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Abstract

Multi-Layer Perceptron and Support Vector Machine have both been widely used
in machine learning. In this research paper, these models have been applied to binary
classification on an individual time series basis. The goal was to see whether they
can predict earthquakes, using earthquakes measured at specific stations across New
Zealand. As it turns out, both models serve as satisfactory classifiers. However, their
performances are dependent on the stations the data was accumulated from.

1 Introduction
An earthquake is a natural disaster that is caused by a shift or displacement of tectonic
plates. This sudden shift results in the release of seismic energy which subsequently shakes
the surface of the earth. The violent vibrations of the surface of the earth lead to damage and
loss of human lives. Being able to predict an earthquake could help towards hazard preven-
tion. However, this tends to be difficult due to the inaccessible location of the hypocenter
of the earthquake, which is often tens of kilometers underground, and the abruptness at
which an earthquake can occur. A prediction should give information on the magnitude,
location or time of an earthquake. Of the three, the time estimation of a model falls under
short-term prediction (less than 1 year), intermediate term prediction (1 to 10 years) or long
term prediction (10 to 100 years) [1].

In the past, various methods of earthquake prediction have been proposed. The first one
is trend-based prediction, which uses statistical modeling to make estimations. This method
does not perform well on an individual case basis and only predicts long-term trends. The
second method is precursor-based [2]. This method looks at geophysical properties like the
climate, radon gas emissions and even the behaviour of animals. However, this method
depends on the occurrence of specific precursors even though in practice such precursors
usually occur without any subsequent seismic events, or are hard to detect [3]. Therefore,
this technique does not lead to satisfactory results and will not be used in this research
paper.
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Instead, this paper will apply a third method for earthquake prediction: machine learn-
ing. In recent years, machine learning has proven to be a useful tool for dealing with data-
intensive, non-linear and complex problems [4]. Machine learning can act as an unbiased
tool to find patterns over insurmountable amounts of data.

1.1 Literature Review
In the past, there has been research into earthquake prediction using neural networks. A
widely accepted method for precursor-based prediction uses parameters such as: longitude,
latitude, magnitude and depth. For instance [5], constructs a Multi-Layer Perceptron (MLP)
for earthquake prediction using a precursor method, which takes as parameters the time
between earthquake events, can predict the magnitude, location and date of an earthquake.
Another trend-based research by [6] does a comparison between two models, Feed-Forward
Neural Networks (FFNN) Long Short-Term Memory (LSTM). Their research has shown
that the R2 score yielded by the LSTM is 59% higher than for the FFNN. Moreover, the
research paper [7], constructs an LSTM which discovers the spatio-temporal correlations
among earthquake occurrences and takes advantage of these correlations to make accurate
earthquake predictions.

A different approach was taken by [8], which uses Fingerprint And Similarity Thresh-
olding (FAST), which creates a digital fingerprint of a seismic waveform of an earthquake
and extracts key features. These distinct features allow for efficient comparison of seismic
waveforms over large amounts of data.

Other research papers also use seismic waveforms as a precursor parameter. For example,
[9], uses a Convolutional Neural Network (CNN) for earthquake detection and prediction
using a single seismic waveform. This research has shown promising results and has outper-
formed other algorithms such as the previously mentioned FAST approach. A significant
difference with this paper, is that the data collected was a single waveform from a single
location, whereas this paper collected data of multiple waveforms from multiple locations.

1.2 Research question
The research question is: "How does a MLP compare with a SVM when operating on
individual time series in predicting earthquakes?". The input will be seismic waveforms
from different locations. The paper will compare two model (SVM and MLP) using known
evaluation metrics.

This paper will also provide a baseline for other research papers which will research do
into other machine learning models or consider waveforms from channels/locations.

