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Phylogenetic networks are used to represent evolutionary rela-
tionships between species in biology. Such networks are often 
categorized into classes by their topological features, which 
stem from both biological and computational motivations. We 
study two network classes in this paper: tree-based networks 
and orchard networks. Tree-based networks are those that 
can be obtained by inserting edges between the edges of an 
underlying tree. Orchard networks are a recently introduced 
generalization of the class of tree-child networks. Structural 
characterizations have already been discovered for tree-based 
networks; this is not the case for orchard networks. In this pa-
per, we introduce cherry covers—a unifying characterization 
of both network classes—in which we decompose the edges 
of the networks into so-called cherry shapes and reticulated 
cherry shapes. We show that cherry covers can be used to 
characterize the class of tree-based networks as well as the 
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class of orchard networks. Moreover, we also generalize these 
results to non-binary networks.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Phylogenetic trees and networks are used to represent the evolutionary history of 
species in biology and languages in linguistics. Given a set of present-day species (or lan-
guages), a tree can be used to depict how lineages have diverged from their most recent 
common ancestor. Networks are a generalization of trees, and a network can also depict 
how lineages may have converged as a result of reticulate events such as hybridization 
and horizontal gene transfer. In this paper, we shall consider directed phylogenetic net-
works, where the edges represent directed (horizontal or vertical) transmission of genetic 
material.

We briefly comment on the difference between binary and non-binary networks (see 
Section 2 for formal definitions of binary and non-binary networks). Networks are often 
presented so that at each speciation event, two lineages diverge from one lineage, and 
at each reticulate event, two lineages converge into one lineage—this is what we would 
call a binary network. In practice, many networks do not adhere to such restrictions. For 
example, ambiguities in the order of how some evolutionary events have unfolded (soft 
polytomy) or multiple speciation events that occur almost simultaneously from a single 
species (hard polytomy) can easily break this ideal structure. Such problems give rise to 
vertices that represent one lineage diverging into three or more lineages. The same stands 
for reticulate events. In this paper we consider networks without binary restrictions, and 
therefore our results will naturally hold for binary networks.

Phylogenetic networks have been categorized into many topological classes for both 
biological and computational incentives (for an overview of a few binary network classes, 
see, for example, [6]). One of the largest of these network classes is the class of tree-based 
networks. Hatched from an ongoing debate on whether evolutionary histories should or 
should not be viewed as tree-like with reticulate events sprinkled in (e.g., in the context 
of horizontal gene transfer within prokaryotes [9]), tree-based networks were introduced 
as those that can be obtained from trees by inserting new reticulate edges between the 
edges of the tree [3]. In their seminal paper, Francis and Steel explored the mathematical 
properties of these tree-based networks and provided a linear time algorithm to check 
whether a binary network was tree-based. Following this, structural characterizations for 
binary tree-based networks were introduced in the form of forbidden substructures [11], 
matchings [8], and using antichains and path-partitions [2]. Jetten and van Iersel further 
extended the matching characterization result to non-binary networks, and showed that 
it is possible to decide whether a non-binary network is tree-based in polynomial time [8].

http://creativecommons.org/licenses/by/4.0/
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Within the class of binary tree-based networks lies the recently introduced class of 
binary orchard networks (shown in [5]). These networks generalize the prominent class 
of tree-child networks. It was shown that orchard networks are uniquely reconstructible 
from their ancestral profiles [1] and that it can be determined whether two binary (or 
semi-binary stack-free) orchard networks are isomorphic in linearithmic time [7]. Orchard 
networks contain either a cherry (two leaves with a common parent) or a reticulated 
cherry (two leaves with distinct parents, for which one parent is the parent of another, 
and the lower parent is a reticulation), such that reducing a cherry or a reticulated cherry 
yields an orchard network of smaller size. With this reduction, one can obtain a sequence 
of ordered pairs—which corresponds to reducing either a cherry or a reticulated cherry 
that involves the two leaves in the pair—that iteratively reduces the orchard network to 
a single leaf. Janssen and Murakami, and Erdős et al. have independently shown that 
such a reduction can be done in any order, and therefore that it can be decided in linear 
time whether a network is orchard [1,7]. While these sequences do characterize orchard 
networks, the recursive nature of this characterization may make it impractical to use.

In this paper, we present a unified structural (non-recursive) characterization for both 
non-binary tree-based networks and non-binary orchard networks. We first decompose 
networks into so-called cherry shapes and reticulated cherry shapes. If each edge of the 
network belongs to at least one of these two structures, then we say that the network 
has a cherry cover. This turns out to be a necessary and a sufficient condition for the 
network to be tree-based (Theorem 3.3). In addition, we consider an ordering on the 
cherry and reticulated cherry shapes of a network. We prove that a network is orchard 
precisely if it has an acyclic cherry cover (Theorem 4.3). This shows that the class of 
non-binary orchard networks are contained in the class of non-binary tree-based networks 
(Corollary 4.5).

2. Preliminaries

A (directed phylogenetic non-binary) network on a set of taxa X is a directed acyclic 
graph with a unique vertex of indegree-0 and outdegree-1 (the root), vertices of indegree-1 
and outdegree-0 (the leaves) that are bijectively labelled by X, and all other vertices have 
either indegree-1 (tree vertices) or outdegree-1 (reticulations) but not both. A (directed 
phylogenetic non-binary) tree is a network with no reticulations. As the root is the only 
indegree-0 vertex, and the leaves are the only outdegree-0 vertices, the edges are directed 
from the root to the leaves. Note, however, that this orientation is fully determined by 
the undirected underlying graph together with the choice of root and reticulations, but 
not by only the undirected underlying graph [5].

Given an edge uv in a network, we say that u is a parent of v and that v is a child
of u. We say that u and v are the tail and head of the edge, respectively. An edge uv is a 
reticulation edge if the vertex v is a reticulation, so every incoming edge of a reticulation 
is a reticulation edge. The root edge of a network is the unique edge uv where u is the 
root. The reticulation number is the total number of reticulation edges minus the total 
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number of reticulation vertices. A vertex in a network is binary if it has degree at most 
three, where the degree of a vertex refers to the sum of the indegree and outdegree of the 
vertex. A binary tree vertex is called a bifurcation and a tree vertex with degree greater 
than 3 is called a multifurcation. A network is semi-binary if all tree vertices are binary; 
it is binary if all vertices are binary. To make it possible to explicitly mention when we 
do not assume a network is binary or semi-binary, we shall refer to any network (binary, 
semi-binary, or neither) as a non-binary network. Note that this implies that each binary 
network is non-binary as well.4

Let N be a non-binary network with an edge uv. We shall denote the set of parents 
and the set of children of v by Γ−(v) and Γ+(v), respectively. If uv is not the root edge, 
nor an edge incident to a leaf, then contracting the edge uv is the action of deleting u

and v, adding a vertex w, and adding edges xw for each x ∈ Γ−(u) ∪ Γ−(v) \ {u} and 
edges wx for each x ∈ Γ+(v) ∪ Γ+(u) \ {v}. We say that a path is contracted if every 
edge in the path is contracted, and partially contracted if some of the edges in the path 
is contracted.

