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RESEARCH ARTICLE

Automated leak localization performance without detailed demand distribution data

J. Moorsa,b, L. Scholtena, J. P. van der Hoeka,c and J. den Bestenb

aFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands; bAssetmanagement, Oasen N.V., Gouda, The 
Netherlands; cWaternet, Strategic Centre, Amsterdam, The Netherlands

ABSTRACT
Automatic leak localization has been suggested to reduce the time and personnel efforts needed to localize 
(small) leaks. Yet, the available methods require a detailed demand distribution model for successful 
calibration and good leak localization performance. The main aim of this work was to analyze whether such 
a detailed demand distribution is needed. Two demand distributions were used: a factorized distribution 
that distributes the inflow demand proportionally across the consumption nodes according to individual 
billing data, and a uniform distribution that equally distributes demand across all consumption nodes. 
The performance of the automatic leak localization method, using both demand distribution models, 
was compared. A new measure for leak localization performance that is based on the percentage of false 
positive nodes is proposed. It was possible to localize the leaks with both demand distribution models, 
although performance varied depending on the timing and duration of the measurement.

Introduction

Consumers normally report bursts that cause visible implica-
tions such as surface flooding. Leaks in water supply networks 
that do not cause water to come up to the surface can continue 
unreported for a long time, resulting in potentially large volumes 
of lost water. Additionally, moving ground particles around a 
small leak tend to enlarge a leak (Puust et al. 2010). Earlier and 
automatic leak localization in addition to fast leak detection can 
save water and prevent small leaks turning into bursts. In order 
to detect leaks automatically, the network is divided into smaller 
areas whose inflows are individually metered (‘District Metered 
Areas’; DMAs). Leaks in DMAs are detected by making a simple 
water balance that compares expected demand and actual 
water use (Bakker 2014; Romano, Kapelan, and Savić 2012). 
Additionally, an increase of the minimum night flow (MNF) is 
used for the detection of new leaks (Farley et al. 2008). Reducing 
the search area from the whole network to a DMA does not solve 
the problem of finding the exact location of a leak and therefore, 
apart from leak detection, an additional leak localization tech-
nique is needed to localize the leak (Bakker 2014).

Currently, leak localization is frequently done with acoustic 
equipment such as listening rods, leak correlators, leak noise 
loggers and non-acoustic methods like gas injection, ground 
penetrating radar technology and infrared photography (Li  
et al. 2015). These methods are very accurate, but it takes a long 
time to find a leak in a large search area (Li et al. 2015; Puust 
et al. 2010). Additionally, acoustic equipment is less effective for 
new pipe materials (for example polyvinyl chloride, PVC). Noise 
is transmitted less far in these (non-metallic) materials, resulting 

in a longer searching time (Gao et al. 2005; Li et al. 2015). Even 
with small DMAs, leak localization results in a time-consuming 
and labor-intensive process.

To reduce the search area and time, software-based meth-
ods are used next to the previously described hardware based 
methods (Li et al. 2015). These can be divided into non-numerical 
and numerical modeling methods. Non-numerical models use 
Artificial Intelligence techniques which need historical pressure 
data for training (Li et al. 2015). The drawback of these techniques 
is that the required large amounts of training data are not always 
available (yet) (Li et al. 2015; Tao et al. 2013). The numerical mod-
eling methods use a model and compare simulated results with 
field data (Li et al. 2015). One of these methods is based on pres-
sure transients in pipes. After the appearance of a leak, the pres-
sure wave can accurately be localized by the use of sensors with 
high sampling intervals. This method is very sensitive to the exact 
configuration of the whole network, which is often unknown in 
real systems. Together with, amongst others, the perceived cost 
of high-frequency pressure loggers and the unwillingness to 
generate water hammer in the system, its practical application 
is scarce or limited to individual large pipelines (Li et al. 2015; 
Puust et al. 2010; Savic, Kapelan, and Jonkergouw 2008). Model-
based approaches that also consider changes and are applica-
ble to a network of pipes is the model-based leak localization 
method by Pérez et al. (2011a) and Farley, Mounce, and Boxall 
(2013). While the approach by Farley et al. (2013) aims to deter-
mine subareas within which a leak is likely located using a mini-
mum of measurement devices, the method by Pérez et al. (2011a) 
employs fault isolation to identify the most probable location of 
the leak within the network. This latter method seeks for pressure 
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Subsequently the model is used to simulate sequentially a leak 
in all nodes, resulting in different pressures compared to the 
modeled pressures without a leak. This is stored in the theoreti-
cal fault signature matrix (FSM). The FSM contains the modeled 
differences between the leak-free pressures (p̂

