
VolCam
Context-Aware Intuitive Touchless Interaction For

Medical Volume Data

by

Rustam Alashrafov

in partial fulfillment of the requirements for the degree of

Master of Science
in Digital Media Technology

at the Delft University of Technology,
to be defended publicly on Tuesday August 22, 2017 at 1:00 PM.

Supervisors: Dr. Anna Vilanova
Prof. Dr. Elmar Eisemann

Thesis committee: Prof. Dr. Elmar Eisemann , TUDelft
Dr. Anna Vilanova, TUDelft
Dr. ir. Willem-Paul Brinkman, TUDelft
Dr. Ioannis Katramados, COSMONiO

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

VolCam: Context-Aware Intuitive Touchless Interaction For
Medical Volume Data

Rustam Alashrafov
TUDelft

rustam.alashrafov@gmail.com

ABSTRACT
Touchless interaction has recently gained considerable at-
tention by researchers as well as industry. Different domains
are interested in implementing this technology in their so-
lutions. Medical visualization has a special interest in this
technology due to the sterile conditions in operating rooms.
Exploration and detailed inspection of the scanned objects
are among the most common interactions performed by pro-
fessionals. These operations become more challenging when
combined with touchless input. Context-aware methods ex-
ist, which facilitate navigation, but these methods are made
for meshes and not for volume renderings. Hence the re-
search question: Can these methods be extended to volume
renderings and how well will they perform with touchless
interaction metaphors? Metaphor and underlying VolCam
algorithm are presented in this work. The metaphor allows
users to perform exploration and inspection tasks on medi-
cal volume data using touchless input device - LeapMotion.
The VolCam - an extension of the ShellCam algorithm, auto-
matically maps the user input to distinct camera movements
based on the current scene view by sampling the visible part
of the volume. Interactive frame rates are achieved by per-
forming computations on GPU. No pre-processing or special-
ized data structures are required which makes the technique
directly applicable to wide-range of volume datasets.

CCS Concepts
•Human-centered computing → Gestural input; Vi-
sualization design and evaluation methods; Pointing
devices;

Keywords
interfaces, touchless, intuitive, interaction, volume render-
ing, medical, NUI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

1. INTRODUCTION
With advancements in scanning technologies such as com-

puted tomography (CT) and magnetic resonance imaging
(MRI), medical imaging has become very important in clin-
ical practice. Clinicians use three or four-dimensional data
obtained from different modalities to visualize internal struc-
tures slice-by-slice or in 3D rendering. to retrieve relevant
information [28]. To make use of all this data, clinicians
should be able to interact with the visualisation efficiently.

Volume rendering has become an important tool for three-
dimensional (3D) data examination. It is used in different
domains such as medical imaging, biological visualization,
scientific computing. Modern volume visualization tech-
niques provide an efficient representation of data which al-
lows users to explore and understand the underlying topolo-
gies and shape structures more efficiently as well as to re-
duce cognitive load [8]. Cognitive load is referred to as the
amount of information user has to keep and process in his
working memory. Poorly presented information and redun-
dant interface interactions can increase the cognitive load.

Most of the preliminary work is focused on real-time ren-
dering algorithms. Advancement of these algorithms is fur-
ther accelerated with ongoing graphics processing unit (GPU)
innovation [24]. However, studies have shown that render-
ing performance on its own is not sufficient to help users
understand volumes intuitively [12].

This thesis has been performed under COSMONiO’s su-
pervision. The company designs cutting-edge computer-
vision and machine-learning systems that automate the pro-
cess of extracting visual information from images under chal-
lenging conditions. Recently they have also started explor-
ing the interfaces for touchless interaction with medical vol-
ume data. Their goal is to develop a system which will al-
low surgeons and medical staff to interact with the software
while maintaining compliance with the sterile conditions in
operating rooms (OR).

Robust navigation in 3D space using noisy input devices
becomes a challenge. Camera navigation is an essential in-
teraction for many 3D applications, and medical image view-
ing software is no exception. Researchers have been trying
to categorize and to assess different virtual travel techniques
for a long time. Bowman et al. [4] identified attributes,
which describe the effectiveness of virtual travel techniques:
speed, accuracy, spatial awareness, ease of learning, ease of
use, information gathering and presence. In the later stud-
ies, Bowman et al. [3] distinguish three types of travel tasks,
according to the user’s goal:

1. Exploration, when the user has no particular area of

interest to investigate.

2. Search, where the user wants to get to a specific loca-
tion in the scene. This location can be known (primer
search) or not (naive search).

3. Maneuvering, which is the fine-tuning of the position
of the camera around objects.

In medical data, the user is often presented with a spe-
cific dataset with a limited amount of space in the scene.
Therefore, the most common type of travel is manoeuvring.
Therefore, this thesis work is focused on context-aware ma-
noeuvring techniques. Several of such techniques are pre-
sented in the following subsection.

Figure 1: (Left) Rotate. (Middle) Pan. (Right)
Zoom. Graphics from Jankowki and Hachet [10]

There is almost no Volume inspection happening without
operations such as pan, rotation and zoom.

• Rotation refers to the orbiting motion of the camera
around an arbitrary point in the view’s on a virtual
spherical track while the camera’s focus remains on
the same point throughout the operation (Fig. 1 (a)).

• Pan refers to the translation of the camera along the
up and right vectors of the camera (Fig. 1 (b)).

• Zoom refers to the translation of the camera along the
forward vector (Fig. 1 (c)).

However, sometimes a combination of these operations might
be not so easy to perform. For example, when an object is lo-
cated far away from the camera, users often find themselves
lost in virtual space after several panning and rotation oper-
ations. This happens because the object may be translated
outside of the view of the camera. To overcome this issue,
there are different solutions, such as ShellCam [2], proposed.
These techniques will be reviewed in the next section. How-
ever, most of them are developed for virtual surfaces and
not volumes.

Volume data, compared to meshes, does not have well-
defined surfaces. Fig. 2 demonstrates how a typical scene
of the human thorax composed of meshes on the left and
a typical volume rendering image on the right differ from
one another. The right image consists of semi-transparent
objects such as skin and kidneys. Furthermore, there are no
well-defined normals. Normals are usually approximated by
the gradient of the data.

Therefore, the goal of this thesis work is to investigate
whether context-aware navigation methods can be extended
to volume renderings and how well will they perform with
touchless interaction methods. Additionally, the method has
to apply to wide-range of volume datasets and should inter-
rupt the current data set preparation pipeline as little as
possible.

