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Summary 
 

In this comprehensive study, we discuss a novel approach to enhance data assimilation and 

uncertainty quantification in the field of Geological Carbon Sequestration (GCS). We 

specifically address the complexities of channelized reservoirs, which pose significant challenges 

due to non-Gaussian permeability distributions and the intricate non-linear physics of CO2 

injection processes. Our innovative method integrates Fourier Neural Operators (FNOs) and 

Transformer UNet (T-UNet) with advanced data assimilation techniques - the Surrogate-based 

Hybrid Ensemble Smoother with Multiple Data Assimilation (SH-ESMDA) and the Surrogate-

based Hybrid Randomized Maximum Likelihood (SH-RML). These techniques make use of the 

very efficient computation of gradients that neural networks provide and they not only improves 

the speed of data processing but also enhances the accuracy of predictions in synthetic data 

assimilation experiments for GCS applications. A key element of our approach is the use of 

proxy models alongside high-fidelity simulations, ensuring the consistency and reliability of 

physical posterior distributions. We utilized Alluvsim for detailed geological modeling and the 

Delft Advanced Research Terra Simulator (DARTS) for comprehensive fluid flow simulations, 

providing a comprehensive understanding of reservoir dynamics. A synthetic case study on a 

channelized reservoir model for CO2 sequestration demonstrates the effectiveness of these 

methods, with improvements in predicting CO2 plume migration and pressure dynamics within 

the reservoir. The results of our study show that the integration of FNOs and T-UNet with SH-

ESMDA and SH-RML leads to enhanced prediction capabilities, particularly in the challenging 

context of channelized reservoirs. The SH-ESMDA method proves to be highly efficient in 

speeding up the data assimilation process without compromising accuracy, while SH-RML 

demonstrates a more effective history matching compared to standard Ensemble Smoother with 

Multiple Data Assimilation (ESMDA) techniques, indicating a robust strategy for assimilating 

complex data. This research not only contributes to the realm of GCS but also presents a novel 

solution for the integration of artificial intelligence with traditional methodologies that can be 

applied in various fields where data assimilation and uncertainty quantification are crucial. Our 

study paves the way for future advancements in this domain, highlighting the potential of AI-

driven techniques in enhancing data assimilation and uncertainty quantification for GCS projects. 



Introduction

The global urgency to mitigate climate change has propelled Carbon Capture, Utilization, and Stor-
age (CCUS) strategies, particularly Geological Carbon Storage (GCS), to the forefront of emissions
reduction efforts (Ringrose and Meckel, 2019; IEA, 2022). As these initiatives expand, they face dual
challenges: maximizing storage efficiency and minimizing associated risks. This study explores in-
novative approaches to address these challenges through the integration of advanced data assimilation
(DA) techniques and machine learning (ML) in GCS projects. The complexity of GCS operations is
exemplified by projects like the water alternating gas (WAG) injection in Brazil’s Pre-Salt region. De-
spite sequestering 20 Mton of CO2 across four major carbonate formations over a decade, this project
illustrates the gap between current capabilities and the ambitious targets set by organizations like the
International Energy Agency (Nunes et al., 2022). The geological complexities of storage sites, often
characterized by fractured carbonate rocks and channelized reservoirs, present significant obstacles to
efficient and safe CO2 storage (Burchette, 2012; March et al., 2018).

A critical aspect of GCS management is pressure control during CO2 injection. Improper pressure man-
agement can lead to severe consequences, including induced seismicity and caprock failure, potentially
compromising the entire storage system (Li and Liu, 2016; Zoback and Gorelick, 2012; Rutqvist, 2012;
White and Foxall, 2016). Recent research has proposed innovative solutions, such as the use of horizon-
tal wells, to enhance injection control and storage security (Machado et al., 2023). The success of GCS
projects depends on the synergy between detailed geological modeling, sophisticated reservoir simula-
tion, and advanced data assimilation techniques. Tools like Alluvsim enable the creation of complex
geological models that capture key features of natural deposition processes (Pyrcz et al., 2009). High-
fidelity reservoir simulators, including CMG GEM (CMG, 2023), SLB Eclipse (Schlumberger, 2023),
DuMux (DuMux, 2023), GEOSX (GEOSX, 2023), and DARTS, are employed to simulate CO2 injection
dynamics. DARTS, for instance, utilizes operator-based linearization (OBL) for efficient simulations,
though integrating these simulators into DA frameworks remains computationally challenging (Lyu and
Voskov, 2023; Khait and Voskov, 2017).