2 Methodology
As reviewed in section 1.1, there are two main methods for earthquake prediction: trend-
based and precursor-based. In this research paper, we take a precursor-based approach.
The precursor being 30 seconds of seismic waveform. In order to carry out the experiments
three concepts are introduced. In section 2.1, we discuss how the data has been collected
and what preprocess steps were taken. Next, section 2.2, we take a look into the machine
learning models MLP and SVM. Lastly, in section 2.3, we describe what metrics are utilized
to evaluate each model.
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2.1 Data Preparation
The setting of the dataset is New Zealand, specifically defined by the geographic location of
the bounding box coordinates: latitude -47.749 to -33.779 and longitude 166.104 to 178.990.
The time range of the dataset is between January 2016 and July 2021. The dataset has
been procured using a web service of the International Federation of Digital Seismograph
Networks (FDSN) [10]. The aggregated dataset consists of two types of data: stations and
earthquake events. Stations are facilities where the vertical velocity of seismic activity is
recorded using weak-motion sensors. The index and metadata of 58 stations can be found
in Table 2 in the appendix. The number of earthquake events that are within the time
frame and the bounding box is just over 122,000. The locations of these stations and these
earthquake events are visualized in Figure 1.

Figure 1: Map of New Zealand. Each red dot represents a station and each
yellow dot represents an earthquake.

We are interested in two types or classes of seismic waveforms: non-earthquake also called
normal waveforms, and earthquake waveforms. The predicate of the research question is that
the seismic activity preceding a seismic event can act as a precursor. For the purposes of
this research paper a time length of 30 seconds was chosen, as in [11]. This time period
was deemed appropriate since a longer period would result in more irrelevant data and a
shorter time period would risk having too little data to make a meaningful analysis. Figure
2 displays an unprocessed waveform consisting of three parts: the waveform during the
earthquake, 30 seconds before the earthquake and the normal waveform. The sample rate of
the raw seismic waveform is 100HZ. In order to reduce the training time of the models and
reduce the susceptibility of the seismic data to noise, the waveforms were downsampled to
50HZ. The amplitude of each earthquake is normalized to values between 1 and -1. Figure
3 demonstrates a normalized waveform being downsampled.

2.1.1 Earthquake Seismic Activity

In this section, the operation performed on the earthquake events and the associated wave-
forms are discussed. Two properties of an earthquake are magnitude and depth, the dis-
tribution of which can be found in Figure 4. In order to make the earthquake data more
identifiable, outliers were removed. Namely, earthquake with a magnitude less than one or
more than three, and earthquakes with hypocenters1 more than 200 kilometers deep. After

1https://en.wikipedia.org/wiki/Hypocenter
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Figure 2: Waveform representation of an earthquake with ID
"smi:nz.org.geonet/2019p006920" and station ID "NZ.WEL.10.HHZ"

Figure 3: Representation of a normalized seismic waveform at frequencies:
100HZ (top), 50HZ (middle), 2HZ (bottom)

this filtering, 106,000 earthquakes remain. The next step is to divide each earthquake to
its nearest station. The distances from the earthquakes to the stations were calculated us-
ing the great-circle distance2. The distribution of distances of earthquakes to their nearest
station can be seen in Figure 5. Earthquakes with a great-circle distance greater than 270
kilometers from the designated station were removed. The upper distance limit guarantees
a good signal-to-noise ratio for small magnitude events at high frequencies [12].

The number of features or length of each sample is calculated by multiplying the fre-
quency by the time length (30 seconds). According to [13], to ensure that the dataset is
reliable, the sample size should increase with the number of measurements/features as well
as the inherent error rate of the classifier. In order to curate to experiments done using
the highest frequency, a size of 1000 samples per class was chosen for a total of 2000 sam-
ples. The distribution of earthquakes per station is seen in Figure 6. The total number of
waveforms considered is

2https://en.wikipedia.org/wiki/Great-circle_distance

4



Figure 4: Distribution of magnitude (left) and depth (right) of earthquakes. N
= 106623 earthquakes

Figure 5: Distance distribution of distances of each earthquake to the nearest
station of 58 stations. N = 106623 earthquakes

2.1.2 Non-Earthquake Seismic Activity

The non-earthquake seismic activity also called normal seismic activity are 30 seconds of
seismic waveform that do not precede an earthquake. In order to create a balance dataset,
the same number of normal seismic activity have been found as the number of earthquake
seismic activity per station. A balance dataset means that each class is represented equally
in the dataset. An imbalanced dataset often results in skewed models; one class is favoured
over another.

