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Abstract: All drivers have individual ways of driving. Still, there are groups of drivers with more or less similar characteristics. In
this research, 28 drivers from Chengdu city (P.R. China) participated in an experiment where car following behaviour was
measured with GPS devices. In every measured trip there was a leading and following vehicle both equipped with a GPS
device. Drivers are classified based on a Driver Behaviour Questionnaire and observed acceleration and deceleration
behaviour. The result shows four distinct classes of drivers: macho drivers, careful/inexperienced drivers, smooth going/
professional drivers, and experienced/fast drivers. Drivers in the different classes give different emission of air pollution and fuel
consumption. Saturation flows are determined from the trajectories and vary between different driver types. The measured
trajectories have been analysed in detail to determine some parameters for the Wiedemann 74 model. Most default parameters
in the VISSIM program appear to be unsuited for the simulation of driving behaviour measured in the experiment. The emissions
and fuel consumption calculated by a simulation model with default parameters are not consistent with the empirical data. The
calibration done for different driver types shows that several model parameters are significantly different for the different driver
classes.

1 Introduction
Every driver has his or/her own characteristic way of driving.
However, it is practically impossible to have an individual
behavioural model for every driver. Most traffic simulations
models have one, two or at most three types of drivers of passenger
cars and in most studies; the difference in behaviour is based on
assumptions. The fact that drivers all have passed an examination
before they got a driver license makes the driving behaviour
uniform to a certain extent. Still, Li [1] found that there are
important differences in the way drivers apply the rules of the road,
both within a group of Chinese drivers and a group of Dutch
drivers. Drivers develop their own driving style based on
experience, character, skills, and the context of their journey [2].

One's experience is an important factor influencing the driving
style. Novice drivers are often more careful and hesitating than
experienced drivers. In many countries, novice drivers have to get
sufficient experience of driving in real traffic before they obtain a
driving license. In these countries, the novice's skills just to operate
and control a vehicle are not considered to be sufficient to obtain a
driving license.

The research reported in this paper has been done in China with
Chinese drivers. In China, the situation with respect to drivers,
driving licenses and driver experience differs from most Western
countries. The driving examination in China is limited to the
knowledge of the rules of the road and the skill to operate and
control a vehicle. Driving in real traffic is only a minor part of the
examination. That has the consequence that novice drivers still
have to learn how to drive in real traffic. Furthermore, the
percentage of drivers in China who have their license <3 years is
much higher than that is in a Western country, such as the
Netherlands (38% novice drivers in China versus 3.2% in the
Netherlands in 2012 [1]). The learning process of novice drivers is

not controlled in the sense that they do not learn how to develop a
uniform driving style.

It appears that drivers can be categorised in groups of people
who have similar driving behaviour. Some researchers have
reported on the classification of drivers based on their actual
driving behaviour (e.g. [3, 4]) using in-car monitoring systems.
These researchers wanted to classify drivers in order to develop
driver-specific in-car support systems.

Making a distinction in aggressive, average, sensation seeking,
and cautious drivers (e.g. [5, 6]) requires first of all criteria to
classify the drivers. Rather few studies have been done to
investigate the relation between driver characteristics and driving
behaviour in the real-life conditions. Brackstone [7] studied the
possible relation between psychological types and driving
behaviour using instrumented vehicles on a freeway. He referred to
previous studies showing that the headway at higher speeds has a
relationship with driver's age [8]. Brackstone registered some
characteristics of the drivers such as aggressiveness/passiveness
and sensation-seeking attitudes and found several correlations
between psychological traits and driving behaviour. His research
was based on a small number of drivers and his statistical analysis
has limited depth.

Nam et al. [9] used a simple aggressiveness characteristic to
investigate the impact of this characteristic on emissions. Also,
Tang et al. [5] studied the impact of driver characteristics on fuel
consumption and emissions. They developed a car, following
model for three types of drivers (aggressive, neutral and
conservative). However, Tang et al. [5] did not have specific
criteria for the classification of drivers and did not have any
empirical data to calibrate their models. Constantinescu et al. [10]
used driving characteristics like speeds and accelerations to
classify drivers into six groups. Soria et al. [6] classified drivers
into three classes based on lane-changing behaviour and speeds.
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They measured car following behaviour by analysing video data
from an instrumented car. The speed and distance to the car in front
were measured and analysed. They found differences in the
calibrated parameters of the CORSIM simulation model for
different driving conditions. Ma and Andréasson [11] also used a
single instrumented vehicle to record car following behaviour,
without considering characteristics of the driver.

Li et al. [12] and Lu et al. [13] analysed videos to extract
trajectories of several vehicles. These trajectories were used to
calibrate parameters of the car following model in VISSIM. Both
Li et al. [12] and Lu et al. [13] observed traffic at urban
intersections and they both showed how acceleration, deceleration
and speed profiles could be determined from trajectories. However,
no information about the drivers was considered in their research.

Wolshon and Hatipkarasulu [14] used GPS data of leading and
following cars to measure distance and speeds. They used the data
to calibrate CORSIM, but they did not distinguish different driver
behaviour. Durrani et al. [15] investigated the effect of the vehicle
class on the parameters of the Wiedemann 99 model. They found
that the class of the leading vehicle (passenger car or heavy
vehicle) has an important effect on the model parameters. Ossen
and Hoogendoorn [16] analysed trajectories of vehicles on
freeways and concluded that the match between driver behaviour
and car-following models were variable: the best matching model
differs per driver and even the most suitable model for the
behaviour of one driver could change in time. Higgs et al. [17]
investigated the behaviour of several truck drivers using
instrumented vehicles. They calibrated the parameters of the
Wiedemann 74 model for each driver separately, assuming that
each driver behaves deterministically and mechanically. They
optimised all parameters simultaneously. Therefore, no information
was derived about the sensitivity of the model performance on the
values of the different parameters. Higgs et al. [17] also showed
that the boundary values in the Wiedemann 74 model depend on
the speed of the drivers and the driver characteristics, which was
not considered in the original Wiedemann 74 model. Asamer and
van Zuylen [18] calibrated parameters of the Wiedemann model for
snowy weather conditions. They found that only a few parameters
were relevant for the calibration of the model. Also, Li et al. [12]
showed that several model parameters did not have a significant
influence on the quality of the calculations with the Wiedemann
model.