Forecasting reservoir behavior under uncertainty, while constrained by data and considering physics-
based models and prior knowledge, can be achieved using DA methods. These methods can be cat-
egorized into different types: some are based on ensemble methods such as Ensemble Kalman Fil-
ters and Smoothers, variational methods like Randomized Maximum Likelihood and 4D-Var, and fully
nonlinear methods comprising Particle Filters and Markov Chain Monte Carlo (Evensen et al., 2022;
Tarantola, 2005). Ensemble methods offer computational efficiency and flexibility, while variational
methods achieve better convergence. However, variational methods require gradient computations Tian
et al. (2024a,b), and fully nonlinear methods provide high accuracy but demand significant computa-
tional resources. Recent advancements have integrated machine learning (ML) with DA in an attempt
to overcome some of these difficulties (Buizza et al., 2022; Silva et al., 2023). Bridging these tradi-
tional DA methods with modern computational techniques, recent innovations have introduced machine
learning (ML) into the data assimilation framework to enhance its effectiveness (Buizza et al., 2022;
Silva et al., 2023). This integration leads to "Data Learning" approaches that leverage ML’s prowess in
pattern recognition to complement DA’s strengths in fusing these patterns with dynamic physical models
and constraints. Such hybrid approaches, which synergistically combine DA and ML, are proving par-
ticularly useful in challenging applications like CO2 injection, where understanding complex reservoir
dynamics is crucial (Buizza et al., 2022; Cheng et al., 2023; Brajard et al., 2021; Tarrahi et al., 2015; Tad-
jer and Bratvold, 2021). This convergence of traditional and modern computational techniques marks a
significant advance in the field of reservoir management and uncertainty quantification.

In the context of using machine learning as surrogate models for data assimilation in reservoir simula-
tions, UNets have demonstrated strong performance when used as surrogate models for data assimilation
in reservoir simulations, making them a popular choice among researchers (Wen et al., 2021a; Zhang
et al., 2021; Pintea et al., 2021; Ronneberger et al., 2015; Taccari et al., 2022). This approach has
further advanced with the incorporation of transformers into UNets, enhancing their segmentation capa-
bilities (Li et al., 2023; AlSalmi and Elsheikh, 2023). Additionally, Fourier Neural Operators (FNOs)
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are increasingly applied to model complex interactions in CO2 injection scenarios, offering significant
advancements over traditional surrogate modeling techniques. These operators handle the complexities
associated with the high-dimensional spaces of this problem, often required for CO2 sequestration sim-
ulations. Unlike traditional models that necessitate extensive training datasets, FNOs excel in environ-
ments where data may be sparse or expensive to obtain. Their spectral approach allows them to capture
long-range dependencies and intricate patterns in data, which is important for accurately predicting the
behavior of the reservoir (Li et al., 2020; Wen et al., 2022; Witte et al., 2023). There are also recent de-
velopments of surrogate models intended to replace conventional physics-based methods in DA, though
these require extensive training data and struggle with fully capturing subsurface complexities Tang
et al. (2022); Wen et al. (2021b); Sun and Durlofsky (2019); Agogo et al. (2022); Dong et al. (2021).
To mitigate these challenges, hybrid models that merge ML and physics-based approaches have been
framed to achieve a balance between accuracy and computational efficiency, enhancing predictability
under variable conditions despite facing integration limitations due to differing model parameterizations
(Tang and Durlofsky, 2022; Korondi et al., 2020; de Brito and Durlofsky, 2020).

In our approach, we begin with the conventional Ensemble Smoother with Multiple Data Assimilation
(ESMDA) using DARTS to conduct precise simulations of channelized reservoirs designed with Allu-
vsim. The complexity and non-Gaussian parameter distribution in these simulations presents significant
challenges for data assimilation. To improve the conventional ESMDA, we assess two machine learning
surrogate models: the first based on FNOs, and the second utilizing a Transformer-based UNet (T-UNet).
Our comparative analysis indicates that FNOs have a marginal superiority over T-UNets, especially with
smaller data sets. Building on this, we evaluate two hybrid approaches that merge data assimilation
with these ML surrogates, recently proposed by Seabra et al. (2024). The first approach, which we call
Surrogate-based hybrid ESMDA (SH-ESMDA), integrates the ML surrogates to accelerate the ESMDA
process by over 50 %. The second approach, the Surrogate-based Hybrid Randomized Maximum Like-
lihood (SH-RML), utilizes ML surrogates for gradient calculations within a variational framework and
employs DARTS to generate the posterior curves. SH-RML demonstrates superior history-matching
capabilities compared to both ESMDA and SH-ESMDA. Our key contributions include:

• The evaluation of two distinct ML surrogate models, specifically FNO and T-UNet, within a chan-
nelized reservoir environment for CO2 storage.

• The assessment of two innovative hybrid methodologies, SH-ESMDA and SH-RML, which inte-
grate ML with ensemble and variational data assimilation techniques, respectively, proposed by
Seabra et al. (2024). The former significantly speeds up the data assimilation process, while the
latter facilitates variational data assimilation.

