
fication problems can be found in the MI-MI scenario (training on images, testing on
images) as well as the MI-SI scenario (training on images, testing on pixels or patches).
The face verification problem is best represented by the SI-MI scenario (training on a
single face, testing on a set of faces).
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Figure 2.1: Supervised learning (SI-SI) and extensions. In the MI-MI scenario (Section 2.4), both
training and test objects are bags. In the MI-SI scenario (Section 2.5), the training ob-
jects are bags and test objects are instances, while in the MI-SI scenario (Section 2.6),
the training objects are instances and the test objects are bags.
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The greater representational power, reduced need for labels and improved classifica-
tion performance are attractive properties of learning domains where objects can be
expressed as sets of feature vectors. This idea has been therefore applied in image recog-
nition [36, 115], face verification [6, 126], tracking [7], computer aided diagnosis [156],
molecule activity prediction [49] and document categorization [5], amongst others.

The success of a classifier in one (source) application may motivate other researchers to
use the same method in a different (target) application. However, it is not necessarily the
case that the assumptions of the source application still hold in the target application,
which can lead to poor performances. On the other hand, it may also happen that the
same type of problem occurs in two different applications, and that researchers in the
respective fields approach the problem in different ways, without benefiting from each
other’s findings. We therefore believe that understanding the relationships between
such learning scenarios is of importance to researchers in different fields.

With this work, our goal is to provide an overview of learning scenarios in which bags
of instances play a role at any of the stages in the learning or classification process. We
have gathered the papers in this overview by searching for papers that proposed novel
learning scenarios, as well as by combining synonyms of the word “set” with words
such as “classification” or “learning”. This work is intended as a survey of learning
problems, not of classifiers for a particular scenario, although we refer to existing sur-
veys of this type whenever possible. Furthermore, we mainly focus on a single-label,
binary classification scenario, as many problem formulations can be easily extended to
a multi-label [174], multi-class setting.

This paper begins with an overview of notation and learning scenarios in Section 2.2.
We explain the categories of learning scenarios in more detail in Sections 2.3 to 2.6. The
paper concludes with a discussion in Section 2.7.

2.2 Notation and Overview

The basic terminology of bags and instances was already introduced in the previous sec-
tion. This terminology is borrowed from the field of multiple instance learning (MIL).
This is for two reasons: there are more papers on MIL than on other topics covered
in this work, and the terms do not have other mathematical definitions that could be
confusing.

Mathematically, an instance is represented by a single feature vector x ∈ X , where
X = Rd is a d-dimensional space, while a bag is represented by a set of ni feature
vectors Bi = {xik; k = 1...ni} ∈ 2X . We denote the set of possible classes C, and the set of
possible labels Y . In the case where each object has only one class label (and the focus
of this overview), Y = C, in a multi-label scenario Y = 2C .
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Instance space X , typically Rd

Instance x ∈ X
Bag B ∈ 2X

Discrete set of class labels C
Output space Y
Instance label y ∈ Y
Bag label Y ∈ Y
Instance classifier f : X → Y
Bag classifier F : 2X → Y

Figure 2.2: Overview of important notation

When a test object is an instance, we are interested in finding an instance classifier f :
X → Y . When a test object is a bag, we are interested in finding a bag classifier F :
2X → Y

There are several aspects that differ in the learning scenarios covered in this paper. We
choose to categorize the learning domains by the following characteristics:

• Type of training data. The type of data that is provided to train a classifier: labeled
instances, or labeled bags. In the case a bag is provided, usually the labels for the
individual instances are not available.

• Type of test data. The type of data that is classified by the trained classifier: in-
stances (pixels in an image) or bags (entire images). Often this also determines
how evaluation is done: on instance level or on bag level, but this is not always
the case.

• Assumptions on labels. Different applications have different assumptions of how
the labels of the instances and the labels of the bags are related: for example, an
assumption could be that all pixels inside an image region have the same label.
These assumptions play an important role in how the learning algorithms are de-
veloped.

These characteristics lead us to the categories in the leftmost column of Table 2.1. In the
following sections, which are organized by the first two dimensions (types of training
and test data), we will explain each category, the corresponding learning scenarios and
assumptions, the equivalence of different terms in literature, or why the category is
empty.
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Table 2.1: Summary of learning scenarios. The columns show the section where we explain the
scenario, the type of training and test data, the assumptions on how the instance and
bag labels are related are weak or strong, and the main references where the learning
scenario is applied.

Section Train Test Assumptions Main references
2.3. SI-SI Inst Inst Weak Supervised learning

Inst Inst Strong Batch classification[184]
Collective classification[32, 117, 159]

2.4. MI-MI Bags Bags Weak Sets of feature vectors [86, 95, 96]
Bags Bags Strong Multiple instance learning [49, 114]

2.5. MI-SI Bags Inst Weak -
Bags Inst Strong Multiple instance learning [121, 180]

Aggregate output learning [124]
Learning with label proportions
[141]

2.6. SI-MI Inst Bags Weak -
Inst Bags Strong Group-based classification [156]

Set classification [126]
Full-class set classification [100]

2.3 SI-SI: Train on Instances, Test on Instances

The first category of Table 2.1 contains traditional supervised learning where both train-
ing and test objects are assumed to be independently generated from some underlying
class distributions. We assume that the reader is familiar with supervised learning and
keep this section short. For a general introduction, please refer to [85]. With the as-
sumption of independently drawn train and test instances, the best possible approach
is to classify each feature vector individually.

However, in some situations data is not independently generated, and we can make
more assumptions about the correlations in the test data, and use these assumptions
to improve the performance. The classical, rather general way to model dependencies
between observations is through Markov random fields [93] and the related, currently
more popular conditional random fields [103]. There are, however, also approaches that
act direct on the bag level and do not need an explicit probabilistic model in order to
be applied. Examples can be found in batch classification [184] and collective classifi-
cation [32, 117, 158]. Batch classification is concerned with classifying parts (segments)
of medical images, and the assumption is that neighboring image segments are corre-
lated, and thus often have the same label. Collective classification is often applied to
documents, such as identifying requests in emails [32] or assigning categories to web-
pages [117]. The underlying assumption is that correlation exists between emails in the
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same thread, or between webpages that link to each other, therefore, the labels of such
neighboring instances are related.

2.4 MI-MI: Train on Bags, Test on Bags

When both the training objects and test objects are bags, but no additional assumptions
about the labels are present, the goal is classification of sets of feature vectors [95].
This concept is also used for classifying images as bags of pixels [86] or prediction of
binding of proteins [80] by defining kernels on bags directly. Various kernel functions on
computer vision applications are also explored in [197], where a kernel on sets of feature
vectors is called ensemble similarity. Another application in classifying websites [96],
where each website is represented as a set of feature vectors, and a set distance together
with a nearest neighbor classifier is used.

Another domain where both training and test objects are bags, but stronger assumptions
are made is called multiple instance learning (MIL) [49, 114]. In MIL, the objects are
referred to as bags of instances. Originally, it was assumed that Y = {−1,+1}, and that
the bag labels are determined by the (hidden) labels of their instances: a bag is positive
if and only if there is at least one positive instance inside the bag; a bag is negative if
and only if all of its instances are negative. Such reasoning has been applied to molecule
or drug activity prediction [49, 66], image classification [36, 115], text categorization [5,
200], prediction of hard drive failures [123] and other settings. For example, in molecule
activity prediction, a molecule is considered active if at least one of the conformations
demonstrate the activity of interest.

There are two main approaches to achieve the goal of classifying bags. Due to the as-
sumption on the relationship of the bag and instance labels, earlier methods focused
on first finding an instance classifier f , and then applying a combining rule g to the in-
stance outputs. To use the traditional assumption in MIL, g is defined by the noisy OR
function, as follows:

F(B) =

{
+1 if g({ f (xk)}n

k=1) > 1
−1 otherwise

(2.1)

g({ f (xk)}n
k=1) =

1 − ∏n
k=1 1 − f (xk)

∏n
k=1 1 − f (xk)

(2.2)

where f (xk) = p(yk = 1|xk).

More relaxed formulations of the traditional assumption have also been proposed [65,
188]. For instance, for a bag to be positive, it needs to have a specific fraction of positive
instances. With such alternative assumptions, it is still possible to find f first and then
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apply an appropriate g to determine the labels of the test bags. By assuming that all in-
stances contribute to the bag label independently, for instance, g can be replaced by the
product of the instance posterior probabilities. Other, generalized rules for combining
posterior probabilities for instances can be found in [111].

Several MIL methods have moved away from the assumptions on the relationships of
instance and bag labels [65], and learn using assumptions on bags as a whole, therefore
taking a detour to the “classification of sets of feature vectors” domain. In other words,
such methods aim at finding F directly rather than through a combination of f and g. A
more general assumption is that bags of the same class are similar to one another, there-
fore such methods learn by defining distances [186] or kernels [71] between bags. Other
approaches include converting bags to a single-instance representation using similari-
ties [36], dissimilarities [171] or histograms in instance space [182], the so-called bag-of-
words representation. These methods then borrow techniques from supervised learning
to classify bags.

More extensive surveys of MIL assumptions and classifiers can be found in [3, 65, 198].

2.5 MI-SI: Train on Bags, Test on Instances

This section is concerned with the case where training data is only labeled on bag-level,
while instance-level labels are desired in the test phase. Note that this is not possible
if no assumptions are made about the label transfer between instances and bags. This
is why the “train on bags, test on instances, no assumptions” category in Table 2.1 is
empty (denoted by -). By making additional assumptions, however, something can be
said about the instance-level labels of the test data.

2.5.1 Learning from Weakly Labeled Data

The standard assumption in multiple instance learning is one of the possibilities we
can use to train the classifier using labeled bags, but provide instance-level labels for
the test data. Although originally, the goal of MIL was to provide labels for bags, a side-
effect of some algorithms is that instance labels are predicted as well. The fact that only
bag labels are required to produce instance labels means that less labels are required
than in the usual supervised setting. In several fields, where such weakly labeled data
can be (more) easily obtained, the focus has shifted to classifying instances rather than
bags.

The goals of classifying instances and classifying bags are not identical, and therefore,
in many cases, the optimal bag classifier will not be the optimal instance classifier and
vice versa. An important reason in MIL for this is the traditional assumption. If bag
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classification is done by combining instance predictions, such as in (2.2), false negative
instances are going to have less effect on the bag performance than false positive in-
stances. Consider a positive bag where a positive instance is misclassified as negative:
if the bag has any other positive instances, or a negative instance that has been falsely
classified as positive, the bag label will still be correct. However, for a negative bag the
label changes as soon as a single instance is misclassified. Similar observations have
been made in [147] and in [173]. A more general reason why the optimal instance and
bag classifiers do not necessarily correspond, is unequal bag sizes. Misclassifying a bag
with a few instances will have less effect on the instance performance, than misclassify-
ing a bag with many instances.

There are several examples where MIL is used for the purpose of predicting instance la-
bels, rather than bag labels. For example, in image segmentation or annotation [121, 180]
the goal is to label pixels as belonging to the background, or one of the objects portrayed
in the image. This goal can be achieved with supervised learning, by providing fully
annotated training images, where each pixel is labeled as background or foreground.
However, providing such annotated images is costly – it is easier to approximately in-
dicate where the foreground objects are present. MIL is therefore an interesting setting
that can still offer image annotation, while only using coarsely labeled images as train-
ing input.

Weakly annotated data is also a benefit in tracking [7]. Instead of providing instances
(patches) of the tracked object to the learner, bags of patches (with several inexact loca-
tions of the tracked object) can be used to improve performance. However, the goal of
the tracking algorithm is to again label patches (instances), not bags. Other examples
can be found in music information retrieval [113], where the goal is to predict tags (such
as “rock”, “pop”) for songs, based on coarser-level tags for the albums or the artists.
In [18], the goal is to classify fragments of bird songs, only by learning with bag-level
labels for the whole recording.

Although these domains are not directly related to bags of instances, at this point it
is important to mention that learning with such weakly annotated data has links to
semi-supervised learning [35, 204] and learning with only positive and unlabeled
data [61]. Both of these fields deal with weakly annotated data in a sense that some
of it is annotated, and some of it is not. In multiple instance learning, all of the data
(in the form of bags) is annotated, however, from the perspective of instances, these
annotations are weak. More about the links between these fields can be found in [109,
201].

2.5.2 Learning with Other Label Spaces

Another setting where only training objects are sets of feature vectors is learning about
individuals from group statistics [98], aggregate output learning [124] and learning
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with label proportions [141], independent names for very related ideas. Here the bag
labels are not just class labels, but proportions of class labels, Y = {yi|i = 1, . . . , |C|, yi ∈
R, ∑i yi = 1}. For instance, a bag can be labeled as “75% positive, 25% negative”.

In [98], the application is image annotation images are provided with labels (“tiger”)
along with a fraction of image patches that contain tigers. This is very similar to the
image segmentation scenario described in Section 2.5, but the fraction of positives pro-
vides additional information to the classifier. Another possible application addresses
privacy issues, such as when it is not desirable to provide the income (label) of a single
person, but less problematic to provide the collective income (aggregated label) for a
group of people.

The applications addressed in [141] are spam filtering and advertising. In spam filtering,
proportions of spam/normal email are easier to estimate for a particular user than the
exact labels of each email, however, the goal is to classify individual emails afterwards.
In advertising, the proportions are related to customers that would buy a product only
on discount, and customers that would buy a product in any circumstances. During an
advertising campaign, estimating such proportions can help to predict which groups of
customers should receive a discount coupon (and therefore buy the product).

This aggregated output / label proportions setting can be seen as multiple instance
learning, where the fraction of positive instances (often called the witness rate) in the
bags is already specified. An exact fraction is a stronger assumption than a non-zero
fraction, therefore it should be easier to learn when the witness rate is given. For real-
life MIL datasets, [98] assumes that a positive bag has a fraction of 1

ni
positive instances.

Other MIL methods take advantage of this by estimating a witness rate first, and then
using this estimate to build instance classifiers [73, 108].

2.6 SI-MI: Train on Instances, Test on Bags

This section is concerned with the scenario where instance-level labels are available for
training, but bag-level instances are needed in the test phase. This may seem illogi-
cal, because it is already possible to build an instance classifier – why would bags be
necessary?

If no assumptions are made about how the bags are generated, there is no added value
in considering bags in the test phase, and the reason the category corresponding to SI-
MI with few assumptions in Table 2.1 is empty. However, if additional information is
available about the labels inside a bag, it may still be worthwhile to consider sets of
feature vectors in the testing phase. Dependencies or constraints between the feature
vectors inside a test bag can be exploited to improve the overall classification.

Consider the 1-dimensional binary classification problem in Fig. 2.3, and assume that
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given objects from each class, we have found the Bayes optimal instance classifier. The
black circles are the test set, and their true labels are −1. If we were to classify these
instances independently, the error would be equal to 1

3 , because the leftmost object will
be misclassified to the the positive class. However, with the added constraint that these
instances belong to a group of objects from the same class, we could apply a combining
rule on the instance outputs, classify the bag as negative, and propagate the label to all
the individual instances, reducing the error to 0.

x

p(x)
p(x|y = 1) p(x|y = −1)

Figure 2.3: 1-dimensional binary classification problem. The shaded instances are from the y =
−1 class. When classifying these instances jointly, the added information that they
are all of the same class helps to reduce the classification error.

This situation occurs in group-based classification [20, 156] and set classification [126],
independently proposed names for the setting where test objects are sets of feature vec-
tors from the same class. Note that this setting can be easily transferred to the “train on
bags, test on bags” category, because if the instances in one bag have the same label, it
is straightforward to create bags from instances and vice versa.

In [156], a real-world application involves classifying groups of cells as healthy or
anomalous, with the added information that all cells in a group share the same label.
The classification of a test bag distance-based and is done by modifying the supervised
versions of the nearest neighbor or the nearest mean classifiers. There are two broad ap-
proaches called the voting and the pooling scheme. In the voting scheme, each instance
is labeled by a classifier f , such as the nearest neighbor, and the labels are combined
with majority voting as g. In the pooling scheme, the distances are aggregated first, and
only then converted to a label for the bag. The results show that the pooling scheme (i.e.
a nearest neighbor classifier F applied on the bag distances) produces better results.

Another example from computer aided diagnosis is in [87], where classification of cells
is applied on two levels: patches (image segments, or instances) and cell slides (full
images, or bags). Although some patch-level labels are available and a patch classifier
can be built, considering the slide-level labels is still beneficial for performance.

One of the applications in [126] is face classification. When multiple images of the
same person are available (such as from different cameras, or from different frames
in a video), the fact that the faces share the same label can help identification. The
most straightforward approach involves combining predictions of each instance in a
bag during the test phase. The best performing approach actually moves towards the
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MI-MI scenario, because in both the training and test phase, instance subsets are gener-
ated. Kernels are defined on these subsets, and the test bag is classified by combining
the predictions of its subsets.

In other literature on face classification, this problem is often referred to as image-set
classification [92, 190], although here it is possible that the training objects are bags as
well (i.e. there are multiple training faces available for each person). Such problems are
therefore often also solved with set distances or kernels.

The added information that all instances in a set share the same label is just one of the
examples of a setting where the testing objects are bags. A reversed setting is full-class
set classification [100]. It has an additional constraint that each of the instances has a
unique label, i.e. it is known beforehand which instance labels will be present in the
bag. This is an appropriate setting for registration purposes, where it is known which
objects will be present, but not which detected object is which. Here the output of the
bag classifier is not a single class label, but a super-label Y ∈ I , where I is the set of
permutations of the all class labels. Because |I| < |2C |, [100] shows that a classifier F
that finds the instance labels jointly is guaranteed to perform better than concatenating
the outputs of instance classifiers f .

Note that although instance labels are obtained, the labels we are interested in (the
super-labels) are bag labels, and the performance is evaluated on bag level: either all
instances were labeled correctly, or not. We illustrate this with the diagrams in Fig. 2.4.

2.7 Discussion

Many classification problems deal with objects that are represented as sets of feature
vectors, or so-called bags of instances. This popularity is not surprising, as there are
several motivating reasons for choosing such a representation at one or more stages of
the classification process. Firstly, a set of feature vectors provides greater representa-
tional power than a single feature vector, and it might not be logical to express multiple
entities (such as several face images of one person) as a single entity. Secondly, often la-
bels may be available only on bag level, and too costly to obtain on instance level, there-
fore using the bag of instances representation as a form of weak supervision. Lastly, it
can be advantageous to consider bags as a whole rather than as independent instances,
because of relationships of the instances in a single bag.

This popularity is not without dangers: several different learning scenarios may be de-
fined for the same problem, or several different problems may be incorrectly grouped
under the same learning scenario. We proposed a taxonomy that illustrates the relation-
ships of scenarios that deal with bags, groups or sets, and could help researchers relate
novel problems to existing applications and research directions.
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F

Figure 2.4: Variants of the SI-MI scenario. The training objects are instances and the test objects
are bags, although the bag may be labeled by a set of instance labels (situation on
the right). Note that in this case, the instance labels are decided jointly (as a bag
super-label) by a bag classifier F, not by an instance classifier f .
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While the proposed taxonomy allows for heterogeneity in training and test objects (i.e.,
where training objects are bags and test objects are instances and vice versa), it is limited
because the training or test objects themselves are homogeneous. It would be interest-
ing to investigate what happens in the case where in the training phase both labeled
bags and labeled instances are available. As we already discussed in Section 2.5, the op-
timal bag classifier does not necessarily correspond with the optimal instance classifier.
Therefore, deciding how to best use the available labels should depend on whether bags
or instances are to be classified in the test phase. However, what if bags and instances
can be expected in both the classification and test phases? A straightforward solution
would be to train separate bag and instance classifiers, but when the bag and instance
labels are related, an integrated classifier would perhaps be more suitable.

Another interesting observation is that the “hybrid” categories in the taxonomy (Sec-
tion 2.6: SI-MI and Section 2.5: MI-SI) have attracted a lot of attention, and that the
learning scenarios proposed here all need to rely on strong assumptions about the re-
lationships of the instance and bag labels. One of the questions this raises is, what are
the minimal assumptions needed to learn in such situations? Furthermore, the learning
scenarios we reviewed do not exhaustively cover the types of constraints that could be
present between the instance and bag labels. Learning scenarios that will be proposed
in the future to fill some of these gaps, can now be easily placed in the context of the
works described in this overview.



3

MULTIPLE INSTANCE LEARNING WITH

BAG DISSIMILARITIES

Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects
(instances), where the individual instance labels are ambiguous. In this setting, super-
vised learning cannot be applied directly. Often, specialized MIL methods learn by mak-
ing additional assumptions about the relationship of the bag labels and instance labels.
Such assumptions may fit a particular dataset, but do not generalize to the whole range
of MIL problems. Other MIL methods shift the focus of assumptions from the labels to
the overall (dis)similarity of bags, and therefore learn from bags directly. We propose to
represent each bag by a vector of its dissimilarities to other bags in the training set, and
treat these dissimilarities as a feature representation. We show several alternatives to
define a dissimilarity between bags and discuss which definitions are more suitable for
particular MIL problems. The experimental results show that the proposed approach is
computationally inexpensive, yet very competitive with state-of-the-art algorithms on
a wide range of MIL datasets.

This chapter is published as:
Veronika Cheplygina, David M. J. Tax, and Marco Loog. Multiple Instance Learning with Bag Dissimilar-
ities. Pattern Recognition 48(1): 264–275, 2015.
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3.1 Introduction

Many pattern recognition problems deal with complex objects that consist of parts: im-
ages displaying several objects, documents with different paragraphs, proteins with
various amino acid subsequences. The success of supervised learning techniques forces
such complex objects to be represented as a single feature vector. However, this may
cause important differences in objects to be lost, degrading classification performance.
Rather than representing such a complex object by a single feature vector, we can rep-
resent it by a set of feature vectors, as in multiple instance, or multi-instance learning
(MIL) [49]. For example, an image can be represented as a bag of segments, where each
segment is represented by its own feature vector. This is a more flexible representation
that potentially can preserve more information than a single feature vector representa-
tion.

In MIL terminology, an object is called a bag and its feature vectors are called instances.
MIL problems are often considered to be two-class problems, i.e., a bag can belong ei-
ther to the positive or the negative class. During training, the bag labels are available,
but the labels of the instances are unknown. Often assumptions are made about the
instance labels and their relationship with the bag labels. The standard assumption is
that positive bags contain at least one positive or concept instance, whereas negative
bags contain only negative, background instances [49, 114]. An image labeled as “tiger”
would therefore contain a tiger in at least one of its segments, whereas images with
other labels would not depict any tigers. Many MIL approaches therefore focus on us-
ing the labeled bags to model the concept region in the instance space. To classify a
previously unseen bag, the instances are labeled according to the best candidate model
for the concept, and the bag label is then obtained from these instance labels.

It has been pointed out [36] that although for many problems the bag representation
is useful, the assumptions on the bag and instance labels typically do not fit the appli-
cation. For instance, for an image of the “desert” category, it would be wrong to say
that “sand” is the concept, if images of the “beach” category are also present. Therefore,
methods in which the standard assumption is relaxed, have emerged. In [185] an adap-
tive parameter is used to determine the fraction of concept instances in positive bags.
Generalized MIL [157, 188] examines the idea that there could be an arbitrary number
of concepts, where each concept has a rule of how many (just one, several or a fraction)
positive instances are needed to satisfy each concept. A review of MIL assumptions can
be found in [65].

This line of thought can be extended further to cases where it is difficult to define a
concept or concepts, and where most, if not all, instances, contribute to the bag label.
The implicit assumption is that bag labels can be related to distances between bags, or to
distances between bags and instances. Such approaches have used bag distances [186],
bag kernels [71], instance kernels [36] or dissimilarities between bags [40, 163, 171].
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Bag-based approaches are attractive because because they transform the MIL dataset
back to a standard feature vector representation such that regular supervised classifiers
can be used. Unfortunately, some of the representational power of MIL can be lost when
converting a bag to a single feature vector of (dis)similarities. It has indeed been pointed
out that the definition of distance or similarity can influence how well the representation
is suited for one or more concepts [65]. The question is how to do this in a way that still
preserves information about the class differences. Furthermore, competing approaches
offer a variety of definitions of (dis)similarity, and it is not always clear which definition
should be preferred when a new type of MIL problem presents itself.

In this paper we propose a general MIL dissimilarity approach called MInD (Multiple
Instance Dissimilarity). We discuss several ways in which dissimilarities between bags
can be defined, show which assumptions these definitions are implicitly making, and
hence which definitions are suitable for different types of MIL problems. We have col-
lected several examples of such problems in a single repository online. Furthermore, we
discuss why the dissimilarity space is an attractive approach for MIL in general. An im-
portant advantage is that there are no restrictions on the dissimilarity measure (such as
metricity or positive-definiteness). This allows the use of expert-defined dissimilarities
which often violate these mathematical restrictions. Similarly, there is no restriction on
the classifier used in the dissimilarity space, which is attractive for potential end-users
faced with MIL problems, and who already have experience with a certain supervised
classifier. Lastly, with a suitable choice of dissimilarity and classifier, the approach is
very computationally efficient, yet still provides interpretable state-of-the-art results on
many datasets. For example, the average minimum distance between bags with a logis-
tic classifier achieves very good performances, is easy to implement, and the classifier
decisions can be explained in terms of dissimilarities to the prototypes.

After a review of MIL approaches in Section 3.2, we propose MInD in Section 3.3. In
Section 3.4, we show some examples of MIL problems and demonstrate which dissimi-
larities are most suitable in each case. We then compare results to a range of MIL meth-
ods in Section 3.5, and discuss practical issues of dissimilarities and other bag-level
methods in Section 3.6. A conclusion is given in Section 3.7.

3.2 Review of MIL Approaches

In multiple instance learning (MIL), an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ Rd of ni feature vectors or instances. The training set T = {(Bi, yi)|i =
1, ...N} consists of positive (yi = +1) and negative (yi = −1) bags. We will also denote
such bags by B+

i and B−
i . The standard assumption for MIL is that there are instance

labels which relate to the bag labels as follows: a bag is positive if and only if it contains

http://www.miproblems.org
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at least one positive, or concept instance [49].

Under this standard assumption, the strategy has been to model the concept: a region
in the feature space which contains at least one instance from each positive bag, but no
instances from negative bags. The original class of MIL methods used an axis-parallel
hyper-rectangle (APR) [49] as a model for the concept, and several search strategies
involving such APRs have been proposed.

Diverse Density [114] is another approach for finding the concept in instance space.
For a given point t in this space, a measure DD(t) is defined as the ratio between the
number of positive bags which have instances near t, and the distance of the negative
instances to t. The point of maximum Diverse Density should therefore correspond to
the target concept. The maximization problem does not have a closed form solution and
gradient ascent is used to find the maximum. The search may therefore converge to a
local optimum, and several restarts are needed to find the best solution.

EM-DD [195] is an expectation-maximization algorithm that refines Diverse Density.
The instance labels are modeled by hidden variables. After an initial guess for the con-
cept t, the expectation step selects the most positive instance from each bag according to
t. The maximization step then finds a new concept t′ by maximizing DD on the selected,
most positive instances. The steps are repeated until the algorithm converges.

Furthermore, several regular supervised classifiers have been extended to work in the
MIL setting. One example is mi-SVM [5], an extension of support vector machines
which attempts to find hidden labels of the instances under constraints posed by the
bag labels. Another example is MILBoost [183], where the instances are reweighted in
each of the boosting rounds. The bag labels are decided by applying a noisy OR [114]
rule to the instance labels, which reflects the standard assumption.

It has been recognized that the standard assumption might be too strict for certain types
of MIL problems. Therefore, relaxed assumptions have emerged [157, 188], where a
fraction or a particular number of positive instances are needed to satisfy a concept,
and where multiple concept regions are considered.