This thesis is structured to briefly introduce the state-of-
the-art research in context-aware camera navigation which
mainly focuses on derivatives of HoverCam [11]. For a better

Figure 2: (Left) Rasterization. (Right) Direct Vol-
ume Rendering. Graphic from [25]

understanding of touchless-interaction and its limitations,
necessary insight into the hand tracking technologies avail-
able today is provided. The innovative interaction metaphor
and the underlying algorithm - VolCam are then introduced.
The technique potentially assists navigation through the vol-
ume by saving time that is usually required to find the de-
sired view and by reducing the cognitive load of the user
performing the task. Implementation details, which include
software and hardware specifications have been included as
well to aid reproducibility of the work. Results obtained
from the performed user studies are discussed. Finally, this
document concludes and gives an outlook on future work.

2. RELATED WORK
This section provides a quick overview of research which

has been done in camera navigation techniques and their
evaluation criteria.

2.1 Hover Cam
Hovercam by A.Khan et al. [11] is a base technique which

tries to solve the problem of camera navigation in virtual
environments (VE). It has been referenced and improved
by many researchers. Authors noticed the intuitiveness of
hovering around the sphere and wanted to achieve similar
smoothness of motion for other objects (Fig. 3). HoverCam
is looking into the closest point C on the object after the
panning operation is performed. Then the look-at position
is set to this point. The camera orientation is then estab-
lished using the object’s normal field vector and general up
vector. After the translation has happened, the distance to
the object is adjusted to be the same as the initial distance.
Finding the closest point for the entire polygon mesh is com-
putationally expensive and therefore not applicable for the
interactive application. The authors are using a hierarchical
sphere-tree structure to speedup the search process. How-
ever, the method has difficulties handling cavities (convex
and concave areas). Furthermore, the proposed method is
only able to navigate around the single object.

Authors of SHOCam [22] proposed to extend the Hover-
Cam to eliminate the shakiness of the camera in areas of
concavities and to add the ability to orbit around a group of
objects. They have proposed to use HoverCam iteratively.
At each camera position, five possible camera location are
pre-computed. To achieve the smooth motion the path is in-
terpolated between these precomputed points. This allows
the camera to move at the expected distance around con-

Figure 3: HoverCam Motion around Sphere (left)
and Cube (right). Graphic by Khan et. al. [11]

cavities. Furthermore, they have extended the method to
work in scenes with multiple objects. The authors, allow
the camera to continue orbiting the object of interest with-
out it passing through the walls of objects surrounding it.
The authors use a bounding volume hierarchy for the whole
scene to automatically determine the group of objects to or-
bit around. This criterion adapts itself to the distance of
the viewer.

Figure 4: ShoCam: Possible camera trajectory sur-
faces. Graphic by Ortega et.al. [22]

To deal with geometric irregularities IsoCam’s object-aware
interactive camera [17] proposes to use distance fields. These
distance fields are obtained from the multiscale resolution
approximations of the current view-dependent approxima-
tion of the model. Iso-surfaces are precomputed in advance
for different levels and further used interactively. This so-
lution solves the issues with surface irregularities naturally
since, when the camera is further away from the object,
higher scale (e.g. smoother) approximations of the surfaces
are used for nearest neighbour search. Another method pro-
poses to build Curvature-Bounded Surfaces around the mod-
els[15]. The surfaces are similar to iso-surfaces used in Iso-
Cam algorithm. They can also be computed for different
distances from the object allowing the scaling effect.

The techniques mentioned above work quite well for most
of the shapes and camera movement. However, they are
computationally expensive, require special data structures
and access to the scene’s geometry. Therefore, the next
method is of particular interest for interactive applications.

Diepenbrock et.al. have applied context-aware camera
navigation to volume data [6]. The authors stated a de-
creased productivity with the direct implementation of Hov-
erCam. Therefore, they modified the navigation metaphor
to predict which movement the user wants to accomplish
depending on the input and the current scene. The authors

distinguish between three different types of movements (Fig.
5).

Figure 5: (a) Rotation (b) Strafing (c) Panning
Graphic by Diepenbrock et.al. [6]

• Rotation - is a rotation of camera in a spherical orbit
around the center point of an object, where the camera
stays focused on that point.

• Strafing - is a translation of the camera along the sur-
face of the object.

• Panning - rotation around the center of the camera
itself.

Authors sample the scene depth using the first-hit approach
starting from the camera position. Based on the depth in-
formation, the curvature and distance to the object are ap-
proximated. Depending on the angle of the surface, the
algorithm decides whether to perform rotation, panning or
interpolation between the two. Strafing is implemented by
alternatively applying rotation and panning, then restoring
the distance to the original distance. Furthermore, authors
state the importance of collision avoidance since it is natural
to move the point of view inside the volume in volumetric
data. Authors’ solution is to render 360-degree view around
the camera and check the collision in all directions.

Figure 6: ShellCam: Scale-Space representation.
Graphic by Boubekeur [2]

Shellcam is another technique motivated by HoverCam
that looks into the distance field, just like IsoCam [2]. How-
ever, compared to HoverCam it allows for arbitrary geome-
try, and the complexity of the model does not play any role
in the performance. The procedure also avoids shaky move-
ment of the camera where the geometry’s curvature varies
quickly. Furthermore, the process eliminates the search of
the procedure used in HoverCam and does not require any
pre-computation and integrates well with standard graph-
ics pipeline. ShellCam computes the weighted centroid and
normal at the camera center at each iteration. This informa-
tion can be naturally obtained form the Z-Buffer and Normal
buffer, which makes this approach very fast.

2.2 Discussion
HoverCam [11] is a promising technique, that allows for in-

tuitive hovering around the scene. Several works whose goal
is to propose a metaphor which improves over HoverCam
have been reviewed. Each of these techniques introduced in-
teresting approaches to solving problems of the HoverCam’s
basic algorithm and allow for smoother interaction. Shell-
Cam [2] is especially interesting since the algorithm pro-
posed by the authors allows calculating the next camera
position on the fly. This is achieved without the need for
special data-structures by eliminating the search procedure.
Furthermore, its natural extensibility to GPU makes it es-
pecially attractive for real-time applications. However, most
of the techniques described in this paper have been applied
to meshes, whereas Diepenbrock et.al.[6] applied a first-hit
methodology which approximates meshes. This makes the
technique less versatile and makes it inapplicable directly
to volume renderings. For the reasons mentioned above,
ShellCam became a preferred base technique for our new
interaction metaphor. The original method had to be ex-
tended since volume data does not have well-defined surfaces
and normals. Furthermore, volumes often consist of semi-
transparent surfaces for which the behaviour of the Shell-
Cam is undefined.