• Ensuring that the high-fidelity physics solutions are maintained in all posterior analyses.

• Demonstrating the adaptability of these methods to a range of physical systems beyond CO2 se-
questration.

Overview of the Reservoir Model for CO2 Injection

Our research utilizes Alluvsim to generate a diverse ensemble of channelized reservoir models, incor-
porating a wide range of geological parameters to represent the complex features of these formations.
The modeling process involves the systematic variation of multiple elements to create a spectrum of
possible reservoir characteristics. We include avulsion probability as a parameter to represent the po-
tential for channel migration, while varying aggradation levels simulates different scenarios of vertical
sediment accumulation. Channel orientations are diversified to reflect the range of patterns observed in
natural systems. The models also incorporate variations in channel thickness, width-to-thickness ratios,
and levee dimensions to represent different sedimentary structure morphologies. Channel sinuosity is
varied to depict different degrees of meandering in fluvial systems. To account for the heterogeneity
of reservoir rock properties, we introduce variations in facies characteristics across the models. This
comprehensive approach results in a broad ensemble of geological realizations that capture the inherent
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variability and complexity of natural reservoir systems. The diversity of these simulated reservoirs is
illustrated in Figure 1, which displays a selection of the generated permeability distributions.

Figure 1 Permeability maps of ten models from the dataset.

These models are used to simulate CO2 injection with DARTS, which has been applied by several
researchers for complex flow dynamics through porous media (Khait and Voskov, 2017; Pour et al.,
2023; Chen and Voskov, 2020; Wapperom et al., 2023; Lyu and Voskov, 2023; DARTS, 2024). The
simulation parameters, such as gas phase viscosity and mixture densities, are calculated using models
from the literature, and a hybrid EOS model is utilized for dissolution processes (Fenghour et al., 1998;
Wapperom et al., 2023). The simulation setup, illustrated in Figure 2, comprises a centrally located
well within a computational grid that mimics the geological model. This configuration is designed for
CO2 injection and subsequent monitoring of its spatial distribution. The figure specifically displays
the final pressure and CO2 molar fraction for a single sample simulation, providing crucial insights
into the system’s behavior under the defined conditions. These simulations, despite neglecting certain
phenomena like capillary pressure effects for simplification, effectively capture the multiphase flow
dynamics critical to understanding CO2 migration and trapping in the studied reservoir (Wapperom
et al., 2023).

The simulations highlight the complex behavior of pressure and CO2 fronts within the reservoir, illus-
trating how pressure changes precede the CO2 front, suggesting the potential of pressure monitoring as
an early detection system for subsurface changes. Besides the significant risks associated with pressure
monitoring, there is also the advantage of early warning capabilities for subsurface changes.

Neural Networks as Surrogate Forward Models

Our approach involves constructing surrogate models using neural networks, which are trained in an
offline stage and deployed in an online stage to simulate fluid behavior. These models, particularly
effective due to their ability to approximate complex nonlinear functions, are ideal for nonlinear and
hyperbolic problems where traditional linear dimensionality reduction methods tend to fall short (Quar-
teroni et al., 2015; Hesthaven et al., 2016; Ohlberger and Rave, 2015; Mücke et al., 2021; Li et al., 2020;
Geneva and Zabaras, 2022). For the offline stage, we generate high-fidelity solutions as training data.
The neural networks, specifically T-UNet and FNOs, are then trained on these data. The forward model
in our simulations maps input parameters such as permeability and porosity, represented by K and φ ,
and injection rate q, to outputs like pressure and CO2 molar fraction. The parameter space and state
trajectories are formally defined as z = (K,φ ,q) in Z and d = (p, f ) in V , respectively. The mapping is
accomplished by the surrogate forward model Ĝ, which approximates the true forward map G, described
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Figure 2 Simulation results using DARTS. Left panel: Pressure distribution (Bar); Right panel: CO2
molar fraction.

by:

G : Z →V, z 7→ d, and Ĝ : Z →V, z 7→ d, Ĝ(z)≈ G(z). (1)

This approximation avoids solving PDEs directly by employing a neural network parametrized by
weights θ , trained to minimize a loss function reflecting the difference between the predicted and ac-
tual outputs, using methods like stochastic gradient descent optimized by algorithms such as the Adam
optimizer (Kingma and Ba, 2014).