0
) and the pres-

sures (p̂) after a modeled leak, with ns being number of sensors 
and nn number of nodes:
 

All the columns of the FSM are correlated (using Pearson’s cor-
relation coefficient) with the fault indicator vector, resulting 
in a correlation value c for every node. By sorting the correla-
tions in descending order, a ranking of the nodes with the most 
probable leak locations is created. The maximum values in this 
vector represents the most probable nodes to have a leak. In 
Supplemental Material 1 the time dependency is explained.

Hydraulic model set up, calibration and leak simulation

In order to mathematically represent the flows and pressure 
changes in the real network of DMA Leimuiden, a hydraulic 
model was built with corresponding links (3243, representing 
pipes) and nodes (3218, representing consumption points and 
pipe connections). The hydraulic modeling software EPANET 
2.0 was used with the default values for all model parameters 
(e.g. specific gravity, relative viscosity and maximum num-
ber of trials) except for the formula to calculate the head loss 
(Darcy-Weisbach instead of Hazen-Williams) and are described 
in the EPANET 2 User’s Manual (Rossman 2000). The EPANET 
Programmer’s Toolkit was used in Python to automate model 
calibration and leak simulation for all 3218 nodes (van Rossum 
1995). Leaks are modeled as a constant demand. The geometri-
cal and structural pipe data and customer connections (pipe and 
node identifier (ID), inner diameter, length, roughness values as 
used by the water company) were derived from the geographic 
information system (GIS)-database and the ‘basic administra-
tion of addresses and buildings’. To study the influence of the 
demand distribution on the performance of the leak localization 
method two demand distributions were used. The less data- 
demanding approach was the uniform model. It distributes the 
DMA inflow equally across all customers. The second model was 
the factorized model. This model divides the demand in the 
same way as proposed in Quevedo et al. (2011): the customers 
get a factor relative to the overall consumption based on the bill-
ing information. Hereby the assumption is that a customer who 
uses more water in a year, also uses more water in every period 
of time, proportionally to the yearly consumption. For the fac-
torized model the billing information of the DMA Leimuiden in 
2014 was used. The model was calibrated for both, once assum-
ing the uniform and once the factorized demand distribution. 
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anomalies between field measurements and simulated values 
from a hydraulic model in a ‘leak-free situation’ above a certain 
threshold. Quevedo et al. (2011) improved the method by using 
the residual between field measurements and simulated values 
directly without binarising, implying information loss. Hence, it 
also compares the difference between modeled and observed 
pressure, but instead of focusing on transients, it considers the 
spatially distributed changes in pressure. The method of Quevedo 
et al. (2011) was validated by Mirats-Tur et al. (2014) for two leaks 
in the DMA Nova Icària in Barcelona. The leaks were successfully 
localized within a 150 m radius from the real leak (Mirats-Tur  
et al. 2014). This approach is reported to require accurate estimates 
of the spatial distribution of customers’ water demand, because 
of its influence on pressure variations and therefore also leak 
localization performance (Cugueró-Escofet et al. 2015; Meseguer  
et al. 2014; Mirats-Tur et al. 2014; Pérez et al. 2011b; Sanz and Pérez 
2014; Sanz et al. 2015). For the same reasons, Pérez et al. (2009) 
have recommended to perform leak localization during night 
hours when there is less consumption and hence less noise in the 
pressure data. These high data demands are a serious limitation 
for the practical applicability of this approach, as such detailed 
demand data are often unavailable. At the same time, it seems 
somewhat contradictory that very detailed demand data should 
be obtained only to apply the method at a time where almost no 
demand occurs. Consequently, this work aims to identify whether 
a much simpler, uniform demand distribution would be sufficient 
for leak localization as compared to a factorized demand distribu-
tion model (based on individual billing data), using the method of 
Quevedo et al. (2011). Furthermore, an accurate spatial demand 
distribution may not be needed when the leakage is the same 
or even three times the MNF, as typical for smaller networks (or 
DMAs). Given that the influence of different factors on pressure 
variation – and hence leak localization performance – are not 
well-studied, we also investigated the impact of demand fluc-
tuations at different times of the day, different leak sizes, and 
different locations within the topography of the network. These 
three research questions were studied in the DMA Leimuiden, the 
Netherlands, with a MNF of 4.5 m3/h, this is approximately 7% of 
the amount of the already studied DMA Nova Icària (Pérez et al. 
2014a). In order to compare the leak localization performance 
across experimental designs (different leak sizes, locations, and 
times of the day), we propose a novel performance indicator 
that is based on the percentage of incorrectly detected leaks as 
opposed to the distance to the real leak.