We say that two networks N and M on X are isomorphic if there exists a bijection f

that maps the vertices and edges of N to the vertices and edges of M , such that uv is 
an edge of N if and only if f(u)f(v) is an edge of M , and leaves are mapped to leaves of 
the same label. A semi-binary resolution of a network N is a semi-binary network N ′, 
from which a network isomorphic to N can be obtained by contracting edges. A binary 
resolution of a network N is a binary network N ′, from which a network isomorphic to N

can be obtained by contracting edges. Observe that a non-binary network generally has 
multiple non-isomorphic (binary and semi-binary) resolutions.

2.1. Cherry cover

A cherry shape is a subgraph on three distinct vertices x, y, p with edges px and py. 
The internal vertex of a cherry shape is p, and the endpoints are x and y. A reticulated 
cherry shape is a subgraph on four distinct vertices x, y, px, py with edges pxx, pypx, pyy, 
such that px is a reticulation in the network. The internal vertices of a reticulated cherry 
shape are px and py, and the endpoints are x and y. The internal reticulation and the 
middle edge of a reticulated cherry shape are px and pypx, respectively. The edge pyy

is called the free edge of the reticulated cherry shape. We will often refer to cherry 
shapes and the reticulated cherry shapes by their edges (e.g., we would denote the above 
cherry shape {px, py} and the reticulated cherry shape {pxx, pypx, pyy}). We say that 
an edge uv is covered by a cherry or reticulated cherry shape C if uv ∈ C. Given a set P
of cherry and reticulated cherry shapes, we say that an edge is covered by P if the edge 
is covered by at least one shape in P . We now investigate how sets of cherry shapes 

4 Read ‘non’ in non-binary as an abbreviation for ‘not necessarily’ to avoid confusion with a network that 
is not binary.



L. van Iersel et al. / Advances in Applied Mathematics 129 (2021) 102222 5
and reticulated cherry shapes may form a decomposition or cover for a given binary, 
semi-binary, or non-binary network (see Fig. 1).
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Fig. 1. Examples of networks and their bulged versions with cherry covers and decompositions. All edges 
in networks are directed downwards from the root to the leaves, and reticulations are indicated by square 
vertices. (a) A non-binary network N and its bulged version B(N). Observe that both leaves a, b are incident 
to parallel edges in B(N), because both leaves are children of reticulation vertices with indegree-3. A cherry 
cover of B(N) is visualized using different edge types. The edge e in N is duplicated in B(N) to depict what 
happens when an edge is covered twice by a cherry cover. However, it does not represent parallel edges. 
(b) A semi-binary resolution Ns of N , obtained by resolving the multifurcation in N . The bulged version 
of Ns is shown on the right, together with a cherry decomposition of B(Ns). (c) A binary resolution Nb

of N . A cherry decomposition of B(Nb) = Nb is displayed on the right network.

2.1.1. Binary networks

Definition 2.1. A cherry decomposition of a binary network is a set P of cherry shapes 
and reticulated cherry shapes, such that each edge except for the root edge is covered 
exactly once by P .

We recall the following key lemma on the number of edges and vertices for each vertex 
type in a binary network.

Lemma 2.2 (Lemma 2.1 of [10]). Let N be a binary network on n leaves and reticulation 
number r. Then N contains n + r − 1 tree vertices and 2n + 3r − 1 edges.5

Lemma 2.3. Let N be a binary network on n leaves and reticulation number r, and let P
be a cherry decomposition of N . Then P contains exactly n − 1 cherry shapes and r

reticulated cherry shapes.

Proof. By Lemma 2.2, the total number of edges in N is 2n + 3r − 1. Then the total 
number of edges of N excluding the root edge is 2(n −1) +3r. Recall that every outgoing 
edge of a reticulation vertex must be covered by a reticulated cherry shape. Indeed, 

5 Note that networks in [10] have roots of indegree-0 and outdegree-2 and thus are differently defined to 
the networks used in this paper. However this is a technicality; their counting argument can be used in our 
network by tweaking values.
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since reticulations have one unique child, no outgoing edge of a reticulation vertex can 
be covered by a cherry shape. Since there are r such edges and because a reticulated 
cherry shape is composed of 3 edges, we have that 3r of the edges of N are covered 
by reticulated cherry shapes, and that the rest of the edges of N must be covered by 
cherry shapes. As each cherry shape is composed of 2 edges, and since every tree vertex 
in semi-binary networks are bifurcations, there must be n − 1 cherry shapes in P . We 
conclude that P contains exactly n −1 cherry shapes and r reticulated cherry shapes. �
2.1.2. Semi-binary networks

We extend the notion of a cherry decomposition to semi-binary networks by introduc-
ing the following “bulged version” of a network.

Definition 2.4. Let N be a network. Then the bulged version of N , B(N), is the multi-
graph obtained from N by replacing the outgoing edge of each reticulation vertex with 
indegree-k by k − 1 parallel edges. In B(N), we call a vertex a root if it is a vertex of 
indegree-0 and outdegree-1, a tree-vertex if it has exactly one parent and at least two 
children, a reticulation if it has at least two parents and exactly one child, and a leaf
if it is labelled. In particular, tree vertices with two children are called bifurcations and 
tree vertices with more than two children are called multifurcations.

This action merely adds new edges between existing parent child pairs in the net-
work; it does not add any new vertices. The edges added when obtaining the bulged 
version B(N) of N are all parallel edges. Because of this, we observe that a vertex is a 
tree-vertex, a reticulation, or a leaf in N if and only if it is a tree-vertex, a reticulation, 
or a leaf in B(N). We now define the reverse action to finding a bulged version of a 
network.

Definition 2.5. Let G be a directed acyclic multigraph. Then the un-bulged version U(G)
of G is the multigraph obtained from N by deleting all but one edge from each collection 
of parallel edges.

Lemma 2.6. Let N be a non-binary network, and let B(N) denote the bulged version 
of N . Then U(B(N)) is isomorphic to N .