The premise of the research question is that seismic activity before an earthquake can
act as a classifier for the occurrence of an earthquake. This means that in order to find a
classifier for absence of an earthquake we must find time periods that are the furthest away
from any earthquake. For this purpose an algorithm was deployed which maximizes the time
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Figure 6: Earthquake distribution to the nearest station of 58 stations. N =
104731 earthquakes

span, or buffer, between the normal seismic activity periods and the times that earthquakes
occur. Stations with fewer designated earthquakes, require less samples of normal seismic
activity. Therefore, the buffer size is inversely proportional to the sample size.

2.2 Machine Learning Models
This paper evaluates how two deep learning models accurately predict the occurrence of
an earthquake in a time-series manner: the Multi-layer Perceptron and the Support Vector
Machine. Both models can be used for binary classification tasks, which includes the current
earthquake prediction problem. Therefore, each sample in the dataset described in section
2.1, was labeled 1 for earthquake seismic waveform and 0 for normal seismic activity. The
differences and implementation of each model are detailed below.

2.2.1 Multi-layer Perceptron

MLP is a type of Feed-Forward Neural Network (FFNN) that consists of at least three types
of layers: input, hidden and output. Each layer consists of a set of neurons, which are each
connected to all of the neurons in the preceding layer. The depth of a MLP is brought
by the inclusion of multiple hidden layers. Each layer, except for the input layer, uses a
non-linear activation function. This activation function and the inclusion of multiple hidden
layers allows for distinction of data that is not linearly separable. The topology of a simple
MLP is shown in Figure 7. Each neuron also has an associated weight. During training, a
MLP learns by adjusting the weights through a process called backpropagation.

As mentioned in the previous section, the number of features of a sample is equal to the
the frequency of the waveform multiplied by 30 seconds. For example, a waveform of 50HZ
has 1500 features. This is equal to the number of neurons in the input layer. The output
layer always has only one neuron.

In this research, the MLP was implemented using the PyTorch library. This implemen-
tation included several techniques to prevent overfitting (when a model corresponds too
closely to a specific dataset, making it not generalizable enough). First of all, the regular-
ization technique was applied. This involves adding a penalty to the loss function in the
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Figure 7: Topology of a simple MLP with one hidden layer. Image adapted
from [14].

case of larger weights. There are two types of regularization: L1 and L2. The former uses
the sum of weights while the latter uses the sum of the squared weights. Both types have
been implemented in this research. Secondly, the dropout technique was used. This disables
or "drops out" randomly selected neurons that effect the output of the model negatively.
Thirdly, batch normalization was used as a third technique to speed up the training process.
This technique standardizes the weights in each layer per batch, making them more stable
and easy to process. For optimization both Adam and Stochastic Gradient Descent (SGD)
were considered as hyperparameters. Lastly, the implemented model divides the dataset
into 70%, 20% and 10%, for training, validation and testing respectively.

2.2.2 Support Vector Machine

The Support Vector Machine contains supervised learning methods in order to classify data,
analyze data regression and detect outliers. Moreover, this model creates a hyperplane to
separate the classes and often tries to maximize the distance from the hyperplane to the
nearest data point of any class. Moreover, there are several kernel functions that map the
dataset into a higher dimension. Of the many different functions, three were used in this
experiment. The linear, the polynomial and the RBF (Radial Basis Function or Gaussian
Radial Basis Function) kernel functions all separate classes in different manners to bring the
hyperplane to a higher dimension. See Figures 8, 9, 10 for their mapping equations.

Figure 8: Equation for the linear kernel function.

Figure 9: Equation for the polynomial kernel function.

This model was implemented using the sklearn library. The samples used were divided into
groups of 80% and 20% for training and testing respectively.
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Figure 10: Equation for the RBF kernel function

2.3 Evaluation Metrics
To evaluate the models described in 2.2, evaluation matrices accuracy, precision, recall and
F1-score have been used in this study. These matrices were calculated using the results of
the confusion matrix:

• True Positive (TP): An earthquake occurred and an earthquake was predicted.