Methods

Model-based leak localization

The leak localization method of Quevedo et al. (2011) is based 
on the comparison of the observed pressure changes in the 
network and the simulated pressure changes of multiple sim-
ulations, it was applied sequentially, assuming a leak at every 
node. The model allows simulating a ‘leak-free situation’ in order 
to calculate the fault indicator vector ϕ, obtained by subtracting 
the measurements, p, from their model-estimates in a leak free 
scenario, p̂

0, with ns being number of sensors (Meseguer et al. 
2014):
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This is important, because the demand model used for calibra-
tion directly affects the performance of leak localization. The 
flow measurements at the inlet are allocated to the individual 
nodes across the network using the particular demand distribu-
tion (uniform or factorized). Pressure head measurements at the 
inlet are used to model reservoir levels at the inlet of the model 
(average piezometric head is 35.7 m). These form the boundary 
conditions under which the model is calibrated and leaks are 
simulated (Sanz and Pérez 2014). The simulated pressures and 
the measured pressures in the low flow conditions were used for 
the best estimate of the measurement node elevations. First, all 
node elevations in the model are set to zero. During calibration, 
observed pressures and simulated pressures are compared. The 
difference between the observed pressures and the simulated 
pressures during low consumption are used to set the elevation 
of the nodes in the model that have a pressure sensor in the real 
network. The elevations were set during minimum consumption 
when the influence of the roughness of the pipe is small. The 
root mean squared error (RMSE) is used as the objective func-
tion in our calibration for our calibration parameter pipe rough-
ness. The Darcy–Weisbach roughness coefficient was adjusted 
to minimize the RMSE during extended period simulation cali-
bration (one day, 96 time steps).

Design of the artificial leaking campaign

The DMA Leimuiden spans 1.46 km2 with 4285 inhabitants (1835 
households) (CBS 2015). The network length is 26  km and it 
consists mainly of PVC (54%). The delivered monthly volume is 
20,000 m3 to 1932 customer connections. During this research, 
the water of DMA Leimuiden was supplied by one inlet. For 
being able to compare simulated pressures with observed pres-
sures in the leak free and leak situation, a measurement cam-
paign, in which artificial leaks were created at hydrants in the 
network, was set up. This required defining the measurement 
devices and where to place them, the leak locations, leakage 
sizes (flows) and durations.

Sensor placement and deployment
The performance of the leak localization method and the loca-
tion of the sensors are interdependent (Bonada and Meseguer 
2014a; Bonada, Meseguer, and Mirats-Tur 2014b; Meseguer  
et al. 2014). Initially it was planned to install all 15 smart meters 
that Oasen, the water company servicing DMA Leimuiden, had 
acquired. The smart meters comprised a pressure sensor, tem-
perature sensor and a pulse counter that can be attached to and 
installed next to an original water meter to derive the inflow. The 
pressure device included a pressure transmitter (JUMO MIDAS 
C08, measurement error 0.35% of full scale: 0–4 bar, 20°C), one 
measurement per five seconds, reported resolution 0.01  bar). 
The locations were selected based on the highest flow velocities 
and preferred flow direction as identified by modeling the cur-
rent hydraulic situation. At these points the change of pressure 
was expected to be the most sensitive. In our case, the maxi-
mum velocity ranged from 0.01 to 0.15 m/s. This amounted to 
simulated nighttime pressure drops between 0.20 kPa in loca-
tion I and 10.98  kPa in location III. Furthermore, the sensors 
were planned at the outer areas and on long pipe segments. 
They were installed in front of the existing water meters at the 

