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HIGHLIGHTS

The surrogate captures complex particle
dynamics in a high-energy ball mill.
Runs with a timestep 100x larger than
DEM.

Predicts cumulative energy dissipation,
a relevant mechanochemical metric.
Strong transferability to unseen motions
and moderate jar geometry alterations.
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ABSTRACT

While the Discrete Element Method (DEM) provides high-fidelity insights into granular processes like high-
energy ball milling, its computational cost can become prohibitive when exploring extensive parameter
spaces required for scale-up. This limitation hinders the rapid design and optimization cycles crucial for
emerging applications, like mechanochemistry. Surrogate modeling offers a promising path to overcome
these computational barriers, yet existing approaches often struggle to accurately represent the complex,
moving boundary conditions typical of milling equipment. In this work, we leverage a Signed Distance
Function Graph Neural Network (SGN) surrogate tailored to the high-energy, moving-boundary regime of
the Emax mill. Trained on DEM data, the SGN jointly predicts particle kinematics for recursive roll-out
and a mechanochemistry-relevant global quantity, the global dissipated energy. The model exhibits strong
generalization to unseen motion trajectories and moderate jar-shape edits without retraining, while operating
with a timestep over 100x larger than required by DEM. In a CPU-only comparison, it achieves a minimum
of 6.6x wall-clock speedup. This approach provides a powerful and promising technique for the simulation,
analysis, and design optimization of high-energy ball milling equipment.
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1. Introduction

The rapid advancement of artificial intelligence can enable signifi-
cant progress in scientific computing. In particular, surrogate models
can approximate complex physical phenomena, such as particle in-
teractions in granular systems or particle-based fluid representations,
at much lower computational cost than traditional methods like the
discrete element method (DEM) or smoothed particle hydrodynamics
(SPH) [1-3].

Such surrogates are especially appealing in high-energy ball milling,
where DEM is a well-established method for a wide range of appli-
cations, such as mechanochemistry [4-6], mechanical alloying [71],
ultra-fine milling, and particle breakage [8,9]. Although each of these
application fields faces its own set of distinct challenges for producing
a valuable model, they share some critical commonalities, namely
they require a combination of a large number of particles (discrete
elements), a very small timestep to accurately numerically integrate
the underlying equations of motion, or possibly a combination of
both [10,11]. These conditions may be manageable when reproducing
well-defined granular flows on lab-scale. However, as attention shifts
towards industrial-scale applications, the computational cost needed to
resolve numerous particle-particle and particle-wall contacts at small
timesteps can become prohibitively expensive. This is especially prob-
lematic for emerging technologies such as mechanochemistry, where
there are no clear connections to larger-scale machinery [12]. The
intensive iterative design and implementation required slows the adop-
tion of mechanochemistry, delaying its potential contributions to sus-
tainability goals as defined by green chemistry principles [13]. Conse-
quently, surrogate models are an appealing alternative in this context,
offering a potential pathway to accelerate progress.

Among data-driven surrogates, graph neural networks (GNNs) have
rapidly become a compelling paradigm for learned particle simulators,
representing particles as nodes and interactions as edges, and rolling
out dynamics via message passing [14]. The seminal Graph Network-
based Simulator (GNS) demonstrated accurate, long-horizon roll-outs
over fluids, rigid bodies, and simple granular settings, with strong
generalization in particle count and initial conditions. [1]. Building on
this, Choi & Kumar developed GNN surrogates specifically for granular
flows (e.g., column collapse), reporting hundreds-fold speedups relative
to high-fidelity solvers while preserving key flow features and scaling
to larger domains than seen in training [15]. There is also emerging
work coupling GNS with inverse design/optimization to tune DEM
parameters or device settings efficiently [16].

A persistent challenge in learned granular simulators is bound-
ary handling in complex geometry while preserving accurate physics.
Early approaches either encoded distances to simple box-like bound-
aries or introduced virtual/ghost entities in so-called boundary GNNs
to approximate walls. While these approaches have improved model
generality, the introduction of virtual entities brings additional com-
plexity and potential inaccuracies in wall-interaction physics [17-24].
To address these limitations, Li and Sakai proposed a signed distance
function-based GNN (SGN) that encodes arbitrarily shaped boundaries
as continuous distance fields, allowing the network to handle complex
geometries without virtual particles [2]. In parallel, physics-informed
GNN architectures have been introduced to embed hard constraints
from mechanics. For instance, Sharma and Fink enforce conservation
of linear and angular momentum at individual collisions via a special
message-passing scheme, yielding stable long-term predictions for 3D
granular systems with inelastic impacts [25].

Despite these advances, no prior work has applied GNN-based sur-
rogates to the extreme dynamic regime of high-energy ball milling. In
such systems, particles collide violently under rapidly evolving bound-
ary conditions (e.g. tumbling jars and moving reactor walls). Existing
surrogate models have yet to demonstrate they can capture this highly
dynamic, dissipative environment. In fact, prior data-driven studies
have focused on macro-scale performance metrics of low-speed mills,
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such as predicting particle size distribution, bed height, or mixing qual-
ity, rather than simulating the detailed collision dynamics [17,24,26].
Related SDF-GNN work (e.g., Li & Sakai, 2024 [2]) has also targeted
static or low-speed boundaries. Thus, this gap motivates the present
work to develop a surrogate approach that can faithfully emulate the
physics of a high-energy milling process.

To achieve this, we develop a surrogate model capable of handling
complex dynamic boundaries, involving oscillatory and translational
motion, characteristic of high-energy ball milling equipment used in
powder processing. Specifically, we adapt a SGN to accurately capture
complex energy input mechanisms and intense, high-energy dynamics
and collisions, beyond the low-velocity regimes of prior studies. We
extend the model by introducing moving boundaries and a secondary
output for cumulative energy dissipation alongside local particle kine-
matics, enabling a dual prediction that is critical for mechanochemistry.
Furthermore, our approach shows promising generalization to unseen
motions and modified geometries, facilitating systematic study and de-
sign. Although our primary focus is on mechanochemical applications,
this methodology can be adapted to virtually any high-energy ball
milling scenario. Because the boundary kinematics and regimes differ
compared to previous studies, we do not pursue a numerical head-
to-head comparison; our contribution is complementary, extending
SDF-based surrogates to time-varying, fast-moving wall regimes.