A similar notion is used in MILES [36], where multiple concepts, as well as so-called
negative concepts (concepts that only negative bags have) are allowed. All of the in-
stances in the training set are used as candidate concept targets, and each bag is rep-
resented by its similarities to these instances. A sparse 1-norm SVM is then used to
simultaneously maximize the bag margin, and select the most discriminative similari-
ties, i.e., instances that are identified as positive or negative concepts.

A step further are methods that do not make explicit assumptions about the instances
or the concepts, but only assume that bags of the same class are somehow similar to
each other, and then learn from distances or similarities between bags. Such methods
include Citation-kNN [186], which is based on the Hausdorff distance between bags,
bag kernels [71] and bag dissimilarities [171, 194]. In [71], a bag kernel is defined either
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as a sum of the instance kernels, or as a standard (linear or RBF kernel) on a transformed,
single instance representation of the bag. One example is the Minimax representation,
where each bag is represented by the minimum and maximum feature values of its
instances.

Last but not least, a way to learn in MIL problems is to propagate the bag labels to the
instances, and use supervised learners on these propagated labels. We call this approach
SimpleMIL. To obtain a bag label from predicted instance labels, the instance labels
have to be combined. Here, the noisy OR rule or other combining methods can be
used [108, 111]. It has been demonstrated that supervised methods can be quite effective
in dealing with MIL problems [147].

All MIL methods can be more globally summarized by the representation that they use:
the standard instance-vector-based representation, a bag dissimilairity representation
and a bag-instance representation (see Fig. 3.1). The first representation is the standard
representation of MIL, where each bag consists of several instances, and the dimension-
ality is equal to the dimensionality of the instance space. In this example, there are two
bags which are represented in a 2D feature space. This is the representation used by EM-
DD, mi-SVM, MILBoost and SimpleMIL. The representation on the top right is the bag
representation, used by Citation-kNN, bag kernels and our bag dissimilarity approach.
The representation in the bottom is the instance representation, used by MILES. In the
latter two representations, regular supervised classifiers are again applicable. In these
cases, less assumptions about the relationships of bag and instance labels are needed,
but the definition of (dis)similarity creates implicit assumptions on which instances are
important.
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Figure 3.1: Representations of a MIL problem with 2 bags and 2 features. B1 has 3 instances and
B2 has 2 instances. The dimensionality of the original representation depends on
the number of features, while in the dissimilarity representation, the dimensionality
depends on the number of bags or instances.
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3.3 Bag Dissimilarity Representation

We can represent an object, and therefore also a MIL bag Bi, by its dissimilarities to
prototype objects in a representation set R [133]. In our work, R is taken to be a subset of
size M of the training set T of size N (typically M ≤ N). Using these M prototypes, each
bag is represented as d(Bi, T ) = [d(Bi, B1), ...d(Bi, BM)]: a vector of M dissimilarities.
Therefore, each bag is represented by a single feature vector and the MIL problem can
be viewed as a regular supervised learning problem.

We propose a framework which encompasses different ways to define d(Bi, Bj), the dis-
similarity between two bags Bi and Bj. There are two main steps: the representation
of a bag, and given this representation, the definition of the dissimilarity function. We
distinguish the following approaches to treat the bags:

• As a point set, or subset of the feature space. In this case, d is defined through a
set distance.

• As a distribution of instances. Here, d is defined through a distribution distance.

• As an attributed graph, where the instances are the nodes, and relationships be-
tween instances are the edges [200]. In this case, d is defined as a graph kernel or
distance. However, because it is not straightforward to define the edges and de-
termine the trade-off of nodes and edges in such a problem [105], we do not focus
on this case here.

3.3.1 Bags as Point Sets

The first approach to define a dissimilarity of two bags is to consider each bag as a point
set or a subset of a high-dimensional space. One possible distance that can be computed
is based on the Hausdorff metric, under which two point sets Bi and Bj are close to each
other when every point in Bi is close to a point in Bj. Closeness is defined through the
distance d employed, which typically is Euclidean. The Hausdorff distance, derived
from the metric, has been widely used in object matching in computer vision [53, 83].
The Hausdorff distance applied to bags uses the maximum mismatch between the in-
stances of the respective bags, and is defined as dH(Bi, Bj) = max(dh(Bi, Bj), dh(Bj, Bi)
where dh is defined as:

dh(Bi, Bj) = max
k

min
l

d(xik, xjl). (3.1)

As dh is not symmetric, the final Hausdorff distance dH is symmetrized by taking the
maximum of the directed distances. All of these steps ensure that the Hausdorff dis-
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tance is metric, i.e., that it satisfies the identity, symmetry and triangle inequality prop-
erties.

It has been pointed out [53] that the maximum operation in the original definition might
be too sensitive to outliers, and modified versions of the Hausdorff distance have been
introduced [53, 196]. Two alternative examples of defining d(Bi, Bj) are shown in (3.2)
and (3.3). The underlying instance dissimilarity function we use here is the squared
Euclidean distance.

dminmin(Bi, Bj) = min
k

min
l

d(xik, xjl) and (3.2)

dmeanmin(Bi, Bj) =
1
ni

ni

∑
k=1

min
l

d(xik, xjl). (3.3)

Fig. 3.2 shows the first step in computing such dissimilarities between two bags. The ar-
rows in each diagram are the minimum distances between instances of two bags, which
are asymmetric. For example, in the left diagram, the two instances in Bi have the same
nearest instance in bag Bj, but this is not true for the diagram on the right. If the next
step is to take the minimum of these instance distances, as in (3.2), the resulting dissim-
ilarity will be symmetric. However, dminmin is symmetric, it does not satisfy the identity
property, that is, dminmin(Bi, Bj) = 0 does not imply Bi = Bj when an instance in Bi
coincides with an instance in Bj, and the triangle inequality is not always satisfied. On
the other hand, if we average the minimum distances as in (3.3), we will notice that
dmeanmin(Bi, Bj) 	= dmeanmin(Bj, Bi).

Bi

Bj

Bi

Bj

Figure 3.2: Minimum instance distances between two bags. The bag dissimilarity is defined as
the minimum, maximum, average or other statistic of these distances. The directions
of the arrows show that there are two, possibly asymmetric, dissimilarities: that of
Bi to Bj, and that of Bj to Bi

These dissimilarities are therefore non-metric, which can be problematic when classify-
ing bags based on the labels of their nearest neighbors. These non-metric properties are
not a problem in the dissimilarity approach, because the dissimilarity matrix is viewed
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as a collection of features and the relation between features is not constrained like is for
distances. In fact, because we step away from the requirements of a distance, we can
define even more general ways to obtain d(Bi, Bj) from the pairwise instance dissimilar-
ities.

First of all, there is no need to symmetrize the dissimilarities. In fact, it can be the case
that one of the directions, i.e., measuring to the prototypes, or measuring from the pro-
totypes, is more informative [39]. If both directions are informative, this information
can be combined in more ways than by just enforcing symmetry. For instance, we can
concatenate both the to and from dissimilarity matrices to obtain a 2N-dimensional ex-
tended asymmetric dissimilarity space [138].

Furthermore, if the identity property is no longer a requirement, the first step in com-
puting d(Bi, Bj) does not need to be the minimum. For instance, we could measure the
average of all instance distances between two bags, which is rather similar to the set
kernel in [71]: K(Bi, Bj) = ∑xik∈Bi,xjl∈Bj

k(xik, xjl) where k is a polynomial, radial basis
or other type of kernel on feature vectors. The dissimilarity version is:

dmeanmean(Bi, Bj) =
1

ninj

ni

∑
k=1

nj

∑
l=1

d(xik, xjl). (3.4)

3.3.2 Bags as Instance Distributions

Alternatively, we can view each bag as a probability distribution in instance space, and
define a bag dissimilarity as a distribution distance. Because the true distributions are
not available, we have to approximate the instance distributions, and provide distances
between the approximated distributions.

Fig. 3.3 shows a number of these approaches to approximate a 1D distribution. These
approaches can be seen as a Parzen density with a very large, intermediate, and very
small width parameter σ, resulting in a single Gaussian, an “intermediate” multi-modal
density, and the empirical density consisting of Dirac deltas.

The first possibility is to approximate each bag Bi by a normal distribution with param-
eters (μi, Σi) and define the bag dissimilarity through the Mahalanobis distance:

dMaha(Bi, Bj) = (μi − μj)
ᵀ
(

1
2

Σi +
1
2

Σj

)−1

(μi − μj). (3.5)

Approximating each bag by a normal distribution may, however, be too restrictive. In
this case, a multivariate Gaussian (or a Parzen density with a smaller width parameter)
can be used instead. The bag dissimilarity measure can then, for instance, be computed
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Figure 3.3: Different ways to represent a 1-D bag with instances at x = 0.5, x = 1 and x = 2.5
as a distribution. From left to right: normal distribution, Parzen density, δ-peaks.
The type of approximation influences the choice of distribution distance that can be
applied.

as a divergence between the estimated distributions [23]. For instance, the Cauchy-
Schwarz divergence, rewritten in our notation, can be estimated as:

dCS(Bi, Bj) = − log

(
Kσi+σj(Bi, Bj)

(K2σi(Bi, Bi)K2σj(Bj, Bj))
1
2

)

where

Kσ(Bi, Bj) = ∑
xk∈Bi
xl∈Bj

exp
(

1
−2σ2 (xk − xl)

ᵀ(xk − xl)
)

(2πσ2)
d
2

. (3.6)

We follow the advice of [23] to use a single parameter σ, i.e., σi = σj when the distribu-
tions (bags) are from the same data source. There are similarities between (3.6) and (3.4).
The use of the radial basis function in (3.6) reduces the influence of larger distances on
the bag dissimilarity. In some sense, this also happens in (3.3), where the downscaling
of the distances is relative to the instance, however, and not global as in (3.6).

Reducing the width parameter of the Parzen window even further, a distribution can
be represented as Dirac deltas at each of the instances. One possible distance for this
representation is the earth movers distance (EMD) [155]. EMD measures the minimum
amount of work to transform one probability distribution Bi, or pile of earth, into an-
other probability distribution Bj, or hole in the ground. We assume that in a bag with ni
instances, each instance has 1/ni of the total probability mass, so the pile in fact consists
of ni smaller piles, and the hole consists of nj smaller holes. The ground distances be-
tween piles and holes are defined by the (Euclidean) instance distances d(xik, xjl). The
distribution distance is then defined as follows:
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dEMD(Bi, Bj) = ∑
xk∈Bi,xl∈Bj

f (xk, xl)d(xk, xl) (3.7)

where f (xk, xl) is the flow that minimizes the overall distance, and that is subject
to constraints that ensure that the only available amounts of earth are transported
into available holes, and that all of the earth is indeed transported: f (xk, xl) ≥ 0,
∑xk∈Bi

f (xk, xl) ≤ 1/nj, ∑xl∈Bj
f (xk, xl) ≤ 1/ni and ∑xk∈Bi,xl∈Bj

f (xk, xl) = 1.

3.3.3 Contrast with Related Approaches

There are several successful MIL methods in the literature that are related to the meth-
ods that we advocate. This section highlights the differences between our approach and
those proposed by others.

Distances

Citation-kNN [186] uses the Hausdorff distance to define a distance between the bags.
This distance matrix is used together with a nearest neighbor classifier, where to decide
the label of a bag Bi, both the bags which are nearest neighbors of Bi, as well as bags for
which Bi is their nearest neighbor, are used to decide the bag label. However, a nearest
neighbor classifier does not use all the information that is contained in the dissimilar-
ity matrix [131], and in our previous work we have demonstrated that for MIL, such
matrices are more informative when used as features in the dissimilarity space [171].

Although our approach uses a dissimilarity matrix between bags, it is important to un-
derstand that although d(Bi, Bj) can be seen as a bag distance, it is not necessarily our
goal to arrive at a definition outputs low values for bags of the same class, and high
values for bags of different classes. In this work, “distance” and “dissimilarity” are
therefore not equivalent, rather, “dissimilarity” is a generalization of “distance”. Given
a certain prototype R ∈ R, it is sufficient if a dissimilarity produces discriminative values
for positive and negative bags. For a distance, only the situation on the left of Fig. 3.4 is
acceptable, but for a dissimilarity approach, both situations are equally informative.

For methods such as nearest neighbor, metricity is therefore a desirable property. For
the dissimilarity space, this is not the case as we will demonstrate in our Section 3.5.3

Kernels

In [71], a bag kernel is defined either as a sum of the instance kernels, K(Bi, Bj) =
∑xik∈Bi,xjl∈Bj

k(xik, xjl) where k is a polynomial, radial basis or other type of kernel on
feature vectors, or as a standard (linear or RBF kernel) on instance statistics of each
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Figure 3.4: Distributions of d(·, R+): distances or dissimilarities to a positive prototype bag.
Only the situation on the left is suitable for a nearest neighbor approach, while the sit-
uation on the right is equally informative for classification in the dissimilarity space.

bag. One example is the Minimax representation, where each bag is represented by the
minimum and maximum feature values of its instances.

Similarly to distance-based methods, kernel-based methods, such as [71, 200], also place
restrictions on the definition of K(Bi, Bj): a kernel matrix has to be positive semi-definite.
In a dissimilarity approach, this is not the case. Any (dis)similarity function can be used,
which increases the set of informative similarity functions [8]. This is particularly useful
if expert advice is to be incorporated in the pattern recognition problem.

Furthermore, kernel-based methods expect a square matrix, therefore for N training
bags, all N2 values need to be available, which is not strictly necessary in a dissimilarity-
based approach. In practice we only need dissimilarities to a subset of size M of the
training bags. For instance, by choosing M = log(N) and choosing the prototypes
beforehand (randomly or by including expert advice), the cost of computing the matrix
(and subsequently training the classifier) could greatly be reduced, while still producing
good performances [134].

Instance similarity

MILES [36] uses a similarity function between bags and all instances in the training
set to create a high-dimensional representation for bags. A sparse 1-norm SVM is then
used to simultaneously maximize the bag margin, and select the most discriminative
similarities, i.e., instances. Conceptually this approach is similar to ours, however there
are crucial differences:

• Using bags, rather than instances, as prototypes, significantly reduces the dimen-
sionality. Furthermore, considering instances in a bag jointly helps to capture in-
teractions between instances, which are lost when considering each instance inde-
pendently.

• Using a radial basis function as similarity assumes that the informative instances
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are found in clusters, and that only small distances (inside a cluster) can be infor-
mative, as sufficiently large distances will be set to zero by the kernel. In cases
where the cluster assumption is not correct, using the distances directly still leads
to informative directions in the dissimilarity space.

To illustrate these points more clearly, we introduce some artificial datasets in Fig. 3.5.
The Concept dataset [114] is a traditional MIL dataset where positive bags have 1 con-
cept instance and (S − 1) background instances, and negative bags have S background
instances. Due to the dense concept in the middle, (dis)similarities to the concept in-
stances are informative. MILES offers advantages in the Concept dataset, because only
a few instances are informative, and each positive bag has such an informative instance.

The Distribution dataset also has bags with S instances each. Here, the bag as a whole
is a more discriminative source of information than a particular instance, because the
distributions overlap. Therefore, it is better to consider the instances in each bag jointly,
as in our approach. On the other hand, MILES may try to select the negative instances
that least overlap with the positive class as informative. However, because the sparsity
(number of selected instances) cannot be controlled explicitly, and the high dimension-
ality, MILES might select too few instances to classify the bags correctly. Furthermore,
the non-zero coefficients (the selected instances) may be unstable, leading to high vari-
ance in performance if the training set changes.

In the Multi-concept dataset, there are also several possible concepts outside the main
concentration of instances, but only one of these concepts needs to be satisfied for the
bag to be positive. If only a small number of bags is available, it may be the case that
each of the concepts is satisfied only by one bag. This bag’s concept instance, xc, is then
at a relatively large distance to all other instances. The similarity to xc will be set to
zero for all bags, turning an informative instance into a non-informative feature. On the
other hand, using the distance of xc directly creates a feature that reflects the property
“positive bags have an instance that is at a large distance from all bags”, which is very
informative for this data.

3.4 Multiple Instance Datasets

We have gathered a range of datasets, where the tasks vary from image classification
to text categorization to predicting molecule activity – all applications where multiple
instance learning has been thought to be beneficial. We believe that, due to the way the
datasets are generated (feature extraction, sampling of instances, sampling of bags), not
all of these datasets may behave in the same way as MIL has originally been defined.
We therefore attempt to cover as many of such situations as possible in order to examine
how different MIL methods perform in each case. A list of dataset properties is shown
in Table 3.1, the datasets themselves (in MIL toolbox [169]) format can be found on our
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positive
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(a) Concept

positive
negative

(b) Distribution

positive
negative

(c) Multi-concept

Figure 3.5: Artificial datasets Concept (C), Distribution (D) and Multi-concept (M). The infor-
mative instances for these datasets are as follows: C - only the positive instances in
the middle, D - all the instances, M - the outlying instances. In the plots, + and ◦ are
instances of positive and negative bags respectively.

website http://www.miproblems.org.

The Musk datasets [49] are molecule activity prediction problems, where bags are
molecules and instances are different conformations of these molecules. The shape of
a conformation is responsible for its binding properties, the feature vectors therefore
describe the surface properties of the conformations. The standard MIL assumption
holds here: as soon as at least one of the conformers has a musky smell, the molecule is
classified as having the “musky smell” property.

African and Beach are both from the Corel scene classification data [36]. It has been
pointed out [36] that, for categories such as “Beach”, there is not just a single concept:
both “water” and “sand” probably need to be present. This means that the assumption
that a single positive instance is sufficient to determine the bag label is not correct. For
other categories, it is even difficult to imagine what the concepts might be. For instance,
the class “Historical buildings” contains images of the ancient Greek and Roman struc-
tures, but also of the interiors (floors, staircases) of buildings from a much later period,
that do not seem to share any of the same visual queues.
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Table 3.1: MIL datasets, number of bags, dimensionality, number of instances and the average,
minimum and maximum number of instances per bag. The datasets are available
online at http://www.miproblems.org

Dataset +bags -bags dim inst avg min max
Musk 1 47 45 166 476 5 2 40
Musk 2 39 63 166 6598 65 1 1044
Fox 100 100 230 1302 7 2 13
Tiger 100 100 230 1220 6 1 13
Elephant 100 100 230 1391 7 2 13
African 100 1900 9 7947 8 2 13
Beach 100 1900 9 7947 8 2 13
AjaxOrange 60 1440 30 47414 32 31 32
Web1 21 92 5863 2212 29 4 131
Web4 87 26 5863 2212 29 4 131
Alt.atheism 50 50 200 5443 54 22 76
Comp.graphics 49 51 200 3094 31 12 58
Brown Creeper 197 351 38 10232 19 2 43
Winter Wren 109 439 38 10232 19 2 43

The AjaxOrange datasets originates from the SIVAL [144] data. The original contains
images of 25 different objects, such as a bottle of dish soap or an apple, and each object
is shown in front of different backgrounds, with varying orientation and lighting con-
ditions. Ideally, the whole object should be the concept. However, some objects, such
as the bottle, are difficult to segment, causing several concepts (parts of that object) to
emerge. Although this may seem similar to the “multiple concepts” situation as in scene
classification, here orientation and lighting conditions may influence which of the object
parts are actually seen in the image.

In the bird song datasets Brown Creeper and Winter Wren [19], a bag is an audio frag-
ment consisting of bird songs of different species. Whenever a particular species is
heard in the fragment, the bag is positive for that category. It could be expected that
birds of the same species have similar songs, therefore there should be different con-
cepts for different bird species. It is also possible that some species are heard together
more often. Indeed, there are correlations up to 0.7 between the labels of some species.
In this case, instances which are negative for one species, could still be helpful in classi-
fying fragments as containing that species or not.

In Newsgroups [200], a bag is a collection of newsgroup posts or messages. At the
first glance, it seems that this is a typical Concept-type dataset: a positive bag for the
category “politics” contains 3% of posts about politics, whereas negative bags contain
only posts about other topics. What is different here, is that posts about politics may
have nothing in common and thus be very far apart in the feature space. In other words,
there are several concepts, but it is sufficient to satisfy only one of these concepts. The
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Multi-concept dataset may be a reasonable approximation for this dataset.

In Web Recommendation [199], a bag is a webpage, and instances are other webpages
that the first webpage links to. The task is to predict whether to recommend a particular
website (bag) to a user based on the linked content, or not. The websites in each of
the datasets are the same, but the labels are different for each user that gave his or her
preferences. This suggests that here, too, there might be multiple concepts (e.g. content
about cooking, and content about sports), but that not all of these need to be satisfied in
order for a user to like a webpage. In other words, a user would probably like webpages
that link to either cooking, or sports, or both. The dataset has train and test sets defined,
for our purposes we concatenated these datasets and use all the data in cross-validation.

3.5 Experiments

We start with a comparison of the proposed bag dissimilarities in Sections 3.5.1 and
3.5.2. In Section 3.5.3, a more in depth analysis of the characteristics of the dissimilarities
of real world data is given. A subset of these bag dissimilarities is then compared to
other MIL approaches in Section 3.5.4. The metric used for comparisons is area under
the receiver-operating characteristic (AUC) [16]. This measure has been shown to be
more discriminative than accuracy in classifier comparisons [82], and more suitable for
MIL problems [170].

For intermediate experiments, we use a subset of the datasets from Table 3.1 because
datasets from the same source (such as one-against-all datasets with a different positive
class) are expected to show similar behaviour. For the final comparison, all the datasets
are used.

In this section, the notation D is used to denote the full dissimilarity matrix, as opposed
to d, which stands for a single dissimilarity value between two bags.

Each experiment is performed using cross-validation, where in each fold, the bags are
split up into Ntr train and Nte test bags. The train bags are then used as prototypes to
compute the ((Ntr + Nte)× Ntr) bag dissimilarity matrix D, i.e., no prototype selection
is performed. The only dissimilarity measure where a parameter needs to be set is dCS.
Here we used a default value, square root of the dimensionality) for all the datasets. It
is therefore possible that these results could be improved, however at the added cost of
cross-validating over different values for σ.

In this dissimilarity space, any supervised classifier can be applied; in this paper we
use the logistic and support vector (SVM) classifiers. On average, the support vector
classifier results were superior to those of the logistic classifier, therefore in some of
the further experiments, only SVM results are reported. The classifiers are used with
default parameters: regularization parameter C = 1, and the SVM is used with a linear
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kernel unless stated otherwise.

3.5.1 Point Set Dissimilarities

The first comparison is between the bag dissimilarities that are most closely related
to the Hausdorff distance: the symmetrized versions of Dminmin, Dmeanmin and Dmaxmin.
The artificial datasets Concept, Distribution and Multi-concept from Fig. 3.5, denoted by
C, D and M respectively, are very suitable to demonstrate the strengths and weaknesses
of these bag dissimilarities. The success of a bag dissimilarity is determined by whether
it allows the informative instances (those that cause the differences between positive
and negative bags) to sufficiently influence the dissimilarity value. Because the overall
mean dissimilarity in ( 3.4) is naturally symmetric, we also include it in this comparison.

Table 3.2 shows performances of the bag dissimilarities for the artificial (at two different
sample sizes of 25 and 50 bags per class) and seven real-life MIL problems.

Dminmin dissimilarity is best suited for the Concept dataset, as only the minimum in-
stance distances inside the concept are informative. Dmeanmin is expected to be best for
the Distribution dataset, because most/all of the instances need to be considered to
determine the bag label. Dmaxmin dissimilarity is most suitable for the Multi-concept
dataset, as the maximum operation selects the most informative, remote instances. Al-
though adding more training data benefits most dissimilarities, one of the dissimilar-
ities is doing better than the others. Dmeanmean performs well on the Distribution and
Multi-concept problems it captures the same important characteristics as Dmeanmin and
Dmaxmin in these cases.

On the real-life datasets, the dissimilarities based on minimum instance distances have
comparable performance. This suggests that the distributions of instances from positive
and negative bags are different enough that any statistic of the instance distances is
able to separate the classes well. Fig. 3.6 shows a 2D projection (obtained by multi-
dimensional scaling) of the instances in the Musk 1 dataset. For example, the positive
bags that have instances in the center cluster, are slightly closer to each other, than to
other bags, under Dminmin, creating informative dissimilarities. However, other statistics
of the instance distances also separate the classes quite well.

In AjaxOrange and alt.atheism datasets, Dminmin performs very badly. In these datasets,
positive and negative bags are likely to contain exactly the same instances (background
objects in AjaxOrange and very general, uninformative posts in alt.atheism). For ex-
ample, in the right plot of Fig. 3.6, we see that the alt.atheism dataset has a cluster of
instances in the middle (both from positive and negative bags) and outlying instances
from positive bags, similar to the Multi-concept dataset. This is caused by the use of
word frequency features: instances containing unusual words are far away from all the



3.5 EXPERIMENTS 43

Table 3.2: Point set, symmetrized dissimilarity, logistic and SVM classifiers. AUC and standard
error (×100), 5 × 10-fold cross-validation. Bold = best (or not significantly worse)
result per dataset.

Classifier Data Dminmin Dmeanmin Dmaxmin Dmeanmean

Lo
gi

st
ic

C25 61.4 (2.3) 54.8 (2.2) 47.5 (2.2) 53.4 (2.1)
C50 98.6 (0.4) 79.6 (1.9) 50.3 (3.3) 65.6 (3.0)
D25 86.2 (1.8) 97.8 (0.5) 96.6 (0.6) 69.4 (2.4)
D50 91.7 (1.1) 100.0 (0.0) 99.6 (0.2) 100.0 (0.0)
M25 54.4 (2.2) 50.8 (1.9) 60.5 (2.3) 71.4 (1.9)
M50 71.5 (2.4) 78.4 (2.1) 84.3 (1.5) 69.4 (2.4)
Musk1 88.2 (1.8) 90.2 (1.7) 91.8 (1.6) 84.3 (1.8)
Musk2 92.0 (1.2) 92.6 (1.3) 93.3 (1.2) 82.8 (1.7)
African 96.3 (0.4) 94.4 (0.6) 94.2 (0.6) 91.1 (0.7)
Ajax 68.4 (1.6) 98.1 (0.5) 97.2 (0.7) 87.8 (1.1)
Alt.ath 49.2 (0.8) 88.5 (1.7) 83.7 (1.7) 85.2 (1.8)
BrCr 89.6 (0.6) 93.6 (0.4) 91.1 (0.5) 82.3 (0.7)
Web 69.7 (4.0) 77.0 (3.2) 66.8 (3.7) 69.9 (3.3)

Li
bS

V
M

C25 57.7 (2.4) 52.2 (2.6) 45.9 (2.1) 40.8 (1.5)
C50 98.6 (0.4) 83.9 (2.0) 46.1 (2.4) 66.4 (3.0)
D25 72.0 (2.4) 78.9 (2.0) 82.7 (1.6) 68.2 (2.5)
D50 92.9 (1.1) 100.0 (0.0) 99.5 (0.2) 100.0 (0.0)
M25 47.0 (2.2) 50.6 (2.3) 66.2 (2.3) 71.6 (2.0)
M50 72.0 (2.4) 78.9 (2.0) 82.7 (1.6) 68.2 (2.5)
Musk1 92.0 (1.2) 93.4 (1.2) 93.4 (1.3) 88.2 (1.5)
Musk2 94.0 (1.3) 95.4 (1.4) 95.3 (1.2) 90.3 (1.5)
African 96.6 (0.3) 96.7 (0.4) 95.5 (0.5) 90.1 (0.7)
Ajax 71.1 (1.4) 98.6 (0.4) 97.8 (0.5) 84.0 (1.2)
Alt.ath 50.0 (0.0) 94.9 (1.0) 91.4 (1.1) 94.2 (1.1)
BrCr 87.8 (0.6) 95.5 (0.3) 92.6 (0.5) 54.4 (2.4)
Web 53.2 (4.8) 76.0 (2.7) 43.3 (3.6) 77.6 (3.3)
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others, and instances containing only regular words are very close to most others, i.e., in
the middle cluster. Because the instance density in this cluster is very high, Dminmin al-
ways “selects” instances from this cluster. This results in many bag dissimilarities being
equal to zero, creating large class overlap.