3. TECHNOLOGY
This chapter briefly introduces technologies that are used

for gesture recognition. This should serve as a starting point
for the readers who would like to use the main VolCam
method with a different input device. Devices are compared
and their limitations mentioned. However, the method de-
scribed in this work can operate with any device which is ca-
pable of providing 2D movement direction and speed. This
section is merely for the readers’ reference that can serve as
a starting point in deciding which technology to use.

As mentioned in the introduction, recent developments
have brought various sensors to the market which can be
used as interfaces for interaction. This section will give a
short overview of sensors mentioned throughout this survey.

Color cameras (RGB sensors) are one of the most com-
mon technologies used in recognition and tracking tasks.
Their popularity is partially explained by their availability.
Depth information is required to recognise gestures in 3D
space. RGB cameras do not provide this information by de-
fault. However, depth can be estimated from two cameras
using their intrinsic and extrinsic parameters such as dispar-
ity [20]. The effectiveness of RGB sensors depends on light
conditions and image resolution.

In recent years depth sensors became more consumer avail-
able and devices such as Kinect and Leap Motion have been
dominating the market since. Kinect is a device by Microsoft
which consists of an RGB sensor, an infrared (IR) projector,
an IR sensor and an array of microphones[29]. Kinect was
designed to track the human body. Software which is com-
ing with the device allows tracking of the human skeleton.
However, hackers and researches came up with solutions to
recognize hand gestures as well.

The more-recently released Leap motion has a similar
functionality as Kinect, but it was designed specifically to
track hand gestures and fingers positions. It consists of two
IR sensors and three IR LEDs [7]. Hence it can be cate-
gorised under Stereo Vision tracking systems. Leap Motion

achieves sub-millimetre accuracy, which was not possible
with devices in the same price range, e.g. Kinect. However,
Leap Motion also has its limitations. These limitations have
been described and addressed by Giulio Marin et al. [16].
Nevertheless, due to its robustness, low-cost and wide avail-
ability, Leap Motion was chosen as the hardware component
of this thesis work.

4. VOLCAM
This section explains in detail the method that was used

to achieve context-aware interaction with medical volume
data. VolCam similar to ShellCam by Boubekeur [2] tries
to follow the scene geometry in the camera’s view. VolCam
uses a similar methodology as ShellCam to achieve this goal.
Therefore, we first introduce the ShellCam paper and later
we demonstrate its extension to volume data.

4.1 ShellCam
The idea of ShellCam is to place the camera in a sub-

space of the object, which is in the camera’s current view.
The camera position is changed in a smooth, not sensitive to
high-frequency variation in data, manner. This is achieved
by taking into account the scale at which the scene is ren-
dered, as illustrated in Fig. 7. The method requires only dis-
placement movement direction and speed as input. Upon re-
ceiving an input, the camera performs the movement around
the object, while taking its scale into account.

Figure 7: ShellCam Adjustment [2]

In order to explain the mathematics behind the method,
variables have to be introduced first. To define the camera
position and the orientation at any moment in time, a point
and two orthogonal and normalized vectors are required:

Ct = {ptc,vt,ut, rt}

where ptc ∈ R3 is a camera center, vt ∈ R3 is the view
direction vector, ut ∈ R3 is the up vector at time t and
rt ∈ R3 is the right vector at time t, which can be derived
from vt and ut. The input will be represented by Kt =
{dt, ιt}, where dt ∈ R2 is a two-dimensional pan input (dtx
- displacement along x-axis, dty - displacement along y-axis)
and ιt ∈ R is a zoom input. Assume the scene is formed
by objects made of polygonal meshes. Then the set of all
vertices that form these meshes is:

P = {{p0,n0}, ..., {pm,nm}}

where pi ∈ R3 is the position and ni ∈ R3 is the normalized
normal of sample i. Fig.8 Illustrates the simple scene setup.

Figure 8: Sampling Demo

Green shape is a geometry with a total of m vertices. Each
green dot is a sample i at position pi with normal ni.

On Fig. 7 steps performed by the ShellCam are illus-
trated. Next we provide step-by-step description:

1. Initial: Camera is initially located at ptc with vt =
−n̄t, some ut and rt = vt×ut, where n̄t is the normal
at weighted centroid position c̄t

2. Camera Motion Prediction: The input Kt is re-
ceived and camera is translated to p′c using equation:

p′c = ptc + dx · rt + dy · ut (1)

The rest of the camera parameters remain unmodified:
v′ = vt, u′ = ut and r′ = rt

3. Scene Parameters Estimation From position p′c
scene geometry is sampled and view dependent c̄′ and
n̄′ are calculated (Equations 2, 3). Two new vari-
ables are introduced: weighted centroid c̄ ∈ R3 and
weighted mean normal n̄ ∈ R3.These variables de-
scribe the scene’s mean projection and normal. They
are computed according to formula 2 and 3:

c̄′ =

∑
i w

v′

p′c
(pi)Π

ni
pi(p

′
c)∑

i w
v′
p′c

(pi)
(2)

n̄′ =

∑
i w

v′
p′c

(pi)ni∥∥∥∑i w
v′
p′c

(pi)ni

∥∥∥ (3)

Equation 2 computes the weighted average of the cam-
era position’s orthogonal projection on sample i. The
plane is spanned by sample’s position pi and normal ni
and is denoted as Πni

pi(p
t
c). These calculations are illus-

trated on Fig. 9. Here red dots represent the projec-
tions Πni

pi(p
t
c). Black circle with red stroke and black

arrow represent c̄′ and n̄′ respectively.

This way of calculating centroid generates more sta-
ble results regardless if the area of the object in the
current view is concave up or concave down. Con-
sider Fig.10. This image illustrates that the simple
averaging produces a similar result for concave up ob-
ject (top). However, for the concave down object, av-
eraging places centroid inside the object and average

Figure 9: Scene Parameters Calculation

projections push the point further from the object’s
surface. Therefore, it better approximates the shape
curvature.

Figure 10: On the left side black dot with red bound-
ary represents the average calculated for the given
samples. On the right side same dot represents cen-
troid calculated using projections

As mentioned by Boubekeur [2], using projections makes
the combination Hermitian, which is proven to better
preserve convexity as shown by M.Alexa and A.Adamson
[1]. Similarly Equation 3 is a normalized weighted sum

of all sampled normals. wv′
p′c

is an anisotropic weight

kernel centered at p′c. The kernel is defined as a com-
position of two kernels: one in screen-space, defined
as the distance from the screen center, and second one
defined as the distance from the sample to the camera
in 3D space.

4. Camera Motion Adjustment The camera is set to a
new position pt+1

c according to the following equation:

pt+1
c = c̄′ + g(β) ∗ n̄′ (4)

where g(β) is a logarithmic zoom function with β =
‖pc − c̄′‖ which captures the distance to the geometry.

