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Netherlands 

 

Abstract: Train unit routing problem determines the number of train units needed to carry out involved 

trips, which is a significant part of railway operation cost. In this paper, we focus on high-speed train 

unit routing problems, in which maintenance resource constraints both on time and distance are taken 

into account. Based on a connection network, this paper first proposes a general train unit routing mod-

el. Then, the general model is specialized to meet the circulation and maintenance conditions of 

high-speed train units in China, which is based on a special connection network with a two-day time 

horizon. A strategy is proposed to reduce the scale of the connection network, which improves the 

model’s solvability. Furthermore, an extension on multi-depot train unit routing problem is discussed. 

Finally, numerical experiments based on the real data of Chinese high-speed railway are carried out to 

verify the effectiveness and efficiency of the proposed mode and method. 

Keywords: High-speed railway; Train unit routing problem; Maintenance; Integer programming 

 

1 Introduction 

By the end of 2016, the total length of high-speed railway in China has been over 19,000km, 

and everyday there were more than 1,800 high-speed train units with different types carrying out 

about 3,500 trips. It is expected that by 2020, the total length of high-speed railway will be over 

30,000km, and the number of train units in service will be 3,000. As is known, an efficient train 

unit circulation requires a small number of train units to carry out trips, and therefore the cost of 

high-speed railway operation can be significantly reduced, considering the high price of one train 

unit (about 6 million dollars).  

For high-speed railway, train unit circulation problem can be roughly divided into two prob-

lems, namely train unit routing and train unit assignment. Train unit routing problem is in the 

tactical planning phase (see Maróti G., 2006), where generic routings that cover all involved trips 
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are obtained. Note that these generic routings do not assign individual train units to trips explicitly, 

but serve as a reference in train unit assignment. In detail, train unit assignment problem is solved 

to assign individual train units to the generic routings, which is in the operational phase. In this 

paper, we are particularly interested in train unit routing problem, and hence train unit assignment 

problem and corresponding restrictions are out of the scope. Obviously, the more the number of 

generic routings is, the more train units are needed. In this sense, train unit routing problem de-

termines the cost of railway operation. 

Currently, there are seven types of high-speed train units and 5 levels of maintenance in Chi-

na (illustrated in Table1). Note that some maintenances have two resource constraints, namely 

elapsed time and travel distance. For example, a CRH1 train unit must undergo a first level 

maintenance every 48 hours or 4000 km, which comes first. In addition, each train unit belongs to 

a depot, and the first level maintenance must be performed in its depot.  

Table1. Maintenance Resource Constraints of Different Train Unit Types 

 1st 2nd 3rd 4th 5th 

CRH1 

48 h/ 

4000 km 

* 1.2M km 2.4M km 4.8M km 

CRH2 

CRH380A 
* 

0.3M km/ 

1 year 

1.2M km/ 

3 year 

2.4M km / 

6 year 

CRH3 

CRH380B 

CRH380C 

* 1.2M km 2.4M km 4.8M km 

CRH5 
48 h/ 

5000 km 
* 1.2M km 2.4M km 4.8M km 

*The second level maintenance has not published uniform requirements 

In high-speed train unit routing problem, only the first level maintenance (daily check) is con-

sidered. Specifically, the total travel distance of a generic train unit routing cannot be longer than 

the maximum travel distance resource of the first level maintenance, and the total elapsed time 

cannot be longer than the maximum travel time resource as well. In other words, a generic train 

unit routing is between two consecutive first level maintenances. 

The contributions of this paper are threefold. First, a general single-depot model for train unit 

routing problem with two resource constraints is proposed. In almost all existing literature, only 

one resource constraint is considered. The formulation of the general single-depot model is based 
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on a connection network, which conveniently represents the circulation of train units. An arc in a 

connection network is either a maintenance arc or a non-maintenance arc, due to the duration and 

location attributes of the arc. On a non-maintenance arc, a train unit cannot undergo maintenance. 

Via the connection network, the restrictions on turnaround and maintenance can be easily ex-

pressed by the adjacency of nodes.  

Second, considering the characteristics of train unit routing problem in Chinese high-speed 

network, a special model with two-day horizon for train unit routing problem is developed, in 

which the time resource constraints can be removed. As a result, the scale of the model is signifi-

cantly reduced. Furthermore, a reduction of the number of arcs is carried out via introducing upper 

and lower bounds of the durations of arcs, which are obtained from practical experiences. Besides, 

the connection network of single-depot is extended to the case of multiple-depot, based on which a 

model for train unit routing problem with multiple-depot is formulated.  

Third, based on the real data in Chinese high-speed railway network, several sets of experi-

ments are carried out to test the effectiveness and efficiency of all the proposed models. The re-

sults show that after introducing upper and lower bounds of the durations of arcs in connection 

networks, the computation times of all models are significantly reduced, with no deterioration in 

the optimal objective values. Besides, if the number of involved trips in a day is less than 200, the 

computation times of the special model are all less than 8 mins. Since train unit routing problem is 

at the tactical level of railway optimization, the computation time of the special model is accepta-

ble. 

The remainder of this paper is organized as follows. Section 2 provides a review of the liter-

ature relating to the train unit routing problem. Section 3 presents the construction of a cyclic 

connection network, based on which a general single-depot model for train unit routing problem 

with two resource constraints is formulated. In Section 4, a special model for train unit problem in 

Chinese high-speed railway network is formulated. In Section 5, we extend the special model to 

train unit routing problems with multiple depots. Section 6 verifies the effectiveness and efficien-

cy of the models via carrying out numerical experiments based on the real data of Chinese 

high-speed railway. In Section 7, we draw some conclusions for this paper. 
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2 Literature Review 

As mentioned in the above section, train unit routing problem is the tactical part of train unit cir-

culation problem, which is also known as rolling stock planning/scheduling/rostering problem. 