In summary, the surrogate model training involves creating and using a training set Strain from the high-
fidelity model outputs, focusing on optimizing the neural network to accurately mimic the reservoir’s
fluid dynamic behaviors under varied conditions. Transitioning from this setup, our study explores the
application of advanced neural network architectures. We investigate the UNet structure, a design ini-
tially conceived for medical image analysis, which we have now adapted and applied to GCS scenarios.
This novel application represents one of the first instances of UNet’s utilization in the field of carbon
storage modeling. This architecture compresses the input dimension to a bottleneck through a series
of convolutional layers and then expands it back to the original dimension using upscaling layers, en-
riched by concatenating feature information from earlier layers (Ronneberger et al., 2015; AlSalmi and
Elsheikh, 2023). In the context of GCS, we leverage the UNet framework to integrate crucial spatial
parameters such as porosity and permeability with temporal data like injection rates directly within the
bottleneck layers, thereby enhancing the model’s efficiency in capturing complex subsurface behaviors,
as depicted in Figure 3 (Seabra et al., 2024).

On the other hand, FNOs introduced by Li et al. (2020) handle parametric PDE problems by learning
functional mappings rather than traditional Euclidean mappings, rendering them resolution-invariant.
FNOs transform inputs via the Fourier transform, perform operations in the Fourier space, and then
transform them back, which efficiently captures the data’s inherent periodicities. The structure of an
FNO layer is described as:

an+1(x) = σ
(
Wan(x)+F−1(R · (Fan))(x)

)
, (2)

where σ denotes an activation function, and W and R represent trainable weights, with Fourier operations
truncated to a limited number of modes for efficiency. The architecture of the FNO is visualized in
Figure 4.
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mize the handling of spatial and temporal data (Seabra et al., 2024)

(x, y) ∈ RNx×Ny

(t0, . . . , tNt
) ∈ RNt

(t
0 ,...,t

N
t )∈

R
N

t

Copy Nt times

Copy Nt times

R6×Nt×Nx×Ny

Projection
Layer

Fourier
Layer

Fourier
Layer. . .

N Layers
Projection

Layer

Pressure and CO2 fraction

(f(t0), . . . , f(tNt
)) ∈ RNt

f(t
0 ), . . . , f(t

N
t )

t
0 , . . . , t

N
t

R2×Nx×Ny

(K,φ) ∈ R2×Nx×Ny

Permeability & Porosity

Injection rate

x- and y-coordinates

Times steps

F F−1R

W

+ σ

(p, f) ∈ R2×Nt×Nx×Ny

(t
0 ,...,t

N
t )∈

R
N

t

Figure 4 Fourier Neural Operator setup used in our study, which leverages Fourier transformations to
efficiently process parametric PDEs. (Seabra et al., 2024)

European Conference on the Mathematics of Geological Reservoirs 2024
2–5 September 2024, Oslo, Norway



Both architectures, T-UNet and FNO, are utilized to approximate the high-fidelity forward model, G.
The T-UNet benefits from its ability to integrate temporal information with spatial data effectively, while
FNOs offer a direct approach to function space modeling, ideal for handling complex parametric PDEs.
However, FNOs require more memory due to their handling of data as 3D tensors, reflecting both spatial
and temporal dimensions. Both models have been trained to optimize performance using a loss function
that combines the L2-norm for accuracy and a regularization term to prevent overfitting:

L(Ĝ,Strain) =
1
Ns

Ns

∑
i=1

||Ĝ(zi)−di||2L2 +λ ||θ ||22, (3)

where L2 represents the norm over a function space, a suitable metric for the continuous nature of the
functions we are modeling.

Both FNO and T-UNet were trained using the DARTS simulator outputs to predict subsurface pressure
and CO2 molar fraction. For the FNO model, a sensitivity analysis was performed on the Width and
Modes parameters, whereas for the T-UNet model, a fixed set of parameters was used. The models were
evaluated based on RMSE, particularly for training sizes ranging from 100 to 1000 samples. Results
indicate a slight edge for FNO in scenarios with smaller datasets, which is crucial for efficient data
assimilation. The RMSE metrics for pressure are shown in Figure 5, and the RMSE metrics for CO2
molar fraction are shown in Figure 6.

Figure 5 Test RMSE Metrics for pressure (bars)

In Figure 7, we compare the final pressure distributions for two different samples, utilizing DARTS,
FNO, and T-UNet models. The top row of the figure illustrates the pressure distribution for the first
sample, while the bottom row presents the second sample. For each sample, the left column shows
the results from DARTS, the middle column displays the FNO predictions, and the right column con-
tains the T-UNet predictions. Both neural networks exhibit strong agreement with the DARTS outputs,
highlighting their capability to capture the complex subsurface pressure dynamics. This comparison un-
derscores that both FNO and T-UNet can effectively match the high-fidelity simulator results, validating
their application for reservoir modeling.