The remainder of the camera parameters are defined
as: vt+1 = −n̄′. ut+1 is set to be orthogonal to vt+1

which minimizes torsion with ut and rt+1 = vt+1 ×
ut+1.

4.2 Extension to Volume Data
So far, we assumed that scenes are composed of opaque,

polygonal surfaces. Despite polygonal surfaces can be ob-
tained from volumetric data (Marching Cubes [14]), we focus
on extending ShellCam to be used in direct volume render-
ing. In image based volume rendering samples lie on a ray i,
initialized in a given pixel. The viewing ray is a ray starting
at the camera center position which passes through a spe-
cific pixel on the screen i and marches through the volume
as shown on Fig.11.

Figure 11: Viewing Rays passing through the vol-
ume. Graphic from [19]

Therefore, the set P as defined by ShellCam needs to be
adapted. To start with, we deal with isosurfaces. In direct
volume rendering, isosurfaces are defined by a threshold that
defines a level set. This results in implicit surfaces which are
not defined by their mesh. We define set of all voxels in the
volume dataset as:

S = {{p0,n0, γ0}, , ..., {pn,nn, γn}}

Where n is the total number of voxels in the dataset. Each
of the voxels has a position pi, a normal ni, which is ap-
proximated by a gradient at that position and volume value
(density) γi. To approximate the mesh, isosurfaces are ex-
tracted from the volume. With isosurfaces we can define our
samples similar to the ShellCam:

P = {{p0,n0}, ..., {pm,nm}}

where pi and ni are the values of a first voxel along the ray i,
which has its γ falling into the certain threshold. Gradients
cannot be used directly as normals. In rasterization, users
often are not interested in the back faces of objects, and
they are usually culled. In direct volume rendering seeing
objects from the outside as well as from inside is common.
However, the gradient only gives the direction of change.
Fig.12 demonstrates how normals can be arranged in the
volume along the ray. Consider that we are interested in
isosurface with γ >= 2. If a camera is positioned at S3,
then the normal of S4 is pointing towards the camera as
expected. However, if the camera is located on the outside
(S0), then the normal of voxel S2 is pointing in the same
direction as the viewing ray. We check vt · ni < 0 if yes, we
set ni = −ni. After the normals are normalized the set of
samples S is ready for further processing.

Figure 12: Demonstration of normals pointing away
from the camera

Visualization of isosurfaces can be seen on Fig.13. This
visualization shows the normals of the voxels that are taken
into account, which is a simplified visualization of what Vol-
Cam ”sees”. Resulting set S can then be used directly with
the ShellCam algorithm as described in Sec.4.1.

Figure 13: Left: Skin (Isovalue = 0.2) Right: Bone
(Isovalue = 0.3)

A simple test setup was designed to visualize the results:
For each test run, the camera starts at the same position.
Panning input in the direction of the camera’s r vector is
applied for 50 iterations. This is repeated nine times. After
each cycle, the camera’s orientation and the rendered view is
recorded. The script is designed to imitate user’s pan input
in the direction of the right vector of the camera. Isosurface
method produced results demonstrated on Fig.14, where the
blue brush line is a recorded trajectory of VolCam focused on
bones whereas orange line is a trajectory of VolCam focused
on the skin. It is important to notice that what the user
sees and what the VolCam sees differs. While the user sees a
composite view of the scene with transfer functions, VolCam
sees isosurfaces.

Viewports on the sides are the camera’s views from the
points where the dotted arrows are pointing. We can see
that trajectories of skin and bone start at the same point,
but they deviate from one another over time. This solution
is similar to the original ShellCam, where only the surface of
an object is taken into account. However, isosurface render-
ing is often not preferred rendering for reasons such as it can
produce false positives (spurious surfaces) or false negatives
(erroneous holes in surfaces). These problems also affect
VolCam robustness. Furthermore, isosurface approach does
not allow for transparent surfaces. The users have to man-
ually select which object in the volume they want to focus
on. Therefore, to make the interaction more intuitive and to
reduce cognitive load from users, VolCam has to follow the
visualisation designed by the user using transfer functions
(TF).

TF maps a single value to RGBA values. Such function
illustrated on Fig.15. This transfer function was used for our
visualisation of the feet dataset. The horizontal axis repre-
sents the value of the volume; the vertical axis represents
A assigned to the specific value. And the color of the line
- color assigned to the object. Each object in the scene is

Figure 14: Trajectories produced with isosurface
method. (Blue) bone isosurface. (Orange) skin iso-
surface. Viewports demonstrate the camera view at
positions pointed by the arrows.

defined by its own transfer function. From this image, we
can see that bones are given higher opacity, which means
they are more prominent in the visualisation as can be seen
from previous Fig.14.

Figure 15: Transfer Functions. (Red) Skin TF.
(White) Bone TF.

Similar to direct volume rendering, we can apply the idea
to calculate pi and ni. They can be computed using front-
to-back compositing [18], where each sample’s pi and ni is a
composition of all projections and normals along the viewing
ray i. To test if compositing works for VolCam computations
compositing of separate TFs was tested. Compositing is
performed by Eqn.5.

pi =

µ∑
j=1

pj

j−1∏
k=1

(1− ak)

ni =

µ∑
j=1

nj

j−1∏
k=1

(1− ak)

ai = 1−
µ∏
j=1

(1− aj)

(5)

Where aj = fτ (pj) is an opacity given by the transfer func-
tion of object τ at voxel position pj ∈ S and µ is the number

of voxels hit by viewing ray i. The resulting VolCam view
is illustrated in Fig. 16.

Figure 16: (Left) Skin Compositing. (Right) Bone
Compositing.

By performing compositing, voxels which have higher trans-
fer function response at that position and are closer to the
camera along the ray, contribute more to the final sample
Pi. This, similar to compositing of colors, makes the con-
tributions of surfaces which are closer to the camera much
higher. Hence, we get surfaces approximations without ex-
plicit extraction of surfaces. Our test with this approach
produced results on Fig. 17:

Figure 17: Trajectories produced with compositing
per object method. (Blue) bone TF. (Orange) skin
TF.

Once more, the blue line is the trajectory created by Vol-
Cam while focusing on the bones and orange line - while
focusing on the skin. Trajectories are moving along closely.
However, the blue trajectory is a bit sharper since the bone
object has more details. This demonstrates that composit-
ing can be applied to normals and meaningful results are
achieved by the VolCam movement.