Train unit circulation may vary from country to country, due to management regulations and 

maintenance rules. In some countries, train unit circulation is not necessarily divided into train 

unit routing and train unit assignment. For this reason, in this section, we review some relevant 

literature on train unit circulation problem, instead of train unit routing problem. 

In most existing literature, maintenance was not considered, and the authors mainly focused 

on optimizing the composition of trains to satisfy seat demand and reduce operating costs. As one 

of the earliest literature on this problem, Schrijver (1993) aimed to minimize the number of train 

units of different types for periodic trips in the Netherlands, under the requirement that the pas-

sengers’ seat demand must be satisfied. The framework of this paper, namely an integer linear 

programming (ILP) model on a directed time-space graph, has been widely used in the research. 

Abbink et al. (2004) presented an integer programming model to assign train units to trips, the 

objective of which was to minimize the seat shortages during the morning peak hours. The prob-

lem was solved by CPLEX, and experiments on the real-life data from NS Reizigers were carried 

out. Considering (un)coupling of train units, Alfieri et al. (2006) focused on minimizing the num-

bers of train units of different types needed on a railway corridor. A solution approach based on an 

integer multi-commodity flow model was proposed, and applied to a real-life case of NS Reizigers. 

Peeters and Kroon (2008) formulated a model to determine an optimal daily assignment of train 

units on a railway corridor in the Netherlands. In their model, the changes of train composition at 

origin and destination stations were taken into account, and a branch-and-price algorithm was 

developed to solve the problem. Fioole et al. (2006) extended the model in Peeters and Kroon 

(2008) by considering underway combining and splitting of trains. A complex mixed integer linear 

programming model was constructed, which was solved by CPLEX. Cacchiani et al. (2013) de-

scribed the train unit circulation problem as a multi-commodity flow model, the objective of 

which was to minimize the number of train units needed. The model was solved by a Lagrangi-

an-relaxation-based heuristics, in which a local search algorithm was used to obtain feasible solu-

tions.  
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In recent years, more and more literature on train unit circulation problem considered the re-

strictions of maintenance. Maróti et al. (2005, 2006, and 2007) considered train unit circulation 

problems in the Netherlands, in which the maintenance resource constraint was travel distance. In 

their publications, each train unit was scheduled to carry out as many trips as possible before 

maintenance, and if a train unit was in maintenance, an urgent train unit was scheduled to replace 

it. Maróti et al. (2005, 2006, and 2007) proposed two integer-programming models for the prob-

lem, namely an interchange model and a transition model. The former was designed to consider as 

many details as possible, while the latter was designed to simplify formulation of the problem with 

less input data. Hong et al. (2009) studied the train unit circulation problem in Korean high-speed 

railway, which was described as an Eulerian walk problem. The problem was solved by a pro-

posed two-stage heuristic approach, which first found a routing without considering maintenance 

requirements. A heuristic was then employed to incrementally increase the number of train units to 

meet the maintenance requirements. Cacchiani et al. (2010) proposed a heuristic based on column 

generation to minimize the number of train units used. In their extended model, maintenance con-

straints were considered, which required that all train units must undergo at least one maintenance 

during a weekly schedule. Borndörfer et al. (2014) constructed a mixed-integer programming 

model on a hyper-graph for train unit circulation, which considered several requirements, such as 

train composition, maintenance constraints, infrastructure capacities, and regularity aspects. A 

heuristic based column generation and local search was developed to solve the model. Giacco et al. 

(2014) formulated a train unit circulation problem as a minimal cost Hamiltonian cycle problem in 

a graph, in which service parings, empty runs and short-term maintenances were all taken into 

account. The problem was solved by CPLEX, and the method was tested on real-world scenarios 

from an Italian railway company. Given generic routings for train units, Lai et al. (2015) investi-

gated a train unit assignment problem, in which the second level of maintenance were considered. 

An exact optimization model was first proposed, and then a hybrid heuristic process was devel-

oped to improve solution quality and efficiency. 

Besides train units circulation problems, some literature focused on dealing with the efficient 

circulation of locomotives. Ziarati et al. [17] proposed an integer linear programming model for 

the problem of assigning locomotives to trains. The model was solved by a branch-and-cut ap-

proach, and was tested on the actual data from Canadian National Railway Company. Cordeau et 
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al. (2000) described a decomposition method for the simultaneous assignment of locomotives and 

cars for passenger trips. In a subsequent paper, Cordeau et al. (2001) extended their model by 

adding the maintenance requirement of locomotives. For a similar problem, Lingaya et al. (2002) 

described a heuristic based on branch-and-bound method, in which the linear relaxations were 

solved by column generation.  

Note that in most existing literatures, either maintenance is not considered at all or only one 

maintenance resource constraint is taken into account. In our paper, we consider both travel dis-

tance resource constraints and elapsed time resource constraint, which is more in line with the 

practice. Besides, in Chinese high-speed railway, train unit circulation problem is divided into 

train unit routing problem and train unit assignment problem, which makes it different from most 

railway systems. This paper particularly proposes a special model on the train unit routing prob-

lem, which fulfills the characteristics of Chinese high-speed railway.  

3 A General Train Unit Routing Model with Two Resource Constraints 

3.1 Problem description and assumptions 

In some high-speed railway systems, such as in China, train unit types and compositions are 

predetermined before making train unit routing plans. In this paper, we simply assume that there is 

only one type of train unit with the same composition.  