Although the performances on the real datasets are reasonable, Dmeanmean does not do
as well as the other dissimilarities. This suggests that in real problems, the distributions
of instances from positive and negative bags might be somewhat different, but that this
is not as pronounced as in the artificial Distribution and Multi-concept cases. Therefore,
the minimum distance matches for all the instances provide more reliable information
about the bag class. An exception is alt.atheism, where the performance of Dmeanmean is
quite high. This can also be explained with the plot in Fig. 3.6. Here we see outlying
positive instances, all belonging to different positive bags, similar to the Multi-concept
dataset. These instances are the most informative for the bag class, therefore dissimilar-
ities involving these distances can perform well. This is the case for Dmeanmin, Dmaxmin
and Dmeanmean, which is reflected in the performances.

 

 

instance in +ve bag
instance in -ve bag

 

 

instance in +ve bag
instance in −ve bag

Figure 3.6: Multi-dimensional scaling projection of instances in the Musk 1 (left) and alt.atheism
(right) datasets

Overall, Dmeanmin gives the best results. Although it is possible that only a few instances
per bag are informative (as in the Concept artificial dataset), considering all instances
(and their minimum distance neighbors) with equal weight seems to be already be suf-
ficient in practice.

3.5.2 Distribution Dissimilarities

Table 3.3 shows the results of the distribution dissimilarities for the logistic and LibSVM
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Table 3.3: Distribution dissimilarities. AUC and standard error (×100), 5 × 10-fold cross-
validation. Bold = best (or not significantly worse) result per dataset.

Classifier Data DMaha DEMD DCS

Lo
gi

st
ic

Musk1 70.1 (2.3) 88.7 (1.9) 84.6 (2.0)
Musk2 91.5 (1.3) - 88.8 (1.5)
African 59.9 (1.5) 93.3 (0.6) 85.9 (1.0)
Ajax 86.9 (1.8) 97.9 (0.4) 95.5 (0.7)
Alt.ath 49.9 (2.5) 84.0 (1.9) 59.2 (2.9)
BrCr 63.3 (1.2) 94.5 (0.4) 89.4 (0.8)
Web - 69.4 (4.1) 75.7 (3.4)

Li
bS

V
M

Musk1 76.5 (2.9) 89.8 (1.6) 88.2 (1.7)
Musk2 96.0 (0.9) - 87.4 (1.8)
African 64.8 (1.5) 94.7 (0.4) 94.3 (0.5)
Ajax 87.3 (1.7) 98.9 (0.3) 98.1 (0.3)
Alt.ath 47.0 (2.3) 87.4 (1.7) 41.9 (2.5)
BrCr 59.7 (1.1) 95.5 (0.3) 93.9 (0.4)
Web - 77.7 (2.7) 69.5 (3.8)

classifiers. The result of Musk2 for DEMD is missing because EMD does not scale well
to large bags (some bags in Musk2 have 1000+ instances). The result of Web recom-
mendation for DMaha is missing because the dataset has almost 6000 dimensions and
computing the dissimilarity therefore requires many inversions of 6000 × 6000 covari-
ance matrices.

Overall, the results of DMaha are not very good, except for Musk2. A possible reason
could be that Musk2 is the only dataset with bags that are large enough for reliable
estimation of an inverse covariance matrix. The results of EMD are quite good, however,
for these datasets it does not offer clear advantages over the point set dissimilarities.
Lastly, the results of dCS are also reasonable, which is a surprise considering that the
results are quite sensitive to the σ parameter.

It is interesting to compare the results of DCS and Dmeanmean from the previous section.
One of the main differences is that in DCS, more emphasis is put on the smaller distances
(due to the RBF kernel), while in Dmeanmean large distances influence the dissimilarity
values significantly. This explains the large gap in the results of alt.atheism, where
the outlier instances are very important. On the other hand, DCS is much better than
Dmeanmean on the Brown Creeper dataset, where a tight concept, and therefore small
distances between concept instances, can be expected.
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3.5.3 Properties of Dissimilarity Matrices

Table 3.4 shows several properties of dissimilarity matrices evaluated in our experi-
ments. These properties demonstrate what we have emphasized in Section 3.3: it is not
our goal to arrive at a definition of d(Bi, Bj) that is consistent with one intuition about
distance measures, and that dissimilarities that do not behave as distances, may still
be informative for classification. The properties we examine [57, 137] are defined as
follows:

• NEF stands for negative eigenfraction, and express how well the dissimilarity ma-
trix can be embedded in a Euclidean space. For a Euclidean dissimilarity matrix,
the eigenvalues λi of the corresponding Gram matrix are non-negative [137]. Neg-

ative λi therefore represent non-Euclidean behavior. NEF is defined as
∑λi<0 |λi|

∑λj
λj| .

For a Euclidean distance measure, the value is 0.

• NER stands for negative eigenratio, and is defined as |λmin|
λmax

. For a Euclidean dis-
tance measure, the value is 0.

• NMF stands for non-metricity fraction. It is the percentage of triplets
{Di,j, Di,k, Dj,k} that disobey the triangle inequality. For a metric distance mea-
sure, the value is 0.

One interesting result is for DCS with highly non-Euclidean / non-metric behaviour for
Musk2 and Web data. We suspect that the cause of this behaviour is the highly varying
bag size in these datasets. The computation of DCS in (6) uses a sum (not an average)
of similarity values. Therefore, it is possible that bags Bi, Bj and Bk, with instances in
the exact same locations in the feature space, but where Bk is much better sampled than
Bj, and Bj is much better sampled than Bi, are at different distances to each other. This
difference would not picked up by any of the point set dissimilarities, because averaging
is employed. It depends on the application whether this is a favorable property or not.
For example, if the bag size is correlated with the bag label, a sum of instance distances
could be more informative than an average. This is not the case for Musk 2 or Web, but
it could be relevant for other data, for example in Brown Creeper, where the correlation
between bag size and bag label is higher than 0.5.

Another unusual result is the NEF and NER obtained on the alt.atheism dataset for
Dmean. The positive bags in this dataset contain very outlying instances, as explained in
Section 3.5.1. The dissimilarities of bags with such outlier instances will be very large,
which which causes significant problems to embed such objects in a Euclidean space.
This causes large negative eigenvalues, and therefore large values for NEF and NER. Of
course, this behaviour is also non-metric, however, NMF only measures the amount of
dissatisfied triangle inequalities, disregarding the identity requirement of a metric.
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Table 3.4: Properties of dissimilarity matrices: negative eigenfraction (in %), negative eigenratio
and non-metricity fraction (in %).

Measure Data Dminmin Dmeanmin Dmaxmin Dmean DMaha DEMD DCS

N
EF

Musk1 31.2 25.5 22.6 21.0 48.9 27.4 27.1
Musk2 31.1 25.3 21.7 20.5 28.4 - 96.3
Afr 47.2 37.8 33.1 29.7 50.0 49.5 35.4
Ajax 47.9 32.6 41.3 40.0 49.6 29.9 32.5
Alt 49.5 21.0 22.0 93.1 36.9 37.4 9.2
BrCr 45.5 30.7 33.6 51.1 49.9 37.3 27.3
Web 18.6 4.8 3.7 25.9 - 10.3 100.0

N
ER

Musk1 0.4 0.2 0.2 0.2 1.0 0.2 0.2
Musk2 0.4 0.2 0.2 0.1 0.3 - 28.1
Afr 0.7 0.4 0.3 0.3 1.0 1.0 0.3
Ajax 0.5 0.2 0.3 1.1 1.0 0.2 0.3
Alt 1.0 0.5 0.6 24.1 0.8 0.7 0.8
BrCr 0.5 0.4 0.3 0.8 1.0 0.6 0.2
Web 1.0 1.1 0.9 1.1 - 0.5 0.0

N
M

F

Musk1 5.5 2.5 1.6 0.7 27.1 3.8 5.5
Musk2 7.2 3.2 1.9 0.8 7.9 - 93.3
Afr 20.1 8.1 8.8 2.3 27.8 11.4 12.4
Ajax 17.5 0.1 0.5 0.0 18.9 0.3 4.2
Alt 0.0 0.3 0.9 0.0 1.7 9.7 0.0
BrCr 7.8 0.8 2.0 4.2 26.7 3.5 13.1
Web 2.4 0.0 0.0 0.0 - 0.0 97.3
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Overall, these results show that dissimilarity matrices do not need to be Euclidean or
metric to still be informative and useful for dissimilarity-based classifiers, which is con-
sistent with the conclusions in [136]. Of course, these measures do not take into account
the actual labeling, so such properties alone cannot predict the performance of classi-
fiers in the dissimilarity space. However, examining the dissimilarity matrices can aid in
understanding more about the data and the different choices of dissimilarity measures.

3.5.4 Comparison to Other MIL Approaches

We have selected several methods, that are often being used in comparisons in recent
papers, as algorithms for our own comparison. For a more detailed description of these
methods, see Section 3.2. We consider dmeanmin as the dissimilarity function used in
MInD, and LibSVM [33] as the classifier used together with this representation. All clas-
sifiers are implemented in PRTools [56] and the MIL toolbox [169]. Default parameters
are used for all cases, unless stated otherwise. The classifiers used are as follows:

• EM-DD [195], with 10 objects used at initialization.

• mi-SVM [5], with a linear kernel.

• MILBoost [183] with 100 rounds.

• MILES [36], with a radial basis kernel.

• Minimax MI-Kernel [71] + SVM with a linear kernel.

• MInD + SVM with a linear kernel.

Learning Curves

The presented classifiers vary significantly in the model assumptions and their com-
plexity. Therefore, we expect that these methods are affected differently by the amount
of training data provided, both in terms of classifier performance, as well as computa-
tional issues. We provide several learning curves (in the number of training bags) and
show the performance and training/testing times of the classifiers.

The learning curves are generated as follows. For each of the 20 iterations, the dataset is
split into 80% training and 20% test bags. Then, the training set is subsampled to contain
5, 10, 20 and 40 (or the maximum possible number of) bags per class. This ensures that
the test set remains the same for increasing amounts of training data. When the training
set is not large enough, the maximum possible number of bags is sampled instead.

The learning curves for six MIL datasets are shown in Fig. 3.7. In terms of AUC, it
is clear that MInD and MILES perform well overall: their performance is always one
of the best. There are two exceptions where the results of MInD and MILES are quite
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different. In the alt.atheism dataset, MInD outperforms MILES significantly. We suspect
that this is because this dataset is similar to the artificial Distribution data - all instances
need to be considered to distinguish a positive bag from a negative bag. MInD does this
naturally, while MILES tries to enforce sparsity by selecting a few important instances.
On the other hand, MILES is superior on the AjaxOrange dataset. This is because MInD
takes uninformative background distances into account, while MILES is able to select
the instances belonging to the AjaxOrange bottle.

There is another interesting difference between the MInD and MILES approaches. In all
cases except AjaxOrange, where MILES is always superior, the advantage of MInD is
more apparent at lower sample sizes. MILES has a higher dimensionality than MInD,
which is a disadvantage when only a few bags are available in the training set. This
is why the performance of MILES decreases for alt.atheism. As the training set be-
comes larger, so does the dimensionality, making the problem of selecting informative
instances more and more difficult.

The Minimax and SimpleMIL approaches also have reasonably good (but typically
worse than MILES and MInD) and consistent performances. Both approaches do not
require any extra parameters, except the classifier used on top of the representation.
EM-DD is able to achieve good results, but only at larger training sizes, as estimating
a high-dimensional density requires a lot of data. For MILBoost and mi-SVM, it is not
directly clear when a good performance can be achieved. Interestingly, both classifiers
try to recover the true instance labels, assuming that at least one instance per bag is
positive. As explained in Section 3.4, this may not be the case for several of the MIL
problems examined here. We suspect that this is the reason why methods that learn on
bag level and thus make less assumptions, are more successful in our experiments.

In terms of time (Fig. 3.8), EM-DD is by far the slowest, followed by MILBoost and mi-
SVM due to the optimization of the instance labels. They are followed by MInD and
MILES, where creating the (dis)similarity representation is quadratic in the number of
instances in the training data. SimpleMIL and Minimax are the fastest methods, because
creating the representation is linear in the number of instances.

When both the performance and training time are taken into account, Minimax, MInD
and MILES are the best choices. Although MInD and MILES have higher performances,
they are significantly slower. Selecting bags or instances prior to creating the dissimilar-
ity representation could, however, decrease their total training time. Prototype selection
after the dissimilarity matrix is already available would increase the training time, but
would decrease testing time as less dissimilarities would need to be computed in the
test phase.

Another useful observation is that MILES and bag dissimilarities such as MInD are re-
lated because both representations are defined through minimum instance distances.
Therefore, the quadratic cost of creating the representation can be shared among these
methods, which allows a user to try several competing methods without adding signif-
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icant computational effort. The same holds for trying several classifiers at a fraction of
the cost. In the time curves, the time for computing the representation is included in the
time that is displayed, so in practice, these methods would be faster.
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Figure 3.7: Learning curves (AUC performance) for Musk1, Musk2, African, AjaxOrange,
alt.atheism and Brown Creeper datasets. The standard deviations are generally
around 0.1, but are lower for MILES, Minimax and MInD at larger training sizes.
Figure best viewed in color.

Comparison

As a final comparison, we present the results of 5 times 10-fold stratified cross-
validation per dataset for all the available data. Unfortunately, some results cannot
be reported: for EM-DD when one cross-validation fold lasts longer than five days;
for MILES when there are too many instances in the training set; for MILBoost when
features with the same value for all instances are present. Furthermore, for several com-
putationally intensive methods it was infeasible to perform the experiment 50 times,
therefore these performances are based on fewer runs.

For MILES, we use a radial basis kernel with σ = 10 as the instance similarity func-
tion. MiSVM, Minimax and MInD are all used with an SVM with a linear kernel and
regularization parameter C = 1.

The results are shown in Table 3.5. Overall, the best results are given by MILES and
MInD. Note that MILES is sensitive to the choice of width parameter σ, and for some
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Table 3.5: Comparison of different MIL approaches, AUC and standard error (×100), 5 × 10-
fold cross-validation. Significance is determined by the Friedman test, for which the
critical difference is 2.0153. Classifiers in bold are best, or not significantly worse than
best.

Classifier
Data EM-DD mi-SVM MILBoost MILES Minimax MInD
Musk1 87.4 (2.1) 81.3 (2.5) 74.3 (2.6) 92.8 (1.2) 89.1 (1.9) 93.4 (1.2)
Musk2 86.9 (2.1) 81.5 (2.1) 73.6 (2.3) 95.3 (0.8) 89.0 (1.5) 95.4 (1.4)
Fox 67.6 (3.2) 53.9 (1.6) 61.1 (1.9) 69.8 (1.7) 58.1 (1.3) 60.5 (1.9)
Tiger 75.4 (2.9) 83.3 (1.3) 84.1 (1.6) 87.2 (1.6) 81.4 (1.3) 85.1 (1.7)
Elephant 88.5 (2.1) 84.1 (1.4) 89.0 (1.4) 88.3 (1.3) 88.2 (1.0) 93.1 (0.8)
African 91.5 (1.0) 63.4 (1.2) 88.9 (0.9) 58.9 (1.7) 84.5 (1.5) 96.7 (0.4)
Beach 84.7 (1.3) 49.6 (1.6) 85.0 (1.1) 60.0 (1.9) 82.4 (0.9) 92.3 (0.6)
AjaxOrange - 93.6 (1.1) 97.9 (0.5) - 91.1 (0.9) 98.6 (0.4)
Alt.atheism 51.0 (5.2) 70.9 (2.6) - 47.1 (2.4) 80.6 (1.8) 94.9 (1.0)
Comp.graphics 48.2 (3.2) 59.3 (2.8) 56.3 (2.6) 57.2 (2.6) 57.1 (2.7) 92.2 (1.4)
BrownCreeper 94.5 (0.9) 85.8 (0.7) 95.4 (0.4) 95.8 (0.3) 94.1 (0.4) 95.5 (0.3)
WinterWren 98.5 (0.3) 95.3 (0.4) 97.0 (1.5) 99.2 (0.2) 98.1 (0.2) 99.5 (0.1)
Web1 - 89.7 77.8 (5.7) 88.2 (4.7) 90.4 76.0 (2.7)
Web4 60.6 (1.1) 81.2 61.8 (4.9) 70.8 (1.6) 86.7 73.7 (3.2)
Friedman 4.1786 4.3571 3.9286 3.1786 3.5714 1.7857
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Figure 3.8: Training time curves for Musk1, Musk2, African, AjaxOrange, alt.atheism and Brown
Creeper datasets. The standard deviations in time are all quite low except for EM-
DD. Figure best viewed in color.

datasets, the default value results in poor performance. We also performed experiments
with MILES with a linear kernel, and the performances were more stable across datasets,
however, in general lower and significantly worse than MInD.

The last row shows the results of the Friedman test [47]. We have treated the missing
results as random performance (AUC of 0.5) to obtain the classifier ranks. The ranks
show that MInD is the best performing classifier, followed by MILES and Minimax,
which are both not significantly different from MInD due to the critical difference of
2.0153 (14 datasets, 6 classifiers). MInD, however, is significantly better than the other
four classifiers, which is not the case for MILES or Minimax.

The only methods that (i) always produce a reasonably good performance and (ii) al-
ways produce a result, are Minimax and MInD. Our advice for a different MIL prob-
lem would therefore be to try the Minimax, MInD and, if the dimensionality allows
it, MILES. An additional benefit of these choices is that the costs of creating the MInD
and MILES dissimilarity matrices can be shared, because both are based on instance
distances.



3.6 RECOMMENDATIONS 53

3.6 Recommendations

In this section we provide several recommendations with respect to dealing with novel
MIL problems, and in particular the bag dissimilarity approach.

3.6.1 Dissimilarity Measure

Based on our observations, dmeanmin is a reasonable choice for many datasets. Although
we can design datasets where dmeanmin would fail, such as the Concept dataset in Fig. 3.5,
we have not encountered such datasets in practice. However, our advice would be to
inspect 2D or 3D projections of the instances (or a subset of the instances in case of very
large datasets), to see whether there are similarities between the novel dataset and any
existing toy or real problems. Based on such observations, one could reason whether a
particular dissimilarity function would be more or less successful.

Another possibility is to have an expert involved in defining the dissimilarity, for in-
stance, the underlying instance distance function could be replaced by an application-
specific measure, such as an alignment measure for strings. This is likely to result in
non-metric dissimilarities, which, as we have demonstrated in Section 3.5.3, is not a
problem for the dissimilarity approach.

For a novel MIL problem, it is necessary to consider properties of the dataset (number
of bags, bag size, and the dimensionality of the instances), both in terms of performance
and computational complexity. For small bags, it is difficult to estimate the instance
distribution well, especially if the feature space is high-dimensional. In this case, the
point set measures can be preferable. For large bags, the instance distribution can be
estimated more reliably. Furthermore, the point set dissimilarities may become too ex-
pensive to compute, so a distribution measure can be preferred. In a situation where
both small and large bags are present, it is important to check whether the the bag size
is informative for the problem (such as a bird species singing only when a lot of birds a
singing), or an artefact (such as errors in the data generation procedure).

3.6.2 Classifier

A dissimilarity representation can, in principle, be used as an input for any supervised
classifier. Of course, the number of objects (bags) and the number of features (proto-
types) should be taken into consideration, as in any pattern recognition problem. For
instance, it might not be advisable to use a very complex classifier when the number of
bags is very low. In this paper, we only performed experiments with the logistic and
support vector classifiers, but in other experiments, Parzen, dissimilarity-based nearest



54 MULTIPLE INSTANCE LEARNING WITH BAG DISSIMILARITIES

neighbor, 1-norm SVM and others have also been successful [40, 171]. This offers flexi-
bility to a (possibly non-expert) user, who might have a preference for a certain classi-
fier. Using sparse classifiers (such as the 1-norm SVM) can also help interpretability: the
classification result can then be explained as being (dis)similar to certain prototypes.

Another advantage of the wide choice of classifiers is that the original MIL setting (bi-
nary offline classification) can be easily transported to other learning settings. For in-
stance, in a multi-class case with a large number of classes, it might be advantageous
to use a classifier that is inherently multi-class (such as nearest neighbor) rather than
combining many one-against-all binary classifiers.

3.7 Discussion and Conclusions

In this paper, we proposed a dissimilarity representation for multiple instance learn-
ing (MIL), where each bag is represented by its dissimilarities to the training bags. The
problem is therefore converted to a supervised learning problem where any classifier
can be used. There are many ways to define a dissimilarity between two bags, by view-
ing each bag as a point set, as a distribution in instance space, or as an attributed graph.

We gathered a wide range of artificial and real MIL problems and discussed which are
the informative instances in each case. Through experiments, we have demonstrated
that different dissimilarity definitions have different implicit assumptions about the in-
formativeness of instances, therefore making some dissimilarities more suitable than
others for the dataset in question. In practice, the dissimilarity based on averaging of the
minimum instance distances between bags has shown good performance in all the real-
life datasets we discussed. Our approach has shown very competitive performances to
other MIL algorithms, while keeping the computational effort quite low.

Furthermore, we discussed the benefits of the proposed approach to a potential end-
user. Because the dissimilarity approach does not impose restrictions on the dissimilar-
ity matrix, expert advice can be incorporated in the dissimilarity definition. Non-metric
dissimilarity measures may be more informative than their metric counterparts, and
such properties can be dealt with naturally in a dissimilarity approach. Furthermore,
the approach is flexible with respect to the classifier used, and can be easily extended to
other learning settings.

One of the questions that is left is when to use the “point set” and the “instance distribu-
tion” approaches. Depending on the size of the bags, one of these may be more accurate
than the other, however, computational issues may also become a factor. It would be
interesting to investigate the exact trade-off of these two choices. Overall, we believe
the proposed approach is a flexible, powerful and intuitive way to do MIL, and that
combined, these qualities make it an attractive method for domains where data might
be naturally grouped in bags, but MIL is not yet being used.
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Addendum

In the previous work, we symmetrized the dissimilarities in order to concentrate on the
main differences between Dminmin (which is already symmetric), Dmeanmin and Dmaxmin
dissimilarities. However, symmetric dissimilarities are not strictly necessary for a
dissimilarity-based approach, and it is worth examining whether symmetrization is in-
deed a useful step.

Recall from Section 3.3.1 that the direction in which the dissimilarity is measured, de-
fines which instances influence the bag dissimilarity. This begs the question of whether
there are actually situations where one of the directions might be more informative.
Consider the Multi-concept dataset and a negative prototype R− from this dataset. If
we measure the dissimilarity from this prototype to training bags B+ and B−, it could
happen that d(R− → B+) = d(R− → B−) if the dissimilarity ignores the informative
instances in B+. On the other hand, measuring from B+ and B− to the prototype en-
sures that the informative instances influence the dissimilarity value. For more detailed
explanation and results, see [39].

In the experiments, we compare the directional dissimilarities to dissimilarities which
are symmetrized, as well as the extended asymmetric dissimilarity space (EADS) [138],
where the dissimilarity is not symmetrized but information from both directional dis-
similarity matrices is included. The dissimilarities used in the comparison are as follows
(note that the combining method is denoted by the superscript, unlike the dissimilarity
definition, for which we use the subscript):

• Dto, dissimilarities measured from the objects to the prototypes.

• D f rom, dissimilarities measured from the prototypes to the objects.

• Davg = Dto + D f rom, symmetric dissimilarity obtained by averaging the matrices.

• Dmax = max(Dto, D f rom), symmetric dissimilarity obtained by performing an
element-wise maximum operation.

• Dmin = min(Dto, D f rom), symmetric dissimilarity obtained by performing an
element-wise minimum operation.

• Dext = [DtoD f rom], asymmetric dissimilarity obtained by concatenating the origi-
nal matrices.

Parts of these results were published as:
Yenisel Plasencia-Calaña, Veronika Cheplygina, Robert P. W. Duin, Edel B. Garcı́a-Reyes, Mauricio
Orozco-Alzate, David M. J. Tax, and Marco Loog. “On the informativeness of asymmetric dissimilari-
ties.” In Similarity-Based Pattern Recognition, pp. 75-89. Springer Berlin Heidelberg, 2013.
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Table 3.6 shows performances of these dissimilarity versions for Dmeanmin on a few real-
life datasets for the logistic and LibSVM classifiers (the comparisons are performed per
classifier). It is clear that it is not strictly necessary to have a symmetric dissimilarity to
achieve good performance.

One of the interesting results is the difference between Dto and D f rom on the alt.atheism
dataset. The use of word frequency features causes some instances (those containing
unusual words) to be far away from all the others, and other instances (those contain-
ing regular words) to be very close to most others. This situation is a bit similar to the
artificial Multi-concept dataset: in the middle are the non-informative instances with
regular words, and on the outside are the instances with unusual words. As a result, it
may happen that a bag is often equidistant to all other bags. This may seem totally unin-
formative, but the catch is that the distance of bag Bi to all the others might be different
than the distance of Bj to all the others. Considering the D f rom and Dto dissimilarities,
we then have the following situations: (i) a prototype is equidistant to all bags (D f rom)
or (ii) a bag is equidistant to all prototypes (Dto).

In the first situation, the dissimilarity is non-informative, because none of the prototypes
will be able to discriminate between positive and negative bags. In the second situation,
however, learning is still possible if positive bags, on average, have a different “equidis-
tance distance” than negative bags. This is exactly the situation in alt.atheism, and the
reason why Dto leads to higher performances. For LibSVM, the difference is especially
large and the combining methods also do not succeed in outperforming this directed
dissimilarity.

Learning Curves

In a different set of experiments, we examine learning curves for the different versions
of the dmeanmin dissimilarity. The datasets used are AjaxOrange (same as above) and
Winter Wren (a dataset from the same source and with similar characteristics as the
Brown Creeper dataset). The classifiers compared are the linear discriminant classifier
(LDC) and the SVM. For LDC we use regularization parameters R = 0.01 and S = 0.9 to
regularize the covariance matrices, for SVM we use a linear kernel and a regularization
parameter C = 100. These parameters show reasonable performances on all the datasets
under investigation (including non-MIL datasets not included in this thesis), and are,
therefore, constant across all experiments and not optimized to fit a particular dataset.

We provide learning curves over 20 runs for each dissimilarity / classifier combination,
for increasing training sizes from 5 to 30 objects per class. In each of the learning curves,
the number of prototypes is fixed to either 5 or 20 per class in order to explore the behav-
ior with a small and a large representation set size. This means that the dimensionality
of the dissimilarity space is the same for Dto, D f rom and the symmetrized versions, but
twice as much for Dext.



3.7 ADDENDUM 57

Table 3.6: Combining asymmetry information for the Dmeanmin dissimilarity. AUC and standard
error (×100), 5 × 10-fold cross-validation. Bold = best (or not significantly worse)
result per dataset.