Proof. The multigraph B(N) is obtained from N by adding parallel edges. Because of 
this, we may define a mapping f from the vertices and the edges of N to the vertices and 
edges of B(N) such that if uv is an edge in N , then f(u)f(v) is also an edge in B(N), 
and further that f preserves leaf labels. Clearly, the mapping f uses every edge of B(N)
that is not a parallel edge; for each collection of parallel edges, the mapping uses exactly 
one edge.

Consider the graph U(B(N)) obtained by deleting all but one edge from each collection 
of parallel edges in B(N). The choice for which parallel edges are deleted does not matter 
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in this process, so choose to delete the edges that are not used in the mapping. Then f

can be naturally extended to become a mapping of N into U(B(N)), where every edge 
of U(B(N)) is used. But this means that N and U(B(N)) must be isomorphic. �

When we restrict the domain to the set of non-binary phylogenetic networks and the 
codomain to the image of the domain under B, it is easy to see that U is the inverse 
of B. Therefore, we shall denote U as B−1 from here onwards. If N is binary, we have 
N = B(N), but, in general, bulged versions of networks are not always networks, since 
they may contain parallel edges and vertices not listed in the definition of networks.

Lemma 2.7. Let N be a semi-binary network on n leaves with reticulation number r. 
Then B(N) has 2n + 3r − 1 edges, r of which are out-edges of reticulation vertices.

Proof. Let Vr be the set of reticulation vertices in N , and let k = |Vr|. Any binary 
resolution of N has the same number of tree vertices as N . By Lemma 2.2, N has n leaves, 
1 root, k reticulation vertices, and n + r−1 tree vertices. Note that there are k outgoing 
edges of reticulation vertices in N and the sum of the indegrees of the reticulation vertices 
is r+k. Because in constructing B(N), we add 

∑
v∈Vr

(|Γ−(v)| −2) = r+k−2k edges to N , 
the sum of the outdegrees of the reticulation vertices in B(N) is k+(r+k−2k) = r. Hence, 
we can count the number of edges in B(N) by counting the total number of outgoing 
edges for each node type: the leaves have 0 outgoing edges, the root has 1 outgoing edge, 
the tree vertices have 2(n + r − 1) outgoing edges, and the reticulation vertices have r
outgoing edges. Therefore, we conclude that B(N) has 1 +2(n + r− 1) + r = 2n +3r− 1
edges. �
Definition 2.8. A cherry decomposition of the bulged version of a semi-binary network N

is a set P of cherry shapes and reticulated cherry shapes, such that each edge of B(N), 
except for the root edge, is covered exactly once by P .

Observe that a reticulation vertex in the bulged version of the network is always 
mapped to an internal reticulation of a reticulated cherry shape in the cherry decompo-
sition. This brings us to the following lemma, whose proof follows an analogous argument 
as used in the proof of Lemma 2.3.

Lemma 2.9. Let N be a semi-binary network on n leaves and reticulation number r, and 
let P be a cherry decomposition of N . Then P contains exactly n −1 cherry shapes and r

reticulated cherry shapes.

Proof. The bulged network B(N) has 2n + 3r − 1 edges (Lemma 2.7). Then the total 
number of edges of B(N) excluding the root edge is 2(n − 1) + 3r. Observe that every 
outgoing edge of a reticulation vertex must be covered by a reticulated cherry shape, 
and each reticulated cherry shape must cover such an edge. Since there are r such edges 
(Lemma 2.7) and because a reticulated cherry shape is composed of 3 edges, we have 



8 L. van Iersel et al. / Advances in Applied Mathematics 129 (2021) 102222
that 3r of the edges of B(N) are covered by reticulated cherry shapes, and that the rest of 
the edges of B(N) must be covered by cherry shapes. As each cherry shape is composed 
of 2 edges, this implies that there must be n −1 cherry shapes in P . Therefore P contains 
exactly n − 1 cherry shapes and r reticulated cherry shapes. �
2.1.3. Non-binary networks

For non-binary networks, we generalize the concept of cherry decompositions by al-
lowing certain edges to be covered multiple times.

Definition 2.10. A cherry cover of (the bulged version) of a non-binary network N is 
a set P of cherry shapes and reticulated cherry shapes with the following properties 
on B(N):

• each edge except for the root edge is covered by at least one shape in P ,
• each outgoing edge of a reticulation vertex is covered exactly once,
• each edge covered by the middle edge of a reticulated cherry shape is covered exactly 

once.

Note that cherry covers may contain cherry shapes that cover the same edge of the 
bulged version of the network, as long as the above properties are respected (see Fig. 2). 
Note also that there may exist many distinct cherry covers for one network.

Lemma 2.11. Let P be a cherry cover of a non-binary network N , and let uv be an edge 
of B(N) that is covered by at least two shapes in P . Then u must be a multifurcation.

Proof. First observe that u cannot be the root since the root edge is not covered by P , 
and it also cannot be a vertex of outdegree-0. Furthermore, u cannot be a reticulation 
vertex by the second condition of Definition 2.10. Therefore u must be a tree vertex. 
Suppose that u is a bifurcation, and let uw be an edge of B(N) that is not uv. Then the 
edges uv and uw must be contained in a same shape A in P . If A was a reticulated cherry 
shape, then one of uv or uw must form the middle edge of A; by the third condition 
of the cherry cover definition, no other shape of P can contain the edge uv. On the 
other hand, if A was a cherry shape, then for uv and uw to be covered by a shape B

that is not A, B must be a reticulated cherry shape. But this would again violate the 
third condition of the cherry cover definition. Thus, no other shape of P can contain the 
edge uv. Therefore, the edge uv is covered only by one shape in P , and u cannot be a 
bifurcation. By process of elimination, it follows that u must be a multifurcation. �

It follows that cherry covers are indeed a generalization of cherry decompositions, 
since a cherry cover of a binary or a semi-binary network covers each edge of the bulged 
version of the network exactly once. Observe that the converse of Lemma 2.11 is not 
necessarily true. That is, given a cherry cover of a network, it is not always the case that 
a multifurcation has an outgoing edge that is covered more than once (see Fig. 2).
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Fig. 2. Cherry covers of sizes 3 (left) and 2 (right) for the same tree. We duplicate the edges incident to b
and c to show how an edge can be covered more than once in a cherry cover. The cherry cover of the left 
tree reflects the cherry cover used in the proof of Lemma 2.12.

Lemma 2.12. Let N be a network on n leaves. Then B(N) has a cherry cover using only 
cherry shapes if and only if N is a tree. Furthermore, if N is a tree, then there exists a 
cherry cover of N that contains exactly n − 1 cherry shapes.