• False Positive (FP): No earthquake occurred and an earthquake was predicted.

• True Negative (TN): No earthquake occurred and no earthquake was predicted.

• False Negative (FN): An earthquake occurred and no earthquake was predicted.

Accuracy (1) describes the ratio of correct predictions to all predictions made. In other
words, this metric looks at the correctly predicted occurrence and absence of an earthquake.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision (2) measures the ratio of correctly predicted earthquakes to all predicted earth-
quakes. In contrast, Recall, also known as Sensitivity, (3) is used to calculate the ratio of
correctly predicted earthquakes to all occurred earthquakes.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Lastly, F1-score (4) can be considered as the mean between Precision and Recall. This
metric gives a more stable outcome, which facilitates a comparison between models.

F1-score =
2TP

2TP + FP + FN
(4)

3 Results
This section will report the results of the experiments using the evaluation metrics described
in section 2.3.

The performance of the SVM per station, for the kernels function Linear, Polynomial
and RBF, are found in Figures 11, 12, 13, 14. The figures show that RBF has the highest
accuracy and F1-score for all stations, and has the highest precision and recall for most
stations. Polynomial kernel function has the second highest accuracy for all stations and the
highest for precision, recall and F1-score. Linear kernel function has the lowest performance
of most stations.
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Figure 11: Boxplots of the accuracy of each kernel, for each station. The number
of iterations (per boxplot) is 22.

Figure 12: Boxplots of the precision of each kernel, for each station. The number
of iterations (per boxplot) is 22.
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Figure 13: Boxplots of the recall of each kernel, for each station. The number
of iterations (per boxplot) is 22.

Figure 14: Boxplots of the F1-score of each kernel, for each station. The number
of iterations (per boxplot) is 22.

The MLP model has been trained for each station using the hyperparameters in Table 1.
The optimizer Adam was used, as there was no significant difference in accuracy between
optimizer GCD and Adam. Similarly, L2 regularization was optimal for training every
station. The training losses and accuracies of station with indices 0 and 17, can be found in
Figure 15. All of the learning curves of all of the station can be found in Figures 20, 21 and
22 in the Appendix. As a result the trained MLP was tested and evaluated using known
matrices, see Figures 16, 17, 18 and 19.
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Station index Epochs Batch size Learning Rate Dropout Number of hidden Layers Number of neurons per layer

0 160 256 1e-6 0.1 2 [1024, 128]
2 120 256 1e-4 0.8 1 [128]
16 130 128 1e-4 0.9 1 [128]
17 320 1024 1e-6 0.3 4 [1024, 512, 256, 64]
18 400 128 1e-6 0.8 1 [1112]
24 140 512 1e-4 0.6 1 [128]
27 140 512 1e-5 0.9 1 [512]
28 100 512 1e-5 0.8 1 [512]
30 180 512 4e-4 0.9 2 [1024, 68]
34 140 128 1e-3 0.9 2 [1024, 508]
35 100 256 1e-2 0.7 3 [1024, 512, 88]
37 120 512 8e-5 0.88 2 [1024, 512]
42 160 128 4e-5 0.9 1 [512]
46 120 128 1e-3 0.85 2 [1024, 512]
49 120 128 2e-5 0.74 1 [128]
51 120 1024 2e-6 0.45 2 [1146, 886]
56 260 1024 2.5e-6 0.5 2 [1026, 484]

Table 1: MLP hyperparameters for each station.

(a) Station index = 0 (b) Station index = 17

Figure 15: The training and validation, losses and accuracies during training of MLP for stations
with indices 0 and 1.
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Figure 16: Boxplots of the accuracy of the MLP, for each station. The number
of iterations (per boxplot) is 20.

Figure 17: Boxplots of the precision of the MLP, for each station. The number
of iterations (per boxplot) is 20.
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Figure 18: Boxplots of the recall of the MLP, for each station. The number of
iterations (per boxplot) is 20.