Data Dto D f rom Davg Dmax Dmin Dext

Lo
gi

st
ic

Musk1 91.4 (1.5) 92.2 (1.4) 90.2 (1.7) 89.6 (1.8) 90.0 (1.6) 91.3 (1.6)
Musk2 93.6 (1.3) 91.8 (1.3) 92.6 (1.3) 95.1 (1.0) 89.4 (1.5) 92.9 (1.2)
African 94.4 (0.5) 83.2 (0.9) 94.4 (0.6) 90.6 (0.9) 95.2 (0.4) 95.5 (0.5)
Ajax 96.9 (0.7) 98.4 (0.4) 98.1 (0.5) 98.1 (0.5) 97.0 (0.7) 98.3 (0.5)
Alt.ath 82.6 (1.9) 71.4 (2.6) 88.5 (1.7) 85.3 (1.5) 91.8 (1.3) 87.4 (1.8)
BrCr 93.8 (0.5) 92.6 (0.5) 93.6 (0.4) 94.1 (0.4) 93.3 (0.4) 94.3 (0.3)
Web 74.5 (3.1) 80.7 (2.8) 77.0 (3.2) 68.3 (4.4) 65.9 (3.9) 76.8 (2.8)

Li
bS

V
M

Musk1 93.4 (1.2) 93.3 (1.2) 93.4 (1.2) 92.3 (1.5) 91.7 (1.5) 92.9 (1.3)
Musk2 95.4 (1.4) 93.4 (1.4) 95.4 (1.4) 96.4 (0.9) 92.2 (1.5) 95.3 (1.2)
African 95.4 (0.5) 90.3 (0.8) 96.7 (0.4) 93.4 (0.7) 95.7 (0.4) 96.1 (0.5)
Ajax 98.0 (0.7) 98.9 (0.2) 98.6 (0.4) 98.7 (0.4) 98.0 (0.6) 98.9 (0.3)
Alt.ath 94.5 (1.0) 70.7 (2.5) 94.9 (1.0) 94.7 (0.9) 90.7 (1.4) 89.9 (1.6)
BrCr 95.1 (0.4) 94.1 (0.4) 95.5 (0.3) 95.6 (0.3) 92.9 (0.4) 94.9 (0.4)
Web 75.0 (3.1) 77.8 (2.8) 76.0 (2.7) 75.2 (3.4) 63.7 (4.0) 78.2 (3.1)

In AjaxOrange, it is an important observation that D f rom is more informative than Dto,
especially for the LDC classifier (see Fig. 3.9 (a) and (b)).. The dissimilarities are mea-
sured from the prototypes to the bags. The dmeanmin dissimilarity in (3.3) therefore en-
sures that, for a positive prototype, the positive instances (the AjaxOrange bottle) influ-
ence the dissimilarity value by definition, as all instances of the prototype have to be
matched to instances in the training bag. Measuring the dissimilarity to positive pro-
totypes, on the other hand, may result in very similar values for positive and negative
bags because of identical backgrounds, therefore creating class overlap.

Because Dto contains potentially harmful information, the combining methods do not
succeed in combining this information from Dto and D f rom in a way that is beneficial to
the classifier. This is particularly evident for the LDC classifier (see Fig. 3.9 (a) and (b)),
where only Dext has similar (but still worse) performance than D2. For the SVM classi-
fier, EADS performs well only when a few prototypes are used, but as more prototypes
(and more harmful information from Dto) are involved, there is almost no advantage
over D2 alone.

From the results reported in Fig. 3.10 for Winter Wren, we again see that D f rom is more
informative than Dto. However, what is different in this situation is that both directions
contain useful information for classification, this is evident due to the success of the
average, maximum and EADS combiners. The difference lies in the negative instances
(fragments of other birds species, or background objects in the images) of positive bags.
While in AjaxOrange, background objects are non-informative, the background in the
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Figure 3.9: LDC and SVM classification results in dissimilarity spaces for the AjaxOrange
dataset. The x-axis shows training set size per class, the y-axis shows the error aver-
aged over 20 experiments.

audio fragments may be informative for the class of the sound. In particular, it is pos-
sible that some bird species are heard together more often: e.g. there is a correlation
of 0.63 between the labels of Winter Wren and Pacific-slope Flycatcher. Therefore, also
measuring dissimilarities to the prototypes produces dissimilarity values that are dif-
ferent for positive and negative bags.

The increased dimensionality of Dext is one of the main problems of this approach, as
in small sample size cases the increased dimensionality may lead to overfitting. In or-
der to overcome this, prototype selection can be considered. We therefore demonstrate
experiments using prototype selection for all the spaces compared, for the Winter Wren
dataset. We use a fixed training set size of 200 objects, leading to spaces of dimensional-
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Figure 3.10: LDC and SVM classification results in dissimilarity spaces for the Winter Wren
dataset. The x-axis shows training set size per class, the y-axis shows the error
averaged over 20 experiments.

ity 5, 10, 15, 20 and 25. Prototype selection is performed by forward selection optimizing
the leave-one-out 1-NN classification error in the training set. Prototypes are selected
for Dext as it is usually done for a regular dissimilarity space. Prototypes using the two
directed dissimilarities are available as candidates but the prototype selection method
may discard one of the two or maybe both if they are not discriminative according to the
selection criterion. Dext is compared now with the other spaces on the basis of the same
dimensionality. The results show that Davg and Dext are the best dissimilarity spaces for
Winter Wren when prototype selection is performed.

One interesting issue of using prototype selection for Dext is that not only the dimen-
sionality is decreased, but also the accuracy of classifiers on Dext may be improved,
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Figure 3.11: Classification results after prototype selection for Winter Wren dataset.

especially when one of the directed dissimilarities is very informative, while the other
one is not at all. Dext without prototype selection in these cases may be worse than
the best directed dissimilarity (see Fig. 3.9 (a) and (b)). However, by using a suitable
prototype selection method for Dext, only the prototypes from the best directed dissim-
ilarity should be kept, and noisy prototypes from the bad directed dissimilarity should
be discarded. This should make the results of Dext similar to those of the best directed
distance.



4

DISSIMILARITY-BASED ENSEMBLES FOR

MULTIPLE INSTANCE LEARNING

In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather
than individual feature vectors. In this paper we address the problem of how these
bags can best be represented. Two standard approaches are to use (dis)similarities be-
tween bags and prototype bags, or between bags and prototype instances. The first ap-
proach results in a relatively low-dimensional representation determined by the number
of training bags, while the second approach results in a relatively high-dimensional rep-
resentation, determined by the total number of instances in the training set. However,
an advantage of the latter representation is that the informativeness of the prototype in-
stances can be inferred. In this paper a third, intermediate approach is proposed, which
links the two approaches and combines their strengths. Our classifier is inspired by
a random subspace ensemble, and considers subspaces of the dissimilarity space, de-
fined by subsets of instances, as prototypes. We provide insight into the structure of
some popular multiple instance problems and show state-of-the-art performances on
these datasets.

This chapter is accepted for publication as:
Veronika Cheplygina, David M. J. Tax, Marco Loog. Dissimilarity-based Ensembles for Multiple Instance
Learning. IEEE Transactions on Neural Networks and Learning Systems
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4.1 Introduction

Nowadays, many applications face the problem of using weakly labeled data for train-
ing a classifier. For example, in image classification, we may only have an overall label
for an image (such as a “tiger”), not where the tiger is actually located in the image.
Such problems are often formulated as multiple instance learning (MIL) [49] problems.
MIL is an extension of supervised learning, and occurs in cases when class labels are as-
sociated with sets (bags) of feature vectors (instances) rather than with individual feature
vectors. The bag labels provide weak information about the instance labels. For exam-
ple, the label “tiger” could apply to only some of the image patches, because patches of
sand, sky or other surroundings could be present as well. This is a natural representa-
tion for many real-world problems, therefore MIL has been successfully used to address
molecule [49] or drug [66] activity prediction, image classification [4, 36], document cat-
egorization [200], computer aided diagnosis [69] and many other problems.

We can group methods that learn in this weakly supervised setting in two categories.
The first category, which we call instance-based methods, relies on assumptions [65]
about the labels to recover the instance labels, and classifies a bag by first classifying
that bag’s instances, and then fusing these outputs into a bag label. For example, the
standard assumption is that a bag is positive if and only if at least one of its instances is
positive or inside a concept [49]. The second category, which we call bag-based meth-
ods, often use the collective assumption: they assume all instances contribute to the bag
label, and that bags with the same label are somehow similar to each other. Therefore,
bags can be classified directly using distances [186] or kernels [71], or by converting bags
to a single-instance representation and using supervised learners [36, 67, 171]. The bag-
based methods have frequently demonstrated the best performances on a wide range
of datasets.

One of the ways to represent structured objects, such as bags, in a feature space, is to
describe them relative a set of reference objects or prototypes. This approach is called
the dissimilarity representation [133] and is in contrast to traditional pattern recognition
because the dimensions of this space are defined in a relative way: the dissimilarity to
the j-th prototype can therefore be seen as the j-th feature in the transformed space. A
successful approach we studied, uses training bags as prototypes [39, 171], while an alter-
native approach called MILES [36] uses all the training instances as prototypes. Both al-
ternatives have demonstrated the best performances on a wide range of MIL problems,
and, as we show in this paper, are in fact strongly related. However, both approaches
are extremes with respect to the dimensionality and the information content of the re-
sulting dissimilarity space. The bag representation reduces the dimensionality from the
number of instances to the number of bags, but risks losing information contained in
the individual instances. The instance representation preserves more information, but
increases the dimensionality dramatically, possibly including many redundant features.
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We propose a third alternative, which combines the advantages of using bags and in-
stances as prototypes. We train classifiers on different subspaces of the instance dissim-
ilarity space, where each subspace is formed by the instances of a particular bag, and
combining the decisions of these classifiers in the test phase. This way, the informa-
tion provided by information provided by different dissimilarities is preserved, but the
dimensionality of each subspace is lower. Therefore the ensemble has the potential to
be more robust than a single classifier, but still has the ability to provide interpretation
for which instances are important in classification. Note that the bag, instance and sub-
space representations are analogous to different ways – averaging, concatenating and
ensembles – of combining information from different sources [59, 94, 130]. The informa-
tiveness of these sources is central to this paper, and we focus on investigating which
prototypes – bags, instances, or subspaces – are more informative in MIL problems.

We first introduced dissimilarity-based subspace ensembles in [41]. We now present an
extended analysis of our approach, as well as significantly improved results on many
MIL datasets. With respect to [41], this paper has several differences. In Section 4.2,
we explain the preliminary tools used in our method, and relate our method to other
dissimilarity-based approaches in MIL. In Section 4.3, we more formally define the pro-
posed approach and explain the parameter choices that need to be made, that were
treated as defaults in [41]. In Section 4.4, we provide understanding of the relation-
ship between these parameters and the ensemble performance, which also explains our
earlier results. We then demonstrate the effectiveness of the proposed approach with
competitive results on several benchmark datasets. In addition to these results, we pro-
vide insight into the structure of some popular MIL problems, and why the dissimilarity
space is a successful approach for such problems in general.

4.2 Dissimilarity-based Multiple Instance Learning

4.2.1 Data Representation

In multiple instance learning, an object is represented by a bag Bi = {xik|k = 1, ..., ni} ⊂
Rd of ni feature vectors or instances. The training set T = {(Bi, yi)|i = 1, ...N} consists
of positive (yi = +1) and negative (yi = −1) bags, although multi-class extensions are
also possible [202]. The standard assumption for MIL is that there are instance labels yik
which relate to the bag labels as follows: a bag is positive if and only if it contains at least
one positive, or concept instance: yi = maxk yik. In this case, it might be worthwhile to
search for only these informative instances. Alternative formulations, where a fraction
or even all instances are considered informative, have also been proposed [65].

We can represent an object, and therefore also a MIL bag Bi, by its dissimilarities to pro-

Datasets available online at http://www.miproblems.org
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totype objects in a representation set R [133]. Often R is taken to be a subset of size M
of the training set T of size N (M ≤ N). If we apply this to MIL, each bag is represented
as d(Bi, T ) = [d(Bi, B1), ...d(Bi, BM)]: a vector of M dissimilarities. Therefore, each bag
is represented by a single feature vector d and the MIL problem can be viewed as a
standard supervised learning problem.

The bag dissimilarity d(Bi, Bj) is defined as a function of the pairwise instance dissimi-
larities [d(xik, xjl)]ni×nj . There are many alternative definitions (see [40, 171]) but in this
work we focus on the average minimum instance distance, which tends to perform well
in practice. Suppose that we are only given one prototype Bj. With the proposed bag
dissimilarity, the bag representation of Bi using prototype Bj is:

dbag(Bi, Bj) =
1
ni

ni

∑
k=1

min
l

d(xik, xjl) (4.1)

Note that the dissimilarity between bag Bi and Bj is now reduced to a scalar, and
d(Bi, T ) becomes an M-dimensional vector.

A related method, MILES [36], considers a different definition of prototypes, by using
the training instances rather than the training bags. The motivation is that, when we
assume just a few concept instances per bag, it is better to consider just these informa-
tive instances rather than the bag as a whole. MILES is originally a similarity-based
approach, where the similarity is defined as s(Bi, x) = maxk exp (− d(xik,x)

σ2 ) and σ is the
parameter of the radial basis function kernel. However, by leaving out kernel and the
need to choose σ, we get a dissimilarity-based counterpart. The instance representation
of Bi using the instances of Bj is then defined as:

dinst(Bi, Bj) = [min
l

d(xi1, xjl), min
l

d(xi2, xjl), · · · ,

min
l

d(xini , xjl)] (4.2)

Now the dissimilarity between Bi and Bj is summarized in a ni-dimensional vector,
resulting in a representation d(Bi, T ) that has a dimensionality of ∑M

k=1 nk.

From this point onwards, we will discuss the dissimilarity matrices Dbag and Dinst,
which look as follows:

Dbag =
[
dbag(Bi, Bj)

]
N×M (4.3)
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Dinst =
[
dinst(Bi, Bj)

]
N×∑M

k=1 nk
(4.4)

where i = 1, . . . , N and j = 1, . . . , M.

Dbag and Dinst are two extremes with respect to the amount of information that is pre-
served. In cases where only a few instances per bag are informative, Dbag could suffer
from averaging out these dissimilarities. Dinst would preserve these dissimilarities, but
it could be difficult for the classifier to select only these relevant dissimilarities due
to the high dimensionality of the representation. As an example, consider an image
categorization problem, where an image is a bag, and an image region or patch is an
instance. If many images in the training set contain regions that include the sky, the
dissimilarities to the sky instances in Dinst will provide heavily correlated information
about the bags. Therefore, Dinst could contain many redundant (but not necessarily
uninformative) dissimilarities.

On the other hand, when most instances in a bag are informative, we would expect Dbag

to perform well. Dinst would still have access to all the informative dissimilarities, how-
ever, selecting a few relevant dissimilarities, as in [67], where a single instance per bag
is selected, might not be the best strategy if most instances are, in fact, relevant for the
classification problem. The problem of being unable to specify how many dissimilarities
are informative, still holds in this case.

4.2.2 Classifier and Informative Prototypes

In this work we consider linear classifiers (w, w0) such that f (d) = wᵀd + w0 and w is
an M-dimensional vector. The entries of w correspond to the weights assigned to each
of the prototypes, either bags or instances. These weights are found by minimizing an
objective function of the form:

min
w

L(w, T )) + λΩ(w) (4.5)

where L is the loss function evaluated on the training set, such as the logistic (for a
logistic classifier) or hinge loss (for a support vector classifier or SVM). Ω is a regular-
ization function of the weight vector and is often the l2 or the l1 norm. The l2 norm
typically results in most coefficients of w being non-zero, while the l1 norm promotes
sparsity, i.e., only some of the coefficients have non-zero values. λ is a parameter that
trades off the loss with the constraints on the weight vector, and therefore influences the
final values in w.

A larger coefficient in w means the dissimilarity was found to be discriminative by the
classifier, we therefore can examine the coefficients to discover which prototypes are
more informative. However, the low sample size and high dimensionality/redundancy
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of feature space can make it difficult to find the w that leads to the best performance on
a held-out test set.

There are several alternatives for dealing with the redundancy of the prototypes, which
are similar to the filter, wrapper and embedded methods in feature selection, which we
describe in this section.

In the filter approach, (subsets of) prototypes are evaluated prior to training a classi-
fier, therefore reducing the dimensionality of the training set. Such methods include
clustering the prototypes and then selecting the cluster centers as prototypes. In [62]
and [1], clustering of instances is performed. In [62], the authors first rely on the stan-
dard assumption to cluster and prune the instances of negative bags, creating negative
prototypes. The positive prototypes are created by, for each bag, selecting the instance
that is furthest from the negative prototypes. In [1], the prototypes are initialized as the
k-means cluster centers of the instances. The prototypes are then updated by letting the
prototypes take any value in the instance space Rd. However, note that in both cases,
clustering instances has the risk of excluding informative instances in sparsely popu-
lated parts of the feature space, because these would not have any neighbors to form
a cluster with. On the other hand, [194] uses clustering of bags, by performing k-centers
with a bag dissimilarity measure, such as (4.1), and selecting cluster centers as proto-
types. Note that the dissimilarity in (4.1) is non-metric in which case clustering may
lead to unpredictable results [84]. A more general disadvantage of filter approaches is
that the informativeness of the filtered prototypes is not available.

In a wrapper approach, the classifier is used to determine which prototypes are more
informative. The less informative prototypes are then removed, and the classifier is
trained again on a smaller subset of prototypes. This procedure is repeated several
times. This approach is used in MILIS [67] and is in fact an application of the popu-
lar SVM with recursive feature elimination (SVM-RFE) [74] on the Dinst representation.
Again, a disadvantage is that in the final model, the informativeness of the removed
prototypes is not available.

An example of an embedded approach is a sparse classifier that performs feature selec-
tion and classification simultaneously, such as the l1-norm SVM [203] or Liknon classi-
fier [12], used in MILES. This way, each prototype is associated with a weight, represent-
ing its informativeness. However, such sparse classifiers require cross-validation to set
λ, which is ill advised in case the training set is small already. A common consequence
of such problems is that a poor set of features might be chosen for the testing phase.

We would like to stress that it is not our purpose to focus on selection of prototypes,
whether instances or bags. Next to the methods described above, there are many works
on prototype selection in dissimilarity spaces [30, 134], that could be applied on either
Dbag or Dinst representations. However, from the perspective of MIL, we are instead
interested in the more general question of which prototypes – bags, instances or sub-
spaces – are more informative, and which particular (for example positive or negative)
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prototypes this might be.

4.3 Proposed Approach

4.3.1 Random Subspace Ensembles

We can see the bag and instance representations as two alternative ways of combining
dissimilarities of different instances: by averaging or by concatenating. If we view these
approaches as ways of combining different sources of information, a third alternative,
ensembles, springs to mind.

The random subspace method (RSM) [79] is one way to create an ensemble that is par-
ticularly geared at small sample size, high-dimensional data. Each classifier is built
on a lower-dimensional subspace of the original, high-dimensional feature space. This
strategy addresses both aspects of a successful ensemble: accurate and diverse classi-
fiers [22, 102]. Subsampling the feature space reduces the dimensionality for the in-
dividual base classifiers, therefore allowing for more accurate classifiers. Resampling
of features introduces diversity [102], i.e. decorrelates the classifier decisions, which
improves the performance of the overall ensemble.

More formally, the RSM ensemble consists of the following components:

• Number of subspaces L to be sampled

• Numbers of features {s1 . . . sL} (or just s if si = sj∀i, j) to be selected for each
subspace.

• Base classifier f , which is applied to each subspace. We denote the trained classi-
fiers by { f1, . . . , fL}.

• Combining function g, which for a test feature vector d, combines the outputs into
a final classifier F(d) = g( f1(d), . . . fL(d)).

RSM is interesting in high-dimensional problems with high feature redundancy [160].
For example, the expression levels of co-regulated (both influenced by another process)
genes will provide correlated information about whether a subject has diabetes or not.
Other genes may be irrelevant to diabetes, only adding noise. We typically do not have
prior knowledge about the number of underlying processes that are responsible to dia-
betes, i.e., the amount of redundancy is unknown. This increases the number of possible
relevant feature sets, and makes selecting only the relevant features more difficult. RSM
decreases this risk, simplifying the feature selection problem for each individual classi-
fier, and by still allowing access to all the (possibly relevant) features, thus letting the
classifiers correct each other. Other examples where RSM is a successful approach in-
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clude functional magnetic resonance imaging (fMRI) data [101], microarray data [11]
and hyperspectral data [75].

The different prototypes in MIL may also provide redundant information, but we do not
know in advance how many such redundant prototypes there might be. Furthermore,
many MIL problems are small sample size problems in the number of bags, so addi-
tional classifier evaluations during training are undesirable. Therefore we believe that
RSM can be an attractive method to address dissimilarity-based MIL, and to combine
the strengths of the dissimilarity space with those of ensemble classifiers.

4.3.2 Choice of Subspaces

There are two alternatives for how the subspace classifiers can be defined:

• By choosing each prototype bag as a subspace, i.e. the subspace is formed by
the dissimilarities to the instances of a prototype bag. This representation imme-
diately follows from our intuition about bags and instances being analogous to
averaging and concatenating different information sources. We denote this repre-
sentation by DBS, where BS stands for Bag Subspaces. The RSM parameters are
straightforward here: L = M and the subspace dimensionalities si correspond to
the bag sizes ni.

• By choosing each subspace randomly. We denote this representation by DRS,
where RS stands for Random Subspaces. DRS offers more flexibility with regard to
the RSM parameters. In [41], we used default parameters L = M and s = 1

N ∑i ni.
However, alternative settings are possible as well, and we will demonstrate fur-
ther on in this paper that other choices (which can be set by rules of thumb rather
than cross-validation), can in fact improve the results significantly.

Equations 4.6 and 4.7 show the choices in matrix format:

DBS = {
[
dinst(B∗, B1)

]
N×n1

, . . . ,
[
dbag(B∗, BM)

]
N×nM

} (4.6)

DRS = {
[
dinst(B∗, R1)

]
N×s , . . . ,

[
dbag(B∗, RM)

]
N×s} (4.7)

where Ri are prototype bags, generated randomly from all available instances in the
training set.

Note that these alternatives are both slightly different from RSM because the dissim-
ilarity representation depends on the training set. In traditional RSM, all features are
available to the classifier at any split of the training and test data, whereas with DBS

and DRS, the features are defined through dissimilarities to the training set, which ob-
viously changes with every training-test split. However, we still expect there to be a
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Representation Dimensionality Classifiers
Dbag M 1
Dinst ∑i ni 1
DBS {n1, . . . nM} M
DRS any any

Table 4.1: Different ways for constructing dissimilarity representations. Dbag consists of dissim-
ilarities to bags in the training set (one for each bag), whereas Dinst consists of dissim-
ilarities to instances in the training set. In DBS, a separate classifier is built on each
prototype’s instance dissimilarities. In DRS, classifiers are built on random selections
of all available instances.

relationship between how RSM parameters, and the choices in DBS and DRS, affect en-
semble performance.

We provide a summary of the ensembles, as well as the single classifier dissimilarity
representations in Table 4.1.

4.3.3 Illustrative Example

The basic intuition about the benefit of the proposed ensembles is illustrated by the ar-
tificial problem in the top of Fig. 4.1. This is the classical MIL problem from [114]. This
dataset contains bags with 50 two-dimensional instances. The instances from the bags
are uniformly distributed in a square, and the positive bags contain at least one feature
vector from a concept region that is located in the middle of the square. Only the dis-
similarities of the concept instances are informative. Averaging over the dissimilarities
as in Dbag dilutes these informative features, and indeed, the learning curves in the bot-
tom of Fig. 4.1 show that Dbag performs poorly here. Dinst has trouble selecting only
the informative dissimilarities because many dissimilarities are uninformative, and be-
cause dissimilarities of the informative instances are correlated. The ensemble methods
are more robust against these problems and achieve the best performances (Fig. 4.1,
bottom).

4.4 Experiments

4.4.1 Data and Setup

We provide a list of datasets we used in Table 4.2. The Musk problems [49] are tradi-
tional benchmark MIL problems about molecule activity, Mutagenesis [166] is a drug
activity prediction problem. Fox, Tiger and Elephant [4] are benchmark image datasets.
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Figure 4.1: Top: Artificial 2D MIL problem with informative instances in the center. Bottom:
Learning curves for dissimilarity-based classifiers on this dataset. The amount of
uninformative, and redundant instances deteriorates performances of Dbag and Dinst,
but the ensemble methods DBS and DRS are more robust against these problems.

African and Beach are also image datasets originating from a multi-class scene recog-
nition problem [36], but here formulated as one-against-all problems. The dataset
alt.atheism originates from the Newsgroups data [200], and are concerned with text
categorization. Brown Creeper and Winter Wren are both bird song [19] datasets, where
the goal is to classify whether a particular bird species can be heard in an audio record-
ing.

We preprocess the data by scaling each feature to zero mean and unit variance. The
scaled data is used to compute the dissimilarity representations. The instance dissimi-
larity function is defined as the squared Euclidean distance: d(xi, xj) = (xi − xj)

ᵀ(xi −
xj).

For the base classifier f , we consider linear classifiers as described in Section 4.2. We
used several linear classifiers: logistic, 1-norm SVM and a linear SVM, where the pri-
mal formulation is optimized [34]. The trade-off parameter λ is set to 1 by default. The
common characteristic of these classifiers is that we can inspect the weight vector w to
determine which dissimilarities are deemed to be more important by the classifier. Al-
though the individual performances of the classifiers differ, we observe similar trends
(such as relative performances of two different ensembles) for these choices. We there-
fore only show results for the linear SVM.

For the combining function g, we average the posterior probabilities, which are obtained
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after normalizing the outputs of each classifier to the [0, 1] range. We also considered
majority voting, and using the product and the maximum of the posterior probabili-
ties as combining schemes. With the product and maximum rules, the performances
were lower, especially deteriorating towards larger ensemble sizes (thus being more
sensitive to outlier, inaccurate base classifiers). With majority voting, the results were
slightly lower than with averaging, but the standard deviations across different folds
were larger. Therefore we chose averaging as a more robust combining strategy. Fur-
thermore, averaging posterior probabilities performs well in practice in other problems
as well [38, 172]. It could be argued that the fixed g can be replaced by a more flex-
ible function, such as a linear classifier, trained on the outputs of the base classifiers.
However, as discussed in [55], this would ideally require splitting the training data into
two parts: one for training the base classifiers, and one for training the combiner. This
is undesirable because we are already faced with a low object-to-feature (i.e., bag-to-
instance) ratio. Indeed, our earlier experiments [41] with a nearest mean classifier as a
combiner did not lead to improved results.

The metric used for comparisons is area under the receiver-operating characteristic
(AUC) [16]. This measure has been shown to be more discriminative than accuracy
in classifier comparisons [82], and more suitable for MIL problems [170].

Dataset +bags -bags total average
Musk 1 47 45 476 5
Musk 2 39 63 6598 65
Fox 100 100 1302 7
Tiger 100 100 1220 6
Elephant 100 100 1391 7
Mutagenesis 1 125 63 10486 56
African 100 1900 7947 8
Beach 100 1900 7947 8
Alt.atheism 50 50 5443 54
Brown Creeper 197 351 10232 19
Winter Wren 109 439 10232 19

Table 4.2: MIL datasets, number of bags, instances, the average number of instances per bag.
The datasets are available online at http://www.miproblems.org

4.4.2 Subspace Experiments

We start by comparing the two alternatives of creating the subspaces, DBS and DRS. For
simplicity, we base the parameters of DRS on those for DBS, as in [41]: M subspaces,
each subspace with dimensionality 1

N ∑i ni. We use a linear SVM as the classifier (C
parameter is set to 1 by default) and perform 10-fold cross-validation. Fig. 4.2 shows the
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distributions of the individual classifier performances and the ensemble performance
for both representations.

The results show that overall,

1. the random subspaces are more informative than bag subspaces, and

2. the random subspace ensemble is better at improving upon the base classifiers.

Why do the random subspaces perform better than the bag subspaces? One difference
might be the subspace size: the bag subspaces have variable dimensionalities, whereas
the random subspaces are equally large. For DBS, we plot the bag size against the perfor-
mance of that subspace. A few of the results are shown in Fig. 4.3. In all datasets except
alt.atheism, we find medium to high correlations between these quantities. Therefore,
as prototypes, small bags are not very informative. This might seem counterintuitive
in a MIL problem, because small bags are less ambiguous with respect to the instance
labels under the standard assumption. The fact that large, ambiguous bags are better at
explaining the class differences suggests that most instances are informative as proto-
types.