Proof. The first statement follows from the definition of a cherry cover. To prove the 
second statement, we construct a cherry cover for N as follows. Let t be a tree vertex 
in N of outdegree-d. Arbitrarily enumerate the d outgoing edges of t by e1, e2, . . . , ed, 
and define cherry shapes Cti = {ei, ei+1} for i ∈ [d − 1] = {1, . . . , d − 1}. These d − 1
cherry shapes cover all outgoing edges of t. We repeat this for all tree vertices, and since 
the tail of every edge, except for the root edge, is a tree vertex, we obtain a cherry cover.

Let T (N) denote the tree vertices of N . Since the sum of the indegrees is equal to the 
sum of the outdegrees, we get that

n + |T (N)| =
∑

v∈N

|Γ−(v)| =
∑

v∈N

|Γ+(v)| = 1 +
∑

t∈T (N)

|Γ+(t)|.

Rearranging this equation, we find
∑

t∈T (N)

|Γ+(t)| − |T (N)| = n− 1.

In the construction of a cherry cover of T above, each tree vertex t gives |Γ+(t)| −1 cherry 
shapes. Hence, the size of the cherry cover is exactly

∑
t∈T (N) |Γ+(t)| −|T (N)| = n −1. �

Definition 2.13. Let P be a cherry cover of some network. A shape A ∈ P is directly 
above another shape B ∈ P if an internal vertex of B is an endpoint of A. A shape 
A ∈ P is above a shape B ∈ P if there is a sequence A = A0, . . . , An = B such that 
Ai−1 is directly above Ai for all i ∈ [n]. The cherry cover P is called acyclic if no shape 
is above itself.

Given a cherry cover of some network, Definition 2.13 naturally gives rise to an aux-
iliary graph where the cherry shapes and reticulated cherry shapes are the vertices and 
an edge is drawn from one shape to another if it is directly above the shape. It can be 
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used to determine the acyclicity of a cherry cover. An example of such a graph can be 
seen in Fig. 3c.

2.2. Network classes

We now define the two classes of networks for which we will give a unifying charac-
terization, the classes of tree-based networks and of orchard networks. To define these 
classes, we need the graph operation of suppressing an indegree-1, outdegree-1 node. If 
v is such a node, this consists of adding an edge from the parent p of v to the child c of 
v, and subsequently removing the node v and the edges pv and vc incident to v.

Note that this could lead to parallel edges if pc is an edge of N , but this never happens 
in the context of this paper. In particular, when the child of v is a leaf, the only incoming 
edge of c is vc, so there is no edge pc. Moreover, in this case, suppression of v can also be 
achieved by removing the edge vc and the node c, and relabelling v with the label of c.

Tree-based networks We use the definition of non-binary tree-based networks from Jet-
ten and van Iersel [8]. Note that, in their paper, they define two variants of tree-basedness 
of non-binary networks: one called “tree-based” and the other “strictly tree-based”. Here, 
we focus on the former definition.

Definition 2.14. A network N is tree-based with base tree T when N can be obtained 
from T via the following steps:

1. Replace some edges of T by paths, whose internal vertices are called attachment points. 
Attachment points have indegree-1 and outdegree-1.

2. Add edges, called linking edges, between pairs of attachment points and from tree 
vertices to attachments points, so that N remains acyclic, attachment points have 
indegree or outdegree 1, and N has no parallel edges.

3. Suppress every attachment point that is not incident to a linking edge.

See Fig. 3 for an example of a tree-based network, its bulged version, and a cherry 
cover for the network.

Given a tree-based network N , we may reverse the above actions by removing a subset 
Er of the edges and suppressing all indegree-1 outdegree-1 vertices until we obtain a base 
tree T (note that Er may not necessarily be unique). Letting V (N) and E(N) denote 
the vertices and the edges of N respectively, we define the embedding of T in N by the 
subgraph of N with vertex set V (N) and edge set E(N) \Er. Observe that suppressing 
all indegree-1 outdegree-1 vertices from the embedding of T in N returns the tree T .

Let N be a network on X. We say that the bulged version of N , B(N), is tree-based
if the leaves of some spanning tree of B(N) are labelled bijectively by X. Because a 
spanning tree of B(N) contains exactly one edge from each set of parallel edges, we 
come to the following observation.
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Fig. 3. (a) A semi-binary tree-based network N that is not orchard. A base tree of N is indicated by the 
solid edges. (b) The bulged version of N with a cherry cover {C1, C2, R1, R2, R3}. Each cherry shape is 
indicated using a distinct line type for the edges. (c) An auxiliary graph that shows the order on the cherry 
shapes. An edge is drawn from one cherry shape to another if it is directly above it. In this case, the cherry 
cover is not acyclic since {R1, R2} form a cycle.

Observation 2.15. A network N is tree-based if and only if B(N) is tree-based.

Orchard networks An ordered pair of leaves (x, y) in a network N is a cherry of N if N
has a cherry shape whose endpoints are x and y. Similarly, (x, y) is a reticulated cherry
of N if N has a reticulated cherry shape whose endpoints are x and y and the parent of x
is a reticulation. We call (x, y) a reducible pair if it is a cherry or a reticulated cherry. 
Given an ordered pair of leaves (x, y), reducing (x, y) in N consists of the following ([7]).

• If (x, y) is a cherry, remove the edge pxx and suppressing px if it has outdegree-1.
• If (x, y) is a reticulated cherry, remove the edge pypx and suppress px and py if 

possible.
• Do nothing otherwise.

The resulting network after reducing (x, y) in N is denoted N(x, y). For a sequence of 
ordered pairs S, we denote by NS the network obtained by successively reducing pairs 
of S from N in order.

Definition 2.16. A network N is orchard if there exists a sequence of ordered pairs S

such that NS is a network on a single leaf.

In other words, a network is orchard if we may successively reduce a cherry or a 
reticulated cherry to obtain a network on a single leaf. It was shown independently by 
Janssen and Murakami [7] and Erdős et al. [1] that orchard networks may be reduced 
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in any order. In other words, if N is orchard and (x, y) is a reducible pair, then N(x, y)
is orchard as well. See Fig. 4 for an example of an orchard network, its bulged version, 
and its acyclic cherry cover.

2.3. Reducing shapes

To characterize orchard networks using cherry covers of bulged networks, we show 
that it is possible to reduce a pair in a network N by modifying its bulged version. To 
do so, we first define the process of removing a reducible pair from a bulged network.