All associated code is freely available, including scripts for data
extraction, transformation, and loading, as well as those used for model
construction, training, and generative simulations, at the following lo-
cation: github.com/sgarridonunez/SGN_ball_milling. In
the subsequent sections, we detail the specific SGN architecture and
training procedure using DEM simulation data, present validation
results comparing surrogate predictions against ground truth values
for particle dynamics and energy dissipation, and discuss the model’s
performance and generalization capabilities.

2. Methodology
2.1. Discrete Element Method (DEM) and simulation setup

The Discrete Element Method (DEM) is used to generate the data
needed for training the surrogate model and serves as ground truth.
In this study, Altair® EDEM™ 2021.2 was used as the DEM solver,
and Python 3.9.12 was used for data post-processing. EDEM™ follows
a soft sphere approach by calculating the contact forces for each
particle interaction using Hertz and Mindlin’s contact model, which can
capture the non-linear interactions that arise when particle—particle or
particle-wall collisions occur [27,28].

Newton’s equations of motion are solved numerically to predict the
evolution of the (angular) velocity of each particle:

dv;

m—= = Fe;+mg ey
do;
il @

where m;, I;, V; and o; are the mass, moment of inertia, velocity, and
angular velocity, respectively, of particle i. F.; and z; represent the
total contact force and total contact torque (relative to the particle’s
center of mass), respectively. The total force and torque are determined
by summing over all neighbors in contact with particle i.

Each discrete element has its own radius R, mass m, Young’s mod-
ulus Y, shear modulus G, coefficient of restitution e, and Poisson ratio
v. The contact force F,;; on a particle i due to its interaction with
another particle j (or wall) is the vector sum of a normal force F

and tangential force F,; I

n,ij

Fo;j=F,;+F,;; =&, —vaVyij) + (Kb ;; =1, Vyij) 3

c,ij

with:

K, = %Y*\/ R*5, 4)
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Here, V, .. and V, ;. denote the relative velocities in the normal and

nij Lij

tangentialj directionjs between particles i and j at the point of contact.
The vectors 8,;; and §,;; represent the normal and tangential overlaps
between the particles, with the tangential overlap obtained by integrat-
ing the relative tangential velocity over time and projecting it onto the
current tangential direction. The constants K, and K, are the elastic
coefficients for normal and tangential contacts, respectively, while y,
and y, correspond to the viscoelastic damping coefficients for these
contacts.

On the right-hand side of Eq. (3), the expression within the first set
of parentheses represents the normal force, and the expression in the
second set corresponds to the tangential force. Specifically, the normal
force comprises two components: a spring force and a normal damping
force F, ;, while the tangential force is made up of a shear force and a
tangential damping force F, ,. The magnitude of the tangential force F,
is limited according to the Coulomb friction law: if F, > u,F,, where u,
is the friction coefficient and F, the magnitude of the normal force, then
F, is set equal to F, (while still oriented in the tangential direction).

Additionally, the contact torque, 7;;, acting on particle i as a result
of its interaction with particle (or wall element) j is determined by
the cross product of the vector R;;—which extends from the center of
mass of particle i to the contact point with particle j—and the tangen-
tial contact force F,;;. Given that the particles experience continuous
rolling motion, particularly in interactions with a wall, it is essential
to account for any slight deviations from perfect sphericity. This is
achieved by introducing a rolling torque, 7,;;, which is computed
using the coefficient of rolling friction y,, the magnitude of the normal
contact force F,;;, the distance R;; from the center of mass to the
contact point, and the orientation of the particle’s relative angular
velocity, ®,,;. These relationships are described by:

T, = R,-jXF

ij Lij (15)

@
Ry 2wl ae)
/ Dpel

+7

rij

Trij = _:uan,ij
Finally, the energy dissipated over the time interval from ¢, to 1,,
due to the damping effects characterized by y, and y,, is calculated as

follows:

L5}
E, = / F,, -V, di an
5l

b}
E, = / F -V, d (18)
3

The DEM model has been calibrated and validated for the
mechanochemical regeneration of sodium borohydride NaBH, in the
Emax high-energy ball mill produced by the German company Retsch.
We refer to our previous work for more details [4,29]. The crucial
properties relevant to this work can be found in Table 1.
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Table 1

Properties used for the milling balls and jar obtained from Retsch, correspond-
ing to steel X46Cr13 while accounting for the presence of NaBO, - 4 H,O (>99%
- Sigma-Aldrich) and MgH, (>99.9% - Nanoshel).

Parameter Value
Particle diameter 0.01 m
Restitution coefficient 0.3
Friction coefficient 0.3
Rolling friction coefficient 0.045

Density 7700 [kg/m*] [30]
Young’s modulus 2.05 [GPa] [30]
Poisson’s ratio 0.235 [30]
Simulation time step 9.5x 1077 [s]

Total simulation time 15 [s]

Time integration method Euler

The machine can allocate proprietary grinding jars with 125 ml
of volume that follow a circular motion with a rotational speed n up
to 2000 revolutions per minute with an amplitude (radius) A of 1.7
cm, see Fig. 1. The movement of the jar has been replicated in our
simulations. An STL file was built and imported into EDEM™ to repre-
sent the geometry of the milling jar accurately. The STL was validated
as watertight to ensure an unambiguous SDF sign (inside/outside);
closed internal cavities would be handled correctly under the same
assumption.

The system is initially set up by generating all the discrete media
over a five-second interval, which allows them to settle into their
resting positions within the jar before any motion begins. After this
initialization phase, the simulation runs for an additional 10 s with
a rotational speed of 300 rpm to capture the dynamic behavior of
the system. A fill ratio of 10% is used, corresponding to a total of
24 milling balls. To reduce computational complexity, the model is
simplified by including only milling balls as discrete elements. This sim-
plification is justified because the influence of the processed material
can be effectively represented by calibrating the friction and restitution
coefficients [5,31,32].

2.2. Graph neural network and surrogate model

A graph is a representation composed of a set of nodes and a set
of edges that connect pairs of these nodes [33]. This structure models
relationships or interactions between objects in various domains, such
as computer networks, social networks, biological systems, and, in
the context of this paper, granular systems (see Fig. 2). Moreover,
graphs provide a natural framework for message passing, where nodes
exchange information with their neighbors along the edges [34]. This
capability is fundamental in graph neural network architectures, en-
abling iterative aggregation of local information to capture complex,
global patterns within the graph.