The research questions of this paper are, whether characteristics
of drivers can be classified in uniform groups, whether the different
groups of drivers give differences for the parameters of a
simulation program, and what is the impact of the differences in
characteristics on traffic performance such as saturation flow,
speed, fuel consumption and emissions. This paper discusses the
results based on the analysis of measurements of trajectories from
56 trips made by 28 different Chinese drivers. Section 2 describes
how to classify these drivers into four groups. The trajectories were
measured on an urban route with 20 signalised intersections in
Chengdu city (P.R. China) using GPS devices installed in two cars
following each other. Section 3 gives details of these observations.
In Section 4 the relation between trajectories and fuel consumption
and emissions of air pollution is discussed. The trajectories are
analysed in Section 5, where the research question is whether the
typology of the driver has a significant influence on certain
characteristics of a trip. In Section 6 the relation between driver
characteristics and parameters of a simulation model is investigated
(the Wiedemann 74 model). The research question is whether one
simulation model fits all kinds of drivers. Section 7 concludes the
paper with discussion.

In this paper, we will use the masculine (‘he’ and ‘his’) for
drivers, although 21% of the drivers in our test are women. The
results apply to all drivers involved in the experiment. Gender
appears not to be an important factor in the classification of
drivers.

2 Driver classification
Although all drivers have to follow the same rules of the road
traffic, there are major differences in their styles of driving. The

rules of the road leave considerable opportunities to choose your
own way of driving, e.g. the cruising speed – as long as it remains
below the maximum speed – the acceleration, lane changing,
merging, the reaction time, and the deceleration. Furthermore,
drivers may ignore certain rules, for instance in overtaking and
choice of lanes. Giving and taking priority is also done according
to an individual style. The difference between drivers of passenger
cars and truck drivers is evident, but there are also differences
between drivers of the first category. Of course, differences in
driving style will lead to different traffic behaviour. This has been
taken into account in some simulation programs where a distinction
can be made between different driving types, e.g. aggressive and
cautious drivers.

Even though all drivers are different, it is practically impossible
and also unnecessary to have a specific behavioural model for
every driver. It appeared that drivers can be categorised in groups
of people who have similar driving behaviour. Li et al. [19] used
not only the driving behaviour but also the outcomes of a self-
assessment to characterise drivers. They investigated the
characteristics of 30 drivers in Changsha. By applying factor
analysis, they found that the drivers could be classified into four
groups. Within a group, the characteristics of the drivers are similar
with respect to acceleration at low, medium and high speeds, cruise
speed and aggressiveness, while between the groups there are
significant differences. Four factors could be identified that
explained 75.9% of the variation in all driving characteristics. This
reduction of the driver characteristics to four factors is possible
because of the correlation that exists between all characteristics so
that not all characteristics have to be retained.

For the drivers participating in the car-following experiment in
Chengdu, we followed the same classification procedure. All
drivers are Chinese with different background and experience. The
drivers were asked to fill in a Driver Behaviour Questionnaire
(DBQ) with questions about their personal characteristics, driving
behaviour and their history as a driver. The DBQ gave a self-
assessment of the drivers. The relation between the answers to the
DBQ and real in-car driver behaviour was investigated and the
results showed that there was consistency between self-assessed
driving behaviour and reality. From the answers to the DBQ, an
aggressiveness score of the driver was determined. The
aggressiveness score is calculated from several items in the DBQ,
such as ‘crossing stop-line during the red phase’, ‘offences in the
last year’, etc. This score appears to be an important explanatory
variable for driving behaviour. The characteristic ‘aggressiveness’
is much wider than the definition given by the NHTSA [20]. It
deals with behaviour that is not necessarily aimed at ‘terrorising’
other road users and also includes behaviour that is against the
rules of the road. The DBQ answers are combined with
characteristics of driving behaviour such as the acceleration and
deceleration rates at different speeds. The characteristics of drivers
are described by the following parameters:

• DBQ aggressiveness score,
• driving experience,
• mean acceleration and its standard deviation at low speeds,
• mean acceleration and its standard deviation at higher speeds,
• mean deceleration and its standard deviation at low speeds, and
• mean deceleration and its standard deviation at higher speeds.

The characteristics of the drivers (from self-assessment and in-car
test) are analysed with factor analysis with the objective to obtain a
classification of the drivers in groups with similar characteristics.
The factors from the factor analysis are

F1 related to deceleration and acceleration at low speeds;
F2 related to accelerations at higher speeds;
F3 related to aggressiveness score and decelerations at higher
speeds;
F4 related to accelerations at very low speeds and driving
experience.

The following typology was identified [1]:
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(i) Aggressive, macho, unsteady;
(ii) Conservative, cautious, novice;
(iii) Professional, smooth going;
(iv) Experienced, fast driving.

The main characteristics of each group are given in Table 1. The
procedure as developed for the 30 drivers in Changsha was also
followed in the experiment in Chengdu. Table 2 shows the
classification and the main characteristics (Table 3). 