Figure 8 presents the pressure evolution over time for two different samples, labeled as (A) low pressure
sample and (B) high pressure sample. Each plot compares the results from three different models:
DARTS, FNO, and T-UNet, with pressure values recorded at the coordinates (x=16, y=16) for each time
step. In both samples, the DARTS and FNO models show a smooth and continuous increase in pressure,
indicating consistent predictions. The T-UNet model, however, exhibits a less smooth pressure evolution,
particularly evident in the low pressure sample (A). This difference in smoothness is expected due to the
inherent design of the models. The FNO model is designed to handle function space modeling with a
smoother temporal response, which aligns with the observed results. On the other hand, the T-UNet
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Figure 6 Test RMSE Metrics for CO2 molar fraction

Figure 7 Pressure distributions for a test case using DARTS, FNO, and T-UNet predictions.
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model, while effective in integrating temporal and spatial data, may produce slightly less smooth results
due to its architecture and training process. Despite these differences, all models demonstrate a similar
overall trend in pressure evolution, validating their effectiveness in subsurface pressure prediction.

Figure 8 Pressure evolution over time for two different samples using DARTS, FNO, and T-UNet models.
(A) Low pressure sample. (B) High pressure sample.

Data Assimilation with ESMDA and RML

Data assimilation (DA) techniques enhance the accuracy of reservoir simulations by integrating observa-
tional data with computational models. The methods evaluated in this study build upon two conventional
DA methods, ESMDA and RML, each offering benefits and challenges.

ESMDA is an ensemble-based DA approach designed to iteratively perform ensemble updates through
multiple data assimilation steps. This method is largely applied, however has some limitations, particu-
larly when dealing with complex environments like GCS where non-linearities and non-Gaussian error
distributions often complicate the data assimilation process. In ESMDA, the sensisity of the states in
regards to the variations of the parameters are approximated by the ensemble response. ESMDA ad-
justs the ensemble by applying multiple Gauss-Newton corrections to better match the available data,
described by Emerick and Reynolds (2013a). The update formula for each ensemble member za

j is:

za
j = z f

j +C f
ZD

(
C f

DD +αiCD

)−1 (
d j −G(z j)

f ) , (4)

where z f
j denotes the forecast parameters of the jth ensemble member, C f

ZD and C f
DD are the forecast

cross- and auto-covariance matrices, α is a scaling factor, and d j and G(z j)
f represent the perturbed and

forecasted observations, respectively (Emerick and Reynolds, 2013b).

RML, a variational DA method, aims to approximate the posterior distribution by minimizing a cost
function that quantifies discrepancies between model predictions and observed data. It uses gradient-
based optimization to adjust model parameters, providing a potential for higher accuracy and better
convergence within specified solution spaces when compared to ESMDA, as long as the gradients are
computed accurately. The cost function for RML is expressed as:

J(z j) = (z j − zprior
j )TC−1

ZZ (z j − zprior
j )+(G(z j)−d j)

TC−1
DD(G(z j)−d j), (5)

where zprior
j and d j represent the prior model parameters and perturbed observed data for the jth ensemble

member, respectively (Oliver et al., 1996).

Both ESMDA and RML are applied to adjust reservoir parameters such as permeability and porosity
based on pressure data from monitoring locations. Implementing these advanced DA techniques en-
sures that our simulation outputs align closely with real-world observations, facilitating a thorough and
accurate history matching process essential for reliable GCS studies.
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Hybrid Data Assimilation Techniques

Hybrid data assimilation techniques aim to merge the computational advantages of machine learning
(ML) surrogates with the accuracy of traditional ensemble and variational data assimilation methods.
These methods are particularly effective in GCS simulations where computational efficiency and accu-
racy are paramount.

Surrogate-based Hybrid ESMDA (SH-ESMDA)

SH-ESMDA is a novel approach that incorporates ML surrogates within the "Data Learning" framework,
as highlighted by Buizza et al. (2022). This method leverages ML models to approximate the forward
model during the intermediate steps of the ESMDA process. The key motivation behind SH-ESMDA is
to balance the trade-offs between computational efficiency and the robustness of traditional DA methods.
The detailed steps of SH-ESMDA include:

• Prior Dataset Generation: Create a dataset of channelized permeability models using Alluvsim
and simulate CO2 injection using the DARTS simulator.

• Surrogate Model Training: Train a surrogate ML model, such as FNO or T-UNet, on the gen-
erated dataset. This model acts as a computationally efficient proxy to the high-fidelity DARTS
simulations during the intermediate assimilation steps.

• ESMDA Integration: Utilize the trained surrogate model within the ESMDA framework to per-
form multiple assimilation cycles efficiently. The surrogate is used to estimate the forward model
outputs, which are necessary for updating the ensemble predictions at each assimilation step.

• Posterior Computation: After employing the surrogate in the intermediate steps, the final as-
similation step reverts to using the high-fidelity DARTS simulations to ensure the accuracy of the
final model parameters.

This method significantly accelerates the ESMDA process by reducing the dependency on computation-
ally intensive high-fidelity model simulations, thus allowing more frequent updates and iterations within
practical time constraints.