The informativeness of most instances as prototypes is supported by the relationship
between the bag label and the subspace performance in the plots. Although for a fixed
bag size, positive bag subspaces perform better on average, negative bags can also be
very good prototypes. This is also true for random bags, for which we do not have la-
bels, but for which we can examine the percentage of instances, which were sampled
from positive bags. We found no correlations between the positiveness of the random
subspaces and their performance. This provides opportunities for using unlabeled data
in a semi-supervised way: unlabeled bags can be used to extend the dissimilarity rep-
resentation to improve performance, similar to the approach in [51].

The results with respect to the bag size suggest that it is advantageous to combine clas-
sifiers built on higher-dimensional subspaces. We therefore investigate the effects of
subspace dimensionality in DRS, where this parameter can be varied. We vary the sub-
space size for each classifier from 5 to 100 features, which for most datasets, would be
larger than the default dimensionalities used previously, as shown in Table 4.2. We gen-
erate 100 subspaces of each dimensionality, and train a linear SVM on each subspace.
The classifiers are then evaluated individually. Some examples of performance distri-
butions at different subspace dimensionalities are shown in Fig. 4.4. For most datasets
(except Newsgroups, as will be explained later), larger subspaces lead to more accu-
rate classifiers. However, increasing the dimensionality too much, eventually using
all the features, decreases the performance. This can be more clearly seen in the re-
sults of Musk2, where the total number of instances (and thus dimensionality) larger
than in Musk1. The results of other datasets show similar trends depending on the
bag/instance ratio, for example, the results of Mutagenesis are quite similar to Musk2.

Why is DRS better than DBS at improving upon the individual classifiers? A possible
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Figure 4.2: Distributions of AUC performances of individual bag subspace classifiers
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Figure 4.3: Relationship of bag size, bag label, and AUC performance of the dissimilarity sub-
space formed by that bag
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Figure 4.4: Distributions of AUC performances of individual subspace classifiers, for different
dimensionalities of the subspaces. The degradation of performance using all features
is larger in Musk2 because instance / bag (and thus feature / object) ratio is larger
than in Musk1. Similar trends can be observed in other datasets.
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Figure 4.5: Classifier projection spaces. The plots show the relative disagreement of trained sub-
space classifiers on a test set. The higher the disagreement of two classifiers on the
labels of the test set, the larger their distance in the plot.

explanation is that the classifiers created by DRS are more diverse than the classifiers of
DBS. For each set of classifiers, we examine their L × L disagreement matrix C, where
each entry Ci,j corresponds to the number of test bags for which the i-th and j-th clas-
sifier provide different labels. Ci,j can be seen as the distance of the two classifiers. We
perform multi-dimensional scaling with each of these distance matrices and map the
classifiers into a 2-dimensional classifier projection space [135].

The classifier projection spaces for two datasets are shown in Fig. 4.5. These results are
surprising, because the classifiers in DBS actually cover a larger part of the space, and
are therefore more diverse. This diversity alone, however, is not able to improve the
overall performance of the ensemble. A possible explanation is that here we are dealing
with bad diversity [21]. For example, a classifier that is 100% wrong is very diverse with
respect to a classifier that is 100% correct, but not beneficial when added to an ensemble.
We showed in Fig. 4.3 that in DBS, small bags often result in inaccurate classifiers, which
are indeed responsible for higher diversity, but worsen the ensemble performance.

In the experiments, the Newsgroups data shows very different behavior from the other
datasets. Most of the subspaces (both bag and random) have nearly random perfor-
mance, and the performances are not correlated with the bag label or subspace dimen-
sionality. A possible explanation is that in this dataset, many of the dissimilarities only
contain noise, and the informativeness is distributed only across a few dissimilarities.
RSM is particularly suitable for problems where the informativeness is spread out over
many (redundant) features [160], which could explain the worse than random perfor-
mance. Indeed, examining the individual informativeness (as measured by the nearest
neighbor error) of each individual dissimilarity, it turns out that more than half of the
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Figure 4.6: Multi-dimensional scaling of the instances in the alt.atheism dataset

dissimilarities in alt.atheism have worse than random performance, as opposed to only
around 10% of dissimilarities for the other datasets.

We have noticed previously [39] that positive bags in the Newsgroups data consist of
a dense cluster of instances and a few outliers, while negative bags consist only of the
dense cluster. This distribution is caused by the bag of words representation of the data
– while the outlier instances are in fact all positive for the alt.atheism topic, they do not
consist of the same words, and are far from each other in the feature space. This situ-
ation is shown in Fig.4.6. The presence or absence of such outliers is very informative
for the bag class. The definition of dissimilarity in (4.2), however, does not succeed in
extracting this information: for any training bag, the instance closest to the prototype
outlier instance, is in the dense cluster. In this case the minimum function in the dis-
similarity is not suitable for the problem at hand, and much better performances can be
obtained by, for instance, using bags and prototypes, and considering the asymmetry of
Dbag [39].

4.4.3 Ensemble Experiments

With several interesting results for the individual performances of the subspace clas-
sifiers, we now investigate how the ensemble behaves when both the parameters of
interest are varied. The ensembles are built in such a way that classifiers are only added
(not replaced) as the ensemble size increases, i.e. an ensemble with 100 classifiers has
the same classifiers as the ensemble with 50 classifiers, and 50 additional ones.

The results are shown in Fig. 4.7. Here different plots show the results for different
subspace dimensionalities (5, 10, 25, 50 or 100 features), and the x-axis indicates the
number of classifiers used in the ensemble. The black line shows the baseline perfor-
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mance of Dinst. The performance metric is again the area under the ROC curve (AUC),
and the results are averaged over 10-fold cross-validation.

Ensembles created with higher-dimensional subspaces tend to perform better. An un-
surprising result is that the fixed dimensionality values in this experiment are not suit-
able for all datasets. For example, in Musk none of the ensembles outperform the single
classifier. Clearly, the subspace dimensionality should depend on the dimensionality
(and possibly redundancy of the dissimilarities) of the original problem.

Another interesting observation in Fig. 4.7 is that it is often sufficient to build the en-
semble from a few base classifiers, and adding further classifiers probably would not
improve performance significantly. This is in line with our earlier results for ensembles
of one-class classifiers [38], even though both the data and the classifiers in question are
very different. The recommendation in [101] is that when there is no prior knowledge
about how redundant the features are, L should be chosen to be relatively small, while
s should be relatively large.

Based on these observations, we settle on the following choices for DRS: L = 100 and
s = 1

5 ∑N
i ni. We emphasize that these choices are good rules of thumb and do not

have to be set to these exact values, which is supported by our results from the previous
section: the performance is quite robust to changes in L and s provided s is large enough.

The performances of the proposed ensemble against those of the single classifier repre-
sentations Dbag and Dinst are shown in Table 4.3. Contrary to our earlier results in [41],
DRS is now a clear competitor for the single classifiers, and has especially surprising
performances on the Musk 1, Fox and Mutagenesis datasets. The advantages of DRS

over the high-dimensional Dinst are more visible, however, there are no significant dif-
ferences with Dbag. This suggests that many of the dissimilarities are, in fact, informa-
tive, and averaging the dissimilarities over each bag preserves sufficient information.
Despite the similar performances of Dbag and DRS, DRS has an additional advantage:
it is possible to recover the importance of different instances, as we will show in Sec-
tion 4.4.5.

4.4.4 Comparison with Other MIL Classifiers

We compare our method to other popular MIL classifiers, which cover a range of
instance-based and bag-based methods, and are often being compared to in recent pa-
pers.

EM-DD [195], mi-SVM [5], MILBoost [183] and MIForest [107] are instance-based meth-
ods. EM-DD is an expectation-maximization algorithm which uses diverse density
(DD), which, for a given point t in the feature space space, measures the ratio between
the number of positive bags which have instances near t, and the distance of the neg-
ative instances to t. The expectation step selects the most positive instance from each
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Figure 4.7: AUC performances of the instance representation (black line) and the ensemble clas-
sifiers. Different lines per plot indicate different dimensionalities of subspace classi-
fiers.
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Representation
Dataset Dbag Dinst DRS

Musk1 93.7 (3.5) 93.9 (3.6) 95.4 (2.4)
Musk2 95.7 (1.4) 89.7 (4.7) 93.2 (3.2)
Fox 67.9 (2.5) 66.0 (3.9) 70.2 (1.8)
Tiger 86.8 (5.2) 83.7 (3.9) 87.8 (4.2)
Elephant 90.9 (2.5) 87.6 (3.3) 92.3 (2.7)
Mutagenesis 84.3 (2.9) 83.2 (3.2) 87.4 (3.5)
Brown Creeper 94.7 (1.0) 93.9 (0.8) 94.2 (0.8)
Winter Wren 99.5 (0.2) 98.4 (0.5) 99.0 (0.3)
African 92.5 (1.1) 91.6 (1.4) 92.8 (1.2)
Beach 88.3 (1.2) 85.6 (1.2) 87.9 (1.2)
alt.atheism 62.4 (8.3) 46.4 (5.9) 46.4 (5.2)

Table 4.3: AUC (×100) mean and standard error of 10-fold cross-validation of the single
dissimilarity-based representations, and the proposed ensemble representation. Bold
= best, italics = second best result per dataset

bag according to t, the maximization step then finds a new concept t′ by maximizing
DD on the selected, most positive instances. mi-SVM is an extension of support vector
machines which attempts to find hidden labels of the instances under constraints posed
by the bag labels. Likewise, MILBoost is an extension of boosting and MIForest is an ex-
tension of random forests, where the standard assumption is used to reweigh or relabel
the instances in each iteration of the algorithm.

MILES [36] and the Minimax kernel are bag-based methods which convert bags to a
single-instance representation. MILES is similar to the 1-norm SVM applied to the Dinst,
except that in MILES, a Gaussian kernel is used for defining similarities, and an appro-
priate σ parameter is necessary. The Minimax kernel [71] is obtained by representing
each bag by by the minimum and maximum feature values of its instances, this repre-
sentation can then be used with a supervised classifier. All classifiers are implemented
in PRTools [56] and the MIL toolbox [169] and default parameters are used unless stated
otherwise.

Next to the standard MIL classifiers, we use DRS with the guidelines from the previous
section: the dimensionality of each subspace is 1/5th of the total dimensionality, and
100 classifiers are used in the ensemble. The base classifier is the linear SVM. For both
MI-SVM and MILES, the radial basis kernel with width 10 was used.

The results are shown in Tables 4.4 and 4.5 . Some results could not be reported; in par-
ticular, for EM-DD when one cross-validation fold lasts longer than five days, and MIL-
Boost when features with the same value for all instances are present, as in alt.atheism.
Needless to say, there is no method that performs the best at all times. Some of the de-
fault parameter choices may be unsuitable for a particular dataset, or the assumptions
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Table 4.4: AUC ×100, mean and standard error of 10-fold cross-validation of different MIL clas-
sifiers. Bold = best, italics = second best per dataset.

Classifier
Dataset EM-DD MI-SVM MILBoost MILES minimax DRS

+SVM +SVM
Musk1 85.0 (5.1) 91.5 (3.7) 74.8 (6.7) 93.2 (2.9) 87.8 (5.0) 95.4 (2.4)
Musk2 88.1 (2.7) 93.9 (2.8) 76.4 (3.5) 97.1 (1.6) 91.3 (1.8) 93.2 (3.2)
Fox 67.6 (3.2) 68.7 (2.6) 61.3 (3.2) 66.8 (3.5) 55.8 (2.9) 70.2 (1.8)
Tiger - 87.2 (3.5) 87.0 (3.0) 84.6 (4.5) 76.0 (4.1) 87.8 (4.2)
Elephant 88.5 (2.1) 90.7 (2.3) 88.8 (2.2) 88.4 (2.5) 88.4 (2.1) 92.3 (2.7)
Mutagenesis 67.4 (5.3) 60.3 (4.5) 88.1 (3.1) 72.1 (4.3) 63.7 (4.4) 87.4 (3.5)
Brown Creeper 94.5 (0.9) 92.8 (1.2) 94.9 (0.9) 96.1 (0.6) 94.2 (0.9) 94.2 (0.8)
Winter Wren 98.3 (0.5) 99.2 (0.4) 93.8 (5.6) 99.1 (0.5) 98.2 (0.3) 99.0 (0.3)
African 91.2 (1.8) 88.6 (1.7) 89.4 (1.7) 48.7 (2.3) 87.6 (1.4) 92.8 (1.2)
Beach 84.6 (2.0) 78.2 (2.5) 85.2 (2.9) 72.8 (5.0) 83.0 (2.3) 87.9 (1.2)
Alt.atheism 52.0 (8.0) 38.8 (5.2) - 50.0 (5.5) 80.0 (3.6) 46.4 (5.2)

that the method is based on do not hold. However, overall the method we present is
always able to provide competitive performance.

4.4.5 Instance Weights

An advantage of linear classifiers is the interpretability of the result – from the weights
w of the dissimilarities, we can derive which dissimilarities, and therefore which in-
stances are more important (i.e., have a larger weight) to the classifier. This property
can also be used in ensembles of linear classifiers, with a procedure described in [104].
For each dissimilarity, we calculate the average absolute value of its weight over all L
subspaces in which the dissimilarity was selected. We then sort the dissimilarities by
this average weight, and view the position of each dissimilarity in this list as its rank.
The distributions of the dissimilarities with ranks 1 to 100 are shown in Fig.4.8 shows
the distributions of top 100 dissimilarities. These most informative dissimilarities orig-
inate from both positive and negative bags, supporting the idea that not only concept,
positive instances are important for these MIL problems.

4.5 Discussion

We proposed a dissimilarity-based ensemble as a novel classification method for MIL
problems. When bags are represented by their dissimilarities to instances from the train-
ing set, such instances can provide redundant information about the problem. A ran-
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Table 4.5: Accuracy ×100, mean and standard error of 10-fold cross-validation of different MIL
classifiers. Bold = best, italics = second best per dataset.

Classifier
Dataset EM-DD MI-SVM MILBoost MILES minimax DRS

+SVM +SVM
Musk1 85.1 (4.1) 83.0 (4.6) 69.8 (5.6) 82.8 (4.7) 86.3 (3.8) 89.3 (3.4)
Musk2 81.5 (2.9) 76.3 (5.4) 66.0 (3.7) 86.3 (3.4) 82.3 (2.5) 85.5 (4.7)
Fox 62.0 (2.7) 63.5 (2.2) 63.0 (2.6) 62.5 (4.2) 58.0 (2.5) 64.5 (2.2)
Tiger - 73.0 (2.9) 78.5 (2.8) 81.0 (3.4) 72.5 (3.9) 81.0 (4.6)
Elephant 82.5 (1.5) 76.0 (2.4) 79.5 (2.8) 79.0 (2.3) 82.5 (2.5) 84.5 (2.8)
Mutagenesis 61.1 (5.1) 66.5 (0.4) 75.7 (2.7) 71.1 (3.4) 68.9 (3.0) 83.2 (3.4)
Brown Cr 85.6 (1.5) 50.5 (1.5) 88.7 (1.2) 89.8 (1.4) 87.3 (1.6) 88.3 (1.0)
Winter Wr 94.5 (1.2) 81.0 (1.5) 89.0 (7.8) 96.7 (0.8) 93.8 (0.8) 96.0 (0.8)
African 82.7 (0.9) 94.7 (0.1) 95.2 (0.2) 95.0 (0.0) 95.0 (0.0) 96.0 (0.5)
Beach 73.4 (1.1) 95.0 (0.1) 95.2 (0.2) 95.0 (0.0) 94.9 (0.1) 94.8 (0.4)
Alt.atheism 49.0 (5.7) 48.0 (2.0) - 50.0 (4.5) 76.0 (4.0) 44.0 (4.5)
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Figure 4.8: Top 100 ranked dissimilarities, where the rank is determined by average weight of
dissimilarities across L = 100 subspace classifiers



82 DISSIMILARITY-BASED ENSEMBLES FOR MULTIPLE INSTANCE LEARNING

dom subspace inspired ensemble, where classifiers are trained on different subspaces
of the dissimilarity space, is a way of dealing with this redundancy. We show that our
method achieves competitive performances with other MIL algorithms, and has intu-
itive parameters that do not need to be set by cross-validation to achieve these good
results.

We investigated two choices for generating the subspaces: by using each training bag
as a subspace, or by using a random selection of instances (with replacement) as a sub-
space. The random method achieved better results, especially when the dimensionality
of the subspaces was increased. In fact, we found that the subspace dimensionality is
the most important factor affecting the performance of the ensemble. On the other hand,
the number of subspaces does not play a very important role and just a few classifiers
are sufficient for good performance. These conclusions are in line with conclusions from
other applications of the random subspace method, where the amount of redundancy
of the features is unknown.

In general, the informativeness of a prototype is more related to the dimensionality of
the subspace, then to the label of instances forming that subspaces. Negative bags, and
unlabeled random sets of instances were often good prototypes, suggesting that most
instances, and not only a few concept ones, are informative for these MIL problems.
These results are more in line with the collective assumption for MIL, where all instances
are considered to contribute to the bag label, rather than with the standard assumption,
where only a few positive instances are considered important.

Based on the encouraging results concerning the effectiveness of random subspaces as
prototypes, we also considered randomly sampling the instance space (rather than ran-
domly selecting existing instances) to generate artificial prototype bags that are not in
the training set. Although the results with artificial prototypes were slightly worse than
with real prototypes, this does seem to provide opportunities for using unlabeled, or
artificial bags in a semi-supervised way.

We would like to conclude by emphasizing that a dissimilarity-based representation
combined with a linear classifier (or an ensemble thereof) is a powerful way of classify-
ing MIL bags. A question that still remains is the use of structured norms in such linear
classifiers, which would enable selection of groups of dissimilarities, therefore revealing
more about the relationships of the instances.



5

STABILITY OF INSTANCE LABELS IN

MULTIPLE INSTANCE LEARNING

We address the problem of instance label stability in multiple instance learning (MIL)
classifiers. These classifiers are trained only on globally annotated images (bags), but
often can provide fine-grained annotations for image pixels or patches (instances). This
is interesting for computer aided diagnosis (CAD) and other medical image analysis
tasks for which only a coarse labeling is provided. Unfortunately, the instance labels
may be unstable. This means that a slight change in training data could potentially lead
to abnormalities being detected in different parts of the image, which is undesirable
from a CAD point of view. Despite MIL gaining popularity in the CAD literature, this
issue has not yet been addressed. We investigate the stability of instance labels provided
by several MIL classifiers on 5 different datasets, of which 3 are medical image datasets
(breast histopathology, diabetic retinopathy and computed tomography lung images).
We propose an unsupervised measure to evaluate instance stability, and demonstrate
that a performance-stability trade-off can be made when comparing MIL classifiers.

A shorter version of this chapter is accepted for publication as:
Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Marleen de Bruijne and Marco Loog. Label
Stability in Multiple Instance Learning. In Medical Image Computing and Computer Assisted Interventions,
2015.
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5.1 Introduction

Obtaining ground-truth annotations for voxels, which can be used to train supervised
classifiers for voxel-based image segmentation can be very costly and time-consuming.
The same holds for annotations of image patches, which can be used for localization
of patches with abnormalities. This hinders the application of supervised classifiers for
these tasks. Fortunately, global labels for whole images, such as the overall condition of
the patient or a visual rating by an expert, are available more readily. Multiple instance
learning (MIL) is an extension of supervised learning which can train classifiers – for
whole images, and/or for image parts – using only such weakly labeled data. For ex-
ample, a classifier trained on images (which in the MIL setting are referred to as bags),
where each bag is labeled as healthy or abnormal and is represented by several unla-
beled image patches (instances in MIL), would be able to indicate where abnormalities
are detected in novel images.

MIL is becoming more and more popular in CAD [13, 37, 89, 116, 118, 142, 167, 187, 192].
In many of these applications, it is desirable to obtain instance labels, and to inspect the
instances which are deemed positive. For example, in [118], x-ray images of healthy
subjects, and patients affected by tuberculosis are used to train a classifier which, for a
test image, can provide local abnormality scores, which in turn can be visualized as a
heatmap. In [193], histopathology images are used to train a classifier which, for a test
image, can provide an overall cancer diagnosis, as well as a pixel-level segmentation.

A pitfall in using MIL classifiers to obtain instance labels is that the classifiers might be
unstable in their decisions for individual instances, for example, if a different subset of
the data is used for training. This is clearly undesirable in a diagnostic setting, because,
abnormalities could be highlighted in different parts of the image. For example, in [116]
a MIL classifier is used to identify which regions (instances) of the tibial trabecular bone
(bag) are most related to cartilage loss (positive bag label). Each region is annotated with
the percentage of classifier evaluations during cross-validation, in which the region was
labeled positive. When the bone is divided into 8 regions or more, this number is at most
20%. This shows that the classifiers disagree on which instances to label as positive. We
have not been able to identify other research where this phenomenon is observed or
investigated, which emphasizes the importance of the present work.

In rare cases where instance-level annotations are available, such as in [89], instance-
level classifiers can be evaluated using AUC. The results here show that the best bag
classifier does not correspond to the best instance classifier, emphasizing that bag-level
results are not reliable if instance-level classifications are needed. Another approach
is to evaluate the instances qualitatively, by visually examining the parts of the image,
found to be abnormal in a single run of the classifier. For example, in [118] tuberculosis
abnormality scores, which can be used for visual examination, are produced by a clas-
sifier trained on a predefined training set. This raises the question whether the same
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abnormalities would be found if the classifier would be trained on slightly different
data.

We propose to evaluate the stability of instance-labeling MIL classifiers as an additional
measure for classifier comparison. We evaluate two stability measures on three CAD
datasets: computed tomography lung images with chronic obstructive pulmonary dis-
ease (COPD), histopathology images with breast cancer and diabetic retinopathy im-
ages. We demonstrate how stability varies in popular MIL classifiers, and show that
choosing the classifier with the best bag-level performance may not lead to reliable in-
stance labels.

5.2 Multiple Instance Learning

In multiple instance learning [49], a sample is a bag or set Bi = {xi
k|k = 1, ..., ni} ⊂

Rd of ni instances, each instance is thus a d-dimensional feature vector. We are given
training samples {(Bi, yi)|i = 1, ...Ntr} where yi are labels and yi ∈ {0, 1}. The standard
assumption is that there exist hidden instance labels zi

k ∈ {0, 1} which relate to the bag
labels as follows: a bag is positive if and only if it contains at least one positive instance.
More relaxed assumptions allowing positive instances in negative bags have also been
explored. For a recent overview, see [3].

Originally, the goal in MIL is to train a bag classifier fB which would be used to label
previously unseen bags. Several MIL classifiers do this by inferring an instance clas-
sifier f I , and combining the outputs of the bag’s instances. If we consider posterior
probabilities as outputs, we can define the noisy-or rule:

p(y = 1|Bi)

p(y = 0|Bi)
=

1 − ∏ni
k=1(1 − p(zi

k = 1|xi
k))

∏ni
k=1 p(zi

k = 0|xi
k)

, (5.1)

which reflects the standard assumption. The average rule, however, assumes that all
instances in a bag contribute to its label:

p(y = 1|Bi)

p(y = 0|Bi)
=

∑ni
k=1 p(zi

k = 1|xi
k)

∑ni
k=1 p(zi

k = 0|xi
k)

. (5.2)

Examples of such classifiers, called instance-level classifiers, are miSVM [5] and mil-
Boost [183], which are MIL adaptations of popular learning algorithms. For example,
miSVM extends the SVM by not only searching for the hyperplane w, but also for the
instance labels:
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min
{zk

i }
min
w,ξ

1
2
||w||2 + C ∑

i,k
ξk

i s.t. (5.3)

∀i, k : zk
i (〈w, xk

i 〉) ≥ 1 − ξk
i , ξk

i ≥ 0, zk
i ∈ {−1, 1}, max {zk

i } = yi.

Another intuitive classifier that can provide instance labels is simpleMIL, i.e. propagat-
ing the bag labels to the instances, performing supervised classification, and combining
the instance outputs per bag.

Another group of classifiers, called bag-level classifiers, typically represent each bag
as a single feature vector and use supervised classifiers for training fB [36, 42]. Such
classifiers are often robust, but the representation step can mean that instance labels
cannot be obtained. A notable exception is MILES [36], which represents each bag by
its similarities to a set of prototype instances (such as all instances from the training
set), si = [s(Bi, x1

1), . . . , s(Bi, x1
n1
), . . . s(Bi, xNtr

nNtr
)] where s(Bi, x) = exp(−mink ||x − xi

k||)
or any other kernel. A sparse classifier then selects the most discriminative features,
which correspond to discriminative instance prototypes. It is assumed that discrimi-
native prototypes from positive bags are positive, instances can therefore be classified
based on their similarity to these prototypes.

5.2.1 MIL in Computer Aided Diagnosis

In the last decade, MIL has been applied for detection and/or localization of various
diseases. We summarize several examples of such studies in Table 5.1. We can see that
supervised evaluation of instances is only performed in a few studies – those where (a
part) of the data has been annotated at the instance level. Where this is not possible,
some papers examine the instances qualitatively, for example, by displaying the most
positive (i.e. most abnormal) instances [118, 187]. One paper, [116], uses an approach
that can be seen as both qualitative and unsupervised, by aggregating the outputs of
classifiers trained in different rounds of cross-validation, and displaying how often each
test instance is labeled positive. However, this analysis is explorative rather than eval-
uative and no comparison across classifiers is performed. Lastly, a number of papers
perform no instance-level evaluation at all, although instance labels would be interest-
ing from a diagnostic point of view [37, 89]. As our proposed evaluation is unsupervised
(i.e., instance annotations are not needed), the measure can easily be adopted in all the
studies summarized here.
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Table 5.1: Applications of MIL in CAD tasks. Abbreviations: chronic obstructive pulmonary
disease (COPD), computed tomography (CT), radiograph (XR), electrocardiogram
(ECG), accuracy (Acc), area under receiver operating characteristic curve (AUC), sen-
sitivity (Se), specificity (Sp), precision-recall (PR), false positives (FP), region of clinical
interest (RCI).

Data Evaluation of bags Evaluation of in-
stances

Barett’s cancer histology [89] Acc, F1, AUC, PR Acc, F1, AUC, PR
Diabetic retinopathy [89] Acc, F1, AUC, PR –
COPD in CT [37, 164] AUC –
Tuberculosis in XR [118] Se-Sp Qualitative
Osteoarthritis in MRI [116] AUC Qualitative / un-

supervised
Diabetic retinopathy [142] Acc, AUC AUC, Qualitative
Myocardial infarction in
ECG [167]

Acc, Se, Sp –

Cancer histopathology [193] Se-Sp F1
Breast ultrasound[50] Se, Sp, Acc –
Colonography in CT [187] AUC, Se-Sp Qualitative
Pulmonary embolism in CT [60] Se-FP, AUC, AUC-RCI –
Colorectal cancer in CT [60] Se-FP, AUC, AUC-RCI –
Pulmonary angiography in
CT [110]

Se-FP –
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5.3 Instance Stability

The general concept of stability is important in machine learning, and different aspects
of it have been addressed in the literature. Leave-one-out stability [139] measures to
what extent a decision boundary changes when a training sample (xi, zi) is removed
from the training data. Feature selection stability [99] evaluates to what extent two
outputs of feature selection procedures are similar. Clustering stability [10] similarly
compares the outputs of two clustering procedures. The kappa statistic for interobserver
agreement [181] can be used to measure the similarity of two sets of labels. As we will
see shortly, most of these measures are not applicable for use in a MIL setting.