The average characteristics of the drivers are similar in the
initial data set in Changsha and the group drivers in Chengdu.

Therefore, we classified the Chengdu test drivers according to the
same four factors as was done with the drivers in Changsha. These
four factors explain 67% of the variance of the properties of the
Chengdu drivers.

From the further analysis it becomes clear that group 2
represents the novice drivers, young with pleasure to drive. Both
type 2 and 4 have few recorded offenses. In the group of type 3
there was one driver who was involved in 4 accidents, the others 0
or 1. Driver type 4 has the lowest aggressiveness score.

3 In-car test data collection
The driving patterns of these 28 drivers were measured while they
were driving as leader–follower pairs in two consecutive driving
cars. Test trips were made on a track in the city of Chengdu by
drivers using their own ordinary passenger car. The length of the
track is 8.390 km (5.25 mi) and is shown in Fig. 1; the track
consisted of ordinary urban roads with 22 signalised intersections
and the test trips were executed in normal traffic conditions. The
maximum speed is 50 km/h. The two drivers of each pair were
asked to follow each other in the way as they normally would do.
The roles of the driver and follower were interchanged resulting in
56 test drives with duration of on the average 1840 s each. This
results in >51,500 observations.

The data were obtained with portable GPS devices (Garmin
64S) installed in each car. The position and speed were registered
with 1 Hz frequency. Other researchers, e.g. Song et al. [21–23]
and Constantinescu et al. [10] have collected trajectory data for
car-following model calibration and driver classification using the
same observation method with satisfactory results.

The accuracy of the GPS is determined with the method which
is also applied by Serr et al. [24]. The GPS device was placed for a
longer time on the same place and the positions were registered
once per second. The standard deviation of the position is 1.4 m for
the north–south direction and 1.29 m for the east–west direction,
and the 95-percentile of the distance to the mean position was 3.17 
m (see Fig. 2). 

The changes in position between two measurements can be
interpreted as wrongly measured speeds. These errors were not
relevant because 95% of these erroneous speeds were <0.09 m/s.

The speed measurements by the GPS device were tested by a
car driving on a flat, straight road using cruise control with a speed
of 100 km/h (27.8 m/s, 62.5 mi/h). The standard deviation of the
measured speeds was 0.094 m/s (0.33 km/h, 0.21 mi/h), and 95%
of the speeds were within a range of 0.37 m/s (1.33 km/h, 0.83 
mi/h). Accelerations have a standard deviation of 0.11 m/s2. These
two tests showed that the GPS equipment has acceptable accuracy
and can determine the position of the cars within 3 m in 95% of the
measurements.

Another test was made by measuring the distance between two
GPS receivers placed in a car on a distance of 3.6 m. After the
initial phase (10 min) the measured distance between the two
devices remains rather constant with a standard deviation of the
measured distances of 1.5 m (Fig. 3). The application of a Kalman
filter reduces the standard deviation of the measured distances to
1.2 m. The difference between the speeds measured by both
devices had a standard deviation of 0.36 km/h and 95% of the
measured speeds differences were <1.07 km/h.

The GPS data were collected with a frequency of 1 Hz, which
can be considered as sufficient for a car following model
calibration [25]. The time scale of processes that were studied is
mainly determined by the driver reaction time which is in the order
1 to 2 s. The positions measured by GPS were matched to a digital
road map and the errors in the positions were reduced by applying
a Kalman filter. Situations that another car merged between the
leading and the following car were eliminated from the
observations. The same was done for moments that the following
car did not drive on the same lane as the leading vehicle. We used
the resulting positions to create the vehicle trajectory and to
determine the number of stops and waiting time for each test trip.

Table 1 Driving type category as determined in the survey
in Changsha [1]
Type Factor Description Type name
1 high F2; high

F3
high-aggressive score, high

acceleration and high
deceleration, high speed, and

more accidents

aggressive,
macho, unsteady

2 low F2; low
F3; low F4

low-aggressive score, short
driving experience, low

acceleration at all kinds of
speed, low deceleration at high

speed, and more accidents

conservative,
cautious, novice

3 high F1; high
F4

experienced, high acceleration
and deceleration at low speed,

more offences registered

professional,
smooth going

4 high F2; low
F3; high F4

experienced, low aggressive
score, always high

acceleration, but low
deceleration at high speed,
less recorded offences and

less accidents

experienced, fast
driving.

 

Table 2 Characteristics of the DBQ and in-car test sample
in Chengdu (The standard deviation of the scores are in
brackets)
Item n = 28 Note
mean age, y 38.04 (8.74) —
male individuals, % 78.6 —
professional driver, % 16 —
mean driving experience in
years

8.27 (5.00) —

enjoy driving 8.43 (2.04) {1 = dislike; 10 = enjoy very
much}

self-estimated driving type 4.82 (2.36) {1 = very conservative; 10 
= very aggressive}

other estimated driving type 4.64 (2.31) {1 = very conservative; 10 
= very aggressive}

self-estimated driving skill 7.46 (1.86) {1 = very poor; 10 = very
excellent}

drivers with offence(s)
recorded last year, %

57.1 —

drivers involved in
accident(s) in previous 5
years, %

42.9 —

DBQW aggressive score — 63.07 (12.14)
 

Table 3 Classification of the 28 participants of the car
following test
Type Description Number Percentage
1 aggressive, macho, unsteady 5 17.86
2 conservative, cautious, novice 14 50.00
3 professional, smooth-going 5 17.86
4 experienced, fast driving 4 14.29
total — 28 —
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4 Driver style-specific emissions and fuel
consumption
From the GPS measurements the trajectories are determined. Fig. 4
shows an example of the trajectories of a leader and following car. 
From the trajectories the free driving speed, stops, acceleration and
deceleration can be determined. In total 56 trajectories were
analysed. The first analysis of the trajectories was made to
determine whether driving style has an influence on fuel
consumption and the emission of air pollution.