Definition 2.17. Let (x, y) be a reducible pair in a network N with corresponding (reticu-
lated) cherry shape A in B(N). If the parent py of y is a bifurcation (resp. multifurcation), 
then reducing A in B(N) consists of deleting each edge of A (resp. A \{pyy}) from B(N), 
then deleting all isolated vertices, and finally, labelling all unlabelled outdegree-0 ver-
tices by the label of one of their children in B(N) before removal. The resulting bulged 
network is denoted B(N) \A (resp. (B(N) \ (A \ {pyy})).

Only if A is a cherry shape and the common parent px of x and y is a bifurcation, 
we have multiple options for labelling the outdegree-0 vertex. To solve this, we reduce a 
cherry as an ordered pair (x, y), and we label the outdegree-0 vertex px with the label 
of y.

In this definition, we claim that the resulting graphs are bulged versions of networks. 
This follows from the fact that removing a reticulated cherry shape, the indegree and 
outdegree of a reticulation vertex both go down by one, so the number of parallel edges 
below the reticulation is still correct.

Finally, we prove that reducing a (reticulated) cherry in a network N is the same as 
reducing the corresponding (reticulated) cherry shape in B(N).

Lemma 2.18. Let (x, y) be a reducible pair in N , and let py denote the parent of y in N . 
Let A denote the cherry shape or the reticulated cherry shape of B(N) corresponding to 
the reducible pair (x, y).

• If py is a bifurcation, then N(x, y) = B−1(B(N) \A).
• If py is a multifurcation, then N(x, y) = B−1((B(N) \ (A \ {pyy})).

Proof. First suppose that (x, y) is a cherry. Recall that reducing (x, y) in N consists of 
first removing the edge of pyx and, if py is a bifurcation, additionally removing the edge 
pyy and relabelling py with the label of y in N . Hence, N(x, y) can be obtained from 
N by removing every edge in {pyx, pyy} = A from N and relabelling py with the label 
of y. If py was a multifurcation, then no suppression will happen, and N(x, y) can be 
obtained from N by simply removing every edge in {pyx} = A \ {py, y} from N . As no 
reticulation vertices are involved here, we can equivalently remove these edges in B(N), 
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Fig. 4. (a) A semi-binary orchard network N on taxa set {a, b, c, d}. One sequence for reducing N to a 
network on a single leaf is (d, c)(b, a)(b, c)(d, c)(b, c)(a, c). (b) The bulged version of N with one possible 
cherry cover {C1, C2, C3, R1, R2, R3}. (c) An auxiliary graph that shows the order on the cherry shapes. 
In this case, the cherry cover is acyclic.

so we conclude that N(x, y) = B−1(B(N) \A) or N(x, y) = B−1(B(N) \ (A \ {pyy})) if 
py is a bifurcation or multifurcation respectively.

Now suppose that (x, y) is a reticulated cherry. Reducing (x, y) in N consists of 
removing pypx and, if px (resp. py) is not binary, additionally removing pxx (resp. pyy) 
and relabelling px (resp. py) with the label of x (resp. y). In contrast to the case that 
(x, y) is a cherry, we must now consider the outgoing edges of px in B(N) to see how 
we can equivalently remove the edges A (or A \ {pyy}) from B(N) instead of from 
N . If px is binary, we here remove the edge pxx just like when we reduce (x, y) in 
B(N), hence, there is a clear correspondence between these processes. If px is not binary, 
then the reduction in B(N) removes an outgoing edge of px, whereas the reduction in 
N does not. This is compensated for by the fact that px has multiple outgoing edges 
in B(N). Indeed, after removing one incoming edge of px in N , px should have one
fewer outgoing edge in the bulged version of the resulting network. Hence, the edge 
pxx needs to be removed from B(N) as well to obtain the bulged version of N(x, y). 
Hence, in the case that (x, y) is a reticulation, we also have N(x, y) = B−1(B(N) \ A)
and N(x, y) = B−1(B(N) \ (A \ {pyy})) when py is a bifurcation or multifurcation, 
respectively. �

3. Tree-based networks

In this section, we show that a binary network is tree-based if and only if it has a 
cherry decomposition. We do this by showing that for non-binary networks, the same 
characterization holds if we look at cherry covers in the bulged version of the network. 
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Fig. 5. (a) A non-binary tree-based network N on {a, b}. A base tree is indicated by the solid edges. (b) A 
semi-binary resolution Ns of N that is not tree-based with a cherry cover. (c) The bulged version of Ns

that does not have a cherry cover. This can be seen as follows. There are four edges incident to the leaves 
and each of these edges can only be covered by reticulated cherry shapes. However, it is not possible to add 
four such reticulated cherry shapes without covering any middle edge of a reticulated cherry shape more 
than once.

Taking the bulged version is crucial in this characterization. Fig. 5b (from [8]) is an 
example of a (non-bulged) semi-binary network that is not tree-based with a cherry 
cover. In the same figure, we show that its bulged version does not have a cherry cover 
(Fig. 5c), and also that contracting one of the edges in the network yields a non-binary 
network that is tree-based (Fig. 5a). This latter point proves the following observation.

Observation 3.1. Let N be a tree-based network. Then there may exist a semi-binary 
resolution of N that is not tree-based.

Lemma 3.2. Let N be a network. Then N is tree-based if and only if some binary resolu-
tion of N is tree-based. N is tree-based if and only if some semi-binary resolution of N
is tree-based.

Proof. The first statement follows from [8] Observation 3.2. To show the second state-
ment, let N be a tree-based network, and let T be a base tree of N . By definition of 
base trees, T must visit every tree vertex in the network. In particular, it must visit 
every multifurcation, and exit such vertices via one of its outgoing edges. Let t denote 
such a tree vertex and let s denote the child of t in N such that ts is an edge that is 
used by T . Then we resolve t by replacing it by a caterpillar such that the parent of s
is the bottom-most vertex. It remains to check that the base tree covers all the newly 
introduced vertices. However this is immediate; by the placement of s, we note that the 
path from t to s covers all the newly introduced vertices. Therefore the tree T with the 
edge ts changed to the path from t to s is a base tree of the new network. Repeating 
this for all multifurcations yields a semi-binary resolution of N that is tree-based.
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On the other hand, if a semi-binary resolution N ′ of N is tree-based, then it is easy to 
see that N must also be tree-based. Indeed, upon contracting some of the edges of N ′, 
we adjust the base tree of N ′ by contracting an edge in the base tree if it used a path 
that was contracted, in the embedding, and not changing the base tree otherwise. In 
case a few edges of the path were contracted, we still map the edge of the base tree to 
the partially contracted edge. Doing so gives a base tree of N . �
Theorem 3.3. A network N is tree-based if and only if B(N) has a cherry cover.