Based on a given timetable, the dispatchers make a train unit routing plan. It is required that 

all the trips in the timetable must be covered by one and only one train unit routing. Note that a 

trip is characterized by the visited stations with corresponding arrival and departure times. Since 

the composition of a train is not changed in the intermediate stations, we only need to pay atten-

tion to the origin station and destination station of a trip. When a train unit arrives at the destina-

tion station of a trip, we say that the train unit finishes the trip. If the train unit is going to carry out 

another trip, the turnaround constraint must be satisfied. Specifically, the latter trip’s origin station 

must be the former trip’s destination station, and the time interval between the former trip’s arrival 

time and the latter trip’s arrival time must be greater than the minimum turnaround time. It should 

be pointed out that the minimum turnaround time depends on the necessary alighting and boarding 

times, and shunting time from the arrival track of the former trip to departure track of the latter 

trip. 
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As mentioned previously, each train unit is affiliated to a depot, and the first level mainte-

nance must be performed in the depot. Note that a depot is usually located near a major station, 

and the travel time from the station to the depot for maintenance and the travel time from the de-

pot to the station after maintenance should be considered. Usually, the duration of the first level 

maintenance ranges from three to four hours.  

In order to describe the problem more clearly, Fig.1 presents a small railway network with 6 

trips every day, namely G1, G2, G3, G4, G5 and G6. Note that S1, S2 and S3 are origin and destina-

tion stations, and S2 is the only station equipped with a depot, to which all train units in the net-

work are affiliated. For simplicity, the same timetable is repeated every day. A possible solution to 

this routing problem is “G2→G3→G4→G1→G5→G6”. Note that the first three trips of this routing 

are in “day 1”, and the last three trips are in “day 2”. Specifically, in the morning of “day 1”, sta-

tion S2 assigns a train unit that has just been maintained to trip G2, starting the routing; in the 

evening of “day 2”, this train unit finishes trip G6 and returns to S2 for maintenance in the depot, 

which indicates the end of the routing. Note that a train unit cannot carry out trip G4 after carrying 

out trip G5, since the time interval between the arrival of trip G4 and the departure of trip G5 is too 

short to turn around.  

 

Fig.1. A small railway network with 6 trips every day 

A solution to the train unit routing problem consists of several routings, and each trip in the 

considered time horizon is covered by (contained in) one and only one routing. For example, to 

cover all the trips in Fig.1, we need two routings like “G2→G3→G4→G1→G5→G6”, the first one 

starting in “day 1” and the second one starting in “day 2”. As a result, it is easy to verify that two 

train units are needed in the depot in station S2. 

Obviously, there are more than one feasible solution to the problem in Fig.1. In this paper, we 

aim to find a solution with minimum total turnaround time. Besides containing all the trips, these 

routings also contain necessary maintenances, and turnaround times. The less the total turnaround 
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time a train unit routing contains, the higher the usage of the train unit is, which further indicates 

that fewer train units are needed. Therefore, we use the total turnaround time of the train unit 

routings as the objective function. 

It should be pointed out that the turnaround constraints are difficult to formulate, which may 

lead to a large number of constraints if improper formulation approach is used. In the next section, 

we develop a connection network to intuitively present the routings of train units, in which the 

turnaround constraints are expressed by the connection of nodes. 

In this paper, we first consider the case that only one depot is in the high-speed railway net-

work. Then, we further extend the train unit routing model to the case of multiple depots. In order 

to construct the optimization model, we now summarize the assumptions made in this paper. 

(1) There is only one type of train unit, and there is no coupling or splitting of train units. 

(2) The timetable is periodic with a period length of one day. In other words, the same time-

table is repeated every day.  

(3) Only the first level maintenance is considered in this paper. The corresponding travel 

distance resource is 4000 km and the elapsed time resource is 48 hours, whichever comes 

first. 

(4) Each train unit is affiliated to a depot, and it undergoes the first maintenance in the depot 

it is affiliated to. 

(5) A solution of the model consists of generic routings, without assigning individual train 

units to the trips. In other words, train unit assignment is not considered in this paper. 

3.2 Underlying connection network 

Before formulating models, we first construct a connection network to describe the circulation 

of train units. In the connection network, each trip is represented by a node. If the turnaround con-

straints are satisfied between two trips, there is a direct arc connecting the corresponding nodes. As 

a result, turnaround constraints are expressed by the adjacency of nodes in the connection network. 

The detailed construction of a connection network is shown as follows: 

Step 1: Construct nodes. Node i, which corresponds to trip i, has six attributes: o
is , d

is , o
it , 

d
it , il  and it , representing the origin station, destination station, departure time from the origin 

station, arrival time at the destination station, distance and travel time, respectively. The set of 

nodes is denoted by V. 
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Step 2: Construct arcs. For arbitrary nodes ,i j V , if d o
i js s , then connect them by a di-

rected arc (i, j), which means that the origin station of trip j is just the destination of trip i. The 

minimum turnaround time from the track of trip i to the track of trip j in station d
is  is denoted by 

ij . If o d
j i ijt t   , the duration of arc (i, j) is set by o d

ij j it t t  , and arc (i, j) is referred to as day 

arc, since it connects trip i and j in the same day; otherwise, set 1440o d
ij j it t t   , and arc (i, j) is 

referred to as night arc, since it connects trip i in the first day and trip j in the second day. The set of 

arcs is denoted by A. 

Step 3: Classify arc set. Arc (i, j) has another attribute 
ij , which indicates whether the first 

level maintenance can be performed on arc (i, j). If station d
is is equipped with a depot and the 

duration 
ijt  is greater than necessary maintenance time ij , then set 2ij  , which means that 

the first level maintenance can be performed on arc (i, j), and arc (i, j) is referred to as a mainte-

nance arc. If and destination station d
is  is not equipped with a depot or 

ij ijt  , set 1ij  , and 

arc (i, j) is referred to as a non-maintenance arc. The set of non-maintenance arcs is denoted by Ac, 

and the set of maintenance arcs is denoted by Am. Obviously, we have 
c mA A A  .  