customer connections, from which inflow measurements were 
obtained. When the customer does not use water, the pressure 
at the house is the same as the pressure in the network. Due 
to unacceptance by customers, holidays, practical limitations of 
the location and firmware problems, only six of the 15 planned 
smart meters were installed and in operation before the start of 
the artificial leak campaign. Therefore, seven pressure loggers 
(PrimeLog+, measurement error 0.1% of full scale: 0–10  bar, 
one measurement per second) were additionally installed on 
fire hydrants. Their location was defined with the optimal mod-
el-based sensor location deployment procedure and used a 
Genetic Algorithm (Bonada, Meseguer, and Mirats-Tur 2014b) 
implemented in the Python package DEAP (Fortin et al. 2012). To 
perform this procedure a uniform demand model is calibrated 
with pressure measurement at nine locations across the DMA, 
in the same way as explained in the section ‘Hydraulic model set 
up, calibration and leak simulation’. The optimization objective 
was to minimize the largest group with the same leak response 
(leak response group) after truncating the pressure response to 
one decimal. The parameters were; population size: 4000, cross-
over fraction: 0.5, individual mutation probability: 0.2, attribute 
mutation probability: 0.1, number of generations: 20.

Furthermore, flow and pressure measurements were obtained 
at the inlet. Pressure at the inlet was measured with the same 
pressure device as used at the fire hydrants (PrimeLog+). The flow 
meter at the inlet (KROHNE) had a measurement uncertainty of 
0.2% of the measured value and a logging interval of one in 15 
min. In Supplemental Material 2 the sensor deployment of smart 
meters and pressure loggers as well as the DMA inlet with flow 
and pressure measurements is shown.

Leak location, size, timing and duration
Sixteen artificial leaks, with a duration of 15 min, were created 
by opening fire hydrants at three different locations, for two 
leak sizes (i.e. two opening degrees of the hydrants), and at 
three different times of the day. The locations of the artificial 
leaks were chosen in a different leak response group (according 
to the uniform model at MNF) and based on their accessibility. 
Locations are shown in Supplemental Material 2. For being able 
to assess the influence of demand variations on leak localiza-
tion performance, artificial leaks were created during the night, 
morning, and day. No measurements were taken at location II 
during the morning peak. The measurements were performed 
on one day and the morning peak was too short to open fire 
hydrants at all three locations with two leak sizes. Assuming 
that leak size will also affect leak localization performance, at 
each location first a larger and then a smaller leakage of 15 
and 7.5  m3/h, respectively, were performed (leak schedule in 
Supplemental Material 3). This gives an indication since a fair 
comparison should have the same inflow but these may differ 
within half an hour, especially in the morning peak. By incident, 
a leakage of approximately 5.2 m3/h occurred during the time 
when the smart sensors were placed in the network (location 
‘RL’ in Supplemental Material 2). For the real leak, measurements 
of a whole day were available (see inflow hydrograph later). 
This provided the opportunity to test both leak localization 
approaches for a real leak. The leak localization of the real leak 
was performed with the smart meters only since the pressure 
loggers were already removed when the leak occurred.
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Results

Calibration

Sensor deployment
The calibration result of the model that is used for sensor deploy-
ment of the pressure loggers was a RMSE of 6.73 kPa. This was 
for nine sensors and 96 time steps and the uniform model.

Leak localization
The RMSE during calibration of the factorized model was smaller 
than the RMSE of the uniform model (RMSE = 9.02 kPa for the 
factorized model, RMSE = 9.71 kPa for the uniform model).

Artificial leaks

An overview of the leak localization performance executed with 
the uniform and factorized distributions is shown in Table 1. Both 
models demonstrated comparable behavior and performance 
during nighttime measurements as well as for location III during 
the morning peak and location II and III during daytime. The fac-
torized model was only slightly better than the uniform model. 
Overall, the performance was better for larger leaks than smaller 
leaks (15  and 7.5  m3/h, respectively). The worst performance 
was observed for a small leak during nighttime measurements 
(Table 1, for location I the performance was 74.4% and 72.2% 
for the uniform and factorized models, respectively). During the 
morning peak and with a small leak size, the factorized demand 
model performs much better than the uniform demand model 
for location I. Both models perform relatively poorly for location 
I and II during daytime, although the uniform model performs 
better than the factorized model, except for the larger leak at 
location I. For all three times, the performance of the uniform 
and factorized model was under 2.5% for location III.