Emissions and fuel consumption of single vehicles can be
measured directly by portable emissions monitoring systems and
fuel flow meters. Alternatively, one can use a model to estimate
these quantities from the characteristic of the car, the road and the
driving pattern.

Several models to estimate emissions have been developed (e.g.
[26–29]). The US Environmental Protection Agency [30] has
developed the MOBILE6 model for this purpose. The model is
based on measurements of fuel consumption and emissions of
different cars in a laboratory environment. In 2006 the
Comprehensive Modal Emission Model (CMEM) has become
available based on MOBILE6, which contains a database of
various motor vehicles. This model not only calculates emissions
and fuel consumption in different driving conditions but also
simulates the effect of the age of a motor vehicle, the state of

maintenance, ambient air temperature etc. [31]. These quantities
are given as a function of the vehicle-specific power (VSP) which
is the power that the engine should deliver for driving at a certain
speed v and achieving an acceleration a. In the CMEM manual a
simplified formula is given. This formula is applicable for the most
common passenger cars in the USA (formula 4.1 in the CMEM
manual)

VSP/ton = 0.132v + 0.000302v2 + 1.1v ⋅ a kW/ton (1)

where v is the vehicle speed (in m/s) and a is the vehicle
acceleration (in m/s2). The first term, proportional to v can be
considered as the rolling resistance, the second one as the air
resistance and the third one as the power needed to accelerate the
vehicle.

There are some other emission models common in the
literature, such as the one developed by Jimenez-Palacios [28] and
used by Song et al. [21–23]:

VSP = 0.132v + 1.1v ⋅ a + 0.0003202v3 (2)

The first two terms represent the power for rolling resistance and
acceleration; the last term with v3 is rather peculiar since the air
resistance is generally proportional to v2.

As the CMEM is widely available and used by many
researchers, we use the formula (1) for the calculation of the VSP
and later we use the CMEM software to analyse emissions and fuel
consumption.

For the comparison of fuel consumption and air pollution
emission between different drivers, we calculated these quantities
from their measured trajectories, assuming that they would all
drive in the same car. The calculation according to (1) was done for
every trajectory and averaged per driver type. The hypothesis is
that different driver types will have different values for the VSP.
Table 4 shows the comparison between different driver types. The
hypothesis H0 that driver type 1 has the same average VSP as type
2 is less probable than 1% and should be rejected, also the
hypothesis that type 1 and 3 have the same VSP is less probable
than 1% and for the comparison between type 1 and 4 the
probability that the VSP values are the same is <1%. The
difference between driver type 3 and driver type 4 is significant at

Fig. 1  Route of the test track in Chengdu, the lower left part of the route
was used for detailed analysis of emissions and fuel consumption

 

Fig. 2  Example of histogram of position measured with the GPS on a fixed
position

 

Fig. 3  Measured distance between two GPS receivers in a car. The real
distance was 3.6 m

 

Fig. 4  Trajectories of a leading (blue) and the following car (red, dashed)
on the route shown in Fig. 1

 
Table 4 Comparison of the average VSP for 56 trips and
the standard deviations
Driver type Number of

measured trips
Mean VSP,
[kW/ton/m]

Standard
deviation

[kW/ton/m]
1 10 1.632 0.027
2 28 1.571 0.026
3 10 1.598 0.055
4 8 1.571 0.026
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P < 1%. Driver types 2, 3 and 4 are not significantly different from
each other [32].

It is noteworthy that this global analysis does not look in detail
into the different characteristics of the trajectories. Even though the
routes taken by all participants are the same, there might be
differences in number of stops and queues per trip. This has been
analysed in more detail for the trajectories on the South branch of
the test route (see Fig. 1) with four signalised intersections. The
number of stops, delay, waiting time are estimated from the
trajectories. The emission of hydrocarbons [HC], carbon dioxide
[CO2] and nitrogen monoxide and dioxide [NOx] and fuel
consumption per stop are estimated from the trajectories and the
CMEM. It is obvious in these results that there are significant
differences in the additional air pollution emission and fuel
consumption from one-stop for different types of drivers. The
differences between driver types 2, 3 and 4 are too small to be
significant.

Fig. 5 shows the relation between fuel consumption and the
number of stops for different types of driver. Every stop is a
sequence of deceleration and acceleration and the acceleration
requires more fuel than driving at a constant speed. The fuel
consumption Fci for driver type i as a function of stops on a
journey can be written as

Fci ns = Fci 0 + ai ⋅ ns (3)

where Fci (0) is the fuel consumption for the journey without stops
for driver type i; ai is the additional fuel consumption per stop for
driver type i and ns is the number of stops.

The linear relations between fuel consumption and stops are
shown in Fig. 5. Each point in the graph represents a trip with the
fuel consumption calculated for the trip and the number of stops
made. Apparently, the trajectories of driver type 4 do not make
difference between driving at a constant speed and making a stop.
Table 5 shows also the regression coefficients for the influence of
stops on carbon dioxide CO2, carbon monoxide CO, unburned fuel
HC, and nitrogen oxides NOx. The trajectories of driver type 4 do
not show any significant influence of stops on emissions. Driver
trajectories of driver type 3 don't show a relation between stops and
HC and NOx emissions.

Besides, the cruise speed differs per driver type (see Table 6),
where driver type 1 has the highest cruise speed and type 2 has the

lowest. The t-test of the differences in cruise speed shows that there
is no significant difference between type 1 and 3, and between type
4 and 3.