We are interested in evaluating the similarity of a labeling, or vector of outputs of two
classifiers z = f I(X) and z′ = f ′I(X) where X = [x1

1, . . . , xN
nN
]ᵀ. The stability measure

should have the following properties:

Monotonicity The value should be monotonically increasing with the number of in-
stances that the classifiers agree on.

Limits Disagreeing on all instances should result in stability of 0 and full agreement
should result in stability of 1.

Dataset size The value must not depend on the number of instances, because the goal
is to compare classifiers for a test set of fixed size.

Unsupervised The value must not depend on the hidden instance labels zi.

The monotonicity property renders the kappa statistic unsuitable, for example
κ([0, 1, 1, 1, 0]ᵀ, [1, 0, 0, 1, 0]ᵀ) > κ([0, 1, 1, 1, 1]ᵀ, [1, 0, 1, 1, 1]ᵀ) which is counterintuitive
based on the number of samples the classifiers agree on. The feature selection index
considers selecting all features unstable, and similarly violates the monotonicity, be-
cause agreeing that all samples are of the same class would translate into stability of
0. Leave-one-out stability is a supervised measure, and therefore not applicable for in-
stances in MIL data. Only the clustering stability index seems suitable, and is in fact a
different formulation of the measures we propose in what follows.

Let n00 = |{i|zi = 0 ∧ z′i = 0}|, n01 = |{i|zi = 0 ∧ z′i = 1}| , n10 = |{i|zi = 1 ∧ z′i = 0}|
and n11 = |{i|zi = 1 ∧ z′i = 1}|. An intuitive measure that satisfies the properties above
is the agreement or matching fraction:

S(z, z′) =
n00 + n11

n01 + n10 + n11 + n00
. (5.4)

A property of S is that, in a situation with many true negative instances, the agreement
is inflated due to all the negative instances that the classifiers agree on. As a result, the
classifier can still be unstable with respect to the instances it classifies as positive. Due
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to the nature of CAD tasks, we might consider it more important for the classifiers to
agree on the positive instances. In this case, in the definitions of the properties above,
“instances” would be replaced by “positive instances”. Therefore we also consider the
agreement on positive labels only, which is related to the Jaccard distance:

S+(z, z′) =
n11

n01 + n10 + n11
. (5.5)

5.3.1 Classifier Selection

If instance classification stability is a crucial issue, one can study our measure in combi-
nation with bag-level AUC (or any other accuracy measure) and select a MIL classifier
with a good trade-off of AUC and instance stability. We can see each classifier as a pos-
sible solution, parametrized by these two values. Intermediate solutions between clas-
sifiers f I and f ′I can in theory be obtained by designing a randomized classifier, which
trains classifier f I with probability p and classifier f ′I with probability 1 − p.

In the AUC-stability plane, the Pareto frontier is the set of classifiers which are Pareto
efficient, i.e. no improvement can be made in AUC without decreasing instance stability
and vice versa. Optimal classifiers can therefore be selected from this Pareto frontier.
While the classifier with the highest AUC is in this set, it is not necessarily the only
desirable solution, if the instance labels are of importance.

5.4 Experiments

5.4.1 Datasets

The datasets used in our experiments are shown in Table 5.2. In Musk, which are the
original problems for which MIL was proposed, a bag is a molecule and an instance is
a conformation of that molecule. Molecules smell musky (+) or not (–), depending on
their conformations. In the Breast dataset, a bag is a 896× 768 tissue microarray analysis
image from a patient with a malignant (+) or benign (–) tumor. An instance is a 7 × 7
patch described by histogram, LBP and SIFT features, as well as features extracted from
the cells detected in each patch. In the Messidor dataset, an instance is a 135× 135 patch
from a 700 × 700 fundus image of a diabetes (+) or healthy (–) subject. Histogram, LBP
and SIFT features are used. In the COPD dataset, a bag is a CT image of a lung of a
subject with COPD (+) or a healthy subject (–). An instance is a region of interest (ROI)
of 41 × 41 × 41 voxels, with the center inside the segmentation of the lung field. Each
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Table 5.2: List of datasets and corresponding numbers of bags, instances and features. Musk,
Breast and Messidor datasets are public and can be downloaded from a repository of
MIL datasets [42] (http://www.miproblems.org).

Name Type Bags Inst Inst/bag Feat
Musk 1 benchmark MIL data [49] 47+, 45– 476 2 to 40 166
Musk 2 benchmark MIL data [49] 39+, 63– 6598 1 to 1024 166
Breast cancer histopathology [90] 26+, 32– 2002 21 to 40 657
Messidor diabetic retinopathy [45, 89] 654+, 546– 12352 8 to 12 687

31+, 31– (tr) 6200 (tr)
COPD lung CT images [129, 164] 100+, 100– (va) 10000 (va) 50 287

100+, 100– (te) 10000 (te)
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Figure 5.1: Pairwise stability for 10 MILES classifiers for agreement (left) and positive agreement
(right) for the COPD dataset.

ROI is described by histograms of responses from a Gaussian filter bank. The feature
size is reduced by a forward selection procedure, as described in [164].

5.4.2 Illustrative Example

We show how the instance labels change in the COPD validation dataset, for a MILES
classifier, trained 10 times on random 80% of the training data. The pairwise stability
measures are shown in Fig. 5.1. Using both measures there is considerable disagreement
about the instance labels, which is suprising because of the large overlap of the training
sets. The measures are quite correlated (ρ = 0.76), but S has higher values than S+

because S is inflated by agreement on negative instances. The values of S+ show that
some of the classifiers are almost in complete disagreement about which instances to
label as positive.
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Figure 5.2: Distribution of agreement on the “positiveness” of 50 instances from 2 positive bags
(COPD patients) for 10 MILES classifiers. The x-axis shows how often an instance is
classified positive, the y-axis shows for how many instances this holds.

Fig. 5.2 shows how the instance classifications change in two true positive bags, i.e.,
CT images from COPD patients. These bags are always classified as positive, but the
instance labels are unstable. A perfectly stable classifier would have a bimodal distribu-
tion, classifying instances as positive either 0 or 10 times. The situation is quite different
here, as this only happens for very few instances. Fig. 5.3 shows a number of patches
with stable and unstable labels from bag 157. Several patches containing emphysema
have unstable classifications, and one emphysemous patch is even consistently classi-
fied as negative. This example shows that while the bag is always classified correctly,
the instance labels may not be very reliable.

5.4.3 Classifier Evaluation

We evaluate a number of classifiers from the MIL toolbox [169], which we modified
to output instance labels. Each classifier normalizes the training set to zero mean and
unit variance, and applies the same normalization during the test phase. We use the
following classifiers:

• simpleMIL with nearest mean (NM), 1-nearest neighbor (1-NN) and SVM

• miSVM with averaging combining rule

• miNM and mi1NN, versions of miSVM based on NM and 1-NN

• MILBoost with noisy-or combining rule and 100 reweighting rounds

• MILES
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(a), 0 × (b), 1 × (c), 4 ×

(d), 4 × (e), 5 × (f), 8 ×

Figure 5.3: Visualization of the axial slice with most lung voxels below -910 hounsfield units in
selected instances, or ROIs, from a COPD patient (bag 157). ROI size 61 × 61 × 61
is used for better visualization. Intensity range [-1000 -400] is used. Patches (b), (d),
(e) and (f) contain emphysema, which can be seen by the low intensity blobs or areas
within the gray lung tissue, but only patch (f) is often classified as positive. Patches
(a) and (c) are largely unaffected, but only (a) is consistently classified as negative.
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We use a linear kernel and regularization parameter C = 1 for SVM, miSVM and MILES,
and 100 reweighting rounds for MILBoost. These defaults led to computational prob-
lems for Messidor and hence we used C = 1 and 10 rounds. For each training/test split,
we do the following 10 times: randomly sample 80% of the training bags (bag = sub-
ject), train the classifier, and evaluate on the test dataset. The train/test splits are done
as follows: randomly 5 times for Musk and Breast, randomly 2 times for Messidor, and
based on predefined sets for COPD, i.e. using the training set for training, and using
both validation and test sets for testing.

5.5 Discussion

The average bag AUCs, average pairwise instance stabilities, and the corresponding
Pareto frontiers are shown in Fig. 5.4. Note that the (1, 0.5) point can, both for S and S+,
be achieved by a classifier which labels all instances as positive. The main observation
is that the most accurate classifier is often not the most stable one – there is a trade-
off of bag AUC and instance stability. This is especially well-illustrated in the COPD
validation and test datasets, where the classifiers range from accurate but unstable, to
stable but inaccurate. In these datasets, the behavior across classifiers is similar. This
shows that if we were to use the results on the validation set for classifier selection, we
would obtain a classifier with similar performance and stability on the test set.

With regard to the classifiers, miSVM and its variants miNM and mi1NN seem to be rel-
atively good choices. Due to its high bias and low variance, miNM is usually less accu-
rate, but more stable. MILES, which is a popular classifier due to its good performance,
can indeed be quite accurate, but at the same time unstable. The difference between the
mi- classifiers and MILES is probably due to the fact that MILES trains a bag classifier
fB first, and infers f I from fB, while the mi- classifiers build f I directly. MILBoost is
both inaccurate and unstable. Its discrepancy in S and S+ for COPD illustrates that the
classifiers disagree on which instances to label as positive.

Note that the goal of these experiments is to demonstrate the trade-off between AUC
and stability, not to maximize the AUC. The performances shown may be lower than
in literature, because only 80% of the training data is used, and no parameter selection
is performed. However, we did briefly examine the effect of different parameters. The
combining rule noisy-or (5.1) for mi- classifiers has the same stability as the averaging
rule (5.2), but a lower AUC. The regularization parameter C does not have a large effect
on the AUC or stability of MILES, but does cause a trade-off for miSVM. The direction
of the trade-off varies per dataset, i.e., more regularization does not necessarily lead to
more stable classifiers. If sufficient training data is available, we recommend to follow
the regular procedure of parameter selection, but to take stability into account when
choosing a set of parameters.
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Figure 5.4: Bag AUC vs instance stability and the corresponding Pareto frontiers.
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An open issue is how to take stability into account when designing a MIL-based CAD
system. When using the training data, the classifier needs to be trained and tested sev-
eral times, which could be impractical. It is worth examining how many classifiers,
trained on which fraction of the data, are needed to get a good estimate of the sta-
bility. On the other hand, multiple trained classifiers present an opportunity because
they can be used in a bagging ensemble [17], potentially surpassing the performance
of a single classifier. Another interesting question is how stability is affected by the in-
stance sampling. For example, if the instances are patches, as is the case for the 3 CAD
datasets we used, the overlap of the patches and the patch size are both likely to affect
the classifier decisions. As such, stability can be used not only in the classifier selection
step, but also in the data preprocessing step. Finally, a remaining challenge is evaluat-
ing instance-level stability against instance-level performance, which calls for releasing
fully annotated datasets to the public.

5.6 Conclusions

We addressed the issue of stability of instance labels provided by MIL classifiers. We
examined two unsupervised measures of agreement: S based on all labels, and S+ based
on positive labels. Our observations suggest that S+ might be more interesting from a
CAD point of view, because this means that the classifiers agree on which parts of the
image to label as abnormal. Our experiments demonstrate that the classifiers which
perform well on bag-level, may not necessarily provide the most stable instance labels.
Classifiers that provided good trade-offs of bag performance and instance stability are
miSVM, and its variants based on the nearest mean and nearest neighbor classifiers. In
general, we propose to use instance-level stability as an additional classifier evaluation
measure when applying MIL classifiers in CAD. Open issues include examining the
conditions needed for estimating stability, the effect of instance sampling on stability, as
well as validating the measures on datasets, annotated at the instance level.
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CLASSIFICATION OF COPD WITH

MULTIPLE INSTANCE LEARNING

Chronic obstructive pulmonary disease (COPD) is a lung disease where early detection
benefits the survival rate. COPD can be quantified by classifying patches of computed
tomography images, and combining patch labels into an overall diagnosis for the image.
As labeled patches are often not available, image labels are propagated to the patches,
incorrectly labeling healthy patches in COPD patients as being affected by the disease.
We approach quantification of COPD from lung images as a multiple instance learning
(MIL) problem, which is more suitable for such weakly labeled data. We investigate
various MIL assumptions in the context of COPD and show that although a concept
region with COPD-related disease patterns is present, considering the whole distribu-
tion of lung tissue patches improves the performance. The best method is based on
averaging instances and obtains an AUC of 0.742, which is higher than the previously
reported best of 0.713 on the same dataset. Using the full training set further increases
performance to 0.776, which is significantly higher (DeLong test) than previous results.

This chapter is published as:
Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Jesper Holst Pedersen, Marco Loog, and Marleen
de Bruijne. Classification of COPD with multiple instance learning. In International Conference on Pattern
Recognition, pages 1508-1513, 2014.
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6.1 Introduction

Chronic obstructive pulmonary disease (COPD) is a disease of the lungs that is caused,
among others, by smoking and air pollution. COPD is characterized by chronic inflam-
mation of the lung airways, and degradation of lung tissue, called emphysema, both
of which result in airflow limitation [31, 143]. The disease progresses in several stages
and can eventually lead to death, however, detecting the disease at an early stage can
increase the survival rate [128].

Due to limitations of traditional spirometry and visual assessment of computed to-
mography (CT) scans, texture classification was proposed to quantify COPD [119, 127,
164, 165, 175]. One approach is to classify patches of lung tissue, or regions of inter-
est (ROIs) in the image, and combine the classifications into an overall probability for
COPD [127, 165]. However, these supervised approaches require manually annotated
ROIs, which are difficult and costly to obtain.

An alternative is to use weakly labeled medical images, i.e., where only a global im-
age label is provided, for training an image classifier. In the absence of labeled ROIs,
the image label can be propagated to its ROIs, and an ROI classifier can be trained as
usual [164]. We call this straightforward approach SimpleMIL. However, this disre-
gards the fact that in scans of patients with COPD, only a subset of the ROIs may be
affected, while signs of COPD may be already apparent in some regions for subjects not
yet diagnosed with the disease. This increases the label noise for the ROI classifier.

A technique which can handle learning with such weakly labeled data is called multiple
instance learning (MIL) [49, 114]. The goal is to build a classifier for a collection, or bag,
of feature vectors, also referred to as instances. Often it is assumed that a bag is positive
if and only if at least one of its instances is positive. A further assumption is that positive
instances are found in a region of the feature space called the concept. For COPD, the
concept could be a part of the feature space, containing ROIs that are typical for, for
example, emphysema. In this scenario, as soon as a CT scan contains such an ROI, the
whole image is diagnosed as COPD.

MIL methods can be broadly divided into two categories: instance-based and bag-
based. Instance-based methods use the constraints posed by the bag labels and the
MIL assumptions to build an instance classifier, and combine instance classifications to
classify bags [5, 114, 183, 195]. On the other hand, bag-based methods aim to classify
bags directly, often by defining kernels [71] or dissimilarities [171, 194] between bags.

Every MIL classifier makes explicit or implicit assumptions about the data. Instance-
based classifiers typically rely on the assumption that there is a concept, and that pos-
itive bags contain instances from this concept. Therefore, only concept instances are
important for determining the bag label. Bag-based classifiers assume that bags from
the same class are similar, and the similarity definition further specifies this assumption.
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In most definitions, all of the bag’s instances are involved in defining the bag similarity,
therefore the whole distribution of instances is important for the bag label. In [40] we
have shown that many well-known MIL problems fall into these two categories (concept
and distribution) and that this property determines how many MIL methods perform
on the data.

Detection of COPD using lung texture has been tackled by classifying patches and com-
bining their outputs, an approach we call SimpleMIL, in [164]. A more specialized
MIL method, applied to this problem, is a dissimilarity-based approach in [162], and
it shows promising results. Other dissimilarity or kernel-based approaches, which fo-
cus on the airways rather than lung texture, have also been successful for COPD clas-
sification [63, 161]. In this work we investigate a broader range of MIL methods for
classification of the lung texture in COPD. We examine which assumptions, commonly
used for the instance-based and bag-based methods, are more suitable for this prob-
lem, and demonstrate state-of-the-art results on a COPD dataset from the Danish Lung
Cancer Screening Trial [129].

6.2 Multiple Instance Learning

In multiple instance learning (MIL), an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ Rd of ni instances, where the k-th instance is described by a d-dimensional
feature vector xik. The training set Xtr = {(Bi, yi)|i = 1, ...N} consists of positive
(yi = +1) and negative (yi = −1) bags. One way to deal with this type of input is
to propagate the bag labels to the instances, and building an instance classifier. A bag
label is obtained by classifying that bag’s instances, and combining the instance classi-
fications, for example by fusing the posterior probabilities [111]. The noisy-or rule,

p(y = 1|Bi)

p(y = −1|Bi)
=

1 − ∏ni
k=1(1 − p(zik = 1|xik))

∏ni
k=1 p(zik = −1|xik)

(6.1)

reflects the standard assumption that a bag is positive if and only if at least one of the
instances is positive. On the other hand, the average rule,

p(y = 1|Bi)

p(y = −1|Bi)
=

∑ni
k=1 p(zik = 1|xik)

∑ni
k=1 p(zik = −1|xik)

(6.2)

assumes that all instances contribute to the bag label. This fusion rule has been used
in [164], by classifying ROIs with a nearest neighbor classifier, and combining the out-
puts to classify the entire image. We refer to this strategy as SimpleMIL in the experi-
ments.

The standard assumption for MIL is that there are hidden instance labels zik which re-
late to the bag labels as follows: a bag is positive if and only if it contains at least one
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positive, or concept instance [49]. The strategy of earlier MIL approaches was to model
the concept: a region in feature space which contains at least one instance from each
positive bag, but no instances from negative bags. Diverse density [114] (DD) has been
proposed to measure this property. For a given point t in the feature space, DD(t) mea-
sures the ratio between the number of positive bags which have instances near t, and
the sum of distances of the negative instances to t. The point where DD is maximized,
t∗ therefore corresponds to the target concept. Instances can be classified using their
distance to t∗. However, the optimization problem suffers from local optima and, for
the original DD algorithm, several restarts of the algorithm are needed. Therefore, an
expectation-maximization version of this algorithm EM-DD [195] has been proposed.
EM-DD has shown to perform well on a range of MIL problems, but is also very com-
putationally intensive.

Several regular supervised classifiers have been extended to work in the MIL setting.
One example is mi-SVM [5], an extension of support vector machines which attempts
to find hidden labels of the instances under constraints, such as (6.1) or (6.2), posed by
the bag labels. Another example is MILBoost [183], where the instances are reweighed
in each of the boosting rounds. The instance weights indicate how informative the in-
stances are in predicting the bag labels.

It has been recognized that the standard assumption might be too strict for certain types
of MIL problems. Therefore, relaxed assumptions have emerged [188], where a fraction
or a particular number of positive instances are needed to satisfy a concept, and where
multiple concept regions are considered. In the case of COPD, this would correspond
to the presence of a certain fraction of ROIs containing affected tissue, and/or different
types of disease patterns. However, if the number of concepts and the fraction of pos-
itives per concept, are not given in advance, these extra parameters also need to be set
using the training data, further increasing the risk of overtraining.

Therefore, methods which compare bags without explicitly relying on the standard, or
relaxed assumptions, have been proposed. Such methods include Citation-kNN [186],
and bag kernels [71]. Citation-kNN uses the Hausdorff distance between bags. For
classification, both the kR “referencing” nearest neighbors of a bag B, and the kC “citing”
neighbors (bags for which B is nearest neighbor) are taken into account. In [71], a bag
kernel is defined either as a sum of the instance kernels, or as a standard (linear or radial
basis) kernel on a summarized representation of the bag. This summary is created by,
for each feature, averaging the bag’s instances (which we refer to by mean-inst), or using
both the minimum and the maximum instance values (which we refer to by extremes).
In all cases, the way a kernel is defined affects which (implicit) assumptions are made
about the problem. A drawback for real-world applications is that kernels must be
positive semi-definitive, therefore excluding some domain-specific similarity functions.

Other bag-based methods have addressed MIL by representing each bag by
(dis)similarities to a set of prototypes R = {R1, . . . , RM} in a so-called dissimilarity
space [133]. Therefore, each bag is represented by a single feature vector d(Bi,R) =
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[d(Bi, R1), . . . , d(Bi, RM)], where d is a (dis)similarity measure. In this space, any super-
vised classifier can be used. In MILES [36], all training instances are used as prototypes,
creating a very high-dimensional representation. A sparse classifier is used to select the
most discriminative similarities, and therefore, instances. In a bag-of-words approach,
prototypes are “words”, or clusters of instances, and the dissimilarity measure between
a bag and a word is the number of instances, belonging to that cluster.

Using bags as prototypes [40, 171] reduces the dimensionality, and therefore, the possi-
bility of overtraining. In this paper, we use all training bags as prototypes, i.e., R = Xtr,
but prototype selection can be further used to reduce |R|. The advantage of such
methods is that more can be gained from the training data than in nearest neighbor
approaches, and that there are no restrictions on the bag similarity function [136]. In
this paper, for example, we use two definitions of d that are not necessarily metric: the
average minimum instance distance (6.3), and the earth mover’s distance (EMD) [155],
defined in (6.4). Herein, the instance dissimilarity d is the squared Euclidean distance.

dmeanmin(Bi, Bj) =
1
ni

ni

∑
k=1

min
l

d(xik, xjl) (6.3)

dEMD(Bi, Bj) = ∑
xk∈Bi,xl∈Bj

f (xk, xl)d(xk, xl) (6.4)

where f (xk, xl) is the flow that minimizes the overall distance, and that is subject to
constraints that ensure that the only available amounts of “earth” (instances of Bi) are
transported into available “holes” (instances of Bj), and that all of the instances are
indeed transported: f (xk, xl) ≥ 0, ∑xk∈Bi

f (xk, xl) ≤ 1/nj, ∑xl∈Bj
f (xk, xl) ≤ 1/ni and

∑xk∈Bi,xl∈Bj
f (xk, xl) = 1.

6.3 Experiments

We use the dataset from [164], which describes how CT lung images from the Danish
Lung Cancer Screening Trial [129] have been processed. Parts of such images highlight-
ing healthy and emphysemous lung tissue, are shown in Fig. 6.1.

The dataset consists of three parts: training set Xtr, validation set Xval and test set Xte.
Originally, each of these parts consists of 100 COPD (positive) and 100 healthy (nega-
tive) images. In previous work [164], a subset of the training data with 31 COPD and
31 healthy images was selected to improve the class separability in the training set. We
therefore refer to the full training data as Xtr and to the subsampled training data as
Xsub.
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Figure 6.1: Examples of patches containing centrilobular emphysema (left), characterized by
black holes within the lung tissue, and healthy tissue (right). Both images are ap-
proximately 1.5 times the size of the ROIs used for classification and the intensity
values have been rescaled to facilitate viewing.

Each image is represented by 50 ROIs, sampled at random locations within the lungs.
Each ROI is described by histograms of responses of 8 filters at 7 scales, which aim to
capture the texture of the image. The filters used the following: Gaussian, gradient
magnitude, Laplacian of Gaussian, first, second and third eigenvalue of the Hessian,
Gaussian curvature and eigen magnitude. The scales range from 0.6 to 4.8 mm. The re-
sponses of each filter at each scale are stored in a histogram with 41 bins. This approach
creates a 2296-dimensional feature vector for each ROI. In [164], the validation set was
used to select the most appropriate filters and scales. Because these features are selected
for a particular classifier only (SimpleMIL with nearest neighbor classifier), we use the
full feature set here for all the classifiers.

The evaluated classifiers are available from the MIL toolbox [169] and PRTools [56]. We
evaluate the following selection:

• SimpleMIL with a logistic (regularization parameter C ∈ {0.01, 0.1, 1, 10}) and
nearest neighbor (k ∈ {25, 35, 45}) classifiers. We consider both noisy-or and av-
erage fusion rules.

• EM-DD with 10% of instances used for initialization

• miSVM with a polynomial kernel, where p ∈ {1, 2} is the degree of the polynomial
and C ∈ {0.01, 0.1, 1, 10} is a regularization parameter. We consider both noisy-or
and average fusion rules.

• MILBoost with 100 reweighting rounds
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• Citation k-NN, kR ∈ {1, 5, 10}, kC ∈ {1, 5, 10}
• Averaging the instances (mean-inst), and minimum and maximum feature values

for each bag (extremes) with an SVM, p ∈ {1, 2}, C = {0.01, 0.1, 1, 10}.

• Bag-of-words (BoW) with {50, 100, 200} words and an SVM, p ∈ {1, 2}, C ∈
{0.01, 0.1, 1, 10}

• MILES with a polynomial kernel, p ∈ {1, 2}, C ∈ {0.01, 0.1, 1, 10}
• Bag dissimilarities (meanmin and emd) with k-NN, k ∈ {1, 5, 10}, and in the dis-

similarity space with an SVM, p ∈ 1, 2, C = {0.01, 0.1, 1, 10}
We perform evaluation in three ways. First, each classifier (with different parameter
settings) is trained on Xsub and Xtr, depending on the experiment. Each classifier is
then evaluated on Xval. The evaluation metric is the area under the receiver-operating
characteristic curve, or AUC. We report the best of these performances on Xval, and
select the corresponding parameters. We then report the performance of this classifier
with the best parameters on an independent test set Xte. The difference in AUC on
Xval and Xte is an indicator of overtraining, i.e., fitting the parameters too well to the
validation set. Lastly, we randomly select half of the bags in Xsub or Xtr, 10 times. For
each subsample, we train a classifier, select parameters using Xval, and evaluate on Xte.
The average and the standard deviations of the 10 performances are reported. This
result gives an indication of a situation where less training data is available, and of the
variance in performance due to a different sampling of the data.

The performances are shown in Table 6.1. For each training dataset, we compare the
performances per column. The best performance and performances not significantly
worse than best, are shown in bold. We test for significant differences using the DeLong
test for ROC curves [46] for the performances on Xval and Xte, and using a dependent
t-test for the 10 cross-validation performances, both at a significance level of 0.05. A few
results are not reported. For EM-DD, time requirements were too high for both datasets.
For miSVM, the instance kernel matrix for Xtr was too large to fit in memory.

6.4 Discussion

6.4.1 Classifier Performance

Across the different training datasets, we can see similar trends in the classifier perfor-
mances. It is clear that some classifiers suffer from the high dimensionality. For exam-
ple, the bag of words approach, which uses a mixture of Gaussians to estimate words in
feature space, is not able to do so in 2296 dimensions. For BoW, MILBoost, and EM-DD
which could not handle the dimensionality computationally, we performed additional
experiments with the 287-dimensional feature set that resulted from a feature selection
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procedure used in [164]. The results on Xte are 0.657 (BoW), 0.641 (EM-DD) and 0.551
(MILBoost), suggesting that these classifiers benefit from feature selection. It may of
course generally be interesting to study feature selection for the other classifiers as well.

The full training dataset Xtr has two main differences with respect to Xsub: higher class
overlap, and more bags, and therefore instances in total. Several classifiers, such as
SimpleMIL logistic, mean-inst, extremes, and SVM in the dissimilarity space, show in-
creases in performances due to the higher sample size. On the other hand, MILES suf-
fers from the increased sample size, because the dimensionality of the dissimilarity rep-
resentation is equal to the number of instances. This also explains why MILES performs
better when the training set is subsampled to 50%.

The performances of many methods do not degrade very much when only 50% of the
bags are used for training. This suggests that the subsampled dataset is still represen-
tative for the whole data distribution, and each class can be described well with only a
few samples. Furthermore, most classifiers do not suffer a lot from overtraining, as the
difference in performance on Xval and on Xte is quite small. Notable exceptions are the
k-NN classifiers trained on the full training set Xtr, where the parameter k is overfit to
the validation set, causing lower performances on Xte.