 

Fig.2. The connection network of the trips in Fig.1 

In Step 3, the necessary maintenance time 
ij  is the sum of the duration of the first level 

maintenance, the travel time from station d
is  to the depot, and the travel time from the depot to 

station d
is . According to the above construction steps, the connection network of the trips in Fig.1 

is depicted in Fig.2, in which the nodes represent corresponding trips, and the arcs represent the 

turnaround between these trips. In detail, the solid arcs are day arcs, the dashed arcs are night arcs, 

the red arcs are maintenance arcs, the black arcs are non-maintenance arcs, and the red nodes in-

dicate that the origin stations of the corresponding trips are equipped with depot. Routing “G2→G3

→G4→G1→G5→G6” is illustrated by the bold arcs. Note that a train unit routing is actually a 

circuit in a connection network, starting and ending at a node, the origin station of which is 

equipped with a depot. In this sense, in Fig.2, only node G2 and G5 can be the starting and ending 

nodes of a routing. For example, node G5 is the starting and ending node of routing “G5→G6”. 

It is unlikely that an optimal solution contains a day arc with a very long turnaround time. For 
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this reason, when constructing arcs, we may set an upper bound day
upper on the day arcs, which in-

dicates that the turnaround time cannot be too long. In detail, for nodes ,i j V , if o d
i js s , 

o d
j i ijt t   , and o d day

j i uppert t   , then node i, j cannot be connected due to the upper bound day
upper . 

Setting proper upper bounds, the number of arcs in the connection network may be largely reduced. 

Note that the value of day
upper  is obtained from practical experiences, which is usually set to be 3-6 

hours. Similarly, we can also set upper bounds on night arcs. 

3.3 Formulation of the general train unit routing model with single depot 

Based on the connection network constructed in the above section, we formulate a general 

model for the train unit routing problem with single depot. The notations used in the model are 

introduced as follows: 

o
iA    Set of arcs leaving node i. 

d
iA   Set of arcs entering node i.  

1
mT

  
The resource of elapsed time for the first level maintenance, i.e.,

 
1

mT =2880 min (two 

days). 

1
mL

  
The resource of travel distance for the first level maintenance, i.e., 1

mL =4000 or 5000 

km.  

M A sufficiently large positive integer. 

 

The decision variables in the model mainly consist of xij, yij, ai, and bi, which are explained as 

follows: 

xij   Binary decision variable, which indicates whether arc (i, j) is contained in the path 

corresponding to a train unit routing. If it is, xij
 
=1; otherwise, xij

 
= 0. 

yij   Binary decision variable, which indicates whether a first level maintenance is per-

formed on arc (i, j). If it is, yij
 
=1; otherwise, yij

 
=0. 

ai Assistant decision variable, which records the cumulative elapsed time of a train unit 

after carrying out trip i. It is the sum of the travel times and turnaround times of all in-

volved trips. 

bi Assistant decision variable, which records the cumulative travel distance of a train unit 

after carrying out trip i.  

Now, the general model for the train unit routing problem can be formulated, which is an in-
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teger linear programming model, i.e., 

 
( , )

min ij ij
i j A

z t x


    (1) 

s.t.   
( , )

1
o
i

ij
i j A

x


   i V    (2) 

 
( , ) ( , )o d

i i

ij ji
i j A j i A

x x
 

 
 

i V   (3) 

 1
i ma T i V   (4) 

 *(1 )j j ija t M y   ( , ) mi j A    (5) 

 *(1 )j j ija t M y   ( , ) mi j A   (6) 

 *(1 )j i j ij ij ija a t t M x y      ( , ) mi j A   (7) 

 *(1 )j i j ij ij ija a t t M x y      ( , ) mi j A   (8) 

 *(1 )j i j ij ija a t t M x     ( , ) ci j A   (9) 

 *(1 )j i j ij ija a t t M x     ( , ) ci j A   (10) 

 1
i mb L i V   (11) 

 *(1 )j j ijb l M y  
 ( , ) mi j A   (12) 

 *(1 )j j ijb l M y  
 ( , ) mi j A   (13) 

 *(1 )j i j ij ijb b l M x y    
 ( , ) mi j A   (14) 

 *(1 )j i j ij ijb b l M x y    
 ( , ) mi j A   (15) 

 *(1 )j i j ijb b l M x   
 ( , ) ci j A   (16) 

 *(1 )j i j ijb b l M x   
 

( , ) ci j A   (17) 

 ij ijx y
  

( , ) mi j A   (18) 

 {0,1}ijx 
 

( , )i j A   (19) 

 {0,1}ijy 
 

( , ) mi j A   (20) 

The objective function (1) is the total turnaround time of the train unit routings over the deci-

sion horizon. If the objective function is added by the total travel time of the trips, we obtain the 
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total circulation time of train units needed, which is just an integer multiple of 1440, i.e., 

N*1440. Note that “N” is just the number of train units needed. For example, in Fig.2, the circula-

tion time of feasible solution “G2→G3→G4→G1→G5→G6” is 2880 mins, which indicates that 2 

train units are needed. Since the total travel time of the trips is a constant, the difference between 

the objective values of two feasible solutions is also an integer multiple of 1440. For example, if 

we have two feasible solutions, namely SOL1 and SOL2, which need 6 and 7 train units to carry 

out the trips respectively, then the difference between the corresponding objective values is 1440, 

i.e., z2-z1=(7-6)*1440. In this sense, minimizing the total turnaround time is equivalent to mini-

mizing the number of train units needed.  

Constraint (2) ensures that each trip is covered by one and only one train unit routing. Con-

straint (3) is the conservation constraint, which ensures that every train unit routing forms a closed 

cycle. Constraint (4) ensures that at any node, the cumulative elapsed time is less than . Con-

straints (5) to (8) calculate the cumulative elapsed time on maintenance arc (i, j). In detail, for each 

arc (i, j), if xij
 
=1

 
and yij

 
=0, which means that there is no maintenance on arc (i, j), then the travel 

time tj
 
and turnaround time tij are added to cumulative elapsed time ai; if xij

 
=1

 
and yij

 
=1, which 

means that the first level maintenance is performed on arc (i, j), then the value of aj is equal to tj. 