Surrogate-based Hybrid RML (SH-RML)

Building on the concept of integrating ML surrogates, SH-RML adapts these models within the RML
framework to enhance variational data assimilation. This approach is particularly beneficial in scenarios
where traditional RML would require extensive computational resources:

• Surrogate Model Utilization: Similar to SH-ESMDA, SH-RML employs pre-trained ML surro-
gates to approximate the behavior of the forward model, thereby facilitating the initial optimiza-
tion of the RML cost functions.

• Gradient Computation and Optimization: By leveraging the surrogate model’s ability to pro-
vide gradients through automatic differentiation, SH-RML efficiently optimizes the RML cost
function, which is designed to align the model predictions with observed data.

J(z j) = (z j − zprior
j )TC−1

ZZ (z j − zprior
j )+(G(z j)−d j)

TC−1
DD(G(z j)−d j), (6)

• High-Fidelity Finalization: Post optimization, the surrogate-based results are refined using the
high-fidelity DARTS simulations to ensure the physical accuracy of the assimilated parameters.

The integration of ML surrogates into the RML method not only speeds up the optimization process but
also circumvents the need for adjoint models typically required for gradient computations in traditional
variational DA approaches.
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Results

This section presents the comparative results of employing ESMDA, SH-ESMDA, and SH-RML for
history matching in the context of geological CO2 storage. We discuss the performance of each method
in terms of pressure matching, uncertainty quantification, and computational efficiency, and provide
insights into the implications of these results for improving CO2 storage operations.

To perform history matching, we created a reference permeability model, generated outside our prior
distribution, to create synthetic observed data. Figure 9 showcases the prior ensemble pressure response
at the four monitoring points considered for data assimilation, using 100 prior models. The left panel
provides a spatial representation of the monitoring points relative to the central injection well. The four
plots on the right display the pressure evolution over time at each monitoring point. Each gray line
represents the pressure response of an individual prior model, highlighting the variability in the prior
ensemble.

Figure 9 Prior ensemble pressure response at four monitoring points using 100 prior models. The left
panel shows the location of the monitoring points around the central injection well. The right panels
display the pressure evolution over time at each monitoring point.

First, we evaluate ESMDA, which reduced the uncertainty in pressure estimations at the monitoring
points Figure 10 displays this improvement, comparing pressures from the prior, the reference model,
and the posterior. We further analyze the sensitivity of the method to the number of steps in ESMDA at
the monitoring pressure points for both the prior and posterior models by varying the number of ESMDA
steps: 4, 8, 16, and 32. Figure 11 reveals that increasing the number of iterations does not substantially
improve the quality of history matching.

In terms of uncertainty quantification, ESMDA effectively narrowed the range of uncertainty in pressure
estimations after the history matching process. The true pressures observed at the monitoring points are
as follows: 255.1 bar at Monitoring Point 1, 252.0 bar at Monitoring Point 2, 255.0 bar at Monitoring
Point 3, and 251.4 bar at Monitoring Point 4. By analyzing the pressure distributions at the final injection
step, we observed a significant variance reduction between the prior and the posterior, which indicates a
decrease in the uncertainty of pressure buildup within the reservoir. The quantitative assessment of this
reduction is depicted in the P10-P90 pressure range, which serves as an indicator of uncertainty. The
range narrowed significantly post-history matching, showing a decrease in the spread of estimated pres-
sures, enhancing the predictive accuracy of the model. Specifically, Monitoring Point 1 saw a decrease
from a prior range of 213.9–268.8 bar to a posterior range of 212.6–261.1 bar, Monitoring Point 2 from
202.7–261.2 bar to 211.0–259.9 bar, Monitoring Point 3 from 209.9–265.1 bar to 211.5–260.2 bar, and
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Figure 10 Comparison between the prior, reference model, and posterior pressures at each monitoring
point for the ESMDA history matching. Red dots represent a realization of perturbed observed data.

Monitoring Point 4 from 208.7–264.0 bar to 208.8–259.0 bar. These reductions show that ESMDA is
reducing the uncertainty associated with pressure estimations in reservoir modeling.

Although ESMDA reduces errors related to measured pressure in comparison to the prior, it significantly
overestimates reservoir permeability in comparison to prior permeability distributions, as illustrated in
Figure 12. While undesirable, the discrepancy can be explained by the fact that history matching is an
ill-posed problem, allowing for multiple solutions that can satisfactorily fit the data.

Following the analysis of ESMDA, we now focus on the performance of the hybrid methods, SH-
ESMDA and SH-RML. These methods integrate machine learning surrogates to enhance the efficiency
and accuracy of the history matching. Figure 13 presents the history matching results for the first moni-
toring point for both SH-ESMDA and SH-RML methods, utilizing both T-UNet and FNO as surrogates.
As observed, the SH-ESMDA methods yield results similar to ESMDA, effectively reducing the uncer-
tainty in pressure predictions. SH-RML methods exhibit superior results, achieving a closer match to
the observed data, which suggests an improvement in capturing the complex dynamics of the reservoir.
The detailed results for other monitoring points are provided in the Appendix.