SimpleMIL performs quite well, especially when posterior probabilities of all instances
are taken into account, as in the averaging fusion rule. Methods which assume a con-
cept, such as EM-DD and miSVM, also perform reasonably, which suggests that there is
a region in feature space with a high density of disease patches and low density of nor-
mal patches. However, the performances are lower than those of bag-based methods,
suggesting that detecting the concept is not sufficient for the diagnosis of COPD. This
is also supported by the fact that miSVM with the averaging rule outperforms miSVM
with the noisy or rule, which shows that it is beneficial to take all instance classifications
into account.

Methods with assumptions on bag level have the best performances, in particular, aver-
aging all the instances in a bag is already able to separate the bag classes quite well. This
suggests that negative instances in positive bags, and the negative instances in negative
bags, do not originate from the same distribution. In other words, scans affected with
COPD do not contain the same types of healthy patches, as healthy scans. The disease
appears to be more diffuse, affecting a large part of the lung rather than small isolated
regions.

For the bag-based methods, the mean-inst bag representation and the dissimilarity-
based SVM perform particularly well. MILES suffers from the high dimensionality, but
we expect that the performance would improve if instance selection techniques would
be used. Another interesting observation is that the dissimilarity-based SVM signifi-
cantly outperforms k-NN on the same dissimilarities. SVM is able to use the dissimilar-
ities of the training set to create a more robust classifier, which is consistent with results
in [162], although slightly different dissimilarities are used there. We expect that fur-
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ther investigation into different bag dissimilarity measures could further improve these
results.

Unfortunately, our results are not directly comparable to the dissimilarity-based ap-
proach of [162], because an earlier version of the dataset was used. The results in [164],
however, are obtained by training on Xsub and the performances can be compared.
There, the best approach obtains an AUC of 0.713. Our results show superior perfor-
mances when training on Xsub, with an AUC 0.742 for mean-inst and 0.746 for dEMD in
the dissimilarity space. However, these performances are not significantly better than
the result in [164]. Using Xtr further improves the results, for an AUC of 0.758 for
SimpleMIL with a logistic classifier, 0.776 for mean-inst, and 0.754 for dmeanmin in the
dissimilarity space. The best approach using Xtr in [164] obtains an AUC of 0.690, and
our performances are significantly better according to the DeLong test.

Furthermore, we examined the output of the best-performing classifiers to see which
images still get misclassified. Rather than only looking at the positive label for COPD,
we now use the COPD stages [143], from mild (I) to moderate (III). The results show that
most of the confusion is between the healthy scans, and stage I scans, which supports
our intuition about where the class overlap is largest. Because the classifiers differ in
some of their errors, it may be of interest to combine their decisions.

6.4.2 Concept Region

In order to better understand the classifier performances, we examine a 2D projection
of the instances, obtained by t-distributed stochastic neighbor embedding (t-SNE) [177]
(Fig. 6.2). We see two clusters of instances, a smaller cluster in the top left and a larger
cluster. In the small cluster the density of instances from positive bags is clearly higher,
which suggests that part of it could be a concept region. To investigate whether these
patches display emphysema, we examined the intensity histograms of the Gaussian fil-
ters at the smallest scale. As emphysema results in darker patches, we would expect
patches with emphysema to have intensity histograms skewed to the left. This is ex-
actly what we find when averaging all the instances per cluster and plotting the two
corresponding histograms in Fig. 6.3.

Visual inspection of patches from both the small cluster and from the lower right part of
the big cluster in Fig. 6.2 confirmed the tendency we saw in the average Gaussian filter
response histograms in Fig. 6.3. The patches in the small cluster were generally affected
by emphysema whereas the patches in the lower part of the big cluster showed no or
only faint signs of emphysema.

It is important to note that the dataset mainly contains mild to moderate COPD patients,
and no patients with very severe emphysema. We expect that if this was the case, the
concept or concepts would be more pronounced.



106 CLASSIFICATION OF COPD WITH MULTIPLE INSTANCE LEARNING

 

 
positive
negative

Figure 6.2: Density contours of t-SNE projection of instances of Xsub

6.4.3 Interpretability

Next to the classifier performances, it is important to consider how these classifiers
would be used in a medical setting. Despite slightly lower performances, instance-
based methods are of interest because of their ability to provide instance labels for
the ROIs. An expert could then inspect the instance labels in different regions of the
lungs, allowing for better diagnosis or treatment planning. The instance labels, how-
ever, should be used with caution. Specialized MIL (i.e., except SimpleMIL) methods
are trained to classify bags correctly, not instances, and the best bag classifier is not nec-
essarily the best instance classifier [173]. Therefore, correct instance labels would be
sacrificed for the greater good of correct bag labels.

Although bag-based methods perform better, their interpretability may be more diffi-
cult. For example, the average histograms (as in mean-inst) separate the classes very
well, but this method can not provide information on how the affected tissue is dis-
tributed within the lungs, which could be important for determining the best treatment
as well as for monitoring disease progression and therapy effect.

Dissimilarity-based methods provide more opportunities in terms of interpretability
compared to mean-inst or extremes. For these methods, we can investigate which proto-
types, i.e. CT images, patch clusters or individual patches, correspond to typical healthy
or COPD cases. By using linear classifiers in the dissimilarity space, the diagnosis would
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Figure 6.3: Histograms of Gaussian filter responses at the scale 0.6, for the averaged instances in
the two clusters found in the t-SNE plot.

be explained in terms of a linear combination of dissimilarities to such prototypes.

6.5 Conclusions

We have studied the possibility of classifying COPD by means of various classical and
more recent MIL approaches. The study revealed that MIL offers classification methods
for this problem that are potentially better than the techniques previously proposed.
The diversity of methods also enabled us to reason about the nature of COPD as a MIL
problem. Although we found a concept region with patches showing typical disease
patterns, considering the whole distribution of instances for bag classification improved
the results. The best performing method is an SVM with a kernel based on the average
instance per bag. This method obtains an AUC of 0.742 which is higher (but not signif-
icantly) than the previous best performance of 0.713 on the same dataset. By using the
full training data we achieve a significantly higher AUC of 0.776.
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Table 6.1: AUC performances (×100) of MIL classifiers, trained on Xsub (top) and Xtr (bottom).
From left to right: best parameters on Xval , same parameters on Xte, mean(std) when
subsampling Xsub or Xtr to 50% 10 times

Trained on Xsub
Classifier AUC Xval AUC Xte 10x AUC Xte
Simple logistic noisy 50.0 50.0 50.2 (0.7)
Simple logistic avg 71.9 70.5 67.9 (1.3)
Simple k-NN noisy 61.0 65.9 63.7 (2.3)
Simple k-NN avg 67.0 67.8 66.0 (1.5)
miSVM noisy 69.7 65.4 62.0 (3.1)
miSVM avg 74.5 71.7 69.4 (1.5)
MILBoost 55.8 61.4 59.3 (10.2)
Citation k-NN 65.2 61.5 63.5 (1.5)
mean-inst SVM 74.0 74.2 72.3 (2.7)
extremes SVM 70.8 68.6 68.3 ( 2.7)
BoW SVM 50.0 50.0 50.0 (0.0)
MILES 65.8 68.2 64.3 (4.2)
meanmin SVM 70.8 71.3 69.6 (2.1)
meanmin k-NN 65.0 69.1 65.7 (1.6)
emd SVM 73.7 74.6 69.3 (3.3)
emd k-NN 65.1 67.1 64.6 (1.8)

Trained on Xtr
Classifier AUC Xval AUC Xte 10x AUC Xte
Simple logistic noisy 60.9 60.7 50.0 (0.0)
Simple logistic avg 73.5 75.8 72.3 (3.1)
Simple k-NN noisy 64.3 68.2 66.9 (2.1)
Simple k-NN avg 66.8 69.7 68.5 (0.8)
MILBoost 54.6 54.3 62.3 ( 7.8)
Citation k-NN 65.9 56.9 60.4 (2.4)
mean-inst SVM 77.2 77.6 76.5 (3.8)
extremes SVM 73.1 65.2 67.2 ( 1.2)
BoW SVM 50.0 50.0 50.0 (0.0)
MILES 50.0 50.0 67.6 (2.5)
meanmin SVM 74.0 75.4 73.8 (2.6)
meanmin k-NN 59.0 53.5 53.5 ( 4.6)
emd SVM 74.2 72.9 75.1 (2.7)
emd k-NN 63.9 54.4 51.2 (4.3)
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BRIDGING STRUCTURE AND FEATURE

REPRESENTATIONS IN GRAPH

MATCHING

Structures and features are opposite approaches in building representations for object
recognition. Bridging the two is an essential problem in pattern recognition as the two
opposite types of information are fundamentally different. As dissimilarities can be
computed for both the dissimilarity representation can be used to combine the two.
Attributed graphs contain structural as well as feature based information. Neglecting
the attributes yields a pure structural description. Isolating the features and neglecting
the structure represents objects by a bag of features. In this paper we will show that
weighted combinations of dissimilarities may perform better than these two extremes,
indicating that these two types of information are essentially different and strengthen
each other. In addition we present two more advanced integrations than weighted com-
bining and show that these may improve the classification performances even further.

This chapter is published as:
Wan-Jui Lee, Veronika Cheplygina, David M. J. Tax, Marco Loog, and Robert P. W. Duin. Bridging struc-
ture and feature representations in graph matching. International Journal of Pattern Recognition and Artificial
Intelligence, 26(05), 2012.
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7.1 Introduction

Most techniques from statistics, machine learning and pattern recognition that have
been developed, such as dimension reduction, clustering, classification and regression
tasks, have been applied to numerical data. These techniques have been applied with
the assumption that data can be represented in a vector space where each feature forms a
dimension of the space. However, for structural data, a data object includes not only the
numerical feature values but also the inter-relationships between features. Structural in-
formation is essential in areas such as bioinformatics and social network analysis. Here,
objects such as chemical compounds or network structures include not only numerical
feature values, but also inter-relationships that can be modeled by graphs. Traditional
machine learning and pattern recognition techniques for statistical data, however, can-
not be applied directly to structural data because graph data cannot be embedded into
a vector space in a straightforward manner.

How to utilize these two sources of information at the same time is a crucial issue. A
naive way of thinking is to assume these sources to be independent, and apply statis-
tical pattern recognition approaches to only features and structural pattern recognition
approaches to only structures to obtain two (dis)similarity measures. These two results
can then be combined with mathematical operations such as sum or product to derive
a joint (dis)similarity measure.

However, structure might arise from inter-relationships of features. Therefore, it might
be more informative to consider these two sources at the same time for comparing ob-
jects. More importantly, if two objects have very similar features, it is not possible to
distinguish them, but if these objects have different structures, then the probability of
separating them is much higher, and vice versa.

In structural pattern recognition [9, 25, 28, 43, 88], one of the most fundamental issues
is the lack of techniques to embed the structural data objects into the same vector space.
Currently, most problems can only be solved by deriving pairwise dissimilarities be-
tween such objects and deciding on the class of a new, unseen structural object based on
the class of its nearest neighbor [44]. Most techniques from statistics, machine learning
and pattern recognition [48, 54, 78, 85, 179] can analyze data sets that can typically be
represented in a fixed-dimensional numerical vector space by means of so-called feature
vectors. Unfortunately, this means that an essential part of these versatile and powerful
techniques cannot be applied directly to the non-vectorial, structural data. In conse-
quence, being able to turn structural data into a proper vectorial representation, the
principal machine learning and pattern recognition tools could be utilized to the ben-
efit of structural pattern recognition problems. Currently, in real-world applications,
structural data is often simplified into numerical data by neglecting the structures and
discarding inconsistent information. Methods such as graph edit distance or graph ker-
nels use both structure and feature representations, but usually put more emphasis on
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structures. One can also combine these two sources of information by assuming their
independence and have an average sum of two individual distance measurements. To
utilize both feature and structure representations in a flexible and smooth setting, we
propose the modified graph edit distance and the modified shortest path graph kernel.

Graph edit distance [27, 148, 150, 151, 153, 154] is one of the most simple and intuitive
approaches to compute the distances between graphs. The idea is to find the mini-
mal cost for transforming one graph to the other. To define the cost for the graph edit
distance, one has to set weights for nodes and edges. However, there is no adjusting
between feature and structure representations. To have a better understanding of the
utilization of both types of information, in this work we propose the modified graph
edit distance which includes an extra parameter which controls the impact of these two
different sources of information. As a result, the modified graph distance can compute
dissimilarity matrices for using only pure structures, the combination of both structures
and feature representations and pure feature representations.

Graph kernels [70, 72, 81] often express the similarity of two graphs by summing over
the similarities between all subparts, such as walks, trees or paths, between these
graphs. Similar graphs should have similar subparts and therefore a high similarity
value, while different graphs should have less subparts that match. For instance, the
shortest path kernel [14] sums the similarities between shortest paths between any two
connected nodes in the graphs. This similarity is measured using both the nodes and
edges of the paths involved. Here again, there is no way to tune how much impact these
sources of information have on the similarity of the path. Here we propose a modified
shortest path kernel where an extra parameter controls this impact.

The rest of the paper is organized as follows. In Section 7.2, an overview of multiple
instance learning, graph edit distance and graph kernels is given. A small toy example
is given in Section 7.3 to show the necessity of utilizing both structure and feature rep-
resentations. The modified procedures of graph edit distance and shortest path kernel
which include an extra parameter to control the impact of structure and feature informa-
tion are described in Section 7.4. Simulation results are presented in Section 7.5. Finally,
conclusions and discussions are given in Section 7.6.

7.2 Related Work

Graphs often have different numbers of nodes, and therefore are difficult to represent
by a fixed-size vector. Hence, it is very challenging to handle even only the features in
graphs with classical statistical pattern recognition techniques. By considering only the
features on the nodes of a graph, each graph becomes a set of feature points, and the
size of this set varies. Multiple Instance Learning (MIL) [5, 36, 49, 114, 168, 186] is one of
the most well-known approaches for finding classifiers for bags of instances, where the
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number of instances in each bag can be different. Therefore, it is suitable for computing
distances between graphs if only features are considered.

There are also many techniques for computing distances between graphs, and they can
be roughly divided into three groups: graph spectra, graph edit distance and graph
kernels. The most well-known graph spectral are the sets of eigenvectors and eigenval-
ues derived by performing an eigendecomposition of the adjacency matrix or a derived
representation of a graph. There are different variants of such spectra [29, 106, 140, 189],
which are also much used in embedding and comparing graphs. All these spectral
methods, however, suffer from an elementary shortcoming as they are only capable of
embedding graphs with no features on the nodes. Graph edit distance and graph ker-
nels on the other hand can use both structure and feature representations, and therefore
we focus on developing modified procedures for these two approaches to include a
mechanism for adjusting the impact between the feature and structure representations
in this work.

In the following, we give brief introductions on MIL, graph edit distance and graph
kernels.

7.2.1 Multiple Instance Learning

In Multiple Instance Learning it is assumed that an object is represented by a structure-
less collection of feature vectors, or, in MIL terminology, a bag of instances.[49] Objects
are assumed to come from a positive or negative class, and typically it is assumed that
objects from the positive class contain at least one instance from a so-called concept. The
task of a classifier is then to identify if one of the instances belong to the concept, and
label the object then to the positive class. Many MIL algorithms therefore contain an
optimization strategy to search for the most informative instance per bag, and create a
model of the concept. The original model proposed by [49] was an axis-parallel rectan-
gle that was grown and shrunk to best cover the area of the concept. It is applied to a
drug discovery problem where molecules have to be distinguished based on their shape
into active and inactive molecules. It appears that this rectangular model fits well with
the molecule shape classification, but it is less successful in other applications.

A probabilistic description of the MIL problem was given by [114]. The concept is mod-
eled by a general probabilistic model (typically an axis-parallel Gaussian is used). Un-
fortunately, the optimization of the parameters requires a computationally expensive
maximization of an likelihood that is adapted to include the constraint that at least one
of the instances in a positive bag has a high concept probability. Newer methods of-
ten avoid the modeling of the concept by a density model, and try to separate concept
instances from background instances using a discriminative approach [4, 183].

In time, more and more classification problems are identified as MIL problems, but the
assumption of the presence of a single concept often does not hold. For many applica-
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tions the overall distribution of instance is actually informative, and therefore training
on all instances is feasible, or the application of general bag similarities [71].

7.2.2 Graph Definitions

A graph is a set of nodes connected by edges in its most general form. Consider the
graph G = (V, E, μ, ν) with

• the node set V = {v1, v2, . . . , vn}
• the edge set E = {e1, e2, . . . , em} ⊂ V × V

• the node labeling function μ : V → L

• the edge labeling function ν : E → L,

where n is the total number of nodes in the graph and is usually called the graph size,
and m is the total number of edges in the graph. Edges, e1, e2, . . . , em, are given by pairs
of nodes (vi, vj) ∈ E, where vi denotes the source node and vj is the target node of a
directed edge for directed graphs. By adding a reverse edge (vj, vi) for each edge, the
undirected graphs can also be easily modeled. The node and edge labeling functions
can assign either a set of integers ∈ Rn, or a set of symbolic labels (� = a, b, c, . . .).
Furthermore, by assigning all the nodes the same label, one can obtain the unlabeled
graphs. Similarly, by assigning all the edges the same label, one can derive unweighted
graphs.

In a graph, a walk of length l is defined as a sequence of nodes (v1, v2, . . . , vl+1) where
(vi, vi+1) ∈ E, 1 ≤ i ≤ l. A path is a walk (v1, v2, . . . , vl+1) such that vi 	= vj ↔ i 	= j.

7.2.3 Graph Edit Distance

A common way to define the dissimilarity of two graphs is to measure the minimal
distortion that is needed for transforming one graph into the other. Graph edit distance
is one of the most flexible ways for measuring dissimilarity between pairs of graphs. A
standard set of edit distance operations to define distortion includes insertion, deletion
and substitution of both nodes and edges. The substitution of two nodes vi and vj is
denoted by (vi → vj), the deletion of node vi is by (vi → φ), and the insertion of
node vj is by (φ → vj). Similar notations are also applied to edges. For each edit
operation, a cost is given for measuring the strength of the corresponding operation
and is to define whether an edit operation represents a strong modification of the graph.
Given two graphs, the source graph G1 and the target graph G2 , the idea is to delete
some nodes and edges from G1, relabel some of the remaining nodes and edges and
probably insert some nodes and edges, such that G1 is completely transformed into G2.
The dissimilarity between the two is given by the cost of a sequence of edit operation
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Figure 7.1: Examples of two graphs

(so called edit path) that transforms G1 into G2. For a pair of graphs G1 and G2, there
could be a number of different edit paths transforming G1 into G2, and the minimum
cost edit path between two graphs is the edit distance of two graphs.

To find the optimal graph edit distance, the A∗ searching tree [24, 77] is often used.
However, the computational complexity for such algorithm is exponential in the num-
ber of nodes of the involved graphs. To cope better with the problem, in [148] a sub-
optimal method is proposed. The idea is to decompose graphs into sets of subgraphs
consist of only one node and its connecting edges. The graph matching problem is then
reduced to the problem of finding the optimal match between the sets of subgraphs by
a bipartite matching procedure. This method aims for the suboptimal solutions and
therefore generally returns an approximate graph edit distance.

The process of graph matching can be seen as an assignment problem by assigning
the nodes of graph G1 to the nodes of graph G2, such that the overall edit costs are
minimal. One of the most commonly used methods for solving the assignment problem
is Munkres’ algorithm [122]. Despite the fact that the nodes are assigned in a way that
minimizes the cost, the edit path found by this method remains suboptimal. This is
because the node assignments automatically lead to certain edge assignments, which
may not be optimal. The costs of these edge assignments are added at the end of the
algorithm, potentially resulting in a higher cost than the optimal edit path.

Fig. 7.1(a) and Fig. 7.1(b) are two example of graphs G1 and G2. In order to compute the
distance between G1 and G2, these two graphs are decomposed node by node into local
structures as those in the right and left side of Fig. 7.2. Each graph is represented by a
set of nodes with their connecting edges. Then the problem becomes finding the best
assignment between these two sets of nodes with their connecting edges.
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Figure 7.2: Example of the suboptimal graph edit distance approach.

7.2.4 Graph Kernels

A common approach to define kernels on graphs is to decompose the graphs into sets
of substructures and count the number of matching substructures, i.e. the number of
substructures in the intersection of the two sets. This is also called the intersection
kernel [81]. Let X1 and X2 be respectively the sets of substructures of graphs G1 and
G2. The intersection kernel is then defined as:

K∩(G1, G2) = |X1 ∩ X2|. (7.1)

This is equivalent to [81]:

K(G1, G2) = ∑
xi∈X1,xj∈X2

kδ(xi, xj) (7.2)

where kδ(xi, xj) = 1 if xi == xj and 0 otherwise.

Different substructures have been used to define such kernels, such as walks [72, 91],
subtrees [145] or cycles [81]. For instance, the random walk kernel counts the number of
matching walks in two graphs. The match kwalk is originally defined to reflect an exact
match between node labels. In [15], this definition is extended to:
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kwalk((v1, v2, . . . , vl), (w1, w2, . . . , wl)) = ∏
i=1,...,l−1

kstep((vi, vi+1), (wi, wi+1)) (7.3)

where

kstep((vi, vj), (wi, wj)) = knode(vi, wi) · knode(vj, wj) · kedge((vi, vj), (wi, wj)) (7.4)

and where knode and kedge are kernels on node and edge labels (for instance, Radial Basis
Function kernels).

For random walks, Eq. (7.2) can not be used directly because it is not possible to enu-
merate all the walks in a graph, as going back and forth between nodes (“tottering”)
is permitted. However, an approach to find the K(G1, G2) without explicitly doing the
calculation is proposed in [72]. Unfortunately, this approach requires the inversion of
a |V1| · |V2| × |V1| · |V2| matrix, which leads to large time and memory requirements,
especially for large graphs.

Next to being computationally expensive, the random walk and other similar kernels
often have limited expressiveness, as pointed or walks which totter inflate the similarity
value of two graphs, so that even two (globally) very different graphs can have a high
similarity. Using paths instead of walks can help the tottering problem, however, the
computation of this kernel is NP-hard.

Therefore in in [14] a kernel based on only shortest paths, which can be computed in
polynomial time, is proposed. In this kernel, a graph G1 is first transformed into a short-
est path graph S1, such that if there is a path of length l between two nodes in G1, there
is an edge with label l between these nodes in S1. Because any walk (v1, v2, . . . , vl+1)
in G1 is reduced to a shortest path representation (v1, vl+1, l) in S1, the kernel can be
computed as the random walk kernel on walks of length 1:

Kshortpath(G1, G2) = ∑
(vi,vj)∈E1,(wi,wj)∈E2

kpath((vi, vj), (wi, wj)) (7.5)

where the kernel on two paths is defined as:

kpath((vi, vj), (wi, wj)) = knode(vi, wi) · knode(vj, wj) · kedge((vi, vj), (wi, wj)) (7.6)

7.3 A Toy Example

In this section, we use a toy example to illustrate the limitations of using only features
or only structures.
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Figure 7.3: Toy example

Consider the example in Fig. 7.3. Looking only at the features, there are two bags of
instances {0,1,0} and {0,0,1} which have a distance of 0 with many common MIL mea-
surements. On the other hand, the structure of G1 and G2 is also identical. Simply
averaging between distances on the feature representations and on the structure repre-
sentations will not be able to highlight the difference between the graphs, therefore an
approach that takes both types of information into account is necessary.

7.4 Modified Procedures

We modify the graph edit distance in Section 7.4.1 and the shortest path kernel in Sec-
tion 7.4.2 to include an extra parameter for controlling the impact of structure and fea-
ture representations.

7.4.1 Modified Graph Edit Distance

Here we extend the idea proposed in [148] which is introduced in Section 7.2.3 by sepa-
rating the cost matrix C into two parts: CF for features and CS for structure.

The cost matrix C becomes the weighted sum of these two matrices CF and CS in the
form of C = αCS + (1 − α)CF, where α is an user-defined parameter. It is more general
than the original graph edit distance method in the sense that the feature and structure
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representations are scaled by the parameter α which decides how much feature and
structure representations should be used in the distance measurement.

The cost matrices for structure CS and feature CF are by definition quadratic and are
defined as

CS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1,1 s1,2 · · · s1,m s1,φ ∞ · · · ∞

s2,1 s2,2 · · · s2,m ∞ s2,φ · · · ...
...

... . . . ...
... . . . . . . ∞

sn,1 sn,2 · · · sn,m ∞ · · · ∞ sn,φ
sφ,1 ∞ · · · ∞ 0 0 · · · 0

∞ sφ,2
. . . ... 0 0 · · · ...

... . . . . . . ∞
... . . . . . . 0

∞ ∞ · · · sφ,m 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n+m,n+m

(7.7)

and

CF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,1 f1,2 · · · f1,m f1,φ ∞ · · · ∞

f2,1 f2,2 · · · f2,m ∞ f2,φ · · · ...
...

... . . . ...
... . . . . . . ∞

fn,1 fn,2 · · · fn,m ∞ · · · ∞ fn,φ
fφ,1 ∞ · · · ∞ 0 0 · · · 0

∞ fφ,2
. . . ... 0 0 · · · ...

... . . . . . . ∞
... . . . . . . 0

∞ ∞ · · · fφ,m 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n+m,n+m

(7.8)

where si,j and fi,j denote the feature and structure costs of a node substitution, si,φ and
fi,φ denote the feature and structure costs of a node deletion (vi → φ), and sφ,j and
fφ,j denote the feature and structure costs of a node insertion (φ → vj). The costs for
the insertions and deletions are found on the diagonals of the top right and left bottom
quadrants of each matrix. A node can be inserted or deleted at most once, therefore the
non-diagonal elements in these quadrants are set to ∞. The bottom right quadrant of
the matrices is set to zero because substitutions of the form (φ → φ) should not cause
any cost.

To keep the simplicity of the approach, fi,j is defined as the feature difference of node
i and j, that is, the distance of two feature vectors from node i and j. If the graphs are
with pure structure which means there are no feature vectors on the nodes, fi,j is set to
0. fi,φ and fφ,j are the distances of the feature vector to the origin.

Similarly, si,j is the difference of numbers of edges between node i and j. If the graphs
are with pure features which means there are no edges on the nodes, si,j is set to 0. si,φ
and sφ,j are the number of edges of node i and node j, respectively.
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By restricting the scaling parameter α between 0 and 1, the new cost matrix C can be
computed as αCS + (1− α)CF. Based on the new cost matrix C, Munkres’ algorithm can
be executed to find the best assignment between the nodes of two graphs. Consequently,
each node of graph G1 is either uniquely assigned to a node of G2, or to the deletion node
φ. Vice versa, each node of graph G2 is either uniquely assigned to a node of G1, or to
the insertion node φ. The φ nodes in G1 and G2 corresponding to rows n + 1, · · · , n + m
and columns m+ 1, · · · , m+ n that are not used cancel each other out without any costs.

After finding the optimal node assignment between a pair of graphs, the implied edge
costs need to be added to the cost computed with the Munkres’ algorithm to derive the
real graph edit cost.

7.4.2 Modified Graph Kernel

We use the shortest path kernel from [14] as the starting point. The kernel on two paths
is defined as in Eq. (7.6). For simplicity of notation, let kpath = kstart · kend · kedge. These
kernels may themselves also be a product of different kernels. In the original problem
domain of protein prediction, multiple types of labels for nodes and edges are present.
The kernel on nodes is then a product of kernels on the different labels of these nodes.
We restrict ourselves to a case where nodes and edges only have a numeric label, and
use a simple choice for both knode and kedge, namely the “bridge kernel”. This kernel con-
verts a distance between two vectors to a similarity value between 0 and a predefined
threshold c, as follows:

k(xi, xj) = max(0, c − ‖xi − xj‖) (7.9)

where ‖‖ is the L2 norm.