2.2.1. Architecture

In this study, node and edge features encode the dynamic state
and geometric context of the system. Specifically, the dynamic state is
encoded through particle velocity, and the geometric context is dictated
by a Signed Distance Function (SDF), leading to the definition of an
SDF-based graph neural network (SGN) as proposed by Li et al. [2].
As such, we follow the same terminology for consistency. The SDF is
a fixed field computed from the watertight, triangulated jar STL (see
Fig. 3). It provides a per-particle distance channel for node features
and a proximity vector on particle-wall edges. The mill’s boundary
motion is applied to the wall: for each time step the STL is rigidly
translated in space by the time-dependent center of mass (CoM), and
the SDF is evaluated relative to the moved wall. Particle states are
not directly forced by this motion; they are updated by integrating
predicted smooth accelerations. Conditioning on the moving bound-
ary allows inference under unseen motion trajectories, provided the
training data spans comparable kinematic/energy regimes.
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(a) (b)

Fig. 1. (a) Schematic of jar movement (A = 1.7 cm, n = 300 rpm) (b) 3D model of the milling jar [4].

X

(b)

Fig. 2. (a) DEM connectivity example, (b) Graph representation of DEM timestep. Note that each particle has an individual ID used to define connectivity at any
given timestep.
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Fig. 3. Geometry’s SDF field slices (a) XZ plane, (b) XY plane. In our system, negative values indicate positions inside the jar. Thus, the most negative values

represent positions furthest away from the wall.

For closed (watertight) surfaces, the inside/outside sign is unam-
biguous and internal cavities are supported; open holes or non-manifold
seams can introduce sign ambiguity and should be repaired before SDF
generation. For new jar shapes, we simply recompute the SDF field
for the new STL; no retraining is required for inference, whereas new
training datasets require regenerating the SDF-derived features.

The granular system at a given time is represented as a graph
G = (V,€). The set of nodes V includes nodes vy representing each
individual particle (p = L., Ny and a single, dedicated node v,
representing properties of the wall boundary. Note that the node v,
does not dictate any spatial context information for the particles; it is
simply established to define variables relevant to the geometry, such as
its center of mass, and to be able to keep track of collisions between
particles and the wall, which are crucial in ball milling.

The set of edges £ comprises two subsets: particle-particle edges
&, = le;;) and particle-wall edges £,, = {e;,}. For generating the
graphs used during offline training, the edge sets £,, and &,, are
constructed directly from the contact pairs reported by the source
high-fidelity DEM simulation (i.e. from Altair® EDEM™) at each corre-
sponding time step. This implicitly defines the interaction range learned
by the model from the training data.

To capture temporal dependencies, features for particle and wall
nodes incorporate information over a history window covering the
current and 7 preceding time steps, giving a total window size (W) of
7 + 1. For a particle node v; at time step 7,, the input node feature
vector €,,(t,) is constructed by concatenating features related to particle
kinematics and boundary interactions:

€, (t,) = concat <{Vp(v,~, 1Yo APsE Wi 1)), Vo spp (v, ’j)};':n—r)
19

where V,(v;,t;) is the translational velocity of particle i at time ;.
Crucially, the SDF value ¢gpr(v;,1;) and its gradient Vgpr(v;,1;)
are calculated for all particle positions relative to the time-dependent
boundary geometry (since the geometry is in oscillatory motion) at
each time step #; in the history window. This provides a continuous
geometric and contact context to every particle node. The feature
vector for the wall node, €y, (1), includes information about the wall’s
state over the time window, such as its Center of Mass (CoM) position
and rotational velocity, padded with zeros to match the dimensionality
of particle node features for each snapshot in the window.

Edge features encode the relative spatial configuration or inter-
action properties between connected nodes identified by the DEM
simulation during data generation. For particle-particle edges ¢;; € &,,,
the features €, (1) include the relative distance vector:

€, () = {ry(t,)}  where r;(t,) = X;(t,) — X,(t,) (20)

For particle-wall edges ¢;,, € &, the features ¢, (t,) represent the
particle-wall interaction, using the SDF distance vector derived from

the particle’s SDF features:

IVospri )l

These specific input features (velocity history, SDF history, relative
positions) are chosen because they can be readily updated or recalcu-
lated during the recursive simulation phase using only the model’s out-
puts (acceleration integrated to velocity and position) and the known
boundary motion, enabling a closed-loop prediction while sliding the
history window (W). This contrasts with features like contact forces
or tangential overlaps, which are outputs of the DEM simulation but
cannot be directly calculated during the surrogate’s recursive loop
without making further assumptions or predictions of unknown future
contacts. All input node (particle and wall) and edge (particle—particle
and particle-wall) features are normalized using the mean and standard
deviation derived from the training dataset prior to being processed
by the network. Separate normalization statistics are maintained for
particle nodes, wall nodes, particle-particle edges, and particle-wall
edges. Additionally, Gaussian noise with a standard deviation of 0.005
(6 = 0.005) is added to the normalized velocity features during training
to enhance robustness during recursive inference.

The SGN architecture follows the established Encoder-Processor-
Decoder paradigm. First, the Encoder employs independent Multi-Layer
Perceptrons (MLPs), MLP, and MLP,, with ReLU activations to map the
input node and edge features to initial latent embeddings, kY and h?,
respectively:

ee,-w(tn) = (beDF(Ui’ ln) (21)

R =MLP,(e,) VoeEV (22)
hY =MLP,(e,) Vee €& (23)

Note that while a single MLP,, is shown, distinct initial layers or feature
handling could be applied to particle vs. wall nodes if necessary. Sim-
ilarly, MLP, processes both edge types. Second, the Processor consists
of L, interaction layers, performing iterative message passing to refine
node representations by propagating information through the graph.
Within each layer /:

1. An edge-update MLP, y¢, computes messages based on the em-
beddings of connected nodes and the edge itself:

mii/ = .,,e(hfji,h’uj,hiij) 24

2. An aggregation function, €D (specifically, element-wise mean in
our implementation), pools incoming messages for each node v;
(including the wall node v,,) from its neighborhood N (i):

W, = @ n, ©s)
JEN (i)
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Table 2
Summary of SGN graph inputs and targets. Per-snapshot node features are
concatenated over a window W =7 + 1.