This analysis of the trajectories shows that there are differences
between drivers of different types. The differences are not always
statistically significant. That is due to the limited number of test
drivers and possibly because the differences are small. A more
detailed analysis is necessary to find out in what way the driving
style has an influence on the characteristics of trajectories and fuel
consumption and air pollution emissions. This has been done by
analysing the car following behaviour of the different kind of
drivers in more detail in the following section. From the observed
trajectories some flow characteristics and parameters of a car
following model are calibrated for each driver type separately.

5 Trajectory analysis
The differences between the different driver types with respect to
the emissions and fuel consumption are visible and for a part
statistically significant. Due to the small sample of drivers, not all
differences are statistically significant. In the previous section we
analysed the trajectories without considering that they are obtained
pairwise. In this section, we analyse trajectory pairs in order to find
out the specific car following features.

First of all, we analyse the space between cars at a stop and the
time headway between two cars after a stop. That time headway is
an indicator for the saturation flow [33]. The questions to be
answered is whether the saturation flows that can be realised and
the queuing distance at a stop depends on the type of drivers. Fig. 6
shows the typical trajectories of two cars. The distance AX
between the cars when they stop behind each other is determined as
the mean distance during the time that the vehicles have a speed
close to zero (to take into account that speeds are not fully
accurately measured). Speeds <0.1 m/s are considered as zero
speed.

The distance of two cars when stopped is given in Table 7. The
table shows also the time headway between the leading and the
following vehicle after they drive again after a stop. The saturation
flow at intersections is inversely proportional to this time headway
[32, 33].

The distance between two vehicles (including the length of the
leading vehicle which is 4.5 m) differs significantly at p < 5%
comparing driver type 1 versus type 3, and type 2 versus type 3.
The differences between type 1 versus type 2 and type 3 versus
type 4 are significant at the level p < 10%. The differences in (time)

Fig. 5  Fuel consumption as a linear function of the number of stops for the
four-driver types

 
Table 5 Estimated fuel/emission per stop for each driver
type (between brackets the standard deviation)
Driver type Type 1 Type 2 Type 3 Type 4
fuel (grams/stop) 18.8 (7.0) 16.5 (2.1) 16.4 (3.5) Not sig.
HC (grams/stop) 0.07 (0.03) 0.02 (0.003) Not sign. Not sig.
CO2 (grams/stop) 52.6 (21.7) 51.7 (6.6) 53.7 (10.8) Not sig.
NOx (grams/stop) 0.09 (0.03) 0.03 (0.005) Not sig. Not sig.

 

Table 6 Cruise speed per driver type
Driver class Cruise speed, km/h Standard deviation, km/h
type 1 55.8 3.3
type 2 48.2 3.5
type 3 54.0 4.6
type 4 51.1 2.9

 

Fig. 6  Example of trajectories of a pair of vehicles stopping, waiting and
accelerating
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headway are significant (at p < 5% level) between type 1 and type
3, as well as between type 1 and type 4. The differences are
significant at 10% level between type 2 and type 3, and between
type 2 and type 4. If we take the saturation flow at intersections to
be inversely proportional to the time headway, this result gives
evidence that the saturation flows for type 1 and 2 are much lower
than the standard saturation flow (1800 veh/h) which is observed in
most Western countries [33]. This finding confirms the analysis of
Li et al. [34] who found that saturation flows at intersections in
some Chinese cities are about 30% lower than the values observed
on some intersections in the Netherlands. Both the macho (type1)
and novice drivers (type 2) have these remarkable longer
headways, while the experienced and smoothly driving types have
headways and consequently a saturation flow that are similar to
what is measured in most Western countries.

The saturation flow is an important factor for traffic control. A
low saturation flow gives a low capacity of intersections which
could lead to congestion. Congestion increases the fuel
consumption for all drivers. Therefore, the low saturation flow has
a collective, not an individual effect. Most simulation programs do
not have the saturation flow as a model specification parameter, but
the saturation flow is the result of the driver model and a correct
saturation flow is often used as target for calibration [12, 18].

In the characteristics of drivers, the acceleration and
deceleration at different speeds are distinguishing features, as
described in Table 1. For the four types of drivers, the relation

between speeds and maximum acceleration and deceleration were
determined from the 95-percentile of accelerations and
decelerations for speeds in bins of 1 km/h. In the stimulus–
response car following models, the assumption is that the
acceleration and deceleration of following vehicle depend on the
speed difference and the distance between the leader and the
following vehicle [35]. In the next section we calibrate the
Wiedemann74 model, where the accelerations and decelerations
are assumed to depend on the general status of the following
vehicle (e.g. free driving, braking, accelerating) and the
characteristic of the driver behaviour, i.e. the maximum
accelerations and decelerations. We determine these characteristics
according to the measured trajectories. Fig. 7 shows the relation
graphically and the linear regression line for driver type 1. The
common assumption is that acceleration is the highest at low
speeds. In Fig. 7, it is visible that this assumption is not completely
realistic since the accelerations do not fit the regression line well at
speeds lower that 5 km/h [17]. Still the regression has significant
coefficients for all driver types, as shown in Tables 8 and 9. The
regression relation is given by

bmax = p1v + p2 (4)

where p1 and p2 are regression coefficients and bmax is the
maximum acceleration desired by a driver (approximated by the 95
percentile of the observed accelerations). In the same way, the

Table 7 Measured distances between vehicles when stopped and time headway after a stop
Type Distance AX, m Standard deviation, m Error, m Headway, s Error, s
1 8.08 2.79 0.51 2.87 0.33
2 8.99 2.68 0.28 2.86 0.55
3 10.42 2.42 0.55 1.94 0.21
4 8.81 1.29 0.65 2.09 0.18