Therefore, all TFs (objects) in the scene viewing ray i
can be composed. In this case, VolCam should see a similar
image to what users see in their visualisation. The trajectory
in our test was expected to be something in between the
blue and orange trajectories in Fig.17. We compute a set of
samples P where pi and ni are calculated using the same

Eqn. 5 with the difference of computing aj :

aj =

∑φ
τ (fτ (pvj))3∑φ
τ fτ (pvj)

where φ is a number of TFs (objects). This approach is
imitating volume rendering. It takes into account the whole
scene. VolCam in this case ”sees” what is represented in the
Fig. 18:

Figure 18: Compositing all objects in the volume

VolCam takes into account the whole scene in this case -
skin and bones. We can see that the resulting trajectory as
seen on 19 is something in between trajectories in 17. This
approach lets us navigate around the whole scene without
explicitly switching transfer functions to focus on or select-
ing isosurfaces. Compositing of different TFs (objects) gives
higher weight to objects which are highlighted by the user.
This reduces the amount of operations and gestures users
have to perform during the navigation. VolCam is now con-
trolled directly through visualization controls. VolCam is
focused on the objects, which have TFs with higher opacity.

VolCam is very good at following the close-up curvature
of objects. However, when there are several objects in the
camera view, VolCam might lose its focus and switch to an-
other surface if that surface is close to the camera or has a
high opacity, hence weight. In our example with feet, imag-
ine a situation when the camera is very close to the feet
skin but is still outside of the skin. When this happens, low
opacity skin voxels will receive high weight due to their small
distance to the camera. This results in camera focusing on
the skin rather than on the more opaque bone object. Since
in medical visualisation user should get inside the object of
context to investigate other objects, we can safely remove
the context object from calculation during close-up inspec-
tions. Therefore, we introduced interaction system, which
focuses on objects for close up inspections but uses what we
call a transport medium (TM) for movement between dif-
ferent objects inside the volume. Transfer medium can be
any object in the scene, which encapsulates the rest of the
objects inside it. Usually, it is a semi-transparent object,
which provides context to the rest of the scene, such as flesh
or skin in medical datasets.

Figure 19: Trajectory produced by compositing all
objects method

The user has to specify one object from the transfer func-
tion, which is going to be used as a TM. This object is then
used in the VolCam calculations when the camera is far away
from the scene. However, when the camera is close to the
scene, TM is excluded from VolCam calculations which cre-
ates the effect of focusing on more distinct objects in the
scene. We approximated the mean scene depth z̄ by averag-
ing the depth zi of each viewing ray i. Depth zi is computed
using the familiar to us from 5 compositing equation:

z̄ =

∑m
i zi

m

zi =

µ∑
j=1

zj

j−1∏
k=1

(1− ak)

ai = 1−
µ∏
j=1

(1− aj)

(6)

Fig. 20 shows this method. While the camera is at a cer-
tain distance to the volume, context (flesh around thorax) is
taken into account during the parameter calculations. When
the camera is getting closer to the objects, and z̄ is low, TM
or context is not taken into account anymore. We found
z̄ = 0.3 to be the best context cutoff value for both Thorax
and Feet datasets. This allows the VolCam to focus on close
up internal parts of the volume, in this case - aneurysm.
Users see their regular visualisations and are unaware about
underlying VolCam transfer function switching.

Figure 20: Effect of the distance on transfer function

5. USER INTERFACE

5.1 Interaction Metaphor
One of defining objectives of the thesis is to make the

interaction touchless. A hand metaphor was chosen which
is similar to touch-screen interfaces - a virtual touch-pad
as described by Tuntakurn et al. [28]. This metaphor is
familiar to users and, hence, does not require special training
before using. Referencing the model proposed by Buxton et
al. [5], we split our interaction into four distinct states: Idle,
Pan, Zoom and Roll. Relation of the interaction states can
be seen in Fig. 21.

Figure 21: Interaction States

All interaction states can be instantiated only from the
Idle state. This is done to simulate the touch gesture on a
touch-screen. The idle gesture can be thought of as taking
your hand away from the touchscreen and other gestures -
as touching the screen at some initial position.

In the current implementation following gestures were cho-
sen (Fig. 22) for interactions with system which activate
particular system state :

Figure 22: a. Fist gestrue b. Two Finger Gesture c.
Open Palm Gesture. From [21]

• Fist - Idle

• Index&Middle fingers extended - Pan&Zoom

• Open Palm - Roll

Therefore, the same gesture can perform movement both
in XY (pan) or Z (zoom) directions. When Pan&Zoom mode
is activated, palm’s center position is tracked. After the
palm has moved minimal amount required to activate the
gesture, the principal axis is derived, and camera translation
along the same axis is performed by Eqn. 1, where dt =
(ptpc−pt−1

pc)∗ z̄ - a displacement vector between current and
previous palm center positions ptpc ∈ R3 projected either

onto XY and ιt = (ptpc − pt−1
pc) ∗ z̄ projected onto Z. It is

scaled by the estimated scene depth to control the speed of
movement. When the camera is close to the object, it moves
slower than when it is far. We found the separation of 3D
motion into two different components very important since
human bodies naturally perform their movements in arcs
[13]. This can result in unintentional zooming commands
while panning and pan commands while zooming. After the
predicted motion is performed, VolCam renders the scene
and adjusts camera position and orientation as described in
Sec.4.

5.2 Visualisation
To aid user interaction, visual icons are put in the right top

corner of the screen. Fig.23 shows the icon usage example
and all the designed icons on the right. These icons displayed
to the users in the following situations:

• Hand - Correct hand is recognized by Leap Motion.
The user can proceed.

• Horizontal & Vertical Arrows - User is in pan mode

• Diagonal arrows - User is in zoom mode

• Circular Arrows - User is in roll modes

Figure 23: (Left) User Interface. (Right) Icons

6. IMPLEMENTATION DETAILS
This section describes the hardware and software archi-

tecture of the system. VolCam implementation details are
provided, which allow the system to run in real-time by ex-
ploiting the graphics pipeline of modern GPU architecture.

6.1 Software
Fig. 24 demonstrates the technologies that have been used

for the project. COSMONiO was using Unity for its devel-
opment of the project and recommended using it for our
project. To achieve easy integration of this work with par-
allel work that was going on at COSMONiO it was decided
to continuing to work with Unity 5.5.2f1 and use C# as a
scripting language. However, Unity is a product designed
to enable easy prototyping and development of games. Un-
fortunately, it is not very well suited for high-performance

Figure 24: Software Architecture

applications such as medical volume rendering. It has some
limitations and is a proprietary product. There is no access
to the source code. Therefore, native C++/OpenGL Unity
plugin was developed to overcome some technical challenges.