Proof. First suppose that N is a tree-based network. Let T be a base tree of N , and 
let Er = {e1, . . . , ek} denote the reticulation edges that were deleted to obtain T from N . 
By Lemma 2.12, T has a cherry cover P consisting of only cherry shapes. We use this 
cherry cover to produce a cherry cover of N .

Each cherry shape C in P maps to a pair of paths c1 and c2 in B(N) that are vertex-
disjoint except at their highest vertices. All these paths together cover the edges of the 
embedding ET of T in B(N). Taking the first edge of both c1 and c2, we obtain a cherry 
shape C|N of B(N). Let P ′ = {C|N : C ∈ P} be the set of cherry shapes in B(N)
obtained from cherry shapes in P , and let F = ET \ P ′ be the edges of ET that are not 
covered by P ′.

The edges of B(N) apart from the root edge that are not yet covered by P ′ are as 
follows:

• the reticulation edges ei = uivi ∈ Er,
• all outgoing edges of vi for all i ∈ [k],
• and for each ui for all i ∈ [k], at most one outgoing edge fui

∈ F .

For the last point, if the endpoint ui were to have more than one outgoing edges in 
F , then they would be part of a cherry shape in P ′; hence, they cannot be in F , but 
they must be in P ′. Therefore this case is not possible. If there is no outgoing edge 
of ui contained in F , then ui must have two outgoing edges that form a cherry shape 
in B(N) that is contained in P ′. Otherwise ui would not have been covered by ET , 
which would contradict the fact that T was a base tree of B(N). If there was exactly one 
outgoing edge fui

of ui contained in F , then ui was not a tree vertex in T (in particular 
it must have been added as an attachment point). Thus, fui

is not a highest edge in the 
embedding of a cherry shape of P , so fui

is not covered by P ′. Observe that fui
cannot 

be the reticulation edge ei itself, since Er contains all the reticulation edges that are 
not used in the embedding of T in N . Therefore, each endpoint ui of a reticulation edge 
ei = uivi ∈ Er has an outgoing edge in F , or an outgoing edge that is covered by P ′.

We augment P ′ to a cherry cover P ′′ of B(N) by adding a reticulated cherry shape 
{vixi, uivi, uiyi} for each ei = uivi ∈ Er satisfying the following conditions: for each 
i, either uiyi ∈ F or uiyi is covered by P ′, and for any i �= j, vixi �= vjxj . This last 
condition is possible because the number of outgoing edges of a reticulation vertex v is 
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equal to the number of incoming edges of v that are in Er. By construction, P ′′ is a 
cherry cover of B(N).

Now suppose that the bulged version of the network N has a cherry cover P . For 
every reticulation vertex v of indegree k, exactly k − 1 incoming edges are contained in 
a reticulated cherry shape as the middle edge in P . By definition of reticulated cherry 
shapes, the tail of each of these reticulation edges has at least one child other than v. 
This inherently implies that deleting these k − 1 reticulation edges will not create any 
unlabelled outdegree-0 vertices. Repeating this deletion for all such reticulation edges and 
removing all parallel edges returns a spanning tree of the graph whose leaves are labelled 
bijectively by the leaf-set of N ; therefore B(N) is tree-based. By Observation 2.15, N is 
tree-based. �

By Lemma 2.12, there exists a cherry cover of a tree on n leaves that contains ex-
actly n − 1 cherry shapes. The next corollary follows immediately from this observation 
and the arguments used in the proof of Theorem 3.3.

Corollary 3.4. Let N be a tree-based network on n leaves and reticulation number r. Then 
there exists a cherry cover of N that contains exactly n − 1 cherry shapes and exactly r

reticulated cherry shapes.

4. Orchard networks

We now show that a network is orchard if and only if its bulged version has an acyclic 
cherry cover. Note that it is necessary to consider the bulged version of the network, as 
there exist networks that are not orchard that have an acyclic decomposition into cherry 
and reticulated cherry shapes, such as the network depicted in Fig. 6. Note that the 
bulged version of this network has no acyclic cherry cover. To see this, observe that the 
edge incident to a must be covered by a reticulated cherry shape—say it is covered by 
a reticulated cherry shape containing R. In the bulged version of the network, there are 
parallel edges incident to the leaf b; one of these edges must be covered by a reticulated 
cherry shape containing the edges of R′. However, the shapes containing R and R′ are 
then above one another, so no cherry cover can be acyclic.

In Fig. 7, the network N is an orchard network, as (a, b)(d, c)(b, c)(a, c)(d, c) is a 
sequence of reducible pairs that reduce N to a network on a single leaf c. The same 
figure presents a semi-binary resolution Ns of N that is not orchard. Since there are 
no reducible pairs (no cherries nor reticulated cherries) in Ns, it is immediately clear 
that Ns is not orchard. Therefore we obtain the following observation.

Observation 4.1. Let N be an orchard network. Then there may exist a semi-binary 
resolution of N that is not orchard.
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Fig. 6. An example showing why it is necessary to consider cherry covers in bulged versions of networks. The 
tree-based network N (also shown in Fig. 3(a)) is not orchard. Nevertheless, there is an acyclic decomposition 
of N into the cherry and reticulated cherry shapes {C1, C2, C3, R1, R2}. Every cherry cover of B(N) must 
be cyclic, because each of the edges labelled R and R′ must be contained in a reticulated cherry shape 
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a

a

a

a

a a

a a a a

N

a b c d

a

a

a

a

a

a

a a

a a a a

N s

a b c d

Fig. 7. An orchard network N and a non-orchard semi-binary resolution Ns of N .

Lemma 4.2. Let N be a network where B(N) has a cherry cover P . Suppose A ∈ P is a 
lowest shape with endpoints x and y where the parent py of y is a tree vertex. Then,

• (x, y) is a reducible pair in N , and
• B(N(x, y)) has a cherry cover P \ {A} if py is a bifurcation; otherwise, B(N(x, y))

has a cherry cover (P \ {A}) ∪ {Z}, where Z is a shape with endpoint y.

Proof. We first show that x and y are leaves in B(N). Suppose for a contradiction that 
x is not a leaf. Then it is either a tree vertex or a reticulation vertex. In either case, x
has an outgoing edge which must be part of some shape Y ∈ P . As x is not a lowest 
vertex in Y , x must be an internal vertex of Y . This implies that A is above Y , which 
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contradicts the fact that A is a lowest shape. Hence, x must be a leaf. By the same 
argument, y is a leaf. Hence, x and y are both leaves of N . We now split into two cases: 
either A is a cherry shape, or A is a reticulated cherry shape.