The improvements in history matching are quantitatively supported by the uncertainty reduction depicted
in Table 1, which summarizes the P10-P90 pressure range reductions across all methods and monitoring
points.

Given the inherent assumptions of ESMDA, namely, its reliance on Gaussian distributions and its better
suitability for linear problems—none of which are present in our case—it is crucial to recognize its
limitations in addressing the ill-posed problems we encounter. Our subsequent results delve into hybrid
methods, as detailed in Section ??. These techniques serve dual purposes: one aims to accelerate the
computational process, while the other focuses on enhancing the accuracy of history matching.
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Figure 11 Comparison of monitoring pressure absolute error across different ESMDA iterations and the
prior. Red dots represent a realization of perturbed observed data.
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Figure 12 Comparison between prior and posterior permeabilities across three different samples for the
ESMDA.
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Figure 13 History matching results at Monitoring Point 1 for SH-ESMDA and SH-RML methods using
both T-UNet and FNO surrogates.
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Table 1 Uncertainty reduction in P10-P90 pressure range at monitoring points for the ESMDA, SH-
ESMDA and SH-RML history matching.

Location Prior (bar) Posterior (bar)
P10-P90 Difference P10-P90 Difference

ESMDA
1 213.9 - 268.8 54.9 212.6 - 261.1 48.5
2 202.7 - 261.2 58.4 211.0 - 259.9 48.9
3 209.9 - 265.1 55.2 211.5 - 260.2 48.7
4 208.7 - 264.0 55.3 208.8 - 259.0 50.2

SH-ESMDA
1 213.9 - 268.8 54.9 212.96 - 262.1 49.14
2 202.7 - 261.2 58.4 210.93 - 260.8 49.87
3 209.9 - 265.1 55.2 211.65 - 261.0 49.39
4 208.7 - 264.0 55.3 209.10 - 260.1 50.97

SH-RML
1 213.9 - 268.8 54.9 209.0 - 253.9 44.9
2 202.7 - 261.2 58.4 208.7 - 253.7 45.0
3 209.9 - 265.1 55.2 208.2 - 253.5 45.3
4 208.7 - 264.0 55.3 208.2 - 253.5 45.3

A significant advantage of SH-ESMDA is the substantial reduction in computational time. Figure 14
illustrates the runtime comparison across different methods, clearly demonstrating the efficiency gains
achieved with SH-ESMDA. Both the FNO and T-UNet surrogates significantly accelerate the compu-
tation compared to the standard ESMDA method. This acceleration is particularly pronounced as the
number of steps increases, with the hybrid methods maintaining relatively stable computational times
even as the complexity grows. For instance, at 16 steps, standard ESMDA requires 303 minutes, while
SH-ESMDA with FNO and T-UNet surrogates completes the task in just 58 and 55 minutes, respectively.
This dramatic reduction in processing time, approximately 80% for the most complex case, makes SH-
ESMDA particularly suitable for larger-scale or more frequent analyses in practical GCS applications.

However, similar to ESMDA, SH-ESMDA tends to overestimate the permeability field, a limitation that
stems from the method’s reliance on the ESMDA framework. In contrast to SH-ESMDA, SH-RML
not only provides better history matching but also offers improved estimations of permeability fields.
Figure 15 illustrates the posterior permeability fields obtained with the SH-RML method using FNO
surrogates, showing a more realistic estimation that closely aligns with the prior distributions.

Building upon these results, our research adds valuable insights to the existing knowledge on integrating
machine learning with data assimilation in the context of geological carbon storage. This aligns with the
data learning methodologies framework proposed by Buizza et al. (2022) and expands on the collective
research efforts, such as those by Tang et al. (2022) and Wen et al. (2021b), which also utilize ma-
chine learning models to enhance data assimilation processes. Our study sets itself apart by maintaining
physics consistency in the posterior, addressing a significant limitation found in previous works where
reliance on surrogate models often overlooked this crucial aspect (Tang et al., 2022; Wen et al., 2021b).
Moreover, we explore the innovative application of combining transformers with UNets for CO2 storage
challenges, as suggested by Li et al. (2023). This adaptation highlights the flexibility and capability of
advanced neural network architectures to manage the complex spatial and temporal data patterns typi-
cally found in subsurface environments. Furthermore, by employing FNOs, we successfully address the
challenge of data demands for model training—a persistent issue in related studies Wen et al. (2021a);
Tang et al. (2022); Sun and Durlofsky (2019). Our methods not only minimize the data required but
also significantly enhance the computational efficiency of the data assimilation framework, providing a
robust solution to one of the principal obstacles in applying deep learning techniques to geosciences.
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Figure 15 Posterior permeabilities for Hybrid-RML-Surrogate with FNO surrogates.
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Discussion