Constraints (9) and (10) calculate the cumulative elapsed time on non-maintenance arc (i, j), 

which means that only when xij
 
=1, turnaround time tij is added. Constraints (11) to (17) are similar 

to constraints (4) to (10); they are constraints of the cumulative travel distance. Constraint (18) 

expresses the relationship between decision variables xij and yij. Specifically, only when arc (i, j) is 

selected, i.e., xij
 
=1, a maintenance may be performed on it, i.e., yij∈{0, 1}; when arc (i, j) is not 

selected, i.e., xij
 
=0, no maintenance can be performed on it, i.e., yij

 
=0. Constraints (19) and (20) 

describe the binary character of the decision variables. 

4 A Special Train Unit Routing Model for Chinese High-speed Railway 

In China, high-speed railway infrastructures undergo daily check from 0:00 to 6:00, and there 

is no high-speed trip during this time. Recall that a train unit returns to its depot for maintenance, 

and the first level maintenance is performed in the night. After maintenance, the train unit leaves 

the depot and starts to carry out trips in the next day. Besides, the elapsed time resource constraint 

1
mT
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of the first level maintenance is 2 days. Based on these characteristics, we can modify the connec-

tion network in Section 3.2 and construct a special connection network with a two-day horizon. 

Circulating in a two-day connection network, the time resource constraint is always satisfied, 

which indicates that we can remove it when formulating models.  

Similar as in the general connection network, there are two types of turnaround arcs in a spe-

cial connection network, namely day arcs and night arcs. The upper bounds of turnaround time on 

day arcs and night arcs can also be considered when constructing a special connection network. 

4.1 Connection network with a two-day horizon 

A two-day acyclic connection network is constructed as follows: 

Step 1: Construct nodes. Trips in the timetable are represented by nodes as in Section 3.1, 

which constitute the node set of the first day. The node set of the second day is the copy of the 

node set in the first day, and the corresponding departure and arrival times are increased by 1440 

min (exactly one day). The set of nodes representing trips is denoted by Vn. In addition, construct a 

pair of dummy nodes (o and d) to represent the depot. Define   ,nV V o d  . 

Step 2: Construct trip arcs between nodes in Vn. For a pair of nodes , ni j V , if d o
i js s ,

o d day
ij j i uppert t    , , 1440o d

j it t   or , 1440o d
j it t  , connect nodes i and j by directed arc 

 with duration day o d
ij j it t t  , which is referred to as a day arc. For a pair of nodes , ni j V , 

if d o
i js s , 1440d

it  , 1440o
jt   and night o d night

lower j i uppert t    , connect nodes i and j by 

directed arc  with duration night o d
ij j it t t   , which is referred to as a night arc. Note that 

ij
 
and day

upper ( night
lower  

and night
upper ) respectively represent the lower and upper bounds of turna-

round time in the day (night). In practice, 
ij  depends on the arrival track of trip i and departure 

track of trip j, and night
lower

 
is usually equal to 360 min (6 h). Obviously, the smaller values day

upper  

and night
upper  take, the fewer the directed arcs there is in the connection network.  

Step 3: Construct depot arcs, which connect nodes in Vn  and dummy nodes. First, construct 

origin depot arcs. For ni V , if node i is on the first day and the depot is located near its origin 

station o
is , add a directed arc (o, i) with turnaround time o

oi it t . Second, construct destination 

),( ji

),( ji
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depot arcs. For ni V , if the depot is located near station d
is , add a directed arc (i, d). If i is a 

node on the first day, the turnaround time is 1440 d
id it t  ; otherwise, the turnaround time is 

2880 d
id it t  . Denote the set of all arcs as A, the set of day and night arcs as An, the set of 

origin depot arcs as Ao, and the set of destination depot arcs as Ad. Obviously, 

n o dA AA A   . 

Step 4: Remove all the nodes that have no in-arc or out-arc, and finally obtain a connection 

network with two-day horizon. 

The connection network with a two-day time horizon for the trips in Fig.1 is depicted in Fig.3, 

in which the solid arcs are the day arcs, the dashed arcs are the night arcs and the dash-dot arcs are 

the depot arcs. As in Fig.2, the feasible routing “G2→G3→G4→G1→G5→G6” is also illustrated by 

the bold arcs, i.e., “o→G2→G3→G4→G1’→G5’→G6’→d” in Fig.3. It should be pointed out that 

since the bounds of turnaround time on the arcs are set, the number of arcs is significantly reduced. 

According to Step 4, nodes G1 and G4’ and the arcs connecting them are removed, because they do 

not have either in-arc or out-arc. In Fig. 3, nodes G1 and G4’ are illustrated by dashed circles. 

 

Fig.3. An acyclic connection network with a two-day time horizon 

It is easy to verify that there exists a one-one mapping between a train unit routing and a path 

from the origin node to the destination node. Since the first level maintenance is performed at the 

destination node, the time span of a path is less than 2 days, which indicates that the time resource 

constraint is always satisfied if the formulation is based on the connection network in Fig.3. For 

this reason, we can simplify the train unit routing model formulated in Section 3.3 by removing 

the time resource constraints, which is discussed in detail in the following section. 

4.2 Special Model 

According to the above discussion, we can remove the time resource constraints in the general 

train unit routing model in Section 3.3, that is, constraints (4)–(10) and constraints (12)–(15), (18) 
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and (20). In order to formulate the special model, another two notations are needed, i.e., 

Q Index set of trips in the given timetable.  

q Index of a trip, i.e., q Q . 