First suppose A = {pyx, pyy} is a cherry shape. As B(N) has edges pyx and pyy, 
N must also have such edges. As N has edges pyx and pyy, and x and y are leaves, 
N has the cherry (x, y). This means (x, y) is a reducible pair in N . Now suppose A =
{pxx, pypx, pyy} is a reticulated cherry shape. Then N also contains edges pxx, pypx, 
and pyy. As x and y are leaves in N and px is a reticulation vertex—by the properties of 
a cherry cover—(x, y) is a reticulated cherry in N , which is a reducible pair. This proves 
the first part of the lemma.

For the second part of the lemma, we split the proof into two subcases. First suppose 
that py is a bifurcation. The first part of the current lemma implies that A corresponds 
to the reducible pair (x, y) of N , so by Lemma 2.18, we have N(x, y) = B−1(B(N) \A). 
Moreover, by assumption, P is a cherry cover of B(N), A is an element of P . Hence, 
it follows that the set P \ {A} is a cherry cover of B(N(x, y)) = B(B−1(B(N) \ A)) =
B(N) \A.

Now suppose that py is a multifurcation. Then, the first part of this lemma again 
implies that A corresponds to the reducible pair (x, y), so B(N(x, y)) = (B(N) \ A) ∪
{pyy} by Lemma 2.18. Moreover, P \ {A} covers all edges of B(N) \A, so only the edge 
pyy may not be covered by P \ {A}. If the edge pyy is covered by P \ {A}, then this is 
a cherry cover of (B(N) \ A) ∪ {pyy} and therefore of B(N(x, y)) and we are done. So 
suppose pyy is not covered by P \{A}. Excluding the edge pyy, if all other outgoing edges 
of py formed the middle edge of reticulated cherry shapes, then pyy must have formed the 
free edge of each of these reticulated cherry shapes. This implies that the edge pyy must 
already have been covered by P \ {A}, which is not true by our assumption. Therefore, 
there exists some outgoing edge pyz of py that is covered by P \ {A}, such that pyz

does not form the middle edge of a reticulated cherry shape. Then, we obtain a cherry 
cover (P \ {A}) ∪ {pyy, pyz} of (B(N) \A) ∪ {pyy} and therefore of B(N(x, y)). �
Theorem 4.3. A network N is orchard if and only if B(N) has an acyclic cherry cover.

Proof. First suppose that a network N is orchard. We prove by induction on the sum 
S = n + r of the number of leaves n and the reticulation number r of N that B(N) has 
an acyclic cherry cover. The induction basis is the case with one leaf and no reticulations: 
the empty set is an acyclic cherry cover for such a network.

Now suppose that for each orchard network N ′ with n′+r′ = S′, B(N ′) has an acyclic 
cherry cover. We prove that for any network N with n + r = S = S′ + 1, B(N) has an 
acyclic cherry cover. For this purpose, let N be an orchard network with n leaves and r
reticulations, such that n + r = S = S′ + 1, and let (x, y) be a reducible pair in N . Note 
that as N is an orchard network, such a reducible pair must exist.

First suppose that the parent py of y is a bifurcation. By Lemma 2.18, we have 
that B(N(x, y)) = B(N) \ A, where A is a cherry shape if (x, y) is a cherry, and A is a 
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reticulated cherry shape if (x, y) is a reticulated cherry. By definition of orchard networks 
and reductions of reducible pairs, N(x, y) is an orchard network and the sum of its leaves 
and reticulations is S′. By the induction hypothesis, B(N(x, y)) has an acyclic cherry 
cover P . We may obtain a cherry cover for B(N) by appending the shape A to P . 
Therefore B(N) has a cherry cover P ∪ {A}. As the endpoints of A are leaves, the 
element A is above no other shape in P . Therefore the cherry cover P ∪ {A} is acyclic.

Now suppose that the parent of py is a multifurcation. By Lemma 2.18, B(N(x, y)) =
(B(N) \ A) ∪ {pyy}, where A is either a cherry shape or a reticulated cherry shape on 
(x, y). We have again that N(x, y) is an orchard network, and the sum of its leaves and 
reticulations is S′. By the induction hypothesis, this implies that there is an acyclic 
cherry cover P of B(N(x, y)) ∪ {pyy}, which gives a cherry cover P ∪ {A} of B(N). 
This cherry cover is acyclic because the new element A is above no other shape as its 
endpoints are leaves.

Hence, for each orchard network N with a total S′ + 1 of leaves and reticulations, 
there is an acyclic cherry cover of B(N).

To prove the other direction of the theorem, suppose that B(N) has an acyclic cherry 
cover P and let A ∈ P be a lowest shape with endpoints x and y. Observe that such a low-
est shape must exist as otherwise the cherry cover would not be acyclic. By Lemma 4.2, 
(x, y) is a reducible pair in B(N), and B(N(x, y)) has a cherry cover (P \ {A}) ∪{Z} or 
P \A, in which the order on the remaining shapes is not changed. This means B(N(x, y))
is smaller than B(N), and it has an acyclic cherry cover. This process continues until 
P = ∅, and both N and B(N) are reduced to a single leaf network. Since we have suc-
cessively reduced cherries or reticulated cherries from N to obtain a single leaf network, 
N is an orchard network. �

We now prove a lemma that is analogous to Lemma 3.2 for orchard networks using 
acyclic cherry covers.

Lemma 4.4. Let N be a network. Then N is orchard if and only if some binary resolution 
of N is orchard. Similarly, N is orchard if and only if some semi-binary resolution of N
is orchard.

Proof. We first assume that there exists some binary resolution N b of N that is orchard, 
and independently, that there exists some semi-binary resolution Ns of N that is orchard. 
We claim that contracting an edge of an orchard network whose head and tail are both 
tree vertices or both reticulation vertices results in an orchard network. By definition, 
we may obtain N by contracting exactly these edges from N b and from Ns (different 
edges for the two resolutions), from which it follows that N is orchard. We now prove 
the claim.

Let M be an orchard network, and let st be an edge in M such that s and t are both 
tree vertices. We show that the network obtained by contracting st in M is orchard. By 
Theorem 4.3, M has an acyclic cherry cover P . The edge st is covered as an edge in a 
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cherry shape or as a free edge in a reticulated cherry shape in P (or possibly both and 
multiple times, if s is a multifurcation). Moreover, at least one of the outgoing edges 
of t is also covered as an edge in a cherry shape or as a free edge in a reticulated cherry 
shape in P . Let us denote this edge by tu. We now contract the edge st, and replace the 
edge st that appeared in every shape in P by tu. All other shapes of P are preserved and 
we call this new set of shapes P ′. All edges of the contracted network are covered and it 
is easy to check that P ′ is a cherry cover. It remains to show that P ′ is an acyclic cherry 
cover. This follows immediately, because the shapes in P that contained the edge st

are no longer directly above the shapes in P that contained the vertex t as an internal 
vertex; furthermore, the shapes in P that contained the edge st are now directly above 
the shapes in P that contained the vertex u as an internal vertex. These new edges do 
not create a cycle in the auxiliary graph, as otherwise P would have been cyclic.