Figure 19: Boxplots of the F1-score of the MLP, for each station. The number
of iterations (per boxplot) is 20.

4 Responsible Research
Time series classification of earthquakes is a developing field and an accurate and gener-
alizable earthquake predictor could have great benefits towards hazard prevention. The
proposed models can predict earthquakes 30 seconds before they occur at a specific station.
This allows for more insight towards local seismic activity and could provide more time for
safety procedures, therefore potentially saving lives. Additionally, this research could be a
stepping stone towards learning more about the patterns of seismic activity. This is useful,
as more knowledge on this topic could mean that the time window for earthquake prediction
could be elongated.

That being said, there are some considerations that need to be taken into account.
Firstly, earthquake prediction models could create a false sense of security. The possible

13



occurrence of earthquakes is reduced to a binary classification task, thereby oversimplifying
a complex reality. As a result, these predictions can never be presented as certain. Moreover,
currently the models give a binary result (an earthquake is about to happen or not), but do
not provide a probability score. However, they could be modified to do so. This would bring
about a moral question: what is the probability threshold to start taking action against an
earthquake? Do you start preparing at a chance of 60 per cent? Or 90?

Nevertheless, this research should be easily reproducible. The data about earthquakes in
New Zealand is still available and easily accessible as it is open source. Moreover, the data
collection and analysis methods were described in section 2.1. Here, the specific decisions
made to manipulate the data set can also be found. The used models can be recreated using
the instructions in section 2.2 and tools from the PyTorch and the sklearn libaries. Finally,
in section 3 the hyperparameters are stated for the MLP model. Therefore, anyone with
background in machine learning should be able to replicate this research and come up with
similar results.

5 Conclusion
This section provides conclusions based on the results from section 3.

In this study, MLP and SVM were implemented to classify earthquake prediction prob-
lems in a time series basis. The precursor parameter was seismic activity of 30 seconds
measured at individual stations in New Zealand. The results showed satisfactory perfor-
mances of MLP and SVM. It can therefore be concluded that both models can be applied
as an earthquake prediction tools on a time-series basis. Moreover, looking at the general
results shows that one model is not favored over the other. It is only when looking at
specific stations, that a marginal difference in performance can be found. However, the
kernel function that performed best as RBF for the SVM model. This reveals an interesting
characteristic of seismic waveforms, namely: they are similar to other seismic waveforms of
different stations.

6 Discussion and Future Work
In this section, the conclusions will be contextualized, whilst also considering their contri-
bution to the academic field, their limitations and the possibilities for future work.

As discussed above, both MLP and SVM are relatively good at predicting earthquakes,
although the performances are largely station-specific. Therefore, this research provides an
valuable contribution to the academic field, as these models have not been used for classifying
earthquake prediction problems before in a time series basis.

However, there are also some limitations to this study. Firstly, only frequency of 50HZ
was used. This could affect the performance of one of the models. A lower frequency means
fewer features, which could incorrectly favor one model over the other. Secondly, the only
type of seismic activity considered in this experiment is vertical velocity. This is in contrast
to [9], which considers the velocity in three dimensional space. Additionally, seismic activity
is always vulnerable to noise caused by environmental factors. This could compromise the
dataset. Fourthly, the sensor used to measure seismic activity in New Zealand is a weak
motion sensor. This means it is subject to picking up seismic activity beyond the scope of
this study, as they took place outside of New Zealand.
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Moreover, the predictions in this study are bound to specific stations, despite the fact that
having input from different stations could benefit the quality of the predictions. Lastly, the
predictions only forecast whether an earthquake is about to occur, and not the magnitude or
specific location. Therefore, these two limitations are appropriate starting points for future
research, as having this information would benefit hazard prevention.