The models show very different behavior during the time 
when the hydrants were opened to create the artificial leaks in the 
morning peak for location I, as shown in Figure 1. Figure 1 shows 
the relative correlation for each network node. A high correlation 
with reference to the other nodes in the same network (black 
nodes) indicates a high probability of the existence of a leak, 

Applied time steps
To execute the leak localization method three different time 
steps are needed (Figure S1). These are the sensor sample time 
(Ts), scenario analysis time step (Ta) and the diagnosis sliding 
window (Tw) (Meseguer et al. 2014) (Supplemental Material 
1). The Ts for the pressure measurements were sampled every 
second (pressure loggers) and every 5 s (smart meters). The 
mean of 15 min for these values is calculated to retrieve the 
Ta. This is determined by the larger sensor sample time (Ts) of 
the flow measurements of the inlet of 15 min. Both, Ta and Tw 
were 15 min for the artificial leaks. One fault indicator vector 
ϕ and FSM were computed resulting in one leak localization 
result with correlations for all nodes. For the leak localization of 
the real leak extended period simulation was carried out, due 
to variation in the inflow (see later), whereas for the artificial 
leak a steady state was assumed. Thus, Ta was again 15 min and 
both a Tw of 15 min and 60 min were compared. For the real 
leak 96 (when Ta = Tw was used) or 24 (when Tw = 60 min) leak 
localization results were obtained for one day. In addition to 
this, one leak localization result was created for one day with 
the accumulation of the correlations above 0.5 as proposed in 
Pérez et al. (2014a).

Leak localization and localization performance

In this research the performance of the leak localization with 
the two demand distribution models was not compared by the 
distance to the leak, but rather the percentage of false positive 
(FP) nodes. FP nodes are the nodes that have a higher correla-
tion value than the node in the model where the actual leak 
was. In practice, this group of FP nodes should be as small 
as possible since these are locations that are searched first 
without finding the leak. The exact percentages of FP nodes 
cannot be compared across locations, because the nodes are 
not evenly distributed over the area. Hence, the number of FP 
nodes may be higher in areas with many nodes rather than 
remote areas. The magnitudes remain relatively comparable, 
where e.g. a FP percentage below 5% can be interpreted as 
good across locations.

Table 1. Leak localization performance (%FP nodes) of the artificial leaks during night, morning peak and daytime and the performance when the correlations are accu-
mulated (accumulated C) for the real leak.

Time Location Leakage size(m3/h) Qleak/Qtotal Uniform demand(FP nodes) Factorized demand(FP nodes)
Night I 7.5 0.64 74.4% 72.2%

15 0.72 41.7% 41.1%
II 7.5 0.78 2.5% 4.0%

15 0.96 1.0% 1.2%
III 7.5 0.82 1.0% 1.3%

15 0.91 0.8% 1.7%
Morning peak I 7.5 0.13 14.7% 5.0%

15 0.27 41.0% 14.0%
III 7.5 0.17 2.2% 0.8%

15 0.28 2.0% 1.9%
Daytime I 7.5 0.20 26.1% 40.7%

15 0.34 22.1% 7.8%
II 7.5 0.20 20.1% 40.7%

15 0.39 18.1% 19.8%
III 7.5 0.28 2.4% 1.9%

15 0.42 1.2% 0.8%
Accumulated C, Tw = 15 min Real Leak 5.2 0.14 to 0.96 0.5%  0.2%
Accumulated C, Tw = 16 min Real Leak 5.2 11.8%  0.3%
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The performance of the leak localization for the same day but 
with diagnosis sliding window of 60 min (Tw) (combination of 
four time analysis steps of 15 min) are shown in the two bottom 
figures of Figure 3. The performance of the uniform model fluc-
tuates between 0.19% and 31.67% FP nodes (minimum 17:00 h 
and maximum 08:00 h in Figure 3(C)). The performance is rather 
poor during daytime (> 15% FP nodes), and good during the night 
(<10% FP nodes). The factorized model fluctuates between 0.03% 
and 18.77% FP nodes (minimum 09:00 h, maximum 14:00 h in 
Figure 3(D)), with good performance also during the night and 
in addition between 09:00–12:00 h in the morning and 15:00–
18:00 h in the afternoon.

Discussion

The performance of both demand distribution models was 
almost the same during the night. At night, the leakage size is 
large compared to the flow in the network due to low water con-
sumption by customers (Qleak/Qtotal = 0.64–0.96, Table 1) whereas 
during the morning and daytime, the leakage size compared to 
the total flow is smaller (0.13–0.42, Table 1). Because the con-
sumption is small compared to the leakage (large relative leak-
age volume to demand ratio), the different demand distributions 
have a small impact on pressure during the night. The leak local-
ization performance was mainly poor for location I. The poor 
localization of the leaks at location I at night, can probably be 
explained by the lower ratio of leakage size to total inflow com-
pared to the other two locations (column Qleak/Qtotal in Table 1).  
The leaks at location I were created earlier than the leaks at the 
other two locations (location I start: 00:30  h, location II start 

while a low correlation with reference to the other nodes in the 
same network (white nodes) indicates a low probability of a leak 
at that location. The leak at location I was poorly localized with 
the uniform model. In contrast, for location I during the morning 
peak, the factorized model localized the 7.5 m3/h leakage with 
5.0% FP nodes (bottom Figure 1 and Table 1).