 

Fig. 7  Relation between speed and 95 percentiles of the acceleration for driver type 1
 

Table 8 Regression coefficients and their standard deviations of the maximum accelerations bmax depending on the speed v
bmax = p1*v + p2 R2

Type p1 (standard deviation) p2 (standard deviation)
1 −0.011 (0.002) 1.52 (0.06) 0.42
2 −0.016 (0.001) 1.47 (0.04) 0.78
3 −0.016 (0.001) 1.64 (0.07) 0.75
4 −0.019 (0.001) 1.62 (0.04) 0.86

 

Table 9 Regression coefficients between speed v and maximum deceleration bmin
bmin = p1*v + p2 R2

Type p1 (standard deviation) p2 (standard deviation)
1 0.010 (0.002) −1.56 (0.08) 0.259
2 0.008 (0.002) −1.35 (0.07) 0.251
3 0.010 (0.02) −1.59 (0.09) 0.275
4 0.006 (0.002) −1.28 (0.07) 0.143

 

IET Intell. Transp. Syst., 2019, Vol. 13 Iss. 12, pp. 1770-1779
© The Institution of Engineering and Technology 2019

1775



relationship between the maximum deceleration and the speed is
determined.

The regression coefficients for deceleration are all significant,
but the difference between driver types is not significant.

The conclusion from the analysis of trajectories for the different
driver types is that there is evidence that driver type has a
significant effect on headways, stopping distances and acceleration
characteristics. The next analysis of the trajectories is on the
question which parameters of a car following model depend on the
driver type. We have chosen to analyse the Wiedemann 74 model
and evaluate the performance of the model with respect to
emissions and fuel consumption.

6 Calibration of Wiedemann-74 driving model
The next question is whether the classification of drivers is also
relevant with respect to the car following simulation. Several car
following models have been developed and published. Brackstone
and McDonalds [36] gave an overview. The car following models
can be classified into five categories namely:

• Safety distance models.
• Stimulus–reaction model or Gazis, Herman and Potts model

[35].
• Action point models (Wiedemann [37], Fritzsche [38]).
• Fuzzy logic/rule-based models [39].
• Collision avoidance models, intelligent driving model [40].

The Wiedemann-74 is used as one of the car-following models in
the VISSIM microsimulation program. The model assumes that a
driver adapts his speed when he has the perception that he drives
too close to or too far from the leading vehicle, or when the speed
of the follower is higher than his own speed or when he is
approaching the leading vehicle too much [37].

In the driver model of Wiedemann, the following driver will
adapt his speed in order to get a safe and comfortable position.
Furthermore, the model assumes that drivers are not always busy

with their driving task. In non-emergency situations they may not
always adapt their speeds directly in response to the car in front. In
the diagrams of Figs. 8 and 9 one can observe indeed points in the
diagram where the driver changes his (relative) speed, but also
areas where he seems to adapt his speed rather randomly,
especially when the speed difference is small and the distance is
sufficiently large. Wiedemann [37] introduced certain areas with
specific behaviour. In Fig. 9 these areas are shown in the
background with an example of a real trajectory as observed. The
regions are shown in colour with the transition states: AX stands
for the distance at stops; BX stands for the distance at which a
driver has to stop for a stopped vehicle in front; opening difference
in velocity (CLDV) is the critical value after which the driver has
to decelerate; SDV is where the driver becomes aware of the fact
that he is approaching the vehicle in front; opening difference in
velocity (OPDV) is where the driver decides to accelerate because
the vehicle in front is moving forwards and SDX is the distance
above which the driver does not see a reason to react on the vehicle
in front because it is on a safe distance while under SDX and with
small differences in speed the driver can change speeds without
caring about the distance and differences in speeds.

The first observation of this model of driver behaviour is that it
is rather vague. Both the descriptions of the actions in the different
regions of the Δ(speed) – distance space as in the actions, there is a
lot of vagueness. As we can see in the real trajectories in Fig. 9 the
driver does not take actions precisely in a certain area. Wiedemann
considered this vagueness in the model by making the boundaries
between the regions stochastic. The consequence is that a driver at
a certain point in the diagram would react as being in the slow-
reaction area, while on a next moment he would be – on the same
coordinates – in the area where he has to decelerate. This apparent
stochasticity in driver behaviour makes it difficult to reproduce
vehicle trajectories precisely in a simulation. Especially the
accelerations calculated from a simulation program have
remarkable differences from the observed accelerations at many
moments. Still, a traffic simulation model can be calibrated by
minimising the root mean square error (RMSE) between observed
and simulated speeds or accelerations. Several other methods are
suitable for the calibration of car following models based on
trajectory data (e.g. [41, 42]). For instance, we can use a
macroscopic characteristic of trips namely fuel consumption (e.g.
[12]) as the calibration objective.

Fig. 9 illustrates the different areas in the space of speed
difference and distance between the leader and the following car. In
the upper part of the diagram, the distance between the cars is so
large that the following driver can drive at his desired speed. In the
lowest part of the diagram the distances between the cars are
delimited by AX which is the distance at zero speed or the queuing
distance. In the right half of the diagram the following car is
approaching the leader.

If the distance is really short, e.g. shorter than BX, the
following car has to brake in order to avoid a collision. This
braking is assumed to be done with the maximum deceleration. In
the diagram, there is the area between BX and the boundary CLDV
where the distance is short and the following car is still
approaching the leader. Then the follower has to decelerate quickly.
In the area between CLDV and SDV the reaction does not have to
be too fast: the follower should know that he should reduce his
speed.