6.1.1 Data
Unity’s Texture3D is used as data holder. Each voxel

consists of four cannels where each channel is a 32bit float.
R, G, B are reserved for normal vector and A reserved for
voxel original volume value. The normal of a voxel is ap-
proximated by computing the gradient at a voxel Si’s po-
sition pi. The gradient is computed by taking componen-
twise differences between neighbouring voxels: : g(pvi) =
pvi+1 − pvi−1 . To make the gradient smoother, the original
values are first smoothed using averaging of neighboring vox-
els. These computations are performed at application start.
To speed up the process all volume loading operations are
performed on the native C++ plugin.

6.1.2 Main Loop Pipeline

Figure 25: Process Flow

As demonstrated in Fig. 25 as soon as the system receives
input, camera’s location is updated user’s motion intention.
From the new position, volume rendering is performed, and
the necessary scene sampling is performed. In our system,
sampling is done by rendering four buffers each frame Fig.
26.

Figure 26: Buffers from left to right: Color, Normal,
Projection, Depth

• CB - Color buffer used for visualization

• NB - Weighted Normal buffer

• NB - Weighted Projections buffer

• ZB - Weighted Distances buffer

Therefore, each pixel of corresponding buffer represents one
sample value Si.

6.1.3 VolCam Parameters
A fast way to calculate c̄′ and n̄′ according to Equations 2

and 3 is required. For interactive frame rates we used hard-
ware supported MipMaps. Fig. 27 illustrates how MipMaps
can be used to compute the mean value of a texture.

Figure 27: MipMaps. Graphic from [23]

If there are n number of pixels and h MipMap levels then
the last level of the MipMap is just one pixel χ̄h−1 which is
the average of all pixels of the initial level:

χh−1 =

∑n
i χ

0
i

n
= χ̄

Therefore, we can use this to quickly calculate sums and
averages. The following setup was used to calculate c̄′, n̄′

and z̄′. Corresponding buffers have to be arranged in a
special way:

PB0
i {ρx ∗ w, ρy ∗ w, ρz ∗ w, w}

NB0
i {nx ∗ w, ny ∗ w, nz ∗ w, 0}

ZB0
i {z, 0, 0, 1}

where ρx,ρy,ρz are derived projections components and
nx,ny,nz are the normal’s components of a particular sam-
ple Pi. z is the distance to the camera of the same sample
i. w is the weight computed by multiplication of Gaussian
kernels in 3D space and screen spaces. For the screen space
kernel sigma σs = 1 was used. Choosing this sigma means
taking into account the whole screen. However, for 3D space,
no normalization is possible without second pass rendering.
This happens because each new frame has new minimum
and maximum distances to the voxels. Therefore, we choose
σd = 0.05 by trial and error. Weight is computed for each
voxel interactively in the shader. It is important to notice 1
in ZB0

i . Since there is no function in unity to quickly access
number of pixels that have been modified during rendering,

we use this A channel to calculate it ourselves: ¯ZBa =
∑n

i 1

n
.

Using these notation we can compute:

c̄′ =
P̄Brgb

P̄Ba

n̄′ =
∥∥N̄Brgb ∗ n

∥∥
z̄′ =

Z̄Br

Z̄Ba

(7)

Here P̄Brgb, P̄Ba represent RGB and A channels of the
last (h − 1) MipMap level of the projection buffer. N̄Brgb

represent RGB channel of the last MipMap level of the nor-
mal buffer. Z̄Br, Z̄Ba represent R and A channels of the
last MipMap level of the depth buffer respectively.

7. EVALUATION

7.1 Participants
Seven right-handed subjects (6 male, 1 female) partici-

pated in the study as volunteers. Their ages ranged from
22 to 42, with an average age of 27. 4 of them rated their
experience with navigation in 3D software as poor, 2 average
and 1 proficient. 6 of test subject have never used touchless
interface before, and 1 has used a Kinect to play a game
once.

7.2 Setup
In our tests, a regular personal computer (PC) setup with

a keyboard, a mouse, a screen and a Leap Motion connected
to it through a USB3.0 port were used. PC specifications
were as following:

CPU i7 6700k
GPU GeForce GTX1070
RAM 16 GB

With this setup and render buffers resolution of 512x512, av-
erage frame-rate was 63 frames-per-second (FPS). However,
it was varying a lot between 30 and 120 FPS due to volume
rendering depending on how many active pixels are in the
current view and whether early ray termination is possible.

Leap motion was positioned on the table under users’
hands, and the screen was placed on the eye level of users
as illustrated in Fig. 28.

Figure 28: Hardware Setup. Graphic from [9]

7.3 Experiment
The experiment was designed to compare the method pro-

posed in this paper with widely used virtual TrackBall (TB)

metaphor. The method presented in this paper is a combi-
nation of touchless gesture interactions with VolCam algo-
rithm. Therefore, from now on we will refer to this method
as TVC. TB metaphor was setup in the similar to TVC way,
described in section Sec.5.1, same gestures were involved as
in Fig.22. The following gesture-to-command mapping was
used:

• Fist - Idle

• Index&Middle fingers extended - Pan&Zoom

• Open Palm - Rotation

Rotations are performed by opening palm and translating it
in the horizontal plane. Rolling is done in the in the same
matter as described earlier. This metaphor was chosen as
a simple metaphor which imitates interaction with pointing
devices device such as mouse and very similar to TVC. This
is done to compare VolCam more directly and decrease the
effect created by different metaphors. We designed an ex-
periment, in which we ask the user to perform manoeuvring
tasks to evaluate the usability of our approach and compare
user performance and satisfaction by using these two differ-
ent techniques. About 50% of the participants in each group
used the TB first, 50% the TVC first. The experiments were
randomized to avoid learning effect. The task of the experi-
ment was to manipulate the camera starting from the initial
position to match three distinct target views in a specific
order Fig.30. Two datasets were used: Feet and Thorax 29.
Each dataset’s paths were designed in such a way, that all

Figure 29: Datasets. (Left) Feet. (Right) Thorax.

of the three interactions had to be used: panning, zooming
and rotation. First target view was positioned on the part
of the dataset which is distant from the next two. This way
users were forced to zoom out and navigate to the second
view (object). The third view was close to the second one
and contextually was the other side of the object shown in
the view 2. Therefore, the transition from view 1 to view 2 is
testing the movement from one object to another. The tran-
sition from 2 to 3 is testing close up manoeuvring around
a specific object. Before starting the task, a brief introduc-
tion of the required hand gestures was given to the users.
They had 3 - 7 minutes of practice in total until they felt
they are ready to start. To increase spatial awareness of
the user inside the volume, demonstration, explaining the
objects represented in the target views and where they are
located inside the volume, was given. Users had the current
target view in front of them, next to the screen at all times.
Users had to try to get the view as close as possible to the
target view. When they were satisfied with the current view,
time, the camera position and orientation were recorded and
users were asked to proceed to the next target.