This study explores DA and ML integration, advancing history matching for CO2 storage projects. Our
frameworks, namely SH-ESMDA and SH-RML, optimize computational efficiency and accuracy in
DA applications by incorporating ML surrogates. SH-ESMDA accelerates the computations of Ensem-
ble Smoother with Multiple Data Assimilation (ESMDA), maintaining consistent physical responses,
whereas SH-RML excels in providing superior history matching through improved gradient approxima-
tions enabled by ML automatic differentiation. Although initially limited by computational resources
affecting grid resolution, subsequent enhancements have allowed for exploration at higher resolutions.
Both frameworks ensure the physical reliability of outputs via the DARTS simulator, though their effec-
tiveness hinges on the precision of ML surrogates, which poses challenges for uncertainty quantification.
Addressing these limitations may involve developing more robust nonlinear DA methods and refining
ML surrogate training for enhanced reliability in gradient computation. The study demonstrates the
frameworks’ suitability across different applications, emphasizing their potential in geothermal energy
and nuclear waste disposal.

Conclusion

We introduced innovative frameworks that integrate ML with DA to improve uncertainty quantification
in Geological Carbon Storage (GCS) projects. Comparative analyses favored the Fourier Neural Opera-
tors (FNOs) over Transformer-UNet (T-UNet) in scenarios with limited training data. Employing these
surrogates, hybrid methods—SH-ESMDA and SH-RML—not only reduce computational times by over
50% but also enhance accuracy in history matching. SH-RML, in particular, demonstrated an improve-
ment in uncertainty quantification, facilitated by efficient gradient computations from FNO. This integra-
tion of ML efficiency with the physical reliability of reservoir simulators paves the way for scaling our
methods to more extensive and complex reservoir systems, potentially optimizing real-world GCS op-
erations. Future directions include expanding the scalability of our methodologies to include additional
neural network architectures for broader applications beyond CO2 sequestration, such as geothermal
energy and nuclear waste management. This study not only marks significant progress in integrating
AI with DA for GCS but also sets the stage for further research in enhancing operations across various
subsurface modeling applications.
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Appendix

This appendix presents a detailed discussion and comparative figures illustrating monitoring pressure
results from various history matching methods employed in this study. The integration of machine
learning surrogates, specifically Fourier Neural Operators (FNO), into the ESMDA framework aims
to enhance computational efficiency while maintaining the accuracy of standard ESMDA. This hybrid
method leverages the strengths of both traditional data assimilation techniques and advanced machine
learning models. As shown in Figure 16, the FNO surrogate captures the dynamics of the reservoir
effectively, aligning closely with the results from the standard ESMDA method, thus confirming the
surrogate’s ability to replicate complex physical processes accurately.
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Figure 16 Pressure comparison at monitoring points for Hybrid ESMDA using FNO surrogate. Red
dots represent a realization of perturbed observed data.

Continuing the exploration of machine learning surrogates, the T-UNet model is evaluated for its efficacy
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in the ESMDA setup. Similar to FNO, T-UNet is expected to provide a balance between computational
speed and history matching accuracy. Figure 17 illustrates that T-UNet, while slightly less accurate than
FNO in some cases, still provides a substantial improvement over the priors.
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Figure 17 Pressure comparison at monitoring points for Hybrid ESMDA using T-UNet surrogate. Red
dots represent a realization of perturbed observed data.

The SH-RML approach represents a further step in the use of machine learning within the data assimila-
tion framework. It employs machine learning surrogates, specifically for gradient evaluation, enhancing
the optimization process in reservoir simulations. Figure 18 displays the outcomes from employing
the FNO surrogate within the SH-RML framework. The results underscore the efficacy of SH-RML in
closely aligning the simulated pressures with the observed data, thereby validating the surrogate’s role in
maintaining high fidelity in model predictions. This is particularly evident in the way SH-RML handles
the complex dynamics of the reservoir, which are often challenging to capture with traditional methods.
Similarly, Figure 19 shows the application of the T-UNet model within the same SH-RML framework.
The T-UNet surrogate, while demonstrating a slight variance from the FNO results, still significantly
enhances the model’s performance compared to traditional simulations.
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Figure 18 Pressure comparison at each monitoring point for SH-RML using FNO surrogates. Red dots
represent a realization of perturbed observed data, highlighting the accuracy of SH-RML in matching
observed data closely.
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Figure 19 Comparison of monitoring pressure results using T-UNet surrogates in SH-RML. This figure
illustrates the surrogate’s capability to adhere to the accuracy requirements while enabling faster com-
putational times.
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