On the other half of the graph, the situation is that the leader is
increasing the distance by accelerating. The follower will
accelerate and try to reduce the speed difference and keep close to
the leader. In the middle area delimited by OPDV, SDX and SDV
the follower can adjust his speed and distance gradually, without
the need to modify his position and speed with respect to the
leader. Changes in speed and distance are rather random.

In Fig. 9 the real trajectories are not exactly according to sharp
boundaries. Drivers may have different behaviour in two situations
with the same physical condition. Wiedemann introduced random
terms in the boundary formulas to deal with the diversity in
behaviour.

Table 10 provides the expressions for the boundaries of the
Wiedemann 74 model. 

Fig. 8  Representation of car-following behaviour
 

Fig. 9  Driver behaviour areas
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The quantities NRND, RND1n, and NRD2n are random
numbers, specific for a driver. These random numbers represent the
variation of behaviour between drivers. The variation of the
behaviour of one driver who reacts differently at different moments
is not represented in the Wiedemann model. Therefore, the
calibration of the model for one single driver can be done while the
random terms are ignored [17].

Apart from the model parameters described in Table 10 the
acceleration and deceleration behaviour of the drivers has to be
specified when they are in one of the four areas. Wiedemann
assumes that the maximum acceleration and deceleration depends
linearly on the speed. When a driver comes in the free-driving
region he will accelerate with acceleration rate bmax according to

bmax = BMAXmult ∗ vmax − v ∗ FactorV (5)

where BMAXmult and FactorV are calibration parameters and
vmax is the maximum speed.

When the driver in the free-driving region passes the CDV
threshold, his deceleration will be

bn = 1
2 ∗ Δv 2

ABX − Δx − Ln − 1
+ bn − 1 (6)

where ABX is a calibration parameter and bn−1 is the deceleration
rate of the leading vehicle. In the emergency braking area (distance
Δx less than BX) the deceleration is

bn′ = 1
2 ∗ Δv 2

ABX − Δx − Ln − 1
+ bn − 1 + bmin

∗ ABX − Δx − Ln − 1

BX

(7)

where bmin is the maximum deceleration of the driver.
In the region of the unconscious speed changes (speed

differences between OPDV and SDV), the following driver
accelerates with a rate bnul when he approaches OPDV, and
decelerates with −bnul when he approaches SDV.

The Wiedemann car following model has a very large number
of parameters. Most of them are shown in Table 11. For most
purposes it is not necessary to calibrate all parameters ([12, 18]).
Some parameters have a small, even negligible, influence on
saturation flows, fuel consumption, and emissions.

The parameters that determine the boundaries between the
different areas in Fig. 9 are AX, ABX, CLDV, SDV, SDX, and
OPDV. In the previous section the distance at a stop, AX, is
directly calibrated from the trajectories. The cruise speed and
acceleration and deceleration behaviour depending on the speed
have also been calibrated directly from the trajectories. These
model parameters depend significantly on the driver type.

The parameter SDX is determined by BXadd, BXmult, EXadd
and EXmult and AX (which has been determined directly). The
other possibly important parameter is CX which determines the
transition SDV between free driving and closing in/deceleration.
These parameters are difficult to calibrate directly from
trajectories.

For the calibration of the model parameters CX and SDX we
use the VSP of the following vehicles as the characteristic of a trip
and try to minimise the difference between the simulated and
observed VSP. This is analogous to the method used by Song et al.
[23] – apart from the facts that they do not consider a leading
vehicle and do not distinguish different driver types and they apply
the formula (2) instead of the CMEM formula (1).

Some authors use random search methods to calibrate all
parameters of the Wiedemann model simultaneously (e.g. [17, 43]).
Since we already calibrated some parameters directly from
trajectories and also wanted to calculate the estimation error of the
calibrated parameters, we have calibrated two model parameters
one by one. Interaction effects have been negligible since the
estimated value of the first parameter did not differ from the
default value. By this procedure, we could determine the
significance of the differences in the estimation of the calibrated
parameters between the different driver types as illustrated in
Fig. 10. 

The calibration of SDV was done by searching for the best fit of
the trip VSP by modifying these parameters. The RMSE of the
simulated versus the observed VSP is calculated.

RMSE =
∑i = 1

n Si − Ti
2

n
(8)

Si is the simulated value of VSP at time step i and Ti is the VSP
calculated from the observed speeds and accelerations; n is the
number of time steps of the observations. The simulation is done
by a Matlab simulation based on the specification of Wiedemann,
where parameters are varied. The parameters are optimised with
the objective of minimising the RMSE. This was done for the
observations for each driver types.

Table 10 Definition of the model parameters for the
boundaries of the Wiedemann 74 model
Model
parameters

Expressions Explanations

AX Ln−1 + AXadd + 
RND1n*AXmult

AXadd and AXmult are
parameters to be calibrated,

Ln−1 is the length of the
leading car

BX(v) (BXadd + 
BXmult*RND1n) *v0.5

BXadd and BXmult are
parameters to be calibrated v 

= min (vn, vn−1)
SDX AX + EX*BX EX = EXadd + 

EXmult*(NRND-RND2n),
EXadd and EXmult are
calibration parameters

SDV(Δx) ((Δx−Ln−1−AX)/CX)2 CX = CXconst*(CXadd + 
CXmult*(RND1n + RND2n))

CXconst, CXadd and CXmult
are calibration parameters

CLDV ((Δx−Ln−1-AX)/CX2)2 CX2 is a calibration
parameter

OPDV CLDV*(-OPDVadd-
OPDVmult*NRND)

OPDVadd and OPDVmult are
calibration parameters

 