At the end of the experiment, participants were asked
to fill in the form, where they had to rate their experience,
answer questions which metaphor they prefer. Furthermore,
the form asked to comment on what features they missed if
any, and for some additional commentaries.

Figure 30: Target Views in order from left to right.
(TOP) Feet. (Bottom) Thorax.

7.4 Experiment Results and Observations
Users on average spent more time performing tasks us-

ing TVC metaphor. Users had difficulties predicting where
the VolCam would go next. However, four users finished
the transition from view 2 to view 3 faster using TVC. This
shows that our assumption that VolCam can perform bet-
ter for close up inspections is confirmed. In general, users
preferred standard Trackball metaphor. From the partic-
ipants’ feedback, we learned that TrackBall feels intuitive
since they are already familiar with it. It was hard for them
to predict how the VolCam will move. They admit they
could not grasp the concept of following the surface. They
mentioned in the comments they found themselves planning
the route from one object to another one, which increased
cognitive load. Unfortunately, during the experiments, the
Leap Motion device was not performing at its best due to
lighting conditions and would often lose track of the hand
and often recognize right hand as left one. This would stop
the interaction and users had to reset their hand gesture.
This decreased the overall experience. Three of the users
commented that they would prefer to use mouse and key-
board which would not distract them from the experience of
VolCam.

From our observations, it was obvious that the time given
to the users was not sufficient to get used to the TVC metaphor.
While working with TVC metaphor, instead of moving the
surface and directly get to the other side of the object, users
would often zoom out and try to position the object in the
center of the screen. This work-flow is very similar to the tra-
ditional TrackBall metaphor and is not efficient while using
VolCam. We have also noticed that unpredicted motion of
the camera would often occur due to the noise in the dataset,
especially in the Thorax dataset. In some specific camera
views, opaque voxels appear close to the camera which has
very high weight. This weight makes VolCam focus on them
and thus makes sudden, unpredicted motion. Problem is
illustrated on Fig.31

The place users were struggling have been recreated and
rendered in debug mode. The green highlight indicates the
objects the VolCam considers to be of importance. When
performing transition 1 to 2 in Thorax dataset, it goes smoothly

Figure 31: Noise Visualisation

until the high opacity voxels appear in the left corner of the
screen and additional input signal in that direction makes
the camera to quickly change its focus to those voxels. Since
the noisy data does not look like a surface in the visualisation
itself (Fig.32) , users would not recognize it as a potential
surface for VolCam to switch. This created additional mis-
understanding. Therefore, addressing this problem would

Figure 32: Opaque bone pieces

drastically increase the performance of VolCam.

8. RESULTS
VolCam allows to follow objects on volume datasets de-

fined by their TFs. The method works the best for close up
inspection of objects and with objects that ahve smooth sur-
faces as illustrated in 19. Furthremore VolCam behaviour is
illustrated in Fig.33, where the camera is moving along the
surface of aneurysm in the Thorax dataset.

Figure 33: Sequence of VolCam views in order from
left to right

However there are several points of improvements to the
algorithms which will be discussed in the remainder of the
section.

• Noise: As illustrated in Fig.31 noise creates prob-
lems for the VolCam algorithm. Therefore, the volume
should be filtered. Opening - morphological operator
can be applied to the volume to reduce the amount of
noise.

• Occlusion: Another problem encountered while work-
ing with VolCam in crowded spaces is the fact that,
new objects can appear between the object of interest
and the camera, during the change of the camera view.
This effect is illustrated in Fig.34. While following the
surface of the kidney, suddenly the rib cage appears
very close to the camera. The camera starts switch-
ing its focus to the rib case rather than continuing to
follow the surface. The camera starts switching the ob-
jects instead of continuing following the surface of the
kidney. In this case, to continue following the surface,
users have to zoom in closer to the surface before con-
tinuing movement. This makes users plan their way
through the volume which increases cognitive load.
The occlusion problem is further exaggerated when the

Figure 34: Occlusion problem demo

camera ends up inside an opaque object. This makes
users completely blind since all they can see is voxels of
that object covering the whole screen. However, Vol-
Cam continues to work by focusing on inner surfaces of
that same object. This combination of blind manoeu-
vring takes users into unpredicted locations. We have
investigated a possible solution of segmenting the data
by defining separate transfer functions for each object
or creating masks and let the user manually choose a
region of interest. This solution works pretty well and
allows keeping the focus on the object even when it
is occluded. However, it creates another step in data
preparation and forces manual input from the user to
choose which segmented part of the volume to follow
Fig.(35). More interesting research question would

Figure 35: Segmentation solution demo

be: How to decide which object the user is following
and be able to lock onto that object upon receiving the
user command? This can be done by determining at
what distance from the camera the object of interest is
located and locking into that distance. This will make
VolCam ignore objects further or closer from the cam-
era than the object of interest. This solution would

also reduce the problem of noisy inputs appearing on
the screen.

• Hand Tracking TVC was not very stable during our
tests. Tracked hands were lost at times, and Leap-
Motion took some time to recognize the hand again.
Therefore, a more robust implementation is required.
A quick fix can be to not stop the interaction when
the hand is not recognized only for a couple of frames.
This can be done by keeping the position of the hand
in memory and projecting hands motion for a fraction
of a second until the Leap Motion detects the hand
again. On top of that, one could easily let active ges-
tures, like panning, to continue even when LeapMotion
lost track of right hand and detected the same hand
as the left one.

• Gestures Our gestures were chosen to be as simple
and familiar as possible to the users. This was done to
analyze VolCam performance better. However, there
has been research on ob NUI gesture interactions. Other
gesture metaphors should be tested with the VolCam
algorithm. These are a couple of promising metaphor
that could be investigated further investigated [26] [27]
.

9. CONCLUSION
In this work we investigated the problem of intuitive touch-

less interaction for medical volume datasets. Precise and
robust manoeuvring around the 3D volume is further com-
plicated when users have to perform repetitive sequences of
motions such as pan, rotation to get the desired view. We
have reviewed context-aware solutions which perform combi-
nations of these movements on behalf of the user. However,
most of these solutions are developed for virtual, opaque
surfaces made of meshes. Therefore, this thesis work set a
goal to investigate whether context-aware navigation meth-
ods can be extended to volume renderings and how well they
will perform with touchless interaction methods.