A Appendix

index station latitude longitude site name

0 BFZ -40.679647 176.246245 Birch Farm
1 BHW -41.408231 174.871115 Baring Head
2 BKZ -39.165666 176.492544 Black Stump Farm
3 COVZ -39.199914 175.542402 Chateau Observatory
4 CVZ -44.383180 171.006160 Cave
5 DCZ -45.464713 167.153533 Deep Cove
6 DSZ -41.744961 171.804614 Denniston North
7 EAZ -45.231053 169.308253 Earnscleugh
8 ETVZ -39.135700 175.710600 East Tongariro
9 FWVZ -39.254945 175.552952 Far West
10 GRZ -36.250200 175.457800 Great Barrier Island
11 GVZ -42.967365 173.034750 Greta Valley
12 HAZ -37.756100 177.782600 Te Kaha
13 HIZ -38.512929 174.855686 Hauiti
14 INZ -42.724500 171.444100 Inchbonnie
15 JCZ -44.073210 168.785473 Jackson Bay
16 KHEZ -39.294200 174.014500 Kahui Hut
17 KHZ -42.415980 173.538970 Kahutara
18 KNZ -39.021755 177.673669 Kokohu
19 KUZ -36.745229 175.720873 Kuaotunu
20 LBZ -44.385553 170.184420 Lake Benmore
21 LTZ -42.781667 172.271035 Lake Taylor Station
22 MLZ -45.366544 168.118407 Mavora Lakes
23 MQZ -43.706082 172.653766 McQueen’s Valley
24 MRZ -40.660545 175.578527 Mangatainoka River
25 MSZ -44.673334 167.926399 Milford Sound
26 MWZ -38.334001 177.527779 Matawai
27 MXZ -37.562259 178.306631 Matakaoa Point
28 NNZ -41.217103 173.379477 Nelson
29 ODZ -45.043982 170.644622 Otahua Downs
30 OPRZ -37.844300 176.554929 Ohinepanea
31 OPZ -45.884356 170.597767 Otago Peninsula
32 OUZ -35.219689 173.596133 Omahuta
33 OXZ -43.325900 172.038300 Oxford
34 PUZ -38.071548 178.257209 Puketiti
35 PXZ -40.030644 176.862145 Pawanui
36 QRZ -40.825522 172.529148 Quartz Range
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37 RATZ -38.866498 175.772176 Rangitukua
38 RPZ -43.714608 171.053865 Rata Peaks
39 RTZ -38.615440 176.980518 Ruatahuna
40 SYZ -46.536890 169.138823 Scrubby Hill
41 THZ -41.762474 172.905218 Top House
42 TLZ -38.329400 175.538000 Tolley Road
43 TMVZ -39.115610 175.704064 Te Maari
44 TOZ -37.730956 175.501847 Tahuroa Road
45 TRVZ -39.298816 175.547822 Turoa
46 TSZ -40.058553 175.961124 Takapari Road
47 TUZ -45.953975 169.631143 Tuapeka
48 URZ -38.259249 177.110894 Urewera
49 VRZ -39.124341 174.758453 Vera Road
50 WCZ -35.938642 174.345043 Waipu Caves
51 WEL -41.284048 174.768184 Wellington
52 WHVZ -39.282500 175.588600 Whangaehu Hut
53 WHZ -45.892428 167.947031 Wether Hill Road
54 WIZ -37.524511 177.189302 White Island
55 WKZ -44.827021 169.017562 Wanaka
56 WSRZ -37.518110 177.177805 White Island Summit
57 WVZ -43.074350 170.736754 Waitaha Valley

Table 2: Stations for the New Zealand earthquake dataset.
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(a) Station index = 0 (b) Station index = 2

(c) Station index = 16 (d) Station index = 17

(e) Station index = 18 (f) Station index = 24

Figure 20: The training and validation, losses and accuracies during training of MLP for stations
with indices: 0, 2, 16, 17, 18 and 24.
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(a) Station index = 27 (b) Station index = 28

(c) Station index = 30 (d) Station index = 34

(e) Station index = 35 (f) Station index = 37

Figure 21: The training and validation, losses and accuracies during training of MLP for stations
with indices: 27, 28, 30, 34,35 and 37.
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(a) Station index = 42 (b) Station index = 46

(c) Station index = 49 (d) Station index = 51

(e) Station index = 56

Figure 22: The training and validation, losses and accuracies during training of MLP for stations
with indices: 42, 46, 49, 51 and 56.
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