Real leak

Figure 2 shows the distance of the accumulated correlations 
(accumulated over 60 min and correlations above 0.5) from the 
real leak in Leimuiden. The location of the highest correlation 
(maximum correlation: Cmax) is represented by a big star. Smaller 
stars represent nodes that have correlations larger than 0.99 × 
Cmax. Both models had their maximum near the real leak (uni-
form model: 35 m, factorized model: 11 m).

Because the real leak lasted for more than one day, it was 
possible to study the leak performance over the day. In Figure 3  
the calculated localization performance (black line) is shown. 
The DMA inflow hydrograph (Figure 3, gray line) is shown as well 
to clearly visualize the time when the MNF flow and morning 
peak flow occurs. Notable was that the percentage of FP nodes 
showed strong fluctuations, ranging from 0% (the real location of 
the leak) to 41.05% of FP nodes at 16:15 h in the uniform model 
(Figure 3(A)). The minimum and maximum performance of the 
leak localizations calculated with the factorized model (Figure 
3(B)) are 0% (9:45 h and 12:45 h) and 57.49% (06:45 h) FP nodes 
respectively. During the time the MNF occurred (between 02:00 h  
and 04:30 h) the percentage of FP nodes was approximately 10% 
for both models.

Figure 1. Correlation between observed and simulated leaks with a uniform (top) and factorized demand (bottom) distribution and a leakage size of 7.5 m3/h. The higher 
the correlation (darker), the better the result. See section ‘Model-based leak localization’ in the methods section for details.
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the influence of the leak location on localization performance 
is not widely discussed in the literature, let alone in sufficient 
detail to derive conclusions. Benchmarks for being able to com-
pare localization performance across networks and methods are 
missing. The structure of the DMA Leimuiden is a combination of 
branched and looped parts and hence has a very different struc-
ture than for example the (very) regularly looped block-layout 
as in DMA Nova Icària (Bonada and Meseguer 2014a; Meseguer  
et al. 2014; Mirats-Tur et al. 2014; Pérez et al. 2014a, 2014b; 
Quevedo et al. 2011). Although not completely independent of 
the spatial distribution of the nodes across the network, the leak 
localization performance measure used in this research allows 
better cross-network comparison than common distance meas-
ures which are often network configuration dependent. When 
the nodes are evenly distributed (e.g. every 10 m), the leak local-
ization performance measure becomes spatially independent.

The opportunity of the real leak showed a high fluctuation of 
leak localization performance during the day, both with a diag-
nosis sliding window (Tw) of 15 min and 60 min. The maximum 
percentage of FP nodes was higher when the leak localization 
was performed directly after every time analysis step, thus Ta = 
Tw = 15 min, than when a diagnosis sliding window (Tw) of 60 
min is used. This is consistent with the observation of Meseguer 
et al. (2014) that the use of multiple time analysis steps adds 
robustness to the performance of the leak localization. The 
leak localization result could otherwise be affected by limited 
sensor resolution or the uncertainties regarding the demand 
(Meseguer et al. 2014).

02:00 h, location III start 03:00 h, Supplemental Material 3) and 
the ratio of leakage size to total flow was lower (0.72, 0.96, 0.91 
for location I, II, III, respectively, see Table 1). A smaller leakage 
size to total flow ratio means that there is more inflow due to 
consumption rather than the leakage, which is distributed over 
the customers. Possibly, both models distributed the consump-
tion and leakage flow at location I incorrectly during daytime. 
Since we did not measure the consumption of all the customers 
in the DMA, other reasons cannot fully be excluded. A wrong 
demand distribution can result in pressure differences that mask 
the pressure difference caused by a leak (Pérez et al. 2011a). The 
head loss caused by a leak is larger at higher flows. This explains 
why the factorized model was able to localize the leak in the 
looped part of the network during the morning peak, while it 
was unable to do so during other times.