Note that there are two nodes in the two-day connection network corresponding to each trip 

in the given timetable. For example, trip G1 in the timetable corresponds to nodes G1 and G1’ in 

Fig.3. In a feasible solution, it is required that nodes G1 and G1’ cannot be contained in the same 

path from node o to node d. The same applies to other trips. For these reasons, we formulate the 

special model as follows: 

( , )

min ij ij
i j A

z t x


    (21) 

s.t. 
( ) ( , )

1
o
i

ij
i q i j A

x
  

 
  

 
    q Q    (22) 

( , ) ( , )o d
i i

ij ji
i j A j i A

x x
 

   
ni V    (23) 

1
i mb L  ni V   (24) 

0 0b    (25) 

*(1 )j i j ijb b l M x   
 

( , ) n oi j A A     (26) 

*(1 )j i j ijb b l M x   
 

( , ) n oi j A A    (27) 

Note that Q is the index set of trips in the given timetable, and q is the index of a trip. We de-

fine a function εi from node set Vn to index set Q. For example, if the index of trip G1 is 1, which 

corresponds to nodes G1 and G1’ in Fig.3, then we have ε(G1) =ε(G1’) = 1. As a result, constraint 

(22) ensures that node G1 or node G1’ must be covered by one and only one train unit routing, but 

these two nodes cannot be contained in the train unit routing at the same time. Constraint (23) is 

the flow conservation constraint. Constraint (24) ensures that at any node, the cumulative travel 

distance is less than 1
mL . Constraint (25) sets the value of the cumulative travel distance at the 

origin depot node (bo) to be zero. Constraints (26) and (27) calculate the cumulative travel dis-

tance after carrying out trip j. 

According to the definition of depot arcs, it is easy to find that if the total travel time of the 

trips is added to the objective function, we obtain the total circulation time of train units needed, 

i.e., N*1440, where “N” is just the number of train units needed. For example, in Fig.3, “o→G2→

G3→G4→G1’→G5’→G6’→d” is a feasible solution. Obviously, the total circulation time of this 
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solution is 2880 mins, which indicates that 2 train units are needed. An alternative solution is “o→

G2→G3→G4→G1’→d” and “o→G5→G6→d”, and the total circulation time is 4320 mins, which 

indicates that 3 trains are needed. 

5 Extension to Multi-Depot Train Unit Routing 

In this section, we extend the train unit routing model with single depot to the case of multiple 

depots. Along high-speed railway lines with long distance, such as Beijing–Shanghai (1318 km) 

and Beijing– Guangzhou (2298 km), multiple depots are used, and train units are affiliated to 

these depots, where the first level maintenance is performed. Besides, in a high-speed railway 

network, there are usually more than one depots. For example, in the Yangtze Delta railway net-

work, train units are affiliated to 5 depots. In this situation, we must solve the train unit routing 

problem with multiple depots. Therefore, we extend our model to the multi-depot train unit rout-

ing problem. 

Given the timetable and the location of depots, the set of which is denoted by K, we construct 

an acyclic connection network in a similar way with that in Section 4.1. Note that there are several 

pairs of dummy nodes representing the multiple depots, i.e., (ok, dk) for k∈K. Denote the set of ok 

as Vo, and the set of dk as Vd. Then, we have n o dV V V V   . 

Assume that in Fig.1, station S1 is also equipped with a depot, which means that there are two 

depots in the railway network. Fig.4 depicts the corresponding two-day connection network for 

the considered trips. In Fig.4, there are two pairs of dummy nodes, i.e., (o1, d1) and (o2, d2), and a 

path from o1  to d1 or from o2  to d2 is a feasible train unit routing. For example, the blue arcs repre-

sent feasible routing  “o1→G1→G5→G6→G2’→G3’→G4’→d1”, and the red arcs represent feasible 

routing  “o2→G2→G3→G4→G1’→G5’→G6’→d2”. However, path “o2→G2→G3→G6→G2’→d1”is 

not a feasible train unit routing because o2 and d1 represent different depots.  

 

Fig.4. An Example of a Multi-Depot Acyclic Connection network 
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For multi-depot train unit routing problem, decision variables are defined as follows: 

k
ijx
 

Binary decision variable, which indicates whether arc (i, j) is contained in the path cor-

responding to a train unit routing from depot k (k∈K). If it is contained, k
ijx

 
=1; otherwise, k

ijx = 

0. 

i

kb
 

Assistant decision variable for train unit routing starting from depot k, which records the 

cumulative travel distance after a train unit carrying out trip i.  

Then, the train unit routing model with multi-depot is formulated as follows: 

 
( , )

min k k
ij ij

i j A

z t x


        (28) 

s.t. 
( ) ( , )

1
o
i

k
ij

k K i q i j A

x
  

  
      

    
q Q 

 
(29) 

 
( , ) ( , )o d

i i

k k
ij ji

i j A j i A

x x
 

    ,ni V k K   
   

(30) 

 
1

i

k
mb L
 

,ni V k K   
 

(31) 

 
0

0kb 
 

,oi V k K   
 

(32) 

  *(1 )
j i ij

k k k
jb b l M x   

 
( , ) n oi j A A  

 
(33) 

  *(1 )
j i ij

k k k
jb b l M x   

 
( , ) n oi j A A  

 
(34) 

  {0,1}k
ijx 

   
( , )i j A 

   
(35) 

Note that a node in the two-day connection network may be covered by different train unit 

routings from different depots. For example, in Fig.4, node G3 and node o1 is connected by an arc, 

which means that node G3 can also be covered by a train unit routing from depot 1, such as  “o1

→G3→G4→d1”. Constraint (29) ensures that one and only one of the nodes corresponding to a trip 

must be covered one and only one train unit routing, which is from one depot. Other constraints 

are similar to those in Section 4.2. 