Table 11 Parameters for the Wiedemann 74 car following
model
Parameter Default value Suitable value for the four-driver

types
Ln−1 4.5 m 4.5 m
AXadd 1.25 m 3.58/3.49/5.94/4.31 (Table 7)
AXmult 2.5 m 2.79/2.68/2.42/1.29 (Table 7)
BXadd 2.0 m —
BXmult 1.0 m —
EXadd 1.5 m —
EXmult 0.55 m —
CXconst 40 40
CLDV — —
OPVadd 1.5 —
OPVmult 1.5 —
BNUL 0.1 —
BMAX 3.5–3.5v/40 —
vmax — 60 km/h
vdes 80 km/h Cruise speed 55.8/48.2/54.0/51.1 km/h
BMINadd −20 + 1.5 v/60 —
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Table 10 describes the relation between SDV and CX. Varying
CX shows that this parameter has a small influence on the RMSE.
The difference between the values found by the optimisation and
the default value 40 is not significant as shown in Table 12. The
differences between the various driver types are not significant as
well.

The influence of SDX on the trip VSP is clearer: the simulated
VSPs becomes closer to the observed ones for optimum values of
SDX. Table 13 shows the values that have been found for the
different driver types. They appear to differ significantly for some
cases. Driver types 2 and 4 have values that are not significantly
different, while differences between other types (e.g. types 1 and 2,
types 1 and 3, types 1 and 4, types 2 and 3, types 3 and 4) are
significant.

Fig. 11 shows the probability distribution of the measured VSP-
and VISSIM-simulated VSP with calibrated SDX, AX, and
acceleration/deceleration parameters. The variation of the other
boundaries ABX, CLDV and OPDV show that they do not have a
significant influence on the VSP.

7 Conclusions and discussion
Drivers have their characteristics in driving style and attitude. No
driver is the same but some drivers are more similar than others
(analogue to the famous statement of Orwell [44]: ‘All animals are
equal but some animals are more equal than others’). Drivers with
similar characteristics can be united in homogeneous groups. The
drivers are classified into four types (from type 1 to type 4 as
discussed in Section 2) based on their self-assessment and
acceleration behaviour. This was done for two groups of Chinese
drivers in two cities, Changsha and Chengdu. The results show that
the characteristics of drivers of these two cities are similar.

The group drivers that were studied consists of 28 persons. The
numbers of drivers per type were rather small. Only the number of
cautious type 2 drivers is larger (14 persons). The small number of
persons per driver type made it necessary to be very careful with
the statistics of the observed characteristics. Several differences
that we found are not sufficiently significant to distinguish between

driver types. Important, significant differences between the driver
types were found for

• fuel consumption and emissions,
• cruise speed,
• acceleration characteristics,
• distance in a queue,
• time headways when accelerating from the queue, and
• the transition distance that drivers start to accelerate.

The fuel consumption and emissions for stops are lowest for the
cautious type 2 drivers, while for type 4 drivers no significant
relation could be found between fuel consumption/emissions and
the number of stops. The cruise speed of cautious drivers type 2 is
about 6–12% lower than that of drivers of the other types.

The time headways for types 3 and 4 drivers are significantly
lower than those for other driver types and similar to the headways
observed in the Netherlands. The time headway of type 1 and type
2 drivers (aggressive and cautious drivers) is about 40% higher
than the headway of 2 seconds that is commonly used in capacity
calculations for signalised intersections. This is a confirmation of
the earlier finding that saturation flows at several intersections in
Chinese cities are much lower than the saturation flows in Western
countries. The reason behind this difference is probably that
experienced and smooth drivers are better able to predict what a
driver in front will do so that they can better anticipate that and
drive with a shorter headway.

For the dependence of the maximum acceleration on the speed,
it appears that a type 1 driver does not accelerate much less when
driving at high speeds than at low speeds. Drivers of type 4 have a
reduced acceleration rate at higher speeds. Since in the VSP model
(1) the third term contains the product of speed and acceleration,
the acceleration strategy of driver type 4 is more fuel saving.

Some parameters of the Wiedemann 74 model have been
calibrated and most of them are different for the different types of
drivers. This makes it obvious that microscopic simulation
programs of traffic should have the possibility to represent
different types of drivers and it should be possible to compose the
traffic as a mixture of different kinds of drivers. Specifying each
driver type can be done as described in several publications, e.g.
[12, 18, 29].

This experiment was executed in China with Chinese drivers.
The group of novice drivers (with <3 years driving experience) is
much higher in China than those in most countries with a longer
history of motorisation [1]. Furthermore, the examination for a
driver license in China concentrates on the skills to operate and
control the car instead of the skills to drive in traffic. Novice
drivers find themselves uncertain and hesitating when they have to
drive in real traffic. That can be observed in the result for driver
type 2. The development of the driver population in the future will
probably change the quantitative results shown in the paper. Still,
the main conclusions will hold: drivers with different
characteristics have to be modelled with different models and their
performance on the road will be different.

The direct practical application of this research for the situation
in China is that the Chinese road authorities should reconsider the
requirements for a driver license and include a test of driving in

Fig. 10  Result of VSP-RMSE after calibration of SDX
 

Table 12 Optimum value of CX for different driver types
Type 1 Type 2 Type 3 Type 4

optimum value, m 34.25 41.16 50.65 39.84
standard deviation, m 65.39 19.33 120.36 28.92

 

Table 13 Calibrated values for SDX
Type 1 Type 2 Type 3 Type 4

optimum value, m 77.62 65.42 85.63 65.69
standard deviation, m 17.57 11.59 13.60 10.11

 

Fig. 11  Distribution of the measured and simulated VSP for driver type 2,
after calibration of SDX, AX, and acceleration/deceleration parameters
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real traffic. That will reduce the number of type 2 drivers who give
bad traffic performance.
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