Component Value

Node features

Particle (per snapshot) [V, ¢sprs Vsprl (Dim. 7)
Wall (per snapshot) [CoM, RPM] (zero-padded) (Dim. 7)
Edge features

PP edge (particle—particle) r (Dim. 3)
PW edge (particle-wall) dspr - Vspr (Dim. 3)
Targets

Node (per particle) Ao (Dim. 3)
Global (per graph) AE,,.,, (Dim. 1)

Symbols: V = [v,,v,,0.] (velocity); ¢gpr (signed distance to wall surface); Voo =
[0, #spr 0y Psprs 0-Pspr] (SDF gradient); v‘l’SDF = Vpspr/|IVspe |l (unit normal); CoM =
[CoMX,CoMy,CoMZ] (jar center-of-mass position); r = X =X (PP separation vector);

A,om = lag,a,,a;] (normalized acceleration); AE, (per-step normalized dissipated

norm
energy).

3. A node-update MLP, y, updates the node embedding using its
previous state and the aggregated message:

' =y (h, ), ) (26)

Third, the Decoder utilizes an MLP, MLP,, to map the final node

. L .
embeddings from the processor, h,”, to the target outputs. For particle
nodes v,, the primary target is the normalized particle acceleration
Aporm(Ups 1), as this allows the model to drive the system’s dynamics
through integration. The output for the wall node v,, is also computed,
but disregarded for the primary task.

L
Anorm(vpv 1) = MLPd(hv:) (27)

Additionally, a Global Readout branch aggregates the final node em-
beddings h,” (via mean pooling across all particle nodes with an edge
(i.e. particles undergoing a collision)) and passes the result through a
separate MLP to predict a normalized global system property, specifi-
cally for this work, the incremental energy dissipation AE,,,(7,) (result
from adding Egs. (17) and (18)). Because AE,,. is learned from
DEM targets, calibration across operating regimes depends on training
coverage of dissipation magnitudes and collision statistics (e.g., RPM,
amplitude, fill ratio, materials). This global variable was selected due
to its established relevance in characterizing the potential outcomes of
mechanochemical processes [4]. Table 2 summarizes the graph inputs
and targets used in this work.

2.2.2. Training

The network’s learnable parameters 6§ are trained offline using su-
pervised learning on data generated by high-fidelity DEM simulations,
which are sampled at a fine time resolution (4t ). Accurately defin-
ing Aty is essential for enabling the model to capture the dynamics
effectively. In this work, because the median collision duration is
approximately 0.0005 s, we selected a 47,5, of 0.0001 s to ensure that
the model can accurately learn the evolution of collisions. Although this
parameter can be fine-tuned depending on the application, in systems
where individual collisions are critical for realistic granular flow, it
is advisable not to exceed the median collision duration. It is also
important to note that the training data utilized comprises snapshots
taken only after the initial particle generation phase is complete and
the motion of the milling jar has commenced, focusing the model on the
relevant dynamic interactions. Then, the first 4.5 s are used for training,
resulting in a total of 45,000 snapshots.

The model was trained on one Nvidia A100 [35] with a batch size
of 2 and a learning rate initially set to le—4, managed by an Adam
optimizer and an exponential scheduler targeting a final rate of 1le—6
with a maximum of 2000 training epochs.

Powder Technology 468 (2026) 121653

The objective is to minimize a suitable loss function between the
SGN’s predictions (Ao, AEqom) and the corresponding ground truth
values derived from the DEM data. Specifically, the total loss function
L, is @ weighted sum of the loss calculated for the primary task (node
acceleration prediction, £,,;,) and the loss for the auxiliary global
prediction task (energy dissipation, L,.,) as seen in Eq. (28):

Liotal = @ Lpoge + Lglobal (28)
with
1 < pred gt
Lnode = N 1; H(Aorm i ~ Anormyc): (292)
1 < pred gt
Lgona = 5 2, Hy(AE g by = AEporms)- (29b)

where B is the number of graphs in the mini-batch, N is the total
number of particle-node acceleration components in the batch (wall
node excluded), AP*® and A8 are the predicted and ground-truth
normalized per-particle accelerations (the index k runs over all particle
components), and 4E24 and AE®__ are the predicted and ground-
truth normalized per-step dissipated-energy increments (the former
produced by the global head from pooled node embeddings over par-
ticle nodes with at least one incident edge). We use the Huber penalty
(Eq. (30)) with threshold 6 = 2:

L 2, le] <6,
Hye)=120 (30)
lel =3, lel 2 6.

The weighting factor « (set to 3.0 in our implementation) allows
for prioritizing the accuracy of the particle dynamics prediction during
training relative to the global energy prediction. In this work, both
Lq. and Ly, utilize the Huber loss function. Due to the high-
energy collisions inherent in ball milling, the ground truth acceleration
distribution can exhibit large spikes relative to median values. This
occurs not only because of the large contact forces during impacts
but also because sampling the DEM simulation at A7y, can alias
high-frequency events. Collision dynamics occurring at the DEM’s finer
internal timestep might not be fully resolved between samples, leading
to apparent discontinuities or spikes in the calculated acceleration
used for training. Consequently, the Huber loss is employed for its
robustness to such outliers, combining the benefits of L2 loss (mean
squared error, MSE) for small errors and L1 loss (mean absolute error,
MAE) for large deviations. Specifically, for errors below a predefined
threshold §, it penalizes deviations quadratically, ensuring smooth
convergence, while for errors above the threshold, it applies a linear
penalty, thereby reducing the influence of extreme values on the overall
training process.

2.2.3. Recursive stage

Once trained, the SGN model enables efficient online recursive
simulation. The process (Fig. 5) starts by initializing a state window
with 7 + 1 snapshots from DEM data. Then, for each subsequent time

step 1,,;:

1. Input features are constructed from the current window ending
at t,.

2. The SGN predicts normalized acceleration A,,,(7,) and energy
increment AE, .. (t,).

3. Predictions are denormalized to physical units A(r,) and AE(z,).

4. Particle states are advanced using a numerical integrator (e.g.,

Euler) with the surrogate simulation time step Ar:
V(t,.) =V, + A@,)At (31)
X(t,) =X, +V(,)At (32)
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The definition of At is critical for ensuring stability during the
recursive simulation stage. We adopt a timestep equal to the
training dataset’s sample frequency (0.0001 s). Using larger
timesteps leads to stability issues, as collisions may be missed
or excessive penetration between particles and the wall may
occur, resulting in exponential error accumulation. This limi-
tation primarily arises from the high-energy dynamics, which
inherently involve high velocities and accelerations that make
spatial definition overly sensitive to small changes. Nonetheless,
this surrogate solving timestep represents a 104x relaxation
compared to the DEM solving timestep used in Altair® EDEM™
(see Table 1).