Now let pq be an edge in M such that p and q are both reticulations. By definition 
of cherry covers, there must exist one incoming edge kp of p such that kp is covered as 
an edge in a cherry shape or as a free edge in a reticulated cherry shape A ∈ P . Let r

be the child of q. We now contract the edge pq, calling the new node q′, and replace the 
edge pq that appeared in every shape in P by an edge q′r. All other shapes of P are 
simply kept, and we call this new set of shapes P ′. Note that the number of q′r edges in 
shapes of P ′ is equal to (|Γ−(p)| − 1) +(|Γ−(q)| − 1) = |Γ−(q′)| − 1, which is the number 
of outgoing edges of q′ in B(N) after contraction. Hence, P ′ forms a cherry cover of the 
contracted network.

Moreover, P ′ is acyclic for the following reason. The only difference between the 
auxiliary graph of P and the auxiliary graph of P ′ is that the arrow between shapes 
of P containing pq and the shapes of P containing qr has been deleted, and the arrow 
from A to shapes of P containing qr has been added. But A was already above these 
shapes in the auxiliary graph of P . The same can be said for all reticulated cherry shapes 
that covered an incoming edge of p as the middle edge. Hence, contracting an edge of an 
orchard network whose head and tail are both tree vertices or both reticulation vertices 
returns an orchard network. Therefore the network N is orchard.

To prove the other direction, suppose that N is an orchard network. By Lemma 2
in [7], there exists a binary resolution of N that is orchard. Since any binary network is 
also semi-binary, the binary resolution of N is also semi-binary. �

It was shown in [5] that binary orchard networks are tree-based. It follows from The-
orems 3.3 and 4.3 that this is also true for the non-binary case.

Corollary 4.5. All orchard networks are tree-based.

5. Discussion

In this paper we have provided a unifying structural characterization for tree-based 
networks and orchard networks using cherry covers. We have shown that a binary network 
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is tree-based if and only if it can be decomposed into cherry shapes and reticulated cherry 
shapes. A binary network is orchard if such a decomposition exists that also satisfies a 
certain acyclicity condition. Moreover, we have generalized these characterizations to 
non-binary networks by considering bulged versions of the networks and using covers 
rather than decompositions. Prior to having this characterization, orchard networks were 
characterized only by the sequences that reduced them. Therefore we have provided the 
first structural (non-recursive) characterization for orchard networks. We have further 
shown that the class of non-binary orchard networks is contained in the class of non-
binary tree-based networks.

Structural characterizations for many network classes have generally focused more 
on ‘forbidden structures’ rather than on decompositions. Tree-based networks cannot 
contain a maximum zig-zag path that starts and ends at a reticulation (W-fences) [4,11]; 
tree-child networks cannot contain adjacent reticulation vertices nor tree vertices with 
only reticulation children. While structures such as crowns (a bipartite graph between 
some subset of the tree vertices and reticulations that contains an undirected cycle) and 
W-shapes cannot be contained in orchard networks, it remains open whether orchard 
networks can be characterized by a list of forbidden substructures.

In the other direction, it may be of interest to extend our cherry cover results to 
characterize other network classes that are contained in the class of tree-based networks. 
Since (the bulged versions of) these networks have a cherry cover, this may be possible 
by imposing additional conditions on the cherry cover. Finding such characterizations 
for all known network classes, such as tree-child, reticulation-visible, and stack-free, will 
truly bring to light a unifying structural characterization of known phylogenetic network 
classes.

Outside of characterizing network classes, cherry covers can be used to prove other 
results within phylogenetics. One particular case in which this could have been useful is 
in the setting of chain reductions as done in the paper [5]. In that paper, it was shown 
that leaves may be added to, and some leaves may be removed from orchard and tree-
based networks to obtain a network that was still orchard or tree-based (in particular, 
Lemmas 10, 11 and 13). Employing cherry covers to prove these results is more concise, 
since adjusting the cherry cover of networks after such actions is easier than trying to 
alter, say, the sequence for the network (for orchards).

Another area in which cherry covers may be useful is in solving enumeration problems, 
which is formulated as follows. Given parameters n and r, find the number of distinct 
networks on n leaves with reticulation number r. When considering the class of tree-based 
networks, there exist cherry covers for such networks that contain n − 1 cherry shapes 
and r reticulated cherry shapes by Corollary 3.4—can we somehow count all possible 
arrangements of these shapes to enumerate the space of both network classes? Perhaps, 
for non-binary networks, this line of attack will be too complicated due to shapes being 
able to cover the same edges. However, for binary networks this may be viable, as each 
edge of the network is covered exactly once in a cherry decomposition by Lemma 2.3.
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Fig. 8. The bulged version of the tree-based network from Fig. 3, in which we cover some of the edges with 
arbitrary reticulated cherry shapes R1 and R2. Since the edge incident to the leaf a can no longer be covered 
by any reticulated cherry shape, there exists no cherry cover that contains both R1 and R2.

On the algorithmic front, one may find a cherry cover for a tree-based network and an 
acyclic cherry cover for an orchard network in polynomial time. For orchard networks, we 
may find reducible pairs, cover the edges involved using the steps outlined in the proof 
of Theorem 4.3, reduce the shape, and continue until an acyclic cherry cover is obtained. 
Since we may pick reducible pairs from orchard networks in any order [1,7], this bottom-
up approach provides a polynomial time algorithm for finding an acyclic cherry cover 
of an orchard network. For tree-based networks, we first find a base tree in polynomial 
time with the matching approach used in the proof of Theorem 3.4 in [8]. Then, one may 
follow the steps outlined in the proof of Theorem 3.3 of this paper to convert the cherry 
cover of this base tree to a cherry cover of the network in polynomial time. Without the 
base tree however, it is not clear if there is a systematic way of obtaining a cherry cover. 
Indeed, it is not enough to naively cover the edges in any fashion (e.g., bottom-up), as 
shown in Fig. 8. We wonder if it would be possible to directly obtain a cherry cover of 
a tree-based network without first having to find a base tree; and if this is the case, can 
it be done faster than the algorithm presented in [8]?
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