 

6 Numerical Experiments  

To demonstrate the performance of the proposed train unit routing methods, we carry out nu-

merical experiments based on the real data of four high-speed railway depots in China, which 

serve train units on the network consisting of Shanghai–Nanjing, Shanghai–Hangzhou, Beijing–
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Shanghai and Beijing–Guangzhou high-speed railway lines, respectively. For simplicity, these 

four depots (railway lines) are referred to as “A”, “B”, “C” and “D”. In addition, two virtual 

high-speed railway network (“Va” and “Vb”) with multiple depots are built to further verify the 

effectiveness of our models. Without special directions, the travel distance resource of the first 

level maintenance is set to be 4000km, i.e., 1 4000mL  , and the duration of a maintenance is set 

to be 3 hours. 

The numerical experiments are performed on a personal computer with a 2.0 GHz CPU and 

4.0 GB RAM, and all the programming is implemented in IBM ILOG CPLEX 12.3. Note that all 

the problems are solved to optimality with a gap of 0.01%. 

6.1 Experiments on the general model  

We first apply the general model (1)-(20) to solve the train unit routing problems, in which 

the elapsed time resource is 48 hours. Note that according to the general model, maintenance can 

be carried out both on day arcs and night arcs. Table 2 shows the parameters and experiment re-

sults of the cases. Note that the name of a case consists of three parts, namely, railway line, model 

and experiment number. For example, “A-G-1” means that it is the 1st experiment on depot “A”, 

where the general model (G) is used.  

Column 2-5 of Table 2 list the parameters of a case, where “trips”, “nodes”, “t-arcs” and 

“m-arcs” respectively indicate the number of involved trips, the number of nodes, turnaround arcs 

and maintenance arcs in the corresponding connection network. Column 6 reports the number of 

train units needed to carry out all trips, column 7 reports the optimal objective values, and the last 

column, which is named “CT”, lists the computation times. 

From Table 2, it is easy to find that the general model is efficient when the number of trips is 

small, for example the first three cases. When the number of trips increases, however, the compu-

tation time increases drastically. As case D-G-1 shows, when the number of trips is 188, the opti-

mal solution cannot be obtained within 1800s. 

Table 2: The computation results when the general model is used 

 

Case 

Numbers  

Train units 

 

Obj. [min] 

 

CT [s] 
trips nodes t-arcs m-arcs 

A-G-1 34 34 290 16 7 5847 3.88 
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A-G-2 34 34 290 16 6 4407 0.79 

B-G-1 45 45 878 400 21 14626 0.79 

C-G-1 94 94 3722 1372 15 11701 46.48 

D-G-1 188 188 7538 2946 --- --- >1800 

Note: In Case A-G-2, we relax the distance limit of the first level of maintenance from 4000 km to 4100 km ac-
cording to practical train unit routing. 
 

In practice, it is allowed that the travel distance resource 1
mL  can be relaxed in a reasonable 

range (10%), which indicates that 1
mL  takes value in [4000, 4400]. In case A-G-2, we set 

1 4100mL  km. Compared with case A-G-1, the total turnaround time of case A-G-2 decreases 

from 5847 minutes to 4407 minutes. Note that 5847-4407=1440, which means that in case A-G-2 

the number of train units needed is reduced by 1. As column “Train unit” shows, the number of 

train units decreases from 7 to 6, which is a significant reduction. This also indicates that by ap-

propriately relaxing 1
mL , the operation costs may be reduced largely. Besides, the computation 

time is also reduced from 3.98s to 0.73s. 

Note that in the experiments in Table 2, there is no restriction on the bounds of turnaround 

times. Via setting the upper and lower bounds of turnaround times, the number of arcs in the con-

nection network decreases largely, and accordingly the computation time may be reduced. Table 3 

lists the results of the experiments when the upper bounds are set to be different values, i.e., 

{180,240,360}day
upper   and {720,1440}night

upper  . Since there is no high-speed trip from 0:00 to 6:00 

in the morning, we set 360night
lower   for all experiments. In column “t-arc” and “m-arc”, we can see 

that the corresponding values reduce a lot in Table 3, which indicates that we are dealing with a 

smaller model after setting the bounds of turnaround times. 

Compared with the last three experiments in Table 2, the corresponding optimal values of 

objectives in Table 3 are not changed, however, the computation times all decrease. Especially, for 

depot “D”, we cannot obtain an optimal solution without setting the bounds of turnaround times 

within 1800s, while after setting the bounds, an optimal solution can be obtained in less than 500s. 

Besides, a small reduction on day
upper  may lead to a significant reduction on computation time. For 



20 
 

example, we set 240day
upper   in case D-G-2, and 180day

upper   in case D-G-3. As a result, the 

computation time decreases from 459.07s to 144.23s, while the objective value keeps unchanged. 

Table 3: The computation results of the general model with bounds of turnaround times 

Case  

Numbers  [min] 

 Train units Obj. [min] CT [s]

trips nodes t-arcs m-arcs day
upper night

lower night
upper

B-G-3 45 45 662 400 240 360 1440 21 14626 0.62 

C-G-2 94 94 2372 1003 360 360 1440 15 11701 3.72 

C-G-3 94 94 695 135 240 360 720 15 11701 1.55 

D-G-2 188 188 2778 537 240 360 720 30 23402 462.77

D-G-3 188 188 2383 345 180 360 720 30 23402 150.54

 

6.2 Experiments on the special model  

In this section, we carry out experiments on the special model for Chinese high-speed railway. 

Recall that the main difference between the special model and general model is that the first level 

of maintenance is required to be performed only on the night arcs. As a result, the connection 

network for a general model is modified to a connection network with a two-day horizon, and 

accordingly the model is also changed. 