5. The wall boundary CoM for 7, is obtained via extrapolation
(using pre-calculated periodic splines).

6. New SDF values are recomputed from the updated particle posi-
tions X(z,,,) and the updated wall geometry. The graph connec-
tivity is then rebuilt: particle-particle edges e;; € £,, are added
if [|X;(t1) — X;(t,0 DIl < r. (we recommend r, < 1.5R), and
particle-wall edges e;,, € &,, are added if Pgpp(v;,1541) = Bpw
with ¢gpr < 0 representing zones inside the surface. The choice
of ¢,,,, is guided by the DEM contact distribution (e.g., capturing
>90% of ground-truth PW contacts; see Fig. 4). In this work, we
set the value at —0.0052 m, but it will vary according to the ball’s
kinetic energy and physical properties, as they will dictate the
depth of penetration. At sharp edges/vertices the nearest-point
direction can be ambiguous; since edge creation uses only ¢gpg,
this does not rely on normals, which are used to compute edge
features. Residual near-wall noise is handled in Step 7.

7. Optional correction (snap-back) is applied only for shallow,
near-wall penetrations: if ¢gpp(v;, t,41) 2 dg, With ¢p,, < g, <0,
we project to the threshold value:

Xi(tyq1) < X;(typ1) = (& — b)) M. Where @ = dspp(0;, 1,41)s

n; = Ve, [Vl

For deeper overlaps (¢spr < ¢g,) no snap-back is used; the
contact dynamics resolve the interaction (parameters ¢, and
¢y, are listed in Table 3). The optional correction’s sole purpose
is to prevent nonphysical interpenetration from accumulating
due to prediction error or integration overshoot.

8. A new snapshot dictionary for #,,; is assembled using the up-
dated states and recalculated geometric features (including the
re-determined contacts/edges).

9. The time window is advanced by removing the oldest snapshot
and adding the new one.

This iterative process can be visualized in Fig. 5 and allows the sur-
rogate model to generate the system’s stable evolution over extended
periods, driven solely by its own predictions after initialization. A
summary of the parameters used for the architecture of the SGN and
the recursive stage is presented in Table 3. The SGN was implemented
using Pytorch 2.1.

3. Results and discussion

In this section, the performance of the SGN surrogate model is
evaluated using three distinct assessment methods. First, we measure
how accurately the model predicts the bulk dynamics of the standard
high-energy ball milling process in the Emax machine. Second, we
assess performance using a mechanochemistry-specific variable: the
global energy dissipation of the system, which continuously increases
as collisions occur. Our previous work has shown that this variable can
effectively characterize a mechanochemical process from a mechanical
standpoint [4]. Third, we evaluate the model’s generalization by testing
its ability to handle unseen motions and modifications to the base
geometry. These evaluations are crucial to demonstrate the potential of
the method in the iterative design processes required to scale up and

Powder Technology 468 (2026) 121653

Table 3
Key parameters for SGN model architecture and recursive simulation loop.
Parameter Value Unit/Description
Model architecture
History window Size (r + 1) 7 Time steps
Hidden dimension 256 -
MLP layers 4 -
Interaction layers (L,) 1 -
Huber loss threshold (6) 2 -
Loss weighting factor (a) 3 -
Recursive simulation loop
Time step (4r) Ix10™* N
Integration type Euler -
PP contact threshold (r.) 0.0015 m
PW contact threshold (¢,,,) —0.0052 m
Snap-back threshold (¢,,) —0.0049 m

Contact rules: We adopt ¢gp; < 0 inside the geometry. PP edges are added when
|[4Ax|| < r.. PW edges are added when ¢gpr > ¢,,. Snap-back is applied only when
dspr = Py, With ¢, < by, <0.

pw

250000 -___ Threshold (-0.0052 m)
200000
150000

100000

Frequency

50000

0

-0.020 -0.015 -0.010

SDF value (m)

-0.005

Fig. 4. Distribution of SDF values for particle—wall contacts. Values closer to
zero indicate proximity to the wall. The defined threshold of —0.0052 covers
over 90% of all particle-wall contacts.

optimize processes. A sensitivity analysis of critical hyperparameters
in Table 3, together with an ablation study on the relevance of the
global loss Lgjqp,,1, can be found in Appendix, where we show how the
predictive capacity and stability of the model are affected.

3.1. Standard high-energy milling process

The model was trained on 4.5 s of high-resolution data generated
by a DEM simulation, which also serves as the initial benchmark (Fig.
6). To evaluate the accuracy and stability of the model when predicting
the bulk motion of particles in the system, it is run recursively (online)
for 15 s. At each available time step 7, we compare the predicted
ball positions X, to the ground-truth reference X, (see Fig. 7), and
compute spatial MSE according to Eq. (33). We report the MSE because,
while the Huber loss was used during training to reduce the influence
of occasional high-frequency acceleration spikes, MSE provides a sin-
gle, widely understood scalar that directly quantifies average squared
deviations in particle positions for straightforward benchmarking of
bulk-dynamics accuracy.

2

g _
[ -x7|

N
MSE, = %Z (33)
i=1

Although this is the simplest objective of the model, it is crucial to
ensure stability and accurate global predictions, which rely on accurate
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Step 1.2
(Normalize Input Features)

Step 2
[ SGN Model Prediction ]

(Predict Normalized Accel. a_norm(t),
Energy AE_norm(t))

Step 3 l
Denormalize Predictions
(Get Physical Accel. a(t), Energy AE(t))

Step 4

(Calculate Position x(t+At), Updated Window
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Integrate Particle State
Velocity v(t+At) using a(t))

(for next step)

Step 5

Update Wall Geometry
(Interpolate/Extrapolate CoM(t+At),

Move Mesh)

Step 6-8

(SDF(t+At), Contacts(t+At), etc.

Recalculate Geometric Features
using x(t+At) and Updated Wall)

Step 9

Assemble New Snapshot (t+At)
(Combine new state, features, AE(t))

New Snapshot
Step 10

(Add Snapshot(t+At),

[ Update State Window ]

Remove Snapshot(t-1))

Fig. 5. SGN recursive loop flowchart.