To be able to vary the amount of influence that the features and structure have on the
shortest path kernel, we want to introduce a parameter α ∈ [0, 1] in such a way that for
α = 1, kpath is only influenced by the node kernels, and for α = 0 it is only influenced by
the edge kernel. Because in the original formulation, kpath is a product and not a sum,
we cannot apply α in a straightforward, weighted averaging way. A possible way to let
α influence the product is:

kpath = (kstart · kend)
α · (kedge)

1−α. (7.10)

Note that this approach does not guarantee that the kernel is positive definite, however,
the information contained in such kernels may still be of interest [137].
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.4: An example image of class (a) 10; (b) 13; (c) 18; (d) 40; (e) 44; (f) 49; (g) 51; (h) 61; (i)
65; and (j) 66, respectively.

7.5 Experiments

In this section, we compare the performance of the modified procedures with the
weighted average of structure and feature representations using the 1-nearest neigh-
bor classifier [44] in the original space (1nnc), the 1-nearest neighbor in the dissimi-
larity space (1nndc) and support vector machine (svc) [179] in the dissimilarity space
[26, 132, 133, 149–151]. All the classifiers are built with PRTools [56].

Two real-world datasets, i.e., COIL-100 dataset [125] and Mutagenicity [152], are used
in the experiments. The COIL-100 dataset consists of images of 100 different objects.
Images of each objects are taken at intervals of 5 degrees, resulting in 72 images per
object or 72 images per class. However, in our experiments, we do not use all available
images. Only 10 classes (10, 13, 18, 40, 44, 49, 51, 61, 65, 66) are used. These 10 classes of
images are selected because they have the lowest one-against-all performance, i.e. are
relatively difficult to classify compared to the other classes. Fig. 7.4 shows an example
image of each object from these 10 classes.

Three different datasets, i.e. coil-segment, coil-harris and coil-sift, of graphs are then
generated from these 720 images. This is done as follows:

The coil-segment dataset is obtained by first converting the color images to grayscale,
applying a mean-shift algorithm to get homogeneous graylevel segments, and finally
removing image segments that were smaller than 50 pixels. A structure graph was
obtained by connecting the segments in the graph that also have some neighboring

The original color features are very informative, such that the classification performance was already
so high that the structure could not add any additional information.
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pixels in the image domain. Overall, each image has around 3-10 segments.

The coil-harris dataset is directly obtained from the coil-del dataset in the IAM graph
database [152]. Briefly, Harris corner detection [76] is used to extract corner features
from images. Based on these corners, a Delaunay triangulation is applied. The triangu-
lation is converted into a graph such that each line becomes an undirected, unlabeled
edge, and each endpoint becomes a node described by its 2D coordinates.

The coil-sift dataset detects the sift keypoints [112] instead of Harris points. Sift points
are corner points with 128 dimensional descriptors, which are used as the feature vec-
tors for graph nodes. The coil-sift uses the same procedure for transforming images into
graphs as the coil-harris.

The difference among the coil-segment, coil-harris and coil-sift datasets is that the coil-
segment has much simpler structure compared to coil-harris and coil-sift because usu-
ally only few segments can be extracted from an image while many corner points or
keypoints can be detected. The coil-sift dataset has more complex features (128 in total)
while coil-harris and coil-segment only have 2 and 4 dimensions, respectively.

Another real-world dataset Mutagenicity [152] is also used in the experiments. Mu-
tagenicity refers to a property of chemical compounds. The molecules are converted
into graphs in a straightforward manner by representing atoms as nodes and the cova-
lent bonds as edges. Nodes are labeled with the corresponding chemical symbol. The
average number of nodes of a graph is 30.3 ± 20.1, and the average number of edges
is 30.7 ± 16.8. The Mutagenicity dataset is divided into two classes, i.e., mutagen and
nonmutagen. There are 4,337 objects in total (2,401 mutagen and 1,936 nonmutagen).
However, we only take a subset of this dataset in the experiments by using only every
5th object, resulting in a subset of 867 objects.

All datasets are represented in the dissimilarity space. First, a subset of graphs is se-
lected as the prototype set with R objects. Next, all the dissimilarities between all graphs
and the prototype set are computed. Now each graph is represented by its R dissimilar-
ities.

In the experiments, 20% of images are randomly taken as the training dataset, and the
rest 80% are taken as the testing dataset. All the experiments are repeated 100 times and
the average classification error is recorded. The standard deviations of the results are
very small due to 100 repetitions and are therefore disregarded.

The results of the modified graph edit distance are presented in Figs. 7.5-7.8, the results
of the modified shortest path kernel are presented in Figs. 7.9-7.12. In each figure, a
comparison is made between the modified method (represented by solid lines with star
symbols) and the weighted average of pure structure and pure feature information (rep-
resented by solid lines with circles). On the x-axis is the parameter α, when α = 0, only
structure information is used and when α = 1, only feature information is used. There-
fore, at α = 0, the graph edit distance and shortest path kernel are applied on unlabeled
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Figure 7.5: Results of coil-segment for modified graph edit distance (mod) and weighted aver-
age (wa).

graphs, producing a dissimilarity matrix D0, whereas at α = 1, the procedures are ap-
plied to two sets of feature vectors, resulting in dissimilarity matrix D1. The weighted
average matrix DW(α) is then computed as follows:

DW(α) = αD1 + (1 − α)D0 (7.11)

On the y-axis of the figures is the average classification error of three different classifiers:
the nearest neighbor in the original space (denoted by 1nnc), the nearest neighbor in the
dissimilarity space (denoted by 1nndc) and the support vector classifier (denoted by
svc). Note that the graph edit distance procedures can only produce pairwise distances
for graphs, and therefore only the nearest neighbor classifiers can be adopted in the
original space. But in the dissimilarity space, the distances of one object to the other
objects are taken as the feature values and therefore one can adopt any classical pattern
recognition techniques.

7.5.1 Modified Graph Edit Distance

The coil-segment dataset is with simple structure and simple features, and therefore its
performance of using only features or structures are both not good as in Fig. 7.5. How-
ever, if we combine these two sources of information, significant improvements can be
observed both with weighted average and modified graph edit distance in the dissim-
ilarity space, especially when α = 0.9. This suggests that not only the combination of
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Figure 7.6: Results of coil-harris for modified graph edit distance (mod) and weighted average
(wa)
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Figure 7.7: Results of coil-sift for modified graph edit distance (mod) and weighted average
(wa).
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Figure 7.8: Results of Mutagenicity for modified graph edit distance (mod) and weighted aver-
age (wa).

feature and structure information can be helpful, but also changing the impacts of these
two information could make a lot of difference, and it is necessary to balance these two
information to obtain a better result. This phenomena can also be observed in Fig. 7.6
and Fig. 7.7, even though the structure information is doing very good already in these
two datasets, and therefore the improvement of combining the two information is less
significant as with the coil-segment dataset.

From Fig. 7.5, Fig. 7.6 and Fig. 7.7, we can also see that the modified graph edit distance
is better than weighted average in all cases, and therefore the dependency between the
feature and structure information should also be taken into account when computing
the graph distances. Also, the classifiers in the dissimilarity spaces perform much better
than classifiers in the original space, and svc is better than 1nnc. The dissimilarity space
therefore not only allows different classifiers to be applied on structure data, but also in
general gives much better results than the original space. One very intriguing results
from these figures is the significant improvement of the dissimilarity space over the
original space when α = 0 in the case of considering pure structure. For the coil-harris
and coil-sift datasets, the improvement is even around 70%. This suggests that there are
intrinsic features within the graph structure and these features can only be utilized by
the classifiers in the dissimilarity space, but not in the original space.

For the Mutagenicity dataset, the results are given in Fig. 7.8. The structures of graphs
are naturally given by the molecules, and the structure is more sparse (the number of
edges is much fewer) than the ones of the coil-100 dataset. One of the reasons why there
is no significant improvement of modified graph edit distance over weighted average
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Figure 7.9: Results of coil-segment for modified shortest path kernel (mod) and weighted aver-
age (wa).

on the performance could be that the sparse structures contains less intrinsic features.
The sparse structures of graphs probably also introduce less dependency between struc-
tures and features, and therefor modified graph edit distance is not always better than
weighted average. Nevertheless, we can still observe that the extra parameter α helps
for finding better results. Also, svc is much better than 1nnc classifiers in both original
space and dissimilarity space.

7.5.2 Modified Graph Kernel

The results of the modified shortest path kernel compared to weighted averaging are
presented in Figs. 7.9, 7.10, 7.11 and 7.12 for the coil-segment, coil-harris, coil-sift and
mutagenicity datasets, respectively.

Before running the classifiers on the matrices produced by the modified shortest path
kernel, we normalized the kernel matrix such that the diagonal is equal to 1 (by
K(x, y) =

√
K(x, x) · K(y, y)) and converted the kernel matrix to a dissimilarity ma-

trix using a procedure in DisTools [57]. This was done in order to be able to compare
1nnc (which needs distances) to 1nndc and svc (which could also work with a similarity
matrix directly).

For the coil-segment, coil-harris and coil-sift datasets, the best results are achieved when
only feature information is used. This is somewhat surprising, because it is expected
that combining both information sources would be beneficial. A possible explanation
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Figure 7.10: Results of coil-harris for modified shortest path kernel (mod) and weighted average
(wa).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
COIL SIFT, GK

α

E
rr
o
r

 

 
1nndc mod
1nndc wa
svc mod
svc wa
1nn mod
1nn wa

Figure 7.11: Results of coil-sift for modified shortest path kernel (mod) and weighted average
(wa).
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Figure 7.12: Results of Mutagenicity for modified shortest path kernel (mod) and weighted av-
erage (wa).

could lie in the thresholds used for the bridge kernel on node values. The main point
of the threshold is to convert a distance to a similarity value greater or equal to 0, so in
principle it should be sufficient to set the threshold to the maximum possible distance
between nodes or edges, this way preserving as much information as is contained in
the distances. However, in our preliminary experiments, we noticed that choosing a
lower threshold, thus setting the larger distances to 0, often had a positive effect on
performance. We did not investigate which thresholds are best for a particular dataset,
but attempted to choose reasonable default values. For the coil-segment and coil-harris
datasets, the original node distances were very large, but after normalizing the features
to zero mean and unit variance, a threshold of 2 was reasonable. This threshold was
also used for the coil-sift dataset. It might be the case that due to these thresholds, the
performances at α = 1 are very good, which masks the fact that it is beneficial to use
structure information.

Similarly to the results of the edit distance, we see that in general, at different values
of α the kernel performs better than the weighted average. This is only not the case
for svc on the coil-segment dataset, where svc performs much worse than the nearest
neighbor classifiers. Apart from this result, the three classifiers seem to have comparable
performance. This is very different from the edit distance results, where the classifiers
in the dissimilarity space are clearly outperforming 1nnc.

For the mutagenecity dataset, we see quite a different picture than in the coil datasets.
As each of the classifiers performs similarly using only feature or only structure in-
formation, we see that combining the two is advantageous in this case. However, for
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all three clasifiers the weighted averaging outperforms the shortest path kernel. This
suggests that the way α is introduced in the modified kernel is not able to effectively
combine the feature and structure similarities. This has an intuitive explanation. If we
examine the inter-node distances in the dataset, we will notice that this distance is either
0 or 1, because the node features are discrete (presence or absence of chemical symbol).
Therefore, applying α as we proposed does not change the node similarity of the path.
As a result, the matrices produced by the kernel are very similar at different values of
α, which is clearly reflected by the results. Weighted averaging does achieve different
matrices, and therefore much more variable perfomances can be seen. A different usage
of α in the modified kernel might therefore be advantageous.

7.6 Discussions and Conclusions

Combining different sources of information is expected to give better performance
than single information sources. However, how to combine the information sources
to achieve the most performance improvement is not always trivial. In this work, we
propose the modified graph edit distance and the modified shortest path graph kernel
to adopt an extra parameter for controlling the impact of feature and structure repre-
sentations on computing graph distances. From the experimental results, we can see
improvements when the impact of the feature and structure representations is properly
scaled.

Another intriguing observation is that classifiers in the dissimilarity space can outper-
form the nearest neighbor in original space if the graph dataset has intrinsic dimen-
sions within the structure. Even though the measurement of the intrinsic dimensions is
still not clear, it is still worth further investigation on the performances of dissimilarity
space with respect to the intrinsic dimensions of datasets. Another point which might
be worth investigating is the way the parameter which affects feature and structure
representations is applied to the shortest path kernel or graph kernels in general.
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DISCUSSION

We studied dissimilarity-based classification as an approach to multiple instance learn-
ing problems. We have examined several ways of defining dissimilarity functions on
bags and choosing a set of reference prototypes. Through the experiments, we have
seen that these choices need to differ according to the assumptions that are appropri-
ate for different types of MIL problems. An assumption that works well in practice is
that the instances in a bag have the same label. Dissimilarity-based classifiers are an
effective, intuitive way to approach MIL problems. In the following, we discuss several
future directions in which this work can be extended.

Type of Data. We have seen that MIL problems are heterogeneous, and that the suc-
cess of a classifier depends on the way the data is distributed and therefore which as-
sumptions are more suitable [40, 42]. Such insight is very helpful when approaching
novel MIL problems. We believe that more steps can be taken in this direction.

From our experience, real-world problems often do not consist of just a single concept
and are not normally distributed – the scenarios we investigated in [40]. More advanced
scenarios (AND/OR combinations of instances from multiple concepts) are investigated
in [2] in the context of comparing supervised and MIL classifiers. Using toy examples,
it is shown that some learners are not able to perfectly classify (although the Bayes error
is zero) datasets with more advanced concepts.

An open question is how to assess the similarity of a toy problem and a real-life prob-
lem. Next to results of different classifiers, we could compare low-dimensional embed-
dings of the data to see whether there are any clusters or outliers in the data. It would
be also interesting to automate the toy problem generation process, with this yet to be
defined “dataset similarity” measure as an optimization criterion. This would enable
constructing synthetic datasets which have similar characteristics (such as high dimen-
sionality and heterogeneity of classes) to real datasets, but for which the ground truth
is available.

Another approach is taken in [178], where the goal is to learn a classifier which, based
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on characteristics such as number of bags, or performance of simple classifiers, can de-
cide which type of MIL classifier will be more appropriate for the problem. Datasets are
taken from three groups: semi-artificial data generated from supervised problems, MIL
image data and MIL text categorization data. Unfortunately, the experiments are done
on each of these groups separately, which seems to defeat the purpose of meta learning.
It would be interesting to investigate what these properties (other than prior knowledge
about where the datasets originate) are, and include more MIL datasets in the analysis.
We envision this approach to be similar to [97], where it is shown that selecting a classi-
fier based on dataset properties as well as cross-validation performance leads to better
results than selecting a classifier based on cross-validation performance alone.

One point that can be taken into consideration is how the bags and instances are gener-
ated. Is the relationship between bags and instances an “a part of” relationships (such
as patches in an image or paragraphs of a document) or an “is a” relationship (such as
conformations of a molecule, or multiple scales of the same image)? Are the instances
sampled randomly (e.g. patches in an image) or is a more intelligent process involved
(e.g. face detector)? Are the instances overlapping or not (such as paragraphs in a doc-
ument, or overlapping parts of text)? All of these choices influence what assumptions
can be made, and ultimately what works well in a particular problem.

Representation. This thesis has primarily considered bags as discrete sets of feature
vectors, and briefly as distributions of instances. There are more opportunities to be
explored in the latter representation. First of all, this could offer computational advan-
tages for problems with a large number of bags and/or instances. Estimating a distri-
bution per bag, and computing a dissimilarity between distribution parameters, such as
Eq. (3.5), is significantly faster than computing a dissimilarity which uses all instances,
such as Eq. (3.3), because the former scales linearly, and not quadratically, with the
number of instances. An existing work that can directly be applied to generalized MIL
problems is [120], where kernels are defined on probability distributions. The kernel
values are approximated from the available data (for example, by assuming a Gaussian
distribution and estimating the mean and variance), but in all cases, all the available
data points have an equal influence on the kernel value. It is an open question whether
the strict MIL assumption could also be used in this setting. Furthermore, it is unclear
whether bag size, a measure that was shown to be informative in Chapter 4, can be
taken into account in such formulations.

Considering bags as distributions could also offer ways to be more robust for situations
when few bags are available for training. In [52], additional training bags are generated
by shuffling instances that originate from different bags, however, this is done in an
explicit manner. This has similarities to generating additional training data by adding
noise to the features. Recently it has been shown that this corruption of features can be
done implicitly for particular types of loss functions and noise distributions [176]. In
other words, an infinite number of training objects are “generated” at just a fraction of
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the cost of explicitly adding those objects to the training data. Perhaps approaches such
as [52] can also benefit from such an implicit formulation.

Another research direction is representing bags as attributed graphs, as is done in Chap-
ter 7, and in [200]. There is a fundamental difference between these representations.
In [200], the graph structure is derived from the instances, i.e., instances that are close
together in the feature space are connected by an edge. This essentially assigns larger
weights to instances in dense areas of the feature space. It is therefore an assumption
that instances in such areas are more informative, as they will have a larger effect on the
similarity of bags, but no extra information is introduced into the problem. In Chap-
ter 7, however, the graph structure is derived from a different source, such as the spatial
adjacency of image segments, which introduces additional information. This is exactly
the reason why the datasets in Chapter 7 are different from the MIL datasets used else-
where in the thesis: for the MIL datasets, such additional information sources are not
directly available.

Prototype Selection. In this thesis, we have primarily considered the scenario where
all the training data is used as prototypes. However, prototype selection [30, 134] can be
employed to reduce the dimensionality of the dissimilarity space, create a more robust
classifier, and gain understanding of the informative prototypes.

One issue with prototype selection is that for MIL, we have encountered some highly
non-metric, yet still informative dissimilarities. In particular, some of these do not only
violate the triangle inequality, but also the identity and symmetry properties. As pro-
totype selection often relies on the concept of distances, such non-metric dissimilarities
could be problematic, and it is unclear whether prototype selection would still be worth-
while.

As an alternative to traditional prototype selection, generating prototypes could also be
of interest. As we demonstrated in Chapter 4, artificially generated instances or bags
can be informative prototypes. The question is whether it would be possible to avoid
computing the full dissimilarity matrix, and instead infer where in the space informa-
tive prototypes would reside, or what kind of properties (such as label, bag size) these
prototypes would have.

Classifier Evaluation. Although it has long been acknowledged there is no such thing
as the best classifier [191], it is surprising how many papers still propose novel classi-
fiers and claim their superiority due to slightly higher performance on a few datasets.
We believe that next to absolute measures of performance [64] there should be more em-
phasis on other evaluating other metrics, relevant for applications where the proposed
classifiers will be used.

An interesting possibility is the performance that can be achieved during a fixed amount
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of computation time. Computation time is not an issue for many benchmark MIL
datasets, but becomes more crucial in problems with large numbers of bags, instances
and/or features. For example, the COPD dataset in Chapter 6 was already problematic
for some (nave implementations) of classifiers. Another interesting, but more difficult
to define performance metric, is the performance per fixed amount of time, spent by a
novice user using the classifier. The goal would be to measure how intuitive a classifier
is, for example, how difficult it is to set the classifier parameters for a novel problem.

For MIL classifiers in particular, it is important to realize that in many cases, the best
bag classifier will not coincide with the best instance classifier. For applications where
the prediction of instance labels is important, the bag performance is therefore not an
objective evaluation measure. Next to more instance-labeled MIL datasets, alternative
evaluation measures are also needed in this case. If both bag and instance performance
are important, perhaps an interesting direction is to look at a curve for both quantities,
in a similar fashion as is done in [146] for the trade-off of performance and feature
selection stability.
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[71] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. Multi-instance kernels. In Interna-
tional Conference on Machine Learning, pages 179–186, 2002. Pages: 7, 9, 10, 20, 28, 30, 34, 36,
37, 48, 62, 79, 98, 100, 113
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SUMMARY

Multiple instance learning (MIL) is an extension of supervised learning where the ob-
jects are represented by sets (bags) of feature vectors (instances) rather than individual
feature vectors. For example, an image can be represented by a bag of instances, where
each instance is a patch in that image. Only bag labels are given, however, the standard
assumption is that that a bag is positive if and only if it contains a positive, or concept
instance. In other words, only concept instances are informative for the bag label. The
goal is to learn a bag classifier, although an instance classifier may also be desired. This
scenario is suitable for applications where objects are heterogeneous and representing
them as a single feature vector may lose important information, and/or in cases where
only weakly labeled data is available.

Several approaches to MIL exist. Instance-based approaches rely on stronger assump-
tions about the relationship of the instance labels and the bag labels, and define a bag
classifier through an instance classifier. Bag-based approaches learn a bag classifier di-
rectly, often by converting the problem into a supervised problem. These methods often
disregard the standard assumption, and instead use the collective assumption, where all
instances are informative. One way to convert the problem into a supervised one, is to
describe each bag by a vector of its distances to a set of reference prototypes. In this
so-called dissimilarity representation, supervised classifiers can be used. The goal of
this thesis is to study the dissimilarity representation as a method for dealing with mul-
tiple instance learning problems. We address the questions of defining a dissimilarity
function and choosing a reference set of prototypes, while considering the assumptions
that these choices implicitly make about the problem.





SAMENVATTING

Multiple instance learning (MIL) is een uitbreiding op gesuperviseerd leren waar de
voorbeelden niet individuele objecten zijn, maar groepen (zogenaamde bags) van ob-
jecten (zogenaamde instances). Zo kan een beeld worden beschreven door een bag,
waarbij elke instance een stukje van het beeld is. Er worden alleen labels (zoals ja/nee)
gegeven voor de bags, niet voor de instances. Vaak wordt er aangenomen dat een bag
positief is voor een bepaald concept als, en alleen als, minstens n van de instances posi-
tief is, oftewel representatief is voor dat concept. Met andere woorden, zijn alleen deze
concept instances verantwoordelijk voor de label van de bag. Het doel is om een bag
classifier te leren die nieuwe bags van labels kan voorzien, howevel een instance classi-
fier die nieuwe instances van labels voorziet, ook interessant zou kunnen zijn. Deze sce-
narios zijn relevant voor toepassingen met heterogene voorbeelden, waardoor elk voor-
beeld als n featurevector beschrijven informatie verliest, en/of in toepassingen waar
geen lokale annotaties beschikbaar zijn.

Er bestaan verschillende aanpakken voor MIL. Instance-gebaseerde aanpakken maken
meer aannames over de relatie tussen de labels van de instances en van de bags. De
bag classifier wordt dan gedefinieerd door de uitkomsten van instance classifiers te
combineren. Bag-gebaseerde aanpakken leren direct een bag classifier, vaak door het
omzetten van het probleem in een standaard gesuperviseerd probleem. Deze metho-
den negeren vaak de standaard aanname, en gebruiken in plaats daarvan een collectieve
aanname waarbij alle instances, niet alleen de concept instances, informatief zijn. Eén
van de manieren om een bag te beschrijven met één feature vector is door het te repre-
senteren door middel van de afstanden naar andere, referentie bags: het zogenaamde
dissimilariteitsaanpak. Met deze representatie kunnen er weer gesuperviseerde classi-
fiers gebruikt worden. Het doel van dit proefschrift is om het dissimilariteitsaanpak te
bestuderen als mogelijkheid om MIL problemen op te lossen. Wij richten ons op de vra-
gen van het definiëren van een dissimilariteitsfunctie en het kiezen van een referentieset
van bags, met inachtneming van de impliciete aannames van deze keuzes.





CURRICULUM VITAE

Veronika Cheplygina was born in 1986 in Moscow, Soviet Union. In 1999, she moved
to the Netherlands, where she attended the International School of The Hague. In 2004
she started her studies in Media & Knowledge Engineering at the Delft University of
Technology. After receiving her BSc degree in 2007, she worked as a board member at
W.I.S.V. ‘Christiaan Huygens’, the student society for mathematics and computer sci-
ence students. Veronika became acquainted with pattern recognition during her MSc
degree, which she successfully completed in 2010. Her thesis, “Random Subspace
Method for One-Class Classifiers” about detecting outlier images in parcels was su-
pervised by David Tax and partly carried out at Prime Vision.

In 2011 Veronika started her PhD project under the supervision of Marco Loog and
David Tax. She investigated the dissimilarity representation as an approach to solve
multiple instance learning problems in several applications, including computer aided
diagnosis of chronic obstructive pulmonary disorder. As part of her PhD, she visited
the Machine Learning & Computational Biology group at the Max Planck Institutes
in Tübingen, Germany, and briefly, the Image Group at the University of Copenhagen,
Denmark. Here she collaborated with Aasa Feragen on classification of autism spectrum
disorder from brain networks.

Veronika is currently a postdoctoral researcher at the Biomedical Imaging Group Rot-
terdam at the Erasmus Medical Center in Rotterdam, the Netherlands.





LIST OF PUBLICATIONS

Journals

1. Veronika Cheplygina, David M. J. Tax, and Marco Loog. Multiple instance learn-
ing with bag dissimilarities. Pattern Recognition, 48(1):264-275, 2015.

2. Ethem Alpaydın, Veronika Cheplygina, Marco Loog, and David M. J. Tax. Single-
vs. multiple-instance classification. Pattern Recognition, accepted, 2015.

3. Veronika Cheplygina, David M. J. Tax, and Marco Loog. Dissimilarity-based en-
sembles for multiple instance learning. IEEE Transactions on Neural Networks and
Learning Systems, accepted, 2015.

4. Veronika Cheplygina, David M. J. Tax, and Marco Loog. On classification with
bags, groups and sets. Pattern Recognition Letters, accepted, 2015.

5. Wan-Jui Lee, Veronika Cheplygina, David M. J. Tax, Marco Loog, and Robert P. W.
Duin. Bridging structure and feature representations in graph matching. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 26(05), 2012.

Conferences

1. Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Marleen de Bruijne and
Marco Loog. Label stability in multiple instance learning. In Medical Image Com-
puting and Computer Assisted Intervention, accepted, 2015.

2. Veronika Cheplygina, David M. J. Tax, Marco Loog, and Aasa Feragen. Network-
guided group feature selection for classification of autism spectrum disorder. In
Machine Learning in Medical Imaging, pages 190-197. Springer, 2014.

3. Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Jesper Holst Pedersen,
Marco Loog, and Marleen de Bruijne. Classification of COPD with multiple in-
stance learning. In International Conference on Pattern Recognition, pages 1508-1513,
2014.



152 SAMENVATTING

4. Yenisel Plasencia Calaña, Veronika Cheplygina, Robert P. W. Duin, Edel Garcı́a
Reyes, Mauricio Orozco-Alzate, David M. J. Tax, and Marco Loog. On the infor-
mativeness of asymmetric dissimilarities. In Similarity-Based Pattern Recognition,
pages 75-89. Springer, 2013.

5. Veronika Cheplygina, David M. J. Tax, and Marco Loog. Combining instance in-
formation to classify bags. In Multiple Classifier Systems, pages 13-24. Springer,
2013.

6. Veronika Cheplygina, David M. J. Tax, and Marco Loog. Class-dependent dis-
similarity measures for multiple instance learning. In Structural, Syntactic, and
Statistical Pattern Recognition, pages 602-610. Springer, 2012.

7. Veronika Cheplygina, David M. J. Tax, and Marco Loog. Does one rotten apple
spoil the whole barrel? In International Conference on Pattern Recognition, pages
1156-1159, 2012.

8. David M. J. Tax, M. Loog, Robert P. W. Duin, Veronika Cheplygina, and Wan-Jui
Lee. Bag dissimilarities for multiple instance learning. In Similarity-Based Pattern
Recognition, pages 222-234. Springer, 2011.

9. Veronika Cheplygina and David M. J. Tax. Pruned random subspace method for
one-class classifiers. In Multiple Classifier Systems, pages 96-105. Springer, 2011.