VolCam - an extension of ShellCam to volume datasets,
which supports gesture metaphor has been proposed and de-
veloped as a solution to the given problem. VolCam tracks
the current visualisation composed by the user defined TFs.
Our method does not require any data preparation and adapts
to the changes in visualisation in real time. User studies
showed that our method performs well for close up inspec-
tion of surfaces and is faster than the conventional trackball
metaphor. However, for general volume navigation users op-
erated faster with Track Ball. Users have also expressed that
they prefer Track Ball over the Touchless VolCam metaphor
for general navigation. There is room for improvement of
the proposed method. The problems associated with the
current solution such as noise in the volume, occlusion of
objects of interest have been discussed and analyzed. The
methods, which can potentially solve the problems have been
proposed.

10. FUTURE WORK
There are several points of improvement. The most im-

portant once which will directly improve the VolCam are
described in Sec.8. Noise in the volume should be addressed
since it greatly affects the robustness of VolCam and can
improve the overall experience of the users. Several possible

solutions have been proposed to deal with occlusion which
interrupts the user interaction and creates unexpected Vol-
Cam movement. One potential solution to investigate is to
create a user interface which enables users to control the
objects they are focusing on manually. Another possible
solution is to check for collisions and not allows users to
go inside objects and restrict their movements. A similar
method is employed by Depenbrock et.al. In their system
for virtual colonoscopy [6]. Further investigation is needed
to explore gesture metaphors which can better suit for the
interaction with VolCam. Overall system experience can
also be improved by improvements in hand tracking and
rendering performance.

11. REFERENCES
[1] M. Alexa and A. Adamson. Interpolatory Point Set

Surfaces - Convexity and Hermite Data. ACM Trans.
Graph., 28(2):20:1–20:10, May 2009.

[2] T. Boubekeur. Shellcam: Interactive geometry-aware
virtual camera control. In Image Processing (ICIP),
2014 IEEE International Conference on, pages
4003–4007. IEEE, 2014.

[3] D. Bowman, E. Kruijff, J. J. LaViola Jr, and
I. Poupyrev. 3D User Interfaces: Theory and Practice,
CourseSmart eTextbook. Addison-Wesley, 2004.

[4] D. A. Bowman, D. Koller, and L. F. Hodges. Travel in
immersive virtual environments: An evaluation of
viewpoint motion control techniques. In Virtual
Reality Annual International Symposium, 1997., IEEE
1997, pages 45–52. IEEE, 1997.

[5] W. Buxton. A three-state model of graphical input. In
Proceedings of the IFIP TC13 Third Interational
Conference on Human-Computer Interaction,
INTERACT ’90, pages 449–456, Amsterdam, The
Netherlands, The Netherlands, 1990. North-Holland
Publishing Co.

[6] S. Diepenbrock, T. Ropinski, and K. Hinrichs.
Context-aware volume navigation. In 2011 IEEE
Pacific Visualization Symposium, pages 11–18, March
2011.

[7] B. R. D. F. Frank Weichert, Daniel Bachmann.
Analysis of the accuracy and robustness of the leap
motion controller.

[8] L. Gallo. A study on the degrees of freedom in
touchless interaction. In SIGGRAPH Asia 2013
Technical Briefs, SA ’13, pages 28:1–28:4, New York,
NY, USA, 2013. ACM.

[9] S. Hanselman. Leap motion: Amazing, revolutionary,
useless, August 2013. [Online; accessed August 8,
2017].

[10] J. Jankowski and M. Hachet. A survey of interaction
techniques for interactive 3d environments. In
Eurographics 2013-STAR, 2013.

[11] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and
G. Kurtenbach. Hovercam: interactive 3d navigation
for proximal object inspection. In Proceedings of the
2005 symposium on Interactive 3D graphics and
games, pages 73–80. ACM, 2005.

[12] B. Laha, K. Sensharma, J. D. Schiffbauer, and D. A.
Bowman. Effects of immersion on visual analysis of
volume data. IEEE Transactions on Visualization and
Computer Graphics, 18(4):597–606, April 2012.

[13] M. Leap. Vr best practices guidelines. June 2015.

[14] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):163–169, Aug.
1987.

[15] L. Malomo, P. Cignoni, and R. Scopigno. Generalized
trackball for surfing over surfaces. In STAG: Smart
Tools and Apps for Graphics. Eurographics, 2016.

[16] G. Marin, F. Dominio, and P. Zanuttigh. Hand
gesture recognition with leap motion and kinect
devices. In 2014 IEEE International Conference on
Image Processing (ICIP), pages 1565–1569, Oct 2014.

[17] F. Marton, M. B. Rodriguez, F. Bettio, M. Agus, A. J.
Villanueva, and E. Gobbetti. Isocam: Interactive
visual exploration of massive cultural heritage models
on large projection setups. Journal on Computing and
Cultural Heritage (JOCCH), 7(2):12, 2014.

[18] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer
Graphics, 1(2):99–108, June 1995.

[19] M. M. Movania. Opengl development cookbook, June
2013. [Online; accessed August 8, 2017].

[20] J. Mrovlje. Distance measuring based on stereoscopic
pictures.

[21] J. Mula. Leap motion: The power is on your hands,
October 2015. [Online; accessed August 8, 2017].

[22] M. Ortega, W. Stuerzlinger, and D. Scheurich.
Shocam: A 3d orbiting algorithm. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology, pages 119–128. ACM, 2015.

[23] PCMag. Mip mapping. [Online; accessed August 8,
2017].

[24] J. Sanders and E. Kandrot. CUDA by Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010.

[25] A. C. Sandy McKenzie, Lisa Avila and S. Jhaveri.
Volume rendering improvements in vtk, 2014. [Online;
accessed August 8, 2017].

[26] J. Shen, Y. Luo, X. Wang, Z. Wu, and M. Zhou.
Gpu-based realtime hand gesture interaction and
rendering for volume datasets using leap motion. In
2014 International Conference on Cyberworlds, pages
85–92, Oct 2014.

[27] K. R. Sivaramakrishnan, G. K. Raja, and C. G.
Kumar. A touchless interface for interventional
radiology procedures. In 2015 International
Conference on Automation, Cognitive Science, Optics,
Micro Electro-Mechanical System, and Information
Technology (ICACOMIT), pages 130–133, Oct 2015.

[28] A. Tuntakurn, S. S. Thongvigitmanee, V. Sa-Ing, S. S.
Makhanov, and S. Hasegawa. Natural interaction on
3d medical image viewer software. In The 5th 2012
Biomedical Engineering International Conference,
pages 1–5, Dec 2012.

[29] Z. Zhang. Microsoft kinect sensor and its effect. IEEE
MultiMedia, 19(2):4–10, Feb 2012.