10"

—— Huber Loss
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10 0 200 400 600 800

Epoch

Fig. 6. Standardized loss history for the SGN surrogate model. Note that the
MSE loss is shown for comparison purposes.

bulk dynamics and proper collision identification. Looking at Fig. 7,
it is possible to visualize the oscillatory motion of the system and its
effect on the predictions. The peaks of these curves coincide with the
moments where the milling jar changes direction in the x-axis. Then,
the predicted global energy dissipation can be compared in Fig. 8.

Thus, the combination of Figs. 7 and 8 shows that the SGN model is
capable of accurately representing the bulk motion of the high-energy
system and maintaining an accurate track of the energy dissipation that
occurs in the system with a stable relative error of 2.78% while using
a solving timestep 104x larger than the original DEM simulation.

To provide a more intuitive representation of the accuracy of the
predictions, we used Blender 4.3.2 to reproduce the motion of the
milling balls predicted by the SGN and compare them to the original
DEM visualization. This can be seen in Fig. 9.

3.2. Unseen motions

Upon establishing that the model can accurately represent the orig-
inal bulk dynamics and energy dissipation, we now test the model with
two new, unseen motions that have a direct effect on the dynamics
of the milling balls. To define these arbitrary motions, we use two
different Lissajous curves as they operate under the cyclic behavior that
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Fig. 7. MSE loss history for the recursive (online) stage of the SGN. Here, time is measured from ¢ = 5 s, marking the start of motion in the DEM simulation,
which provides reference data only up to # = 10 s. Beyond this point, the model is let run recursively until t = 15 s.
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Fig. 8. Cumulative energy dissipation: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that DEM simulation stops at 7 = 10 s.
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Fig. 9. Comparison grid of DEM and SGN simulation results.
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Fig. 10. Lissajous motions used for testing the SGN.

a typical high-energy ball mill experiences. The trajectories of the two
tested motions are shown in Fig. 10, and where implemented in Altair®
EDEM™ according to Egs. (34) and (35).

Motion 1

x (1) = 1.7 sin(10z 1) — 0.85 cos(207¢),

(34
z)(t) = 1.7 cos(10z 1) — 0.85 sin(20x 1).
Motion 2
X =17 sin(lO;r t), (35)

z,(t) = 1.7 cos (20 1).

The model is capable of reproducing accurate and stable predictions
of the bulk dynamics for both unseen motions, with MSE errors com-
parable to those of the standard case presented in the previous section,
as per Fig. 11 and can be visualized in Figs. 12 and 13.

The model’s ability to predict energy dissipation is substantially
weaker than its performance on bulk dynamics. For Motion 1, the
predictions maintain a constant relative error of 23.84%. For Motion
2, the error rises to a steady 46.62%. Nonetheless, the shape of the
time series is captured remarkably well. In both cases, the simulation
follows not only the overall trend but also the short-time-scale wiggles
(i.e., the small, rapid oscillations super-imposed on the mean growth,
so the predicted and reference curves rise and fall almost in lock
step). This can be quantified by the Pearson correlation coefficient
(r = 0.9998 for both cases). Pearson’s r measures linear association
between two variables: an r of 1 means every peak, dip, and inflection
in one series occurs at exactly the same relative level in the other
(perfect synchrony of the wiggles), while an r of 0 would indicate no
consistent linear pattern. Because r is insensitive to uniform scaling
or offsets, the coefficient can be close to 1 even when the absolute
magnitudes are biased, as we see here. In other words, the model
slightly underestimates the magnitude of each dissipation event, but
it gets the timing and relative spacing of those events almost perfectly
right. This can be visualized in Figs. 14 and 15. To address this scaling
bias, one could expand the training set to cover a broader spectrum
of dissipation magnitudes, introducing both lower and higher energy
cases. This would encourage the network to learn appropriate scaling
factors across broader operational ranges, reducing systematic bias and
improving calibration of its outputs. Finally, by exposing the surrogate
to diverse collision magnitudes and scenarios, its transferability to new
systems should improve, potentially eliminating the need for manual
post-processing adjustments. We intend to explore this in a future
study.
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3.3. Modifications to original geometry

To test the hypothesis that the underestimation of energy dissipation
magnitude in unseen motions arises from a mismatch in the distribution
of known collision and velocity features, and at the same time probe
the model’s ability to handle unseen geometric features, we introduce
a slightly tweaked design to boost the collision frequency. Specifically,
we insert a cylindrical barrier at the center of the jar (see Fig. 16) and
drive the system with Motion 1 (see Fig. 10).

By combining this geometry modification with Motion 1, we can
also verify whether the surrogate still generates physically plausible
particle trajectories and remains numerically stable when both jar
shape and motion lie outside its training reference. To illustrate our
hypothesis in action, we compare the model’s predicted cumulative
energy dissipation for the modified geometry + Motion 1 case against
the original geometry + Motion 1 ground-truth curve (see Fig. 17).
Although this reference no longer corresponds to the actual physics
of the modified geometry, it serves as a controlled experiment: if the
barrier boosts collision frequency, thus increasing the net impact statis-
tics, then, when we compare its predictions to the original geometry
baseline, the underestimation bias should shrink.

Indeed, we observe a substantial drop in relative error to 5.97%,
confirming that the original dissipation bias stems from a mismatch
in feature distributions. The numerical agreement of this comparison
has no physical validity; it exists solely to validate our distribution-
matching hypothesis. Furthermore, the snapshots in Fig. 18 are pre-
sented solely for illustration; they demonstrate that the model accu-
rately handles modifications to the original geometry while remaining
stable over time.

3.4. Runtime

On an Apple M1 Max (10-core CPU; CPU-only to match the DEM
run requirements), an SGN rollout of the Emax case (15 s physical time,
At = 10~*s) completed in 3443 s (~57 min), whereas the corresponding
DEM simulation to solver completion took 22,734 s (~379 min). Thus,
the SGN was about 6.6x faster with an 84.9% shorter runtime. This
comparison excludes the subsequent post-processing of DEM data re-
quired to compute the dissipation target AE; including it would further
increase the DEM wall clock as it requires manual processing, so we
report the solver time only. We observe similar speedups across all our
tested cases. In profiling, SDF re-evaluation dominates SGN runtime
due to the rapidly moving boundary; this cost is hard to avoid because
accurate particle-wall spatial information must be maintained each
step for stability. Additionally, increasing Ar leads to missed contacts
or boundary escapes given the high rotational speed.