Table 4 lists the computation results. Since the special model is used, the middle letter of case 

name is “S”. Note that the first level maintenance is performed in the night in the special model, 

so there is no need to distinguish maintenance arcs and non-maintenance arcs in the connection 

network. Recall that trips are represented by nodes in a connection network. As Table 4 shows, the 

number of nodes in the connection network with a two-day horizon is about twice of the number 

of trips every day. This is because two dummy nodes are added in Step 1 and a few of nodes are 

removed in Step 4. It should be pointed out that Step 4 is not always performed when constructing 

a connection network. For example, in case A-S-1, C-S-1, C-S-2, the numbers of nodes are all 

equal to “2 + 2×number of trips”，which indicates that no node is removed. However, in case 

B-S-1, D-S-1 and D-S-1, the numbers of nodes are all equal to “2 + 2×number of trips - 2”，which 

indicates that two nodes are removed in Step 4. 
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Compared with the experiments in Table 3, the number of train units needed in each case is 

unchanged in Table 4, however, the objective values increase. The main reason is that in the cases 

of Table 3, the first level of maintenance can be performed on day arcs and night arcs, while in the 

cases of Table 4, the maintenance can only be performed in the night, which makes the feasible 

region smaller than that in Table 3. As a result, the objective values in Table 4 are greater than the 

corresponding values in Table 3. 

Table 4: The computation results of the special model with bounds of turnaround time 

Case  

Numbers   [min] 

 Train units Obj. [min] CT [s] 

trips nodes t-arcs  day
upper night

lower night
upper

A-S-1 34 70 140  240 360 720 7 6786 0.52 

B-S-1 45 90 870  240 360 1440 21 15874 0.93 

C-S-1 94 190 3161  360 360 1440 15 13899 1.83 

C-S-2 94 190 1292  240 360 720 15 13899 1.01 

D-S-1 188 376 4942  240 360 720 30 27800 204.81 

D-S-2 188 376 4152  180 360 720 30 27800 117.05 

 

Note that under the same condition of σ, the computation time in Table 4 decreases. This is be-

cause that in the special model, the time resource constraints are removed, which makes the model less 

difficult. We can see that the computation times are all less than 4 mins, which is acceptable in practice. 

Besides, for most depots, the numbers of train units of one type are not greater than 30, which means 

that the applicability of the special model is good. However, as the number of trips increases or mul-

ti-depot cases are considered, it is likely that the computation time increases drastically, which is 

shown in the next section. 

6.3 Multi-depot cases 

In this section, we discuss the cases with multiple depots. For all the cases in this section, only the 

special model is applied. Note that “Va” and “Vb” in the case names represent the virtual railway net-

work with 4 depots and the virtual railway network with 5 depots, respectively.  

It should be noted that although the number of trips in “Va” is less than half of that in “Vb”, the 

objective values of “Va” are only slightly less than “Vb”. Moreover, the number of train units needed 

in “Va” is even greater than in “Vb”. The reason is that “Va” mainly consists of long-haul trips, while 

“Vb” mainly consists of short-haul trips. A train unit in “Vb” may carry out several trips every day, 
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while a train unit in “Va” can only carry out one or two trips every day. This further indicates that the 

solution of train unit routing problem largely depends on the characteristics of the involved trips. 

Table 5: The computational results of cases with multi-depot 

Case  

Numbers  [min] 

 Train units Obj. [min] CT [s]

depots trips nodes t-arcs day
upper night

lower night
upper

Va-S-1 4 117 242 11221 240 360 1440 41 32357 1.33 

Va-S-2 4 117 242 6077 240 360 720 41 32360 0.84 

Vb-S-1 5 242 494 51336 240 360 1440 40 33519 980.3

Vb-S-2 5 242 494 23291 240 360 720 40 33519 755.3

 

As is shown in Table 5, for the cases of “Va”, the computation time is very short; for the cases of 

“Vb”, the computation time is much longer. Although the computation time is still acceptable, it re-

veals that the proposed model is weak at dealing with large-scale cases.  

7 Conclusions 

In this paper, we focus on a train unit routing problem with maintenance resource constraints 

both on time and distance. We first propose a connection network to describe the turnaround be-

tween trips, based on which a general train unit routing model is formulated. Considering the fea-

tures of high-speed train unit circulation in China, a special model is further constructed with less 

constraints. In order to improve the solvability, we propose a heuristic method to reduce the num-

ber of arcs in the connection arcs by setting the upper bounds of turnaround time. Besides, we 

extend the model to the case of multiple depots. We carry out a series of numerical experiments 

based on the real data in Chinese high-speed railway network to text our models. The computation 

result verifies the effectiveness of our models, and shows that in most cases, the computation time 

is acceptable. Besides, the computation result also shows the advantage of the special model, 

which requires a much less computation time than the general model. 

In the future, the research can be extended in the following three aspects. First, train unit as-

signment problem can be integrated in the model. Although train unit routing problem is at a tac-

tical level while train unit assignment problem is at an operational level, it is possible to consider 
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them simultaneously and obtain a more optimal solution. If train unit routing problem is integrated, 

the second level of maintenance should be also considered. As a result, the model will be much 

more complex. Second, in this paper we assume that there is only one type of train unit, and there 

is neither coupling nor uncoupling. In some countries, coupling/uncoupling of train units is quite 

frequent. In our future model, we will take into account more types of train units and the composi-

tion of train units. Third, some sophisticated algorithm should be developed to solve train unit 

routing problems with large scales. In this paper, we actually use big-M method to deal with the 

constraints related to maintenance, and the experiments we carried out are of middle scales. In 

some literature, Lagrange-relaxation-based heuristic algorithms and column-generation-based 

heuristic algorithms were developed. It is challenge to develop an efficient heuristic algorithm to 

solve train unit routing problems. 
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