Another reason why the leaks at leak location I were poorly 
localized during the night may be the location of the leak in the 
network. Leak location I is located in a strongly looped part of 
the network while location III is localized well and is situated in 
a branch (Supplemental Material 2). Pérez et al. (2011a) stated 
that ‘The main handicap of the methodology is that in a highly 
looped network pressure drops due to a leak are not very signif-
icant’ (337). During the night, the maximum simulated pressure 
response due to a leak at location I with a leakage size of 7.5 m3/h 
was low ( ̠  0.29  and ̠  0.20  kPa for the uniform and factorized 
model, respectively). This is in agreement with the literature which 
states that the precision of the sensor resolution is important for 
this method (Meseguer et al. 2014). To the authors’ knowledge, 

Figure 2. Highest accumulated correlations in the uniform (top) and factorized model (bottom) from the real leak.
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than the uniform demand distribution, the results were satisfac-
tory for both distributions and all leaks, the leak being within 
a search area of less than 15% of the potential leak locations 
(nodes in the DMA) in most experimental settings. The leak 
localization method can thus be applied in practice even when 
the data situation does not allow to use a factorized demand 
distribution and in DMAs with a small MNF. The number of sen-
sors was relatively high (six smart meters and seven pressure 
loggers), but the good results may encourage water utilities to 
invest in such devices. To get more insight in general applicabil-
ity of the method in practice, more research is needed on the 
performance of leak localization of different locations in other 
DMAs with different pipe network structures. Additionally more 
research is needed on the leak size dependency on the accumu-
lation time step (in this research one day).

The factorized model yields better results than the uniform 
model, particularly when the leakage sizes are small compared 
to the flow in the network, for example during the morning 
peak. With large relative leakage sizes, the difference in localiza-
tion performance of both demand distributions is negligible, as 
observed during the night. As a result, using a factorized demand 
distribution is preferred for artificial leak localization campaigns, 
particularly when the objective is to localize small leaks or deter-
mine leak localization performance. The use of the percentage of 
FP nodes showed to be a good indicator for the performance of 
the leak localization method in our study case. Since leak locali-
zation performance depends not only on the modeling method, 

Given the observed dependency of leak localization perfor-
mance on the relative leakage size (leak-to-demand volume ratio), 
but also the network topography, sensor placement, and diagno-
sis sliding window, we believe that the percentage of FP nodes 
is a more suitable indicator to compare the performance of leak 
localization approaches in our case than the distance indicators 
(like distance between the nodes with the highest leak correlation 
and the leak or the mean distance to the gravity center of those 
nodes with correlations over 99% of the maximum correlation) 
as used by e.g. Pérez et al. (2011b, 2011c). Even so, the depend-
ency of the leak localization performance on the conditions of the 
specific case remains an issue if the ambition were to compare 
the leak localization results of different methods across cases. In 
light of the few case studies reported in the literature, it is thus 
far only possible to derive qualitative insights about the depend-
encies between different influence factors and leak localization 
performance. For being able to obtain generalizable results about 
the influence of other factors and their quantitative implications, 
systematic studies of the factors that determine leak localization 
performance in a larger set of cases are needed.

Conclusions

The leak localization method of Quevedo et al. (2011) was val-
idated for 16 artificial leaks of 15 min and one real leak using 
a factorized and a uniform demand distribution. Although the 
factorized demand distribution yielded slightly better results 

Figure 3. Percentage of false positive (FP) nodes (in black) versus District Metered Area (DMA) inflow (gray) on 8 December 2015 with uniform (graphs A and C) and 
factorized demand distribution (graphs B and D), time analysis step and time window 15 min (graphs A and B), the time analysis step 15 min and time window 60 min 
(graphs C and D).
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Quevedo, J., M. Cugueró, R. Pérez, F. Nejjari, V. Puig, and J. Mirats. 2011. 
“Leakage Location in Water Distribution Networks Based on Correlation 
Measurement of Pressure Sensors.” IWA Symposium on Systems Analysis 
and Integrated Assessment, San Sebastián, 290–297.

Romano, M., Z. Kapelan, and D. A. Savić. 2012. “Automated Detection of Pipe 
Bursts and Other Events in Water Distribution Systems.” Journal of Water 
Resources Planning and Management 140 (4): 457–467.
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however, but also on the configuration of the network and loca-
tion of measurement devices, future studies that aim to bench-
mark approaches across different networks or sensor placement 
strategies need to explicitly consider such dependencies to avoid 
potentially biased results.
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