4. Conclusions

In this work, we developed and validated a Signed-Distance-
Function Graph Neural Network (SGN) that serves as a faithful sur-
rogate for Discrete Element Method (DEM) simulations of high-energy
ball milling. By embedding the jar geometry directly through an SDF
field that supports dynamic translational motion, the model overcomes
the static, non-translational boundary limitations of previous surro-
gates. When coupled with a message-passing graph network, it captures
both particle—particle and particle-wall interactions effectively. In con-
trast with previous surrogates, the SGN is also specifically designed to
handle the high-impact velocities and collision frequencies characteris-
tic of high-energy milling processes. Training on 45,000 high-resolution
DEM snapshots, the SGN simultaneously learns local accelerations and
a global energy dissipation metric, providing a physics-aware descrip-
tion that goes beyond purely kinematic fits. This secondary metric
is especially informative for mechanochemistry because cumulative
dissipated energy directly tracks the mechanical work that activates
solid-state reactions, but it could be changed to accommodate other



S. Garrido Nufiez et al.

Powder Technology 468 (2026) 121653

<DI
&

E E
510" ‘ 510"
d y@n'gn;-y}‘ﬁ'.g'.n.‘)fm".ﬂv‘ma i .},.,.M.‘.ﬂ.'.; Y ST
g 10° i' G 10°
2 =3
3 —— MSE_x B —— MSE_x
[— [—
5 1076 —— MSE_y 5 10'6 —— MSE_y
= —— MSE_z = —— MSE_z
——- MSE_SDF ——- MSE_SDF
_7 -7
0 s 6 7 8 9 10 0 s 6 7 8 9 10
Time (s) Time (s)
(a) (b)
Fig. 11. MSE loss history comparison for (a) Motion 1 and (b) Motion 2.
5s 6.67 s 8.33 s 10s
N
s A
= i ) St e O
» : 4 = V
g Vo e e/ o ‘\&\-f e o
e MV: b

Z

O

()

ts]
Fig. 12. Comparison grid of DEM and SGN simulation results for unseen Motion 1.
5fS 6.67 s 8.33s 10s
M 4

E - %\/d o
i POV < oo oy
zZ

Q

(%)

t[s]

Fig. 13. Comparison grid of DEM and SGN simulation results for unseen Motion 2.

applications. For instance, in fluidized bed reactors the model could
instead output granular temperature to monitor mixing efficiency; in
hopper or silo flows, it could report stress accumulation to predict
clogging by swapping the global target from AE, ., to a wall-region
stress (e.g., von Mises stress in a region of interest) and time-integrating
it over the rollout; and in continuous granulation processes it could
track particle residence time to optimize throughput.

Benchmarking against a reference DEM simulation of the Emax
mill revealed that the surrogate reproduces bulk motion with a mean

11

squared error plateau of ~2 x 10~* m? and tracks cumulative energy
dissipation with a stable 2.8% relative error. Importantly, these results
are obtained with a time step of 1 x 10™*s, equivalent to a 104x
relaxation over the DEM solver step (9.5x1077 s). The ability to function
with such relaxed temporal resolution while remaining numerically
stable makes the SGN a promising drop-in replacement for exploratory
studies, sensitivity scans and digital-twin applications. On runtime,
the CPU-only rollout was ~6.6x faster than the DEM solver, and this
comparison excludes the additional DEM post-processing required to
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Fig. 14. Cumulative energy dissipation for unseen Motion 1: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that we plot until

t =7 s to facilitate the observation of the dissipation’s evolution.
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Fig. 15. Cumulative energy dissipation for unseen Motion 2: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that we plot until

t = 6 s to facilitate the observation of the dissipation’s evolution.

Fig. 16. Modification to original geometry by adding a cylinder at its center.
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compute AE,,,. Profiling shows that SDF evaluation dominates cost be-
cause fast boundary motion requires maintaining accurate per-particle
spatial context each step, and increasing Ar to reduce these calls proved
unviable at high RPM due to missed contacts and boundary escapes;
further wall-clock gains are therefore most likely from SDF-derived
calculation optimization

The surrogate also exhibits strong generalization when driven by
two previously unseen motions. It preserved stable dynamics and kept
trajectory errors within the same bounds observed for the trained
motion. Although the absolute scale of energy dissipation was under-
predicted (about 24% and 47%, respectively), the temporal evolution
was captured with near perfect correlation (r 0.9998), indicating
that the model internalizes the underlying physics but needs broader
training data to calibrate energy magnitudes outside of its original set.

Geometric robustness was tested by inserting a cylindrical obstacle,
absent from the training set, and combining it with an unseen driving
motion. The surrogate remained numerically stable under this com-
bined distribution and, once the barrier increased the ball’s collision
frequency, its energy-dissipation error (measured against the original-
geometry baseline used for hypothesis testing) fell to roughly 6%. While
this comparison is not physically meaningful for the altered jar, it

~
~
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Fig. 17. Cumulative energy dissipation distribution-matching experiment: comparison of SGN-predicted energy versus the DEM baseline reference (original
geometry + Motion 1). Note that this ground-truth comparison has no physical validity but serves to illustrate how slowing particle kinematics reduces the

under-prediction bias.
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Fig. 18. SGN simulation results for modified geometry and Motion 1.

supports the idea that the earlier under-prediction stemmed from a
distribution shift rather than a fundamental limitation of the model.

Overall, these findings demonstrate that SDF-based graph surrogates
can compress high-fidelity DEM physics into a lightweight neural sim-
ulator that is both fast, transferable and can handle complex motions
and geometries. Such capability opens avenues for iterative milling
jar optimization, large-scale parameter sweeps for mechanochemical
scale-up, and closed-loop control strategies.

Several challenges remain:

* Material diversity: the current network is trained on a single
material system; extending the feature set to particle radius, fill
ratio and restitution distributions is a logical next step.

Energy calibration: the bias observed under out-of-distribution mo-
tions points to the need for data augmentation spanning a wider
velocity and energy spectrum.

Uncertainty quantification: ensemble or Bayesian message-passing
variants would provide a direct performance indicator by relating
the model’s predictive variance to deviations from ground-truth
DEM data, yielding confidence intervals around mean predic-
tions. This is crucial because granular processes are inherently
stochastic and sensitive to initial conditions, so quantifying pre-
dictive uncertainty helps detect out-of-distribution scenarios and
supports risk-aware decision making in industrial deployment.

13

The present study marks an advance toward data-driven acceler-
ation of granular-process simulations. By releasing all code and pre-
processing tools as open source, we hope to catalyze community adop-
tion, foster reproducibility, and ultimately shorten the innovation cycle
for sustainable mechanochemical technologies.
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Appendix. Hyperparameter sensitivity and global-loss ablation

In this section, we analyze how the performance of the surrogate
model is affected by a different selection of hyperparameters from
those reported in Table 3, and an ablation of the global loss Lgqpa
(see Eq. (28)). Since the model has two objective predictions, we
employ the following rationale: if the model maintains a stable error
when predicting particle dynamics, then we test if the global energy
dissipation is predicted accurately. We assess the influence of these
hyperparameters based on the model’s capacity to predict the standard
milling process in the Emax machine.

History window (W)

The selection of the history window size is critical to allow the
model to learn sufficient information about how a typical collision
evolves in the system. Too long of a window will effectively introduce
noise that the model will not be able to resolve and lead to unstable dy-
namic predictions (see Fig. A.2). Our results also indicate that selecting
a window size that covers less than the median collision duration can
lead to stable dynamic prediction, but will result in less accurate energy
dissipation predictions (see Fig. A.1). Thus, we recommend selecting a
window size that encompasses at least the median duration, and does
not exceed this time by more than 40%. In the case of this work,
the median collision duration is 0.0005 s, and each window frame
contributes 0.0001 s.

Interaction layers (L »)

The number of interaction layers defines how many times node
messages are passed and aggregated before making a prediction. Intu-
itively, deeper interaction modules allow the model to capture more
complex multi-body effects, but given the small number of particles
in the system, the number of collisions with more than 2 elements
involved is relatively scarce. As a result, using more than 1 layer leads
to unstable predictions. When using 2 interaction layers, the dynamic
predictions of the particle manage to stay within the jar bounds, but
they become chaotic, leading the energy dissipation predictions to
grow without bound (see Fig. A.3). Using even more layers (i.e. 4)
leads to unstable dynamic predictions (see Fig. A.4). Nonetheless, we
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suspect that a system with significantly more multi-body interactions
will necessitate more interaction layers. We recommend consulting the
studies mentioned in the introduction since they cover systems where
multi-body interactions are more prevalent.

Hidden dimension (neuron number)

The number of neurons in the model’s hidden layers defines its
representational capacity for capturing the nonlinear dynamics of par-
ticle collisions. Too few neurons constrain the model’s ability to predict
energy dissipation accurately, although the dynamics remain stable and
precise (see Fig. A.5).

Conversely, an excessively large hidden dimension increases the
risk of overfitting to training noise, which can manifest as unsta-
ble long term predictions or reduced generalization capability. How-
ever, determining the precise network width at which overfitting first
appears would require a broader hyperparameter sweep, which was
unnecessary for this work.

MLP layer number

The number of MLP layers defines the depth of successive nonlinear
transformations applied to each node’s aggregated features, thereby
controlling the model’s capacity to approximate complex mappings
between the current particle states and their future dynamics. Using too
little hidden layers (i.e. 2) leads to highly unstable dynamic predictions
(Fig. A.6).

Similarly, using too many hidden layers can introduce vanishing or
exploding gradient issues during training, increase the model’s suscepti-
bility to overfitting, and substantially raise computational cost. In our
experiments, since four MLP layers achieved stable convergence and
accurate predictions, we did not investigate deeper architectures.

PW contact threshold value (. Dpu)

The PW contact threshold (¢pw) defines the near-wall region in
which a particle-wall edge is created (edges added when ¢gpp > ¢y,
with ¢gpr < 0 inside the jar). A shallower threshold (less negative,
closer to zero) narrows this band and can miss near-wall interactions
or lead to particle escape from the domain. A deeper threshold (more
negative) widens the band, increasing PW edge density. We probe
with two perturbations around the baseline —0.0052m: a shallower
—0.0049m and a deeper —0.0055m, adjusting the snap-back level as
¢ = ¢pw +0.0003 m to maintain ¢, < ¢y, <O0.

In both cases, the kinematics of the system remain stable, but the
energy dissipation prediction behavior differs. With a PW threshold
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Fig. A.1. Cumulative energy dissipation for window size = 3.
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Fig. A.5. Cumulative energy dissipation for neuron number = 64.
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Fig. A.6. MSE loss history for MLP layer size = 2.
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Fig. A.9. Ablation of the global loss £

closer to zero, grazing contacts are minimized, and the active PW-
edge set shrinks to only the most wall-proximal, high-intensity events.
This stronger set inflates the predicted per-step dissipation, so the
cumulative energy overshoots the DEM ground truth; in this case, the
relative error reaches 15.45% (see Fig. A.7).

Conversely, when the PW threshold becomes more negative, more
grazing interactions are detected, the active PW-edge set enlarges, and
mean pooling over this larger, lower-intensity set reduces the predicted
increment. It should be noted that deeper thresholds increase the risk
of false positive detections. In this case, the prediction undershoots the
DEM reference, with a relative error of 4.18% (Fig. A.8). For a safe
rollout, we recommend selecting a threshold that recovers >90% of
DEM PW ground truth contacts.

Global-loss ablation (Lgopq1)

Finally, we perform a ablation directly from Eq. (28) by setting
Lgiobat = 0, so the objective reduces to Ly = @ Lpgge (all other
settings in Table 3 unchanged). Without supervision on the global head,
the predicted per-step dissipation becomes severely miscalibrated: the
cumulative curve overshoots DEM with a relative error 514.35% at the
end of the rollout, even though the kinematics remain stable (see Fig.
A.9). This confirms that L4, is necessary to calibrate the magnitude
of dissipation; otherwise, its scale is unconstrained and drifts upward.

= SGN Predicted Cumulative Energy
- DEM Ground Truth Cumulative Energy
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- SGN Predicted Cumulative Energy
DEM Ground Truth Cumulative Energy

10 12 14
Time (s)
= —0.0055 m.
10 12 14
Time (s)
global*

Data availability

The data and code will be made available in the link mentioned in
the paper.
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